
R-DRIVE: RESILIENT DATA STORAGE AND SHARING FOR MOBILE EDGE

COMPUTING SYSTEMS

A Thesis

by

MOHAMMAD RAISUL IQBAL SAGOR

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Radu Stoleru
Committee Members, Chia-Che Tsai

I-Hong Hou
Head of Department, Scott Schaefer

December 2021

Major Subject: Computer Science

Copyright 2021 Mohammad Raisul Iqbal Sagor

ABSTRACT

Mobile edge computing (MEC) systems (in which intensive computation and data storage tasks

are performed locally, due to absence of communication infrastructure for connectivity to cloud)

are currently being developed for disaster response applications and for tactical environments.

MEC applications for these scenarios generate and process significant mission critical and per-

sonal data that require resilient and secure storage and sharing. In this thesis we present the design,

implementation and evaluation of R-Drive, a resilient data storage and sharing framework for dis-

aster response and tactical MEC applications. R-Drive employs erasure coding and data encryp-

tion, ensuring resilient and secure data storage against device failure. R-Drive adaptively chooses

erasure coding parameters to ensure highest data availability with minimal storage cost. R-Drive’s

distributed directory service provides a resilient and secure namespace for files with rigorous ac-

cess control management. R-Drive leverages opportunistic networking, allowing data storage and

sharing in mobile and loosely connected edge computing environments. We implemented R-Drive

on Android, integrated it with existing MEC applications. Performance evaluation results show

that R-Drive enables resilient and secure data storage and sharing.

ii

DEDICATION

For the Humanity

iii

ACKNOWLEDGMENTS

I want to thank Professor Radu Stoleru for his constant guidance toward me (both academic and

personal) throughout past years to become the person I am today. My gratitude also goes towards

Professor Chia-Che Tsai and Professor I-Hong Hou for becoming my committee members and

being patient with me during the processes of degree plan approval and final exam date selection.

I want to thank my parents for the constant emotional supports to achieve my goals in every

major life endeavors. I am utterly grateful to the Texas A&M University system for facilitating

me with a place and environment where I love to go back every day to work. Lastly, and most

importantly, I want to thank my co-workers who contributed greatly towards this project- Suman

Bhunia, Mengyuan Chao, Amran Haroon, Ala Altaweel; I learnt a great deal from them over the

years and looking forward in the future to work side by side in collaborative works.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Dr. Radu Stoleru and Dr. Chia-

Che Tsai of the Department of Computer Science and Engineering, and Professor I-Hong Hou of

the Department of Electrical and Computer Engineering.

The R-Drive Directory Service implementation was performed with the help of Suman Bhunia.

The Adaptive Code Rate algorithm was developed with the help of Mengyuan Chao. All other

work conducted for this thesis was completed by the student independently.

Funding Sources

This research was supported by the National Institute of Science and Technology (NIST),

through cooperative agreement 70NANB17H190.

v

NOMENCLATURE

R-Drive Resilient Drive

MEC Mobile Edge Computing

DTN Delay Tolerant Networking

EC Erasure Coding

RS Reed-Solomon

HPC High Performance Computing

DNS Domain Name Service

R-MStorm Resilient Mobile Storm

MMR Mobile Map Reduce

RSock Resilient Socket

GUID Globally Unique Identifier

HRP Hybrid Routing Protocol

TTL Time To Live

RPC Remote Procedure Call

GNS Global Naming Service

CLI Command Line Interface

SSSS Shamir Secret Sharing Scheme

FEC Forward Error Correction

HDFS Hadoop Distributed File System

GFS Google File System

MDFS Mobile Distributed File System

CR Code Rate

vi

NUC Next Unit of Computing

LTE Long Term Evolution

TCP Transmission Control Protocol

eNB Evolved Node B

FC File Creation

FR File Retrieval

vii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

NOMENCLATURE . vi

TABLE OF CONTENTS . viii

LIST OF FIGURES . x

LIST OF TABLES. xii

1. INTRODUCTION. 1

2. BACKGROUND AND STATE OF THE ART . 4

2.1 Mobile Edge Computing for Disaster Response and Tactical Environments 4
2.2 Motivation and State of the Art . 7

3. R-DRIVE SYSTEM.. 12

3.1 R-Drive System Overview . 12
3.1.1 System Components . 12
3.1.2 R-Drive Authentication . 13
3.1.3 Explicit Storage in R-Drive . 13
3.1.4 Implicit Storage for R-Drive . 14
3.1.5 Data sharing in R-Drive . 14

3.2 Directory Service. 14
3.2.1 Access Control Management . 15

3.3 R-Drive Data Storage . 16
3.3.1 R-Drive Data Encryption. 16
3.3.2 Resilient Storage through Erasure Coding . 17
3.3.3 Adaptive Code Rate . 18
3.3.4 Cost Function Lower Bound . 22

3.4 R-Drive Data Retrieval . 23
3.4.1 Choice of Replica Devices for Data Retrieval . 24

viii

3.5 R-Drive Data Deletion . 25
3.6 Inter-Edge Data Exchange . 25
3.7 R-Drive Consistency Model . 26
3.8 R-Drive Sample Execution . 26

4. R-DRIVE IMPLEMENTATION . 28

4.1 Android App. 28
4.2 Linux Service and CLI . 29
4.3 R-Drive Components Implementation . 30

5. R-DRIVE PERFORMANCE EVALUATION . 31

5.1 Adaptive Erasure Coding Evaluation. 31
5.1.1 Achieved cost for variable wa . 31
5.1.2 Impact of wa and Network Size on Code Rate and F ′ . 32
5.1.3 Impact of wa and Network Size on selected storage and battery remaining

time. 33
5.2 Directory Service Resilience . 35
5.3 Data Resilience . 37
5.4 Directory Service Latency . 39
5.5 Data Throughput . 39
5.6 Data Sharing with Opportunistic Network . 40

5.6.1 Data Sharing with Opportunistic Network . 40
5.7 R-Drive Overhead . 43

5.7.1 Memory Footprint . 43
5.7.2 Energy Consumption . 44
5.7.3 Processing Overhead . 45
5.7.4 Algorithm Execution Time. 45

6. CONCLUSIONS AND FUTURE WORK . 46

REFERENCES . 47

ix

LIST OF FIGURES

FIGURE Page

1.1 Next generation first responders equipped with wearable technologies including
AR helmets, mobile phones, smart watches and embedded sensors, which generate
large amounts of data that require resilient storage for processing, adapted from [1] 2

2.1 Mobile devices form two mobile edge networks (MEC-1 and MEC-2) and share
resources among themselves, or with the cloud, to perform data storage/sharing
and processing tasks . 5

2.2 DistressNet-NG - a MEC platform for disaster response consisting of: a) LTE an-
tenna, b) Wi-Fi AP, c) LTE eNB, d) Intel NUC that runs LTE EPC and HPC; e)
Battery; f-g) Helmet with body camera; h) Android phones . 5

2.3 Software ecosystem for the DistressNet-NG mobile edge computing suit 6

3.1 R-Drive components and integration with the DistressNet-NG software ecosystem . 12

3.2 R-Drive file storage steps: partitioning the file into blocks, encrypting them, ap-
plying the adaptive erasure coding and distributing the fragments to best suitable n
nodes . 17

3.3 File size F’ after erasure coding (applied to a file F of size 100MB) as a function
of the code rate . 19

3.4 Examples showing how different (k, n) pairs determine different system availabil-
ity. The example contains three small groups (a, b, c) and each group contains two
(k, n) pairs of same ratio. The baseline in each group represents pure local storage . . 20

3.5 Cost as a function of code rate for different wa . 23

3.6 R-Drive file retrieval steps: obtaining from the directory service the location of
fragments, deciding which k fragments to retrieve and asking RSock for their de-
livery, applying erasure coding and re-creating the file from the decrypted blocks 25

4.1 R-Drive Android Application. 28

5.1 Effect of wa on: a) code Rate (k/n); and b) file size F ′, for different network sizes,
NS=10, 20 and 30 . 33

5.2 Average (k, n) for different network sizes NS: a) 10; b) 20; and c) 30 34

x

5.3 Impact on wa on: a) storage size; and b) battery remaining time, for different
network sizes NS=10, 20, 30 . 35

5.4 Edge formation latency for variable EdgeKeeper replica settings. Here R and C
denote for replica and client respectively . 36

5.5 R-Drive file retrieval success rate as a function of device availability 37

5.6 Metadata read (a) and write (b) latencies as a function of metadata size, for link
availability 1.0 . 38

5.7 Data read and write throughput as a function of block size, for 0.5 link availability . . 41

5.8 Data read and write throughput as a function of block size, for 1.0 link availability . . 42

5.9 R-Drive Data sharing delay for total of 900MB data over RSock for variable link
availability . 43

xi

LIST OF TABLES

TABLE Page

2.1 Existing storage services and MEC applications rely on cloud connectivity for data
storage.. 8

2.2 Existing data sharing services cannot share data without cloud connectivity. 9

3.1 R-Drive rnode structure . 16

3.2 Cost (C) lower bound, as a function of wa and the corresponding code rate k/n for
the lower bound . 22

5.1 Achieved cost for variable wa and Network Size (NS) . 32

5.2 Number of allocated and de-allocated objects for different numbers of file creation
and retrieval . 44

5.3 R-Drive energy consumption for different Android devices: Samsung S8 [1]; Goole
Pixel 2 [2]; and Essential PH1 [3] . 44

5.4 Processing overhead as percentage of the total delay that different components are
responsible for . 45

5.5 Execution time of the Adaptive Coding algorithm in Samsung S8 for different net-
work sizes (NS) . 45

xii

1. INTRODUCTION

Mobile Edge Computing (MEC) has gained significant popularity over traditional cloud com-

puting due to low latency guarantee for data storage and processing. In this architecture, devices

form a local cloud using available computing and storage resources, allowing applications to pro-

cess and store data locally [2, 3, 4, 5, 6]. Edge computing platforms that are designed for mobility

need to handle disconnected environments where infrastructure networks such as cellular and Wi-

Fi are unavailable and cloud services are unreachable [7, 8, 9]. In such cases, MEC applications

are entirely dependent on available edge resources for operations. Disconnection-tolerant MEC

platforms for disaster response and wide area search and rescue operations are gaining significant

popularity [10, 11, 12]. In such scenarios, first responders are equipped with necessary hardware

including a manpack, mobile devices, wearable gadgets, sensors etc., to perform mission critical

operations (Figure 1.1).

Devices employed in MEC, e.g., on-body cameras, smart watches, gesture recognition devices,

body sensors (heat, gas, water etc.) as well as MEC applications on mobile devices generate large

amounts of mission critical data and perform storage intensive tasks. Storage intensive tasks such

as urban sensing, survey collection, geo-spatial data collection, text and media files storage and any

other quantitative and qualitative data storage by users etc., require resilient data storage with low

overhead [13, 14]. Device failure can occur due to hardware malfunction and battery depletion

due to heavy use of edge devices. Hence, data storage in mobile edge must employ replication

based distributed storage so that data is not lost due to device failure. Additionally, disconnection

resilient data sharing among entities in MEC is difficult due to absence of infrastructure networks

and frequent device mobility. In a search and rescue scenario, since first responders perform their

respective tasks being agnostic of network connectivity, data sharing among entities needs to be

network disconnection tolerant.

