

AGING-AWARE MEMRISTOR CROSSBAR FOR RELIABLE AND ENERGY-

EFFICIENT DEEP LEARNING ACCELERATION

A Thesis

by

AUROSMITA KHANSAMA

Submitted to the Graduate and Professional School of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Rabi N. Mahapatra

Committee Members, Duncan M. “Hank” Walker

 Samuel Palermo

Head of Department, Scott Schaefer

December 2021

Major Subject: Computer Engineering

Copyright 2021 Aurosmita Khansama

ii

ABSTRACT

Deep learning algorithms are highly energy and memory-intensive as their

performance increases with an increasing amount of data. Moore’s law coming to an end

and the ever-increasing demand for high computational power by Deep Learning

algorithms are becoming a major issue. Another factor slowing down the fast Deep

learning algorithms is the interconnect delay. This calls for a modern computing

architecture that doesn’t physically separate memory and computation elements as done

in Von Neumann's architecture. Memristor, the fourth fundamental circuit element, comes

to the rescue. Owing to its less power consumption, more efficient and non-volatile nature,

memristors claim to be a possible replacement for DRAM. Another advantage of

memristor design is that it can be arranged in a crossbar arrangement. This makes it

suitable to perform the dot-product operation and can be used in Convolutional Neural

Network (CNN) architecture. BPhoton-CNN, proposed in this work, is a memristor-based

CNN architecture that uses photonic Backpropagation for designing a complete analog

system for training and inference. Despite showing the characteristics of a highly

promising device for in-situ computing, memristive devices suffer from reliability issues

given their non-linear nature. The proposed work also discusses the effect of one such

non-linear characteristic called Aging. The effect of aging on the performance of deep

learning accelerators and different methods to counter aging have been proposed in this

work.

iii

DEDICATION

To my parents.

iv

ACKNOWLEDGMENTS

I thank my thesis advisor, Dr. Rabi N. Mahapatra for his continuous guidance and

support throughout my graduate studies. He has always inspired me and assisted me in

smoothly carrying out all the required steps. I would also like to thank my thesis committee

members, Dr. Duncan Walker, and Dr. Samuel Palermo for agreeing to be on the

committee and for providing valuable suggestions.

I am thankful to Dr. Dharanidhar for his constant motivation and valuable

feedback. His drive to do something impactful in life has taught me that determination is

of the utmost importance for becoming a better engineer and better person. I would like to

thank my amazing lab mates Dr. Jyotikrishna Dass, Syed Ali Hasnain, Karl Ott, and Jerry

Yiu for helping me during the initial phases.

I am grateful to my parents, Santosh Khansama and Sasmita Khansama, and my

brother Soumya Ranjan Khansama for always believing in me and motivating me to keep

working hard. Thank you for always showing confidence in me and cheering me up.

Whatever I am today, is because of your teachings and unconditional love.

Finally, I would like to thank my dear friends – Aman, Rohit, Flavia, Anushka,

and Shreya. I would like to thank Rohit for those amazing brainstorming sessions. I

learned a lot from those discussions. Flavia, Anushka, and Shreya, I had an amazing time

as your flatmate. Lastly, I would like to thank Aman for always helping and motivating

me.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a thesis committee consisting of Professor Rabi N.

Mahapatra[advisor] and Professor Duncan H. Walker of the Department of Computer

Science & Engineering and Professor Samuel Palermo of the Department of Electrical &

Computer Engineering.

The work presented in section 2 was conducted in part by Dr. Dharanidhar Dang

of UCSD university.

All other work conducted for the thesis was completed by the student

independently.

