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ABSTRACT

Evolution of Wave Packets Under Semiclassical Approximations

Spencer Ellis
Department of Physics and Astronomy

Texas A&M University

Research Faculty Advisor: Stephen Fulling
Department of Mathematics

Texas A&M University

In quantum mechanics, the propagator specifies the probability amplitude for a particle to

travel from one position in space to another in a given period of time. Utilizing a propagator, as

well as a basic Gaussian wave packet, one can integrate the two quantities against one another to

construct a full quantum wave function — a function that describes the behavior of a quantum

particle. Using previously computed propagators, we present a visual representation of this semi-

classical wave packet behavior for a particle interacting with a ‘ceiling’ boundary. We explain the

roles of the parameters embedded in the Gaussian wave packets and examine their effects on the

resulting wave function. Two different types of propagator expressions have been derived, one in

terms of initial position data and another in terms of initial momentum data. We present results

computed by both methods and elaborate upon the regimes in which one particular method is pre-

ferred. Additionally, we present the software developed to conduct this research and detail how it

is used such that it may be adapted for future use.
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1. INTRODUCTION AND PREVIOUS WORK

1.1 Quantum Dynamics

1.1.1 The Quantum Wave Function

The wave function of quantum mechanics, denoted as Ψ, is the mathematical representation

of the state of a quantum system. In contrast to the deterministic nature of classical mechanics,

the wave function of quantum mechanics is a complex-valued probability amplitude such that the

probability of a possible measurement made on the system may be derived from it. The wave

function is governed by the time-dependent Schrödinger equation (TDSE).

ih̄
∂Ψ(x, t)
∂t

= − h̄2

2m
∇2Ψ(x, t) + V (x)Ψ(x, t) (1.1)

Here, x denotes the position vector in R3. Solutions of the TDSE are expressed as plane waves

propagating through both real and complex space. For a free particle (V (x) = 0), the wave function

takes the following form

Ψ(x, t) = Aei(k·x−ωt) (1.2)

with wave vector k, frequency ω, and amplitude A.

1.1.2 The Propagator

The TDSE may alternatively be solved via its Green’s Function. The Green’s Function of the

TDSE is the referred to as the propagator. The propagator, denoted as U(x, y, t), describes the

evolution of the wave function in time as the particle propagates from the state at initial position y

to the state at final position x. When integrated against the initial wave function of the system, the

overall result yields the time-evolved wave function.

Ψ(x, t) =
∫
U(x, y, t)Ψ(y, 0)dy (1.3)
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One may also express Ψ(x, t) in terms of initial momentum data via a Fourier transform of Equa-

tion 1.3 where factors of 2π have been suppressed and h̄ is set equal to 1.

Ψ(x, t) =
∫
U(x,p, t)Φ(p, 0)dp (1.4)

Note that in Equation 1.3 the propagator is integrated against Ψ(x, 0) - the wave function in the

position representation, yet in Equation 1.4 the propagator is integrated against Φ(p, 0) - the wave

function in the momentum representation. The propagator allows one to determine the wave func-

tion of the system for either initial position data, or initial momentum data depending upon the

available information of the physical scenario one wishes to study. For this research, we will adopt

a new sign convention for p̄ than that of [1], and take these initial wave functions as

Ψ(y, 0) =

(
2

πγ

)1/4

eip̄y−i
(y−ȳ)2

γ (1.5)

Φ(p, 0) =

(
γ

2π

)1/4

e−i(p−p̄)ȳ−iγ
(p−p̄)2

4 (1.6)

The parameter ȳ corresponds to the average initial position of the particle. p̄ corresponds to the

average initial momentum of the particle. γ prescribes the width of the wavepacket in position

space. Via a Fourier transform, the width in momentum space becomes 4/γ. In this work, we

choose γ = 2 such that the widths are equivalent in both representations. The Fourier transform

conventions utilized in this work are detailed in [2] and are

ϕ(p) =
1√
2π

∫
dxψ(x)e−ip·x (1.7)

ψ(y) =
1√
2π

∫
dpϕ(p)e+ip·x (1.8)
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1.2 The WKB Approximation

1.2.1 Classical Theory

In semiclassical theory, we seek to understand the evolution of the quantum wave function

of a particle traversing a classical path. Solutions of the classical theory are path functions q with

q(0) = y q(t) = x (1.9)

For a given x, y, and t there may be a single path, no path, or several paths. In constructing the

propagator for a particle we will sum over all available paths. Similarly, these conditions may be

re-expressed in terms of the initial momentum as

mq̇(0) = p q(t) = x (1.10)

where ‘dot’ denotes a derivative in time. In classical theory, the Lagrangian L of the system

characterizes the dynamics of the system. The Lagrangian is defined as

L = T − V (1.11)

where T and V denote the kinetic and potential energy respectively. For our classical system, we

write the Lagrangian as

L =
m

2
q̇2 − V (q) (1.12)

To obtain the equations of motion governing a dynamical system, we use the action S, which is

related to the Lagrangian by

S =

∫
dt L(q, q̇, t) (1.13)

Classically, the action is a fundamental quantity used in deriving the Euler-Lagrange equations of

motion via the Principle of Least Action. In the semiclassical approximation, we will utilize the

action to aid in the construction of the propagator as detailed in the following subsection.
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1.2.2 The WKB Ansatz

The semiclassical, or WKB, ansatz approximates the quantum solution by a sum over all clas-

sical paths from the initial point to the final point. This theory is developed in many references,

such as [3], [4], [5]. The contribution of each classical path to U takes the form

U(x, t) = A(x, t)eiS(x,t)/h̄ (1.14)

1.3 Linear Potential

In this thesis, we wish to study a 1-dimensional system with an impenetrable barrier at the

origin and a linear potential. The potential of this system is

V (q) = −αq (1.15)

where q represents the position of the particle, and α characterizes the strength of the potential.

