
MACHINE LEARNING-BASED DYNAMIC VOLTAGE AND

FREQUENCY SCALING ERROR DETECTION

An Undergraduate Research Scholars Thesis

by

JOHN C. MUSCHINSKE

Submitted to the LAUNCH: Undergraduate Research office at
Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by
Faculty Research Advisors: Dr. Jiang Hu

Dr. Paul Gratz

May 2022

Major: Electrical Engineering

Copyright © 2022. John C. Muschinske.

RESEARCH COMPLIANCE CERTIFICATION

Research activities involving the use of human subjects, vertebrate animals, and/or biohaz-

ards must be reviewed and approved by the appropriate Texas A&M University regulatory research

committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement applies

to activities conducted at Texas A&M and to activities conducted at non-Texas A&M facilities

or institutions. In both cases, students are responsible for working with the relevant Texas A&M

research compliance program to ensure and document that all Texas A&M compliance obligations

are met before the study begins.

I, John C. Muschinske, certify that all research compliance requirements related to this

Undergraduate Research Scholars thesis have been addressed with my Research Faculty Advisors

prior to the collection of any data used in this final thesis submission.

This project did not require approval from the Texas A&M University Research Compli-

ance & Biosafety office.

TABLE OF CONTENTS

Page

ABSTRACT . 1

DEDICATION . 2

ACKNOWLEDGMENTS . 3

NOMENCLATURE . 4

SECTIONS

1. INTRODUCTION. 5

1.1 Overview of Dynamic Voltage and Frequency Scaling . 5
1.2 Overview of Performance v. Functional Errors . 6

2. BACKGROUND . 8

3. DESIGN . 9

3.1 Resources . 9
3.2 Machine Learning and Simulation Scheme . 11
3.3 Dynamic Voltage and Frequency Scaling Performance Errors . 12
3.4 Data Processing Methodology . 14
3.5 Methodology Summary . 15

4. RESULTS. 16

4.1 Large Set Results . 16
4.2 Small Set Results . 18
4.3 Cross Set Test Results. 20

5. CONCLUSIONS . 23

5.1 Conclusions. 23

REFERENCES . 26

ABSTRACT

Machine Learning-Based Dynamic Voltage and Frequency Scaling Error Detection

John C. Muschinske
Department of Electrical and Computer Engineering

Texas A&M University

Research Faculty Advisor: Dr. Jiang Hu, Dr. Paul Gratz
Department of Electrical and Computer Engineering

Texas A&M University

Modern microprocessors are more and more optimized for speed and power efficiency. A

system that regulates these parameters is Dynamic Voltage and Frequency Scaling (DVFS). Gen-

erally, all bugs or errors in a microarchitecture fall under two categories: performance and logical.

These errors can apply to any component of the microarchitecture. A performance error is an error

that results not in a logically incorrect output of a system, but a slowdown in the production of

that output. Most broadly, errors related to DVFS would be not increasing voltage and frequency

leading to slower execution in real time, or the inverse (increasing voltage and frequency) leading

to wasteful power consumption and chip degradation. The first slows down the machine unnec-

essarily, and the second decreases expected battery time. Using machine learning to analyze data

extracted from gem5 to detect these errors is the objective of this project.

1

DEDICATION

To my Advisors, for their direction, concepts, and guidance. To my Family, my mother, Janet for

support in communication. To my father, Steve for being there when nothing was working and I

thought this would go nowhere. To my aunt, Susan for advice on writing along the way. To the

rest of the group, for help along the way.

2

ACKNOWLEDGMENTS

Contributors

I would like to thank my faculty advisors, Dr. Jiang Hu and Dr. Paul Gratz, and the

remainder of the group Chrysanthos Peipei and Dr. Erick Barboza, for their guidance and support

throughout the course of this research.

Thanks also to my friends and colleagues and the department faculty and staff for making

my time at Texas A&M University a great experience.

Finally, thanks to my parents and aunt for their encouragement and for reading all of my

roughest of drafts.

The materials and models used for Machine Learning-Based Dynamic Voltage and Fre-

quency Scaling Error Detection were provided by the Computer Engineering and Systems group .

The analyses depicted in Machine Learning-Based Dynamic Voltage and Frequency Scaling Error

Detection were conducted in part by Dr. Jiang Hu and Dr. Paul Gratz and these data are unpub-

lished.

All other work conducted for the thesis was completed by the student independently.

Funding Sources

Undergraduate research was supported by the Electrical and Computer Engineering De-

partment at Texas A&M University.

No external funding was required.