Funding Sources

Graduate study was supported by a teaching assistantship and part-time student

worker position from Computer Science and Engineering Department at Texas A&M

University.

vi

NOMENCLATURE

DNN Deep Neural Network

DL Deep Learning

ML Machine Learning

AI Artificial Intelligence

ADC Analog-to-Digital Converter

DAC Digital-to-Analog Converter

SOC System-On-Chip

MDNN Memristive Deep Neural Network

vii

TABLE OF CONTENTS

Page

ABSTRACT ...ii

DEDICATION ... iii

ACKNOWLEDGMENTS ... iv

CONTRIBUTORS AND FUNDING SOURCES .. v

NOMENCLATURE .. vi

TABLE OF CONTENTS ...vii

LIST OF FIGURES ... ix

LIST OF TABLES .. xi

1. INTRODUCTION .. 1

1.1. Pitfalls of current modern architecture .. 2
1.2. Opportunities with Memristor ... 5

1.2.1. What is a memristor? .. 5
1.2.2. Why Memristor? ... 7

2. BPHOTON-CNN – A COMPLETE ANALOG NEUROMORPHIC

COMPUTING .. 9

2.1. Motivation ... 9
2.2. Convolutional Neural Networks.. 11

2.2.1. Basics of CNN .. 11
2.2.2. Backpropagation Algorithm ... 12

2.3. BPHOTON-CNN Architecture ... 13
2.3.1. Overview .. 13

2.4. Case Study ... 20
2.5. Experimental Analysis .. 24

2.5.1. CAD for Bphoton-CNN ... 24
2.5.2. Performance Analysis: ... 26
2.5.3. Energy Savings ... 29

2.6. Conclusions ... 29

viii

3. ISSUE WITH MEMRISTOR ... 31

3.1. Non-ideal characteristics of a memristor .. 31
3.1.1. Aging .. 32
3.1.2. Device variability ... 32
3.1.3. Non-linear device characteristics ... 33
3.1.4. A finite number of conductance state ... 34
3.1.5. Device Failure .. 34

3.2. Aging is a devil! .. 35
3.2.1. Modelling Aging .. 36
3.2.2. Experimental Analysis ... 38
3.2.3. Existing approaches to counter aging ... 43

4. AGING AWARE MEMRISTOR CROSSBAR ... 44

4.1. Skewed weight trained Deep Neural Network .. 44
4.1.1. Neural Network training ... 45
4.1.2. Skewed weight training .. 46
4.1.3. Experimental setup and Results ... 47

4.2. Skewed weight trained memristive model .. 52

5. CONCLUSION AND FUTURE WORK ... 54

5.1. Conclusion ... 54
5.2. Future work ... 55

REFERENCES ... 56

ix

LIST OF FIGURES

 Page

Figure 1.1: Performance of DL models w.r.t. amount of data. Reprinted from [1] 1

Figure 1.2: Moore’s Law slowdown in Intel Processor [4] .. 2

Figure 1.3: Processor-memory gap. Reprinted from [6] .. 3

Figure 1.4: Four fundamental circuit elements. Reprinted from [20] 6

Figure 1.5: Memristor... 6

Figure 2.1: An overview of BPhoton-CNN architecture. .. 14

Figure 2.2: Microarchitecture of Feature Extractor (FE) in BPhoton-CNN 15

Figure 2.3: Backpropagation architecture in BPhoton-CNN which presents the

backpropagation between the final layer l=L and penultimate layer l=L-1 16

Figure 2.4: Weight-update circuitry for any layer l ... 19

Figure 2.5: (a) VGG-A implemented on BPhoton-CNN (b) Pipelined dataflow in

feedforward operation in BPhoton-CNN.. 22

Figure 2.6: Speedup (throughput) comparison across accelerators 27

Figure 2.7: Speedup of BPhoton-CNN w.r.t. weight resolution. 27

Figure 2.8: Normalized computational efficiency across accelerators............................... 28

Figure 3.1: Non-linear I-V characteristics of VTEAM model ... 33

Figure 3.2: Effect of aging on Roff .. 36

Figure 3.3: Algorithm for aging function ... 38

Figure 3.4: Flowchart describing MemTorch along with proposed Aging function........ 40

Figure 3.5:Test accuracy vs percentage of device stuck at R_off for different R_off 41