For positive values of α, the barrier acts as a ‘ceiling’ and the particle may bounce off at most

once. If α is negative, the barrier will act as a ‘floor’ and will have, in principle, an infinite number

of bounces. This work is a continuation of [1] in which only the ceiling case is considered for two

different types of initial data: initial position y or initial momentum p.

1.4 Classification of Paths

Note that henceforth all work will be done in one spatial dimension and thus the position

vectors x, y and momentum vector p will now be referred to by x, y and p.

1.4.1 Free Particle

The particle in the absence of a potential, or free particle, is a very good test of the theory

as it greatly reduces the difficulty of evaluating the total wave function. The momentum space

propagator of the free particle is derived in [6]. The propagator is (using m = 1/2 and h̄ = 1)

UFree(x, p, t) =
1√
2π

exp
[
ip(x− pt)

]
(1.16)
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Via the Fourier transform defined in Equation 1.8, the position space propagator is

UFree(x, y, t) =
1√
4iπt

exp
[i(x− y)2

4t

]
(1.17)

1.4.2 Direct Paths

In reference [1], the direct paths are classified into three separate categories:

• Type (i) - Rightward path.

• Type (ii) - Leftward path.

• Type (iii) - Turning path.

The direct path propagators, equations (109a) and (109b) of [1], are restated here for convenience.

Note, there appears to be a typo in [1] equation (109a); in this thesis we will construct the propa-

gator using the correct action from equation (103a). The direct propagators are

UDirect(x, p, t) =
1√
4iπt

exp
[
i
(2t3

3
+ t2

(x− y

t
− t
)
+ t
(1
4

(x− y

t
− t
)2

+ y
))]

(1.18)

UDirect(x, y, t) =
1√
2π

exp
[
− i

3
(3p2t+ t3 + 3p(t2 − x)− 3tx)

]
(1.19)

1.4.3 Bounce Paths

The remaining possible paths to consider are the paths in which the particle interacts directly

with the ceiling and changes direction. We will aptly refer to trajectories of this type as bounce

paths. The bounce propagators are

UBounce(x, p, t) =
−1√
2π

√
p+ bp√

(p+ t) + 3x

× exp
[
i
(−1

3

[
b3p + (t− bp)

3
]
− pbp(3p+ 2bp)

)]
× exp

[
i
(
(t− bp)(x+ (p+ bp)

2)
)]

(1.20)
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UBounce(x, y, t) =
1√
4πi

√
y − b2y

−3tb2y + 2(t2 − x− y)by + 3yt

× exp
[
i
(2
3
b3y − b2y

[y
t
+ by

]
+ by

(1
4

[y
t
+ by

]2
+ y
))]

× exp
[
i
(2
3
(t− by)

3 + (t− by)
2
[x
t
− (t− by)

])]
× exp

[
i
(t− by)

4

(x
t
− (t− by)

)2]
(1.21)

Here bp and by have been introduced. These quantities refer to the time in which the bounce occurs

and thus have units of [t]. The solutions of bp and by are discussed in great detail in [1], and are

restated below.

bp =
1

3

(
2t− p−

√
(p+ t)2 + 3x

)
(1.22)

by =
t

2
+

√
t2 + 2(x+ y)

3
sin
[1
3
sin−1 3

√
3t(y − x)

(t2 + 2(x+ y))3/2

]
(1.23)

1.4.4 Addition of Paths

The constraints on initial momentum given (x,t) are shown below. Both the turning paths and

bounce paths are divided into two subcategories: Type (iiia), Type (iiib) and Bounce (a), Bounce

(b). These distinctions arise from differences in domain in position and momentum space. The

divide occurs at x = t2 and is discussed further in [1]. These domains are utilized as the domain

of integration in calculating the wave function for each trajectory. The domains are given in the

following tables.
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Table 1.1: Trajectory domains in momentum space. Endpoints not included.

Path Type x ∈ p ∈

Type (i) (t2,∞) (0, x−t2

2t
)

Type (ii) (0,∞) (−∞,−t)
Type (iiia) (0, t2) (−t,

√
x− t)

Type (iiib) (t2,∞) (−t, 0)
Bounce (a) (0, t2) (−∞,

√
x− t)

Bounce (b) (t2,∞) (−∞, x−t2

2t
)

Table 1.2: Trajectory domains in position space. Endpoints not included.