Existing file/data storage services, e.g., Dropbox [15], Google Drive [16], OneDrive [17] etc.

are not designed for MEC and cannot operate in the absence of cloud. Although these services al-

1

AR Helmet

Mobile Phone

Smart Watch

Embedded Sensors

video data

health data

App data

sensor data

Figure 1.1: Next generation first responders equipped with wearable technologies including AR
helmets, mobile phones, smart watches and embedded sensors, which generate large amounts of
data that require resilient storage for processing, adapted from [1]

low users to store and modify files offline, the files are simply stored locally, making them prone to

data unavailability/loss due to device failure by energy depletion or hardware malfunction. More-

over, mobile devices at the edge are prone to frequent disconnection/separation from the network,

due to mobility or network congestion. Thus, local updates may not propagate to the cloud despite

intermittent cloud access. Thus, there is a need for a cloud-like data storage service at the edge

that uses available edge resources for storing data.

Existing storage services also enable data sharing among devices. This can only be accom-

plished through the cloud via infrastructure networks. Users may employ data sharing applications

that make use of ad-hoc network connectivity (e.g., Bluetooth, Wi-Fi Direct). But, disconnection

may occur during a data sharing session; thus, users are required to minimize movement and stay

connected until the data sharing session completes. Hence, traditional data sharing schemes are

impractical for disconnection oriented mobile edge.

To address the aforementioned limitations, we designed and implemented R-Drive, a data stor-

age and sharing framework for MEC environments. R-Drive handles both device and network fail-

ures in MEC environments, eliminating the above mentioned data storage and sharing problems

by bringing cloud services to the edge. R-Drive utilizes available storage resources of devices to

2

the edge to resiliently store data and allows users/applications to securely share them with proper

access control. The key features of R-Drive and the contributions of the thesis are as follows:

• R-Drive employs distributed data storage with encryption and erasure coding, enabling re-

silient data storage against device failure.

• R-Drive employs opportunistic networking, maximizing the use of available bandwidth, at

the same time abstracting network failure from client applications.

• R-Drive incorporates resilient distributed directory service with secure access control.

• R-Drive transparently enables existing data storage applications to share data without assis-

tance from the cloud.

The rest of the thesis is structured as follows. In Chapter 2 we motivate the research and present

state of the art solutions for the problem. In Chapter 3 we present the design and implementation

of R-Drive. In Chapter 5 we evaluate the performance of our proposed solution and conclude in

Chapter 6 with ideas for future work.

3

2. BACKGROUND AND STATE OF THE ART

In this chapter we present background on mobile edge computing, the necessity for data storage

at the edge with the challenges faced when employing available solutions, and the requirements

MEC poses to data storage and sharing.

2.1 Mobile Edge Computing for Disaster Response and Tactical Environments

Figure 2.1 depicts a MEC architecture for disaster response or tactical environments. Multiple

mobile devices form an edge network that can be disconnected from the Internet and cloud servers.

Mobile devices may be connected to a HPC node that manages communications (e.g., LTE, Wi-

Fi, Wi-Fi Direct), IP addresses allocations to devices, and DNS services, mapping device names

to their corresponding IPs. The central node also performs high-performance computing (HPC)

functions on data produced by edge devices. In addition to the HPC node, data can also be of-

floaded to connected mobile devices for processing and storage. As shown in the figure, two edge

networks (where nodes HPC-1 and M-6 serve as central nodes for edges 1 and 2, respectively) can

be connected over Internet, or they can discover each other locally.

An example of a MEC system for disaster response is shown in Figure 2.2. The system

DistressNet-NG , consists of a manpack equipped with wireless communication (LTE and Wi-

Fi) and processing capabilities (HPC). Multiple mobile devices communicate among themselves

and with the manpack using wireless communication, for sharing data storage and computational

resources. The software architecture for DistressNet-NG is shown in Figure 2.3. As shown, several

applications have been specifically designed for MEC. For example, R-MStorm (Resilient Mobile

Storm) [18] is for real-time stream processing, MMR (Mobile Map Reduce) for batch processing,

a mobile virtual voice assistant for emergency medical services, edge resource orchestration, etc.

Survey123 [19] is used by several disaster response teams (e.g., Texas Task Force) to gather field

data (e.g., number of survivors, hazardous locations etc.) and send it to a database located either

in the cloud or a local server. Survey123 can operate in completely disconnected environments,

4

Figure 2.1: Mobile devices form two mobile edge networks (MEC-1 and MEC-2) and share re-
sources among themselves, or with the cloud, to perform data storage/sharing and processing tasks

Figure 2.2: DistressNet-NG - a MEC platform for disaster response consisting of: a) LTE antenna,
b) Wi-Fi AP, c) LTE eNB, d) Intel NUC that runs LTE EPC and HPC; e) Battery; f-g) Helmet with
body camera; h) Android phones

however, in such environments, the data is cached locally on mobile devices and only uploaded

once a cellular or Wi-Fi connection to the Internet is established. ATAK [20] is an Android appli-

cation used by the US military to share mission critical data during combat missions or disaster

response operations. Similar to Survey123, ATAK stores data on local storage if communication

with a master ATAK server is unavailable.

As shown in Figure 2.3, two important components of the DistressNet-NG architecture are

EdgeKeeper and RSock (Resilient Socket). EdgeKeeper [21] is a distributed coordination and

5

R-Drive
(Resilient Data Storage)

R-MStorm
(Resilient Mobile Storm)

MMR
(Mobile MapReduce)

RSock
(Resilient communication)

R-Message
(Resilient Messaging)

TCP / UDP

Survey123 Dropbox ATAK
Mobile

Voice Asst.

R-Drive API

Figure 2.3: Software ecosystem for the DistressNet-NG mobile edge computing suit

service discovery, and meta-data storage application which runs on all devices of the edge. Edge-

Keeper is based on a primary/master-replica/slave architecture in which at one time one device

acts as a master, whereas other devices act as slaves. EdgeKeeper master is responsible for main-

taining distributed consensus among devices and providing services such as device authentication,

service discovery, edge health monitoring, network topology management, metadata store etc.

EdgeKeeper slaves are standby devices to take over dead master and maintain services. Edge-

Keeper employs Globally Unique Identifier (GUID) [22] to uniquely identify each edge device.

Each GUID is a unique 40 characters long string, generated with a unique public and private key

pair, assigned to one user. EdgeKeeper is responsible for performing DNS-like GUID to/from IP

mapping. GUID based device identification allows applications on different devices to communi-

cate with each other being agnostic of IP assignments. Such identification scheme enables mobile

devices pertaining to different edges to communicate, and perform inter-edge tasks. RSock [23]

is a resilient transport protocol designed for sparsely connected network environments aiming to

make best use of available network bandwidth and to ensure timely data delivery. RSock provides

routing by GUID and replication of packets, to be sent over multiple paths for device-to-device

6

communication (i.e., using any available wireless interface - LTE, Wi-Fi, Wi-Fi Direct). RSock

employs the Hybrid Routing Protocol (HRP) [24], which performs packet replication to reduce the

packet delivery delay. A RSock header contains a sequence number for the corresponding packet

so that receiver can assemble the packet in its respective position. For a file to be received success-

fully, all RSock packets must have to be received and assembled by their packet numbers at the

receiver. RSock API allows user to set a time to live (TTL) value for a packet in the header. The

TTL value entails for how long (in seconds) a packet can be alive in the network. If the TTL for a

packet expires, the packet will be immediately discarded from the network.

2.2 Motivation and State of the Art

Applications in MEC platforms for disaster response generate significant amounts (e.g., giga-

bytes) of mission critical and personal data that require resilient and secure storage. As examples,

R-MStorm generates media data about disaster victims, Mobile Voice Assistant collects patients’

personal medical information, Survey123 collects various survey data during search and rescue

operations. Currently, this data is stored only on a device’s local storage; if a device’s storage

runs out, these applications cannot store new data. Also, if the device fails, the data stored on it is

lost or inaccessible. Existing data storage services such as Dropbox, Google Drive, OneDrive etc.

require cloud connectivity to store data. During large scale disasters, infrastructure networks such

as LTE, Wi-Fi, etc. may not be available, hence above services can not be used for storing data.

Moreover, device failure may occur due to energy depletion or hardware malfunction. Hence, data

is vulnerable to loss/unavailability if stored on a single device without added resilience. Pure data

replication across devices to ensure resilience against device failure is not a feasible solution for

mobile edge due to limited storage availability. Furthermore, some storage services store offline

files in local storage without any protection (i.e., encryption), allowing data tampering by injecting

corrupt data by malicious applications.

We conducted experiments with above mentioned storage services and observed that these

services do not provide both data resilience and security when storing locally. We stored large

amount of offline data and observed that, when device storage runs out, these services become

7

inoperational, despite other devices in same network having large amounts of available storage. We

conducted another set of experiments in which we tampered offline data of Dropbox and Survey123

by injecting malicious data and observed that corrupted updates were later propagated to cloud

when applications were started. Google Drive and OneDrive do not store offline files in external

storage, hence they are not directly accessible via Android filesystem. But, the offline files are

still vulnerable of device failure as they are stored in single device. Table 2.1 summarizes the

limitations of existing storage solutions, as well as storage intensive MEC applications.

Cloudless Resilient Offline
Services Storage Storage Encrypt
Dropbox 5 5 5

OneDrive 5 5 X
Google Drive 5 5 X
Survey123 5 5 5

R-MStorm X 5 5

R-Drive XXX XXX XXX

Table 2.1: Existing storage services and MEC applications rely on cloud connectivity for data
storage.

To further address the limitations, we investigated state of the art distributed storage and file

system solutions for mobile edge. CODA [25], maintains a local cache during disconnected oper-

ations to store edited data and requires cloud connectivity to synchronize local cache with replica

servers. OFS [26], carries heavy storage overhead since it keeps a copy of the same data to both

local device and cloud to ensure data availability. MEFS [27] tried to retro-fit a cloud based file

system to use for mobile edge, but the solution greatly relied on cloud communication. PFS [28],

FogFS [29] rely in specific mobility models that makes them impractical for disconnected mobile

edge. Although HDFS [30] and GFS [31] use erasure coding instead of replication to store data

in replica devices, these solutions are too heavy-weight for mobile devices in terms of memory

footprint and computation. Hyrax [32] tried to port HDFS for Android devices and experimented

in mesh networks. Despite decent engineering efforts, Hyrax showed poor performance for CPU

8

bound tasks. MDFS [33] implementation was based on a purely connected network, which is a

major fallacy in disconnected mobile edges. MDFS did not provide a file system-like functionality,

such as directory service, access control management etc.

Cloudless Opportunistic Cloudless
Services Share Share Namespace
Dropbox 5 5 5

OneDrive 5 5 5

Google Drive 5 5 5

Share Apps 5 5 5

R-Drive XXX XXX XXX

Table 2.2: Existing data sharing services cannot share data without cloud connectivity.