Figure 3.6: Test accuracy VS aging ... 42

Figure 4.1: Weight distribution during initialization.. 45

x

Figure 4.2: (a) Weight distribution graph before skewed weight training (b) Weight

distribution graph after skewed weight training ... 48

Figure 4.3: Scatter Plot for different values of 𝝀𝟏 , 𝝀𝟐 and delta_scale 49

Figure 4.4: Accuracy Vs Min_weight reduction for different values of 𝝀𝟏 ,𝝀𝟐 and

delta_scale ... 50

Figure 4.5: Accuracy Vs Max_weight reduction for different values of 𝝀𝟏 ,𝝀𝟐 and

delta_scale ... 51

Figure 4.6: Effect of aging on Skewed weight trained model and traditional weight

trained model .. 53

xi

LIST OF TABLES

 Page

Table 2.1: CNN Benchmark Configuration For VGG, LeNeT .. 24

Table 3.1 : Memristor model parameters ... 39

Table 4.1: Different values of 𝝀𝟏 , 𝝀𝟏 and delta_scale considered 48

Table 4.2: Accuracy and weight reduction percentage for different values of 𝝀𝟏 ,
𝝀𝟐 and delta_scale .. 52

1

1. INTRODUCTION

Artificial Intelligence (AI) is ubiquitous in today’s world. Deep learning (DL), a

powerful AI method, supports a wide range of commercial and research aspects. Ranging

from medical diagnostics to image processing to deep-sea exploration, DL has garnered

special attention due to its ability to learn and predict with high accuracy and precision.

The popularity of Deep learning is fueled by Big Data. The performance of a DL model

increases almost exponentially with the amount of data.as seen in Fig.1.1 [1].

Figure 1.1: Performance of DL models w.r.t. amount of data. Reprinted from [1]

One of the most popular deep learning methods is Convolutional Neural Network

(CNN) and it has been used in various application domains like computer vision and

natural language processing (NLP). Convolution-based models have an exorbitant number

of weight parameters. Take for instance the ResNet-50[2] architecture which has 23

million weight parameters. As the complexity of problems and demand for accurate

2

predictions is increasing, the models are becoming larger and deeper with an appetite for

a huge amount of data. In the future, we can expect to have even bigger networks that will

be able to solve much more complex problems. This increases the demand for faster

computational resources, additional memory storage, and faster communication between

memory and computational resources. As Deep Neural Networks are becoming the driving

core of a lot of critical applications, it becomes imperative to design adequate

computational and memory resources to accommodate intensive applications.

1.1. Pitfalls of current modern architecture

In 1965, Gordon Moore predicted that the number of transistors was doubling

every 24 months and would continue to do so [3]. But the recent decade is experiencing

the end of Moore’s law. This is because as the transistor becomes smaller, leakage current

increases leading to increased heat dissipation. To compensate for the performance loss

due to the slowing down of device scaling, multi-core processors and GPUs have been

used to perform complex computations.

Figure 1.2: Moore’s Law slowdown in Intel Processor. Reprinted from [4]

3

Neural networks are trained on a large amount of data and require high bandwidth

memory resources. Training a ResNet-50 model requires around 7.5 GB of local DRAM

storage [59]. Over the last four decades, when Moore’s law prevailed, there was significant

growth in processor speeds without any substantial change in memory technology. Fig.1.3

shows an increasing gap between the processor’s computational speed and memory

performance.

Figure 1.3: Processor-memory gap. Reprinted from [6]

To improve memory performance in modern systems many novel techniques are

being adopted. Interconnects are improved to reduce data transfer latency between

bandwidth agents [7,17] and CPU/GPU caches were introduced to reduce the average time

and energy to access data from the main memory [8,9,18]. However, caches are also

constrained as the increase in cache size causes more latency and complexity in the design.

For example, a high-performance GPU usually has only 512KB of L1-cache with each

core [10]. But DNNs train on huge datasets and strive for accurate predictions demanding

enormous memory capacity (in the range of tens of gigabytes). Thus, data is stored in the

DRAM or off-chip memory. During training, a neural network requires transferring data

4

from off-chip memory devices to caches before it reaches the processing unit for

computation. This data movement between CPU/GPU and DRAM consumes twice the

energy as consumed by floating-point operations [11]. Off-chip memory is already

constrained by bandwidth and latency. And now this continuous data transfer also

increases the power consumption. Thus, the current architectures have design constraints

that inhibit their ability to handle complex neural networks.

