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ABSTRACT

This thesis investigates a novel state-constrained control technique, namely ‘Barrier Avoidance

Control’, that can be applied to a high-order system to address state barriers of complex shape,

and then applies this control method to a downhole drilling system to avoid drilling at undesired

operating conditions.

Drilling is one of the most critical processes in the exploration and production of shale oil &

gas, enhanced geothermal energy, and minerals. Control of the drilling process is challenging due

to the underactuated feature of a long drill string, large uncertainty in the downhole environments,

and the nonlinear and nonsmooth nature of the bit-rock interaction that can cause severe vibrations.

These harmful vibrations, such as stick-slip and bit bouncing, will be largely exacerbated if not

properly controlled, since the oscillation will be transported by the wave propagation and reflection

along the drill string. In addition, the tendencies of using directional/horizontal wells with deeper

and more complex drilling environments further complicate the drilling control. The coupling of

vibration modes in the directional/horizontal drilling can make certain regions in the state space,

which correspond to particular working conditions, undesirable in the drilling operation. Thus,

drilling process needs to avoid these undesired regimes, so as not to experience slow drilling rate,

significant vibration, safety problems, and drilling system failure. State barrier avoidance is not

only necessary for the steady state, but is also critical during control transients.

In this thesis, we will introduce the state barrier avoidance control theories to keep the sys-

tem states away from the undesired state regime in both steady state and transients. Since existing

methods on state barrier avoidance control cannot be directly applied to directional drilling applica-

tions, therefore, a novel barrier avoidance method is proposed, which can be applied to high-order

systems and address state barriers with complex shapes. This new control method is then applied to

directional drilling, whose effectiveness is demonstrated through both simulation and experimental

results.

Here, the logic flow of this thesis is organized as follows: 1) Firstly, one of the most commonly
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used state-constrained control methods, namely the integral barrier Lyapunov function based con-

trol, is applied to the drilling control. The dynamic model contains a lumped-parameter drill string

model and a bit-rock interaction governed by a delay-differential equation. A customized model

transformation is employed to enable the barrier control design. However, it is found that this

method can be applied to a system described by a lower-order model such as the vertical drilling

scenario, but it is hard to be implemented to the higher-order model that is suitable for direc-

tional drilling. 2) Because of this, we propose a novel barrier avoidance control scheme, where a

diffeomorphic transformation projects the constrained region in the original space into a radially

large region in the new space, and converts the state-constrained control problem into a noncon-

strained problem. The method can offer large flexibility in the barrier avoidance control design,

and thus is more promising to address control of a higher-order control system. 3) As the em-

pirical results of the field tests show the desired operating zone of the drilling inherently behaves

in a complex shape, the corresponding state constraint can be found in a complex barrier region.

However, none of the existing studies on barrier avoidance control investigates the complex barrier

case. Therefore, a new method is proposed to address the complex state constraints based on the

transformation-based barrier avoidance framework. The method is then applied to the directional

drilling control, and its effectiveness is evaluated through comprehensive simulation results. 4)

Finally, we validate the state-constrained drilling control in an experimental study in a hardware-

in-the-loop framework, which contains a lab-scale drill rig with a real size polycrystalline diamond

compact bit, and drill string simulation in a real-time environment. The experiment setup captures

severe vibration modes through the contact of the drill bit to the rock sample. The barrier avoidance

control is next applied to this lab-scale drill rig testbed. The testing results validate the effective-

ness and robustness of the proposed state-constrained controller, providing proof of implementing

this barrier avoidance control technique to full-scale drill rigs in the field.
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torsional velocity α̇lN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.1 Schematic of the lab-scale drill rig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2 Photograph of the lab-scale drill rig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.3 Data transmission signal flow graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.4 Hardware-in-the-loop based closed-loop control system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.5 Math node for real-time simulation in LabVIEW .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.6 Responses of numerical model and physical plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.7 Block diagram of the torsional hardware-in-the-loop control system . . . . . . . . . . . . . . . . . . 153

6.8 Geometry of the directional drill string using FEM model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.9 Bit angular velocity and torque under speed mode of the top drive with reference
speed 2 rad/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.10 Bit angular velocity and torque under standard LPV control with reference speed 2
rad/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.11 Bit angular velocity and torque under barrier avoidance control with reference
speed 2 rad/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

xiv



6.12 Angular velocities of bit, drill string midpoint, and top drive under barrier avoid-
ance control with reference speeds: 3 rad/s, 4 rad/s, 5 rad/s, and 6 rad/s. . . . . . . . . . . . . . . 163

xv



LIST OF TABLES

TABLE Page

2.1 Parameters of Drill String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Parameters of Bit-Rock Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 Parameters of Bit-Rock Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2 Parameters of Drill String FEM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.1 Parameters of Drill String FEM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

xvi



1. INTRODUCTION AND LITERATURE REVIEW

1.1 Background

Drilling is a cutting process that uses a drill bit to cut a hole of circular cross-section in solid

materials. Commonly, the use of a large-scale drilling system in the field is to extract natural

resources, such as water, oil, natural gas, mineral resources, and geothermal energy. In history,

the first oil well in record is back to AD 347 in China, and these wells were up to 800 feet deep,

where a drill bit is attached to the bamboo poles to produce salt with a byproduct of oil [2, 3].

In the following few centuries, petroleum and natural gas had been explored and extracted in

ancient China and Japan. It is until the mid-19th century that modern history began with the

refining of paraffin from crude oil by a Scottish chemist James Young [4]. In the United States, the

modern oil industry began in the year 1859 in Titusville, Pennsylvania, where the business man

Edwin L. Drake drilled the first oil well in the documented history [5]. In the 20th century, the

second industrial revolution accelerated the development of the oil and gas industry, which became

the major supplier of energy due to the invention of the automobile and the establishment of the

petrochemical industry [6].

In recent years, the exploration of natural gas, crude oil, and geothermal energy from shale for-

mations has become a quickly expanding trend in onshore domestic energy resource exploration.

The vast extraction of the new shale oil and gas reservoirs stimulates the drilling activity to a 25-

year record high [7]. The predicted turning point of oil production level by Hubert Theory [8], and

the increasing needs of crude oil and gas for energy consumption, chemical industries, fertilizers,

and plastics, have accelerated the development of down-hole extraction technologies. Because of

the unconventional geological environment and the deep formation of the shale, the shale energy

resource has not been fully investigated and explored until three decades ago. Currently, as the

revolution of the directional/horizontal drilling and hydraulic fracturing technology, the energy re-

sources at the shale formation become available. Nevertheless, due to the price-oriented market
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Figure 1.1: Historical and modern drilling rigs

and the complex down-hole environment, the challenges and uncertainties still remain in the ex-

ploration of shale energy resources. Therefore, a robust and reliable drilling operation is critical in

this field, which attracts a surge of research studies.

To better understand the problem and challenges of down-hole drilling, the schematic of a

typical drilling rig is depicted in Fig. 1.2, in which a full scale drilling system consists of the

following components:

1) Power system: To carry out the drilling work, a power system provides all the necessary power

for drawworks, mud pumps, and rotary table. Usually, the local combustion generators are

installed to generate power from diesel engines. A normal drilling rig requires 1000-3000

horsepower to maintain the drilling operation. The energy efficiency of the system can be

largely affected by the temperature and the down-hole environment.

2) Hoisting and rotary system: At the top drive, hoisting system can lift and lower the drill

pipe and casing to complete the well, through the operation of draw works, derrick, tackle &

block, and dead line anchor. The rotary system drives the pipe & bit rotation, consisting of
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swivel, kelly, rotary drive, and rotary table. The draw works and rotary drive are typically using

high-voltage AC induction motors.

3) Drill pipe and casing: Drill pipes are durable steel pipes that conduct the force to the drill

bit. Multiple sections of drill pipes are screwed together to assemble the main body of the

drill string. The outer tube is called casing that stablizes the wellbore. Casing can protect the

layers of soil and prevent all the groundwater from being contaminated by the drilling mud and

fraction fluids.

4) Bottom hole assembly and drill bit: Bottom hole assembly (BHA) is the lowest part of the

drill string that attaches the drill bit to the drill pipe. The assembly includes drill collars, sta-

bilizers, reamers, shocks, and hole-openers. The logging while drilling (LWD) / measurement

while drilling (MWD) tools for formation evaluation are usually installed as parts of BHA. The

drill bit contacts and breaks the rock formation at the bottom wellbore. Two types of the drill

bits are commonly in use: a roller cutter bit to crush the formation, and a fixed cutter bit to

scrape the formation using polycrystalline diamond cutter (PDC). The PDC bit can provide

higher rate of penetration (ROP) but is less durable than a roller cutter bit.

5) Circulating system: The mud pump will circulate the drilling mud from a mud reservior called

mud pit, to the bottom well. The drilling mud is able to lubricate and cool the drill bit and bring

the rock cuttings to the surface through the annulus between drill pipe and the wall. This mud

can also carry the MWD information to the surface through the mud pulse telemetry (MPT)

technique.

6) Well control & monitoring system: Due to the extremely high pressure of the reservior (can be

several thousand psi) and the potential danger that it can cause, the well control & monitoring

system such as blowout preventer must be installed at the top of the wellbore. If there is a

sudden pressure change in the well that pushes the formation fluid up to the surface, blowout

preventer will be closed and seal the well from blowout.
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1.2 Motivation and Current Research Trends

With the emergence of shale oil and gas and growing energy exploration in both onshore and

offshore, the drilling operation is becoming increasingly challenging. Given the needs for drilling

deeper wells in more complex downhole geological environments, accurate modeling and reliable

steering are highly demanded to increase the ROP while reducing the abnormal drilling conditions.

Due to the improper mechanical design and the inaccurate control strategy, severe vibrations can

arise and spread along the whole drill string, which will result in damage to the drilling tools,

especially on the drill bit. The replacement of the drill bit can be costly and require a full stop

of the overall operation, which largely increases the down-time. For a more complex system such

as a large scale directional/horizontal drilling setting, the conventional drilling operation relying

solely on the human driller’s experience is likely to result in drilling failure. Thus, a fully/semi

automatical drilling control with advanced control technology is highly desired in the modern

down-hole drilling system.

This motivates recent trends of drilling research on: 1) the modeling of the drill string and

bit-rock interaction, 2) the analysis of the significant downhole vibrations, 3) advanced real-time

control of the drilling system to mitigate these harmful vibrations, to keep track of the pre-defined

drilling trajectory, and to enhance the production safety.

1.2.1 Modeling of the Drilling System Dynamics

As shown schematicly in Fig. 1.2, the drilling process has several unique features that distin-

guish its dynamics from other mechanical operations.

a) Large axial-to-radius ratio of the drill string: The drill string can be over ten thousand feet

long from the ground to the bottom of the wellbore, while the diameter of the drill pipe is

usually less than 10 inches.

b) Nonlinear and nonsmooth nature of the boundary condition: The drill string can contact

with wellbore at both drill pipe and drill bit. In particular, the major nonlinearities including

bifurcations and periodic orbits will arise at the bottom end’s bit-rock interaction.
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Figure 1.2: Schematic of a vertical/directional down-hole drilling system

c) Highly underactuated dynamics: Usually the actuation of a drilling system is only provided

at the top drive. Due to the structural flexibility of the large scale drill string, the number of

actuators/inputs is less than the degree-of-freedom (DOF).

Because of these features, the reasearch studies of drilling system’s modeling mainly focus on

the following two portions: modeling of the drill string and modeling of the drill bit.

1.2.1.1 Modeling of the Drill String

In many previous studies of the drilling string’s modeling, only torsional dynamics are con-

sidered with a simplified system dynamics [9, 10, 11, 12]. In these studies, the model used for
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the dynamic motion is only dependent on the torsional state variables and assumes a constant or

averaging axial rate of penetration. As discussed in [13, 14, 15], the torsional and axial dynamics

are indeed coupled, in particular, through the bit-rock interaction from the bottom wellbore. A

thorough analysis is proposed in the same work, to precisely re-produce both axial and torsional

vibrations using the coupled dynamics. Therefore, such a coupled rate-independent model can

better describe the drilling system’s behavior.

On the other hand, the lumped parameter system is widely used for the modeling of the down-

hole drilling. The spring-mass-damper model is a classic type of model for a low order lumped

parameter system. A low-dimention model with coupled axial-torsional dynamics was firstly pro-

posed in [16, 17], and further modified into a dimensionless form in [18]. Due to the limited

bandwidth of low-order model, a high-order spring-mass-damper model can better capture differ-

ent dynamic modes in a large frequency range [19]. Furthermore, a finite-element-method (FEM)

model can create a large number of the nodes to numerically solve differential equations using

mathematical tools, providing more accurate results for a complex geometry of the drilling sys-

tem, including the directional and horizontal settings with a curved drill string [20, 21, 22, 23, 24].

With the development of the powerful computational software, the FEM approach becomes avail-

able as a high-fidelity modeling tool in both academia research and commercial use.

1.2.1.2 Modeling of the Bit-rock Interaction

Some major harmful vibration modes, such as axial/torsional stick-slip, lateral out-of-balance

whirl, and bit-bouncing, are induced by the bit-rock interaction. A well understanding of this

interaction model is critical to the modeling and controls of the down-hole drilling. In the lit-

erature, limited to only considering the torsional dynamics, a number of studies use a simplified

Coulomb friction models under empirical modifications for different operating scenarios [9, 10].

Even though these models can successfully simulate the stick-slip behavior, however, they fail to

be extended to other types of vibration modes. Also, this type of model is only suitable for the a

roller cutter bit instead of a PDC bit.

In order to capture different dynamic and vibration modes of the drilling process, a more accu-
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rate bit-rock interaction model is needed. In this effort, the blade-rock cutting model considered

both sharp and worn cutter’s conditons is first proposed by [25, 26, 27], and later experimentally

verified by [28]. The model is based on the depth-of-cut (DoC) of the drill bit blade, and can de-

scribe multiple phases of the drilling process. The delay differential equation (DDE) is introduced

to such a model by [13, 15], to precisely capture the DoC using a coupled axial-torsional dynam-

ics. The research [29, 30, 31] further expand the blade-rock cutting model to a more complex

scheme, where axial, torsional, and lateral motions are all considered. This approach can generate

axial/torsional stick-slip, lateral out-of-balance whirl, and bit-bouncing behaviors.

1.2.2 Vibration Suppression of the Drilling Process

Due to improper bit selection and intricate wellbore conditions, different types of harmful

vibrations can occur, including bit-bouncing, axial/torsional stick-slip phenomenon, and lateral

out-of-balance whirl motion. These vibrations, especially emerging at the BHA, are excited by the

bit–rock interactions, mud hydrodynamics and BHA eccentricity, and will transport throughout

the entire drill string, which can increase drilling power consumption, reduce efficiency of drilling

process, and even cause drilling failure due to fatigue. For example, severe oscillations can dam-

age the PDC bit, and the replacement of a new PDC bit requires a complete stop of the drilling

operation, which increases the time and labor cost. In most drilling systems, the actuators gener-

ating axial force and torsional torque are located at the top drive on the surface. Since the length

of drill string connecting the top drive and the BHA can be over several thousand feet that results

in relatively low effective stiffness and underactuation, the prevention of these severe oscillation

modes becomes challenging. The vibration suppresion of the drilling process can be divided into

two major categries, including passtive vibration suppression and active vibration suppression. The

passive suppression method is grouped into three approaches, i.e. bit selection and redesign, opti-

mization of the BHA, and the use of downhole tools [32], and these mechanical/structural designs

need to be implemented before the drilling operation. To ensure the safety and performance during

the drilling operation, the active suppression method, i.e., the control system design, is required.

Next, some state-of-the-art studies for the active drilling control are listed as follows.
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1.2.2.1 Linear Control Design

The linear control techniques for the drilling dynamics usually have lower computation cost

and can be directly implemented to the field tests due to their robustness. Since the bit-rock inter-

action and the drill pipe-wellbore contact are inherently nonlinear, the implemtation of the linear

controller will require one of the three oprerations: linearization of the system, cancelling of the

nonlinear term, or regarding the nonlinear term as uncertainties.

In the literature, the linear control design for a drilling sytem includes, but not limits to: Jansen

and Steen (1995) used frequency analysis to increase the resultant damping force through the

tuning of the actuation motor [33]. Serrarens et al. (1998) developed an H∞-contoller to miti-

gate torsional vibrations in a scaled experimental setup [34]. Karkoub et al. (2010) applied the

µ-synthesis method to attenuate the model uncertainty and down-hole disturbance [35]. Harris,

Açıkmese, and Oort (2014) introduced an linear matrix inequality (LMI) based approach to re-

ject the disturbance with input constaints [36]. Ke and Song (2019) proposed an equivalent input

disturbance (EID) method for the distributed parameter system derived from partial differential

equations (PDE) [37]. Nessjoen et al. (2011) implemented the PI controller by modeling the

torsional dynamics as a transmission line model [38].

1.2.2.2 Nonlinear Control Design

The nonlinear control methods for the drilling dynamics need a higher computation cost and

a more accurate modeling. For the practical point of view, due to the great complexity of the

nonlinear model, the nonlinear controller usually requires the real-time steering within a shorter

time step. With the increasing computation capability of the embedded controller for industrial

use, the nonlinear control for a more complex drilling dynamics becomes available.

In the literature, the nonlinear control design for a drilling sytem includes, but not limits to:

Navarro-López and Licéaga-Castro (2009) introduced the sliding mode control (SMC) to the tor-

sional dynamics, while addressing the non-smoothness of the bit-rock contact through the choice

of a sliding surface [10]. Ghasemi and Song (2017) extended the use of SMC to a coupled axial-
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torsional dynamics with the full state feedback [39]. Abdulgalil and Siguerdidjane (2005) applied

the backstepping approach to the drilling system for the first time [40]. A hybrid backstepping

sliding mode controller is implemented in the drilling process by Mendil, Kidouche and Dogh-

mane (2021), with the comparison of using a backstepping or sliding mode controller solely [41].

Numerical solvers are also combined with the drilling control, through the genetic algorithm based

control (Karkoub, Abdel-Magid and Balachandran 2009) [42], and dynamics programming method

(Feng, Zhang and Chen 2017) [43].

1.3 Research Objectives and Literature Survey on Barrier Avoidance Control

Many advanced control techniques has been successfully implemented to the down-hole drilling

system, as discussed in Section 1.2.2. However, these control methodologies either just fulfill the

stability in the local sense using nonlinear control/linearization techniques, or regard the nonlinear

bit-rock reaction terms as disturbances. Since the undesired vibrations’ mechanics are not captured

or modeled in these existing control approaches, the harmful oscillations can still occur during the

transients. On the other hand, the bit-rock interaction models to characterize these harmful vibra-

tions can be complex and highly nonlinear. The existing control techniques are limited to address

such intricated nonlinearities. These factors let the control design for the drilling system become a

non-trivial task. Therefore, we pose the main objective in this study:

Use active control design to stablize the down-hole drilling system while ensuring the mitiga-

tion of severe vibration modes.

For the above research objective of this thesis, we will inquire into applying the constrained

control method to the drilling process. Since the harmful oscillation modes are more likely to occur

in the non-optimal working regimes in the drilling process [1, 32] (as shown in Fig. 1.3), the control

with state constraints are critical and can ensure safety and smooth operations. For example, for

torsional/axial stick-slip behavior, the stick phase can only occur when the bit’s velocity falls to

zero, and thus a constraint ensuring the bit velocity always be greater than zero will prevent the

stick phase and the damaging vibrations.

In the literature, a number of the well-known studies on the constrained control subject have
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been proposed. Model predictive control (MPC) can be used to constrain states, but it requires

solving a nonlinear numerical optimization in real-time [44, 45]. Studies [46, 47] used a reference

governor method by modulating the control reference, but constantly changing the reference is not

always allowed and it also requires numerically solving a nonlinear optimization online. A control

Lyapunov-barrier function (CLBF) based method was introduced in [48]. However, finding such a

function, that not only requires a level set to cover the barrier region but also contains an attractive

basin, can be very difficult for practical systems. Recently, as being first introduced in [49] and

further extended by [50, 51, 52, 53, 54], the barrier Lyapunov function (BLF) based method has

been introduced in solving the constrained control porblem, which embeds an extra term in the

original Lyapunov function. Such a function yields a value that approaches infinity whenever the

state approaches the boundary, and thus can keep the state from entering the undesired regime.

In the past decade, the BLF based approaches have been intensively studied in the literature,

including application to a Neural Network (NN) control [55], a switched system [56], a pure-

feedback system [57], and an unknown control direction system [58]. Besides, the BLF has been

implemented to a number of physical systems, such as attitude tracking control of multiple space-

crafts [59], positioning control of a flexible crane system [60], boundary control for a flexible

marine riser with vessel dynamics [61], and vibration mitigation of a down-hole drilling system

via active control [62]. However, many times, finding a stabilizing controller with a BLF can be

challenging, since the control design is based on a Lyapunov function of a specific form containing

the high magnitude barrier term. Thus, most control design using BLF in literature [50, 51, 53] is

carried out for systems in strict feedback forms using a backstepping-based approach (This way

the barrier for each state can be addressed one by one, making it more promising to find a feasible

solution). Nevertheless, this limits the type of systems in which this BLF method can be applied.

In this work, we will apply the BLF approach in the downhole drilling system first, and then

establish a novel state-constrained control method called barrier avoidance control, that can tackle

the limitations of using the BLF. The research objectives are then given as:

i) We will first implement the BLF approach into a drilling system with a low DOF drill string
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model. Since the BLF requires a strict feedback form, a state transformation of the drilling’s

dynamic model is first investigated. Besides, the state-dependent delay in the bit-rock in-

teraction model is taken into account. Due to the lack of well-established studies on this

state-dependent delay, we will explore an advanced control method to address this issue.

ii) The BLF approach has several limitations. For the drilling system, especially, the high-order

lumped-parameter drill string model cannot be transformed into a strict feedback form, which

is not suitable for the BLF design. Thus, we aim to find a novel state-constrained control

method that can break the barrier of this limitation. This way, the state-constrained control

becomes available for a high DOF drill string model.

iii) As depicted in Fig. 1.3, the optimum operating region of the drilling process has a complex

shape in bit’s axial and torsional dimensions. Most efforts in state-constrained control only

consider a hyperrectangle shape, and a study that can explicitly address the complex state

constraints is still limited. We will develope a systematic way to exceed this limitation and

remove the conservativeness of the drilling control.

iv) Since the directional drilling requires a high-order system model, we adopt the FEM model

for the drill string’s dynamics. Unlike vertical drilling, the drill string of a directional drilling

system not only contacts the bottom wellbore, but also interacts with a drill pipes along the

string. This interaction can be highly nonlinear, resulting in a great complexity in the nonlinear

control design. In this work, we aim to perform a custermized model order reduction for the

directional driling to enable the feedback control design.

v) Due to the extermely large size of a full-size drill rig, it is not feasible to directly accommodate

an actual testbed to any facilities. As a remedy, the hardware-in-the-loop (HIL) provides a

platform that can replace a portion of the physical system with real-time simulations, and this

way the actual drill rig can be converted into a size that fits into a lab environment. This will

enable the commissioning of our constrained control technique into a close-to-real drilling

process.
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Figure 1.3: Schematic delineation of optimum zone (reprinted with permission) [1]

1.4 Dissertation Organization and Overview

In summary, this thesis proposes the dynamics analysis, system modeling and control design

of a downhole drilling system, and also presents a new state-constrained control synthesis ap-

proach for general nonlinear systems. Firstly, the iBLF based method is implemented to a low

DOF lumped parameter drilling system dynamics model in Chapter 2, to mitigate the harmful

vibrations. Chapter 3 investigates a novel state-barrier avoidance control techniques based on dif-

feomorphic transformation theoretically. This approach largely extends the choice of nonlinear

control strategies for a state-constrained control problem. Due to the limitation of the hyperrectan-

gle shape of the state-barriers in the previous efforts, Chapter 4 comes up with a systematic way to

address the complex state constraints using the novel barrier avoidance control scheme. Following

this guideline, Chapter 5 applies the barrier avoidance based LPV method to a high-order FEM

model of a directional drilling system, considering a empirical state constraints of the bit’s motion

in a complex shape. Finally, Chapter 6 presents a experimental drill rig in a HIL platform, and
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validates the proposed contrained control techniques for active vibration mitigation purpose.
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Drilling Control Application Theoretical Study

Motivation

Figure 1.4: Dissertation structure

The outline and structure of the dissertation is shown in Fig. 1.4, and the organization of the

thesis will be presented in detailed as follows.

1.4.1 Chapter 2

In this chapter, the integral type BLF based control method is introduced to a vertical downhole

drilling system for the vibration elimination. Because of complex downhole environments and

underactuated, nonlinear, and nonsmooth features of the drilling dynamics, control synthesis of the

drilling system is a challenging task. In this section, we propose a novel nonlinear control design

for set-point tracking of the torsional velocity and axial rate of penetration, for a vertical drilling

system with coupled axial and torsional dynamics and a velocity-independent bit-rock interaction

model. To eliminate damaging oscillations such as stick-slip, the barrier function is introduced

in the Lyapunov candidate to ensure smooth motion of the drill bit, and to avoid having drilling
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operate in undesired working conditions. Meanwhile, the stability, boundedness and convergence

properties with respect to system states are proved. To this end, simulation results of case studies

are given to evaluate the efficacy and robustness of the proposed control approach.

1.4.2 Chapter 3

In this chapter, we propose the state barrier avoidance control methodology using a diffeomor-

phic transformation based approach. In previous studies, BLF method is oftentimes embedded in

a backstepping scheme, which greatly limits the flexibility to choose other nonlinear techniques.

Instead, this section presents a novel design method for state constrained control problem in a state

space. This is achieved through a diffeomorphic transformation, which projects the constrained

region in the original space into a radially large region in the new space. By this transforma-

tion, the state-constrained control problem is converted into a non-constrained problem, and thus

significantly increases the flexibility of the control design options compared with existing state-

constrained control methods. Three case studies including sliding mode control, backstepping

control, and LPV control are given at the end to demonstrate the effectiveness of the proposed

method.

1.4.3 Chapter 4

In this chapter, for the state-constrained control problem with complex barrier regions, we

present an effective construction method of the state transformation for the barrier avoidance

control design. The diffeomorphic transformation in barrier avoidance control converts a con-

strained control problem into an unconstrained one, and enables the nonlinear control design in

the new coordinates. However, a systematic way to construct such a transformation under a non-

hyperrectangular barrier shape has never been explored in the literature. This chapter provides

a guideline to choose this diffeomorphic transformation in a cascade manner for a class of com-

plex barrier regions. In the case studies, the proposed method is applied to a high-order double

integrator system using sliding mode control, and also to a uncertain strict-feedback system using

adaptive backstepping control.
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1.4.4 Chapter 5

In this chapter, we investigate a setpoint tracking problem of a downhole directional drilling

process via a nonlinear state constrained control approach, for the objective of vibration mitigation

using active control. The coupled dynamics of axial and torsional dimensions are incorporated in

the FEM based drill string model together with a velocity-independent bit-rock interaction model.

A model order reduction is performed for the drill string model to ensure the controlliablity, and

enables the control design for its error dynamics. With the undesired region of the drilling for-

mulated into the state constraints, the state barrier avoidance control technique embeds these con-

straints into the LPV plant of the drilling system, to prevent the severe vibrations under feedback

control. The simulation results are provided at the end to evaluate the efficacy of the proposed

algorithm, through the comparison and analysis of different case studies.

1.4.5 Chapter 6

In this chapter, we formulate a HIL experimental testbed for a full-scale down-hole drilling

system, including a physical BHA and a real-time simulation of the drill string model. The phys-

ical BHA consists of motion sensors that collects the measurements of the bit, and a real PDC bit

in contact with the rock sample. The drill string model is programmed in an embedded environ-

ment using a FEM model in the simulation. The integration of these two subsystems enables the

feedback control design, using system identification for an accurate system dynamic model and an

observer for the real-time state estimation. The barrier avoidance controller is combined with a

H∞ based LPV method, to tolerate the disturbances from the bit-rock interaction. The experimen-

tal results prove the fidelity of the proposed algorithm, through a series of performance tests using

both open-loop and closed-loop control.
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2. CONTROL OF A VERTICAL DOWNHOLE DRILLING SYSTEM USING AN

INTEGRAL BARRIER LYAPUNOV FUNCTION BASED METHOD

2.1 Introduction

Drilling is one of the most critical processes for wellbore creation and downhole energy ex-

traction in the field of oil & gas production. As depicted in Fig. 2.1, the drilling system is of a

very large scale (can be over 10000 feet) with a complex nonlinear boundary condition on the drill

bit. Due to improper bit selection and intricate wellbore conditions, different types of harmful vi-

brations can occur, including torsional and axial stick-slip phenomenon, and lateral out-of-balance

whirl motion. These vibrations, especially emerging at the bottom-hole assembly (BHA), will

transport throughout the entire drill string, which can increase drilling power consumption, reduce

efficiency of drilling process, and even cause drilling failure due to fatigue. In most drilling sys-

tems, the actuators generating axial force and torsional torque are located at the top drive on the

surface. Since the drill string connecting the top drive and the BHA can be thousands of feet long,

which results in relatively low effective stiffness, the control design becomes challenging. Thus,

increasing attentions have been paid to modeling of the drill string and bit-rock interaction, analysis

of the stick-slip behavior and other vibrations, and control to mitigate these harmful vibrations.

Most existing studies on drilling control only focus on control of the torsional dynamics [9,

10, 11, 12]. However, as pointed out [25, 28, 14, 13, 15], the torsional and axial dynamics of the

drilling system are coupled due to the complex bit-rock interaction, and the control should indeed

consider both dimensions together in the design. In this chapter, we will address the drilling control

for both torsional and axial dynamics based on the coupled dynamics model. One critical control

objective is to have drilling avoid undesired operating conditions such as stick-slip, where the drill

bit can get stuck and then suddenly accelerate to a high speed. Operating at those conditions can

result in failure mode for drilling and deteriorate the drilling rate. Most existing studies on the

c©2019 IEEE. Reprinted, with permission, from D. Tian and X. Song, “Control of a Downhole Drilling System
Using Integral Barrier Lyapunov Functionals,” American Control Conference (ACC), pp. 1349-1354, 2019
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feedback control design to mitigate the vibration are achieved by just tracking a pre-defined ref-

erence, and assume that stick-slip can be prevented if the reference is tracked. This includes, but

not limits to, sliding mode control [10], backstepping control [40], equivalent input disturbance

based control [63], genetic algorithm based control [42] and dynamics programming method [43],

etc. However, these control methodologies either just fulfill the stability in the local sense using

nonlinear control/linearization techniques, or regard the nonlinear bit-rock reaction terms as distur-

bances. During the tracking transient and also when having disturbance, stick-slip can still occur,

which will make the drilling dynamics highly nonlinear and complex. A method that can explic-

itly prevent drilling control from falling into those undesired operating modes is critical but was

not researched before. In this chapter, we will resolve this problem by embedding the operating

constraints into the control design using an integral Barrier Lyapunov Function (iBLF) approach

[53], so the dynamical states can be ensured to avoid those undesired operating regimes when the

control is active.