As mentioned earlier, infrastructure networks may be unavailable during large scale disasters.

Existing services such as Dropbox, Google Drive, OneDrive etc. can only share data across de-

vices if there is connectivity to the cloud. Users can use file sharing applications (Google Files [34],

SHAREit [35] etc.) that do not require cloud connectivity and can operate over ad-hoc networks

such as Wi-Fi Direct, Bluetooth, NFC etc. But, ad-hoc networks rely on short range communi-

cation and constant connectivity. During large scale search and rescue operations, team members

are mobile and scattered across large areas; it may not always be possible for two team members

to stay within each other’s communication range to exchange data. For instance, two team mem-

bers may not be directly connected yet reachable via one or many intermediate mediums/people

that frequently travel back and forth between them. Consequently, MEC platforms for disaster

response should support network opportunistic data sharing over multiple hops. Moreover, during

disaster response operations, first responders are divided into groups to perform their respective

tasks. Team members often need to share mission critical data among themselves to co-ordinate

their tasks. Also, sharing data with other teams require rigorous access control so that critical data

is only shared with authorized personnel (e.g., team leaders). Existing data sharing services can-

not sync directories across devices in absence of cloud connectivity. Consequently, first responder

9

teams need to have a common namespace to manage data and permissions that does not rely on

cloud connectivity. Table 2.2 summarizes the limitations of the existing data sharing schemes in

disconnection oriented MEC platforms.

To apply erasure coding for data storage, two important input parameters are n and k. A high

n and low k increases data availability at a cost of storage, and vice-versa. (n, k) should be de-

cided dynamically depending on the edge resource availability and user provided quality of service

(QoS) parameters. Although HDFS [36], GFS [31] use erasure coding for distributed storage in a

cluster, the choice of parameters for erasure coding (n, k) is fixed, since both HDFS and GFS were

designed primarily for large storage clusters consisting of hundreds of storage nodes residing in

stationary racks, in a data-center. MDFS [33] incorporated erasure coding for disconnection prone

mobile edge, and took network link quality, energy cost etc. in consideration. But they did not pro-

vide any online algorithm to select n and k values for variable storage availability and file sizes.

Zhu et al., presented an online adaptive code rate selection algorithm for cloud storage [37]. The al-

gorithm takes real-time user demands as one of the input metrics to a regret minimization problems

to decide the most optimum n and k values. The solution states as one of their assumptions is that

all the candidate storage devices have enough storage capabilities, which can be a big assumption

for mobile edge computing environment where devices are heterogeneous. HACFS [38] is another

novel solution, where authors implemented an extension to HDFS to adaptively choose between

fast code and compact code depending on data read hotness. The solution also up-codes and down-

codes previously encoded data to ensure data resiliency against loss due to various reasons. Despite

having the capability of switching between two coding schemes, their solution involves using fixed

coding parameters for each of the coding schemes. Zhang et al., proposed an erasure coded storage

system consisting Android devices, also provided no study for choosing the most efficient nodes

and n, k values [39]. Shu et al., proposed an erasure coded distributed storage system on fog nodes,

but provided no analysis as to how to choose the n, k values [40].

R-Drive tackles above mentioned inefficiencies in existing solutions and eliminates the reliance

on the cloud by bringing the cloud functions to the edge. R-Drive leverages opportunistic network-

10

ing to perform disconnected data transfer without requiring constant connectivity to infrastructure

networks. R-Drive applies erasure coding and encryption on files before storing in local devices so

that an entire file is not exposed and only authenticated users/applications are allowed to access the

files. R-Driveś directory service provides a namespace to all applications/users to access and man-

age files. Lastly, data sharing in R-Drive employs opportunistic networking, hence data sharing is

agnostic of infrastructure network connectivity and user mobility.

11

3. R-DRIVE SYSTEM

In this chapter we present the design and implementation of R-Drive.

3.1 R-Drive System Overview

3.1.1 System Components

Figure 3.1 shows the R-Drive system components and its integration with the DistressNet-

NG software ecosystem. As shown, R-Drive consists of five major components. Directory Ser-

vice provides a namespace for all files and directories. File Handler performs file and directory

operations (e.g., creation, retrieval and removal). Erasure Coding component encodes and de-

codes data into fragments using Reed-Solomon erasure coding [41]. Cipher encrypts and decrypts

data using 256 bit AES encryption. Command Handler handles commands for basic storage

operations such as -put, -get, -mkdir, -ls, -rm etc.

API Calls

Store
App Data

Resilient
 Comm.

Metadata
updates

 HPC/Mobile

 L
o

ca
l S

to
ra

g
e

Store
Fragment

Store
Metadata

Directory Directory
ServiceService

MMRMMR R-MStormR-MStorm DropboxDropbox SurveySurvey
123123

ServiceService
DiscoveryDiscovery

Topology/Topology/
Edge Edge
HealthHealth

RegretRegret
Min. Alg.Min. Alg.

Rep.Rep.
FactorFactor

DecisionDecision

PacketPacket
ForwardForward

R-Drive

RSock EdgeKeeper

Pull
App Data

Zoo-Zoo-
KeeperKeeper

File File
HandlerHandler

ErasureErasure
CodingCoding CipherCipher CommandCommand

HandlerHandler

Figure 3.1: R-Drive components and integration with the DistressNet-NG software ecosystem

Client applications such as MMR, R-MStorm use the R-Drive API to perform data storage and

sharing operations. Applications such as Dropbox, Survey123 etc. generate and store app data

12

on device’s local storage. R-Drive periodically fetches the app data and stores it in R-Drive for

resilience against device failure. R-Drive communicates with RSock and EdgeKeeper applications

via JSON based RPC calls over local TCP sockets.

3.1.2 R-Drive Authentication

R-Drive relies on EdgeKeeper for authentication and authorization. EdgeKeeper uses a Glob-

ally Unique Identifier (GUID) that is unique to each device. To obtain a GUID, a user must log into

the EdgeKeeper using a X.509 certificate [42, 43]. The certificate contains user credentials such

as account name, alias, certifying authority, and a private-public key pair. The certificate file is

password-protected, and the user provides the password when logging in. The GUID is generated

through one way hash function, thus, uniquely associated with each user. The public key associ-

ated with a GUID is stored in Global Naming Servers (GNS) and can be obtained by EdgeKeeper

entities running on other devices.

3.1.3 Explicit Storage in R-Drive

Explicit storage in R-Drive takes place via R-Drive user interface (UI) or Java client API.

Client applications can make appropriate R-Drive API calls to perform storage and sharing tasks.

R-Drive UI allows a device operator to directly interact with the application. R-Drive also provides

command line interface (CLI) that allows a desktop user (e.g., a search and rescue operation coor-

dinator) to connect to a device in the field and perform R-Drive operations with permissions. The

R-Drive API is as follows:

int mkdir(String rdriveDirectory,

List<String> permissionList);

List<String> ls(String rdriveDirectory);

int put(String localFilePath,

String rdriveFilePath,

List<String> permissionList);

int get(String rdriveFilePath,

13

String localFilePath);

int rm(String rdriveFilePath);

The description and implementation of each of the API calls are presented in Sections 3.2

through 3.5.

3.1.4 Implicit Storage for R-Drive

R-Drive allows implicit data storage by monitoring files in user-selected directories on local

storage, similar to Google Backup and Sync [44]. A user selects a directory in the local storage

that R-Drive will monitor for any changes in data and periodically pulls the data to store in R-Drive

system. User can select application directories which are prone to data loss due to device failure.

Currently, R-Drive supports backing up app data for Survey123, ATAK and Dropbox; a user may

allow R-Drive to access the app data of the above applications to periodically pull and store them

in R-DriveṪhis feature is beneficial for hands-free usage by first responders who want to securely

store mission critical data in R-Drive with minimal intervention.

3.1.5 Data sharing in R-Drive

R-Drive enables inter device data sharing using RSock communication channel. A device can

share data to one or multiple devices as follows: a) unicast the data to any device; b) upload the

data to R-Drive system and set permission appropriately for authorized users. In scenario (a),

no data erasure coding takes place and the entire file is sent. The TTL value in RSock is set

appropriately, to decrease the likelihood of data being discarded during routing, but to also not

congest the network (by keeping too many copies of the data).

3.2 Directory Service

The Directory Service provides all metadata-related operations such as creation of new meta-

data, retrieval of existing metadata, checking metadata permissions, presenting a namespace to

clients etc. R-Drive maintains a hierarchical directory structure; the top level directory is root(/)

and below are subsequent subdirectories. A metadata in R-Drive system is called an rnode, with

its structure shown in Table 3.1). A rnode represents either a file or a directory entity in R-Drive.

14

After creating a rnode, the Directory Service stores it in EdgeKeeper, which internally stores it in

ZooKeeper data nodes, commonly known as znode. ZooKeeper replicates znodes to replica de-

vices for fault tolerance, to handle master failure or cluster disconnection. If one or more replica

devices leave the edge, other edge devices become new replicas and the lost znodes are replicated

to the new replica devices. Consequently, if EdgeKeeper has r replicas, then R-Drive metadata

remains intact and it can provide Directory Services despite device failures as long as there are

dr/2e devices available at the edge.

A directory creation takes place when a client invokes the mkdir() API function or when the

command -mkdir is executed in the CLI. The Directory Service creates a new rnode for the target

directory. Directory Service then fetches a copy of immediate parent rnode of the target directory

from EdgeKeeper and inserts the target rnode information in the parent rnode. Finally, Directory

Service pushes both parent and target rnodes to EdgeKeeper. EdgeKeeper stores the rnodes in

ZooKeeper as data nodes. Directory retrieval is initiated when a client invokes the get() API

function or when the command -ls is executed in the CLI. The Directory Service fetches from

EdgeKeeper the target rnode corresponding to the target directory. The target directory rnode

contains the list of all files and subdirectories of immediate lower level.

3.2.1 Access Control Management

R-Drive leverages ZooKeeper’s access control for managing access and updating permissions

for rnodes. ZooKeeper [45] supports pluggable authentication schemes. R-Drive implements its

own custom authentication scheme as part of the Directory Service. R-Drive follows the standard

UNIX permission scheme which can be set during file or directory creation. Permissions can also

be set via the -setfacl and -getfacl commands entered through the CLI. A file or directory creator

can set permission for any rnode for OWNER, WORLD, or a list of GUIDs. Each rnode permission

only pertains to itself and does not apply to children.