Gartner [12] predicts that transistor-based semiconductor technology will hit a

digital wall by 2025. The research community has now started exploring new paradigms

that are small in size yet energy efficient to be able to outperform traditional general-

purpose hardware in power-hungry artificial intelligence applications. One such new

approach is Neuromorphic or brain-inspired computing. The human brain is the most

sophisticated computer in the world. It consists of about 100 billion neurons, making in

the order of 100 trillion connections, and performs 100B TFlops per sec with just 20W

power consumption [13]. Spiking Neural Networks (SNN)-an artificial neural network

that closely mimics natural neural networks [14], TrueNorth by IBM-a brain-inspired

machine using neuromorphic CMOS integrated circuit that consumes 70 milliwatts of

power [15], and Loihi by Intel labs-an asynchronous spiking neural network (SNN) that

is about 1000 times more energy-efficient than the conventional computation

technique GPU [16] are few existing neuromorphic architectures that use analog

component for computation.

However, all these architecture uses DRAM for data storage and thus incur high

Analog-to-Digital (ADC) and Digital-to-Analog (DAC) power consumption and memory

5

latency. They do solve the computational raised bottleneck, because of the decline in

Moore’s law, but still face the memory bottleneck.

So, the need of the hour is a system that doesn’t physically separate memory and

computation elements. This will reduce the latency and power consumption of moving

data between memory and computing resources and will result in faster computation. This

has shifted the interest towards a complete analog system that is energy-efficient and

reliable.

1.2. Opportunities with Memristor

1.2.1. What is a memristor?

In 1971, Leon Chua described Memristor, arguing that it should be included along

with resistor, capacitor, and inductor as the fourth fundamental circuit element [19].

Memristor is termed from Memory and Resistor because it’s a resistor with the capability

to store memory. It is an electrical resistance switch that can retain a state of internal

resistance based on the history of applied voltage and current. Memristor was first realized

by HP labs in 2008 [20].

Fig.1.4 shows the four circuit elements where the fourth element is the memristor.

Memristance (M) of a memristor can be defined as [20]:

𝑀(𝑞) = 𝑑𝜑 𝑑𝑞⁄ = 𝑣𝑑𝑡 𝑖𝑑𝑡⁄ = 𝜈 𝑖⁄ (i)

Where i is the electric current, v is voltage, q is charge and ϕ is magnetic flux.

6

Figure 1.4: Four fundamental circuit elements. Reprinted from [20]

As proposed by HP lab in [20], memristors are made of a thin semiconductor film

(TiO2) containing two regions: One doped with oxygen vacancies called the doped region,

and the other is the undoped region as seen in fig.1.5. This film is surrounded by two metal

contacts. The doped region has low resistance Ron and the undoped region has high

resistance, Roff. When a voltage is applied across the device, vacancies will move towards

the undoped region, resulting in the shift of the boundary.

Figure 1.5: Memristor

7

1.2.2. Why Memristor?

Memristor devices are non-volatile in nature. So, they retain the value of resistance

even if the voltage supply has been disconnected. Thus, memristor cells can be used to

store information and unlike DRAM, where capacitors drain their charge after the power

has been removed, memristor will store the values till another positive or negative voltage

has been applied. As stated by R. Stanley Williams, a researcher from HP labs [21]:

“Memristors can be made extremely small, and they function like synapses.

Using them, we will be able to build analog electronic circuits that could

fit in a shoebox and function according to the same physical principles as

a brain…”

Also, Chua showed that it will take a circuit of around 15 transistors and other passive

elements to emulate the behavior of a single memristor cell [21]. Various research has

shown that Memristors use less power for operation and a memristor array consisting of

millions of cells is 10 to 100 times faster than a GPU [22, 23].

Thus, memristor claims to be a possible replacement for DRAM, owing to its less

power consumption and more efficiency. Moreover, memristors can also be used for

computation along with memory storage.