Path Type x ∈ y ∈

Type (i) (t2,∞) (0, x− t2)

Type (ii) (0,∞) (x+ t2,∞)

Type (iiia) (0, t2) ((
√
x− t2)2, x+ t2)

Type (iiib) (t2,∞) (x− t2, x+ t2)

Bounce (a) (0, t2) ((
√
x− t2)2,∞)

Bounce (b) (t2,∞) (0,∞)

As mentioned, all trajectories may be divided into paths valid for x < t2 and x > t2. For

x < t2, the interval of integration for the direct paths over p is

(−∞,
√
x− t) = (−∞,−t) ∪ (−t,

√
x− t)

= Type (ii) ∪ Type (iiia)
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For x < t2, the interval of integration for the direct paths over y is

((
√
x− t)2,∞) = ((

√
x− t)2, x+ t2) ∪ (x+ t2,∞)

= Type (iiia) ∪ Type (ii)

For x > t2, the interval of integration for the direct paths over p is

(−∞,
x− t2

2t
) = (−∞,−t) ∪ (−t, 0) ∪ (0,

x− t2

2t
)

= Type (ii) ∪ Type (iiib) ∪ Type (i)

For x > t2, the interval of integration for the direct paths over y is

(0,∞) = (0, x− t2) ∪ (x− t2, x+ t2) ∪ (x+ t2,∞)

= Type (i) ∪ Type (iiib) ∪ Type (ii)

Thus it has been demonstrated that the domain of integration for x < t2 and x > t2 correspond to

the same paths in both momentum and position space and should lead to the same wave function

contribution. To include the bounce contribution we simply add Bounce (a) to the x < t2 paths and

Bounce (b) to the x > t2 paths. The contribution of the direct and bounce paths yield the complete

wave function for the particle and results for this wave function are presented in Section 3.

1.5 Classical Solutions

In the limit h̄ → 0 we expect to recover the classical picture. However in the semiclassical

picture, the classical results are still of use. Classically, the dynamics of the particle are described

by

q(t) = t2 + 2p̄t+ ȳ (1.24)

In the quantum picture, this position q corresponds to the centroid of the wave packet. As the

ceiling boundary is placed at the origin, the paths in which the particle bounces off of the ceiling

will take on a new trajectory after the bounce. The time of the bounce can be calculated by setting

11



Equation 1.24 equal to zero. The time of bounce, b, is

b = −p̄−
√
p̄2 − ȳ (1.25)

After the bounce occurs, the particle follows a new trajectory q′, and the previous trajectory q

should be replaced by the following.

q′ = (t− b)2 + 2(t− b)
√
p̄2 − ȳ (1.26)

1.6 Boundary Conditions

There are two different boundary conditions that may be selected when analyzing the wave

function at the ceiling (x = 0). The Dirichlet boundary condition states that the complete wave

function must vanish at the origin.

Ψ(0, t) = 0 (1.27)

The correct WKB approximation for the Dirichlet boundary condition is the difference between

the direct and bounce contributions, UDirect−UBounce. The alternative to the Dirichlet boundary is

the Neumann boundary condition which states that the spatial derivative of the wave function must

vanish at the origin.
∂Ψ(0, t)

∂x
= 0 (1.28)

The correct WKB approximation for the Neumann boundary condition is the sum between the

direct and bounce contributions, UDirect + UBounce.

In Section 3 we display wave function results following the Neumann boundary condition.

12



2. METHODS

We wish to study how the variables ȳ, p̄, and t affect the accuracy of the approximation in

position space and momentum space. To better understand these effects on the overall wave func-

tion, we will utilize Wolfram Mathematica to compute and plot the cumbersome integrals outlined

in Equations 1.3 and 1.4. Two files are attached in Appendices A and B. Appendix A contains the

TotalWaveFunction.nb file which is used to compute all direct and bounce path contributions to

the wave function. Appendix B contains the FreeWaveFunction.nb file which is presented as an

example of how the approximation scheme would ideally function. The free particle approxima-

tion is identical in both the position and momentum representations and thus should be used as a

reference when studying the results of the more complicated paths computed in Appendix A.

Note that in Mathematica, text written in the form (*Comment*) is a comment and is not

computed by the program.

2.1 Structure of TotalWaveFunction.nb

2.1.1 Declaration of Formulae

Variables ȳ, p̄, and t are declared globally prior to any computation. Relevant quantities includ-

ing initial Gaussian wave packets and propagators for both direct and bounce paths are defined. The

naming conventions chosen for the functions defined in the Mathematica program and the quanti-

ties the represent from Section 1 are detailed in Table 2.1. In the file, the corresponding equation

number from Section 1 is presented as a comment following the definition of the function.

13



Table 2.1: Declaration of Wave Packets and Propagators.

Mathematica Function Corresponding Symbol From Section I

YBAR ȳ

PBAR p̄

TIME t

psi[y_] Ψ(y, 0)

phi[p_] Φ(p, 0)

Ud[y_] UDirect(x, y, t)

ud[p_] UDirect(x, p, t)

by by

bp bp

Ub[y_] UBounce(x, y, t)

ub[p_] UBounce(x, p, t)

PSIY Ψ(x, t)

PSIP Ψ(x, t)

2.1.2 Computation of Wave Function

To compute the overall wave function the integrals must be split into a sum of several simple

integrals that the program is more apt to handle.

For the direct path contributions, the integral is computed with ȳ, p̄, and t left as undefined

variables. Prior to the evaluation of each integral, the domain of integration in both position and

momentum space is restated from Tables 1.1 and 1.2 for convenience. The naming of the functions

relating to the direct path computations is detailed in Table 2.2.

For the bounce path contributions, the values of ȳ, p̄, and t must be defined in the integrand

prior to integration. Alternatively, the bounce path contributions must also be computed using

numerical integration via Mathematica’s NIntegrate command due to the highly oscillatory

nature of the integrals. The naming of the functions relating to the bounce path computations is

detailed in Table 2.3.
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Table 2.2: Computation of Direct Path Types.