15

Field Size Description
rnodeType 1 Byte File or Directory rnode
rnodeID 16 Bytes Unique rnode ID
fileName Variable Original File Name
fileSize 8 Bytes Original File Size
fileID 16 Bytes Unique File ID
filePath Variable R-Drive File Path
N 2 Bytes N value for EC
K 2 Bytes K value for EC
blockCount 2 Bytes Number of Blocks
fragLocation Variable locations of fragments
fileList Variable List of Files
folderList Variable List of Subdirectories
permission Variable Access Control List
timeStamp 8 Bytes Time of Creation

Table 3.1: R-Drive rnode structure

3.3 R-Drive Data Storage

All data is stored in R-Drive as files. File creation involves copying a file from local file system

to R-Drive using the put() API function or the -put command. The File Handler loads the target

file and divides it into fixed sized blocks. Each block is then encrypted with a unique secret key

and later converted into n fragments using erasure coding. Directory Service communicates with

EdgeKeeper to push the rnode for newly created file. If the rnode update succeeds, all fragments

are sent through RSock by invoking the RSock client API. All fragments contain a timestamp that

acts as a version number for fragments. A receiver device only accepts fragments with same or

higher timestamps. Figure 3.2 shows the steps for a file creation process in R-Drive .

3.3.1 R-Drive Data Encryption

R-Drive uses 256 bit AES encryption using a unique secret key for file encryption. The key

is further divided into B key-shards using Shamir’s Secret Sharing Scheme (SSSS) [46]. SSSS

is a distributed secret sharing scheme in which a secret is divided into shards in such a way that

individual shards cannot reveal any part of the secret, whereas an allowed number of shards put

16

!"#$%&'()#$* +",-$*

.)/$0$$,$*
!"#$%&'#(

)$#*"%$
12345

+",$

-,'%./

01%#(2&$34

-,'%./

+#567$1&/

!"""

8$&535&54

9235&$

:

6)',7"8$%

+3)$%1'7$

: ; 1

2<&=>

;

?

@ @
@

A

Figure 3.2: R-Drive file storage steps: partitioning the file into blocks, encrypting them, applying
the adaptive erasure coding and distributing the fragments to best suitable n nodes

together can reveal the secret. (T,N) is the conventional way to express the SSSS system, where

N is the total number of secret shards, and T is the minimum number of shards required to unveil

the secret. In R-Drive we used (B,B) as parameters for SSSS, where B is the number of blocks.

3.3.2 Resilient Storage through Erasure Coding

R-Drive uses Reed-Solomon erasure coding for data redundancy [41]. Erasure codes are for-

ward error correction (FEC) techniques that take a message of length M and convert it into coded

message of length greater than M by adding redundancy so that the original message can be re-

constructed by a subset of the coded message. In R-Drive storage, a file of size F is divided into k

fragments, each of size F/k. Applying (n, k) encoding on k fragments will result in n fragments,

each of size F/k, where n ≥ k. Hence, the total file size will be n ·F/k. Encoded n fragments are

then stored in geographically separated storage devices. To reconstruct the file, any k fragments

are sufficient. Thus, the system tolerates up to n− k device failures.

17

3.3.3 Adaptive Code Rate

The most widely used erasure coding library is Reed-Solomon that takes (n, k) as parameters.

The choice of n and k values are directly related to data redundancy (hence availability) at cost of

additional storage overhead. So, choosing devices that has enough available storage is the basic

requirement for storing data in mobile edge. Also, devices in edge are prone to device failure

due to energy exhaustion, hardware failure, etc. So, choosing the devices that has more chance

of survival against device failure is also an important factor to consider. Hence, in summary, the

problem statement is, how to choose the best n and k values, and the fittest n nodes (in terms of

available battery life, storage capacity etc) so that the entire edge system can achieve highest data

availability for the least storage cost.

The ratio k/n in erasure coding, or the code rate, indicates the proportion of data bits that are

non-redundant. As a rule of thumb, when code rate decreases, the file size after erasure coding

increases, and vice-versa. But, at the same time, lower code rate usually comes with a higher n

and lower k values, providing added fault tolerance to the data. So, we cannot simply choose the

lowest possible code rates; in that case, we will exhaust the system storage capacity very rapidly.

Figure 3.3 shows the file size after erasure coding as a function of code rate to illustrate the fact

that erasure coded file size increases exponentially with decreasing code rate.

We need an online algorithm that dynamically chooses the (n, k) values, and the fittest n nodes

for file storage in the edge. The algorithm’s main focus will be to incorporate edge specific pa-

rameters (remaining battery, available storage, user/file specific quality of service parameters etc)

to decide n and k values to optimize between data availability and storage cost. To reduce com-

plexity, we will avoid all Reed-Solomon library specific parameters and use the default values for

them.

To enable erasure coding in R-Drive, we need to answer the following: 1) What code rate

and what (k, n) pair should the system choose? 2) Given a chosen code rate and (k, n) value pair,

which specific n devices should the system store the n file fragments to? 3) What system parameters

used in answering 1) and 2) will be collected, and how?

18

 0

 2000

 4000

 6000

 8000

 10000

 0 0.2 0.4 0.6 0.8 1

F
’

[M
B

]

Code Rate (k/n)

F: 100MB

Figure 3.3: File size F’ after erasure coding (applied to a file F of size 100MB) as a function of the
code rate

Q1: What k and n values? Code rate is calculated as k/n. If k/n is small, there is a high proba-

bility to recover a file because only a small number of file fragments are required to reconstruct the

original file. The file size after erasure coding with code rate k/n is calculated as F ′ = F ∗ n/k,

where F represents the original file size. In this case, if k/n is too small, n/k becomes very large,

then the encrypted file size F ′ becomes very large as well. Small (k, n) entails higher file avail-

ability at a cost of larger storage overhead for the entire R-Drive system. To address this trade-off,

we present the cost of availability and storage C as a weighted sum and formulate the problem as

a minimization problem as follows:

minimize
(k,n)

C(k, n, wa) = wa ∗ k/n+ (1− wa) ∗ n/k (3.1)

subject to: F/k ≤ Sn, (3.2)

T ≤ Tk, (3.3)

1/N ≤ k ≤ n ≤ N, k, n ∈ Z+ (3.4)

0 ≤ wa ≤ 1 (3.5)

where wa denotes the weight of availability cost, 1 − wa the weight of storage cost, Sn the nth

19

maximum available storage of all nodes, Tk denotes the kth longest remaining time among the

total available N devices, T denotes the minimum time that a file is expected to be available in

R-Drive. In the minimization problem, constraint (2) ensures that the storage allocation for a node

does not exceed available storage, constraint (3) ensures that only devices with enough battery (for

the selected lifetime T of a file) are selected, constraint (4) ensures that only positive n and k are

selected, in the range [1/N,N].

The weight wa is adjusted adaptively for different files; for a critical file, the system sets a large

wa so that a small k/n is chosen to improve its availability; for a large but unimportant file, the

system sets a small wa so that a small n/k is chosen to reduce the total storage cost. More specific,

for wa = 0 (i.e., availability is not important) the objective is to reduce storage, thus k = n.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
y
s
te

m
 A

v
a
ila

b
ili

ty

Device Availability

k=1,n=3
k=2,n=6

base

(a) k/n=1/3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
y
s
te

m
 A

v
a
ila

b
ili

ty

Device Availability

k=1,n=2
k=3,n=6

base

(b) k/n=1/2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
y
s
te

m
 A

v
a
ila

b
ili

ty

Device Availability

k=2,n=3
k=4,n=6

base

(c) k/n=2/3

Figure 3.4: Examples showing how different (k, n) pairs determine different system availability.
The example contains three small groups (a, b, c) and each group contains two (k, n) pairs of same
ratio. The baseline in each group represents pure local storage

Since both k and n need to be integers, we can easily solve the above minimization problem

by iterating over all possible (k,n) pairs and choose those with the minimum costs as solutions.

The time complexity of this method is O(N2). However, there are sometimes several (k, n) pairs

with the same minimum costs. To further select among these (k, n) pairs, we need a more precise

method to depict the system availability. For simplicity, we assume each device has the same

20

availability p. Then, the system availability can be calculated as follows:

A(k, n, p) = Cn
k p

k(1− p)(n−k) + ...+ Cn
np

n (3.6)

where Cn
k denotes the number of ways for choosing k from n devices. This equation is complex.

In order to get an intuitive understanding of it, we show a few simple examples in Figure 3.4, where

we compare the system availability for 6 (k, n) settings calculated based on the above equation. We

further divide these six settings into three groups. Within each group, the core rate k/n is identical.

As we can see, when the erasure rate increases from 1/3 to 1/2 then to 2/3, the system availability

gradually decreases. This indicates the rationality of representing the system availability with k/n

for simplicity in Equation (3.1). Meanwhile, we observe that, in each group, when the device

availability p is small, although the k/n values of different settings are the same, the (k, n) setting

with a smaller n has higher availability than the other with a bigger n. However, as the device

availability p gradually increases over a threshold, the setting with a bigger n starts to achieve

higher system availability than the setting with a smaller n. Therefore, what (k, n) to choose for a

specific k/n is determined by the device availability p.

In R-Drive, for simplicity, we calculate the availability pi of device i as follows:

pi =

1, Ti ≥ T

Ti/T , 0 < Ti < T

(3.7)

where Ti represents the remaining time of device i. When R-Drive selects between (k1, n1) and

(k2, n2) with the same k/n values, it first calculates the value of A(k1, n1, p) and A(k2, n2, p),

where p represents the average availability of devices, and then chooses the one with a larger

value.

Q2: Which specific n devices? After deciding (k, n), the next question to answer is which n

devices to store the n file fragments. R-Drive adopts a simple strategy for this issue. First, it

chooses all devices with the remaining storage space larger than F/k. Next, it sorts the picked

devices based on the expected remaining time in descending order. Finally, it chooses the top n

21

devices with the longest remaining time to store the n file fragments. The complete algorithm for

choosing (k, n) and specific n devices is given in Algorithm 1.

Q3: How are algorithm input parameters decided? Here we provide a general recommendation

for setting wa and T before data storage tasks are initiated. wa and T are not meant to be changed

for every file; instead, user should set particular values for wa and T for a particular collection of

data. wa and T values should be set based two factors - how important/mission critical the file is,

and how soon user is expected to access/read the data. As an example, for mission critical data

such as victim personal image/video files, wa can be set high such as 0.8, 0.9, 1.0 etc. Also, if

user is expected to access the stored data in a near future, user can set an approximate T , and the

algorithm will choose at least k candidate devices with at least T battery remaining time. Since the

algorithm outputs n and k, which are integers, fine tuning wa may not always have impact on the

output. Hence, we recommend choosing wa as a multiple of 0.1.

3.3.4 Cost Function Lower Bound

Figure 3.5 shows how the choice of code rate impacts the cost function for different wa. We

identified that for each wa, there is a code rate for which the cost is the lowest, which is the optimal

cost. The algorithm tries to reach towards the optimal cost, regardless of the selection of n and k

values. For a particular (n, k), if the code rate is similar to the optimal cost code rate, the algorithm

will try to hold onto this particular (n, k), unless the devices do not check out storage and battery

remaining time requirements (as mentioned in equation 3.1). Table 3.2 shows the optimal cost for

variable wa and the code rates for which the optimal cost is achieved.

wa 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.0
Cost (C) 1/N 0.6 0.8 0.91 0.98 1.0 1.0 1.0

Code Rate 1/N 0.35 0.5 0.65 0.8 1.0 1.0 1.0

Table 3.2: Cost (C) lower bound, as a function of wa and the corresponding code rate k/n for the
lower bound

A natural question may arise, if the cost for variable wa is constant, why not use a look-up

22

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

C
o
st

 (
C

)

Code Rate (k/n)

wa=1.0
wa=0.8
wa=0.6
wa=0.4
wa=0.2
wa=0.0

Figure 3.5: Cost as a function of code rate for different wa

table to find the code rate with the lowest cost? The answer is, choosing the code rate with the

lowest cost does not tell us the exact values of n and k and the particular devices. As an example,

for wa = 0.8, the code rate 0.5 can be achieved by 15 different combinations of (n, k). So, our

algorithm not only chooses code rate with lowest cost, but also chooses devices with minimum

required storage and battery remaining time.