3

NOMENCLATURE

ALU Arithmetic Logic Unit

ANN Artificial Neural Network

ARM A RISC instruction set architecture developed and licensed by ARM LTD.

B/CS Bryan and College Station

CNN Convolusional Neural Network

CPU Central Processing Unit

DVFS Dynamic Voltage and Frequency Scaling

gem5 Computer-system architecture and processor microarchitecture simulator

GPU Graphics Processing Unit

IPC Instructions Per Cycle

IR Image Recognition

ISA Instruction Set Architecture

ML Machine Learning

P-state Processor Power Performance State

PID Proportional Integral Derivative

RISC Microprocessor architecture that utilizes a small, highly-optimized set of instruc-
tions rather than the highly-specialized set of instructions

ROC Receiver Operator Characteristics

SimPoint Simulation Point

SPEC Simulation Specification

TAMU Texas A&M University

V-F pair Voltage Frequency Value Pair

4

1. INTRODUCTION

1.1 Overview of Dynamic Voltage and Frequency Scaling

Modern computing systems have come to rely upon various power systems. This is made

inevitable by both increasing miniaturization and base clock rates, and the desire to produce a long

battery life and reasonable power draw. In extreme cases where raw performance is concerned,

the heat produced to power these computers further increases the power draw to provide cooling.

To remedy this, systems commonly called Dynamic Voltage and Frequency Scaling (DVFS) have

been gaining prevalence. A DVFS system controls which frequency/voltage state pairs [1] a com-

putational system such as GPUs or CPUs (also called cores) operating parameters. As time has

advanced, DVFS systems have also gained complexity, ranging from proportional integral deriva-

tive (PID) based control systems to Artificial Neural Network (ANN) based systems [2] depending

on modernity and designer.

Depending on the driver, there commonly exist between 0 and 255 individual voltage-

frequency states. That is 0-255 voltage operating points with both a software (driver) side control

scheme and a hardware (core) side system, and an identical number of frequency operating states,

also divided between driver and core. A pair of voltage and frequency can be called a power

state or P state or V-F operating point [1] , among several other analogous names. The software

side system is common to the driver used and is independent of the microarchitecture, while the

hardware side system is the opposite, usually changing chip to chip. Only one of the two systems,

driver or core, can control the power state transition of the core in question at any time.

In the context of this work, only the software/driver-based system is observed due to sim-

ulation model constraints. To finish and clarify the explanation of the single core mode in the

software side control scheme, there can be at most 255 V-F pairs. Adding multiple cores to the

power management scheme increases DVFS complexity significantly. For instance, when multiple

cores are introduced, modern DVFS schemes often incorporate the throttling down of cores not

actively working on the main load of a multithreaded system. An example of this is Intel’s Turbo

5

Boost.

This innate and increasing complexity in the DVFS system leads to the motivation of this

work. Because performance errors are hard to localize or even notice, it is valuable to provide the

capability to confirm the presence of this type of error rapidly and accurately. Thus, the goal herein

is to find a method to determine mostly autonomously with Machine Learning (ML) if there is a

performance error in a DVFS system.

1.2 Overview of Performance v. Functional Errors

To differentiate between functional errors and performance errors a functional or logical

error is, in a broader sense, when a system somehow fails to execute its function. An example

of this would be that an Arithmetic Logic Unit (ALU) does not properly execute the AND or OR

operations due to some faulty bus connection. Generally, these errors are more detectable due to

a difference in expected output and actual output. Commercial software as well as humans tend

to be more proficient in detecting this type of error. That is not to trivialize this type of error, as

functional errors can still be difficult to detect.

Conversely performance errors are more difficult to detect. A performance error is a fault

in the design of a system such that the expected output is still reached; however, various per-

formance parameters, such as power consumed or Instructions Per Cycle (IPC), are negatively

affected. Some prior analysis exists on performance error detection and localization [3], [4], [5],

[6], [7]. However, the focus is again on IPC across cores as well as non-DVFS performance im-

provement. In the context of DVFS an example of this would be over-stability, that is the DVFS

system does not switch states when it would be power/performance efficient to do so. To match

the more ephemeral nature of the errors, humans and commercial software tend to have a harder

time detecting performance errors.

An example of a performance error would be the snoop filter eviction error [8]. It took

several months to detect and remove this error, which had occasionally caused a greater than 10%

loss in performance. This finding once again suggests that first detecting these performance errors,

and then being able to localize them would be useful.