A memristor cell can be designed in a crossbar arrangement and thus dot-product

computation can be performed using Kirchhoff’s current and voltage law. A dot product

computation is the basis of a deep learning model as it is required while calculating the

weighted summation of inputs. Further, memristor uses analog vector multiplication

which is 100 X more efficient than traditional computational resources like GPU [31].

8

This has shifted the focus toward neuromorphic computing using memristor like

ISAAC [28] and PipeLayer [30]. ISAAC uses a memristor crossbar array for each layer

in the neural network in a highly pipelined manner and PipeLayer is an enhancement of

ISAAC where the crossbar array size has been improved to improve the pipeline. Although

this architecture shows promising results, they incur heavy area and power overhead due

to inter-layer data conversions which require the use of Analog-to-Digital (ADC) and

Digital-to-Analog (DAC) converters.

In earlier approaches, only one layer was made analog (mainly convolution layer

in a CNN architecture), whereas the rest of the computation (in RELU and MaxPool) was

still done in traditional processor and memory resources. So, the challenge is to develop a

complete analog accelerator that does both training and inference.

9

2. BPHOTON-CNN – A COMPLETE ANALOG NEUROMORPHIC COMPUTING*

2.1. Motivation

1In today’s era of big data, the volume of data that computing systems process is

increasing exponentially. Deep learning has become state-of-the-art across a broad range

of big data applications such as speech processing, image recognition, genomic prediction,

etc. Convolutional neural networks (CNNs) are a popular deep learning framework with

superior accuracy on applications that deal with videos and images. However, CNN's are

highly energy and memory-intensive, requiring enormous computational resources. With

Moore’s law coming reaching its limit, traditional Von Neuman systems such as

heterogeneous CPU/GPU platforms cannot offer this high computational demand, within

reasonable power and processing time limitations. Therefore, several FPGA [27] and

ASIC [28] approaches have been proposed to accomplish large-scale deep learning

acceleration.

A CNN comprises of two stages: training and inference (i.e., validation). Most

hardware accelerators for CNNs in prior literature focus only on the inference stage, while

the training is done offline using GPUs. However, training a CNN is several hundred times

more compute and power-intensive than its inference [29]. Moreover, for many

applications, training is not a one-time activity, especially under changing environmental

*Reprinted with permission from “BPhoton-CNN: An Ultrafast Photonic

Backpropagation Accelerator for Deep Learning” by Dang, D., Khansama, A., Mahapatra,

R. and Sahoo, D., 2020. In Proceedings of the 2020 on Great Lakes Symposium on VLSI,

pp. 27-32.

10

and system conditions, where re-training of CNN at regular intervals is essential to

maintaining prediction accuracy for the application over time. This calls for an energy-

efficient training accelerator in addition to the inference accelerator.

Training a CNN, in general, employs a backpropagation algorithm that demands

high memory locality and computes parallelism. Recently, a few resistive memory

(ReRAM or memristor crossbar) based training accelerators have been demonstrated for

CNNs, e.g. ISAAC [28], PipeLayer [30], RCP [33], and MNN [34]. ISAAC, RCP, and

MNN use highly parallel memristor crossbar arrays to address the need for parallel

computations in CNNs. In addition, ISAAC uses a very deep pipeline to improve system

throughput. However, this is only beneficial when a large number of consecutive images

can be fed into the architecture. Unfortunately, during training, in many cases, a limited

number of consecutive images need to be processed before weight updates. The deep

pipeline in ISAAC also introduces frequent pipeline bubbles. Compared to ISAAC,

PipeLayer demonstrates an improved pipeline approach to enhance throughput. However,

RCP, MNN, ISAAC, and PipeLayer involve several analog-to-digital (AD) and digital-

to-analog (DA) conversions which become a performance bottleneck, in addition to their

large power consumption. Also, training in these accelerators involves sequential weight

updates from one layer to another. This incurs inter-layer waiting time for synchronization,

which reduces overall performance. This calls for an analog accelerator that can drastically

reduce the number of AD/DA conversions, and inter-layer waiting time. It has been

recently demonstrated that a completely analog matrix-vector multiplication is 100× more

efficient than its digital counterpart implemented with an ASIC, FPGA, or GPU [31]. HP