Mathematica Function Interpretation of Function

type1y Contribution to wave packet due to Type (i) paths in position space

type1p Contribution to wave packet due to Type (i) paths in momentum space

type2y Contribution to wave packet due to Type (ii) paths in position space

type2p Contribution to wave packet due to Type (ii) paths in momentum space

type3ay Contribution to wave packet due to Type (iiia) paths in position space

type3ap Contribution to wave packet due to Type (iiia) paths in momentum space

type3by Contribution to wave packet due to Type (iiib) paths in position space

type3bp Contribution to wave packet due to Type (iiib) paths in momentum space

Table 2.3: Computation of Bounce Path Types.

Mathematica Function Interpretation of Function

tbounce Fixes value of t for all bounce related quantities

psifixed[y_] Fixes value of ȳ, p̄, t for psi[y_] prior to integration

phifixed[p_] Fixes value of ȳ, p̄, t for phi[p_] prior to integration

bounceay Contribution to wave packet due to Bounce (a) paths in position space

bounceap Contribution to wave packet due to Bounce (a) paths in momentum space

bounceby Contribution to wave packet due to Bounce (b) paths in position space

bouncebp Contribution to wave packet due to Bounce (b) paths in momentum space

2.1.3 Plot of Complete Wave Function

The results of the integration are plotted. The direct paths are summed as prescribed in Section

1.4.4. and the corresponding bounce paths are added as mentioned in Section 1.6. Note that regard-

less of integration over y or p, both plots are of Ψ(x, t) and thus calculations via both methods are

ideally expected to resemble one another. The naming of the functions relating to the presentation

of the total wave function is detailed in Table 2.4.

15



Table 2.4: Presentation of Complete Wave Function.

Mathematica Function Interpretation of Function

direct1y Addition of direct path contributions for x < t2 in position space

direct1p Addition of direct path contributions for x < t2 in momentum space

direct2y Addition of direct path contributions for x > t2 in position space

direct2p Addition of direct path contributions for x > t2 in momentum space

final1y All contributions for x < t2 in position space

final1p All contributions for x < t2 in momentum space

final2y All contributions for x > t2 in position space

final2p All contributions for x > t2 in momentum space

PSIY Ψ(x, t)

PSIP Ψ(x, t)

2.2 Structure of Free.nb

2.2.1 Declaration of Formulae

Relevant quantities including initial Gaussian wave packets and propagators for both direct

and bounce paths are defined. The naming conventions chosen for the functions defined in the

Mathematica program and the quantities they represent from Section 1 are detailed in Table 2.5. In

the file, the corresponding equation number from Section 1 is presented as a comment following

the definition of the function.

Table 2.5: Declaration of Free Wave packets and Propagators.

Mathematica Function Corresponding Symbol From Section 1

psi[y_] Ψ(y, 0)

phi[p_] Φ(p, 0)

Uf[y_] UFree(x, y, t)

uf[p_] UFree(x, p, t)

16



2.2.2 Computation of Wave Function

Similar to the direct paths, the integrals may be handled by Mathematica without need for

defining ȳ, p̄, t prior to integration. The naming of the functions relating to the bounce path

computations is detailed in Table 2.6.

Table 2.6: Computation of Free Particle Wave Function.

Mathematica Function Interpretation of Function

freey Wave function calculated in position space

freep Wave function calculated in momentum space

test Demonstrates that freey and freep are equal

free[x_, t_, g_, yb_, pb_] Renaming of freey and freep into a single function

2.2.3 Plot of Complete Wave Function

Because the wave function is the same for each method of computation, Mathematica’s Manipulate

command is used to vary ȳ, p̄, t. This eliminates the need to run the full program each separate

time these variables are changed. The naming of the functions relating to the presentation of the

total wave function is detailed in Table 2.7.

Table 2.7: Presentation of Free Particle Wave Function.

Mathematica Function Interpretation of Function

PSI Ψ(x, t)

PSIDynamic Ψ(x, t) with animation
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3. RESULTS

The wave function results for various values of ȳ and p̄ are presented. Values of ȳ must be posi-

tive and should also be larger than the wave packet width. Select values of ȳ have been chosen to be

20, 15, 10, 5. Values of p̄ may be chosen to be negative or positive. Negative values of p̄ are neces-

sary for a bounce, but not sufficient. Select values of p̄ have been chosen to be 5, 0,−5,−10,−15.

For each pair of ȳ, p̄ the first line of plots correspond to the y-space calculation and the second

line of plots correspond to the p-space calculation. The three plots are to be read from left to right

with time increasing chronologically. Select values of t have been chosen to be 1, 2, 3. Prior to

the presentation of each wave function a table is presented to display the expected centroid of the

wave packet. This position, q, as well as the time of bounce, b, are calculated for the specific values

of ȳ, p̄ using Equations 1.24, 1.25, 1.26. All plots have domain 0 ≤ x ≤ 50 for consistency in

comparing wave functions.

3.1 ȳ = 20

Table 3.1: Expected position of particle with ȳ = 20.

p̄ b t = 1 t = 2 t = 3

5 N/A q = 31 q = 44 q = 59

0 N/A q = 21 q = 24 q = 29

−5 2.76 q = 11 q = 4 q = 1.11

−10 1.06 q = 1 q = 17.78 q = 38.56

−15 0.68 q = 9.20 q = 39.47 q = 71.74
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Figure 3.1: ȳ = 20, p̄ = 5.