6

In the context of DVFS these errors would, in general, lead to increased energy consumption

or run time. The source of these as hypothesized throughout this work is in the nature of how a

DVFS system changes states, to be mentioned in the methods section. A non-DVFS related, and

possibly clearer example, would be a scheduling error in an out of order scheduler. Suppose that

the scheduler for a specific command would in certain circumstances continuously over-prioritize

the execution of that command, such as OR, while other commands, such as ADD, would be

delayed in execution. Eventually this can accumulate in a section of idle time due to some aspect

of the test program requiring the execution of inefficient scheduling, resulting in a drop of IPC.

The takeaway is that while a performance error rarely leads to a failure of the overall core,

they still lead to a drop in the value of a product, all while being more abstract and harder to detect

than logical errors.

7

2. BACKGROUND

Performance error debugging focused on IPC and register-based issues in Barboza et. al.

[3], where the concept was to measure datapoints with several probes, and develop an ML model

for each probe. Then, this set of models was used to detect performance errors in the core. While

doing this Barboza et. al. [3], directly implemented performance errors/bugs that could be used

through using a variety of SPEC2006 SimPoints [7] across several x86 Intel microarchitectures.

Older works on performance debugging, such as Surya et. al. [4], refer to a set of perfor-

mance bugs/errors called timer/timing errors. Here the objective is to classify the behavior of such

errors in IPC/pipelining sense. To do so, Surya et. al. develops functions to evaluate timing errors,

and by finding and stating these errors are removable, conclude that by limiting timing errors, so

to are future functional errors limited.

While ML has been applied to the debug space of design, it has even more so been applied

to design problems, as demonstrated by the depth of spaces described in [9]. These applications

are predominantly in any method that has to do with decision based or prediction based systems,

including DVFS and schedulers systems. Additionally, there are the various forms of machine

learning. Most relevant to this and works in automated performance error detection are supervised

learning methods. This is a type of method that uses known inputs and their outputs to predict

the output, or in this case, presence of a performance error. The opposite of supervised is unsu-

pervised, where inputs are provided without expected outputs. Instead, the ML system clusters

them in a provided or unprovided number of outputs based on similarity. Semi-Supervised uses

a mix of labeled supervised inputs and unlabeled inputs, this allows for easier access to training

data. Lastly, is reinforcement learning, where a desired result is given an incentive and the system

optimizes itself for that incentive. All of these have potential uses in microarchitecture design,

though supervised learning and reinforcement learning have seen the most results.

8

3. DESIGN

3.1 Resources

3.1.1 gem5

To simulate microarchitectures gem5 [10] will be used. The gem5 simulator is a commonly

used platform for computer architecture research. The gem5 simulator has two modes of simula-

tion, full system (FS) and syscall emulation (SE). Full system mode fully simulates the virtual

machine and all parts of the operating system, while having higher accuracy to real world systems.

Conversely, syscall emulation mode is much faster at simulating but sacrifices fidelity to do so.

More precisely, FS mode simulates a physical CPU, and if an offshoot of gem5, gem5-gpu [11] is

used, GPUs can be simulated. Consequently, FS mode is more accurate to an actual system, with

the operating system being simulated, while syscall emulation mode only simulates the behaviors

of the CPU caches and associated systems, and leaves the opperating system to the host machine.

Due to the constraints of simulation in gem5 [10], full system ARM simulation is used. This is

because there is only a pre-established DVFS simulation option configuration for full system ARM

based Instruction Set Architectures (ISAs) for gem5. Further, due to the design of gem5 and the

core models available, only the driver based DVFS system has been simulated for the context of

this paper, as well as a focus on a single core CPU. For future work, GPUs also use a DVFS like

system and by nature are more relevant in the single core case.

The rationale behind the proposed is that should performance errors be detectable from

extracted data from the driver based DVFS system, they could be similarly detected from data

extracted from core based DVFS systems. To ensure variety and validity of extracted data, various

SimPoints [7], mostly extracted from SPEC2006 [12], are used. A SimPoint is a representative

collection of instructions from a benchmark application (or several applications) such that the

results of running the overall benchmark can be inferred. The benchmark’s SimPoints that will be

used are those of a SPEC, a collection of applications/programs/executables that are an exhaustive

test of an architecture. Upon the completion of a simulation run, various output parameters are

9

received from gem5. Most notable for the case of this paper are cycle time, energy consumed, and

cycles in different power states.

Observationally, gem5 implements the simulation of the simulated machine through the

following aspects. First, there is the design and layout of the simulation using C code. This

is mostly under the hood and handles all the actual implementation of the machine emulation.