The main contributions of this study are in twofold. First, a state transformation of error states

is applied to the drilling system, and the system states are converted into internal and external parts.

A strict feedback form is obtained for the external dynamics to allow the backstepping based iBLF

control design. A sufficient condition for the control design is given to ensure asymptotical stability

of the external dynamics. For the internal states, we prove the boundedness and convergence

properties instead of asymptotic stability, due to the limitation imposed by a nonlinear time-delayed

model description of the bit-rock interaction. The second contribution is that we directly investigate

the nonlinear bit-rock interaction described by a delay differential equation (DDE) with a state-

dependent delay in the control design without any approximations. In the literature, theoretical

analysis on the state-dependent delay in such a model is limited. In [15], the model with state-

dependent delay is converted into a linearized model with a constant delay to enable control design,

but it is sensitive to variation of the operating point. Other studies address this issue using an

approximation of the depth-of-cut (DoC) model [64], which is only valid when having a relatively

high torsional velocity. In this chapter, by using a state transformation, we obtain the exact upper
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and lower bounds of the terms with state-dependent delays in the bit-rock interaction model. The

bounds are then explicitly incorporated into the control design through a discontinuous term and

no approximations are needed.

The outline of this chapter is as follows. In Section 2.2, the drilling system dynamics model and

the boundary conditions are discussed, and the error dynamics for this model is derived. Section 2.3

exhibits the internal and external dynamics through model transformation, and then presents the

control design using an integral Barrier Lyapunov Function to eliminate the stick-slip behavior,

where asymptotic stability, boundedness and convergent properties for the corresponding system

states are shown. Finally, simulation results are presented in Section 2.4.
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Figure 2.1: Drill string schematic
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2.2 Dynamics Model of Vertical Drilling System

The critical dynamics typically considered in a vertical down-hole drilling system are torsional

and axial dynamics. We present a lumped-parameter drilling system dynamics model based on

[15]. In this model, the axial and torsional dynamics are coupled through the boundary condi-

tion, i.e., the bit-rock interaction. We introduce the model of drill string and bit-rock interaction

respectively, and provide the error dynamics in the following sub-sections.

2.2.1 Model of Drill String

In the previous studies, different approaches for the modeling of the drilling system have been

proposed [20]. Among them, the low order lumped-parameter models are widely used for control

design, comparing with other models such as the higher-order lumped-parameter model [9] and

the distributed parameter model with neutral type time delay [65, 66]. Discussed in [67], the low-

order lumped-parameter model can perform similar numerical behavior in the dominant modes

compared with a more complex finite-element model for a vertical drilling system. Thus, in this

chapter, a lumped parameter model is used for the vertical drilling system, as depicted in Fig. 2.1.

Here, a top rotatory drive and an axial motor are used to provide the control inputs of torsional

torque and axial force. A long drill string transmits power from surface to the down-hole bit. The

polycrystalline diamond compact (PDC) drill bit at the bottom end of the BHA has direct contact

with the rock. In the modeling, we mainly consider two portions: the lower portion of the drill

string and the BHA, the top drive and the upper drill string, whose masses and inertias are denoted

by M1,M2 and I1, I2 as shown in Fig. 2.1. For the axial dynamics, the stiffness and damping

coefficients between the two portions are modeled as K and C, and for the torsional dynamics

we denote the stiffness and damping coefficients as Kt and Ct. The hook load F and the torsional

driving torque T are employed on the top drive. Besides, the bit-rock interaction on the bottom end

has high nonlinearity, and endures the reaction force Fb and torque Tb on the bit, coupling the axial

and torsional dynamics. It is worth noting that, the friction between drill string and the wellbore is

negligible, compared with other forces [39]. Therefore, we have equations of motion for the drill
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string as

M1ÿ1(t) =C(ẏ2(t)− ẏ1(t)) +K(y2(t)− y1(t))− Fb(t) +M1g

M2ÿ2(t) =− C(ẏ2(t)− ẏ1(t))−K(y2(t)− y1(t))− F (t) +M2g

I1φ̈1(t) =Ct(φ̇2(t)− φ̇1(t)) +Kt(φ2(t)− φ1(t))− Tb(t)

I2φ̈2(t) =− Ct(φ̇2(t)− φ̇1(t))−Kt(φ2(t)− φ1(t)) + T (t) (2.1)

where yi(t) and φi(t), i = 1, 2 are the axial and torsional displacements ofMi, i = 1, 2 respectively.

In this study, the objective is to have the bit axial velocity ẏ1(t) and torsional velocity φ̇1(t)

track the desired constant velocities vd > 0 and ωd > 0 respectively, and at the same time avoid

undesired state regimes during operation. We first define the error states as

χ1(t) , y1(t)− y1d(t), ṽ1(t) , ẏ1(t)− vd

χ2(t) , y2(t)− y2d(t), ṽ2(t) , ẏ2(t)− vd

θ1(t) , φ1(t)− φ1d(t), ω̃1(t) , φ̇1(t)− ωd

θ2(t) , φ2(t)− φ2d(t), ω̃2(t) , φ̇2(t)− ωd (2.2)

where y1d(t), y2d(t) are the desired axial displacements for M1, M2, and φ1d(t), φ2d(t) are their

desired torsional displacements, defined as

y1d(t) = y2d(t) +
M1

K
g − 1

K
Fbd, y2d(t) = vdt

φ1d(t) = φ2d(t)−
1

Kt

Tbd, φ2d(t) = ωdt (2.3)

with Fbd > 0 as the desired force on the bit and Tbd > 0 as the desired torque on the bit, which can

be calculated using the bit-rock interaction model in the next sub-section.
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2.2.2 Model of Bit-rock Interaction

The boundary force and torque are determined by the bit-rock interaction between the drill bit

and the bottom of the wellbore. This interaction forms a coupled dynamics between the axial and

torsional dimensions [15], and has multiple regimes as shown in [28]. The torsional torque and

axial force at the bit induced by the bit-rock interaction can be decomposed into two components

as:

Fb = Ff + Fc

Tb = Tf + Tc (2.4)

where the subscripts ‘f’ and ‘c’ denote the frictional component and cutting component of the

reaction, respectively. The friction component is introduced from the underside of contact between

bit and rock, and its magnitude depends on a physical variable called depth-of-cut D(t), which is

the instantaneous depth of contact between the bit blade and the rock surface to be cut. It can be

modeled as [15]

D(t) = n(y1(t)− y1(t− τ(t))) (2.5)

The depth-of-cut D(t) depends on the current position of the blade and the rock profile cut by the

previous blade, and n is the number of the blades. Here, τ(t) is a state-dependent delay, which

describes the time interval between two successive blades reaching the same torsional position, as

shown in Fig. 2.2. This delay τ(t) is constrained by

2π

n
= φ1(t)− φ1(t− τ(t)) (2.6)

Definition 1. For any state ν(t), we define the subscript τ for ν(t), as ντ (t) , ν(t− τ(t)).

To express depth-of-cut D(t) with the error state variables, we substitute χ1(t), χ1τ (t), θ1(t),
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Figure 2.2: Bit-rock interaction model

θ1τ (t) into (2.5) and (2.6)

D(t) = n(χ1(t)− χ1τ (t) + vdτ(t)), (2.7)

2π

n
= θ1(t)− θ1τ (t) + ωdτ(t) (2.8)

Eliminating τ(t) in (2.7) and (2.8) gives

D(t) = 2π
vd
ωd

+ n(χ1(t)− χ1τ (t))− n
vd
ωd

(θ1(t)− θ1τ (t)) (2.9)

In (2.9), if the error states χ1(t), χ1τ (t), θ1(t), θ1τ (t) are set to zero, we define the desired depth-
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of-cut as

Dd , 2π
vd
ωd

(2.10)

Characterized by the value of the depth-of-cut, we consider two phases in bit-rock interaction

as phase I and II. In phase I, the depth-of-cut D(t) is small, while the increase of D(t) affects both

the cutting and frictional components. The length of the bit wear-flat is proportional to D(t). We

have the expressions of reaction force and torque as [28]

Fb1(t) = aσκD(t) + aζϑD(t)

Tb1(t) =
1

2
a2µγσκD(t) +

1

2
a2ϑD(t) (2.11)

where Fbi and Tbi i = 1, 2 are the reaction force and torque in different phases, a denotes the radius

of drill bit, σ is the maximum normal contact stress, κ represents the rate of variance of the contact

length (typically a number in [1, 10]), ϑ accounts for the intrinsic specific energy required to remove

a unit volume of rock, µ is the coefficient of friction at the wear-flat, γ represents the orientation

and distribution of the contact forces on bit, and ζ is a characteristic number in [0.5, 0.8].

In phase II, as the depth-of-cut D(t) becomes larger and the friction component is fully mo-

bilized, the contact force will not increase anymore and the variance of the cutting component

becomes dominant correlating to the change of D(t). Let F ∗b and T ∗b denote the reaction force and

torque at the transition of the two phases, and we have D∗ denote the depth-of-cut at this transition

point. The reactions in this phase are given by

Fb2(t) = F ∗b + aζϑ(D(t)−D∗)

Tb2(t) = T ∗b +
1

2
a2ϑ(D(t)−D∗) (2.12)

Combining these two drilling regimes, we express the reaction force and torque corresponding
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to the depth-of-cut D(t) as a generic form as

F dy
b (t) = Fb1(t)(1− U(D(t)−D∗)) + Fb2(t)U(D(t)−D∗)

T dyb (t) = Tb1(t)(1− U(D(t)−D∗)) + Tb2(t)U(D(t)−D∗) (2.13)

where U(·) represents the unit step function, and the superscript ‘dy’ stands for ‘dynamic’ (under

conditions ẏ1 > 0, φ̇1 > 0). Note that the desired force on the bit Fbd and desired torque on the bit

Tbd are calculated by substituting the desired depth-of-cut (2.10) into (2.13).

However, the two drilling regimes phase I and II expressed in (2.13) are valid only when the

drilling is operated in a desired mode, i.e. D ≥ 0, ẏ1 > 0, φ̇1 6= 0. If these conditions are not

satisfied, the drilling dynamics become more complex [39]. First, if the depth-of-cut D < 0, the

bit is not in contact with the bottom of wellbore, and the interaction force Fb and torque Tb become

zero. Second, if ẏ1 < 0, the force on the bit will be zero. Finally, when the bit gets stuck in

either axial or torsional dimension, i.e., ẏ1 = 0 or φ̇1 = 0, the force or torque on the bit can be

determined using the force/torque balance as well as a static/dynamic friction model. For example,

considering the case of φ̇1 = 0, the Coulomb friction model is adopted for the expression of torque

on the bit Tb(t)

Tb =

 min{Tr, T dyb } φ̇1 = 0

T dyb φ̇1 6= 0
(2.14)

where T dyb is given in (2.13) and Tr = Ctφ̇2(t) + Kt(φ2(t) − φ1(t)). As shown in Fig. 2.3, in

the stick phase φ̇1 = 0, the torque balance is maintained by static friction when Tr ≤ T dyb . Once

Tr > T dyb , the transition of stick phase to slip phase will arise. Also, the similar Coulomb friction

model is introduced for the force on the bit Fb.

It is worth noting that, because of the switching between forward and reverse rotation, stick-

slip behavior, bit bouncing, rock porosity and irregular rock geometry, the force and torque on the

bit will behave non-smoothly, which will induce a complicated nonlinear dynamics. Thus, in this
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0

Figure 2.3: Coulomb friction model for torque on bit Tb

study, one of the key control objectives is to have the drilling avoid entering these non-smooth

phases, using an iBLF based approach.

2.2.3 Error Dynamics

Having the models of both drill string and bit-rock interaction well described, the error dynam-

ics for a set-point tracking problem are provided. Define the state vector x = [ χ1, ṽ1, χ2, ṽ2, θ1,

ω̃1, θ2, ω̃2 ]T . The error dynamics are written as

ẋ1(t) =x2(t)

ẋ2(t) =− K

M1

x1(t)− C

M1

x2(t) +
K

M1

x3(t) +
C

M1

x4(t)−H1(x1(t), x1τ (t), x5(t), x5τ (t))

ẋ3(t) =x4(t)

ẋ4(t) =
K

M2

x1(t) +
C

M2

x2(t)− K

M2

x3(t)− C

M2

x4(t) + u1(t)

ẋ5(t) =x6(t)

ẋ6(t) =− Kt

I1

x5(t)− Ct
I1

x6(t) +
Kt

I1

x7(t) +
Ct
I1

x8(t)−H2(x1(t), x1τ (t), x5(t), x5τ (t))

ẋ7(t) =x8(t)

ẋ8(t) =
Kt

I2

x5(t) +
Ct
I2

x6(t)− Kt

I2

x7(t)− Ct
I2

x8(t) + u2(t) (2.15)
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where u1 and u2 are the virtual control inputs defined as

u1(t) =
1

M2

((M1 +M2)g − F (t)− Fbd)

u2(t) =
1

I2

(T (t)− Tbd) (2.16)

The nonlinear terms H1 and H2 are defined as

H1(x1(t), x1τ (t), x5(t), x5τ (t)) ,
1

M1

(Fb(t)− Fbd)

H2(x1(t), x1τ (t), x5(t), x5τ (t)) ,
1

I1

(Tb(t)− Tbd) (2.17)

The initial conditions are given as xi(0) = xi0, i = 1, 2, ..., 8 and xi(t) = $i(t), i = 1, 2, ..., 8 for

t ∈ [−τ(0), 0).

Since the bit’s reaction force Fb(t) and torque Tb(t) only depend on depth-of-cut D(t), and

D(t) depends on χ1(t), χ1τ (t), θ1(t), θ1τ (t) as per (2.9), (2.13) and (2.17), we denote H1 and H2

as functions of x1(t), x1τ (t), x5(t), x5τ (t).

2.3 Main Results

Following the drilling system dynamics model (2.15) and the bit-rock interaction model (2.5),

(2.6) and (2.13), this study aims to design a controller using Barrier Lyapunov Function (BLF)

for both axial and torsional dynamics to prevent the states of drilling system from falling into

undesired regimes. This is usually to avoid occurrence of the drill bit stick-slip vibration and to

have the torsional and axial drilling velocity be consistently positive and follow a desired trajectory.

2.3.1 Model Transformation of the Drilling System

The control design using iBLF is embedded in the framework of the backstepping approach,

where a strict feedback form is required [53]. Note that, the error dynamics model of the drilling

system (2.15) is not in a strict feedback form. Therefore, we conduct a customized model transfor-

mation for the error dynamics to enable the backstepping based control design.
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In this study, the state transformation follows a routine of feedback linearization/input-output

linearization, where a normal form decomposes the system into an internal part and an external

part through the Lie derivatives of the output. The external part is stabilized by the control inputs,

while the internal part is made unobservable by the same control [68]. Consider two virtual outputs

for the system (2.15)

h1(t) = x1(t), h2(t) = x5(t) (2.18)

The relative degree with respect to the two outputs h1(t), h2(t) is {3, 3}. Then, new system coordi-

nates in a manner similar to an MIMO normal form are constructed as shown in (2.19), where the

original system states x are transformed into an internal part η = [ η1, η2 ]T , and an external part

ξ = [ ξ1, ξ2, ξ3, ξ4, ξ5, ξ6 ]T . Note that, we choose dξ1(t)
dt

= ξ2(t), dξ2(t)
dt

= ξ3(t) and dξ4(t)
dt

= ξ5(t),

dξ5(t)
dt

= ξ6(t).



x3(t)

x7(t)

x1(t)

x2(t)

− K
M1
x1(t)− C

M1
x2(t) + K

M1
x3(t) + C

M1
x4(t)−H1(x1(t), x1τ (t), x5(t), x5τ (t))

x5(t)

x6(t)

−Kt
I1
x5(t)− Ct

I1
x6(t) + Kt

I1
x7(t) + Ct

I1
x8(t)−H2(x1(t), x1τ (t), x5(t), x5τ (t))



=



η1(t)

η2(t)

ξ1(t)

ξ2(t)

ξ3(t)

ξ4(t)

ξ5(t)

ξ6(t)


(2.19)

The error dynamics (2.15) are therefore transformed as

η̇1(t) =
M1

C

( K
M1

ξ1(t) +
C

M1

ξ2(t)− K

M1

η1(t) + ξ3(t) +H1(ξ1(t), ξ1τ (t), ξ4(t), ξ4τ (t))
)

η̇2(t) =
I1

Ct

(Kt

I1

ξ4(t) +
Ct
I1

ξ5(t)− Kt

I1

η2(t) + ξ6(t) +H2(ξ1(t), ξ1τ (t), ξ4(t), ξ4τ (t))
)

(2.20)
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ξ̇1(t) =ξ2(t)

ξ̇2(t) =ξ3(t)

ξ̇3(t) =− K

M1

x2(t)− C

M1

ξ3(t) +
K

M1

x4(t) +
C

M1

( K
M2

x1(t) +
C

M2

x2(t)− K

M2

x3(t)− C

M2

x4(t)

+ u1(t)
)
− dH1(ξ1(t), ξ1τ (t), ξ4(t), ξ4τ (t))

dt
(2.21)

ξ̇4(t) =ξ5(t)

ξ̇5(t) =ξ6(t)

ξ̇6(t) =− Kt

I1

x6(t)− Ct
I1

ξ6(t) +
Kt

I1

x8(t) +
Ct
I1

(Kt

I2

x5(t) +
Ct
I2

x6(t)− Kt

I2

x7(t)− Ct
I2

x8(t)

+ u2(t)
)
− dH2(ξ1(t), ξ1τ (t), ξ4(t), ξ4τ (t))

dt
(2.22)

where (2.20) is the internal dynamics, and the external dynamics contains two sub-systems: axial

dynamics (2.21) and torsional dynamics (2.22), which are both in the strict feedback form.

2.3.2 Control Design Using iBLF

Before introducing the control design, two assumptions are made first.

A1. The downhole information of the system states is available in real-time. This can be

achieved by two methods. First, the high-speed telemetry has been heavily researched and applied

to the drilling system in recent years [69]. The copper-wire based telemetry can offer a faster signal

transmission than the previously used mud pulse method, to transfer the measurements of strain

sensor or accelerometer installed along the drill string. Second, even under a large transmission

delay of the down-hole measurement, the system states can still be observed using an integrated

state estimator [70], which has great robustness under transmission noise.

A2. With a discontinuous controller provided in this study, the solutions are understood in the

Filippov sense [71].

As claimed to be the essential contribution in this study, the BLF is introduced, where con-

straints are coped with the control design. Next, the definition of BLF is provided.

Definition 2. (K. P. Tee et al., 2009 [50]) For a system ẋ = f(x), a Barrier Lyapunov Function
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(BLF) is a scalar function V (x) defined on an open region D containing the origin, which is

continuous, positive definite, and has continuous first-order partial derivatives at every point ofD.

It satisfies V (x) → ∞ as x approaches the boundary of D, and V (x) ≤ b along the solution of

ẋ = f(x) for x(0) ∈ D and certain constant b > 0.

To employ the integral type BLF in the control design for the external dynamics (2.21) and

(2.22), we first specify the state constraints as

|ξ2| < kv, |ξ5| < kω (2.23)

with kv and kω as positive constants satisfying kv < vd and kω < ωd. These two conditions ensure

that ẏ1 > 0, φ̇1 > 0, and therefore the drilling states are blocked away from the barrier set by these

two constraints and avoided entering the undesired operating region (such as stick-slip mode), as

discussed in Section 2.2.2. The remaining step is how to ensure the two constraints on the error

states are always met through control design, even during the transients.

For system (2.21) and (2.22), we propose the Barrier Lyapunov Function candidate consisting

of both axial and torsional dynamics

V (z,α) = Va(z,α) + Vt(z,α)

Va(z,α) =
1

2
z2

1 + Vv(z2, α1) +
1

2
z2

3

Vt(z,α) =
1

2
z2

4 + Vω(z5, α4) +
1

2
z2

6 (2.24)

where

Vv(z2, α1) =

∫ z2

0

ςk2
v

k2
v − (ς + α1)2

dς

Vω(z5, α4) =

∫ z5

0

ςk2
ω

k2
ω − (ς + α4)2

dς (2.25)
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We define zi as

z1 = ξ1, z2 = ξ2 − α1, z3 = ξ3 − α2

z4 = ξ4, z5 = ξ5 − α4, z6 = ξ6 − α5 (2.26)

Note that, in (2.25), if the states approach the undesired operating regime, i.e., |ξ2| → kv and

|ξ5| → kω, the integrals will approach infinity at their upper limits, and the Lyapunov function

(2.24) can result in an infinity value, and thus can effectively have the states avoid entering the

undesired operating conditions. The stabilizing functions α1,2 and α4,5 are continuously differen-

tiable functions satisfying |α1| ≤ Av < kv and |α4| ≤ Aω < kω for positive constants Av and Aω.

As defined in (2.25), Vv and Vω are positive definite, continuously differentiable, and satisfy the

decrescent condition when |ξ2| < kv and |ξ5| < kω, given as

z2
2

2
≤ Vv ≤ z2

2

∫ 1

0

βk2
v

k2
v − (βz2 + sgn(z2)Av)2

dβ

z2
5

2
≤ Vω ≤ z2

5

∫ 1

0

βk2
ω

k2
ω − (βz5 + sgn(z5)Aω)2

dβ (2.27)

Also, the following conditions hold (see Lemma 1 in [53])

Vv ≤
k2
vz

2
2

k2
v − ξ2

2

, Vω ≤
k2
ωz

2
5

k2
ω − ξ2

5

(2.28)

Next, we use the backstepping procedure to design the controller for the axial dynamics (2.21)

first, and then a similar approach can be applied to the torsional dynamics (2.22).

Step 1: In the first step, we have Va1 = 1
2
z2

1 , and its time-derivative is given as

V̇a1 = z1(z2 + α1) (2.29)

The stabilizing function is chosen as α1 = −p1z1, where p1 is a positive constant control gain,
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yielding

V̇a1 = −p1z
2
1 + z1z2 (2.30)

Step 2: Next, we consider Va2 = 1
2
z2

1 + Vv. The time-derivative of Va2 is given as

V̇a2 = −p1z
2
1 + z1z2 +

k2
vz2

k2
v − ξ2

2

(z3 + α2 − α̇1) +
∂Va2

∂α1

α̇1 (2.31)

where

∂Va2

∂α1

= z2

Å
k2
v

k2
v − ξ2

2

− %2(z2, α1)

ã
(2.32)

%2(z2, α1) =

∫ 1

0

k2
v

k2
v − (βz2 + α1)2

dβ

=
k2
v

2z2

ln
(kv + z2 + α1)(kv − α1)

(kv − z2 − α1)(kv + α1)
(2.33)

The partial derivative of %2(z2, α1) is written as

∂%2

∂z2

=
1

z2

(
k2
v

k2
v − (z2 + α1)2

− %2) (2.34)

∂%2

∂α1

=
k2
v(z2 + 2α1)

(k2
v − (z2 + α1)2)(k2

v − α2
1)

(2.35)

As per L’Hôpital’s rule [72], the following limits are derived as

lim
z2→0

%2(z2, α1) =
k2
v

k2
v − α2

1

(2.36)

lim
z2→0

∂%2

∂z2

=
k2
vα1

(k2
v − α2

1)2
(2.37)

From (2.33), (2.34), (2.35), (2.36) and (2.37), we showed that %2, ∂%2
∂z2

and ∂%2
∂α1

are well-defined in

the neighborhood of z2 = 0, if |α1| < kv.
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The stabilizing function is chosen as

α2 =
k2
v − ξ2

2

k2
v

(−z1 + %2α̇1)− p2z2 (2.38)

where p2 is a positive constant control gain, rendering

V̇a2 = −p1z
2
1 − p2

k2
vz

2
2

k2
v − ξ2

2

+
k2
vz2z3

k2
v − ξ2

2

(2.39)

Step 3: In the last step, we consider Va = 1
2
z2

1 + Vv + 1
2
z2

3 , and its time-derivative is written as

V̇a = −p1z
2
1 − p2

k2
vz

2
2

k2
v − ξ2

2

+
k2
vz2z3

k2
v − ξ2

2

+ z3(ξ̇3 − α̇2) (2.40)

Since ∂%2
∂z2

and ∂%2
∂α1

are well defined, α̇2 is also well defined in the neighborhood of z2 = 0.

Before presenting the control law, we first address the nonlinear term dH1

dt
in system’s equation

(2.21). From (2.17), we observe that H1 has dependence of x1τ and x5τ , where the delay τ(t) is an

implicit function of the state x. Thus, the value of the delayed states x1τ and x5τ cannot be directly

used in the control design, and the nonlinear term dH1

dt
cannot be directly canceled. A remedy to

this is to consider dH1

dt
as an uncertainty, whose bounds can be derived as follows. Since H1 is a

function of the depth-of-cut D, we have dH1

dt
written by

dH1

dt
=
dH1

dD

dD

dt
(2.41)

Using (2.13), we can see that the lower bound of dH1

dD
is larger than 0, and the upper bound is a

positive constant as

BH1 ,
1

M1

(aςκ+ aζϑ). (2.42)

The other factor dD
dt

is given by the following operations. We take time-derivative of both (2.5) and
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(2.6) as

dD

dt
= n

(
ẏ1(t)−

(
1− dτ(t)

dt

)
ẏ1τ (t)

)
(2.43)

0 = φ̇1(t)−
(

1− dτ(t)

dt

)
φ̇1τ (t) (2.44)

Eliminating
Ä
1− dτ(t)

dt

ä
in (2.43) and (2.44) gives

dD

dt
= n

(
ẏ1(t)− φ̇1(t)

φ̇1τ (t)
ẏ1τ (t)

)
= n

(
(vd + ξ2(t))− ωd + ξ5(t)

ωd + ξ5τ (t)
(vd + ξ2τ (t))

)
(2.45)

Considering the constraints |ξ2(t)| < kv and |ξ5(t)| < kω, we can infer that |ξ2τ (t)| < kv and

|ξ5τ (t)| < kω, and then the upper and lower bounds of dD
dt

are denoted by constants B+
D and B−D

respectively, as

B+
D , n

(
(vd + kv)−

ωd − kω
ωd + kω

(vd − kv)
)
> 0

B−D , n
(

(vd − kv)−
ωd + kω
ωd − kω

(vd + kv)
)
< 0 (2.46)

Combining (2.42) and (2.46) gives the upper and lower bounds of dH1

dt
as BH1 ·B+

D and BH1 ·B−D.

Thus, given the bounds of uncertainty for the nonlinear term as derived above, the control input

is then designed as

u1 =
M1

C

(
α̇2 −

k2
vz2

k2
v − ξ2

2

− p3z3 +
K

M1

x2 +
C

M1

ξ3 −
K

M1

x4

)
− K

M2

x1

− C

M2

x2 +
K

M2

x3 +
C

M2

x4 −
M1

C
BH1ψ(z3)sgn(z3) (2.47)
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where p3 is a positive constant control gain, and the function ψ(zi) is defined as

ψ(zi) =

 −B
−
D zi ≥ 0

B+
D zi < 0

(2.48)

Substituting u1 into (2.40) yields

V̇a = −p1z
2
1 − p2

k2
vz

2
2

k2
v − ξ2

2

− p3z
2
3 − z3

(
BH1ψ(z3)sgn(z3) +

dH1

dt

)
(2.49)

where z3

(
BH1ψ(z3)sgn(z3) + dH1

dt

)
≥ 0 if |ξ2| < kv.

For the torsional dynamics (2.22), similar procedures as Steps 1-3 can be applied. To design

the controller, we choose p4, p5 and p6 to be positive constant control gains, and the stabilizing

function is designed as

α4 = −p4ξ4, α5 =
k2
ω − ξ2

5

k2
ω

(−z4 + %5α̇4)− p5z5 (2.50)

where %5 is given by

%5(z5, α4) =

∫ 1

0

k2
ω

k2
ω − (βz5 + α4)2

dβ

=
k2
ω

2z5

ln
(kω + z5 + α4)(kω − α4)

(kω − z5 − α4)(kω + α4)
(2.51)

Also, we have the upper bound for dH2

dt
, as

BH2 ,
1

I1

(
1

2
a2µγσκ+

1

2
a2ϑ) (2.52)

34



The control input u2 is designed as

u2(t) =
I1

Ct

(
α̇5 −

k2
ωz5

k2
ω − ξ2

5

− p6z6 +
Kt

I1

x6 +
Ct
I1

− Kt

I1

x8

)
− Kt

I2

x5

− Ct
I2

x6 +
Kt

I2

x7 +
Ct
I2

x8 −
I1

Ct
BH2ψ(z6)sgn(z6) (2.53)

where %5, ∂%5
∂z5

, ∂%5
∂α4

and α̇5 are well-defined in the neighborhood of z5 = 0, if |α4| < kω.

Now we take time-derivative of the Lyapunov function Vt = 1
2
z2

4 + Vω + 1
2
z2

6 , given by

V̇t =− p4z
2
4 − p5

k2
ωz

2
5

k2
ω − ξ2

5

− p6z
2
6 − z6

(
BH2ψ(z6)sgn(z6) +

dH2

dt

)
(2.54)

where the factor z6

(
BH2ψ(z6)sgn(z6) + dH2

dt

)
≥ 0 if |ξ5| < kω.