Figure 3.2: ȳ = 20, p̄ = 0.
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Figure 3.3: ȳ = 20, p̄ = −5.

Figure 3.4: ȳ = 20, p̄ = −10.
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Figure 3.5: ȳ = 20, p̄ = −15.

3.2 ȳ = 15

Table 3.2: Expected position of particle with ȳ = 15.

p̄ b t = 1 t = 2 t = 3

5 N/A q = 26 q = 39 q = 54

0 N/A q = 16 q = 19 q = 24

−5 1.83 q = 6 q = 1.05 q = 8.70

−10 0.78 q = 4.10 q = 23.97 q = 45.85

−15 0.50 q = 14.48 q = 45.45 q = 78.41
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Figure 3.6: ȳ = 15, p̄ = 5.

Figure 3.7: ȳ = 15, p̄ = 0.
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Figure 3.8: ȳ = 15, p̄ = −5.

Figure 3.9: ȳ = 15, p̄ = −10.
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Figure 3.10: ȳ = 15, p̄ = −15.

3.3 ȳ = 10

Table 3.3: Expected position of particle with ȳ = 10.

p̄ b t = 1 t = 2 t = 3

5 N/A q = 21 q = 34 q = 49

0 N/A q = 11 q = 14 q = 19

−5 1.12 q = 1 q = 7.52 q = 18.02

−10 0.51 q = 9.47 q = 30.42 q = 53.37

−15 0.34 q = 19.88 q = 51.53 q = 85.18
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Figure 3.11: ȳ = 10, p̄ = 5.

Figure 3.12: ȳ = 10, p̄ = 0.
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Figure 3.13: ȳ = 10, p̄ = −5.

Figure 3.14: ȳ = 10, p̄ = −10.
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Figure 3.15: ȳ = 10, p̄ = −15.

3.4 ȳ = 5

Table 3.4: Expected position of particle with ȳ = 5.

p̄ b t = 1 t = 2 t = 3

5 N/A q = 16 q = 29 q = 44

0 N/A q = 6 q = 9 q = 14

−5 0.53 q = 4.45 q = 15.33 q = 28.22

−10 0.25 q = 15.12 q = 37.10 q = 61.09

−15 0.17 q = 25.39 q = 57.72 q = 92.04
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Figure 3.16: ȳ = 5, p̄ = 5.

Figure 3.17: ȳ = 5, p̄ = 0.
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Figure 3.18: ȳ = 5, p̄ = −5.

Figure 3.19: ȳ = 5, p̄ = −10.
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Figure 3.20: ȳ = 5, p̄ = −15.

30



4. CONCLUSION

We have successfully produced software that can be used to analyze the semiclassical pic-

ture. This software is widely applicable to other scenarios outside of the ceiling boundary case

studied in this work. Moreover, we have been able to verify and correct some results of [1] includ-

ing the direct path propagators (Section 1.4.2), sign convention of p̄ in the initial Gaussian wave

packets (Section 1.1.2), and have demonstrated the consistency of the addition of paths in both

position and momentum space (Section 1.4.4).

4.1 Accuracy of Position Space Results

In cases in which p̄ ≥ 0, the position space calculations can be seen to contain two wave

packets. The leftmost wave packet is of interest and corresponds directly to the expected centroid

presented in Tables 3.1, 3.2, 3.3, and 3.4. The highly oscillatory wave packet on the right is

unexpected and its origin is unknown at the time of submission of this thesis. In the case of negative

p̄, we note that the both wave packets vanish (at least in the domain selected for presentation).

These observations are unaffected by the value of ȳ.

4.2 Accuracy of Momentum Space Results

Momentum space calculations are favored for all values of ȳ with p̄ ≥ 0. We see from Fig-

ures 3.1, 3.2, 3.6, 3.7, 3.11, 3.12, 3.16, and 3.17 the two calculations are in agreement if the highly

oscillatory wave packet to the right of the expected wave packet in the position space calculation is

ignored. Because this extra wave packet is obviously an unnecessary artifact, we conclude that the

momentum space calculation is favored for these values of ȳ and p̄. In the case of negative p̄, we

note that a highly oscillatory additional wave packet appears in the momentum space calculations.

Because of the unknown origin of this artifact, the momentum space calculation should not be

relied on for negative p̄.
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4.3 Constraints on Gaussian Wave Packet Data

It is believed that there is an unknown error in the bounce related wave function contribu-

tions. We see that for figures following the time of bounce, the expected wave function is absent

and therefore does not correspond to the centroid calculated and presented in the related table.

We conclude that the values of ȳ do not seem to affect any results and that the key discrepancies

lie in the cases in which p̄ is negative and a bounce has occurred. Despite the difficulties in

computing the bounce related contributions, the approximation is very successful in computing

cases with p̄ ≥ 0. If the artifact depicted in the position space calculation is ignored, we observe

that the two methods yield equivalent wave packets and correspond exactly to the expected centroid

from the classical solutions. However, due to this highly oscillatory wave packet we conclude that

the momentum space calculation is to be favored for all cases in which p̄ ≥ 0. For negative p̄ the

position space calculation is currently favored as there are no excess wave packets, but neither case

is able to reproduce the classical results for the reflected packet.

4.4 Future Goals

In future projects, we hope to determine the origin of the bounce path errors. To ensure the

errors do not stem from the numerical computation, alternative software programs such as MAT-

LAB or Maple should be used to re-derive all results presented in this paper. If results differ, than

it is understood that the issue stems from the limitations of the Mathematica software. However,

if results are reproduced then it is clear that the source of error must originate from an error in [1].