3.4 R-Drive Data Retrieval

Data retrieval in R-Drive involves gathering all blocks of a file and reconstructing it to its

original form, as illustrated in Figure 3.6. File retrieval is initiated by calling get() API function

or executing -get command. Directory Service first communicates with EdgeKeeper and fetches

the target metadata rnode, given that a rnode for the target file exists and user has permission to

access the file. The fragLocation field in rnode contains location information of all fragments of

all blocks. To reconstruct each block, File Handler must retrieve any k fragments out of n, where

k ≤ n. To retrieve any k fragments, File Handler sends fragment requests to k unique devices.

Upon receiving a fragment request, a device resolves it by replying with target fragment to the

requestor. When k fragment replies are received, File Handler signals Erasure Coding and Cipher

23

Algorithm 1: Choose (k, n) and n devices
Input : F , T , Si, Ti, wa

Output: (k,n) and n devices
1 (k, n)← (1, 1)
2 Cmin ← 1
3 for n′ ∈ 1...N do
4 for k′ ∈ 1...n′ do
5 if Satisfying Eq.(3.2)(3.3) then
6 if C(k′, n′) < Cmin then
7 (k, n)← (k′, n′)
8 Cmin ← C(k′, n′)

9 if k′/n′ = k/n then
10 if A(k, n, p) < A(k′, n′, p) then
11 (k, n)← (k′, n′)

12 V ← pick up devices with Si > F/k
13 sort V based on Ti in descending order
14 Vn ← choose top n devices with the largest Ti

15 return (k, n) and Vn

components to initiate block decoding and decryption processes respectively. When all the blocks

are reconstructed, the original file can also be reconstructed by merging all blocks. All fragment

requests and replies are sent/received through RSock.

3.4.1 Choice of Replica Devices for Data Retrieval

To choose the replica device to request fragments from, File Handler requests a list of devices

from EdgeKeeper with most remaining energy levels and sends k fragment requests to first k

devices on the list. In an intermittently connected network environment, a fragment request or

reply may be delayed or never be received. One way to deal with this issue is to resend the request

for which no reply has been received. The question that still needs to be answered is, how long the

sender should wait before initializing resend. R-Drive leverages the TTL in RSock to make sure

that a request is resent only when the previous request failed. A fragment requestor can set a TTL

within which it wants the reply to be received. If no reply is received within the set time limit, it

is guaranteed that the request packet has failed and it is safe to resend the request to a different

24

!"#$%&'()#$* +",-$*

.)/$0$$,$*
!"#$%&'#(

)$#*"%$
12345

+",$

-,'%./

01%#(2&$34

-,'%./

+#567$1&/

!"""

8$&535&54

9$&#"$*$

:

; < .

6$&=>

< ?

@ @
@

;

A

.*'67*$%

+3)"(/

Figure 3.6: R-Drive file retrieval steps: obtaining from the directory service the location of frag-
ments, deciding which k fragments to retrieve and asking RSock for their delivery, applying erasure
coding and re-creating the file from the decrypted blocks

available replica device.

3.5 R-Drive Data Deletion

File and directory deletions are executed using the rm() API call or the -rm command. The

Directory Service informs EdgeKeeper to delete the target rnode from ZooKeeper, and returns a

copy of the rnode to the requester. For deleting a file, the File Handler learns the GUIDs for of all

fragment (the fragLocation field) and sends fragment deletion requests to them, using RSock.

3.6 Inter-Edge Data Exchange

R-Drive supports inter-edge directory and file exchanges for enabling collaboration among

teams during search and rescue operations. As shows in figure 2.1, when two edges MEC-1 and

MEC-2 come within each other’s network range, or when they discover each other over internet,

their EdgeKeeper masters can exchange their R-Drive directory information. As example, a user

in MEC-1 can browse through the directories and contents of MEC-2 with ’WORLD’ permission

25

tag. Any file retrieval request from MEC-1 is first submitted to EdgeKeeper master. EdgeKeeper

master of MEC-1 will send a request to EdgeKeeper master of MEC-2 for the file fragments. Upon

verifying the permission, EdgeKeeper master of MEC-2 will trigger fragment forwarding request

to all fragment replica devices of MEC-2. Fragment replica devices of MEC-2 will directly send

the fragments to the file requestor at MEC-1 through RSock.

3.7 R-Drive Consistency Model

R-Drive provides eventual and sequential consistency for file data and metadata, respectively.

As discussed earlier, R-Drive leverages RSock to transfer file fragments in a disconnected environ-

ment. Although RSock attempts to deliver a file within TTL, the deliveries are not guaranteed to be

instantaneous, due to network delays or disconnections. Thus, at some point in time, some replica

devices may be under-replicated, since some target replica devices may not have received the file

fragments yet. Thus, for file fragments distribution, R-Drive provides an eventual consistency

model, i.e., given enough time, all replicas will eventually receive their corresponding fragment

data. As discussed earlier, R-Drive metadata is stored in EdgeKeeper. EdgeKeeper provides a

sequential consistency model for metadata storage; all updates from clients are applied in the order

they are received. Consequently, the R-Drive metadata updates are also sequentially consistent.

3.8 R-Drive Sample Execution

This experiment description aims to illustrate the case when R-Drive provides eventual con-

sistency with a demonstration of inter-edge data storage. Two DistressNet-NG edge environments

MEC-1 and MEC-2 were set up indoor where both edges had separate WiFi networks and each

edge had four phones connected (P1, P2, P3, P4 and P5, P6, P7, P8 respectively). At time T1,

P1 stored a 100MB file in R-Drive system with (N,K) values of (8,4) and [P1, P2, P3, P4, P5,

P6, P7, P8] as chosen nodes. Hence, P1 aimed to store 8 file fragments [f1, f2, f3, f4, f5, f6, f7,

f8], each of 25MB size, to all 8 phones respectively. However, since P1 was not part of MEC-2,

some fragments [f5, f6, f7, f8] waited for a link to establish between the two edges. At time T2,

a new phone P9 was introduced which toggled WiFi connectivity between two edges and each

26

time stayed connected for approximately 1 minute. The purpose of P9 was to act as a data mule

between two edges and transfer file fragments from MEC-1 to MEC-2. For first few WiFi toggles,

no fragments were transferred to MEC-2. This is due to the fact that, RSock requires a minimum

amount of time to learn about the networks and the connectivity pattern. Starting at third WiFi

toggle, RSock could successfully transfer the fragments from MEC-1 to MEC-2 and any device in

MEC-2 could retrieve the entire file. We repeated the experiment 5 times and the average fragment

transfer time was approximately 6 minutes for f5, 8 minutes for f6, and 10 minutes for f7, f8.

27

4. R-DRIVE IMPLEMENTATION

We implemented R-Drive as an app for Android mobile devices and as a daemon process for

Linux desktops (HPC nodes). Both the Android app and the Linux service share the same code

base, except the fact that on Android we had to make R-Drive as an Android activity that runs in

the background. The R-Drive Linux service allows control over a Command Line Interface (CLI).

The Android app and Linux service are further described below.

4.1 Android App

The Android app (shown in Figure 4.1) is compatible with Android version 7.1, 8.0, 10.0.

The app runs as an Android background service aiming for hands-free use; users such as first

responders and military personnel can minimize the application and R-Drive services can still

remain operational. Users have the option to set event notifications so that they can be notified for

various task completions.

Figure 4.1: R-Drive Android Application

The implementation of R-Drive has approximately 10,000 lines of Java code. R-Drive home

page shows the current directory name and the files and folders in the current directory. Long

28

pressing on each item will open a floating menu that allows a user to either open or delete the

file/folder. A user can press the add floating button in home page to either select a file from the

local storage or take an image using camera and store in R-Drive. On the top left, the hamburger

icon opens a navigation drawer where users can find options to change application setting, monitor

device local directory, browse neighboring edge directory and to open RShare messaging app.

4.2 Linux Service and CLI

R-Drive provides command line interface (CLI) for Linux desktop users, to perform storage

operations on remote devices if the device operators allow permissions. All commands are sent

from the CLI to mobile devices via RSock. R-Drive commands are interpreted by the Command

Handler. R-Drive commands are similar to Hadoop hdfs commands such as -put, -get, -mkdir, -ls,

-rm [47]. Command Handler consists of a hand-written lexer and parser. Lexer takes an input

command as text stream, converts into a series of tokens and parser converts the tokens into a

parse-tree. The parse-tree enables Command Handler to identify the type of command. Below is

the grammar R-Drive uses for file system commands.

COMMAND::= 'dfs' OPTION ARGUMENT

OPTION::= -put | -get | -mkdir | -ls | -rm | -setfacl | -getfacl

ARGUMENT::= PATH | PERMISSION | PATH PERMISSION

PATH::= <local_path> | <rdrive_path> | <local_path> <rdrive_path>

PERMISSION::= 'OWNER' | 'WORLD' | USERS

USERS::= GUID | USERS GUID

GUID::= <40 bytes ASCII printable characters>

Here local_path means the local absolute path of a file in local file system. rdrive_path means

either a file or a directory path in R-Drive file system. GUID is a unique 40 bytes long string

comprising both characters and numbers.

29

4.3 R-Drive Components Implementation

In this section we present how the core components of R-Drive as shown in Figure 3.1 are

implemented.

R-Drive interacts with RSock and EdgeKeeper through Java client packages abstracting the

APIs for the two services. Internally, the Java client packages employ TCP sockets.

The File Handler module (shown in Figure 3.1) exposes the R-Drive Java API and also han-

dles buttons from the Android app. The module uses the javax.crypto package for the 256 bit

AES encryption, as the Cipher. For Shamir’s Secret Sharing algorithm, R-Drive employs se-

cretsharejava [48], an open source library implementing the LaGrange Interpolating Polynomial

Scheme [49]. The File Handler module also employs a Reed-Solomon erasure coding library,

BackBlaze [50], an open source implementation available for both academic and commercial use.

For executing the Adaptive Code Rate algorithm, the File Handler obtains from EdgeKeeper

edge topology information: which nodes are available, their available storage (Sk in Equation 3.1)

and their available battery levels (Tk in Equation 3.1). Based on the the topology information,

the File Handler computes the individual availability scores, the optimal code rate n/k and most

suitable n devices, as presented in Section 3.