Then, considering both axial and torsional dynamics, the time-derivative of the Lyapunov func-

tion V defined in (2.24) is

V̇ = V̇a + V̇t (2.55)

Using the fact of (2.28), the following inequalities are obtained

V̇a ≤ −ρaVa, V̇t ≤ −ρtVt (2.56)

where ρa = 2 min{pi}, i = 1, 2, 3 and ρt = 2 min{pi}, i = 4, 5, 6, if (2.23) is satisfied. From

(2.55) and (2.56), we have

V̇ ≤ −ρV (2.57)

where ρ = 2 min{pi}, i = 1, 2, ..., 6.
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Now we have the closed-loop system for both axial and torsional dynamics in z domain as

ż1 = −p1z1 + z2

ż2 = −p2
1z1 + (p1 − p2)z2 + z3 +

k2
v − ξ2

2

k2
v

(−z1 + %2α̇1)

ż3 = − k2
vz2

k2
v − ξ2

2

− p3z3 −
(
BH1ψ(z3)sgn(z3) +

dH1

dt

)
ż4 = −p4z4 + z5

ż5 = −p2
4z4 + (p4 − p5)z5 + z6 +

k2
ω − ξ2

5

k2
ω

(−z4 + %5α̇4)

ż6 = − k2
ωz5

k2
ω − ξ2

5

− p6z6 −
(
BH2ψ(z6)sgn(z6) +

dH2

dt

)
(2.58)

Since z and α are the functions of ξ, the closed loop system of this external dynamics can be

written in ξ domain as

ξ̇ = f(ξ, ξτ ) (2.59)

where f(ξ, ξτ ) is non-Lipschitz in ξ due to the functions sgn(·) and ψ(·), and is Lipschitz in ξτ .

Next, with the constructed close-loop system, we establish the following results to show the

main results of this study.

Theorem 1. Consider the error dynamics (2.15) under control (2.47) and (2.53), with the initial

condition in the set Ω = {ξ ∈ R8 : |ξ2| < kv, |ξ5| < kω}. If

p1

»
2Va|t=0 < kv, p4

»
2Vt|t=0 < kω (2.60)

then the following statements hold:
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i) The backstepping errors zi(t) decrease exponentially to 0, satisfying

|zi(t)| ≤
»

2Va|t=0 e
− ρat

2 , i = 1, 2, 3

|zi(t)| ≤
»

2Vt|t=0 e
− ρtt

2 , i = 4, 5, 6, ∀t > 0 (2.61)

ii) The states ξ(t) stay in Ω for all t > 0.

iii) In x domain, the states x1(t), x2(t), x5(t), x6(t) are asymptotically stable at 0, and the states

x3(t), x4(t), x7(t), x8(t) are bounded and convergent to 0.

iv) The stabilizing functions α1,2, α4,5 and control inputs u1,2 are bounded for all t > 0.

Proof:

i) Using (2.56), we obtain Va|t ≤ Va|t=0e
−ρat and Vt|t ≤ Vt|t=0e

−ρtt. From (2.27), we have

Va|t ≥
∑3

i=1 z
2
i /2 and Vt|t ≥

∑6
i=4 z

2
i /2. Thus, combining them gives z2

i (t) ≤ 2Va|t=0e
−ρat for

i = 1, 2, 3 and z2
i (t) ≤ 2Vt|t=0e

−ρtt for i = 4, 5, 6.

ii) We assume that at certain t = tn, ξ(t) is at the boundary of Ω for the first time, i.e. |ξ2(tn)| =

kv or |ξ5(tn)| = kω. It can be inferred that |ξ2τ (tn)| < kv and |ξ5τ (tn)| < kω, since ξ2τ (tn) =

ξ2(tn − τ(tn)) and ξ5τ (tn) = ξ5(tn − τ(tn)). Thus, the bounds defined in (2.46) are valid, and the

conditions (2.56) and (2.57) are not violated. When the initial condition is in Ω, from (2.57) we

have

V |t=tn ≤ V |t=0 (2.62)

Employ integration by part for Vv|t=tn and Vw|t=tn

Vv|t=tn =
kv
2

∫ z2

0

ς

Å
1

kv − (ς + α1)
+

1

(ς + α1) + kv

ã
dς

=
kv
2

Å
(α1(tn) + kv) ln

α1(tn) + kv
ξ2(tn) + kv

+ (kv − α1(tn)) ln
kv − α1(tn)

kv − ξ2(tn)

ã
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Vω|t=tn =
kω
2

∫ z5

0

ς

Å
1

kω − (ς + α4)
+

1

(ς + α4) + kω

ã
dς

=
kω
2

Å
(α4(tn) + kω) ln

α4(tn) + kω
ξ5(tn) + kω

+ (kω − α4(tn)) ln
kω − α4(tn)

kω − ξ5(tn)

ã
(2.63)

If either |ξ2(tn)| = kv or |ξ5(tn)| = kω holds, Vv|t=tn or Vω|t=tn will be unbounded, and V |t=tn

becomes unbounded, contradicting (2.62). Therefore, we conclude that ξ(t) remains in Ω for all

t > 0 .

iii) First, we will show that states x1(t), x2(t), x5(t), x6(t) are asymptotically stable at 0.

Considering the Lyapunov function V (z,α) in (2.24), since z and α are the functions of ξ, it can

be verified that

V (z,α) = 0, if ξ = 0

V (z,α) > 0, if ξ ∈ Ω− {0} (2.64)

Now, we can choose V (z,α) as a Lyapunov candidate for ξ, denoted by V (ξ). It is worth noting

that, since the governing equation (2.59) is non-Lipschitz in ξ, the solution of the closed-loop

system is understood in Filippov sense, and the validity of V (ξ) can be checked using the extended

Lyapunov stability theorems [73], which shows the Lyapunov stability of the states ξ. Moreover,

the convergence of the states ξ is proven as follows. The time-derivative of V (ξ) satisfies

V̇ (ξ) = V̇a + V̇t ≤ 0 (2.65)

We define W (t) as

W (t) = −(V̇a + V̇t) =p1z
2
1 + p2

k2
vz

2
2

k2
v − ξ2

2

+ p3z
2
3 + z3

(
BH1sgn(z3)ψ(z3) +

dH1

dt

)
+ p4z

2
4 + p5

k2
ωz

2
5

k2
ω − ξ2

5

+ p6z
2
6 + z6

(
BH2sgn(z6)ψ(z6) +

dH2

dt

)
=− V̇ (ξ(t)) (2.66)
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Integrating both sides

∫ t

0

W (τ)dτ = V (ξ(0))− V (ξ(t)) (2.67)

As V (ξ(0)) is bounded and V (ξ(t)) is non-increasing and bounded, we conclude

lim
t→∞

∫ t

0

W (τ)dτ ≤ ∞ (2.68)

Due to the fact that W (t) is uniformly continuous, using Barbalat’s Lemma [74] we have

lim
t→∞

W (t) = 0 (2.69)

It shows that z converge to zero as t → ∞, and it can be verified that ξ also converge to zero

as t → ∞. Therefore, the states ξ are asymptotically stable at 0. Given the definition of state

transformation (2.19), we conclude that the states x1(t), x2(t), x5(t), x6(t) are asymptotically

stable at 0.

Next, we will show that the states x3(t), x4(t), x7(t), x8(t) are bounded and convergent to 0.

Rewrite the first row of (2.20) as

η̇1(t) =− bη1(t) + l(t) (2.70)

where b = K
C

, and l(t) = M1

C

(
K
M1
ξ1(t) + C

M1
ξ2(t) + ξ3(t) +H1(ξ1(t), ξ1τ (t), ξ4(t), ξ4τ (t))

)
.

Due to the fact that d(t−τ)
dt

= φ̇1
φ̇1τ

> 0 from (2.44), the delayed states ξ1τ(t) and ξ4τ(t) are bounded

and convergent to 0. By the definition of H1 in (2.9), (2.13) and (2.17), we have H1 be bounded

and convergent to 0. Also, since the states ξ1(t), ξ2(t) and ξ3(t) are asymptotically stable, we infer

that l(t) is bounded and convergent to 0. In (2.70), the signals l(t) and η1(t) can be regarded as

the input and output of the first-order linear system with a LHP pole. We can conclude that η1(t)

is bounded as a result of the bounded-input-bounded-output (BIBO) property. Moreover, to show
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that η1(t) is convergent to 0, we first derive the solution of η1 as

η1(t) = η1(0)e−bt +

∫ t

0

e−b(t−τ)l(τ)dτ (2.71)

where η1(0)e−bt is convergent to 0. Next, we show that
∫ t

0
eb(t−τ)l(τ)dτ is convergent to 0. Given

that |l(t)| is bounded by Bl > 0, we specify an ε, and consider the fact that ∀ε∗ = bε/2 > 0,

∃T > 0 such that |l(t)| < ε∗ for t > T . Then we choose

T̃ = max

ß
T , T +

1

b
ln

2Bl

bε

™
(2.72)

For ∀t > T̃ , we have

∣∣∣∣ ∫ t

0

e−b(t−τ)l(τ)dτ

∣∣∣∣ =

∣∣∣∣ ∫ T

0

e−b(t−τ)l(τ)dτ +

∫ t

T

e−b(t−τ)l(τ)dτ

∣∣∣∣
≤
∫ T

0

e−b(t−τ)
∣∣∣l(τ)

∣∣∣dτ +

∫ t

T

e−b(t−τ)
∣∣∣l(τ)

∣∣∣dτ
≤Bl

b
e−bt(ebT − 1) +

ε

2
(1− eb(T−t))

≤Bl

b
eb(T−t) +

ε

2

≤Bl

b
eb(T−(T+ 1

b
ln

2Bl
bε

)) +
ε

2

=ε (2.73)

Thus, we can conclude that η1(t) satisfies

|η1(t)| ≤ Bη1 for t ∈ [0,+∞), lim
t→∞

η1(t) = 0 (2.74)

where Bη1 is a positive constant. Moreover, from (2.70), we get

|η̇1(t)| ≤ Bη̇1 for t ∈ [0,+∞), lim
t→∞

η̇1(t) = 0 (2.75)
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whereBη̇1 is a positive constant. Therefore, x3(t) and x4(t) are bounded and convergent to 0, given

the fact that x3(t) = η1(t) and x4(t) = η̇1(t). Moreover, x7(t) and x8(t) also have the boundedness

and convergence properties, by applying the similar analysis for the second row of (2.20).

iv) From (2.60), (2.61) and the definition of α1 and α4, the following inequalities hold.

|α1| = p1|z1| ≤ p1

»
2Va|t=0 e

− ρat
2 ≤ p1

»
2Va|t=0 < kv

|α4| = p4|z4| ≤ p4

»
2Vt|t=0 e

− ρtt
2 ≤ p4

»
2Vt|t=0 < kω (2.76)

Under these conditions, we have %2, %5 and their partial derivatives well-defined if ξ ∈ Ω, and then

the stabilizing functions α1,2, α4,5 are bounded. Also, the errors z have exponentially decreasing

bounds as shown in (2.61), and the states x are bounded as proven in (iii). Therefore, given control

law (2.47) and (2.53), the inputs u1,2 are bounded. �

Remark 1. In Theorem 1 (iii), the states of bit x1(t), x2(t), x5(t), x6(t) corresponds to the external

states ξ, and the states of top drive x3(t), x4(t), x7(t), x8(t) corresponds to the internal states η.

However, due to the existence of the time-delayed term x1τ (t) and x5τ (t), the state transformation

(2.19) is not a diffeomorphism. The equivalence of the original coordinates x and the new coordi-

nates [ηT ξT ]T is not established. Therefore, once the external dynamics is asymptotically stable

through the control design, we cannot conclude the asymptotic stability of the internal dynamics

using the standard inference of the normal form [75, 76]. Alternatively, in this study we proved the

boundedness and convergence of the states x3(t), x4(t), x7(t), x8(t) instead of asymptotic stability,

which can be practically applied to the drilling system control.

2.4 Simulation Results

We conduct a series of simulations in this section to show the effectiveness of the controller

designed in Section 2.3. First, we implement the open-loop control by giving constant velocities

on top drive. Next, the responses of the drilling system with the iBLF controller are provided.

Then, the comparison to a quadratic Lyapunov function (QLF) based approach is shown through

simulations. Also, the robustness of the proposed controller is analyzed at the end.

41



2.4.1 Open-loop Control

For the first case study, the axial and torsional velocities of the top part of the drill string are

enforced to be constants. This strategy is currently commonly used in practice in the drilling

industry. This is essential to stabilize the top drive velocities to be constants, with the intent of

having the drill bit and drill string follow the top part as well. The parameters of the drill string

and bit-rock interaction are given in Table 2.1 and Table 2.2, following [77, 78, 28] with minor

modifications.

Table 2.1: Parameters of Drill String

M1 44187 kg I1 1685 kgm2

M2 29028 kg I2 1178 kgm2

C 34400 Ns/m Ct 49.5 Nms/rad
K 353000 N/m Kt 495 Nm/rad

Table 2.2: Parameters of Bit-Rock Interaction

ϑ 77e6 Pa γ · µ 0.7
ζ 0.64 n 5
κ 5 σ 6.2572e7 Pa
a 0.15 m D∗ 1.8721e-4 m

However, such a simple control strategy can sometimes cause significant vibrations in the

drilling field as shown in Fig. 2.4(a). It is clear that the stick-slip limit cycles can arise in both

axial and torsional dimensions, and the axial dynamics exhibit fast dynamics compared to the tor-

sional one, conforming to the results discussed in [15]. Also, the peak value of the axial velocity

is up to 8 times of its desired value (1 mm/s), and the peak value of the torsional velocity becomes

twice of its desired value (4 rad/s).
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Next, we set a large disturbance in the bit-rock interaction by introducing uncertainties to the

intrinsic specific energy parameter ϑ. With the white Gaussian noise added in this term, we can

observe greater vibrations in both axial and torsional dimensions. In addition to the stick-slip

phenomenon, the velocities can drop below zero and behave axial loss-of-contact and torsional

reverse motion, as shown in Fig. 2.4(b). Therefore, a systematic control design is critical for

drilling applications to avoid such damaging vibrations.
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Figure 2.4: Responses of bit’s axial and torsional velocities ẏ1 and φ̇1 with constant axial and
torsional velocities on top drive: a) Constant ϑ value, b) Disturbance in ϑ value

2.4.2 Closed-loop Control Using iBLF

For the second case study, we apply the proposed algorithm for control design. Again the

parameters of the drilling system are shown in Table 2.1 and Table 2.2. The desired axial and

torsional velocities are set as vd1 = 1 mm/s and ωd1 = 4 rad/s for the first 30 seconds, and then

we switch the desired velocities to vd2 = 1.5 mm/s and ωd2 = 5 rad/s for the next 30 seconds. In
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the design of iBLF, we set the constraints for bit’s axial and torsional velocities as kv = 0.9vd1

and kω = 0.5ωd1 respectively during the whole simulation time. Moreover, the control gains are

chosen as p1 = 0.0055, p2 = 1, p3 = 1, p4 = 0.42, p5 = 0.05, p6 = 0.05 such that the condition

(2.60) is satisfied. In the control law u1,2 in (2.47) and (2.53), the signum function sgn(z3) and

sgn(z6) are substituted with tanh(z3/ε1) and tanh(z3/ε2), ε1,2 > 0 for a smoother transient. The

initial condition x(0) is given as

xT (0) =[0,−0.05vd1, 0,−0.05vd1, 0,−0.3ωd1, 0,−0.3ωd1]

and $1(t) ≡ 0, $2(t) ≡ −0.05vd1

$5(t) ≡ 0, $6(t) ≡ −0.3ωd1, t ∈ [−τ(0), 0)

where ξ(0) ∈ Ω in this setting. At t = 0, we assume that the bit is just in touch with the rock,

with the depth-of-cut D(0) being equal to 0. Also, the white Gaussian noise is introduced in the

bit’s dynamics, representing uncertainties in the down-hole environment. In Fig. 2.5, the bit’s axial

and torsional velocities stay within the intervals 0.1 mm/s < ẏ1 < 1.9 mm/s and 2 rad/s < φ̇1 < 6

rad/s for the first 30 seconds and 0.6 mm/s < ẏ1 < 2.4 mm/s and 3 rad/s < φ̇1 < 7 rad/s for the

last 30 seconds, corresponding to the given constraints in iBLF design. The dashed lines depict

the upper and lower bounds of the constraints. The bit’s axial and torsional velocities are kept

above zero, avoiding the bit to enter the stick phase. Besides, Fig. 2.6 presents the boundedness

and convergence properties of the states ẏ2 and φ̇2 with respect to the internal dynamics under a

switching of desired velocities. The drill bit’s depth-of-cut is depicted in Fig. 2.7, showing that the

bit-rock interaction enters Phase II from Phase I and converges to the desired value in Phase II, and

the switching of desired velocities can largely disturb the depth-of-cut at t = 30 sec. Also, we draw

the control inputs, i.e., top drive’s force and torque F and T , in Fig. 2.8. At t = 0 sec, the control

inputs can rise up to a high magnitude, which is mainly caused by the initial condition setting in the

numerical simulation. This situation is less likely to occur in practice since it denotes the instant

when the bit just touches the rock surface, and the depth-of-cut is 0. In the real application, the
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feedback control oftentimes takes effect when the operating parameters, such as torsional RPM

and axial weight-on-bit, change significantly. Such a condition can be simulated by the switching

of desired velocities at t = 30 sec. Here, the magnitude of the control is smaller compared with

the t = 0 sec instant, which is feasible in practice.
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Figure 2.5: Time history of bit’s axial and torsional velocities ẏ1 and φ̇1 with a switching of desired
velocities (0-30 seconds: vd1 = 1 mm/s, ωd1 = 4 rad/s; 30-60 seconds: vd2 = 1.5 mm/s, ωd2 = 5
rad/s)

Next, to prove that the goal of barrier avoidance is indeed achieved comparing with other

unconstrained control strategies, instead, we apply a backstepping control in a regular QLF form

(without the Barrier terms Vv and Vω in (2.25)). In Fig. 2.9, under the same initial conditions, the

bit’s responses using QLF controller can be stablized and forced to the desired rates (vd1 = 1 mm/s,

ωd1 = 4 rad/s during the whole simulation time). However, the barriers are violated and stick-slip
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Figure 2.6: Time history of top drive’s axial and torsional velocities ẏ2 and φ̇2 with a switching of
desired velocities (0-30 seconds: vd1 = 1 mm/s, ωd1 = 4 rad/s; 30-60 seconds: vd2 = 1.5 mm/s,
ωd2 = 5 rad/s)

phenomenons arise in both axial and torsional dimensions during the transient, in which the iBLF

control will get rid of such oscillations.

To exam the robustness, we validate the control performance over a range of the intrinsic spe-

cific energy parameter ϑ, with the perturbance range 50%-150% of its nominal value 77 MPa. The

responses of bit’s axial velocities are shown in Fig. 2.10 (with the desired velocities vd1 = 1 mm/s,

ωd1 = 4 rad/s during the whole simulation time), where the state constraints are not transgressed

under the variance of the perturbed ϑ.

To conclude, the simulation results highlight the barriers that are imposed on the bit’s axial and

torsional velocities through the control design using iBLF, and thus the constraints on the states

are not violated. It can be seen that the stick-slip behavior is indeed eliminated as compared to the

first case study, illustrating the performance and robustness of the proposed controller for a vertical
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drilling system.

2.5 Conclusion

The control design to avoid drilling system to operate in undesired conditions based on bar-

rier Lyapunov functions is studied in this chapter. It is based on a model with coupled axial and

torsional dynamics through the bit-rock interaction constrained by a DDE, which is transformed

into internal and external dynamics using an input-output decoupling approach. The iBLF is im-

plemented in a framework of backstepping, where explicit constraints on system states are em-

bedded in the design of the Lyapunov function. In the numerical simulations, effectiveness of the

proposed controller is validated through comparison of open-loop and closed-loop case studies.

Furthermore, the state-constrained control strategy proposed in this study can be extended to a

general class of control problems of regenerative process with state-dependent time delays, such

as machine tool chatter [79, 80], which have not been explored before.

In the future study, we plan to investigate the state-constrained/iBLF control for directional

drilling systems. A more sophisticated dynamics model incorporating the curved trajectory and

the lateral motion will be used in the control design. The impact on the state constrained control

on the trajectory tracking, rate of penetration regulation and vibration mitigation will be studied.
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3. STATE BARRIER AVOIDANCE CONTROL DESIGN USING A DIFFEOMORPHIC

TRANSFORMATION BASED METHOD

3.1 Introduction

State constrained control or state-barrier avoidance control has recently attracted much atten-

tion in the field of nonlinear control systems. The problem is to constrain the system states to avoid

undesired operating regions or barriers during convergence. In practice, constraints can arise as an

inherent characteristic of systems, such as robot manipulators [81] and electrostatic microactuators

[82], or can be deliberately chosen to improve the performance of systems, such as a marine riser

[61], a crane system [60], a multi-spacecraft system [59], and a downhole drilling system [83].

In this chapter, we propose a new state-barrier avoidance control method based on state-space

transformation. As shown in Fig. 3.1, the original state space on the left will be transformed

into a new space through a diffeomorphic transformation. The barrier will be mapped to infinity

or a region far from the origin of the new space. In the new space, as long as we can design a

controller ensuring stability in the radially bounded region, the control will ensure avoidance of

the barrier in the new space and therefore the same can be achieved in the original space. In other

words, the barrier avoidance control is translated into a regular control design in the new space.

This conversion can bring in an important benefit. It converts the state-constrained problem to an

unconstrained one, and avoids the requirement of having the control design based on a Lyapunov

function of a specific form, the limiting factor that restricts many control schemes to be used. For

example, it is difficult to use a sliding mode control scheme in the existing BLF based design,

since the design requires a single overall Lyapunov function containing all the barrier terms to

be available, while the sliding mode scheme requires two phases (reaching and sliding) and the

control design cannot be done with a single Lyapunov function. Nevertheless, as will be shown

with a case study, using our new framework, it is convenient to use a sliding mode approach to

c©2020 IEEE. Reprinted, with permission, from D. Tian, C. Ke, and X. Song, “State Barrier Avoidance Control
Design Using a Diffeomorphic Transformation Based Method,” American Control Conference (ACC), pp. 854-857,
2020
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Figure 3.1: Diffeomorphic transformation from x-coordinates (original space) to x∗-coordinates
(new space). The barrier in the original space is projected far from the origin or to infinity in the
new space.

design a barrier avoidance controller. Thus, the new method opens up opportunities for addressing

barrier avoidance using many well established nonlinear control techniques.

The rest of this chapter is organized as follows. In Section 3.2, we formulate the barrier avoid-

ance control problem for a nonlinear system, and provide mathematical preliminaries on the suffi-

cient conditions for the invariance of the stability properties under state transformation. Section 3.3

presents the main results of this study, where a diffeomorphic transformation based method is pro-

posed to achieve the barrier avoidance and to maintain the stability properties. Finally, Section 3.4,

Section 3.5, and Section 3.6 exhibit three case studies using sliding mode control, backstepping

control, and LPV control techniques, respectively, applying to different classes of nonlinear sys-

tems. Simulations results are shown to prove efficacy of the proposed method.

3.2 Problem Formulation and Preliminaries

Consider the problem of designing a barrier avoidance controller u = K(x) for the nonlinear

system Σol:

Σol : ẋ = hol(x, u) (3.1)
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where x ∈ Rn and the initial condition x(0) = x0. The closed-loop system Σ : ẋ = hol(x,K(x)) =

h(x) is locally Lipschitz in x, ensuring the uniqueness of the solution. Defining the safety region

as D ⊂ Rn, the objective is:

System Σ is stable (asymptotically/exponentially stable) at the origin x = 0 and the states do

not cross the barrier set by the boundary of D.

Under a smooth non-degenerate change of coordinates x∗ = Φ(x), x ∈ Ω, the closed-loop

system Σ is transformed into the new coordinates. The original system and the transformed system

are denoted as:

Σ : ẋ = h(x), x ∈ Ω ⊆ Rn (3.2)

Σ∗ : ẋ∗ = h∗(x∗), x∗ ∈ Φ(Ω) ⊆ Rn (3.3)

Given the initial conditions for Σ and Σ∗ as x0 and x∗0 = Φ(x0) respectively, we denote the solu-

tions of Σ and Σ∗ as xS(t) and x∗S(t) for t ∈ [0,∞). The following two Lemmas provide conditions

to maintain stability under the change of coordinates.

Lemma 1. Consider a desired trajectory xd(t) ∈ Ω and x∗d(t) = Φ(xd(t)) ∈ Φ(Ω). Define the

errors as

z(t) = xS(t)− xd(t), z∗(t) = x∗S(t)− x∗d(t) (3.4)

If there exist constants σ > 0 and L̄ > 0 such that

‖z∗(t)‖ < σ and ‖z(t)‖ ≤ L̄‖z∗(t)‖ (3.5)

for all t ∈ [0,∞) and x∗ ∈ Φ(Ω), then the stability (asymptotical/exponential stability) of z∗(t)

at z∗ = 0 can infer the stability of z(t) at z = 0. In particular, when x∗d(t) = c∗ and xd(t) =

Φ−1(c∗) = c (c, c∗ are constants) and for all t ∈ [0,∞), the stability of x∗S(t) at x∗S = c∗ can infer

the stability of xS(t) at xS = c.
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Proof: We first specify an arbitrary ε̄ > 0 to have ‖z(t)‖ < ε̄ for all t ∈ [0,∞) and choose a

positive constant ε < min[ε̄/L̄, σ]. Given the stability of z∗(t), there exists a δ(ε) > 0 such that

‖x∗S(0)− x∗d(0)‖ < δ ⇒ ‖x∗S(t)− x∗d(t)‖ < ε (3.6)

for all t ∈ [0,∞). Since the mapping x∗ = Φ(x) is smooth and is Lipschitz in Ω, then there exists

a constant L > 0 such that

‖x∗S(0)− x∗d(0)‖ ≤ L‖xS(0)− xd(0)‖ (3.7)

Choosing δ̄ = δ/L, we can rewrite it as δ̄ = δ̄(ε̄), since δ̄ depends on ε̄. If ‖xS(0) − xd(0)‖ <

δ̄ holds, we have ‖x∗S(0) − x∗d(0)‖ ≤ Lδ̄ < δ as per (3.7). Moreover, it can be implied that

‖x∗S(t)− x∗d(t)‖ < ε < ε̄/L̄ as a result of (3.6).

Therefore, using the condition (3.5), we can conclude that for any ε̄ > 0, there exists a δ̄ = δ̄(ε̄)

such that

‖xS(t)− xd(t)‖ ≤ L̄‖x∗S(t)− x∗d(t)‖ < ε̄ (3.8)

whenever ‖xS(0)− xd(0)‖ < δ̄ holds. This completes the proof of stability for z(t).

Besides, considering the asymptotical stability of z∗(t), an additional condition is given as

lim
t→∞

(x∗S(t)− x∗d(t)) = 0 (3.9)

By the inequality (3.8), the following condition holds

lim
t→∞

(xS(t)− xd(t)) = 0 (3.10)

We conclude that z(t) is asymptotically stable at 0.

Next, considering the exponential stability of z∗(t), an additional condition is given as: there
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exists δ > 0, µ > 0 and P > 0 such that

‖x∗S(t)− x∗d(t)‖ ≤ P‖x∗S(0)− x∗d(0)‖e−µt (3.11)

Using the facts of (3.5), (3.7) and (3.11), it gives

‖xS(t)− xd(t)‖ ≤ L̄‖x∗S(t)− x∗d(t)‖

≤ L̄P‖x∗S(0)− x∗d(0)‖e−µt

≤ LL̄P‖xS(0)− xd(0)‖e−µt (3.12)

We conclude that z(t) is exponentially stable at 0. �

Lemma 2. Given the definition of z(t) and z∗(t) in Lemma 1, if Φ : Ω → Φ(Ω) is a diffeomor-

phism, and there exists an σ̄ > 0 such that a closed σ̄-neighborhood of an arbitrary point x∗S(t),

t ∈ [0,∞), is a subset of Φ(Ω), then there exist constants 0 < σ ≤ σ̄ and M > 0 such that

‖z∗(t)‖ < σ and ‖z(t)‖ ≤M‖z∗(t)‖ (3.13)

for all t ∈ [0,∞) and x∗ ∈ Φ(Ω).

Proof: We specify 0 < σ ≤ σ̄ and have ‖x∗S(t)−x∗d(t)‖ < σ for t ∈ [0,∞). Define a set Uσ as

Uσ ,
⋃

t∈[0,∞)

{
x∗ ∈ Rn

∣∣ ‖x∗S(t)− x∗‖ ≤ σ
}

(3.14)

Here, Uσ is a compact set and satisfies Uσ ⊆ Uσ̄ ⊂ Φ(Ω) and x∗d(t) ∈ Uσ for t ∈ [0,∞).

The diffeomorphism Φ−1 has the Lipschitz property on the compact convex set Q at certain

t = τ .

Qτ,σ ,
{
x∗ ∈ Rn

∣∣ ‖x∗S(τ)− x∗‖ ≤ σ
}

(3.15)
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The Lipschitz constant on the set Qτ,σ satisfies

LQτ,σ = sup
Qτ,σ

∥∥∥∥∂Φ−1

∂x∗

∥∥∥∥ ≤ sup
Uσ

∥∥∥∥∂Φ−1

∂x∗

∥∥∥∥ = M (3.16)

Thus, for all τ ∈ [0,∞) we have

‖xS(τ)− xd(τ)‖ ≤M‖x∗S(τ)− x∗d(τ)‖ (3.17)

This completes the proof. �

3.3 Barrier Avoidance Control with the Diffeomorphic Transformation

To achieve the control objective as discussed in Section 3.2, we propose a diffeomorphic state

transformation based barrier avoidance control method as the following.

Theorem 2. Consider the closed-loop system Σ (defined in (3.2)) and a given open set D. The

boundary of D is noted as ∂D, which is the barrier to avoid. If a diffeomorphism x∗ = Φ(x)

transforms the system Σ into Σ∗ (defined in (3.3)) and satisfies:

1) The transformation x∗ = Φ(x) mapsD into Rn in x∗-coordinates. The boundary ∂D is mapped

to the points at infinity, and the origin x = 0 is mapped to the origin x∗ = 0;

2) The system Σ∗ is globally stable (globally asymptotically/exponentially stable) at x∗ = 0.

Whenever the initial condition x ∈ D, the following statements hold:

a) The states x(t) stay in D for all t ∈ [0,∞), and avoid reaching the barrier ∂D;

b) The system Σ is stable (asymptotically/exponentially stable) at x = 0 with the attractive region

identical to D.