Second, there are the Python configurations, which handle the input/output and actual structure of

the emulated machine. This is usually transformed into C code to operate more quickly. Third,

there are the inputs which are the voltage ranges, the modes, the disk image with the necessary

SimPoint [7] loaded on it, and the commands to be executed for each disk, comprising a period

of basic Linux list commands to make sure the runscript is loaded. Then run the command for

the SimPoint contained in the bootscript file. Further, to be as stringent as possible, the only thing

loaded on these disks is an identical base file system and the SimPoint to be evaluated in the data

gathering run.

3.1.2 ARM

The version of ARM used is arm64. There are ultimately two reasons ARM is used in this

line of experiments. First, gem5 only does DVFS with ARM ISA based architectures. It would be

possible, but prohibitively time consuming, to try to adapt what exists to the x86 ISA. Further, the

ARM chip models are documented and usable under license. ARM chip models have a base ISA

similar to Apple Corporation’s A series CPUs found in iPhones and iPads. Intel’s x86 ISA was not

chosen because the models are proprietary and therefore more difficult to attain models for. The

ARM architecture should provide ample evidence that the approach can be applied to any other

architecture.

To be further detailed, arm64 or aarch64 is a 64 bit Reduced Instruction Set Architecture

(RISK). This should not be directly applicable to the metrics used in this work because no instruc-

tion related performance errors were used. However, in the process of future work on this research

the instruction queue issued and the cone of influence of those instructions are likely to become

critical in localization of a performance error. This is because if there can be one period in the

10

set of datamaps that is indicative of a performance error, it shows what period of prior operations

could have influenced the occurrence of the negative behavior. An alternative case is that there

is no correlation between instructions issued, but instead the DVFS system establishes a poorly

distributed array of accessible V-F pairs at start of run, which can be identified as a performance

error.

3.1.3 Python and ResNet-50

ResNet-50 is a convolutional neural network (CNN) that is 50 layers deep. This research

uses PyTorch library containing a pre-trained network in the TorchVision module for Image Clas-

sification. The TorchVision package contains common image transforms for computer vision.

The datasets for the input to gem5 and transforming gem5 output for input to ResNet-50 are

written in Python. Python is a general-purpose programming language that interfaces with gem5

and ResNet-50.

3.2 Machine Learning and Simulation Scheme

The premise of this research is that machine learning can identify DVFS errors.

Machine Learning (ML), specifically models like those used for Image Recognition (IR), were

selected for this research. Upon the completion of data extraction, the next step is ML. The use

of ML is chosen because modern algorithms, especially Image Recognition (IR) algorithms, are

proven to be very good at recognizing minute differences in images. For reference, a well-trained

image recognition model, say facial identification, can have upwards of 99% accuracy.

IR’s capabilities lead to the central thrust of the approach used, that is to transform the

extracted data into images that are sufficiently different for an IR model to differentiate between

a well running and a poorly running system. To implement what is a well running and a poorly

running system is by its nature, somewhat arbitrary. However, what is being looked for is charac-

teristic differences between the DVFS in the designated ‘good’ state against an arbitrary number

of definitely ‘bad’ states. To do so, one reasonable unbiased P-state scheme is selected as being

the designated good state scheme, that is the scheme is stable in state transitions and P-State dis-

tribution, as well as having a reasonable minimum and maximum voltage and frequency. Further,

11

it is proposed that given that a DVFS scheme can be considered stable and not overtly flawed,

that scheme is usable in this state to generate a baseline of what center (though not expected in

real world) performance should be. Contrasting this is the determination of ‘bad’ state schemes,

with the goal of emulating the state behaviors of DVFS performance errors to generate an image

of that unfavorable state behavior. This was decided as the course of action due to the relative

untouchability of the core side DVFS system, as well as the difficulty of directly designing such a

performance error.

Changing the driver version to directly emulate a performance error would be possible, and

much more subtle, by forcing the clustering of voltage states to emulate either not transitioning

quickly enough, the inverse, or under/over ramping. The behaviors of a performance error can

still be emulated, though grossly overstated. Put more favorably, it is behaviorally representative,

but not functionally. The same methodology could be expanded to a physical system if one can

measure accurately cycles, change in P-state, energy consumption, as well as faults in processing.

However, there is the threat of measurements of the real system being of insufficient granularity

(small enough timesteps) to detect accurately. The methodology for each of the DVFS performance

errors follow.