Once the decision on which n nodes will store the fragments, EdgeKeeper is updated with file

meta-data information and the fragments are distributed using RSock to the corresponding nodes.

30

5. R-DRIVE PERFORMANCE EVALUATION

We employed two systems for R-Drive benchmarking: 1) NIST Public Safety Communications

Research (PSCR) deployable system, equipped with LTE (Star Solutions COMPAC-N) and Wi-Fi

(Ubiquiti EdgerouterX) networks. The system can be powered by a portable generator and can be

rapidly deployed to a disaster zone on a pickup truck. For 10MHz downlink and uplink channels,

the observed LTE data rates are about 95 and 20Mbps respectively. 2) DistressNet-NG manpack

system, which can be carried in a backpack of a first responder. It also consists of both LTE

(BaiCells Nova 227 eNB) and Wi-Fi (Unify 802.11AC Mesh) networks, and Intel Next Unit of

Computing Kit (NUC) as application server. For 20MHz downlink and uplink channels, the LTE

can provide a maximum data rate of 110 and 20Mbps respectively [51]. All the components are

directly powered by inboard batteries inside the manpack. For both systems, the Wi-Fi are capable

of providing around 100Mbps data transfer rate. We used a total of 15 Essential PH-1, Samsung

S8 and Sonim XP8 devices with Android versions 7.1, 8.0 and 10.0.

5.1 Adaptive Erasure Coding Evaluation

In this section, we provide an in-depth analysis of how wa parameter impacts the choice (k, n)

values, hence also the code-rate and F ′(file size after erasure coding). We also analyze the choice of

code-rate and it’s impact on the cost function. We performed experiments on variable network sizes

(10, 20, 30), for a file size F of 500MB, and expected file availability time T of 300 minutes. The

storage Si and expected battery remaining times Ti for nodes were generated using pseudo-random

value generator with mean-variance of (100, 20) and (300, 80) respectively. The experiments were

conducted for 30 runs before results were averaged.

5.1.1 Achieved cost for variable wa

Table 5.1 shows the average achieved cost for variable wa and network size. For almost all wa,

the average achieved cost leans more towards the optimal cost with larger network size. This is

due to the fact that, with larger network size the cost function is computed over more combinations

31

of (n, k) values, hence the algorithm achieves cost value closer to optimal value.

wa Lower Achieved Cost
Bound NS=30 NS=20 NS=10

1.0 0.00 0.2402 0.3613 0.66
0.9 0.6 0.6 0.6048 0.6782
0.8 0.8 0.8 0.8121 0.8360
0.7 0.9165 0.9165 0.9166 0.9183
0.6 0.9797 0.9797 0.9799 0.9807
0.5 1.0 1.0 1.0 1.0

Table 5.1: Achieved cost for variable wa and Network Size (NS)

5.1.2 Impact of wa and Network Size on Code Rate and F ′

Figure 5.1a illustrates that with increased wa, the code rate decreases. This is expected, since

the algorithm takes wa as an input for the weight of availability. If wa is higher, the algorithm

chooses a larger n in an attempt to provide more data redundancy, hence the code rate decreases.

For network size 10, the chosen code rate is much higher compared to network size of 20 and 30.

This is due to the fact that, for smaller networks size, several runs could not produce a solution due

to not having nodes with enough storage and/or remaining battery time. Figure 5.1b shows the F ′

as a function of wa. F ′ increases exponentially with higher wa. Again, since chosen code rate is

higher for network size 10, F ′ is higher compared to network size 20 and 30.

Figure 5.2 shows the averages of chosen n and k values for variable network size over 30

iterations. As discussed earlier, for higher wa, the algorithm chooses larger n value to provide data

redundancy. The cost function aims to reach towards the minimum cost, regardless of the choice of

(n, k) values. In Figure 5.2c, for wa 0.8, the chosen (n, k) values are lower than the values selected

for 0.7. This is because for wa of 0.8, the optimal cost code rate is 0.5, and the algorithm produced

resultant (n, k) values of (10,5), (12,6), (14,7) over 30 runs that averaged to (13.07, 6.53).

32

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
o

d
e
 R

a
te

 (
k
/n

)

wa

NS=10
NS=20
NS=30

(a)

 400

 800

 1200

 1600

 2000

 0 0.2 0.4 0.6 0.8 1

F
’

w
a

NS=10

NS=20

NS=30

(b)
Figure 5.1: Effect of wa on: a) code Rate (k/n); and b) file size F ′, for different network sizes,
NS=10, 20 and 30

5.1.3 Impact of wa and Network Size on selected storage and battery remaining time

Figure 5.3 shows the average storage capacity and battery remaining time of the selected nodes.

Figures 5.3a and 5.3b illustrate the fact that, on average the algorithm chooses nodes with at least

minimum required storage capacity, but higher battery remaining time. This is due to the fact that,

on the occasion of two different solutions having same cost, the algorithm has provision to choose

the nodes with higher device availability, as mentioned in equation 3.7.

33

 5

 6

 7

 8

 9

 10

0.5 0.6 0.7 0.8 0.9 1.0

k
,

n

wa

k
n

(a)

 4

 6

 8

 10

 12

 14

 16

 18

 20

0.5 0.6 0.7 0.8 0.9 1.0

k
,

n

wa

k
n

(b)

 5

 10

 15

 20

 25

 30

0.5 0.6 0.7 0.8 0.9 1.0

k
,

n

wa

k
n

(c)
Figure 5.2: Average (k, n) for different network sizes NS: a) 10; b) 20; and c) 30

34

 90

 100

 110

 120

 130

0.5 0.6 0.7 0.8 0.9 1.0

S
to

ra
g

e
S

iz
e

[M
B

]

wa

NS=10
NS=20

NS=30

(a)

 280

 300

 320

 340

 360

 380

 400

0.5 0.6 0.7 0.8 0.9 1.0

R
em

ai
n

in
g

 B
at

te
ry

 [
V

]

wa

NS: 10
NS: 20

NS: 30

(b)

Figure 5.3: Impact on wa on: a) storage size; and b) battery remaining time, for different network
sizes NS=10, 20, 30

5.2 Directory Service Resilience

We measured resilience of R-Drive Directory Service based on how fast Directory Service

becomes operational after failure event takes place. Directory Service becomes inoperational when

EdgeKeeper ensemble is broken. Ensemble can break due to several reasons such as configuration

changes, device or network failures etc. EdgeKeeper initiates to reform a new ensemble with

available devices as soon as it detects that previous one is broken. We performed experiments with

EdgeKeeper replica configurations of 3, 5, and 7 to measure average latency of edge reformation

delay by introducing changes in a stable ensemble. The experiment was conducted at NIST testbed

35

with Samsung S8 phones and LTE networking backbone. Each bar in Figure 5.4 shows average

delay of reforming an edge after an event takes place. For each x-axis ticks, the equation describes

the event. The term inside parentheses on the left side of the equation represents an initial condition

and the remaining terms represents the changes that have been introduced. The right side of the

equation represents the final stable condition. As example, (3R)+2C-1R=3R+1C denotes that, in

an stable ensemble of 3 devices, we simultaneously added 2 new devices and took out 1 replica

device, and measured how long it took to reform the ensemble with 3 devices. When an ensemble

is stable, only adding new devices takes very small amount of time, as the new devices only join

as clients and no reformation takes place. Note that, regardless of some replica device leaving

and new devices joining as replicas, R-Drive metadata are replicated into new replica devices to

provide maximum fault tolerance.

 0

 10

 20

 30

 40

 50

 60

 70

(0
R
)+

2C
=2R

(2
R
)+

1C
=3R

(3
R
)+

2C
=3R

+2C

(3
R
)+

2C
-1

R
=3R

+1C

(3
R
)+

2C
-2

R
=3R

(0
R
)+

3C
=3R

(0
R
)+

5C
=5R

(5
R
)+

2C
=5R

+2C

(5
R
)+

2C
-2

R
=5R

(5
R
)+

2C
-3

R
=4R

(0
R
)+

7C
=7R

(4
R
)+

1C
=5R

(7
R
)+

2C
=7R

+2C

(7
R
)+

2C
-2

R
=7R

(7
R
)+

2C
-3

R
=6R

E
d

g
e

F
o

rm
at

io
n

 L
at

en
cy

 [
se

c]

Replica Setting

3 Replica 5 Replica 7 Replica

Figure 5.4: Edge formation latency for variable EdgeKeeper replica settings. Here R and C denote
for replica and client respectively

36

5.3 Data Resilience

We evaluate data resilience of R-Drive system as file retrieval success rate as a function of

device availability. We controlled device availability by assigning a probability value for each

device. Devices mimicked unavailability simply by not replying to the fragment requests from

other devices. As example, if a device availability value is set to 0.5, it randomly replied to only

50% of all fragment requests it received. The experiment was conducted in a purely connected Wi-

Fi network to ensure that network connectivity had no effect on the experiment, and only device

availability had effect on the experiment. We first stored a total of 10 files, each of size 10MB, at 10

different devices [P1, P2, P3, P4, P5, P6, P7, P8, P9, P10] with (n, k) values of (10, 5). Then using

a different phone p11, we tried to retrieve the files. As shows in Figure 5.5, the retrieval success

rate gradually increases along with device availability. Especially, when device availability value

exceeds the code rate (in this case 0.5), the file retrieval success rate increases rapidly, which can

be observed for availability value 0.8. Note that, the file retrieval success rate is 100% for device

availability 1.0 in a purely connected network.

 0

 20

 40

 60

 80

 100

0.2 0.4 0.6 0.8 1.0

F
il

e
R

et
ri

ev
al

 S
u

cc
es

s
R

at
e

Device Availability

3 Replica

5 Replica

3 Replica

5 Replica

3 Replica

Figure 5.5: R-Drive file retrieval success rate as a function of device availability

37

 11

 12

 13

 14

 15

 16

1 2 4 8 10 12 15

R
ea

d
 L

at
en

cy
 [

m
se

c]

Metadata Size [KB]

Number of Replicas
1 3 5 7 9

(a)

 16

 18

 20

 22

 24

 26

 28

1 2 4 8 10 12 15

W
ri

te
 L

at
en

cy
 [

m
se

c]

Metadata Size [KB]

Number of Replicas
1 3 5 7 9

(b)
Figure 5.6: Metadata read (a) and write (b) latencies as a function of metadata size, for link avail-
ability 1.0

38

5.4 Directory Service Latency

As mentioned earlier, EdgeKeeper stores R-Drive metadata in ZooKeeper for resilient storage.

Hence, for different replica configurations and metadata sizes, metadata read/write performances

can vary significantly. Figure 5.6a and 5.6b show the average metadata read and write latencies,

respectively for variable metadata sizes and number of EdgeKeeper servers. Each result represents

the average latency of 1,000 read or write operations using maximum of 9 Android devices in a

purely connected network including both Wi-Fi and LTE. All 9 devices, regardless of acting as a

server, performed read or write operations simultaneously. Figure 5.6a shows that for each meta-

data size group, as the number of EdgeKeeper servers increases more than 1, metadata retrieval

latency drops. This is due to the fact that, more servers can perform better load balancing, resulting

in overall lower retrieval latency. Variable metadata sizes have very little effect on retrieval latency.