Specially, when the condition 2) is modified as

2) The solution x∗S(t) is locally stable (locally asymptotically/exponentially stable) at x∗ = 0.
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Then the following statements hold:

a) The solution xS(t) stay in D for all t ∈ [0,∞);

b) The system Σ∗ is locally stable (locally asymptotically/exponentially stable) at x = 0.

Proof: In x-coordinates, each point x ∈ D is projected to non-infinity point in x∗-coordinates.

Since Σ∗ is stable, the states x∗(t) are bounded, and do not reach infinity. Due to the fact that

x∗ = Φ(x) is a bijection, the states x(t) will stay in D for all t ∈ [0,∞), and will not reach the

boundary ∂D.

The projection x∗ = Φ(x) maps D into Rn, and in Rn the closed σ̄-neighborhood of any

trajectory will belong to Rn for σ̄ > 0. According to Lemma 1 and Lemma 2, stability (asymptot-

ical/exponential stability) will be maintained under the state transformation from x∗-coordinates

to x-coordinates. Since global stability is achieved in x∗ coordinates, the attractive region in x-

coordinates is idential to D.

The local stabilities case is derived in a similar way. �

Remark 2. In the existing barrier avoidance methods [50, 51, 54], the forward invariance of the

set D (barrier avoidance of ∂D) and the stability are ensured by choosing a barrier Lyapunov

function (BLF) V (x) which satisfies the following two conditions:

1) V (x)→∞ as x→ ∂D;

2) V (0) = 0, V (x) > 0 for x ∈ D/{0} and V̇ (x) ≤ 0 for x ∈ D.

However, the design of BLF requires a careful selection of Lyapunov candidate to meet the two

conditions at the same time, and many times it is non-trivial to find such a BLF or hard to design a

controller based on such a Lyapunov function of a specific form. In this study, our method proposed

in Theorem 2 decompose the control design into two steps:

i) Find a diffeomorphism x∗ = Φ(x) satisfying the conditions given in Theorem 2;
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ii) Design a controller in the new coordinates to globally stabilize the transformed system Σ∗.

Specially, we can use a Lyapunov-based approach for Σ∗, i.e., choosing a Lyapunov function

V (x∗) satisfying the radially unbounded condition ‖x∗‖ → ∞ ⇒ V (x∗)→∞.

The method converts a state constrained control problem to a non-constrained problem, which

allows greater flexibility in the control design and thus can be more promising to reach a design

solution.

In the next two sections, case studies are given to demonstrate the effectiveness of the proposed

algorithm.

3.4 Case Study I: Sliding Mode Control with Barrier Avoidance

3.4.1 Control Design

For the first case study, we design the barrier avoidance controller based on a sliding mode

scheme. This shows an essential benefit of the proposed control method. Unlike the existing

barrier Lyapunov function (BLF) based control design method, our design is not based on a sin-

gle Lyapunov function of a specific form, and thus can be used under the sliding mode scheme

which requires two phases (sliding and reaching). This offers more flexibility in the control design

options. We consider a nonlinear double integrator as:

ẋ1 = x2

ẋ2 = f(x) + g(x)u+ δ(x, u) (3.18)

where f(x), g(x) and δ(x, u) are sufficiently smooth, and δ(x, u), g(x) are unknown, satisfying

g(x) ≥ g0 > 0. The safety region D is defined by

D =
{
x ∈ R2

∣∣ |x1| < k1, |x2| < k2

}
(3.19)
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where k1,2 > 0. The diffeomorphic transformation is chosen by

x∗1 = tan(β1x1), β1 = π/(2k1)

x∗2 = tan(β1x1), β2 = π/(2k2) (3.20)

The system (3.18) in the new coordinates is written as

ẋ∗1 = β1β
−1
2 (1 + x∗1

2) tan−1 x∗2

ẋ∗2 = β2(1 + x∗2
2)(f(x) + g(x)u+ δ(x, u)) (3.21)

Design the sliding manifold as s = x∗1 + x∗2. We have the system dynamics on the sliding surface

s = 0 as

ẋ∗1 = −β1β
−1
2 (1 + x∗1

2) tan−1 x∗1 (3.22)

where x∗1 is globally exponentially stable at x∗1 = 0. Then taking time-derivative of s gives

ṡ =β1β
−1
2 (1 + x∗1

2) tan−1 x∗2 + β2(1 + x∗2
2)(f(x) + g(x)u+ δ(x, u)) (3.23)

We choose the control u as

u =
1

ĝ(x)

Å
−f(x)− β1(1 + x∗1

2) tan−1 x∗2
β2

2(1 + x∗2
2)

ã
+ v (3.24)

where ĝ(x) is the nominal model of g(x), and v is the virtual control input. Plugging (3.24) into

(3.23) gives

ṡ = β2(1 + x∗2
2)g(x)v + ∆(x∗, u) (3.25)
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where ∆ is an uncertainty term defined as

∆(x∗, u) =β2(1 + x∗2
2)δ(x, u) +

Å
1− g(x)

ĝ(x)

ãÅ
β2(1 + x∗2

2)f(x) +
β1

β2

(1 + x∗1
2) tan−1 x∗2

ã
(3.26)

For a continuous function %(x∗) > 0, we assume that

∣∣∣∣ ∆(x∗, u)

β2(1 + x∗2
2)g(x)

∣∣∣∣ ≤ %(x∗) (3.27)

Then we design the virtual control input v as

v = −ψ(x∗)sat
(s
ε

)
(3.28)

where sat(·) denotes the saturation function and ψ(x∗) ≥ %(x∗) + ψ0, for ψ0 > 0. Next, choosing

the Lyapunov function Vs = 1/2s2, in the region |s| > ε we can obtain

V̇s = sṡ ≤ β2(1 + x∗2
2)g(x)(sv + |s|%(x∗))

≤ β2(1 + x∗2
2)g(x)(−|s|ψ(x∗) + |s|%(x∗))

≤ −β2(1 + x∗2
2)g0ψ0|s|

≤ −β2g0ψ0|s| < 0 (3.29)

Also, having the Lyapunov function V0 = 1/2x∗1
2, we can always find class K functions φ1, φ2, φ3

and γ such that

φ1(|x∗1|) ≤ V0 ≤ φ2(|x∗1|) (3.30)

V̇0 = β1β
−1
2 (1 + x∗1

2) tan−1(−x∗1 + s) ≤ −φ3(|x∗1|), ∀ |x∗1| ≥ γ(|s|) (3.31)
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Since V0 is radially unbounded and the above conditions hold globally, we establish the following

theorem to give a sufficient condition for the barrier avoidance control objective.

Theorem 3. Consider the systems (3.18) and (3.21). If we choose the control u given by (3.24)

and (3.28), satisfying the condition (3.27) globally and %(0) = 0, then there exists ε∗ > 0 such

that, for 0 < ε < ε∗, the origin of system (3.21) is globally asymptotically stable, and the origin of

system (3.18) is asymptotically stable with the attractive region D given in (3.19).

Proof: For a positive constant c, we have

|s| ≤ c ⇒ V̇0 ≤ −φ3(|x∗1|), for |x∗1| ≥ γ(c) (3.32)

We define a class K function φ by

φ(r) = φ2(γ(r)) (3.33)

Then, we derive the following

V0(x∗1) ≥ φ(c) ⇒ V0(x∗1) ≥ φ2(γ(c))

⇒ φ2(|x∗1|) ≥ φ2(γ(c))

⇒ |x∗1| ≥ γ(c)

⇒ V̇0 ≤ −φ3(|x∗1|) ≤ −φ3(γ(c)) (3.34)

Thus, V̇0 is negative on the boundary V0(x∗1) = c0. When c0 ≥ φ(c), the set

P = {V0(x∗1) ≤ c0} × {|s| ≤ c} (3.35)

is positively invariant whenever c > ε. Since V̇0 ≤ −φ3(ε) for all V0(x∗1) ≥ φ(ε), the trajectories
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will reach the positively invariant set

Pε = {V0(x∗1) ≤ φ(ε)} × {|s| ≤ ε} (3.36)

Due to the fact that V0(x∗1) is radially unbounded, the set P includes any initial conditions. All

trajectories that start in P will enter Pε within finite time. Inside Pε, the closed-loop system is

expressed as

ẋ∗1 = β1β
−1
2 (1 + x∗1

2) tan−1(−x∗1 + s)

ṡ = −β2(1 + x∗2
2)g(x)ψ(x∗)

s

ε
+ ∆(x∗, u) (3.37)

There exist positive constants c1, c2, c3 and c4 such that

c1|x∗1|2 ≤ V0(x∗1) ≤ c2|x∗1|2

∂V0

∂x∗1
β1β

−1
2 (1 + x∗1

2) tan−1(−x∗1) ≤ −c3|x∗1|2∣∣∣∣∂V0

∂x∗1

∣∣∣∣ ≤ c4|x∗1| (3.38)

in the neighborhood of x∗1 = 0. By the smoothness of tan−1(·) and ∆, we can choose positive

constants p1, p2 and p3 such that

|β1β
−1
2 (1 + x∗1

2) tan−1(−x∗1 + s)β1β
−1
2 (1 + x∗1

2) tan−1(−x∗1)| ≤ p1|s|

|∆| ≤ p2|x∗1|+ p3|s| (3.39)

in the neighborhood of (x∗1, s) = (0, 0). Choose the Lyapunov candidate as

V = V0 + Vs (3.40)
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It is shown that

V̇ ≤ −c3|x∗1|2+(c4p1 + p2)|x∗1||s|+ p3|s|2 −
β2g0ψ0

ε
|s|2 ≤ 0 (3.41)

holds for sufficiently small ε. �

3.4.2 Simulation Results

Consider an example of a cart with a nonlinear spring moving on a plane [84]

ẋ1(t) = x2(t)

ẋ2(t) =
1

M
(−k0e

−x1(t)x1(t)− hdx2(t) + u(t) + w(t)) (3.42)

where M = 1 kg is the mass of the cart, and x1 and x2 are the displacement and the velocity of the

cart respectively, as shown in Fig. 3.2. The nonlinear spring stiffness is k = k0e
−x1 = 0.33e−x1

N/m and the damping coefficient is hd = 1.1 Ns/m. The force u applied on the cart is the control

input. The air resistance force w is expressed as

w = −cdx2
2sign(x2) (3.43)

where cd is the resistance coefficient satisfying 0 ≤ cd ≤ 0.4 Ns2/m2. The state constraints

are chosen as |x1| < 0.5 m and |x2| < 1 m/s. Considering w as an unknown term, the control

parameters are designed as ψ(x∗) = 0.5 and ε = 0.001. Using the barrier avoidance based sliding

mode control approach, various initial conditions are tested in the simulation without any violations

of the constraints, as shown in Fig. 3.3(a). In comparison, when a standard sliding mode control

is used under the same initial conditions, the barriers are reached and the constraints are violated,

as shown in Fig. 3.3(b). This simulation result verifies the effectiveness of the proposed barrier

avoidance scheme.
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Figure 3.2: Sketch of the mechanical system

3.5 Case Study II: Backstepping Control with Barrier Avoidance

3.5.1 Control Design

Consider the following nth order nonlinear system in a strict feedback form

ẋi = fi(x̄i) + gi(x̄i)xi+1, i = 1, 2, ..., n− 1

ẋn = fn(x̄n) + gn(x̄n)u

y = x1 (3.44)

where x̄i = [x1, x2, ..., xi]
T , and fi(x̄i), gi(x̄i) are smooth functions under the assumption gi 6= 0.

In this case, the safety region D is defined as

D =
{
x ∈ Rn

∣∣ |xi| < ki, i = 1, 2, ..., n
}

(3.45)

The control objective is to track the desired trajectory yd(t) while the states can avoid reaching the

barrier ∂D., where |yd| < k1 and its ith order derivatives (i = 1, ..., n) are bounded. The state

transformation for each state xi is given as

x∗i =
xi

(k2
i − x2

i )
1/2
, i = 1, 2, ..., n (3.46)
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Figure 3.3: Phase portrait with various initial conditions: a) Barrier avoidance sliding mode con-
trol; b) Standard sliding mode control (Initial conditions are marked by ‘+’.)

In the new coordinates, (3.44) is rewritten as

ẋ∗i =
(1 + x∗i

2)3/2

ki

Å
f ∗i (x̄∗i ) + g∗i (x̄

∗
i )

ki+1x
∗
i+1

(1 + x∗i+1
2)1/2

ã
, i = 1, 2, ..., n− 1

ẋ∗n =
(1 + x∗n

2)3/2

kn
[f ∗n(x̄∗n) + g∗n(x̄∗n)u]

y∗ = x∗1 (3.47)
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where x̄∗i = [x∗1, x
∗
2, ..., x

∗
i ]
T , and the identities f ∗i (x̄∗i ) = fi(x̄i), g∗i (x̄

∗
i ) = gi(x̄i) hold. We define

y∗d = yd
(k21−y2d)1/2

as the desired trajectory in the new coordinates. Note that, system (3.47) is in a

pure feedback form instead of a strict feedback form.

Step 1: Define z∗1 = x∗1 − y∗d, z∗i = x∗i − α∗i−1, i = 2, ..., n, z̄∗i = [z∗1 , ..., z
∗
i ]
T and ȳdi =

[yd, y
(1)
d , ..., y

(i)
d ]T . Choose the Lyapunov candidate V1 = 1/2z∗1

2. The time-derivative of V1 is

given as

V̇1 = z∗1

Å
(1 + x∗1

2)3/2

k1

Å
f ∗1 + g∗1

k2(z∗2 + α1)

(1 + x∗2
2)1/2

ã
− ẏ∗d

ã
(3.48)

Design the stabilizing function α∗1 as

α∗1(x̄∗2, z
∗
1) =

(1 + x∗2
2)1/2

k2

1

g∗1

Å
− f ∗1 +

k1(ẏ∗d − κ1z
∗
1)

(1 + x∗1
2)3/2

ã
(3.49)

where κ1 > 0 is a constant control gain. We obtain

V̇1 = −κ1z
∗
1

2 +
(1 + x∗1

2)3/2

k1

k2

(1 + x∗2
2)1/2

g∗1z
∗
1z
∗
2 (3.50)

Step i (i=2,...,n): Choose the Lyapunov candidate Vi = 1/2z∗1
2 + · · · + 1/2z∗i

2. The time-

derivative of Vi is given as

V̇i =− κ1z
∗
1

2 − · · · − κi−1z
∗
i−1

2 +
(1 + x∗i−1

2)3/2

ki−1

ki
(1 + x∗i

2)1/2
g∗i−1z

∗
i−1z

∗
i

+ z∗i

Å
(1 + x∗i

2)3/2

ki

Å
f ∗i + g∗i

ki+1(z∗i+1 + α∗i )

(1 + x∗i+1
2)1/2

ã
− α̇∗i−1

ã
(3.51)

Design the stabilizing function α∗i as

α∗i (x̄
∗
i+1, z̄

∗
i ) =

(1 + x∗i+1
2)1/2

ki+1

1

g∗i

(
− f ∗i +

α̇∗i−1 − κiz∗i −
(1+x∗i−1

2)3/2

ki−1

kig
∗
i−1z

∗
i−1

(1+x∗i
2)1/2

k−1
i (1 + x∗i

2)3/2

)
(3.52)
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where κi > 0 is a constant control gain. Then we have

V̇i = −κ1z
∗
1

2 − · · · − κiz∗i
2 +

(1 + x∗i
2)3/2

ki

ki+1g
∗
i z
∗
i z
∗
i+1

(1 + x∗i+1
2)1/2

(3.53)

Define a revised stabilizing function α̃∗i as

α̃∗i (x̄
∗
i+1, z̄

∗
i ) ,

α∗i (x̄
∗
i+1, z̄

∗
i )

k−1
i+1(1 + x∗i+1

2)1/2
, i = 1, ..., n− 1 (3.54)

We set the control input as

u = α̃∗n(x̄∗n, u, z̄
∗
n) =

1

g∗n

(
− f ∗n +

α̇∗n−1 − κnz∗n −
(1+x∗n−1

2)3/2

kn−1

kng∗n−1z
∗
n−1

(1+x∗n
2)1/2

k−1
n (1 + x∗n

2)3/2

)
(3.55)

where u is affine in α̃∗n, since α̇∗n−1 contains u affinely. Thus, we can rewrite (3.55) by

u = qn(x̄∗n)u+ ln(x̄∗n, z̄
∗
n) (3.56)

where

qn(x̄∗n) =
x∗n

(1 + x∗n
2)1/2

α̃∗n−1

kn
+

n−1∑
i=2

((
n∏

j=i+1

1

1 + x∗j
2

)
x∗i

(1 + x∗i
2)1/2

α̃∗i−1

ki

)

The resulting time-derivative of Vn is

V̇n = −κ1z
∗
1

2 − · · · − κnz∗n
2 (3.57)
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To establish the main result of this case study, we expand the Lyapunov function Vn as

Vn =
1

2
z∗1

2 + · · ·+ 1

2
z∗i

2 + · · ·+ 1

2
z∗n

2

=
1

2
(x∗1 − y∗d)2 + · · ·+ 1 + x∗i

2

2k2
i

Å
kix
∗
i

(1 + x∗i
2)1/2

− α̃∗i−1(x̄∗i , z̄
∗
i−1)

ã2

+ · · ·+ 1 + x∗n
2

2k2
n

Å
knx

∗
n

(1 + x∗n
2)1/2

− α̃∗n−1(x̄∗n, z̄
∗
n−1)

ã2

(3.58)

First, we consider a set-point tracking problem, and the following theorem is obtained as a

direct result of Theorem 2.

Theorem 4. Consider the systems (3.44) and (3.47) under the control law (3.55). Assume that

yd ≡ 0 and α̃∗i |x̄∗i=0 = 0. If there exist control gains κ1, ..., κn−1 such that the following condition

holds for x∗ ∈ Rn

|α̃∗i−1| < λiki, i = 2, ..., n (3.59)

where

λi > 0,
n∑
i=2

λi = 1

Then, the system (3.44) is exponentially stable at the origin with attractive basin D.

Proof: Under the assumptions yd ≡ 0 and α̃∗i |x̄∗i=0 = 0, we can choose Vn as a Lyapunov

candidate for x̄∗ with the equilibrium point x̄∗ = 0. Besides, if the condition (3.59) holds, from

(3.56) we can conclude that |qn| < 1 and the control input u is bounded. Also, in the second

brackets of (3.58), as xi → ∞, kix
∗
i

(1+x∗i
2)1/2

→ ±ki and |α̃∗i−1| < λiki < ki, the Lyapunov function

Vn is radially unbounded in x∗ domain. �

Nevertheless, having |α̃∗i−1| < λiki for x̄∗n ∈ Rn can be too strict in many cases. Besides, the

above theorem only considers a setpoint tracking problem but not a general tracking problem. To

address these issues, we establish the following theorem for a general tracking problem.
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Theorem 5. Consider the systems (3.44) and (3.47). The initial condition x(0) ∈ C ⊆ D. Let

χ ,
{
z̄∗n ∈ Rn, ȳdn ∈ Rn+1

∣∣∣ |z∗i | ≤√2Bv, |yd| ≤ B0, |y(i)
d | ≤ Bi, i = 1, ..., n

}
(3.60)

where Bv = max
x∈C

Vn, 0 < B0 < k1 and Bi > 0. Define

z1 = x1 − yd, zi = xi −
kiα

∗
i−1

(1 + α∗i−1
2)1/2

, i = 2, ..., n (3.61)

and z̄i = [z1, ..., zi]
T . If there exist control gains κ1, ..., κn−1 such that the following condition

holds

sup
(z̄∗n,ȳdn)∈χ

|α̃∗i−1| < λiki, i = 2, ..., n (3.62)

where

λi > 0,
n∑
i=2

λi = 1

then under the control law (3.55), the errors z̄n are exponentially stable at the origin, while the

system states x ∈ D for all t ∈ [0,∞) and the control input u is bounded.

Proof: By (3.57) and (3.58), the errors z̄∗n are exponentially stable at the origin. Due to

Lemma 1 and Lemma 2, we can infer the exponential stability of z̄n at the origin.

If the condition (3.62) holds, Vn → ∞ if and only if x → ∂D. Also, since Vn|t=0 < ∞ and

V̇n ≤ 0, we have Vn|t < ∞ for t ∈ [0,∞). Therefore, x will not reach ∂D and x ∈ D for all

t ∈ [0,∞). �
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3.5.2 Simulation Results

Consider a second-order system

ẋ1 = 0.1x2
1 + x2

ẋ2 = 0.1x1x2 − 0.2x1 + (1 + x2
1)u (3.63)

The state constraints are |x1| < 0.8 and |x2| < 2.5. For the first case, we set yd ≡ 0 and choose

κ1 = 1, κ2 = 2 and (3.62) is satisfied for C = D. Under the barrier avoidance based backstep-

ping control, Fig. 3.4(a) shows the phase portraits starting from various initial conditions. The

trajectories avoid reaching the boundary of the region (predefined barrier) and converge to the ori-

gin exponentially fast. In comparison, when standard backstepping control is used with the same

initial conditions, violation of the state constraints can be observed, as shown in Fig. 3.4(b).

For the second case, we consider a tracking problem. The desired trajectory is defined as

yd = 0.6 sin(0.7t) (3.64)

We choose κ1 = 1, κ2 = 2 as the control gains, such that the condition (3.62) holds for C = D.

As depicted in Fig. 3.5 and Fig. 3.6, x1 and x2 starting from different initial conditions will all

converge to the desired trajectories. The transgressions of the state constraints are prevented, even

for the states with intial conditions close to the boundary.

3.6 Case Study III: LPV Control with Barrier Avoidance

3.6.1 Control Design

Consider a LPV plant

ẋ = A(ρ)x+B(ρ)u (3.65)
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Figure 3.4: Phase portrait with various initial conditions: a) Barrier avoidance backstepping con-
trol; b) Standard backstepping control (Initial conditions are marked by ‘+’.)

where x ∈ Rn, and ρ can be either external time-varying parameters or system states (quasi-LPV).

For ki > 0, i = 1, 2, ..., n, we choose the safe region as

D =
{
x ∈ Rn

∣∣∣ |xi| < ki, i = 1, 2, ..., n
}

(3.66)
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Figure 3.5: Time history of x1 (Dashed line: desired trajectory)
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Figure 3.6: Time history of x2 (Dashed line: desired trajectory)

We can choose the following diffeomorphic transformation

x∗i =
xi√

k2
i − x2

i

, i = 1, 2, ..., n (3.67)
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The converted system dynamics of (3.65) is written as

ẋ∗ =



(1+x∗1
2)3/2

k1
0 · · · 0

0
(1+x∗2

2)3/2

k2
· · · 0

...
... . . . ...

0 0 · · · (1+x∗n
2)3/2

kn

 Â(ρ∗)



k1
(1+x∗1

2)1/2
0 · · · 0

0 k2
(1+x∗2

2)1/2
· · · 0

...
... . . . ...

0 0 · · · kn
(1+x∗n

2)1/2

x
∗

+



(1+x∗1
2)3/2

k1
0 · · · 0

0
(1+x∗2

2)3/2

k2
· · · 0

...
... . . . ...

0 0 · · · (1+x∗n
2)3/2

kn

 B̂(ρ∗)u (3.68)

where A(ρ) = Â(ρ∗) and B(ρ) = B̂(ρ∗). The equation (3.68) can be rewritten as

ẋ∗ = A∗(ρ∗, x∗)x∗ +B∗(ρ∗, x∗)u (3.69)

Such system dynamics (3.69) is a quasi-LPV plant, which enables a standard LPV control design

method.

Next, we will briefly introduce the LPV control design approach [85]. First, we simplified the

expression of (3.69) by merging x∗ into ρ∗

ẋ∗ = A∗(ρ∗)x∗ +B∗(ρ∗)u (3.70)

where |ρ∗i | < k∗ρi and |ρ̇∗i | < kρ̇∗i . The feedback control law is u = E(ρ∗)x∗. Consider the Lyapunov

candidate V = x∗TP (ρ∗)x∗, where P T (ρ∗) = P (ρ∗). The closed-loop system is exponentially

stable if

P (ρ∗) (A∗(ρ∗) +B∗(ρ∗)E(ρ∗)) + (A∗(ρ∗) +B∗(ρ∗)E(ρ∗))T P (ρ∗) + ρ̇∗
∂P (ρ∗)

∂ρ∗
< 0 (3.71)

for all |ρ∗i | < kρ∗i and |ρ̇∗i | < kρ̇∗i . Then (3.71) can be transformed into a more computational
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efficient form

(A∗(ρ∗) +B∗(ρ∗)E(ρ∗))P−1(ρ∗) + P−1(ρ∗) (A∗(ρ∗) +B∗(ρ∗)E(ρ∗))T − ρ̇∗∂P
−1(ρ∗)

∂ρ∗
< 0

(3.72)

Setting Y (ρ∗) = P−1(ρ∗) and Ẽ(ρ∗) = E(ρ∗)P−1(ρ∗), we have

A∗(ρ∗)Y (ρ∗) +B∗(ρ∗)Ẽ(ρ∗) + Y (ρ∗)A∗(ρ∗) + ẼT (ρ∗)B∗T (ρ∗)− ρ̇∗∂Y (ρ∗)

∂ρ∗
< 0 (3.73)

Here, the set of Y (ρ∗) and Ẽ(ρ∗) satisfying (3.73) is convex, and (3.73) is a linear matrix inequality

(LMI). However, because of the dependence of ρ∗, Eq. (3.73) contains infinitely many sets of LMIs.

An approch to solve this issue is discretizing the dependence parameter ρ∗. For an example with

two time-varying parameters ρ1,2, we can divide the interval [−kρi , kρi ] into Ni intervals of width

hi for i = 1, 2. Eq. (3.73) becomes a finite collection of LMIs, indexed with mi = 1, 2, ..., Ni

A∗m1,m2
Ym1,m2 +B∗m1,m2

Ẽm1,m2 + Ym1,m2A
∗
m1,m2

+ ẼT
m1,m2

B∗Tm1,m2

± kρ̇1
Ym1,m2 − Ym1−1,m2

h1

± kρ̇2
Ym1,m2 − Ym1,m2−1

h2

< 0 (3.74)

whereA∗m1,m2
= A∗([m1h1−kρ1 ,m2h2−kρ2 ]T ) and the subscipts have the same meaning for other

matrices. It is worth noting that the rate of variation ρ̇ enters linearly into (3.73), it is sufficient to

only check the vertex points instead of all points of ρ̇ in the region [−kρ̇1 , kρ̇1 ]× [−kρ̇2 , kρ̇2 ].

3.6.2 Simulation Results

Since the LPV control may only ensure the locally exponential stability instead of global stabil-

ity for the converted dynamics, through Theorem 2 we know it only ensure the locally exponential

stability for the original system (3.65) without any transgress of the barrier. Nevertheless, it can be

demonstrated that the region of attraction (RA) is indeed enlarged by the barrier avoidance control,

compared with the direct application of the same type of control, i.e. LPV control, to the original

system (3.65). We will show this in the following example.
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Consider a second order nonlinear system

ẋ1 = 0.1(1 + x2
1)x1 + x2

ẋ2 = −2x1 − 3x2 + 2u (3.75)

The constrained region is

D = {|x1| < 5, |x2| < 80} (3.76)

Using the barrier avoidance based LPV control, various initial conditions are tested in the simula-

tion as shown in the phase portrait (Fig. 3.7(a)) and the feasibility initial map (Fig. 3.8(a)), where

the region of attraction almost covers the constrained region. In comparison, using a standard LPV

control under the same initial conditions, the region of attraction is in a narrow band around x1

axis, as shown in Fig. 3.7(b) and Fig. 3.8(b). This example verifies that the region of attraction can

be enlarged through the the barrier avoidance based LPV control.

3.7 Conclusions

The control design to ensure state barrier avoidance based on a diffeomorphic transformation

method is proposed in this chapter. Sufficient conditions on choosing such diffeomorphic transfor-

mation are given to maintain stability under the change of coordinates, while the state constraints

are not violated. Three case studies using different control strategies are discussed for differ-

ent classes of nonlinear systems, illustrating the flexibility of this approach in the control design.

Finally, the performance of the proposed algorithm is demonstrated through a comparison of sim-

ulation examples between the proposed barrier avoidance control methods and standard nonlinear

control techniques.
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Figure 3.7: Phase portrait with various initial conditions: a) Barrier avoidance LPV control; b)
Standard LPV control
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Figure 3.8: Feasibility of the solution with various initial conditions (Feasible solutions are labeled
with ‘o’, and infeasible solutions are labeled with ‘x’): a) Barrier avoidance LPV control; b)
Standard LPV control
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4. ADDRESSING COMPLEX STATE CONSTRAINTS IN THE DIFFEOMORPHIC

TRANSFORMATION BASED BARRIER AVOIDANCE CONTROL

4.1 Introduction

Recently, the area of state-constrained control attracts a surge of research interests, and two

major paths are followed to perform the state-constrained control design. One path is to formu-

late the state constraints as extra conditions or penalty terms, leaving the original control system

unchanged. This includes the Reference Governor that modulates the control reference via an

online nonlinear optimization [47], the Model Predictive Control that solves a nonlinear numer-

ical optimization with constrained conditions in real-time [44], and the quadratic programming

based approach that combines both control Lyapunov functions and control barrier functions [86].

The other path is to embed the state constraints directly into the control design, or modify the

original control system into a new one, including the Barrier Lyapunov Function that assigns an

infinite value to the Lyapunov candidate on the boundary of the barrier region [50, 53], the Control

Lyapunov-Barrier Function that designs a level set to not only cover the barrier region but con-

tain an attractive basin [48], and the tranformation based Barrier Avoidance Control that projects

the original constrained space into an unconstrained one through diffeomorphic transformation.

Ref. [87] first proposes the diffeomorphism based approach and proves its feasibility using Lya-

punov based methods, and [88] shows its applicability to a general control problem including non-

Lyapunov based methods through basic definition of stability. In the literature, the second path

of the state-constrained control has been explored intensively in the past decade and successfully

implemented to many practical applications. Most of the work only considers a hyperrectangle

(or orthotope) shape of the barrier region, which can be addressed directly using a certain type

of nonlinear control design such as backstepping control. However, a real-world control problem

usually has a more complex shape of the state constraints rather than a simple hyperrectangle type,

c©2021 IEEE. Reprinted, with permission, from D. Tian and X. Song, “Addressing Complex State Constraints
in the Diffeomorphic Transformation Based Barrier Avoidance Control,” American Control Conference (ACC), pp.
2304-2308, 2021
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and the study of control design involving complex state constraints is still limited.