11

labs have showcased a memristor dot product engine that can achieve a speed-efficiency

product of 1000× compared to a digital ASIC [31]. Vandroome et al. in [32] have

demonstrated a small-scale efficient recurrent neural network using analog photonic

computing. A few efficient on-chip photonic inference accelerators have also been

proposed in [35], [36]. However, a full-fledged analog CNN accelerator that is capable of

both training and inference has yet to be demonstrated.

In this section, we propose BPhoton, a novel silicon photonics-based backpropagation

accelerator for training CNNs. BPhoton works in conjunction with a highly efficient

memristor-integrated photonic feedforward CNN accelerator. We call it BPhoton-CNN

which a first-of-its-kind memristor-integrated silicon photonic CNN accelerator for end-

to-end analog training and inference. It is intended to perform highly energy-efficient and

ultra-fast training for deep learning applications with state-of-the-art prediction accuracy.

2.2. Convolutional Neural Networks

2.2.1. Basics of CNN

Convolutional neural networks (CNNs) are a class of feed-forward neural

networks commonly used for analyzing visual imagery for image classification and object

detection/prediction tasks. CNN in general comprises of three types of layers: convolution

layer (CONV), pooling layer (POOL), and a fully connected layer (FC). Generally, CONV

is accompanied by a non-linear activation function, such as ReLU. Depending on the

sequence in which these layers are arranged, there are different CNN models, such as

AlexNet [37], VGG [38], LeNet [39], etc.

12

2.2.2. Backpropagation Algorithm

CNN operates in two stages: training and inference (testing). In the training phase,

the filter weights (and biases) in CONV and FC layers are learned by using a

backpropagation (BP) algorithm. The BP algorithm involves a forward and a backward pass

in the deep network.

Given a training sample x in the forward pass, the weighted input sum (convolution)

z is computed for neurons in each layer l with some initial filter weights w (and bias b)

followed by neural activation 𝜎(𝑧) (ReLU(z) in our work), and POOL. The final layer L

computes the output label of the overall network for every forward pass. This can be

summarized as follows:

Forward Pass: For each layer l,

 𝒛𝒙,𝒍 ← 𝒘𝒍𝒂𝒙,𝒍−𝟏 + 𝒃𝒍 (1)

𝒂𝒙,𝒍 ← 𝝈(𝒛𝒙,𝒍) (2)

The output error in the final prediction, 𝛿𝑥,𝐿 is a result of errors induced by the neurons in

each hidden layer during the forward pass. To compute the error contribution of a neuron in

the previous layer i.e., 𝛿𝑥,𝑙, the final error is backpropagated through the network starting

from the output layer. This can be summarized as follows:

Output error: At the final layer L,

 𝛿𝑥,𝐿 ← ∇𝑎𝐶𝑥⨀𝜎′(𝑧𝑥,𝐿) (3)

Backward Pass: For each layer l,

𝛿𝑥,𝑙 ← ((𝑤𝑙+1)𝑇 × 𝛿𝑥,𝑙+1)⨀𝜎′(𝑧𝑥,𝑙) (4)

13

Here, ∇𝑎 is the gradient of 𝑎𝑥,𝑙, and 𝜎′(𝑧𝑥,𝐿) is derivative of 𝜎(𝑧𝑥,𝐿). These error

contributions are necessary to update the filter weights w and biases b in the respective layers

using a gradient descent method. In gradient descent, the forward and backward pass happen

iteratively until the cost function is minimized and the network is trained. This can be

summarized as follows:

Gradient Descent: For each layer l and m training samples with learning rate 𝜂,

𝑤𝑙 ← 𝑤𝑙 −
𝜂

𝑚
∑ 𝛿𝑥,𝑙 × (𝑎𝑥,𝑙−1)𝑇

𝑥 (5)

𝑏𝑙 ← 𝑏𝑙 −
𝜂

𝑚
∑ 𝛿𝑥,𝑙

𝑥 (6)

The next section presents the details of the proposed BPhoton-CNN architecture.