As the range of metadata size is very small, usually within 1 to 15KB, the average cost to fetch

most metadata is almost the same. Figure 5.6b also shows that, as number of servers increases

more than 1, write latency increases significantly. This is due to the fact that, having more than

1 server brings additional cost to check for quorum among servers before the data is committed.

For both read and write, adding more servers does provide additional fault tolerance, but does not

minimize latency significantly.

5.5 Data Throughput

Figures 5.7 and 5.8 show the average data read and write throughput for variable code rates,

block sizes and link availability. The experiments were conducted with DistressNet-NG testbed,

with a maximum of 9 Android devices with Wi-Fi and LTE connectivity. Each phone stored and re-

trieved 3GB of data simultaneously, comprising of file sizes ranging between 10 to 200MB. Write

time was measured as the time it took for processing all fragments and distributing them to desti-

nation devices. Read time was measured as the time it took for all fragments to be retrieved and

constructed as original file. We calculated throughput by dividing the data size with the time it took

for distribution or retrieval. We controlled the link availability using another android application

39

that can turn on/off networking based on a presetting probability. The experiment was conducted

in a purely connected network (link availability 1.0), as well as loosely connected network (link

availability 0.5). As figures suggest, read/write throughput is higher in a purely connected network

compared to loosely connected network. Also, increasing block size increases throughput for both

read and write. This is due to the fact that, higher block size ensures lower block count, resulting

in lower number of total fragments that requires distribution or retrieval over the network. More-

over, for most block size groups, throughput slightly drops with lower code rates. This is due to

the fact that, lower code rate comes with higher n and k values, resulting in more fragments to be

distributed or retrieved respectively.

We compared data read/write throughput of R-Drive with MDFS [33], which resembles the

closest with R-Drive in terms of design paradigm. For 2MB files and (n, k) parameters as (7, 3),

MDFS provided 2.3MB/sec and 2.0MB/sec of read and write throughput respectively, whereas

R-Drive provides 11.5 and 6.5 MB/sec for read and write respectively. We dug into MDFS im-

plementation and found major design and implementation flaws that are primarily responsible for

such low performance. MDFS employs a topology discovery mechanism which is triggered before

every file creation and retrieval operations. Any data communication takes place via individual

TCP session that requires time to initiate.

5.6 Data Sharing with Opportunistic Network

5.6.1 Data Sharing with Opportunistic Network

Figure 5.9 shows the average data sharing delay over variable link availability over Wi-Fi.

We set up a topology of 10 devices connected to the same Wi-Fi network. Each device shared

a file of 10MB to every other phones. Hence each device stored a total of 90MB of data in R-

Drive , and all devices stored a total of 900MB data in R-Drive . We controlled the Wi-Fi link

availability as (0.2, 0.4, 0.6, 0.8, 1.0) of devices using a synthetic application that periodically

turned Wi-Fi links on/off based on previously set probabilities. As example, if the link failure

probability is 0.8, the device will be randomly connected to Wi-Fi for 20% of the experiment

40

 6

 7

 8

 9

 10

 11

1 2 4 8 16 32 64 80

R
ea

d
 T

h
ro

u
g

h
p

u
t

[M
B

/s
ec

]

Block Size [KB]

Code Rate (k/n)
1/1
2/3

3/5
5/7

7/9

(a)

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 16 32 64 80

W
ri

te
 T

h
ro

u
g

h
p

u
t

[M
B

/s
ec

]

Block Size [KB]

Code Rate (k/n)
1/1
2/3

3/5
5/7

7/9

(b)

Figure 5.7: Data read and write throughput as a function of block size, for 0.5 link availability

time. During sending data, if a link was turned off, RSock running in sender device caches the

data until the Wi-Fi connectivity is reestablished. We compared R-Drive data sharing against pure

implementation of TCP in Android devices. We used SocketChannel class in java.nio.channels

package to implement a TCP client-server application for Android. The implementation ensured

that when sender side detected connection termination, it immediately tried to reconnect to receiver

41

 10

 12

 14

 16

 18

1 2 4 8 16 32 64 80

R
ea

d
 T

h
ro

u
g

h
p

u
t

[M
B

/s
ec

]

Block Size [KB]

Code Rate (k/n)
1/1
2/3

3/5
5/7

7/9

(a)

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16 32 64 80

W
ri

te
 T

h
ro

u
g

h
p

u
t

[M
B

/s
ec

]

Block Size [KB]

Code Rate (k/n)
1/1
2/3

3/5
5/7

7/9

(b)

Figure 5.8: Data read and write throughput as a function of block size, for 1.0 link availability

42

 0

 5

 10

 15

 20

 25

0.2 0.4 0.6 0.8 1.0

D
at

a
S

h
ar

in
g
 D

el
ay

 [
m

in
]

Link Availability

RSock TCP

Figure 5.9: R-Drive Data sharing delay for total of 900MB data over RSock for variable link
availability

indefinitely to finish sending remaining data. The experiment shows that compared to TCP, RSock

data sharing delay is quite significant with high upper error when link availability is low. This is

due to the fact that, RSock network topology learning time increases dramatically for highly sparse

network connectivity. However, for higher link availability, RSock data sharing delay reduces

significantly.

5.7 R-Drive Overhead

5.7.1 Memory Footprint

We traced real-time memory footprint for R-Drive using Android Profiler [52] during file stor-

age and retrieval process. The purpose behind memory tracing is to identify memory leak in

R-Drive Android application due to repeated memory allocation and deallocation. R-Drive is a

write-heavy storage system, so it is important to observe whether the R-Drive application causes

memory leak over extended runtime. For this experiment, we used a 20MB file and 1MB block

size with (k, n) values of (10,20). Table 5.2 shows the average heap object allocation and deallo-

cation during file creation and file retrieval for variable iterations. The number of dangling objects

43

starts to increase over time as number of file creation/retrieval increases.

Count File Creation File Retrieval
Alloc Dealloc Alloc Dealloc

10 4,381 4,381 2,526 2,526
100 43,885 43,876 25,298 25,288

1,000 438,911 438,884 253,012 252,996

Table 5.2: Number of allocated and de-allocated objects for different numbers of file creation and
retrieval

5.7.2 Energy Consumption

Table 5.3 shows R-Drive application average energy consumption for continuous workload in

different Android devices.

Device Runtime Consumed Dist-NG
h:min % mAh Wh Wh

[1] 3:30 12.5 377.4 1.5 3.5
[2] 3:05 11.9 323.5 1.2 3.2
[3] 3:15 12.6 381.8 1.5 3.8

Table 5.3: R-Drive energy consumption for different Android devices: Samsung S8 [1]; Goole
Pixel 2 [2]; and Essential PH1 [3]

For this experiment, we started with 100% energy in each phone, ran DistressNet-NG applica-

tion suit until the phones turned off due to battery exhaustion. We used Battery Historian [53] to

pull Android battery usage data from Android devices after each experiment run. In each device,

we ran EdgeKeeper, RSock and R-Drive along with a fourth client application that continuously

performed random file creation and retrieval in R-Drive system. We deduce that, if similar de-

vices are used in field, first responders may need to switch the device battery after approximately

3.5 hours. However, with newer Android devices with higher battery capacity, the runtime may

increase.

44

5.7.3 Processing Overhead

We measured processing time for components responsible for encryption key generation, data

encryption and data erasure coding, as shown in Table 5.4. We conducted experiments for variable

block sizes such as 1MB, 2MB, 4MB, 8MB, 16MB, 32MB, 64MB, 80MB and presented the per-

centage of average delay for each component. We observed that, data encryption takes the majority

amount of processing time. For future implementation we plan to minimize data encryption delay

by incorporating more robust library.

Shamir AES Reed-Solomon
Read 5% 87% 8%
Write 3% 84% 13%

Table 5.4: Processing overhead as percentage of the total delay that different components are
responsible for

5.7.4 Algorithm Execution Time

Table 5.5 shows the average algorithm execution time in milliseconds on a Samsung S8 An-

droid device. The average is taken over 1000 iterations for each network size.

Device NS=30 NS=20 NS=10
Samsung S8 101.6msec 15.3msec 0.5msec

Table 5.5: Execution time of the Adaptive Coding algorithm in Samsung S8 for different network
sizes (NS)

As shown, the execution time of the algorithm is rather negligible.

45

6. CONCLUSIONS AND FUTURE WORK

We have developed a device and network failure resilient data storage and sharing framework

for disconnection oriented mobile edge that can operate in a wide variety of network connectivity.

We presented the design of R-Drive, with detailed explanation of how R-Drive resiliently store

and share data leveraging edge devices in an environment where network connectivity constantly

fluctuates. We presented and evaluated the implementation for various parameters such as device

availability, network availability, block sizes, code rates etc. For future work, we want to inves-

tigate how to reduce data encryption delay using more robust library. We also plan to investigate

how to transfer fragments from one vulnerable device to a safe one over opportunistic network

before device failure takes place and data becomes lost/unavailable.

46

REFERENCES

[1] G. Otto, “DHS sees wearables as the future for first responders.” https://www.

fedscoop.com/dhs-wearables-first-responders/, 2014. 2021-10-25.

[2] E. Ahmed and M. H. Rehmani, “Mobile edge computing: opportunities, solutions, and chal-

lenges,” Future Generation Computer Systems, vol. 70, 2017.

[3] G. Premsankar, M. Di Francesco, and T. Taleb, “Edge computing for the internet of things:

A case study,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1275–1284, 2018.

[4] X. Sun and N. Ansari, “EdgeIoT: Mobile edge computing for the internet of things,” IEEE

Communications Magazine, vol. 54, no. 12, pp. 22–29, 2016.

[5] R. Namburu, “Advances in computing at the edge for military applications (conference pre-

sentation),” in Disruptive Technologies in Information Sciences IV, vol. 11419, p. 114190A,

International Society for Optics and Photonics, 2020.

[6] N. K. Ray and A. K. Turuk, “A framework for post-disaster communication using wireless

ad hoc networks,” Integration, vol. 58, pp. 274–285, 2017.

[7] R. Olaniyan, O. Fadahunsi, M. Maheswaran, and M. F. Zhani, “Opportunistic edge comput-

ing: Concepts, opportunities and research challenges,” Future Generation Computer Systems,

vol. 89, pp. 633–645, 2018.

[8] Y. Cui, J. Song, K. Ren, M. Li, Z. Li, Q. Ren, and Y. Zhang, “Software defined cooperative

offloading for mobile cloudlets,” IEEE/ACM Transactions on Networking, vol. 25, no. 3,

pp. 1746–1760, 2017.

[9] Z. Lu, X. Sun, and T. La Porta, “Cooperative data offload in opportunistic networks: From

mobile devices to infrastructure,” IEEE/ACM Transactions on Networking, vol. 25, no. 6,

pp. 3382–3395, 2017.