We believe it is the former.
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(* Choice of Parameters *)

YBAR := 11
PBAR := 6
TIME := 1

GaussianWavepacket
psi[y_] := ⅇⅈ pb y- �y-yb�2

g
1
g

1/4 2
π

1/4
(*Eq.5*)

phi[p_] :=
ⅇ- 1

4 g (p-pb)2-ⅈ (p-pb) yb g1/4

(2 π)1/4
(*Eq.6*)

Direct Propagator
Ud[y_] :=

ⅇⅈ 2 t3

3
+t2 -t+ x-y

t
+t 1

4
-t+ x-y

t

2
+y

2 π ⅈ t
(*Eq.18*)

ud[p_] :=
ⅇ- 1

3
ⅈ 3 p2 t+t3+3 p t2-x -3 t x - ⅈ

t
ⅈ t

2 π
(*Eq.19*)

TotalWaveFunction.nb

APPENDIX A: TotalWaveFunction.nb
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Bounce Propagator
tbounce := TIME
psifixed[y_] := psi[y] /. {t → tbounce, g → 2, yb → YBAR, pb → PBAR}
phifixed[p_] := phi[p] /. {t → tbounce, g → 2, yb → YBAR, pb → PBAR}

by :=
tbounce

2
+

1

Sqrt[3]
* Sqrt[tbounce^2 + 2 (x + y)] *

Sin
1

3
ArcSin

3 * Sqrt[3] * tbounce * (y - x)

tbounce^2 + 2 (x + y) ^ 3 2
(*Eq.23*)

bp :=
1

3
2 * tbounce - p - Sqrt p + tbounce ^2 + 3 x (*Eq.22*)

Ub[y_, x_] :=
1

Sqrt[4 * Pi * I]
* Sqrt

y - by^2

-3 * tbounce * by + 2 tbounce^2 - x - y * by + 3 * y * tbounce
*

Exp I
2

3
by ^3 - by ^2

y

tbounce
+ by + by

1

4

y

tbounce
+ by ^2 + y *

Exp I
2

3
tbounce - by ^3 + tbounce - by ^2

x

tbounce
- tbounce - by *

Exp I
tbounce - by

4

x

tbounce
- tbounce - by ^2 (*Eq.21*)

ub[p_, x_] :=
-1

Sqrt[2 Pi]
* Sqrt

p + bp

Sqrt p + tbounce ^2 + 3 x
*

Exp I
-1
3

bp^3 + tbounce - bp ^3 - bp * p 3 p + 2 bp *

Exp I tbounce - bp x + p + bp ^2 (*Eq.20*)

TotalWaveFunction.nb

������� �� ������� ����������� ������� �������
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Type I
x ∈ ( t2,∞ )
y ∈ ( 0, x - t )
p ∈ ( 0, x - t2

2 t )

type1y = Integrate[Ud[y] × psi[y], {y, 0, x - t^2}, Assumptions → {g > 0, t > 0}]

1

23/4 g1/4 π1/4 ⅈ t
ⅇ

t4-ⅈ g 3 pb2 t+t3+3 pb t2-x -3 t x -3 x-yb 2-12 pb t yb-6 t2 x+yb

3 g+4 ⅈ t

t -
ⅈ g - ⅈ g 2 pb t+t2-x -4 ⅈ t yb 2

g (g+4 ⅈ t) t
Erf 1

2
- ⅈ g 2 pb t+t2-x -4 ⅈ t yb 2

g (g+4 ⅈ t) t

g 2 pb t + t2 - x - 4 ⅈ t yb
+

g pb - 2 ⅈ t2 - x + yb Erf ⅈ t ⅈ g pb+2 t2-x+yb 2

g (g+4 ⅈ t)

g + 4 ⅈ t ⅈ t ⅈ g pb+2 t2-x+yb 2

g (g+4 ⅈ t)

type1p = Integrate ud[p] × phi[p], p, 0, x - t^2 2 t , Assumptions → {g > 0, t > 0}

1

2 π 3/4
ⅇ

t4-ⅈ g 3 pb2 t+t3+3 pb t2-x -3 t x -3 x-yb 2-12 pb t yb-6 t2 x+yb

3 g+4 ⅈ t

g1/4 -
π g 2 pb t+t2-x -4 ⅈ t yb 2

g+4 ⅈ t
Erf

g 2 pb t+t2-x -4 ⅈ t yb 2

g+4 ⅈ t

4 t

g 2 pb t + t2 - x - 4 ⅈ t yb
+

π g pb-2 ⅈ t2-x+yb 2

g+4 ⅈ t
Erf 1

2
g pb-2 ⅈ t2-x+yb 2

g+4 ⅈ t

g pb - 2 ⅈ t2 - x + yb

TotalWaveFunction.nb

������� �� ������� ����������� ������� �������
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Type II
x ∈ ( 0 ,∞ )
y ∈ ( x + t2,∞ )
p ∈ ( -∞, -t )

type2y = Integrate[Ud[y] × psi[y], {y, x + t^2, Infinity}, Assumptions → {g > 0, t > 0}]