3.3 Dynamic Voltage and Frequency Scaling Performance Errors

For the purposes of this paper DVFS performance errors have been clustered into three

dominant modes. The first is Edge Favored, that is the power states are dominantly clustered near

the upper or lower boundary voltage and frequency range being simulated. This mode is to emulate

the behavior of the system statistically favoring ramping up or down in general circumstances or

as called in the prior section under/over ramping, resulting in either a loss of energy performance

or a slowdown of the system depending on if the upper or the lower boundaries are preferred. This

is done by step by step shortening the distance between V-F pairs, that is to narrow the power

difference between each state on the non-favored end, and by using less or identical numbers of V-

F pairs than the default. This generates a region of more rapid transition, and a region of preference

for either extreme being a more probable state of residence, on the assumption that the V-F states

12

and DVFS scheme do not have an innate preference. It would be best if under/over ramping was not

generalized through all circumstances, such as if it only happens under an arbitrary circumstance.

However, by mixing in other poor behaviors in the ’bad’ training set, the flaw of non-randomly

implementing these error behaviors in training the algorithm this way can be lessened. The prior

rationale applies to all errors discussed herein.

The second is excess stability, which is to emulate the DVFS system deciding not to tran-

sition states aggressively enough. This is done by increasing the number of adjacent states near

each baseline state for the ‘good’ DVFS scheme. That is, there are two or three other states that

drive the DVFS system, specifically the Linux cpufreq driver, which in default configuration will

favor cycling to adjacent P-states before ramping towards the next normal P-state region. The con-

sequences of a performance error like this would be a general loss of performance or a slowdown

of the machine making it take more time to complete the assigned task. While this is a reasonable

estimate, it should emulate depending on the number of associated P-state region different degrees

of state stability, the most extreme case of over-stability being the DVFS system being locked to

effectively one V-F pair, meaning that there may as well be no DVFS in the system and instead

an optimal pair for general performance would be favored. The last proposed performance error is

only relevant in systems that have the ability to go above the normal operating range. The method

for this type of performance error was to have a singular dense cluster of P-states above the normal

operating mode, with a natural grouping of V-F states in the non-overdrive range. This, similar

to over ramping, it is to mimic the DVFS system favoring the overdrive portion excessively when

it reaches it, leading to wasted energy. However, these are different in that instead of a general

favorability of increasing V-F it is to lock into one set of V-F above all else at the detriment to

the core. While core damage from this behavior is non-detectable with the used methodology,

if given enough residency in this state it stands to reason it would be possible as it is outside of

steady state design parameters. Finally, the idea behind these modes of performance errors are that

fundamentally, unless there is a logical error in the cores overall power system, all DVFS errors

can be generalized into poor behaviors of state transitions.

13

3.4 Data Processing Methodology

Among several options, a continuous projection of normalized, natural log scaled data was

used, with zeros unplotted until they are no longer zero (these correspond to -∞ for the normaliza-

tion method).

bij =

−∞, if aij = 0∑n

i=0

∑m
j=0 ln(

aij
3∗max(A)

), otherwise
(Eq. 1)

Where in this case aij is the raw numerated output of gem5, and A is the matrix form of aij ,

and bij is the output to be plotted and then fed into ResNet-50. Each aj ∈ Ai is a raw output of

gem5 [10]. Among the 61 outputs used are: energy consumed in each time step, global cycles

in each time step, cycles in residency in non-default V-F states, energy consumed in different

voltage-frequency residencies, and voltage residency at the end of the measurement step. Each

row ai ∈ A corresponds to the measurement timestep of 25µs between each of the aj datapoints

in the corresponding ith row. Measured data was chosen to be scaled in this manner to narrow

the final values due to a large normalization factor (number of cycles per timestep). After the

normalization and scaling step, the data is divided into square, that is an equal number of timesteps

to different datapoints extracted from simulation and plotted into effectively a heatmap. This is

done arbitrarily with the logic that it is likely that any rectangular projection would not evenly

divide the total number of timesteps, and the datamaps should be consistant to each other. This

image is a gray scale intensity map of the values. To correct for unsuitable numbers of datapoints

and to retain uniqueness of time instance per run, several data vectors are discarded from the middle

of the data for each respective non-square SimPoint. To be absolutely accurate, this not an image

of a real world item, but is simply transforming the raw data to a form the ResNet-50 base can

be trained with and evaluated. The motivation behind having square heatmaps is twofold. One,

it makes feeding the ML algorithm simpler, reducing preprocessing and any aberration induced

by it. Second, it is indefinitely expandable to the precision of the reading, as in the granularity

can be increased or decreased with little change. A note is that if given sufficient funding, one

could use a similar method with a high detail heat camera upon actual microarchitectures with

14

DVFS systems. Then periodically take images of the chip while SimPoints are running and during

boot. Depending on what core load distribution the DVFS system chooses to use, group cores by

projected similarity to past assignment schemes, and use heat gain and deterioration to create data

images for IR ML.