47

https://www.fedscoop.com/dhs-wearables-first-responders/
https://www.fedscoop.com/dhs-wearables-first-responders/

[10] A. Boukerche and R. W. Coutinho, “Smart disaster detection and response system for smart

cities,” in 2018 IEEE Symposium on Computers and Communications (ISCC), pp. 1102–

1107, IEEE, 2018.

[11] H. Chenji Jayanth, A Fog Computing Architecture for Disaster Response Networks. PhD

thesis, Texas A&M University, 2014. https://oaktrust.library.tamu.edu/

handle/1969.1/152563.

[12] D. Reina, M. Askalani, S. Toral, F. Barrero, E. Asimakopoulou, and N. Bessis, “A survey

on multihop ad hoc networks for disaster response scenarios,” International Journal of Dis-

tributed Sensor Networks, vol. 11, no. 10, p. 647037, 2015.

[13] F. Calabrese, L. Ferrari, and V. D. Blondel, “Urban sensing using mobile phone network data:

a survey of research,” ACM Computing Surveys (csur), vol. 47, no. 2, pp. 1–20, 2014.

[14] A. Rahman, E. Hassanain, and M. S. Hossain, “Towards a secure mobile edge computing

framework for hajj,” IEEE Access, vol. 5, pp. 11768–11781, 2017.

[15] “Dropbox.” https://www.dropbox.com/?landing=dbv2. 2021-10-25.

[16] “Google drive.” https://www.google.com/drive/. 2021-10-25.

[17] “Microsoft OneDrive.” https://www.microsoft.com/en-us/microsoft-365/

onedrive/misc-cloud-storage. 2021-10-25.

[18] M. Chao and R. Stoleru, “R-MStorm: A resilient mobile stream processing system for dy-

namic edge networks,” in 2020 IEEE International Conference on Fog Computing (ICFC),

pp. 64–72, IEEE, 2020.

[19] “ArcGIS Survey123.” https://survey123.arcgis.com/. 2021-10-25.

[20] CivTak, “Civtak/atak.” https://www.civtak.org/. 2021-10-25.

[21] S. Bhunia and R. Stoleru, “EdgeKeeper: Resilient and lightweight coordination for mo-

bile edge computing systems.” https://github.com/msagor/EdgeKeeper, 2021.

2021-10-25.

48

https://oaktrust.library.tamu.edu/handle/1969.1/152563
https://oaktrust.library.tamu.edu/handle/1969.1/152563
https://www.dropbox.com/?landing=dbv2
https://www.google.com/drive/
https://www.microsoft.com/en-us/microsoft-365/onedrive/misc-cloud-storage
https://www.microsoft.com/en-us/microsoft-365/onedrive/misc-cloud-storage
https://survey123.arcgis.com/
https://www.civtak.org/
https://github.com/msagor/EdgeKeeper

[22] A. Sharma, X. Tie, H. Uppal, A. Venkataramani, D. Westbrook, and A. Yadav, “A global

name service for a highly mobile internetwork,” ACM SIGCOMM Computer Communication

Review, vol. 44, no. 4, pp. 247–258, 2014.

[23] A. Altaweel and R. Stoleru, “Rsock: A resilient routing protocol for mobile fog/edge net-

works.” https://github.com/msagor/RSock, 2021. 2021-10-25.

[24] C. Yang and R. Stoleru, “Hybrid routing in wireless networks with diverse connectivity,” in

Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and

Computing, pp. 71–80, 2016.

[25] J. J. Kistler and M. Satyanarayanan, “Disconnected operation in the coda file system,” ACM

Transactions on Computer Systems (TOCS), vol. 10, no. 1, pp. 3–25, 1992.

[26] N. R. Paiker, J. Shan, C. Borcea, N. Gehani, R. Curtmola, and X. Ding, “Design and imple-

mentation of an overlay file system for cloud-assisted mobile apps,” IEEE Transactions on

Cloud Computing, vol. 8, no. 1, pp. 97–111, 2017.

[27] D. Scotece, N. R. Paiker, L. Foschini, P. Bellavista, X. Ding, and C. Borcea, “Mefs: Mobile

edge file system for edge-assisted mobile apps,” in 2019 IEEE 20th International Symposium

on" A World of Wireless, Mobile and Multimedia Networks"(WoWMoM), pp. 1–9, IEEE,

2019.

[28] D. Dwyer and V. Bharghavan, “A mobility-aware file system for partially connected opera-

tion,” ACM SIGOPS Operating Systems Review, vol. 31, no. 1, pp. 24–30, 1997.

[29] A. Pamboris, P. Andreou, I. Polycarpou, and G. Samaras, “Fogfs: A fog file system for hyper-

responsive mobile applications,” in 2019 16th IEEE Annual Consumer Communications &

Networking Conference (CCNC), pp. 1–6, IEEE, 2019.

[30] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Distributed File System,”

in 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), pp. 1–10,

IEEE, 2010.

49

https://github.com/msagor/RSock

[31] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” in Proceedings of the

nineteenth ACM symposium on Operating systems principles, pp. 29–43, 2003.

[32] E. E. Marinelli, “Hyrax: Cloud computing on mobile devices using mapreduce,” tech. rep.,

Carnegie-Mellon University Pittsburgh PA School of Computer Science, 2009.

[33] C. Chen, M. Won, R. Stoleru, and G. G. Xie, “Energy-efficient fault-tolerant data storage and

processing in mobile cloud,” IEEE Trans. Cloud Computing, vol. 3, no. 1, pp. 28–41, 2015.

[34] “Google files.” https://files.google.com/. 2021-10-25.

[35] “Shareit.” https://play.google.com/store/apps/anyshare. 2021-10-25.

[36] Z. Zhang, A. Wang, K. Zheng, G. U. Maheswara, and B. Vinayakumar, “Introduction to

HDFS erasure coding in apache hadoop,” Cloudera Engineering Blog, 2015.

[37] R. Zhu, D. Niu, and Z. Li, “Online code rate adaptation in cloud storage systems with multi-

ple erasure codes,” tech. rep., University of Alberta Department of Electrical and Computer

Engineering, 2016.

[38] M. Xia, M. Saxena, M. Blaum, and D. A. Pease, “A tale of two erasure codes in HDFS,” in

13th USENIX Conference on File and Storage Technologies (FAST), pp. 213–226, 2015.

[39] M. Zhang, Y. Bai, S. Yuan, N. Tian, and J. Wang, “Design and implementation of file multi-

cloud storage system based on android,” in 2020 IEEE 11th International Conference on

Software Engineering and Service Science (ICSESS), pp. 212–215, IEEE, 2020.

[40] Y. Shu, M. Dong, K. Ota, J. Wu, and S. Liao, “Binary reed-solomon coding based distributed

storage scheme in information-centric fog networks,” in 2018 IEEE 23rd International Work-

shop on Computer Aided Modeling and Design of Communication Links and Networks (CA-

MAD), pp. 1–5, IEEE, 2018.

[41] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal of the

society for industrial and applied mathematics, vol. 8, no. 2, pp. 300–304, 1960.

50

https://files.google.com/
https://play.google.com/store/apps/anyshare

[42] R. Housley, “Public key infrastructure certificate and certificate revocation list (crl) profile,”

RFC 3280-Internet X. 509, 2002.

[43] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, W. T. Polk, et al., “Internet x.

509 public key infrastructure certificate and certificate revocation list (crl) profile.,” RFC,

vol. 5280, pp. 1–151, 2008.

[44] “Google backup and sync.” https://support.google.com/drive/answer/

2374987. 2021-10-25.

[45] “ZooKeeper programmer’s guide.” https://zookeeper.apache.org/doc/r3.4.

6/zookeeperProgrammers.html, 2013. 2021-10-25.

[46] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11, pp. 612–

613, 1979.

[47] “Hadoop hdfs commands.” https://hadoop.apache.org/docs/current/

hadoop-project-dist/hadoop-hdfs/HDFSCommands.html#dfs. 2021-10-

25.

[48] “secretsharejava.” https://sourceforge.net/projects/secretsharejava/.

2021-10-25.

[49] B. Schneier, Applied cryptography: protocols, algorithms, and source code in C. john wiley

& sons, 2007.

[50] B. Beach, “Backblaze open sources reed-solomon erasure coding source code.” https:

//www.backblaze.com/blog/reed-solomon/, 2015.

[51] “Baicells nova 227 enb.” https://www.doubleradius.com/

baicells-nova-227-outdoor-tdd-enb-basestation. 2021-10-25.

[52] M. Jordan, “Android profiler,” in https://developer.android.com/studio/

profile/android-profiler, 2022. Accessed Oct. 25, 2021 [Online].

51

https://support.google.com/drive/answer/2374987
https://support.google.com/drive/answer/2374987
https://zookeeper.apache.org/doc/r3.4.6/zookeeperProgrammers.html
https://zookeeper.apache.org/doc/r3.4.6/zookeeperProgrammers.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HDFSCommands.html#dfs
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HDFSCommands.html#dfs
https://sourceforge.net/projects/secretsharejava/
https://www.backblaze.com/blog/reed-solomon/
https://www.backblaze.com/blog/reed-solomon/
https://www.doubleradius.com/baicells-nova-227-outdoor-tdd-enb-basestation
https://www.doubleradius.com/baicells-nova-227-outdoor-tdd-enb-basestation
https://developer.android.com/studio/profile/android-profiler
https://developer.android.com/studio/profile/android-profiler

[53] “Battery historian.” https://developer.android.com/topic/performance/

power/setup-battery-historian. 2021-10-25.

52

https://developer.android.com/topic/performance/power/setup-battery-historian
https://developer.android.com/topic/performance/power/setup-battery-historian

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	BACKGROUND AND STATE OF THE ART
	Mobile Edge Computing for Disaster Response and Tactical Environments
	Motivation and State of the Art

	R-DRIVE SYSTEM
	R-Drive System Overview
	System Components
	R-Drive Authentication
	Explicit Storage in R-Drive
	Implicit Storage for R-Drive
	Data sharing in R-Drive

	Directory Service
	Access Control Management

	R-Drive Data Storage
	R-Drive Data Encryption
	Resilient Storage through Erasure Coding
	Adaptive Code Rate
	Cost Function Lower Bound

	R-Drive Data Retrieval
	Choice of Replica Devices for Data Retrieval

	R-Drive Data Deletion
	Inter-Edge Data Exchange
	R-Drive Consistency Model
	R-Drive Sample Execution

	R-DRIVE IMPLEMENTATION
	Android App
	Linux Service and CLI
	R-Drive Components Implementation

	R-DRIVE PERFORMANCE EVALUATION
	Adaptive Erasure Coding Evaluation
	Achieved cost for variable Tensor
	Impact of Tensor and Network Size on Code Rate and Tensor
	Impact of Tensor and Network Size on selected storage and battery remaining time

	Directory Service Resilience
	Data Resilience
	Directory Service Latency
	Data Throughput
	Data Sharing with Opportunistic Network
	Data Sharing with Opportunistic Network

	R-Drive Overhead
	Memory Footprint
	Energy Consumption
	Processing Overhead
	Algorithm Execution Time

	CONCLUSIONS AND FUTURE WORK
	REFERENCES