ⅇ
t4-ⅈ g 3 pb2 t+t3+3 pb t2-x -3 t x -3 x-yb 2-12 pb t yb-6 t2 x+yb

3 g+4 ⅈ t

ⅈ g pb + t - 2 t2 + x - yb + -ⅈ g + 4 t -
ⅈ g pb + t + 2 ⅈ t2 + x - yb 2

g + 4 ⅈ t

Erf -
ⅈ t g pb + t + 2 ⅈ t2 + x - yb 2

g g + 4 ⅈ t

23/4 (-g)1/4 π1/4 -ⅈ +
4 t
g

ⅈ g pb + t - 2 t2 + x - yb

type2p = Integrate[ud[p] × phi[p], {p, -Infinity, -t}, Assumptions → {g > 0, t > 0}]

ⅇ
- -t4+ⅈ g 3 pb2 t+t3+3 pb t2-x -3 t x +3 x-yb 2+12 pb t yb+6 t2 x+yb

3 g+4 ⅈ t g1/4

g pb + t + 2 ⅈ t2 + x - yb - g + 4 ⅈ t
g pb + t + 2 ⅈ t2 + x - yb 2

g + 4 ⅈ t

Erf
1
2

g pb + t + 2 ⅈ t2 + x - yb 2

g + 4 ⅈ t

23/4 π1/4 g + 4 ⅈ t g pb + t + 2 ⅈ t2 + x - yb

TotalWaveFunction.nb

������� �� ������� ����������� ������� �������
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Type III (a)
x ∈ ( 0 , t2 )
y ∈ ( x - t 2, x + t2 )
p ∈ ( -t, - x - t )

type3ay =
Integrate Ud[y] × psi[y], y, Sqrt[x] - t ^2, x + t^2 , Assumptions → {g > 0, t > 0}

1

23/4 g1/4 π1/4 ⅈ t
ⅇ

t4-ⅈ g 3 pb2 t+t3+3 pb t2-x -3 t x -3 x-yb 2-12 pb t yb-6 t2 x+yb

3 g+4 ⅈ t

ⅈ g - ⅈ t g (pb+t)+2 ⅈ t2+x-yb 2

g (g+4 ⅈ t)
Erf - ⅈ t g (pb+t)+2 ⅈ t2+x-yb 2

g (g+4 ⅈ t)

g pb + t + 2 ⅈ t2 + x - yb
-

ⅈ - ⅈ g t g pb+t- x +2 ⅈ t2-2 t x +x-yb 2

g+4 ⅈ t
Erf ⅈ t ⅈ g pb+t- x -2 t2-2 t x +x-yb 2

g (g+4 ⅈ t)

g pb + t - x + 2 ⅈ t2 - 2 t x + x - yb

type3ap = Integrate[ud[p] × phi[p], {p, -t, Sqrt[x] - t}, Assumptions → {g > 0, t > 0}]

1
23/4 π1/4

ⅇ
t4-ⅈ g 3 pb2 t+t3+3 pb t2-x -3 t x -3 x-yb 2-12 pb t yb-6 t2 x+yb

3 g+4 ⅈ t

g1/4
g (pb+t)+2 ⅈ t2+x-yb 2

g+4 ⅈ t
Erf 1

2
g (pb+t)+2 ⅈ t2+x-yb 2

g+4 ⅈ t

g pb + t + 2 ⅈ t2 + x - yb
-

g pb+t- x +2 ⅈ t2-2 t x +x-yb 2

g+4 ⅈ t
Erf 1

2
g pb+t- x +2 ⅈ t2-2 t x +x-yb 2

g+4 ⅈ t

g pb + t - x + 2 ⅈ t2 - 2 t x + x - yb

TotalWaveFunction.nb

������� �� ������� ����������� ������� �������
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Type III (b)
x ∈ ( t2,∞ )
y ∈ ( x - t2, x + t2 )
p: ( - t, 0 )

type3by = Integrate[Ud[y] × psi[y], {y, x - t^2, x + t^2}, Assumptions → {g > 0, t > 0}]

- (-1)3/4 ⅇ- -t4+ⅈ g 3 pb2 t+t3+3 pb t2-x -3 t x +3 x-yb 2+12 pb t yb+6 t2 x+yb

3 g+4 ⅈ t

g1/4 ⅈ g + 4 ⅈ t t -
ⅈ g pb + t + 2 ⅈ t2 + x - yb 2

g + 4 ⅈ t

ⅈ ⅈ g pb + 2 t2 - x + yb 2

g + 4 ⅈ t
Erf -

ⅈ t g pb + t + 2 ⅈ t2 + x - yb 2

g g + 4 ⅈ t
-

t g2 pb pb + t + 4 t4 - x - yb 2 - 2 ⅈ g t3 + 2 pb -x + yb + t -x + yb

Erf
ⅈ t ⅈ g pb + 2 t2 - x + yb 2

g g + 4 ⅈ t

23/4 π1/4 g + 4 ⅈ t t g pb + t + 2 ⅈ t2 + x - yb
ⅈ ⅈ g pb + 2 t2 - x + yb 2

g + 4 ⅈ t

type3bp = Integrate[ud[p] × phi[p], {p, -t, 0}, Assumptions → {g > 0, t > 0}]