3.5 Methodology Summary

In summary, the steps taken to perform the AI simulations are as follows:

1. Various machine learning models were considered and IR and ResNet-50 were selected be-

cause of its well tested ability to accurately classify images.

2. gem5 was selected for the simulator since it is a commonly used platform for successful

computer architecture research.

3. The simulator was run four times initially to ensure the process was robust and to ensure the

scheduled time for the simulations was sufficient to attain meaningful results.

4. The following performance errors were defined: Overamp/Underamp, Overstability, and

dwelling in overdrive.

5. Additional simulations of each SimPoint were run for each archetype of performance error

for a total of eight SimPoints for each performance error type. This results in a total of 24

sources for error type datapoints and eight for non error datapoints.

6. The results were analyzed to determine if the simulator reliably identified performance er-

rors.

7. Datamaps were designed to graphically display the results of the performance error simula-

tions.

15

4. RESULTS

The results are promising. At the time of writing there are two separate sets of data sets

used. The first is of more equivalent size and has closer to similarly sized train sets, to be specific

the scale of the sets error to no error is 341MB to 105MB, or 32005 to 10029 images. This first set

will be referred to as the small or partial set. Conversely, the second set is simply all the extracted

data per a specific simulation run gathered into the separate train sets. This will be referred to as the

large or complete set, the specific sizes are error to no error, 609MB to 105MB, or 57397 to 14281.

Each image corresponds to between 7-14KB. Both sets are produced from a singular run of sets of

V-F pairs across Eight SPEC2006 [12] SimPoints [7]. This was done due to issues with accuracy

declining in disparately size datasets for image classifier training. This corresponds to a test set

size of 22742 images and a training set of 90970 images. The large set was included due to the

desire to know without sacrifice of parity of the number of performance error cases, the accuracy of

this method, and how a more general set applies to a subset with this methodology. Both sets were

randomly split to 80% train, 20% validation of which the validation subsets were combined. To

do so the primary methods used are F1 score, accuracy, ROC area under curve, and the confusion

matrix, and the percentage TPR and FPR. Those mean in order: accuracy, confidence, relative

classifier randomness, numerical classifier performance, percentage of performance that is well

performing, and the most poorly performing percentage. True positive is based off of the detection

of the presence of a performance error.

4.1 Large Set Results

First of note is that the large sets no error set is unique enough such that the system can semi-

accurately detect the lack of the behavior of the three performance errors in a set independently.

It would be preferable, however, if the system ramped to a near 1.0 true positive rate (TPR) more

cleanly from a higher initial value instead of starting from a 0.2 TPR as demonstrated in Figure

4.1. A near 1.0 TPR from initial point, the ROC plot would indicate the system is very non-random

16

in selecting the lack of a performance error. As such and expected in Figure 4.1, the orange curve

shows the verification set for no error is as it should be irrespective of prior knowledge of what is.

The blue curve represents a worthless system, that is it completely randomly classifies results.

The large set, as seen in Figure 4.1, has a similar final performance in the negative case. That is,

the error set is similarly detectable as the no error set. This is a mark of the data having consistently

definable features in the no added error, that is the ”good” set, and added error set, or the ”bad”

set, as described in Section 3 as is ideal.

Figure 4.1: Example of large set training ROC including error and no error

Lastly, for the large set is the general data and accuracy of the set as described in Table 4.1.

While it may seem odd to differentiate F1 and accuracy, they were measured independently as a

sanity check to verify the confusion matrix was indeed working.

17

Table 4.1: Large Set Data

Large Set

Confusion 11492 6

Matrix 2287 550

F1 0.84

Accuracy 0.84

TPR 0.834

FPR 0.0108

4.2 Small Set Results

The small set in its most broad behavior is similar to the large set above, being that the no

error case is uniquely detectable. Furthermore, the performance has a higher base TPR and this can

indicate that there are some issues with the discrepancy in size of the two data sets or that one of

the later SimPoints [7] used produces results more similar between the no error and error subsets.

Figure 4.2 is the best result for ROC at point of writing. There is a very high initial true

positive rate and the value converges well to a 1.0 TPR. The area under ROC is above 0.95 also

indicating a well performing model. This indicates that by pruning the data to a more balanced set

you can get even better performance, though only in subset as indicated later by the cross set tests.

18

Figure 4.2: Example of small set training ROC

Finally, there is the general data of the small set in Table 4.2. Again the accuracy and F1 are

gathered independently to check the confusion matrix and validity of accuracy. Their value should

be identical in this case.