In this chapter, we aim to systematically construct a state transformation for a class of com-

plex state constraints under the framework of the diffeomorphism based barrier avoidance control

scheme [88]. Firstly, complex state barriers are addressed for the first time through construction

of the state transformation in a cascade manner, i.e., the ith transformation only depends on the

1st to the ith states. This enables a systematic construction of the transformation in an efficient

fashion, in particular for barriers with a complex shape. Also, this structure makes the gradient

matrices of the transformation and its inverse both be in lower triangular forms, which ensures the

non-singularity of the matrices and therefore the diffeomorphism property of the transformation.

Secondly, the first case study applies the proposed method in the sliding mode control scheme. The

analysis proves that with any types of complex state barrier of n-dimension with smooth enough

boundaries as described in the case study, the double integrator system can be stabilized under

all initial conditions inside the barrier region. Thirdly, the other case study implements the com-

plex state barriers into the backstepping control. We introduce the parametric model uncertainty

and the adaptive control into this design, ensuring the strictly negative definite property of the

time-derivative of the Lyapunov candidate, which is not established in the previous work [89].

The rest of this chapter is organized as follows. In Section 4.2, we have the state-constrained

control problem formulated for a nonlinear system. Section 4.3 establishes a systematic approach

to find the state transformation for a class of complex barrier regions in the high-dimension state

space, and provides an analysis to prove the diffeomorphism property of this transformation. Fi-

nally, two case studies in Section 4.4 and Section 4.5 implement this method to sliding mode

control design and adaptive backstepping design, demonstrating the effectiveness of the proposed

algorithm.

Throughout the chapter, we define x̄i = [x1, x2, ..., xi]
T , z̄i = [z1, z2, ..., zi]

T , and ȳdi =

[yd, y
(1)
d , y

(2)
d , ..., y

(n)
d ]T . We also denote ‖·‖ to be the Euclidean norm in Ri, λmin(·) and λmax(·) to

be the minimum and maximum eigenvalues of the matrix, and ∂X to be the boundary of the set X .
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4.2 Problem Formulation and Preliminaries

In this study, we consider a state-constrained control problem to design a state feedback con-

troller u = K(x) for the nonlinear system Σol:

Σol : ẋ = hol(x, u) (4.1)

where x ∈ Rn and the initial condition x(0) = x0. The closed-loop system Σ : ẋ = hol(x,K(x)) =

h(x) is locally Lipschitz in x, ensuring the uniqueness of the solution. Defining the safety region

D ⊂ Rn for the state x, the control objective is:

System Σ achieves the trajectory or setpoint tracking in D and the states do not cross the

boundary of D.

Under a diffeomorphism x∗ = Φ(x), x ∈ Ω, where Ω is a connected region, the closed-loop

system Σ is transformed into the new coordinates. The original system and the transformed system

are

Σ : ẋ = h(x), x ∈ Ω ⊆ Rn (4.2)

Σ∗ : ẋ∗ = h∗(x∗), x∗ ∈ Φ(Ω) ⊆ Rn (4.3)

The initial conditions for Σ and Σ∗ are x0 ∈ Ω and x∗0 = Φ(x0), respectively. Given the desired

trajectory xd(t) ∈ Ω, t ∈ [0,∞) and x∗d(t) = Φ(xd(t)) ∈ Φ(Ω), the tracking errors in both the

original and new coordinates are obtained as

z(t) = x(t)− xd(t), z∗(t) = x∗(t)− x∗d(t) (4.4)

To achieve the objective of state-constrained control, the diffeomorphic transformation based

state barrier avoidance control method is established in the following theorem.

Theorem 6. Consider the closed-loop system Σ and a given open set D. The boundary ∂D is the
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barrier to avoid. If a diffeomorphism x∗ = Φ(x) transforms the system Σ into Σ∗ and satisfies:

1) The transformation x∗ = Φ(x) mapsD into Rn in x∗-coordinates. The boundary ∂D is mapped

to the points at infinity.

2) Given the desired trajectory xd(t) ∈ D, t ∈ [0,∞) and x∗d(t) = Φ(xd(t)) ∈ Rn, the tracking

error system z∗ is asymptotically/exponentially stable at 0 for any initial condition x∗0 ∈ Rn.

Whenever the initial condition x0 ∈ D, the following statements hold:

a) The state x(t) stays in D for all t ∈ [0,∞), and avoids reaching the barrier ∂D.

b) The tracking error system z is asymptotically/exponentially stable at 0.

Specially, when xd(t) ≡ xe ∈ D and Φ(xe) = 0 and the condition 2) is modified as

2) The system Σ∗ is globally asymptotically/exponentially stable at 0.

Then the the condition b) is modified as

b) The system Σ is asymptotically/exponentially stable at x = 0 with the attractive region identical

to D.

Proof: The proof of the setpoint tracking case is discussed in Theorem 2 in Chapter 3. The

proof of the general trajectory tracking case can be obtained in the same manner using Lemma 1

and Lemma 2 in Chapter 3. �

Remark 3. The barrier avoidance control method converts a state-constrained control into an

unconstrained one. It allows greater flexibility in the nonlinear control design. This transformation

based approach can also be extended to establishing the equivalence of other system properties,

such as boundedness and ultimate boundedness, between the original and the new state spaces.
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4.3 Diffeomorphic Transformation for Complex State-Constraints

As stated in Section 4.1, most previous studies in the second path of state-constrained control

only focus on the hyperrectangle shape of state barrier, where the state constraints can be generated

separately in each dimension and are independent of other dimensions (for example, |x1| < k1, ...,

|xn| < kn, ki are positive constants). Following Theorem 6, the diffeomorphic transformation

for such orthotope barrier shapes can also be constructed independently in each dimension, as

shown in [88]. However, in pratice many state barriers are in a more complex shape rather than

such simple orthotope shapes. A critical problem to address is having an efficient way to obtain a

feasible transformation for these complex barriers.

In this section, we will investigate the diffeomorphic transformation for a class of complex

state constraints. In the space of Rn, the state barrier is described as

D , {x ∈ Rn
∣∣ kl1 < x1 < ku1 , k

l
2(x1) < x2 < ku2 (x1), ... ,

kli(x̄i−1) < xi < kui (x̄i−1), ... , kln(x̄n−1) < xn < kun(x̄n−1)} (4.5)

where kui (x̄i−1) and kli(x̄i−1) are smooth enough functions with respect to x̄i−1, denoting the upper

and lower bound of xi. The diffeomorphism is chosen in each dimension of xi as

x∗1 = ln
(−kl1 + x1

ku1 − x1

ku1 − k0
1

−kl1 + k0
1

)
x∗i = ln

(−kli(x̄i−1) + xi
kui (x̄i−1)− xi

kui (x̄i−1)− k0
i (x̄i−1)

−kli(x̄i−1) + k0
i (x̄i−1)

)
, i = 2, ..., n (4.6)

This transformation maps the upper and lower bounds kui (x̄i−1) and kli(x̄i−1) into ∞ and −∞,

respectively, in the x∗i -dimension of the new coordinates. Also, a smooth function k0
i (x̄i−1) sat-

isfying kl1 < k0
1 < ku1 and kli(x̄i−1) < k0

i (x̄i−1) < kui (x̄i−1), i = 2, ..., n in xi-domain will be

mapped to 0 in the x∗i -domain. This way the state transformation (4.6) fulfills the requirement

in Theorem 6 and project the point [kori1 , kori2 , ..., korin ]T into the origin of the new space, where

kori1 = k0
1 and korii = k0

i ([k
ori
1 , ..., korii−1]T ). This approach to define the region in each dimension
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sequentially can enable an effective construction of the transformation in a cascade manner, and

also be easily extended to high-dimensional state barriers.

To give an example for illustration, we first consider a two-dimension case as depicted in

Fig. 4.1. The state barrier region ˚�ABCD has a complex boundary instead of a rectangular shape.

In the x1 dimension, the bounds of x1 can be given by two scalars ku1 and kl1. Then we define a

new variable k0
1 = (ku1 + kl1)/2, and the state transformation to get x∗1 can be written as

x∗1 = ln(
−kl1 + x1

ku1 − x1

) (4.7)

It can be verified that this will transform the boundary of x1 (ku1 and kl1) into infinity in the new

space x∗1, and k0
1 will be transformed to the origin. Then, with x1 being constrained, we can capture

its upper and lower bounds as curves ĂDC and ĂBC, which are described by ku2 (x1) and kl2(x1).

We can define a variable k0
2(x1) = (ku2 (x1)+kl2(x1))/2 (curve ĂEC), and the state transformation

to obtain x∗2 is

x∗2 = ln(
−kl2(x1) + x2

ku2 (x1)− x2

) (4.8)

This will transform the barriers ku2 (x1) and kl2(x1) of x2 dimension into infinity, and k0
2(x1) will

be mapped to the origin in x∗2. Next, adding one more dimension x3, we draw the state bar-

rier region in Fig. 4.2. Here, the barrier region is the interior of ˛�A1B1C1D1 − ˛�A3B3C3D3.

The upper and lower bounds in this dimension are the surfaces ˛�A3B3C3D3 and ˛�A1B1C1D1, de-

noted as ku3 (x1, x2) and kl3(x1, x2). Then similarly k0
3(x1, x2) (surface ˛�A2B2C2D2) is designed as

(ku3 (x1, x2) + kl3(x1, x2))/2. The state transformation to get x∗3 is

x∗3 = ln(
−kl3(x1, x2) + x3

ku3 (x1, x2)− x3

) (4.9)

Following the same procedure, the transformation can be constructed up to the nth dimension as

well.
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Next, we will prove the transformation defined in (4.6) is indeed a diffeomorphism. This can

be verified by listing the gradient matrix of the transformation and its inverse and examining if they

are non-singular. For simplicity, we will first rewrite (4.6) as

x∗1 = ln
(−kl1 + x1

ku1 − x1

φ1

)
x∗i = ln

(−kli(x̄i−1) + xi
kui (x̄i−1)− xi

φi(x̄i−1)
)
, i = 2, ..., n (4.10)

where φ1 =
ku1−k01
−kl1+k01

and φi(x̄i−1) =
kui (x̄i−1)−k0i (x̄i−1)

−kli(x̄i−1)+k0i (x̄i−1)
. Since kl1 < k0

1 < ku1 and kli(x̄i−1) <

k0
i (x̄i−1) < kui (x̄i−1), hold, we have φ1 > 0 and φi > 0, i = 2, ..., n. Also, for the inverse

transformation we can obtain the expression of xi using (4.10) as

x1 =
ex

∗
1ku1 + φ1k

l
1

ex
∗
1 + φ1

xi =
ex

∗
i kui (x̄i−1) + φi(x̄i−1)kli(x̄i−1)

ex
∗
i + φi(x̄i−1)

, i = 2, ..., n (4.11)

The gradient matrix of both forward and inverse transformation are derived as



∂x∗1
∂x1

∂x∗1
∂x2

· · · ∂x∗1
∂xn

∂x∗2
∂x1

∂x∗2
∂x2

· · · ∂x∗2
∂xn

...
... . . . ...

∂x∗n
∂x1

∂x∗n
∂x2

· · · ∂x∗n
∂xn

 =



ku1−kl1
(−kl1+x1)(ku1−x1)

0 · · · 0

−∂kl2/∂x1
−kl2+x2

− ∂ku2 /∂x1
ku2−x2

+ ∂φ2/∂x1
φ2

ku2−kl2
(−kl2+x2)(ku2−x2)

· · · 0

...
... . . . ...

−∂kln/∂x1
−kln+xn

− ∂kun/∂x1
kun−xn

+ ∂φn/∂x1
φn

−∂kln/∂x2
−kln+xn

− ∂kun/∂x2
kun−xn

+ ∂φn/∂x2
φn

· · · kun−kln
(−kln+xn)(kun−xn)


(4.12)
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∂x1
∂x∗1

∂x1
∂x∗2

· · · ∂x1
∂x∗n

∂x2
∂x∗1

∂x2
∂x∗2

· · · ∂x2
∂x∗n

...
... . . . ...

∂xn
∂x∗1

∂xn
∂x∗2

· · · ∂xn
∂x∗n

 =



φ1e
x∗1 (ku1−kl1)

(ex
∗
1+φ1)2

0 · · · 0

β2,1(x, x∗)
φ2e

x∗2 (ku2−kl2)

(ex
∗
2+φ2)2

· · · 0

...
... . . . ...

βn,1(x, x∗) βn,2(x, x∗) · · · φnex
∗
n (kun−kln)

(ex
∗
n+φn)2


(4.13)

where

βi,j(x, x
∗) =

i−1∑
k=j

∂xi
∂xk

∂xk
∂x∗j

=
( ∂kli
∂xj

+
ex

∗
i

ex
∗
i + φi

∂(kui − kli)
∂xj

)φjex∗j (kuj − klj)
(ex

∗
j + φj)2

+
i−1∑

k=j+1

( ∂kli
∂xk

+
ex

∗
i

ex
∗
i + φi

∂(kui − kli)
∂xk

)∂xk
∂x∗j

The gradient matrices (4.12) and (4.13) are both in lower triangular forms, and the determinants

of these two gradient matrices are the product of all the diagonal elements. Since the condition

kli < xi < kui and φi > 0 holds for i = 1, ..., n, the determinants of these two matrices have non-

zero values, and the gradient matrices of both forward and inverse transformation are non-singular.

One of the merits of defining the transformation in a cascade manner is that it makes the gra-

dient matrices of the transformation and its inverse be in lower triangular forms. This makes it

straightforward to verify the non-singularity of the gradient matrices, ensuring the diffeomorphic

property of the transformation. Note that, the method of forming the transformation is not de-

pendent on the structure of the system dynamics, so it can be applied to broad types of dynamic

systems. In addition, the transformation requires the barriers kli and kui to be smooth functions.

Nevertheless, even if the barriers in the practical problem are non-smooth, an approximation can

be made at a price of a merely less volume of the barrier region. As long as the state can avoid the

approximated barrier sufficiently close to the original barrier, the control objective will be achieved

without being too conservative.
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4.4 Case Study I: Sliding Mode Control with Complex State-Constraints

4.4.1 Control Design

In this case study, we design the barrier avoidance controller for a double integrator of dimen-

sion n with the state constraint being complex curves as

D = {x ∈ Rn
∣∣ kl1 < x1 < ku1 , k

l
i(x̄i−1) < xi < kui (x̄i−1) for i = 2, ..., n} (4.14)

where kui (x̄i−1) and kli(x̄i−1) are smooth enough functions with respect to x̄i−1. Assume kui (x̄i−1)−

kli(x̄i−1) < qi (qi is a positive constant). Then, consider the double integrator as

ẋ = v

v̇ = f(x, v) +G(x, v)E(x, v)u+ δ(t, x, v, u) (4.15)

where x = [x1, x2, ..., xn]T , v = [v1, v2, ..., vn]T and u = [u1, u2, ..., un]T . Functions f(x, v),

G(x, v), and E(x, v) are sufficiently smooth in (x, v) ∈ D×Rn. The uncertainty term δ(t, x, v, u)

is piecewise continuous in t and sufficiently smooth with respect to (x, v, u), where (t, x, v, u) ∈

[0,∞) × D × Rn × Rn. Assume f(x, v) and E(x, v) are known, and E(x, v) is a non-singular

matrix. Also,G(x, v) and δ(t, x, v, u) are unknown, andG(x, v) is a diagonal matrix with elements

gi(x, v) ≥ g0 > 0.

Choosing (4.10) as the diffeomorphic transformation, we can rewrite the system (4.15) in the

new coordinates as

ẋ∗1 =
ku1 − kl1

(−kl1 + x1)(ku1 − x1)
v1

ẋ∗i =
i−1∑
k=1

αi,k(x)vk +
kui (x̄i−1)− kli(x̄i−1)

(−kli(x̄i−1) + xi)(kui (x̄i−1)− xi)
vi, i = 2, ..., n (4.16)

v̇ = f(x, v) +G(x, v)E(x, v)u+ δ(t, x, v, u) (4.17)
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where

αi,j(x) =
∂x∗i
∂xj

= − ∂k
l
i/∂xj

−kli + xi
− ∂kui /∂xj

kui − xi
+
∂φi/∂xj

φi

Here, we denote ẋ∗ = σ(x, v) through (4.16). The sliding manifolds are designed as

s1 = v1 − h1(x, x∗)

si = vi − hi(x, x∗), i = 2, ..., n (4.18)

where

h1(x, x∗) = −κ1x
∗
1

hi(x, x
∗) = −(−kli(x̄i−1) + xi)(k

u
i (x̄i−1)− xi)

kui (x̄i−1)− kli(x̄i−1)

i−1∑
k=1

αi,k(x)hk(x, x
∗)− κix∗i

The positive constants κi are the control parameters. Denote s = [s1, s2, ..., sn]T and h(x, x∗) =

[h1, h2, ..., hn]T . On the sliding surface s = 0, the system dynamics (4.16) is rewritten as

ẋ∗1 = − ku1 − kl1
(−kl1 + x1)(ku1 − x1)

κ1x
∗
1

ẋ∗i = − kui (x̄i−1)− kli(x̄i−1)

(−kli(x̄i−1) + xi)(kui (x̄i−1)− xi)
κix
∗
i , i = 2, ..., n (4.19)

Since kui −kli
(−kli+xi)(kui −xi)

> 2
qi

, the sub-system (4.19) is globally exponentially stable at x∗ = 0. The

time-derivative of s is then obtained as

ṡ = −
(∂h
∂x
v +

∂h

∂x∗
σ(x, v)

)
+ f(x, v) +G(x, v)E(x, v)u+ δ(t, x, v, u) (4.20)

The control input u is designed as

u = E−1(x, v)
(
− Ĝ−1(x, v)

(
− ∂h

∂x
v − ∂h

∂x∗
σ(x, v) + f(x, v)

)
+ w

)
(4.21)
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where Ĝ−1(x, v) is the nominal model of G(x, v), and w = [w1, w2, ..., wn]T is the virtual control.

Plugging (4.21) into (4.20), we have

ṡi = gi(x, v)wi + ∆i(x, v, w) i = 1, ..., n (4.22)

where gi is the ith diagonal element of G, and ∆i is the ith component of ∆ that can be expressed

as

∆(x, x∗, v, w) =
(
I −G(x, v)Ĝ−1(x, v)

)(
− ∂h

∂x
v − ∂h

∂x∗
σ(x, v) + f(x, v)

)
+ δ(x, v, u)

To eliminate the chattering effect, the virtual control is chosen as

wi = −ψi(x∗, v)sat
(si
ε

)
i = 1, ..., n (4.23)

where sat(·) is the saturation function and ψi(x∗, v) ≥ %i(x
∗, v) + ψ0 for ψ0 > 0. Also, %i(x∗, v)

satisfies

∣∣∣∣∆i(x, x
∗, v, w)

gi(x, v)

∣∣∣∣ ≤ %(x∗, v) i = 1, ..., n (4.24)

Given the above control design, the objective of barrier avoidance control for a double integra-

tor with complex state-constrained can be achieved through the following theorem.

Theorem 7. For the system (4.15) with control u given by (4.21), if the condition (4.24) holds

globally, and %(0, 0) = 0, then there exists ε∗ > 0 such that for 0 < ε < ε∗, the origin of system

(4.16) is globally asymptotically stable, and the equilibrium point x = [kori1 , kori2 , ..., korin ]T , v = 0

of system (4.15) is asymptotically stable with the attractive region (x, v) ∈ D × Rn, where D is

defined in (4.14).
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Proof: In the region of |si| > ε, we choose Vsi = 1/2s∗i
2. The time-derivative of Vsi satisfies

V̇si = siṡi ≤ −gi(x)(siw + |si|%i(x∗, v))

≤ −gi(x)(−|si|ψi(x∗, v) + |si|%i(x∗, v))

≤ −g0ψ0|si| < 0 (4.25)

This ensures the finite time convergence of si to the sliding manifold si = 0. Next, substituting vi

in (4.16) with (4.18), we obtain

ẋ∗1 =
ku1 − kl1

(−kl1 + x1)(ku1 − x1)
(s1 − κ1x

∗
1)

ẋ∗i =
i−1∑
k=1

αi,ksi +
kui − kli

(−kli + xi)(kui − xi)
(si − κix∗i ), i = 2, ..., n (4.26)

We can first choose Vx∗1 = 1/2x∗1
2. The following condition is obtained using (4.26)

V̇x∗1 ≤ −ρ1(|x∗1|) ∀ |x∗1| ≥ γ1(|s1|) (4.27)

where ρ1(·) and γ1(·) are classK functions. In the region |s1| < ε, whenever |x∗1| > γ1(ε), we have

V̇x∗1 ≤ −ρ1(γ1(ε)). Thus, in a finite time, the trajectories will reach the set

P1 =
{
x∗ ∈ Rn

∣∣ |x∗1| ≤ γ1(ε)
}
×
{
s ∈ Rn

∣∣ |s1| ≤ ε
}

(4.28)

For i = 2, ..., n, let Vx∗i = 1/2x∗i
2 and obtain the following condition

V̇x∗i ≤ −ρi(|x
∗
i |) ∀ |x∗i | ≥ γi(|si|) (4.29)

where ρi(·) and γi(·) are class K functions. When the state has already reached the set Pi−1, if
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|si| < ε, we will obtain |x∗i | > γi(ε) and V̇x∗i ≤ −ρi(γi(ε)). Define the set

Pi =
{
x∗ ∈ Rn

∣∣ |x∗1| ≤ γ1(ε), ..., |x∗i | ≤ γi(ε)
}
×
{
s ∈ Rn

∣∣ |s1| ≤ ε, ..., |si| ≤ ε
}

(4.30)

For the scenario that the state is not in Pi, it will reach the set Pi in a finite time. Finally, by

applying the above process repetitively, since Vx∗i is radially unbounded, for any initial conditions,

the system state will reach the positive invariant set Pn in a finite time.

Inside Pn, the closed-loop system is expressed by (4.26) (denoted as ẋ∗ = fa(x
∗, s)) as well as

ṡi = −gi(x, v)ψi(x
∗, v)

si
ε

+ ∆i(x, v, w) i = 1, ..., n (4.31)

There exist a Lyapunov function V0 =
∑n

k=1 Vx∗k and positive constants c1, c2, c3 and c4 such that

c1||x∗||22 ≤ V0(x∗) ≤ c2||x∗||22
∂V0

∂x∗
fa(x

∗, 0) ≤ −c3||x∗||22∣∣∣∣∂V0

∂x∗

∣∣∣∣ ≤ c4||x∗||2 (4.32)

in the neighborhood of x∗ = 0. By the smoothness of fa and ∆, we can choose p1, p2, p3 > 0 such

that

||fa(x∗, s)− fa(x∗, 0)||2 ≤ p1||s||2

||∆||2 ≤ p2||x∗||2 + p3||s||2 (4.33)

in the neighborhood of (x∗, s) = (0, 0). Choosing a Lyapunov candidate V = V0 +
∑n

k=1 Vsk , it is

shown that

V̇ ≤ −c3||x∗||22 + (c4p1 + p2)||x∗||2||s||2 + p3||s||22 −
g0ψ0

ε
||s||22 ≤ 0 (4.34)
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holds for small enough ε. �

4.4.2 Simulation Result

Consider a double integrator

ẋ1 = v1

ẋ2 = v2

v̇1 = x1x2 + 9.66u1 − 2.59u2 + cdv
2
1sign(v1)

v̇2 = 0.1x2
1 + 0.259u1 + 0.966u2 (4.35)

where cd is unknown and satisfies 0 < cd < 0.01. The constrained region is drawn in Fig. 4.3,

where the region with ‘x’ marks is the undesired domain of the state. The boundaries of the barrier

are approximated by polynomial interpolations in x2 dimension. The expressions of the boundaries

of the state barrier are then written as

kl1 = 70, ku1 = 140

kl2(x1) = −1.44906e−4x3
1 + 4.81590e−2x2

1 − 5.13265x1 + 183.990

ku2 (x1) = −1.04798e−4x3
1 + 2.83983e−2x2

1 − 2.35943x1 + 73.3258 (4.36)

To design the barrier avoidance based sliding mode controller, we choose k0
1 = (kl1 + ku1 )/2

and k0
2(x1) = (kl2(x1) + ku2 (x1))/2 for the diffeomorphism. Also, we pick

E =

0.966 −0.259

0.259 0.966

 , G =

10 0

0 1

 , Ĝ =

10.01 0

0 1

 (4.37)

The control parameters are designed as ψ1 = 1000 + 0.01v2
1 , ψ2 = 1000, ε = 0.001, and κ1 =

κ2 = 1. In the simulation, the phase portrait with various initial conditions are tested using the
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Figure 4.3: Complex state-constrained region and polynomial interpolations of its boundaries of
the double integrator case study

barrier avoidance based sliding mode controller, and no violation of the constraint is observed, as

shown in Fig. 4.4(a). In contrast, when the standard sliding mode controller is applied with the

same initial conditions, the transgress of the state barrier will occur, as shown in Fig. 4.4(b).

4.5 Case Study II: Adaptive Backstepping Control with Complex State-Constraints

4.5.1 Control Design

Consider a strict-feedback nonlinear system in the space of Rn as

ẋi = fi(x̄i) + gi(x̄i)xi+1, i = 1, 2, ..., n− 1

ẋn = fn(x̄n) + gn(x̄n)u

y = x1 (4.38)
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Figure 4.4: Phase portrait with diffierent initial conditions: a) Barrier avoidance sliding mode
control; b) Standard sliding mode control (Initial conditions are marked by ‘+’.)
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where x1, x2, ..., xn are the states, u ∈ R is the input, and y ∈ R is the output. The smooth function

fi(x̄i) is linear-in-the-parameter and can be written as

fi(x̄i) = θTφi(x̄i), i = 1, 2..., n (4.39)

where θ ∈ Rm is an unknown constant vector of parameters and φi(x̄i) ∈ Rm is a known nonlinear

function vector satisfying ‖θ‖ ≤ θM for θM > 0.

To address the complex state constraintsD as described in (4.5), the boundary of the constraints

∂D is incorporated into the Lyapunov candidate. Under the diffeomorphic transformation (4.10),

we choose the Lyapunov candidate in the new plane as

V =
n∑
i=1

∫ x∗i

1
2

ln(
−kl
i
+α

ku
i
−α )

kui − kli
2

Å
e2β∗

kui + kli
e2β∗ + 1

− α
ã
dβ∗ (4.40)

which is radially unbounded in Rn in the x∗-coordinates. This Lyapunov function can be further

simplified. Considering each term in this (4.40), we have

Vi =

∫ x∗i

1
2

ln(
−kl
i
+α

ku
i
−α )

kui − kli
2

Å
e2β∗

kui + kli
e2β∗ + 1

− α
ã
dβ∗

=

∫ x∗i

1
2

ln(
−kl
i
+α

ku
i
−α )

Å
kui − kli

2

ã2
(e2β∗

+ 1)2

e2β∗(kui − kli)2

Å
e2β∗

kui + kli
e2β∗ + 1

− α
ã

2e2β∗
(kui − kli)

(e2β∗ + 1)2
dβ∗

=

∫ xi

α

Å
kui − kli

2

ã2
1

(kui − β)(β − kli)
(β − α)dβ

=

∫ z

0

τ
(
kui −kli

2

)2

(kui − (τ + α))((τ + α)− kli)
dτ (4.41)

This way we can establish the equivalence of the barrier avoidance control and the iBLF for this

backstepping control problem.
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Accordingly, the Lyapunov function candidate for the system (4.38) is then written as

V (z, α, x) = V1(z1, yd) +
n∑
i=2

Vi(zi, αi−1, x̄i−1) (4.42)

where

V1(z1, yd) = W1(z1, yd) +
1

2
θ̃T1 Γ−1θ̃1

Vi(zi, αi−1, x̄i−1) = Wi(zi, αi−1, x̄i−1) +
1

2
θ̃Ti Γ−1θ̃i

W1(z1, yd) =

∫ z1

0

τ
(
ku1−kl1

2

)2

(ku1 − (τ + yd))((τ + yd)− kl1)
dτ

Wi(zi, αi−1, x̄i−1) =

∫ zi

0

τ
(
kui (x̄i−1)−kli(x̄i−1)

2

)2

(kui (x̄i−1)− (τ + αi−1))((τ + αi−1)− kli(x̄i−1))
dτ (4.43)

Here, z1 = x1 − yd, zi = xi − αi−1, i = 2, ..., n, and Γ = ΓT > 0 is the adaptation gain matrix.

The stabilizing functions α1, ..., αn−1 are continuously differentiable. We define θ̂i to be the ith

estimation of θ and let θ̃i = θ̂i − θ. Note that, as can be verified by (4.43), if the states approach

the boundary of the constrained region, i.e. xi → kui or xi → kli, the integral will reach infinity

at its upper limit, and the barrier Lyapunov candidate will result in an infinitely large value. In

particular, when kui = −kli = ci holds (ci is a positive constant), the term Wi becomes the same

type as the one used in the standard iBLF [53] for the simple barrier with hyperrectangular shape.

Lemma 3. The term Wi defined in (4.43) satisfies the following condition if kli < αi−1 < kui holds

z2
i

2
≤ Wi ≤

(kui − kli)2/4

(kui − xi)(xi − kli)
z2
i (4.44)

Proof: For the left part of the inequality, since (kui − (τ +αi−1))((τ +αi−1)−kli) > 0 we have

(
kui −kli

2

)2

(kui − (τ + αi−1))((τ + αi−1)− kli)
=

(
kui −kli

2

)2

(
kui −kli

2

)2

−
(
kui +kli

2
− (τ + αi−1)

)2 ≥ 1 (4.45)
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Thus, it can be derived that

Wi ≥
∫ zi

0

τdτ =
z2
i

2
(4.46)

Next, to prove the right part of the inequality, we first define

σi(τ, αi−1, x̄i−1) =
τ
(
kui −kli

2

)2

(kui − (τ + αi−1))((τ + αi−1)− kli)
(4.47)

Then take derivative of σi with respect to τ

∂σi
∂τ

=

Å
kui − kli

2

ã2
(kui − αi−1)(αi−1 − kli)

(kui − (τ + αi−1))2((τ + αi−1)− kli)2
(4.48)

This partial derivative is positive when kli < αi−1 < kui holds. Therefore, σi is monotonically

increasing with respect to τ , since σi(0, αi−1) = 0. Thus, we have

Wi =

∫ zi

0

σi(τ, αi−1)dτ ≤ ziσi(zi, αi−1) (4.49)

This completes the proof of the right part of the inequality. �

Following the backstepping scheme, a step-by-step control design is then proposed.