1

2 π 3/4
ⅇ

t4-ⅈ g 3 pb2 t+t3+3 pb t2-x -3 t x -3 x-yb 2-12 pb t yb-6 t2 x+yb

3 g+4 ⅈ t

g1/4
π g (pb+t)+2 ⅈ t2+x-yb 2

g+4 ⅈ t
Erf 1

2
g (pb+t)+2 ⅈ t2+x-yb 2

g+4 ⅈ t

g pb + t + 2 ⅈ t2 + x - yb
-

π g pb-2 ⅈ t2-x+yb 2

g+4 ⅈ t
Erf 1

2
g pb-2 ⅈ t2-x+yb 2

g+4 ⅈ t

g pb - 2 ⅈ t2 - x + yb

TotalWaveFunction.nb

������� �� ������� ����������� ������� �������
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Direct I
direct1y := type2y + type3ay /. {t → TIME, g → 2, yb → YBAR, pb → PBAR}
direct1p := type2p + type3ap /. {t → TIME, g → 2, yb → YBAR, pb → PBAR}

Direct II
direct2y := type1y + type2y + type3by /. {t → TIME, g → 2, yb → YBAR, pb → PBAR}
direct2p := type1p + type2p + type3bp /. {t → TIME, g → 2, yb → YBAR, pb → PBAR}

Bounce a
x ∈ ( 0 , t2 )
y ∈ ( t - x 2,∞ )
p ∈ ( -∞, x - t )

bounceay := NIntegrate Ub[y, x] × psifixed[y], y, tbounce - Sqrt[x] ^2, Infinity
bounceap := NIntegrate[ub[p, x] × phifixed[p], {p, -Infinity, Sqrt[x] - tbounce}]

Bounce b
x ∈ ( t2,∞ )
y ∈ ( 0 ,∞ )
p ∈ ( -∞, t2 - x

2 t )

bounceby := NIntegrate[Ub[y, x] × psifixed[y], {y, 0, Infinity}]

bouncebp := NIntegrate ub[p, x] * phifixed[p], p, -Infinity,
tbounce^2 - x
2 * tbounce

TotalWaveFunction.nb

������� �� ������� ����������� ������� �������
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[x < t^2]
final1y =
Plot[Re[direct1y + bounceay], {x, 0, TIME^2}, PlotRange → Full, PlotStyle → Black]

final1p =
Plot[Re[direct1p + bounceap], {x, 0, TIME^2}, PlotRange → Full, PlotStyle → Black]

[x > t^2]
final2y =
Plot[Re[direct2y + bounceby], {x, TIME^2, 40}, PlotRange → Full, PlotStyle → Black]

final2p =
Plot[Re[direct2p + bouncebp], {x, TIME^2, 40}, PlotRange → Full, PlotStyle → Black]

CompleteWavePacket
PSIY = Show[final1y, final2y, PlotRange → {-0.6, 0.6}](*Eq.3*)

PSIP = Show[final1p, final2p, PlotRange → {-0.6, 0.6}](*Eq.4*)

TotalWaveFunction.nb

������� �� ������� ����������� ������� �������
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GaussianWavepacket
psi[y_] := ⅇⅈ pb y- �y-yb�2

g
1
g

1/4 2
π

1/4
(*Eq.5*)

phi[p_] :=
ⅇ- 1

4 g (p-pb)2-ⅈ (p-pb) yb g1/4

(2 π)1/4
(*Eq.6*)

FreePropagator
uf[p_] :=

ⅇ-ⅈ p2 t+ⅈ p x

2 π
(*Eq.16*)

Uf[y_] :=
ⅇ

ⅈ (x-y)2

4 t

2 π ⅈ t
(*Eq.17*)

Free.nb

������� �� ������� ����������� ������� �������

APPENDIX B: Free.nb
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FreeParticle
freey = Integrate[Uf[y] × psi[y], {y, -Infinity, Infinity}, Assumptions → {g > 0, t > 0}]

ⅇ- ⅈ g pb pb t-x +x2-2 x yb+yb 4 pb t+yb
g+4 ⅈ t 2

π

1/4

g1/4 4
g
- ⅈ

t
ⅈ t

freep = Integrate[uf[p] × phi[p], {p, -Infinity, Infinity}, Assumptions → {g > 0, t > 0}]

ⅇ- ⅈ g pb pb t-x + x-yb 2+4 pb t yb
g+4 ⅈ t g1/4 2

π

1/4

g + 4 ⅈ t

test = Plot[Re[freey - freep] /. {t → 1, g → 2, yb → 11, pb → 6},
{x, 1, 50}, PlotRange → Full, PlotStyle → Black]

-2.×10-17

0

2.×10-17

4.×10-17

6.×10-17

(*Both are equivalent so we rename it as free*)

free[x_, t_, g_, yb_, pb_] :=
1 - ⅈ ⅇ- ⅈ g pb pb t-x + x-yb 2+4 pb t yb

g+4 ⅈ t g1/4

2 π 1/4 -ⅈ g + 4 t

Free.nb
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Dynamicsof FreeParticle
PSI = Plot[Re[free[x, t, g, yb, pb]] /. {t → 1, g → 2, yb → 11, pb → 6},

{x, 1, 50}, PlotRange → Full, PlotStyle → Black]

10 20 30 40 50

-0.4

-0.2

0.2

0.4

PSIDynamic = Manipulate[
Plot[Re[free[x, t, g, yb, pb] /. {g → 2}], {x, 1, 50}, PlotRange → {-0.6, 0.6},
PlotStyle → Black], {t, 1, 3, 1}, {yb, 0, 20, 1}, {pb, -15, 5, 1}]

�

�

��

��

��

�

10 20 30 40 50

-0.6

-0.4

-0.2

0.2

0.4

0.6

Free.nb
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