Table 4.2: Small Set Data

Small Set

Confusion 4991 539

Matrix 42 1921

F1 0.931

Accuracy 0.931

TPR 0.992

FPR 0.219

19

4.3 Cross Set Test Results

The final significant section of my results is the cross set test results. Cross set tests use each

of the two trained IR algorithms on the opposing dataset, that is, using the small dataset to train an

ML model, and then using that model to try and detect errors on the large dataset. Conversely, the

large to small is using a model trained on the large dataset to try to detect the presence of errors in

the small dataset. In the case of a more complete dataset, this should show the ability to transfer the

accuracy of the trained model to classify the same subsets of a partial dataset with approximately

equal accuracy to the accuracy the model attained on the larger main dataset. More specifically,

error detection may be attained past the point of detecting the presence of just performance errors

in general. Using similar methods as in this work, it should be possible to use more classes in

IR to indicate what archetype of DVFS performance error exists presently. Then from where that

performance error is detected a highly trained system should be capable of backtracking from the

error to localize the performance error.

Figure 4.3: Example large to small cross set training ROC

In Figure 4.3 there is a similarity to the ROC curves in the small set cross set circumstance

for the no error class, though notably the curve is more jagged, likely the result of the use of

20

less training epochs on the large set after convergence to accuracy. That is, there was minimal

improvement in the performance of the model as cycles in the epoch increased. The difference is

three epochs vs. seven epochs.

Figure 4.4 demonstrates similarity between itself and Figure 4.2. This reinforces the claim that

the data in the small set is more distinct between error and no error classifications. Additionally,

the ability of the general case to overlap to the specific case reinforces the thrust that one can go

from a broadly trained model to a small number or less broad subset of appropriately formatted

data.

Figure 4.4: Example of cross set small to large training ROC

To verify there is some integrity preserved from the subset to the main set, I anticipated loss of

accuracy should be around 19.5%, that is half of the difference in the set size delta. Performance

for ROC was surprisingly good, but accuracy suffered due to inability to accurately classify the

full sets. Again 4.9 and 4.10 support this. Lastly, cross set stats follow in Tables 4.3 and 4.4.

21

Table 4.3: Small Set Model on Large Set Data

Small to Large

Confusion 8494 2992

Matrix 96 2780

F1 0.786

Accuracy 0.786

TPR 0.989

FPR 0.518

Table 4.4: Large Set Model on Small Set Data

Large to Small

Confusion 6631 1

Matrix 1442 532

F1 0.828

Accuracy 0.828

TPR 0.821

FPR 0.00188

22

5. CONCLUSIONS

5.1 Conclusions

Since the inception of Machine Learning there have been many improvements made to this

ever-evolving technology. As systems become more complex, newer solutions are developed to

handle operations and optimize performance. This work is Machine Learning-Based Dynamic

Voltage and Frequency Scaling Error Detection. The source of DVFS is a simulated software/driver

based system which features Performance Errors versus Functional Errors and their effects on

energy consumption, run times, and scheduling, to name a few. Additionally, gem5’s Full System

ARM DVFS simulation was used due to constraints of DVFS simulation in gem5. The basis of this

research is that Machine Learning can detect DVFS errors. This research shows that it is possible to

refine the structure of an output data in a manner that is detectable to a machine learning algorithm.

Specifically, that by implementing differences in V-F state distribution it is possible on a time block

to time block set to detect the presence of a set of performance errors.

ResNet-50, an Image Recognition model, was specifically chosen as it is particularly adept

at recognizing small differences in images and behaves well with relatively small datasets. This

model will seek to detect characteristic differences between DVFS in a ‘good state’, for example a

reasonable unbiased p-state distribution scheme, against ones that are definitely poorly distributed

or ‘bad states.’

DVFS performance errors were categorized into three main modes. First is Edge Favored,

with power states predominately appearing at upper or lower boundary voltage and frequency range

being simulated. Next is excess stability whereby the DVFS system does not transition stages

aggressively enough. This occurs by increasing the number of adjacent states near the baseline of

the pre-designated ‘good’ DVFS scheme and considering all those clustered states to be the same

state. Lastly, the third proposed performance error can appear in systems that have the capability to

go above normal operating range. The method in this case of performance error involves a singular

dense cluster of P-states above normal operating mode, with a natural grouping of V-F pairs in

23

non-overdrive range.

Data processing involved first enumerates the gem5 output then projects it to a normalized,

natural log scaled array. The measured data, after normalization and scaling, is extracted and

plotted into a heatmap or datamap. This data is refined for non-plotting of zeros, datapoints and

increased magnitude. The resulting image is a gray scale intensity map of values.