Step 1: In the first step, consider V1 defined in (4.43). We write its time-derivative as

V̇1 =
∂W1

∂z1

ż1 +
∂W1

∂yd
ẏd + θ̃T1 Γ−1 ˙̂

θ1

=
z1(ku1 − kl1)2/4

(ku1 − x1)(x1 − kl1)
(f1 + g1z2 + g1α1 − ẏd) +

Å
(ku1 − kl1)2/4

(ku1 − x1)(x1 − kl1)

− ku1 − kl1
4z1

ln
(z1 + yd − kl1)(ku1 − yd)
(ku1 − z1 − yd)(yd − kl1)

ã
z1ẏd + θ̃T1 Γ−1 ˙̂

θ1

=
z1(ku1 − kl1)2/4

(ku1 − x1)(x1 − kl1)
(f1 + g1z2 + g1α1)− %1(z1, yd)z1ẏd + θ̃T1 Γ−1 ˙̂

θ1 (4.50)
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where

%1(z1, yd) =
ku1 − kl1

4z1

ln
(z1 + yd − kl1)(ku1 − yd)
(ku1 − z1 − yd)(yd − kl1)

(4.51)

Per L’Hôpital’s rule, we can verify the limit of %1(z1, yd) at z1 = 0 as

lim
z1→0

%1(z1, yd) =
(ku1 − kl1)2/4

(ku1 − yd)(yd − kl1)
(4.52)

The stablizing function α1 is chosen as

α1 =
1

g1

Å
− θ̂T1 φ1 − p1z1 +

(ku1 − x1)(x1 − kl1)

(ku1 − kl1)2/4
%1ẏd

ã
(4.53)

where the postive constant p1 is the control gain, yielding

V̇1 =
(ku1 − kl1)2/4

(ku1 − x1)(x1 − kl1)
(−p1z

2
1 + g1z1z2) + θ̃T1

Å
Γ−1 ˙̂

θ1 −
(ku1 − kl1)2/4

(ku1 − x1)(x1 − kl1)
z1φ1

ã
(4.54)

Step i (i=2,...,n-1): In the ith step, we take time-derivative of Vi and write it as

V̇i =
∂Wi

∂zi
żi +

∂Wi

∂αi−1

α̇i−1 + θ̃Ti Γ−1 ˙̂
θi

=
zi(k

u
i − kli)2/4

(kui − xi)(xi − kli)
(fi + gizi+1 + giαi − α̇i−1) +

Å
(kui − kli)2/4

(kui − xi)(xi − kli)

− kui − kli
4zi

ln
(zi + αi−1 − kl1)(kui − αi−1)

(kui − zi − αi−1)(αi−1 − kli)

ã
ziαi−1

+
i−1∑
j=1

Å∫ zi

0

∂σi
∂xj

dτ · ẋj
ã

+ θ̃Ti Γ−1 ˙̂
θi

=
zi(k

u
i − kli)2/4

(kui − xi)(xi − kli)
(fi + gizi+1 + giαi)− %i(zi, αi−1, x̄i−1)ziα̇i−1

+ zi

i−1∑
j=1

ψij(zi, αi−1, x̄i−1)ẋj + θ̃Ti Γ−1 ˙̂
θi (4.55)
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where

%i(zi, αi−1, x̄i−1) =
kui − kli

4zi
ln

(zi + αi−1 − kli)(kui − αi−1)

(kui − zi − αi−1)(αi−1 − kli)
(4.56)

ψij(zi, αi−1, x̄i−1) =
1

zi

∫ zi

0

∂σi(τ, αi−1, x̄i−1)

∂xj
dτ (4.57)

∂σi
∂xj

=
τ

(kui − τ − αi−1)2(τ + αi−1 − kli)2

ï
1

2
(kui − kli)

×
Å
∂kui
∂xj
− ∂kli
∂xj

ã
(kui − τ − αi−1)(τ + αi−1 − kli)

−
Å
kui − kli

2

ã2Å
∂kui
∂xj

(kui − τ − αi−1)− ∂kli
∂xj

× (τ + αi−1 − kli)
ãò

(4.58)

The limits of %i(zi, αi−1, x̄i−1) and ψij(zi, αi−1, x̄i−1) at zi = 0 are given as

lim
zi→0

%i(zi, αi−1, x̄i−1) =
(kui − kli)2/4

(kui − αi−1)(αi−1 − kli)
(4.59)

lim
zi→0

ψij(zi, αi−1, x̄i−1) =
∂σi(zi, αi−1, x̄i−1)

∂xj
(4.60)

which are both well-defined in x ∈ D and kli < αi−1 < kui . The existence of the high order

derivatives of %i and ψij can be validated through the following Lemma.

Lemma 4. The functions %i(zi, αi−1, x̄i−1) and ψij(zi, αi−1, x̄i−1) are Cn−i in the set

Ψ =
{
x̄i−1 ∈ Ri−1, αi−1 ∈ R

∣∣∣ kl1 < x1 < ku1 , k
l
2(x1) < x2 < ku2 (x1), ... ,

kli−1(x̄i−2) < xi−1 < kui−1(x̄i−2), kli(x̄i−1) < αi−1 < kui (x̄i−1)
}

(4.61)

Proof: We will first prove ψij(zi, αi−1, x̄i−1) is Cn−i, and the same procedure can be applied to

%i(zi, αi−1, x̄i−1).
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Define ξi = ziψij . We can obtain the following equality by taking partial derivative recursively

∂kξi
∂zki

=
∂k−1

∂zk−1
i

Å
zi
∂ψij
∂zi

+ ψij

ã
=
∂k−1ψij

∂zk−1
i

+
∂k−2

∂zk−2
i

Å
zi
∂2ψij
∂z2

i

+
∂ψij
∂zi

ã
= k

∂k−1ψij

∂zk−1
i

+ zi
∂kψij
∂zki

(4.62)

From (4.62), we can write the kth order partial derivative of ψij with respect to zi as

∂kψij
∂zki

=
1

zi

Å
∂kξi
∂zki
− k∂

k−1ψij

∂zk−1
i

ã
=

η

zk+1
i

(4.63)

where

η = zki

Å
∂kξi
∂zki
− k∂

k−1ψij

∂zk−1
i

ã
(4.64)

The following limit can be obtained by L’Hôpital’s rule and (4.62)

lim
zi→0

∂kψij
∂zki

= lim
zi→0

1

(k + 1)zki

∂η

∂zi

= lim
zi→0

1

(k + 1)zki

Å
kzk−1

i

∂kξi
∂zki

+ zki
∂k+1ξi

∂zk+1
i

− k2zk−1
i

∂k−1ψij

∂zk−1
i

− kzki
∂kψij
∂zki

ã
= lim

zi→0

1

k + 1

∂k+1ξi

∂zk+1
i

(4.65)

By (4.58), we have ξi =
∫ zi

0
(∂σi/∂xj)dτ to be C∞ in the set Ψ. Thus, the pure partial derivative

of ψij with respect to zi is at least n− i times continuously differentiable.

Then, we consider the pure partial derivatives with respect to αi−1 or xj and mixed partial

derivatives of ψij . Per Clairaut’s Theorem, we can obtain any mixed partial derivative of ψij
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regardless of the drifferentiation order, given the following

lim
zi→0

∂k+l+m1+···+mi−1ψij
∂zki ∂α

l
i−1∂x

m1
1 · · · ∂x

mi−1

i−1

=
∂l+m1+···+mi−1

∂αli−1∂x
m1
1 · · · ∂x

mi−1

i−1

Å
lim
zi→0

∂kψij
∂zki

ã
(4.66)

where (k+ l+m1 + · · ·+mi−1) ∈ {1, ..., n− i} and k, l,m1, ...,mi−1 are positive integers. Due to

the smoothness of kui and kli, the limits (4.66) exist. Thus, the pure partial derivatives with respect

to αi−1 or xj and mixed partial derivatives of ψij are C∞ in the set Ψ. �

Next, the time-derivative of αi−1 can be expanded as

α̇i =
i∑

j=1

∂αi

∂θ̂j

˙̂
θj +

i∑
j=1

∂αi
∂xj

ẋj +
i∑

j=1

∂αi

∂y
(j)
d

y
(j+1)
d (4.67)

Choose the stablizing function as

αi =
1

gi

ï
− pizi −

(kui−1 − kli−1)2(kui − xi)(xi − kli)gi−1zi−1

(kui − kli)2(kui−1 − xi−1)(xi−1 − kli−1)
− θ̂Ti

Å
φi −

(kui − xi)(xi − kli)
(kui − kli)2/4

×
i−1∑
j=1

Å
∂αi−1

∂xj
%i − ψij

ã
φj

ã
+

(kui − xi)(xi − kli)
(kui − kli)2/4

i−1∑
j=1

ÅÅ
∂αi−1

∂xj
%i − ψij

ã
gjxj+1

+ %i
∂αi−1

∂y
(j)
d

y
(j+1)
d + %i

∂αi−1

∂θ̂j

˙̂
θj

ãò
(4.68)

Substituting (4.68) into (4.55) gives

V̇i =
(kui − kli)2/4

(kui − xi)(xi − kli)
(−piz2

i + gizizi+1)−
(kui−1 − kli−1)2/4

(kui−1 − xi−1)(xi−1 − kli−1)
gi−1zi−1zi

+ θ̃Ti

ï
Γ−1 ˙̂

θi − zi
Å

(kui − kli)2/4

(kui − xi)(xi − kli)
φi −

i−1∑
j=1

Å
∂αi−1

∂xj
%i − ψij

ã
φj

ãò
(4.69)

Step n: The time-derivative of zn is

żn = ẋn − α̇n−1 = fn(x̄n) + gn(x̄n)u− α̇n−1 (4.70)
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Use the convienient notation

h1 =
(ku1 − kl1)2/4

(ku1 − x1)(x1 − kl1)
z1φ1

hi = zi

Å
(kui − kli)2/4

(kui − xi)(xi − kli)
φi −

i−1∑
j=1

Å
∂αi−1

∂xj
%i − ψij

ã
φj

ã
, i = 2, ..., n (4.71)

Choose the input and the adaptive law as

u = αn,
˙̂
θi = Γhi, i = 1, ..., n (4.72)

We can generate the time-derivative of V =
∑n

i=1 Vi as

V̇ =
n∑
i=1

V̇i

=−
n∑
i=1

(kui − kli)2/4

(kui − xi)(xi − kli)
piz

2
i +

n∑
i=1

θ̃Ti (Γ−1 ˙̂
θi − hi)

=−
n∑
i=1

(kui − kli)2/4

(kui − xi)(xi − kli)
piz

2
i

≤− ρ
n∑
i=1

Wi (4.73)

where ρ = min{pi, i = 1, .., n}.

With the closed-loop system well formulated, the main result of this study is provided as fol-

lows.

Theorem 8. Consider the closed-loop system (4.38) under the control input and the adaptive law

(4.72). If the initial condition satisfies x(0) ∈ D and the condition is provided as

kli(x̄i−1) < αi−1 < kui (x̄i−1), i = 2, ..., n, ∀(z̄n, ȳdn) ∈ Ω (4.74)
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where

Ω =
{
z̄n ∈ Rn, ȳdn ∈ Rn+1

∣∣∣ |zi| ≤√2VM , k
l
1 < yd < ku1 , |y

(i)
d | ≤ Bi, i = 1, ..., n

}
(4.75)

VM =
n∑
i=1

Wi(0) +
1

2
λmax(Γ−1)

n∑
i=1

(‖θ̂i(0)‖+ θM)2 (4.76)

Then the following properties hold.

i) The tracking error z̄n and the estimator θ̂i remain in the compact set given as

Ωz =
{
z̄n ∈ Rn

∣∣∣ ‖z̄n‖ ≤√2VM

}
(4.77)

Ωθ̂i
=

{
θ̂i ∈ Rm

∣∣∣ ‖θ̂i‖ ≤ θM +

 
2VM

λmin(Γ−1)

}
(4.78)

Also, zi and ˙̂
θi, i = 1, ..., n, converge to zero.

ii) The state x stays in D for all t > 0.

iii) The stablizing functions αi, i = 1, ..., n− 1, and control input u are bounded for all t > 0.

Proof:

i) From V̇ (t) ≤ 0, we have V (t) ≤ V (0). Also, since ‖θ‖ ≤ θM , it follows that V (0) ≤ VM .

Given Lemma 3, we obtain (1/2)Σn
i=1z

2
i (t) ≤ V (t) ≤ V (0) ≤ VM . Thus, we can show that

‖z̄n‖ ≤
√

2VM and z̄n ∈ Ωz. Furthermore, as λmin(Γ−1)‖θ̂i − θ‖2 ≤ 2VM , it follows that θ̂i ∈ Ωθ̂i
.

Let
∫ t

0
(−V̇ (t))dt = V (0) − V (t). Since V (0) is bounded and V̇ (t) ≤ 0, we have V (t) non-

increasing and thus bounded. It can be shown that
∫∞

0
(−V̇ (t))dt is bounded. Also, as −V̇ (t) is

uniformly continuous, by Barbalat’s Lemma, we have −V̇ (t) converge to zero and then zi → 0 as

t→∞. By the definition of ˙̂
θi = Γhi, it follows that ˙̂

θi → 0 as t→∞.

ii) By proof of contradiction, we assume that there exists a time instance t = t̄ such that

x ∈ ∂D, i.e. xi = kui or xi = kli, given the initial condition x(0) ∈ D. From V̇ (t) ≤ 0, we have
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V (t̄) = Σn
i=1Vi(t̄) ≤ V (0) and thus Vi(t̄) is bounded. Meanwhile, integrating Vi(t̄) gives

Vi(t̄) =
kui − kli

4

∫ zi

0

τ

Å
1

kui − (τ + αi−1)
+

1

(τ + αi−1)− kli

ã
dτ +

1

2
θ̃Ti Γ−1θ̃i

=
kui − kli

4

Å∫ zi

0

Å
kui − αi−1

kui − (τ + αi−1)
− 1

ã
dτ +

∫ zi

0

Å −αi−1 + k1
i

(τ + αi−1)− kli
+ 1

ã
dτ

ã
+

1

2
θ̃Ti Γ−1θ̃i

=
kui − kli

4

Å
(αi−1(t̄)− kli) ln

αi−1(t̄)− kli
xi(t̄)− kli

+ (kui − αi−1(t̄)) ln
kui − αi−1(t̄)

kui − xi(t̄)

ã
+

1

2
θ̃Ti Γ−1θ̃i

(4.79)

As the condition (4.74) holds, if xi = kui or xi = kli, the value of Vi(t̄) becomes unbounded, which

contradicts the above discussion. Therefore, the state x will not reach ∂D.

iii) Due to the condition (4.74), Lemma 4 holds and %i(zi, αi−1, x̄i−1), ψij(zi, αi−1, x̄i−1) are

Cn−i. Given the definition of αi in (4.53), (4.68) and the choice of control input u = αn, it is clear

that the closed-loop signals of αi and u are bounded. �

4.5.2 Simulation Result

The simulation is performed on a second-order nonlinear system given as

ẋ1 = 0.1x2
1 + x2

ẋ2 = 0.1x1x2 − 0.2x1 + (1 + x2
1)u (4.80)

where we choose the nonlinear function vectors as φ1 = [0.01x2
1, 0, 0]T , φ2 = [0, 0.01x1x2,

−0.02x1]T , and the unknown parameter vector as θ = [10, 10, 10]T . The desired trajectory is

given as

yd(t) = 0.5 sin(t) (4.81)

The state constrained region is defined in the coordinates of x1 − x2, as shown in Fig. 4.5. We

103



provide the expressions of the boundaries of this constrained region as

ku1 = 1

kl1 = −1

ku2 (x1) = −1.102x2
1 − 0.987x1 + 1.270

kl2(x1) = 0.897x2
1 − 0.989x1 − 1.270 (4.82)

To design the controller under adaptive backstepping scheme as proposed in this study, we

choose the control gains as p1 = p2 = 1. Also, the parameters for adaptive laws are designed as

θ̂1 =


ϑ1

0

0

 , θ̂2 =


ϑ2

ϑ3

ϑ4

 , Γ =


5000 0 0

0 5000 0

0 0 5000

 (4.83)

The initial conditions of the numerical test are x1(0) = −0.8 , x1(0) = 0.1, and ϑ1(0) =

ϑ2(0) = ϑ3(0) = ϑ4(0) = 15. In the simulation, the phase portrait of x1 − x2 is drawn in Fig. 4.5,

where the trajectory of x approaches a periodic cycle that matches the desired sinusoidal trajectory

without any violation of the state constaints. Also, Fig. 4.6 shows that the phase portrait of z1− z2

appoaches to the origin, indicating the convergence of z1 and z2 to zero. The time history of the

adaptive gain θ̂ is depicted in Fig. 4.7, which verifies the fact that ˙̂
θ converges to zero. Finally, the

boundedness of the control input is shown in Fig. 4.8.

4.6 Conclusions

This chapter investigates a supplementary study for the barrier avoidance control approach,

particularly on the construction of state transformation for a complex state-constrained region. For

a class of constrained regions with complex shapes, the state transformation can be established se-

quentially in a cascade manner, and such a transformation is proved to be a diffeomorphism which

enables the barrier avoidance control design. In the case studies, we formulate the constrained
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control problem for a high-order double integrator system using sliding mode control, and then for

a high-order strict feedback system using backstepping control. Numerical simulations are given
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to demonstrate the effectiveness of the proposed method with a thorough performance analysis.
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5. CONTROL OF A DIRECTIONAL DRILLING SYSTEM USING THE PROPOSED

BARRIER AVOIDANCE CONTROL METHOD

5.1 Introduction

Downhole drilling is primarily used to create a well-bore to access natural resources under-

ground. While mostly used in the oil gas industry in the past, the technology starts to be adopted

by other important applications such as enhanced geothermal systems (EGS) [90] and robotic

drilling in the space exploration [91]. In addition, the development of unconventional oil and gas

reservoirs such as shale oil and gas reservoirs also urges technology advancement in down-hole

drilling. One of the trends that becomes common is to have drilling be to directional, where the

drilling system behaves like a flexible robot traveling through a 3D space with curved trajectory

deep underground ten thousand feet away from the surface.

Top Drive

Drill String

BHA

Figure 5.1: Directional drilling system

108



Forward Whirl
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Buckling due to large WOB
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WOB

0

Figure 5.2: Optimum region in drilling process [1]

The majority of existing drilling control research targets vertical drilling, where a straight

vertical well is drilled and the drill string is straight from top to bottom. Research in this cate-

gory mainly focuses on torsional vibration mitigation, a critical vibration mode in vertical drilling

[10, 11, 12, 15, 16, 17]. Compared to vertical drilling, directional drilling control is more chal-

lenging. The string dynamics modes are coupled due to the curved string geometry and the 3D

drilling path. Moreover, interaction between the drilling system and wellbore formation (such as

rock) can induce sharp transients in certain operating conditions. The modes coupling together

with formation interaction make some regions in the state space, which correspond to particular

working conditions, undesirable for operation (Fig. 5.2). For example, if the torsional velocity

of the drill bit is too low while the penetration speed is high, the drilling system can be stalled,

which will cause twist and vibration damaging the drill string. Thus, drilling operation needs to

avoid these undesired state regimes and their barriers (Fig. 5.2), so as not to experience slowed

drilling rate, significant vibration, safety problems, and drilling system failure. Avoidance is nec-

essary for steady state, but is also critical during control transients. Some studies [92, 93] related

to directional drilling are actually low-bandwidth control of the secondary actuator for local drill

bit motion, but not the primary power actuator control for the overall drilling automation. There
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are a few preliminary studies on applying PI, adaptive, optimal, and H-infinity control to direc-

tional drilling in the overall scale [94, 95]. Most results are based on simple lumped parameter or

kinematic models, but none of these ensures barrier avoidance of the undesired state regimes.

To have states avoid the undesired regimes, in one of our previous works, we introduced the

idea of using state constrained control for drilling with the integral barrier Lyapunov functionals

(iBLF) (Chapter 2). The state constraints are embedded in the barrier terms of the Lyapunov

function to ensure the avoidance of the undesired operating points when the control is active.

However, this method has several limitations that prevent it from being applied to the directional

drilling. First, the iBLF method presented is only suitable for a vertical drilling system modeled by

low-order dynamics, but not for the directional drilling system, which typically requires a larger

number of finite-element nodes to capture the curved geometry so a higher order dynamics model

is inevitable. Second, this method can only be used to avoid barriers with rectangular shape, while

the optimum zone of the directional drilling system considered has a more complex shape as shown

in Fig. 5.2.

In this study, to address the aforementioned challenges, a novel state-constrained controller for

directional drilling is designed using a transformation-based barrier avoidance method we recently

developed. The control design is based on a high-order directional drilling model with coupled

axial and torsional dynamics. To avoid undesired drilling operating conditions, we formulate those

undesired operating regimes into complex state constraints. Note that the reference of complex

state constraints is stated relative to straight lines used in most existing state-constrained control

studies. The state constraints are then embedded in the system dynamics through a state trans-

formation, and a state-constrained controller is then designed based on the transformed dynamics.

In addition, the nonlinear drilling dynamics are represented as a Linear Parameter Varying (LPV)

system by treating certain nonlinear terms as varying parameters. This enables a feasible control

design for the high order directional drilling system dynamics. The main contribution of this paper

is that it is the first study that presents control of a directional drilling system to avoid complex state

barriers in the state space, which prevents drilling to operate at undesired and harmful conditions.
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The rest of this chapter is organized as follows. In Section 5.2, we present the directional

drilling system model as the coupled dynamics of both axial and torsional dimensions, including a

FEM model for the curved drill string and a bit-rock interaction model as the boundary condition.

Also, the shape of the state constraints is derived from the optimum region of the drilling process.

In Section 5.3, we the state barrier avoidance control is formulated and designed, which embeds

the state constraints into the nonlinear control synthesis for the downhole drilling system. Finally,

a series of simulation tests are exhibited in Section 5.4.

5.2 Model of the Directional Drilling System

Unlike the vertical drilling system with a lumped-parameter drill string model considered in

Chapter 2, the dynamic model of a directional drilling system is much more complicated. Of-

tentimes, the vertical drilling system is defined in a 1-dimensional space. In contrast, due to the

directional drilling’s geometry nature, its dynamic model is a 3-dimensional space, including ax-

ial, torsional and lateral motions. Besides, since the major portion of a vertical drill string can be

straight and uniform, a low-order/DOF model is suitable for the dynamic modeling and widely

used for control design. However, due to the existence of the curvature part in the directional

drilling, a higher-order/DOF model is required to capture the dynamic mode and geometry of this

portion. In this work, we adopt the FEM approach as the baseline for the modeling of the curved

drill string, since the FEM based drill string models have been well validated with field testing data

and is proved to offer high fidelity modeling result [96].

5.2.1 Model of the Drill String

As shown in Fig. 5.3, the curved drill string is discretized into N nodes. All these nodes are

in the same global frame XgY gZg, where Xg axis is in the direction of gravity and Y g axis is in

parallel to the ground surface. To use the FEM method, we have every two adjacent nodes share a

local coordinate frameX lY lZ l. The superscript ‘g’ and ‘l’ denote ‘global’ and ‘local’, respectively.

In this study, we assume that all the nodes are inside the Xg − Y g plane. In this setting, we have

4 DOF for each node i, i.e., the translational displacements xi, yi and the rotational displacements
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αi, βi. The displacement vector of node i is then defined as

Ui = [xi, yi, αi, βi]
T (5.1)

In the local coordinates, these elements are denoted as the axial displacement xli, the radial dis-

placement yli, the torsional angle αli, and the bending angle βli . Consider the nodes i and i+ 1 that

share the same local frame. The dynamic equation of their local coordinates is provided as

M lÜ l
{i,i+1} +DlU̇ l

{i,i+1} +K lU l
{i,i+1} = F l

{i,i+1} (5.2)

where U l
{i,i+1} = [U lT

i U lT

i+1]T is the local displacement vector of the nodes i and i + 1, F l
{i,i+1} is

the external force and torque vector of the nodes i and i + 1, and M l, K l, Dl are the local ineria,

stiffness, and damping matrices given as

M l =
%Al
420



140 0 0 0 70 0 0 0

156 0 0 0 54 0 0

140Ix
A 0 0 0 −70Ix

A 0

4l2 0 0 0 −3l2

140 0 0 0

156 0 0

sym. 140Ix
A 0

4l2



(5.3)
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K l =



EA
l

0 0 0 −EA
l

0 0 0

12EIz
l3

0 0 0 −12EIz
l3

0 0

GJ
l

0 0 0 −GJ
l

0

4EIy
l

0 0 0 2EIy
l

EA
l

0 0 0

12EIz
l3

0 0

sym. GJ
l

0

4EIy
l



(5.4)

Dl = raM
l + rbK

l (5.5)

Here, Ix, Iy and Iz are the second moment of inertia with respect to the local coordinates, % is the

density of the drill string, A is the area of the cross-section, l is the length of the frame element,

E denotes the elastic modulus, G denotes the shear modules, J is the polar moment of inertia, and

ra, rb are the Rayleigh damping coefficients.

The coordinate transformation gives the relationship of the local displacement vector and the

global displacement vector as

U l
{i,i+1} = RiU

g
{i,i+1} (5.6)

where Ri is the rotation matrix of the nodes i and i+ 1. It can be written as

Ri =


Ti 0 0 0

0 Ti 0 0

0 0 Ti 0

0 0 0 Ti

 (5.7)
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Figure 5.3: Schematic of directional drilling system

Ti =

cos( ~X l, ~Xg) cos( ~X l, ~Y g)

cos(~Y l, ~Xg) cos(~Y l, ~Y g)

 (5.8)

where ~X l, ~Y l, ~Xg, ~Y g are the unit vectors of the axis in the local and global coordinates, respec-

tively. The directional cosine of these vectors can be derived by three non-collinear points. For

simplicity, we denote these three points by nodes 1,2 and 3. As shown in Fig. 5.3, the position
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vectors ~V1, ~V2 and ~V3 can be expressed as

~V1 = X1
~Xg + Y1

~Y g + Z1
~Zg

~V2 = X2
~Xg + Y2

~Y g + Z2
~Zg

~V3 = X3
~Xg + Y3

~Y g + Z3
~Zg (5.9)

Vectors (~V2 − ~V1) and (~V3 − ~V1) are defined as

~V2 − ~V1 = X21
~Xg + Y21

~Y g + Z21
~Zg

~V3 − ~V1 = X31
~Xg + Y31

~Y g + Z31
~Zg (5.10)

Also, we define

l =
»
X2

21 + Y 2
21 + Z2

21 (5.11)

A123 =
»

(Y21Z31 − Y31Z21)2 + (Z21X31 − Z31X21)2 + (X21Y31 −X31Y21)2 (5.12)

The directional cosine is obtained as

cos( ~X l, ~Xg) =
X21

l
, cos( ~X l, ~Y g) =

Y21

l

cos(~Y l, ~Xg) =
Z21X31 − Z31X21

A123

· Z21

l
+
X21Y31 −X31Y21

A123

· Y21

l

cos(~Y l, ~Y g) =
X21Y31 −X31Y21

A123

· X21

l
+
Y21Z31 − Y31Z21

A123

· Z21

l
(5.13)

With the coordinate transformation (5.6), the dynamic motion in (5.2) can be rewritten in the

global coordinates as

(RT
i M

lRi)Ü
g
{i,i+1} + (RT

i D
lRi)U̇

g
{i,i+1} + (RT

i K
lRi)U

g
{i,i+1} = RT

i F
l
{i,i+1} (5.14)

Combining the dynamics of all N nodes along the drill string gives the augmented dynamics in the
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global frame as

MÜ g +DU̇ g +KU g = F ext (5.15)

where U g = [U gT

1 , U gT

2 , ..., U gT

N ]T is the overall global state vector, M,K,D ∈ R4N×4N are the

global inertia, stiffness, and damping matrices. The external force vector F ext includes several

portions. The input force F and torque are actuated by the draw works and rotary drive at the top

drive. The gravitational force and wellbore contact force/torque are distributed along with each

element of the drill string. The bit-rock interaction force Fb and torque Tb are exerted at the bottom

of the BHA. Note that, the drilling process is typically slow in the axial penetration rate and stops

each time when having 10-15 meters drilled [97]. Thus, even though the validity of the system

model depends on the length of the drill string, we can still assume the parameters of drilling

system dynamics to be constant in certain time duration, due to this slow penetration rate.

5.2.2 Model of the Bit-Rock Interaction

The bit-rock interaction model of a PDC bit is considered in this study. Both force/weight on

the bit Fb and torque on the bit Tb consist of friction component and cutting components, which

are denoted as

Fb = F f
b + F c

b , Tb = T fb + T cb (5.16)

Characterized by the depth-of-cut d (i.e., the length of contact between the bit blade and rock

surface to be cut), the contact force and torque have different regimes and are piecewise linear

with respect to the value of d. It is modeled by a delay differential equation as [14, 13, 15]

d(t) = n(xlN(t)− xlN(t− τ(t))) (5.17)

2π/n = αlN(t)− αlN(t− τ(t)) (5.18)
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where n is the number of the bit’s blades, and τ is a state dependent-delay constrained by the tor-

sional motion of the bit. In this study, to enable a feasible control design, we use an approximation

of the depth-of-cut model in the control design [25], given as

d(t) = 2π
ẋlN
α̇lN

(5.19)

which is valid when the bit axial velocity α̇lN is far beyond zero.