There are advantages and disadvantages with this methodology. First as a disadvantage, it is

not exactly possible to generalize one trained model across different microarchitectures and expect

a good result. The issue here is that the training and data models are designed for the behaviors of

one core in simulation. Now if one possesses a model of their microarchitecture pre-silicon, and

does a reclassification step to sort what part of the simulation is where, it should be simple enough

to implement the performance error sets and see where the system detects members of the error

subset. It should be possible to also offset the sampling angle to be more thorough in these tests,

that is to shift where the image or IO matrix is in the data vectors say to start at index 30 not index

0. The biggest advantage is that the system concept does not require direct error implementation

with the underlying DVFS system, merely how its behaviors are implemented, and to have some

way to force it to behave poorly while maintaining the integrity of benchmarks. This means that

you do not have to have anything to test it against but itself. For example, if the ‘good’ test case

were to be removed it would only know the bad behavior, and then be able to classify out those

behaviors from a general run of the pre-silicon microarchitecture model.

Inspired by the success of this research, there are other interesting ways forward to be pur-

sued and studied. For example, the most direct is to expand to the multicore case, or to localization

of performance errors in DVFS. This would enable easier debugging in larger more modern sys-

tems. Another way would be to implement the GPU cases, which would allow for more general

detection. Also this GPU can be expanded to the multicore case. Further, there is the option to

try to design a behavioral data based machine learning system across architectures, similar to the

methodology of Barboza et. al. [3]. Lastly, one could more directly implement performance errors

in the system, that is to add a performance error in the underlying system, along the same line as

24

the prior example.

In summary, this research shows that simulation of a single core ARM CPU can implement

and detect Dynamic Voltage and Frequency Scaling performance errors using a machine learning

image recognition approach.

25

REFERENCES

[1] S. Herbert and D. Marculescu, “Analysis of dynamic voltage/frequency scaling in chip-
multiprocessors,” in Proceedings of the 2007 international symposium on Low power elec-
tronics and design (ISLPED ’07), pp. 38–43, 2007.

[2] J.-Y. Won, X. Chen, P. Gratz, J. Hu, and V. Soteriou, “Up by their bootstraps: Online learning
in artificial neural networks for cmp uncore power management,” in 2014 IEEE 20th Interna-
tional Symposium on High Performance Computer Architecture (HPCA), pp. 308–319, 2014.

[3] E. C. Barboza, S. Jacob, M. Ketkar, M. Kishinevsky, P. Gratz, and J. Hu, “Automatic mi-
croprocessor performance bug detection,” 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pp. 545–556, 2021.

[4] S. Surya, P. Bose, and J. Abraham, “Architectural performance verification: Powerpc pro-
cessors,” in Proceedings 1994 IEEE International Conference on Computer Design: VLSI in
Computers and Processors, pp. 344–347, 1994.

[5] R. C. Ho, C. H. Yang, M. A. Horowitz, and D. L. Dill, “Architecture validation for proces-
sors,” p. 404–413, 1995.

[6] R. Singhal, E. R. Cohn, D. A. Koufaty, M.-J. Lin, M. Mattwandel, and N. Nidhi, “Perfor-
mance analysis and validation of the intel ® pentium ® 4 processor on 90 nm technology,”
2004.

[7] Y.-M. Wang, Y. Huang, K.-P. Vo, P.-Y. Chung, and C. Kintala, “Checkpointing and its ap-
plications,” in Proceedings of the Twenty-Fifth International Symposium on Fault-Tolerant
Computing, FTCS ’95, (USA), p. 22, IEEE Computer Society, 1995.

[8] J. D. McCalpin, “Hpl and dgemm performance variability on the xeon platinum 8160 pro-
cessor,” in SC18: International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 225–237, 2018.

[9] D. D. Penney and L. Chen, “A survey of machine learning applied to computer architecture
design,” 2019.

26

[10] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R.
Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and
D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, p. 1–7, aug
2011.

[11] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood, “gem5-gpu: A heterogeneous
cpu-gpu simulator,” IEEE Computer Architecture Letters, vol. 14, no. 1, pp. 34–36, 2015.

[12] “SPEC CPU2006.” https://www.spec.org/cpu2006.

27

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	NOMENCLATURE
	INTRODUCTION
	Overview of Dynamic Voltage and Frequency Scaling
	Overview of Performance v. Functional Errors

	BACKGROUND
	DESIGN
	Resources
	Machine Learning and Simulation Scheme
	Dynamic Voltage and Frequency Scaling Performance Errors
	Data Processing Methodology
	Methodology Summary

	RESULTS
	Large Set Results
	Small Set Results
	Cross Set Test Results

	CONCLUSIONS
	Conclusions

	REFERENCES