Consider the Phases I and II of the bit-rock interaction as discussed by [28]. In this model, both

friction and cutting components increase as d rises up in Phase I, but only the cutting component

increases with respect to d in Phase II. We can then list the expressions of Fb and Tb as

Fb =

 Rbσκd(t) +Rbζεd(t) 0 < d(t) ≤ d∗

Rbσκd
∗ +Rbζεd(t) d(t) > d∗

(5.20)

Tb =

 0.5R2
bµγσκd(t) + 0.5R2

bεd(t) 0 < d(t) ≤ d∗

0.5R2
bµγσκd

∗ + 0.5R2
bεd(t) d(t) > d∗

(5.21)

where Rb is the radius of drill bit, σ is the maximum normal contact stress, κ is the rate of variance

of the contact length, ε stands for the intrinsic specific energy required to remove a unit volume of

rock, µ is the coefficient of friction at the wear-flat, γ represents the orientation and distribution of

the contact forces on the bit, ζ is a characteristic number in [0.5, 0.8], and d∗ is the critical depth-

of-cut at the transition point of Phases I and II. Note that, when the bit stays stuck in either axial or

torsional dimensions (ẋlN = 0 or α̇lN = 0), the force Fb and torque Tb on the bit can be determined

by the force/torque balance using a static/dynamic Coulomb friction model.

5.2.3 Embedding The Well-bore Geometry To The Drill String Modeling

Since the motion of the drill string is restricted within the created well-bore, this geometric

restriction can be incorporated into the drill string dynamics modeling. The dynamics (5.14) can
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be written in a state-space form as

Ẋ = AX +H (5.22)

where X = [U gT U̇ gT ]T ∈ R8N is the state, and the matrices A ∈ R8N×8N and H ∈ R8N×4N are

given as

A =

 0 I

−M−1K −M−1D

 , H =

 0

M−1F ext

 (5.23)

The external force vector F ext consists of the control inputs at the top end and the nonlinear bit

rock interaction at the bottom end. The rest of the elements in this vector includes the gravity and

wellbore contact tension and friction force that are distributed on each node across the whole drill

string.

In the directional drilling settings given in Fig. 5.3, the free body diagram of a single node

of the drill string is shown in Fig. 5.4. We first consider the translational motion part, whose

corresponding external forces include gravity and wellbore contact tension/friction. Since the drill

string is constrained in the downhole well-bore, the dynamic motion of each node is latched in the

well-bore’s axial direction by the contact forces, and the displacements in the global coordinates

have the constraint ygi = xgi tan(θi). Therefore, the external forces in the radial direction are

canceled, and only the components in the axial direction remain, driving the motion of the drill

string. For the rotation of the same node, the constraint βgi = αgi tan(θi) can be found through a

similar analysis.

Since the constraints are set for both translational and rotational displacements, we can truncate

the state vector using only half of the elements, which is given as

Xtr =

U g
tr

U̇ g
tr

 (5.24)
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Figure 5.4: Free body diagram of a single node of the drill string

where

U g
tr = [xg1, α

g
1, x

g
2, α

g
2, ..., x

g
N , α

g
N ]T (5.25)

The state-space system equation for this truncated state Xtr ∈ R4N is derived from the original

system equation (5.22) as

Ẋtr = AtrXtr +Htr (5.26)

where Atr ∈ R4N×4N and Htr ∈ R4N×1 can be obtained through the elementwise matrix operation

of A and H . Given the elementwise definition of the matrix P = (pi,j)n×m with pi,j being the

element of the ith row and the jth column, we can define the matrix operators F(·) and E(·) as

follows

Q = F(P, d) (5.27)
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where Q ∈ Rn×m, P ∈ Rn×2m, d = [d1, d2, ..., dm]T , and their elements satisfy

qi,j = pi,2j−1 + pi,2jdj (5.28)

Also, we have

Q = E(P ) (5.29)

where Q ∈ Rn×m, P ∈ R2n×m, and their elements satisfy

qi,j = p2i−1,j (5.30)

Therefore, we can express Atr and Htr using the matrix operators as

Atr = F(E(A), d)

Htr = E(H) (5.31)

where d = [tan θ1, tan θ1, tan θ2, tan θ2, ..., tan θN , tan θN ]T , and θi is the inclined angle of the

node i. An intuitive interpretation for the elementwise operation of A is drawn in Fig. 5.5. As

each node of the drill string contains 4 elements, we can divide the matrix A into 4-by-4 blocks

for each node. Since the truncated state vector (5.24) only includes the elements xgi and αgi , we

can eliminate every second row of the matrix A, corresponding to ygi and βgi . Moreover, due to

the constraints ygi = xgi tan(θi) and βgi = αgi tan(θi), the resultant coefficients of node j in the

matrix Atr can be derived by the operation atri,j = ai,2j−1 + ai,2j tan(θj). Under these elementwise

operation, the matrices Atr and Htr can be denoted as

Atr =

 0 I

−Atrkm −Atrdm

 , Htr =

 0

H tr
fm

 (5.32)
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where Atrkm, A
tr
dm ∈ R2N×2N and H tr

fm ∈ R2N×1.

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

...

...

...

...

...

...

...

...

× tan θ1 × tan θ1

× tan θ1 × tan θ1

Node 2

a5,1 a5,2 a5,3 a5,4
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Figure 5.5: Matrix manipulation to incorporate the geometric constraint of the wellbore

With the system equation (5.26) formulated for the truncated system state Xtr, the feedback

control through the top drive’s force and torque can then be determined by the state barrier avoid-

ance control to be shown in the next section.

5.3 Constrained Control Design of the Directional Drilling System with Complex State Con-

straints

Given the undesired regime of the drilling operation as discussed in Section 5.1, an advanced

nonlinear control design coping with state constraints is developed in this section. Having the

state constraints depicted in the space of the torsional RPM and the axial ROP, we introduce the

barrier avoidance control technique to transform the error dynamics into a new space through a
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diffeomorphism. The LPV control is then implemented in the transformed system to achieve the

constrained control objective.

5.3.1 Constraints of the Bit-Rock Interaction

The aforementioned bit-rock interaction model (5.20) and (5.21) is only valid when the drilling

is in the desired operation mode, where severe vibration modes such as axial/torsional stick-slip,

bit bouncing, and lateral whirl motions do not arise. If the operating point falls into the undesired

regime as discussed in Section 5.1, these harmful vibrations are likely to occur, and induce highly

nonlinear and nonsmooth dynamics at the bottom of the wellbore. Therefore, in this study, we aim

to integrate the state constraints into the feedback control of downhole drilling dynamics in order

to eliminate these vibration modes and ensure the validity of the bit-rock interaction model.

As shown in Fig. 5.2, an optimum region of the drilling process is depicted in the plane of the

axial WOB (or Fb) and the torsional RPM. To enable the formulation of the state constraints, a

conversion of this optimum region from WOB-RPM coordinates to ROP-RPM coordinates (i.e.,

the plane of bit’s axial and torsional velocities ẋlN and α̇lN ) is needed. In this study, we use param-

eters of a type of PDC bit in Table 5.1, and also draw the shape of the drilling’s optimum region

in Fig. 5.6(a). With the expression of bit-rock interaction in (5.20) and the depth-of-cut being

d = 2πẋlN/α̇
l
N , we can map the boundary of the optimum region from Fig. 5.6(a) to Fig. 5.6(b) in

the dimensions of bit’s velocities. Inside the optimum region, the Phases I and II of the bit-rock

interaction regimes are separated by the blue dashed line in Fig. 5.6(b). Without being too conser-

vative, we can choose the state constraints of the bit’s velocities to be the region contoured by the

red dashed curves in this figure. The objective in this study is to suppress the damaging vibrations

in the drilling process using the active control method. Therefore, whenever the system state can

stay inside the defined constrained region and avoid entering the undesired operating conditions,

these harmful vibration modes will be eliminated.
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Table 5.1: Parameters of Bit-Rock Interaction

Symbol Value [Unit] Description
ε 45× 106 [Pa] Instrinsic specific energy
µ 0.3 Friction coefficient at wearflat
γ 1 Geometry parameter of bit
ζ 0.8 Cutter face inclination
n 3 Number of blades
κ 6.06 Variance rate of contact
σ 45× 106 [Pa] Contact strength
Rb 0.22 [m] Radius of drill bit
d∗ 5.94× 10−4 [m] Critical depth-of-cut

5.3.2 State Barrier Avoidance Based LPV Control Design

Given the directional drilling system model (5.20), (5.21), and (5.26), we will formulate a state-

constrained controller to avoid the operating point falling into the undesired regime. To enable the

feedback control design for the setpoint tracking objective with the desired local axial and torsional

velocities being vd and wd (in this study vd = 1 mm/s, ωd = 10 rad/s), we can define the desired

trajectory of the truncated system state Xtr as

Xd =

Vdt+ Y

Vd

 (5.33)

where Vd = [vd cos(θ1), wd cos(θ1), vd cos(θ2), wd cos(θ2), ..., vd cos(θN), wd cos(θN)]T is the vec-

tor of desired velocities, and Y is the initial displacement vector which will be determined later.

Define the error state as

E =

E1

E2

 (5.34)
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Figure 5.6: Conversion of the optimum region: a) Optimum region in WOB-RPM plane; b) Opti-
mum region in the plane of bit’s axial and torsional velocities (two of the states in drilling dynam-
ics)
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where

E1 = U g
tr − (Vdt+ Y ), E2 = U̇ g

tr − Vd (5.35)

Also, we can denote the entries of the error state as E1 = [e1, e2, ..., e2N ] and E2 = [e2N+1, e2N+2,

..., e4N ].

From (5.26), we can derive the error dynamics of the setpoint tracking problem as

Ė1 = E2

Ė2 = −AtrkmU
g
tr − AtrdmU̇

g
tr +H tr

fm

= −AtrkmE1 − AtrdmE2 − Atrkm(Vdt+ Y )− AtrdmVd +H tr
fm

= −AtrkmE1 − AtrdmE2 +H tr
fm −H tr

d (5.36)

where H tr
d = E(M−1F ext

d ), and F ext
d is the desired external force vector including the desired

top drive’s actuations Fd and Td, the desired bit-rock interaction forces/torques Fbd and Tbd, and

an axial resultant forces/torques of the gravity and the wellbore contact. The initial displacement

vector is chosen as Y = Atr
−1

km (H tr
d − AtrdmVd). Also, it can be verified that AtrkmVd = 0. The error

dynamics (5.36) is then rewritten in a compact form as

Ė = AtrE +He
tr (5.37)

Since the terms Fb(t) − Fbd and Tb(t) − Tbd appear in the vector He
tr = H tr

fm − H tr
d , we

convert these two nonlinear terms into a quasi-LPV form to enable the LPV based control design.

Addressing this problem in an LPV setting will make the control design for a high order dynamics

system more efficient. Without loss of generality, we assume the desired depth-of-cut stays in the

Phase II of the bit-rock interaction, i.e., dd = 2πvd/ωd > d∗. (If the desired depth-of-cut is located

in Phase I, a similar analysis can be proceed as follows.) Using the error states of bit’s axial and
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Figure 5.7: State constraints and switching of Phase I and II in e4N−1 − e4N coordinates

torsional velocities e4N−1 and e4N , the depth-of-cut model is expressed as

d = 2π
ẋlN
α̇lN

= 2π
vd + e4N−1

cos θN

ωd + e4N
cos θN

= 2π
vd cos θN + e4N−1

ωd cos θN + e4N

(5.38)

In the plane of the error states e4N−1 and e4N as shown in Fig. 5.7, the regimes of Phase I and II of

the bit-rock interaction are divided by a switching condition, which can be found by setting d = d∗

in (5.38)

vd cos θN + e4N−1

ωd cos θN + e4N

=
d∗

2π

⇒ e4N−1 =
d∗

2π
e4N +

d∗

2π
ωd cos θN − vd cos θN (5.39)

For simplicity, in the bit-rock interaction model (5.20) and (5.21), we denote the coefficients

as p1 = Rbζε, p2 = Rbσκ, p3 = 0.5R2
bε, and p4 = 0.5R2

bµγσκ. In Phase II, the entry Fb(t) − Fbd
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can be re-organized asÅ
p12π

vd cos θN + e4N−1

ωd cos θN + e4N

+ p2d
∗
ã
−
Å
p12π

vd
ωd

+ p2d
∗
ã

=p12π
ωde4N−1 − vde4N

(ωd cos θN + e4N)ωd

=
p12π

ωd cos θN + e4N

e4N−1 +
p12πvd

(ωd cos θN + e4N)ωd
e4N

=κ11(e)e4N−1 + κ12(e)e4N (Phase II) (5.40)

In Phase I, the entry Fb(t)− Fbd can be expressed as

(p1 + p2) 2π
vd cos θN + e4N−1

ωd cos θN + e4N

−
Å
p12π

vd
ωd

+ p2d
∗
ã

=p12π
ωde4N−1 − vde4N

(ωd cos θN + e4N)ωd
+ p2

2π vd cos θN+e4N−1

ωd cos θN+e4N
− d∗

e4N−1 − d∗

2π
e4N

Å
e4N−1 −

d∗

2π
e4N

ã
=

(
p12π

ωd cos θN + e4N

+ p2

2π vd cos θN+e4N−1

ωd cos θN+e4N
− d∗

e4N−1 − d∗

2π
e4N

)
e4N−1

+

(
p12πvd

(ωd cos θN + e4N)ωd
− p2

2π vd cos θN+e4N−1

ωd cos θN+e4N
− d∗

e4N−1 − d∗

2π
e4N

d∗

2π

)
e4N

=κ21(e)e4N−1 + κ22(e)e4N (Phase I) (5.41)

The terms κ21 and κ22 are non-singular, since their denominators satisfy the condition e4N−1 −
d∗

2π
e4N < d∗

2π
ωd − vd < 0 in Phase I. Then under the same derivation, the entry Tb(t) − Tbd can be

written as

κ31(e)e4N−1 + κ32(e)e4N , (Phase II)

κ41(e)e4N−1 + κ42(e)e4N , (Phase I) (5.42)

Inserting the nonlinear terms to the Atr matrix using the expressions (5.40), (5.41), and (5.42), we
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can rewrite the error dynamics (5.37) into a quasi-LPV form as

Ė = Ãtr(E)E +Btru (5.43)

where Ãtr(E) contains the error stateE in its elements, Btr is a scalar matrix, and the control input

u = [F − Fd, T − Td]T .

Since the numerical value of the axial and torsional dimensions are typically y ∼ 0.001 m and

φ ∼ 1 rad, a scaling factor ν ∼ 1000 is introduced to the axial’s error dynamics. Applying this

scaling factor, we choose the scaled state vector as Ē = [νe1, e2, νe3, e4, ..., νe4N−1, e4N ]T . The

error dynamics in the quasi-LPV form (5.43) can be revised accordingly as

˙̄E = Ātr(Ē)Ē + B̄tru (5.44)

Next, we will adopt the transformation based barrier avoidance control method as proposed in

Chapter 3 to the directional drilling application. As shown in Fig. 3.1, the key idea of the method

is to transform the original state space (left) to a new space (right). The barrier will be mapped to

infinity or a region far from the origin of the new space. In the new space, as long as we can design

a controller ensuring stability in the radially bounded region, the control will ensure avoidance of

the barrier in the new space and therefore the same can be achieved in the original space. In other

words, the barrier avoidance control is translated into a regular asymptotic stabilizer design in the

new space.

The main theorem of the barrier avoidance control is provided as follows.

Theorem 9. Consider the closed-loop system Σ : ẋ = h(x) and a given open setD. The boundary

of D is noted as ∂D is the barrier to avoid. If a diffeomorphism x∗ = Φ(x) transforms the system

Σ into Σ∗ : ẋ∗ = h∗(x∗) and satisfies:

1) The diffeomorphism x∗ = Φ(x) maps D into Rn. The boundary ∂D is mapped to the points at

infinity, and the origin x = 0 is mapped to the origin x∗ = 0.
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2) The system Σ∗ is globally stable (globally asymptotically/exponentially stable) at x∗ = 0.

The following statements hold:

a) The set D is forward invariant for the system Σ.

b) The system Σ is stable (asymptotically/exponentially stable with the attractive region identical

to D) at x = 0.

Specially, when the condition 2) is modified as

2) The system Σ∗ is locally stable (locally asymptotically/exponentially stable) at x∗ = 0.

Then the following statements hold:

a) The state x(t) stay in D for all t ∈ [0,∞).

b) The system Σ is locally stable (locally asymptotically/exponentially stable) at x = 0.

Proof: The scheme of the proof follows Theorem 2 in Chapter 3. Here, the local stability and

global stability cases are both considered. �

The diffeomorphism defined in Theorem 9 will map the constrained region D into the whole

real plane Rn, and convert a state constrained control problem into an unconstrained one, which can

enable more flexibility in the options of nonlinear control design tools. In our design, by choosing

D as the optimum region in the Fig. 5.6(b) and obtaining the diffeomorphism to transform the

scaled error dynamics (5.44) into a new system equation, we can then implement the LPV control

to achieve the constrained control objective.

To apply this method, a diffeomorphism needs to be found for the directional drilling system as

required in Theorem 9. In Fig. 5.7, the constrained region is contoured by the dashed curves in the

e4N−1 − e4N coordinates to prevent the state from falling into the undesired operating conditions.

This region can be expressed as

D =
{
E ∈ R4N

∣∣∣ klω < e4N < kuω, k
l
v(e4N) < e4N−1 < kuv (e4N)

}
(5.45)
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where the upper and lower bounds in the e4N−1 and e4N dimensions are chosen as

klω = −4.13094, kuω = 4.91902

klv(e4N) = −1.84101× 10−6e3
4N + 7.29018× 10−6e2

4N + 5.84175× 10−5e4N − 4.38985× 10−4

kuv (e4N) = −2.69561× 10−5e3
4N − 6.44755× 10−5e2

4N + 6.50835× 10−4e4N + 2.10445× 10−3

(5.46)

The diffeomorphism satisfying the condition of Theorem 9 is provided as

e∗4N =
e4N

(kuω − e4N)
1
2 (e4N − klω)

1
2

e∗4N−1 =
e4N−1

(kuv − e4N−1)
1
2 (e4N−1 − klv)

1
2

(5.47)

If klω < 0 < kuω and klω < 0 < kuω hold, it can be verified that e4N → klω ⇒ e∗4N → −∞,

e4N → kuω ⇒ e∗4N →∞, e4N−1 → klv ⇒ e∗4N−1 → −∞, and e4N−1 → kuv ⇒ e∗4N−1 →∞. Thus,

the diffeomorphism (5.47) maps D into R4N .

Defining the state vector in the new space as E∗ = [νe1, e2, νe3, e4, ..., νe4N−3, e4N−2, e
∗
4N−1,

e∗4N ]T , we can obtain the system equation in the E∗-coordinates as

Ė∗ = A∗(E)E∗ +B∗(E)u (5.48)

where

A∗(E) =



1 0 · · · 0 0

0 1 · · · 0 0

...
... . . . ...

...

0 0 · · · kuv (e4N−1−klv)−klv(kuv−e4N−1)

2(kuv−e4N−1)
3
2 (e4N−1−klv)

3
2
−
e4N−1

Å
∂kuv
∂e4N

(e4N−1−klv)− ∂klv
∂e4N

(kuv−e4N−1)

ã
2(kuv−e4N−1)

3
2 (e4N−1−klv)

3
2

0 0 · · · 0 kuω(e4N−klω)−klω(kuω−e4N )

2(kuω−e4N )
3
2 (e4N−klω)

3
2


Atr(E)

(5.49)
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×



1 0 · · · 0 0

0 1 · · · 0 0

...
... . . . ...

...

0 0 · · · (kuv − e4N−1)
1
2 (e4N−1 − klv)

1
2 0

0 0 · · · 0 (kuω − e4N)
1
2 (e4N − klω)

1
2



B∗(E) =



1 0 · · · 0 0

0 1 · · · 0 0

...
... . . . ...

...

0 0 · · · kuv (e4N−1−klv)−klv(kuv−e4N−1)

2(kuv−e4N−1)
3
2 (e4N−1−klv)

3
2
−
e4N−1

Å
∂kuv
∂e4N

(e4N−1−klv)− ∂klv
∂e4N

(kuv−e4N−1)

ã
2(kuv−e4N−1)

3
2 (e4N−1−klv)

3
2

0 0 · · · 0 kuω(e4N−klω)−klω(kuω−e4N )

2(kuω−e4N )
3
2 (e4N−klω)

3
2


B∗tr(E)

(5.50)

System (5.48) is in a quasi-LPV form, and enables using a standard LPV design framework.

According to Theorem 9, if the closed-loop system of (5.48) is exponentially stabilized by the

LPV controller, then applying the same amount of control back to the original error dynamic

equation (5.37) ensures the exponential stability of the tracking error E and the avoidance of the

state constraints.

Next, we will briefly introduce the sketch of a standard LPV control method [85]. In the

matrices A∗(E) and B∗(E) of (5.48), we treat E as a time-varying variable and denote it as ρ for

clarity in the following control synthesis. The system equation (5.48) can be rewritten as

Ė∗ = A∗(ρ)E∗ +B∗(ρ)u (5.51)

Also, we assume |ρi| < kρi and |ρ̇i| < kρ̇i hold. The feedback control law is chosen as u =

K(ρ)E∗. Consider the Lyapunov candidate V = E∗TP (ρ)E∗, where P T (ρ) = P (ρ). The closed-
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loop system is exponentially stable if

P (ρ) (A∗(ρ) +B∗(ρ)K(ρ)) + (A∗(ρ) +B∗(ρ)K(ρ))T P (ρ) + ρ̇
∂P (ρ)

∂ρ
< 0 (5.52)

for all |ρi| < kρi and |ρ̇i| < kρ̇i . Then (5.52) can be transformed into a computationally efficient

form as

(A∗(ρ) +B∗(ρ)K(ρ))P−1(ρ) + P−1(ρ) (A∗(ρ) +B∗(ρ)K(ρ))T − ρ̇∂P
−1(ρ)

∂ρ
< 0 (5.53)

Setting Q(ρ) = P−1(ρ) and K̃(ρ) = K(ρ)P−1(ρ), we have

A∗(ρ)Q(ρ) +B∗(ρ)K̃(ρ) +Q(ρ)A∗(ρ) + K̃T (ρ)B∗T (ρ)− ρ̇∂K(ρ)

∂ρ
< 0 (5.54)

Here, the set of Q(ρ) and K̃(ρ) satisfying (5.54) is convex, and thus (5.54) is an LMI. However,

because of the dependence of ρ∗, the condition (5.54) contains infinitely many sets of LMIs. A

remedy to this issue is to discretize the dependence parameter ρ∗, and to solve an finite number of

LMIs.

In the quasi-LPV system (5.51), having two time-varying parameters denoted as ρ1 = e4N−1

and ρ2 = e4N , we can divide the interval [−kρi , kρi ] into Ni segments with width hi for i = 1, 2.

Then (5.54) becomes a finite collection of LMIs, indexed with ni = 1, 2, ..., Ni as

A∗(n1,n2)Y(n1,n2) +B∗(n1,n2)K̃(n1,n2) +Q(n1,n2)A
∗
(n1,n2) + K̃T

(n1,n2)B
∗T

(n1,n2)

± kρ̇1
Q(n1,n2) −Q(n1−1,n2)

h1

± kρ̇2
Q(n1,n2) −Q(n1,n2−1)

h2

< 0 (5.55)

where A∗(n1,n2) = A∗([n1h1− kρ1 , n2h2− kρ2 ]T ) and the subscipts (n1, n2) have the same meaning

for other matrices. It is worth noting that the rate of variation ρ̇i enters linearly into (5.54), so it

is sufficient to only check the LMIs of the vertex points instead of all points of ρ̇i in the region

[−kρ̇1 , kρ̇1 ]× [−kρ̇2 , kρ̇2 ].
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To implement the designed LPV controller on the error dynamics (5.48), we create a 2-dimensional

mesh grid in the e∗4N−1 − e∗4N coordinates and numerically solve the solution of the LMI at each

grid point. Note that, since the switching condition of Phase I and II of the bit-rock interaction

only occurs in the e∗4N−1− e∗4N−1 plane and is formulated inside the matrix A∗, it can be integrated

into this discretization based quasi-LPV approach, by solving the LMI at each grid point with the

corresponding A∗ and B∗ matrices.

5.4 Simulation Results

To validate the effectiveness of the novel state barrier avoidance based LPV approach, we

perform a series of simulations in this section. Firstly, the open-loop responses are provided by

applying constant actuation on the top drive, under both full-order model and reduced-order model

settings. Closed-loop results are then examed with different initial conditions using the proposed

method given in Section 5.3.2. Finally, we conduct a comparison of the standard LPV and the

barrier avoidance based LPV approaches, and also check the robustness of the proposed controller

under parameter perturbation.

Throughout the simulations in this section, the geometry setting of the directional drilling sys-

tem is displayed in Fig. 5.3. We set the curved drill string ÃB as an arc with the center O, and its

central angle is 30 degrees. The drill string is evenly discretized in the FEM model. The parameter

of the drill string’s model is listed in Table 5.2. Besides, the parameter of the bit-rock interaction

model is provided in Table 5.1.

5.4.1 Stick-slip and Bit-bouncing Behavior in the Open-loop Control

For the first simulation, we set the initial values of each node of the directional drill string to

be the desired axial and torsional velocities vd = 1 mm/s and ωd = 10 rad/s, and feed the constant

input force and torque into top drive’s motors, which can be calculated using the force/torque

balance of the system. This way the velocities of each node will follow the desired value due to

the top drive’s actuation. The time history of the bit’s velocities under this open-loop control is

displayed in Fig. 5.8, under both 20-node (40-DOF) FEM model and 5-node (10-DOF) FEM model
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Table 5.2: Parameters of Drill String FEM Model

Symbol Value [Unit] Description
Do 0.12 [m] Drill string outer diameter
Di 0.06 [m] Drill string inner diameter
% 7850 [kg/m3] Drill string density
A 0.0085 [m2] Cross-section area
L 1047.2 [m] Length of arc AB
N 5 Number of nodes
E 2.1× 1011 [Pa] Young’s modulus
G 8.08× 1010 [Pa] Shear modulus
J 1.72× 10−5 [Pa] Polar moment of inertia
ra 0.005 [m] Rayleigh damping coefficient
rb 0.001 [m] Rayleigh damping coefficient
θ 30 [◦] Central angle of arc AB

settings. The axial bit-bouncing and the torsional stick-slip can be observed in each dimension. As

depicted in the figure, the velocities drop down to zero and the bit gets stuck while the energy is

accumulating. The release of the energy can force the bit to a high speed, and the peak values

of the velocities in this simulation are four times of its desired value in the torsional dimension,

and over ten times in the axial one. Since the system has no feedback control using the downhole

measurement, the energy will dissipate and cause the bit to stick again. Such vibration modes

stimulate periodic responses in both axial and torsional motions, namely bit-bouncing and stick-

slip behaviors. Also, from Fig. 5.8 we notice that the response of the 5-node model can line up

well with the 20-node model with minor discrepancies. The matching result demonstrates that

the bandwidth of the reduced-order model is suitable for capturing complex nonlinearities such as

bit-bouncing and stick-slip. Thus, in the rest of simulation results, we will use a 5-node model for

the controller design, while setting the 20-node model as the drilling system’s physical plant.

5.4.2 Closed-loop Control Using Barrier Avoidance Based LPV method

To address the harmful vibrations arising in the responses of the open-loop control, we integrate

the state constraints into the closed-loop control using the barrier avoidance based LPV method as

discussed in Section 5.3.2. Considering the target axial and torsional velocities vd = 1 mm/s and
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Figure 5.8: Stick-slip and bit-bouncing behavior of the bit under constant top drive’s control inputs

ωd = 10 rad/s, we choose the shape of the constraints as shown in Fig. 5.7 in the space of bit’s

axial and torsional velocities to avoid the undesired operating regimes. The numerical expression

of the state barrier is given in (5.46), which enables the diffeomorphic transformation to convert

the system dynamics into the new coordinates. In the e4N−1− e4N plane, we choose a 2-dimension

mesh grid with evenly distributed 40 × 40 grid points inside the intervals [−10, 10] × [−10, 10].

In the simulation, we choose a number of initial conditions inside this state barrier region, and

the phase portraits of 4 different cases are drawn in Fig. 5.9. The responses of the bit’s velocities

converge to the desired values without any violation of the state barriers during the transient, even

starting from an initial state close to the boundary. By constraining the state in the desired operating

regime, the oscillation modes such as bit-bouncing and stick-slip are indeed eliminated in the

simulation. Also, the time history of the input force F and torque T is plotted in Fig. 5.10, which

can prove the feasibility of the proposed control.

To verify the barrier avoidance base method can outperform other unconstrained control strate-
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Figure 5.9: Phase portraits of the bit’s torsional velocity α̇lN and axial velocity ẋlN with 4 different
initial conditions under barrier avoidance control

gies, we compare our approach with a standard LPV method (without the barrier avoidance). Under

the same initial conditon, the time history of the bit’s velocities is tested with both barrier avoid-

ance LPV and standard LPV approaches. The phase portraits is plot in Fig. 5.11, in which major

oscillations and barrier violation will occur. As shown in Fig. 5.12, severe vibrations still arise in

both axial and torsional dimensions using a standard LPV controller, while the proposed controller

can significantly shrink the magnitude of the velocities and eliminate the oscillations.

Next, we will exam the robustness of this control strategy under parameter perturbation. A

significant uncertainty can arise in the system modeling due to the complex downhole environment.

One major factor causing the uncertainty is the variation of the rock formation, which affects the
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Figure 5.10: Time history of top drive’s force F and torque T

intrinsic specific energy parameter ε in the bit-rock interaction. In this simulation, we will check

the control performance under a perturbation of the parameter ε. In Fig. 5.13(a) and Fig. 5.13(b),

the bit’s velocities are depicted in the range 70% to 150% of the nominal value 45 MPa, where the

state constraints are not violated under the variance of the perturbed parameter ε.

To conclude, the closed-loop control using the barrier avoidance based LPV control not only

stabilize the drilling process for the setpoint tracking problem, but also integrates the complex

state constraints into the state-space to prevent the undesired operating regimes. As highlighted by

the responses of the numerical simulations, the severe vibrations are indeed suppressed, and the

control performance and robustness are validated.

5.5 Conclusion

In this work, the state constrained control technique is applied to the directional drilling system.

To capture the curved drill string’s dynamic modes, we apply the FEM method to the system

modeling. Having the empirical optimal region of the drilling operation depicted, we formulate the
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ẋ
l N

(m
/
s)

×10
-3

Figure 5.11: Phase portraits of the bit’s torsional velocity α̇lN and axial velocity ẋlN under standard
LPV control

state constraints in the bit’s dynamics with a complex shape. The novel barrier avoidance control

technique is then implemented to this directional drilling system, embedding the state constraints

into the LPV control design. To the end, the simulation case studies validates the effectiveness

of the proposed constrained control design, through a comparison of open-loop, standard LPV

control, and barrier avoidance based LPV control methods.
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Figure 5.12: Comparison of the responses using standard LPV and barrier avoidance based LPV
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(a)

(b)

Figure 5.13: Robustness test under parameter perturbance of the instrinsic specific energy ε (70%
to 150%): a) Responses of bit’s axial velocity ẋlN ; b) Responses of bit’s torsional velocity α̇lN
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6. VALIDATION OF BARRIER AVOIDANCE BASED DRILLING CONTROL IN A

LAB-SCALE DRILL RIG USING HARDWARE-IN-THE-LOOP SYSTEM

6.1 Introduction

In the practice of oil & gas production, drilling rigs are commonly built on-site after the geology

exploration of the reservoirs. In order to complete the well, human drillers are often required to

monitor and pilot the drilling, especially in directional and horizontal settings. However, this

process largely depends on the driller’s skills and experience, and a failure operation can result

in severe vibration modes and drilling tool damage. This will significantly decrease the drilling

efficiency and increase the non-production time, which can cause economic loss. To address this

limitation, an automated drilling system has been intensively studied and developed in recent years.

Based on the downhole data measurement through LWD and MWD [98], the automated drilling

system can optimize the drilling parameter and make decisions in real-time, where the design of

the control system is involved.

To validate the performance of drilling control, a drilling testbed is needed for both theoretical

proof-of-concept and experimental validation. Nevertheless, it is not feasible to implement the

control algorithm to a full-scale drill rig that comprises of a drill pipe of over ten thousand feet long.

Also, an actual size PDC bit is critical in the experimental tests, since it can endure different major

dynamic modes through the bit-rock interaction. Employing a PDC bit to the drilling requires

powerful and complex machinery, which is challenging for a lab-scale implementation. In the

previous work, many efforts have been put into the experimental study of the down-hole drilling

[99, 100, 101, 102, 103]. However, most of them only consider a scaled size of both drill bit and

drill string in a vertical setting, which can lose validity in modeling a full-size drill rig. In this work,

we adopt the hardware-in-the-loop (HIL) technique to overcome this challenge. HIL provides a

platform to replace a portion of the physical system with numerical simulations. This way, the

complexity of building up a full-scale system can be tremendously reduced. In our experimental
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testbed, we combine a physical system consisting of the bottom drill string and a full-size PDC

bit, with a real-time simulation that models the directional drill string with FEM nodes, as shown

in Fig. 6.1. This setup ensures a proper size of the device that can fit in the laboratory room and

retains major dynamic modes of the system with a physical bit-rock contact, which enables a solid

testing condition for the drilling control synthesis.
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Figure 6.1: Schematic of the lab-scale drill rig

To mitigate the harmful vibration modes, we introduce a novel state-constrained control tech-

nique named barrier avoidance control. The constraint is formulated in the bit’s velocities to en-

force the drilling to stay inside the desired operating region, serving as a performance guarantee

using active control. Due to the dynamic nature of this HIL system through FEM modeling and

system identification, we embed the barrier avoidance control into the LPV method, to enable the

feedback control of the high-order nonlinear system of the drilling. Considering the model uncer-

tainties and downhole disturbances, we also integrate the H∞ control to the design for disturbance

rejection.
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The outline of this chapter is given as follows. In Section 6.2, we first introduce each compo-

nent of the hardware/mechanical setup of the physical system, including motors and sensors along

the drill string, and then present the embedded environment that arranges the feedback control

and real-time simulation. Section 6.3 states the framework of the HIL system, containing a FEM

model-based virtual drill string, a lumped-parameter model of the physical system obtained by

system identification, and an observer that estimates the system states. In Section 6.4, the barrier

avoidance control approach is embedded in an LPV based control synthesis to enable the state-

constrained control of the drilling system for vibration mitigation purposes. Finally, a series of

experimental tests are exhibited in Section 6.5.

6.2 System Configuration

As depicted in Fig. 6.1, the experimental setup of a lab-scale drill rig has two major portions,

a physical drilling machine that houses a PDC drill bit, and a real-time simulation in the NI Lab-

VIEW software simulates the dynamic behavior of the long drill string. The reason of simulating

the drill string using a dynamic model is because the drill string is the longest portion in a drilling

system and is impractical to house physically in a lab environment. Yet, the dynamics of drill

string are well studied based on beam theory and can be accurately modeled using methods such

as finite element method (FEM) validated with a number of experiment based studies [96]. In

contrast, the interaction of the drill bit and rock is typically nontrivial to model, so a physical drill

it is incorporated in the HIL to ensure high fidelity. The simulation of the drill string dynamics

generates real-time speed and torque/force of the lower portion of the drill string connected to the

drill bit, and then two servo motors (one axial and one torsional) on top of the drill bit will generate

the same force/torque to drive the drill bit at the bottom of the rig. The physical portion of the HIL

testbed is shown in Fig. 6.2. There are four subsystems for controls setup: AC motors with servo

drives, sensors, data acquisition devices, and an embedded control system.

143



PDC 
drill bit

Drill 
string

Top drive 
rotary 
motor

Hoist 
motor

Load 
cell

Acceler
ometer 
+ Gyro 

Torque 
sensor

Compact 
RIO & 
DAQ

Signal 
amplifier

DC power 
supply

Rock 
sample

Figure 6.2: Photograph of the lab-scale drill rig

6.2.1 AC Motors with Servo Drives

To meet the rated power to penetrate the rock sample, we choose AC motors (ToAuto 1.8KW

6NM AC Servo Motor NEMA42) integrated with servo drives (KRS series) for the experimental

setup. The speed reducers (NMRV050 30:1 Worm-Gear Reducer) are mounted at the output shaft

of the AC motors, serving as the top rotary drive and the hoist drive to actuate torsional and axial

motions, respectively. The motor drive is set to the speed mode, taking analog DC voltage input to

control the speed, and it provides built-in position, velocity, and current feedback for a swift servo

tracking performance.

6.2.2 Sensors

Different types of sensors are installed along the drill string to collect real-time measurements,

enabling the system identification and the feedback control design. Incremental encoders are at-

tached to the rotors of the AC motors, providing position/velocity readings in both axial and tor-

sional dimensions. Besides, an IMU sensor board, including an integrated accelerometer and gyro-
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scope module (Adafruit 9-DOF IMU Fusion - BNO055), is located at the drill bit, which measures

the motion of the bit. Also, a load cell (Optima OP-312 1klb) and a dynamic torque sensor (WTQ

1050A 25Nm) are mounted at the shaft of the bottom drill string. These measurements are sent to

the data acquisition devices for further data processing.

6.2.3 Data Acquisition Devices

Due to measurement noise, electromagnetic noise, and signal scaling, we use data acquisition

devices to obtain accessible and reliable sensor measurements before sending them to the embed-

ded control system. As shown in Fig. 6.3, the NI MyRIO board acquires all the sensors’ signals

after a low-pass filter circuit. Encoder data with two channels of pulses is sent to the FPGA ports

of the MyRIO board. IMU sensor readings are converted into analog signals using a D/A converter

(Adafruit 12-Bit DAC - MCP4725). The analog outputs of the load cell and torque sensor are

amplified through a signal amplifier and then sent to the MyRIO board with proper scales.

6.2.4 Embedded Control System

The control system of this experimental drill rig is employed in the NI LabVIEW embedded

environment. This environment includes the desktop PC, and two real-time operating systems

(RTOS), i.e., MyRIO and CompactRIO (CRIO), and the data can transmit among these three de-

vices in real-time. The signal flow is drawn in Fig. 6.3. After acquiring sensor measurements, the

MyRIO board will forward the data to the embedded environment. The desktop PC then runs a

real-time simulation to process this data through feedback control design. The voltage value for

the speed control mode is calculated in the simulation and sent to the CompactRIO, which gen-

erates analog signals connected to the servo motor’s drive. This way, we can construct the HIL

framework of a drill string through the embedded control environment.

6.3 Hardware-in-the-loop System Design

As depicted in Fig. 6.1, a torsional rotary motor and an axial hoist motor can drive a physical

drill rig to contact and penetrate the rock sample through the PDC drill bit. As we consider this

physical system as only the lower portion of the drill string, a real-time simulation through a
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sophisticated mathematical model becomes the upper portion of the drill string. Based on this

setup, the full-scale downhole drilling system is constructed in a HIL fashion, as shown in Fig. 6.4.

The feedback control framework is drawn in the figure, where the virtual control inputs, i.e., force

F and torque T on the top drive of the simulation model, actuate the dynamic motion of the drill

string, and generate the velocities of the axial and torsional motors in the real-time, as the outputs

of the simulations. These velocities are then fed into the servo drive as reference speeds of the

motors, serving as the inputs to the physical system. When the drill bit penetrates the rock sample,

the real-time measurements from the encoder, accelerometer, and gyro are collected. Finally, these

state feedback signals are fed into the controller. This way, the feedback control loop is formulated

with given reference positions and speeds, as shown in Fig. 6.4.

6.3.1 Mathematical Model of the Real-time Simulation

Typically, a full-scale drill rig in the field can have a drill string over ten thousand feet long.

Thus, developing an experimental system under such a large size in the real drilling condition is

not feasible. In this work, a large portion of the drilling string is simulated in the software, and

connected to a physical drill bit.
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Figure 6.4: Hardware-in-the-loop based closed-loop control system

As shown in Fig. 6.4, the geometry of the drilling system is in a directional setting, where the

drill string is discretized into N nodes. In the numerical simulation, we adopt a FEM approach to

model the curved drill string for the first N − 1 nodes, following the scheme in Chapter 5. The

global frame is denoted by XgY gZg, where Xg axis is in the direction of gravity, and Y g axis is

in parallel to the ground surface. Every two adjacent nodes share a local coordinate frame, namely

X lY lZ l. The displacement vector of node i has four elements, denoted as

U l
i = [xli, y

l
i, φ

l
i, β

l
i]
T (6.1)

where xli is the axial displacement, yli is the radial displacement, φli is the torsional angle, and βli is
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the bending angle. The dynamic motion of the two adjacent nodes i and i+ 1 can be written as

M lÜ l
{i,i+1} +DlU̇ l

{i,i+1} +K lU l
{i,i+1} = F l

{i,i+1} (6.2)

where U l
{i,i+1} = [U lT

i U lT

i+1]T is the local vector of the nodes i and i + 1, M l, K l, Dl are the

local ineria, stiffness, and damping matrices, and F l
{i,i+1} is the external force vector. Under the

coordinate transformation between global and local frames U l
{i,i+1} = RiU

g
{i,i+1}, we express the

dynamics in the global coordinates as

(RT
i M

lRi)Ü
g
{i,i+1} + (RT

i D
lRi)U̇

g
{i,i+1} + (RT

i K
lRi)U

g
{i,i+1} = RT

i F
l
{i,i+1} (6.3)

Augmenting the motion equations of all the finte element nodes gives the overall dynamics as

MÜ g +DU̇ g +KU g = F ext (6.4)

where U g = [U gT

1 , U gT

2 , ..., U gT

N−1]T is the global state vector, M,K,D are the global inertia, stiff-

ness, and damping matrices.

The dynamics (6.4) can be written in a state-space form as

Ẋ0 = A0X0 +H0 (6.5)

where X0 = [U gT U̇ gT ]T is the state, and the system matrices A0 and H0 are given as

A0 =

 0 I

−M−1K −M−1D

 , H0 =

 0

M−1F ext

 (6.6)

The external force vector F ext contains the input force F and torque T at the top end, the gravita-

tional force, and the distributed wellbore contact tension and friction force/torque along with each

FEM node. As constrained in the downhole drill pipes, the drill string’s dynamic motion is latched
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in the drill pipe’s axial direction, through the wellbore contact force/torque. Thus, assuming the

resultant motion is lined up with the drill pipe at an inclined angle θi, we will have the constraints

in both axial and torsional dimensions as

ygi = xgi tan(θi), βgi = φgi tan(θi) (6.7)

We can then trancate the state vector using half of the state variables, given as

Xtr =

U g
tr

U̇ g
tr

 (6.8)

where

U g
tr = [xg1, φ

g
1, x

g
2, φ

g
2, ..., x

g
N−1, φ

g
N−1]T (6.9)

For clarity, we can also denote

U̇ g
tr = [vg1 , ω

g
1 , v

g
2 , ω

g
2 , ..., v

g
N−1, ω

g
N−1]T (6.10)

The state-space system equation for the truncated stateXtr is then derived from the original system

equation (6.5) as

Ẋtr = AtrXtr +Htr (6.11)

where the system matrices Atr and Htr can be obtained using the procedures given in Chapter 5.

The numerical calculation of the FEM nodes is implemented in the NI LabVIEW software

environment in real-time. As shown in Fig. 6.5, a Mathscript block contains the system matrices

of the FEM nodes, and calculates the system states Ẋtr in real-time. In this block, we choose the

Runge-Kutta 4th Order Method with a 0.02 sec time step, to ensure the numerical stability of the
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simulation. The outputs of this Mathscript block are the vertical/angular velocities of the N − 1th

node, which are fed into the motor dive as the reference speeds.

Figure 6.5: Math node for real-time simulation in LabVIEW

6.3.2 Model Identification of the Physical System

The bottom portion of the drill string is implemented in a physical experimental setup. As

shown in the photograph of the lab-scale drill rig in Fig. 6.2, two AC motors in both axial and

torsional dimensions drive the vertical drill string to penetrate the rock sample through the contact

of the drill bit, while the sensors’ measurements are logged in the real-time. We assume this

physical system includes the drill string’s last two nodes, i.e., N − 1 and N , attaching to the

PDC drill bit. To enable the feedback control of the drilling system in a HIL setting, we will first

perform the system identification to obtain the coefficients of the two nodes N − 1 and N in a

lumped-parameter setting, and then to find the coefficients of the bit-rock interaction model. In the
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rest of this section, we will discuss the system identification procedure in the torsional dynamics,

and the axial one can be performed in the same manner.

The system identification of the lumped-parameter dynamics is performed, with the bottom of

the drill string being a free end, i.e., the drill bit not in contact with the rock. The system equation

of the N th node can be written as

IN φ̈N = −ct(φ̇N − φ̇N−1)− kt(φN − φN−1) (6.12)

where IN is the moment of inertia of the node N , and ct and kt are the damping and stiffness

coefficients between the nodes N − 1 and N . The transfer function of this SISO model is given as

ΦN(s)

ΦN−1(s)
=

ct
IN
s+ kt

IN

s2 + ct
IN
s+ kt

IN

(6.13)

Feeding a chirp signal (in a 0.1-3 Hz frequency range) into the motor’s reference speed φ̇N−1, we

can log the bit’s speed φ̇N from the gyroscope’s readings. The estimation of the coefficients is

performed using the MATLAB System Identification Toolbox. The responses of both numerical

model and physical plant are compared in Fig. 6.6. In this figure, we can observe that, except for

some discrepancies in the high-frequency portion, the response of the numerical model matches

well with the bottom drill string subsystem. In this setting, the coefficients of (6.13) are found as

ct
IN

= 25,
kt
IN

= 2500 (6.14)

Besides, we can estimate the moment of inertia IN = 0.005 from the dimension and density of the

drill string and drill bit.

Next, to obtain the coefficients of the bit-rock interaction model, we set the velocities of tor-

sional and axial motors to be constants, and let the bit contact with the rock sample and break the

rock smoothly. The bit-rock interaction torque Tb is obtained from the torque sensor mounted at

the drill string’s shaft above the drill bit, as shown in Fig. 6.1. Its numerical model is given as
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Figure 6.6: Responses of numerical model and physical plant

Tb = lbd, where d = 2πvN/ωN is the depth-of-cut. The coefficient lb can be derived by applying

linear regression to the expression of Tb.

6.3.3 State Observer Design

Closed-loop control using state feedback requires precise real-time measurements from the

sensors. For the torsional motion, the incremental encoder attached to the AC motor provides

accurate angular speed ωN−1 and displacement φN−1 values. The gyroscope located at the drill bit

can generate angular speed readings ωN . However, the integral of this speed becoming the bit’s

angular displacement φN will lose its validity due to the unpredictable zero offset of the gyroscope

and the high-frequency measurement noise, when following a ramp signal. Therefore, we can

design a state-observer to estimate the angular displacement φN at the bottom, using the torque

sensor’s measurement, as shown in Fig. 6.7.

The system equation of the node N with the bit-rock contact can be expressed as

IN φ̈N = −ct(φ̇N − φ̇N−1)− kt(φN − φN−1)− Tb (6.15)
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Choosing x1 = φN and x2 = φ̇N , we can convert (6.15) into a state-space model as

ẋ1 = x2

ẋ2 = − kt
IN
x1 −

ct
IN
x2 +

ct
IN
ωN +

kt
IN
φN −

Tb
IN

(6.16)

where the term ct/IN · ωN + kt/IN · φN − Tb/IN is accessible in the real time, and we assume it

is the input u to the system. Thus, the system equation (6.15) becomes

ẋ = ANx+BNu

y = CNx (6.17)

where

AN =

 0 1

− kt
IN
− ct
IN

 , BN =

0

1

 , CN =
[
1 0

]
(6.18)
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The state observer is then designed as

˙̂x = AN x̂+BNu+ L(y − ŷ)

ŷ = CN x̂ (6.19)

The observer gain L is chosen to place the eigenvalues of AN −LCN 3 times away from the origin

than the eigenvalues of the matrixAN . Therefore, the estimated displacement of the bit is available

for the feedback control design.

6.4 Barrier Avoidance Control Design

In this work, assuming the axial dynamics have constant velocities at each FEM node, we

introduce the barrier avoidance control method for the torsional dynamics of the drilling system in

the HIL setting. This state-constrained control technique can prevent the drilling from falling into

the undesired operating regime, and thus can mitigate harmful vibrations such as stick-slip [83].

Since the drilling system contains higher-order nonlinear dynamics, we will embed the barrier

avoidance control method in an LPV control scheme to enable a nonlinear feedback design for

such a high-order system. Thus, we will next find the system equations’ error dynamics and convert

them into an LPV plant.

Combining the torsional dyamics of the virtual system (6.11) and the physical system (6.15),

we obtain the system equation of N nodes as

Ẋ = AX +H (6.20)

where X = [Φ,Ω]T = [φ1, φ2, ..., φN , ω1, ω2, ..., ωN ]T (Since all the elements of X are in global

frame, we omit the notation g). The system matrices A ∈ R2N×2N , H ∈ R2N×1 are written as

A =

 0 I

−Akm −Adm

 , H =

 0

Hfm

 (6.21)
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Given the desired torsional velocity to be ωd in the local coordinates, we choose the desired state

vector as

Xd =

Ωdt+ Φic

Ωd

 (6.22)

where Ωd = [wd cos(θ1), wd cos(θ2), ..., wd cos(θN)]T . Therefore, we can define the error state as

E =

E1

E2

 (6.23)

where E1 = Φ − (Ωdt + Φic) and E2 = Ω − Ωd. The entries of the error state are defined as

E1 = [e1, e2, ..., eN ] and E2 = [eN+1, eN+2, ..., e2N ]. The error dynamics can be then derived from

(6.20) as

Ė1 = E2

Ė2 = −AkmΦ− AdmΩ +Hfm

= −AkmE1 − AdmE2 − Akm(Ωdt+ Φic)− AdmΩd +Hfm

= −AkmE1 − AdmE2 +Hfm −Hd (6.24)

where Hd is the desired external torque vector including the desired top drive’s torque Td and the

desired bit-rock interaction torque Tbd. The term AkmΩd is close to zero with a large number N

of the FEM nodes. Also, the initial condition of the torsional displacement is given as Φic =

A−1
km(Hd − AdmΩd). The error dynamics (6.24) can be simplified as

Ė = AE +He (6.25)

where the vector He contains the term Tb − Tbd, and can be converted into a quasi-LPV form.
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Under a smooth drilling condition, the torque of the bit Tb is calculated using a depth-of-cut model

Tb = lb2π
vN
ωN

+ δT (6.26)

where vN and ωN are the axial and torsional velocities of the bit, lb is a positive constant, and

δT stands for the model uncertainty and disturbance. Given the desired axial velocity vd, we can

express the nonlinear term Tb − Tbd as

Tb − Tbd = lb2π(
vd + δv

ωd + (e2N/ cos(θN))
− vd
ωd

) + δT

= − lb2πe2N

ωd cos(θN)(ωd + (e2N/ cos(θN)))
+ ∆ (6.27)

Plugging (4) into the error dynamics (6.25) gives the quasi-LPV form as

Ė = Ã(e2N)E +Bu+W∆ (6.28)

where Ã(e2N) contains the error state e2N in its elements, the control input u = T − Tbd, and the

overall disturbance ∆.

Next, the state constraint is chosen as ωd − kω < ωN < ωd + kω (or |e2N | < kω cos θN ), where

0 < kω < ωd, to avoid the bit’s torsional speed droping below zero. The state-constrained control

is then performed by combining barrier avoidance control with LPV method.

The principle of the barrier avoidance control is briefly summarized as follows (Theorem 2 in

Chapter 3):

1) Choose a diffeomorphic transformation that projects the boundary of the state constraints to the

points at infinity.

2) Convert the original system equation to a new one using this diffeomorphic transformation.

3) Design the state feedback controller that can stabilize the new system equation, and apply the

same amount of control back to the original system to achieve the state-constrained control.
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Given state constraint |e2N | < kω cos θN , we choose the diffeomorphic transformation as

e∗2N =
e2N

(k2
ω cos2 θN − e2

2N)1/2
(6.29)

Let E∗ = [e1, ..., e2N−1, e
∗
2N ]T . The system equation in the new coordinates of E∗ is written as

Ė∗ =diag{1,··· ,1, (1+e
∗
2N

2)3/2

kω cos θN
}Ã(e2N) diag{1,··· ,1, kω cos θN

(1+e∗
2N

2)1/2
}E∗

+ diag{1,··· ,1, (1+e
∗
2N

2)3/2

kω cos θN
}Bu+ diag{1,··· ,1, (1+e

∗
2N

2)3/2

kω cos θN
}W∆

=A∗(E∗)E∗ +B∗(E∗)u+W ∗(E∗)∆ (6.30)

Also, we consider the bit angular displacement to be the output z = CE∗. The objective is to

find the state feedback control u = KcE
∗, so that we can mitigate the effect of the disturbance to

the output. This can be achieved by minimizing η, such that the L2 gain is bounded, given as

sup
‖∆‖2=1

‖z‖2 = sup
‖∆‖2 6=0

‖z‖2

‖∆‖2

≤ η (6.31)

The above condition is equivalent to the follow LMI [36, 104]

A∗Q+QTA∗ +B∗Y + Y TB∗T +W ∗W ∗T QTCT

CQ −η2I

 ≤ 0 (6.32)

where Q = P−1, and the Lyapunov candidate is chosen as V = E∗TPE∗. The state feedback gain

is derived by Kc = Y Q−1. Together with (6.32), two additional LMIs are provided to enforce the

input constraint |u| ≤ η [105]

 1 E∗(0)T

E∗(0) Q

 ≥ 0 ,

Q Y T

Y η2I

 ≥ 0 (6.33)

To implement an LPV control scheme for the new system equation (6.30), we can solve the
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above set of LMIs in finite points of the discretized interval of the time-varying parameter e∗2N . The

efficient computer software, such as Matlab LMI toolbox [106] and Sedumi [107], can calculate

the control gains Kc in each mesh grid. Then the state feedback control is performed in real-time

using a lookup table with the pre-set controller gains.

Remark 4. Note that, due to the unknown axial speed of the bit, the uncertainty term of the bit-

rock interaction is not neglectable, and can greatly degrade the control performance. Thus, unlike

the LPV plant in Chapter 5, the uncertainty term ∆ in this HIL system model enters the system

equation (6.30). We then introduce an L2 induced norm to eliminate the effect of this unknown

term by solving the augmented LMIs in (6.32) and (6.33).

6.5 Experimental Results

In the experimental study, we integrate the proposed barrier avoidance control of Section 6.4

into our lab-scale drill rig in a HIL setting. The value of the control gains Kc are arranged in the

LabVIEW embedded environment. In the simulation of the upper drill string, the geometry of the

directional drill string is depicted as Fig. 6.8, where AB and BC are two arcs with centers O and

O′. The parameters of this FEM model are listed in Table 6.1. Note that the drill string parameters

are chosen in scaled dimensions, and it can model a full-size drill string if converted into a proper

scale.

In the axial dimension, given the reference speed as 0.05 mm/s, the motion is actuated by the

hoist motor in the physical system. For the torsional dynamics, we first performed three tests using

open-loop control, standard LPV control, and barrier avoidance based LPV control, respectively.

The open-loop control sets the top drive’s actuation to track a constant speed, and this so-

called ‘Speed Mode’ is commonly used in practice. Given the reference speed as 2 rad/s, we

observed severe vibrations of the bit while contacting the rock sample. The time history of the

bit’s angular speed and the torque on the bit are drawn in Fig. 6.9. In this figure, inside each cycle

of the oscillations, the speed drops down to zero and enters the ‘stick’ phase, while the energy

accumulates and the torque rises up to a high value. After the energy exceeds a certain threshold,

the bit enters the ‘slip’ phase, and the speed can increase and form a peak in the time response.

158



OA
F
T

B

CO 
θ

θ

Figure 6.8: Geometry of the directional drill string using FEM model

This way, the stick-slip behavior can generate harmful vibration and spread along the drill string.

Also, the torque on the bit lines up with this stick-slip behavior.

Next, we apply the standard LPV control without barrier avoidance to the torsional dynamics.

The stick-slip behavior is eliminated, and the responses of the bit’s angular speed are controlled

within a certain range, as shown in Fig. 6.10. However, significant fluctuation still arises under the

disturbance of bit-rock interaction, resulting in a poor performance of the HIL control system.

In comparison, we finally implement the barrier avoidance control to this experimental setup,

by choosing kω = 0.7ωd. As shown in Fig. 6.11, the vibrations are greatly suppressed, and the

constraints are not violated. The bit’s speed tracks the 2 rad/s references with a smooth steady-

state, proving the effectiveness of the proposed barrier avoidance method.

Next, we perform a series of tests, letting the drilling system track different setpoint speeds

using barrier avoidance control. Again, we set the axial reference speed to be 0.05 mm/s for all

the tests. In Fig. 6.12, the torsional velocities of the bit, the midpoint of the drill string, and

the top drive are logged, given the reference speeds as 3 rad/s, 4 rad/s, 5 rad/s, and 6 rad/s. As
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Table 6.1: Parameters of Drill String FEM Model

Symbol Value [Unit] Description
Do 0.075 [m] Drill string outer diameter
Di 0 [m] Drill string inner diameter
ρ 7850 [kg/m3] Drill string density
A 0.0044 [m2] Cross-section area
N 10 Number of nodes
E 2× 106 [Pa] Young’s modulus
G 7.69× 105 [Pa] Shear modulus
J 1.55× 10−6 [Pa] Polar moment of inertia
ra 0.001 [m] Rayleigh damping coefficient
rb 0.01 [m] Rayleigh damping coefficient
θ 10 [◦] Central angle of arc AB and BC
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Figure 6.9: Bit angular velocity and torque under speed mode of the top drive with reference speed
2 rad/s

being verified in these figures, the state-constrained controller can effectively suppress the severe

vibration modes, even when the system endures large disturbances at the drill bit. These results

demonstrate the performance and the robustness of our feedback control design using the barrier

avoidance control.
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6.6 Conclusion

In this chapter, we present the control of a lab-scale drill rig under the HIL scheme. All compo-

nents in the hardware setup, including the actuation system, sensors, and data acquisition devices,

are explained in detail, contributing to the physical system’s construction. The directional drilling

system model is captured using the FEM method for the real-time simulation and system identifica-

tion for the physical dynamics. A novel state-constrained control scheme named barrier avoidance

control is proposed using the H∞ control based LPV approach. Responses of the experimental re-

sults are performed with a variety of reference velocities, and the efficacy of the proposed control

design is validated through the comparison of the open-loop and closed-loop control.
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7. SUMMARY

7.1 Summary

This dissertation discusses the barrier avoidance control method, as a novel state-contrained

control technique, and applies this method to a down-hole drilling system for vibration mitigation.

Both theoritical investigation and its application to the drilling are presents in this thesis. In the the-

oretical study, barrier avoidance control is proposed to enlarge the flexibility for a state-constrained

control problem. In the study of the drilling control, the barrier avoidance method is implemented

to both vertical and directional drilling systems, and is validated by the testing results of a lab-scale

drill rig in HIL settings.

7.1.1 Theoretical Study

The main theory of the barrier avoidance control is proposed in Chapter 3, where a diffeomor-

phic tranformation can project the constrained region in the original plane into the new radially

unbounded plane, and the system dynamics are converted accordingly. By designing any types

of controllers that can stablilize the new system, the state-contrained control is achieved in the

original system, which enables any well-established nonlinear control to be used. However, even

though it can be directly implemented to the state constraint with a hyperrectangle shape as proven

in the cases studies, its application to a complex shape of the state constraint is non-trivial and

required further investigation. In Chapter 4, we propose a systematic way to integrate the complex

constraint into the barrier avoidance control, and this routine can effectively solve the constrained-

control problem in many physical systems.

7.1.2 Application to Drilling System

The early study introducing the concept pf state-constrained control to a drilling system is

discussed in Chapter 2. The iBLF approach is brought into the down-hole drilling system for the

first time. Nevertheless, it can only be implemented to a low-order lumped-parameter system with

2 nodes, due to the requirement of the strict-feedback form. Also, in Chapter 2, the state barrier
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region is in a rectangle shape of the bit’s velocities, which can be conservative compared with the

empirical field testing results in a complex barrier shape. Since a higher-order system dynamics

model is capable of capturing vibration modes of higher frequencies, and also is a foundation of

the directional drilling’s modeling, in Chapter 5 we make two improvements to the drilling control

design, i.e., using high-order FEM to model the directional drill string, and choosing a complex

barrier shape for the drill bit. Finally, in Chapter 6 the constrained control algorithm is programed

in a HIL experimental setup of a lab-scale drill rig, whose feasbility and performance are proven

by the real testing results
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