2.3. BPHOTON-CNN Architecture

2.3.1. Overview

Our proposed BPhoton-CNN architecture is a fully analog, scalable, and

configurable memristor-integrated photonic CNN accelerator design. Unlike previously

proposed state-of-the-art CNN accelerators [28], [30], the BPhoton-CNN accelerator

enables completely analog end-to-end training and testing for a CNN.

Fig.2.1 gives a high-level overview of this BPhoton-CNN architecture. As shown

in the figure, BPhoton-CNN comprises of three parts: feedforward CNN accelerator

architecture, backpropagation accelerator architecture, and weight update and peripheral

circuitry. The analog feedforward CNN accelerator is inspired from [36]. It enables

Feature Extraction (FE) through a memristive convolution layer and silicon photonics-

based ReLU and pooling layers. The feedforward CNN accelerator uses memristive

multiplication for Feature Classification (FC). The entire backpropagation accelerator is

14

implemented in the photonic realm using MRMs, splitters, and multiplexers. Finally,

BPhoton-CNN’s weight update and peripheral circuitry are implemented through a group

of memristors.

Figure 2.1: An overview of BPhoton-CNN architecture.

2.3.1.1. Feedforward CNN Architecture

An image dataset is considered as the input data and its classification as the

application to be executed with BPhoton-CNN. The CNN accelerator in BPhoton-CNN

architecture (see Fig.2.1) performs feedforward feature extraction (FE) followed by

feature classification of input images. The FE in the CNN architecture is carried out using

multiple FE stages (𝐹𝐸𝑖). After all of the features are extracted, feature classification is

performed using one or more fully-connected layers (FC).

Fig. 2.2 illustrates the microarchitecture of an FE stage. Each FE stage comprises

of multiple memristor-based convolution layers (CONV), a semiconductor-optical

amplifier (SOA)-based ReLU layer, an optical comparator-based max-pooling (POOL)

15

layer, and an interface layer. BPhoton-CNN’s FE adopts a completely analog computing

paradigm by avoiding inter-layer A- to-D (Analog-to-Digital) and D-to-A (Digital-to-

Analog) conversions compared to state-of-the-art CNN accelerators [28], [30] which use

analog memristive convolution and digital CPU/GPU based ReLU and Pooling. The

feedforward CNN accelerator is designed to convolve 56x56 image input at a time. The

detailed working of this feedforward accelerator is not explained due to brevity; we focus

completely on the backpropagation architecture which is the major contribution of this

chapter.

Figure 2.2: Microarchitecture of Feature Extractor (FE) in BPhoton-CNN

2.3.1.2. Backpropagation Architecture

BPhoton-CNN’s backpropagation (BP) architecture employs analog microring

modulators, photodiodes, multiplexers, and splitters to perform completely analog matrix-

16

multiplication and other arithmetic operations. In contrast, previously proposed CNN

accelerators [28], [30] adopt a hybrid approach by using analog memristors for matrix

multiplications and digital CPU/GPU for other arithmetic operations, which requires

performance hindering A-to-D and D-to-A conversions.

Our analog BP architecture mainly involves computing matrix-vector multiplication

in the backward pass. A photonic modulator is used for analog amplitude modulation of a

light carrier. In its simplest term, analog amplitude modulation is the multiplication of a

scalar input with an analog signal. The authors in [40] have demonstrated photonic

modulator-based analog multipliers. Fig. 2.3 illustrates the microarchitecture of the

proposed BP accelerator design. It is based on photonic matrix-vector multiplication using

microring modulators (MRMs). We use MRMs for their high accuracy and quality factor.

Figure 2.3: Backpropagation architecture in BPhoton-CNN which presents the

backpropagation between the final layer l=L and penultimate layer l=L-1

We now describe the operation of the proposed BP architecture. As discussed in Eq.

(3), the error at the final layer (l=L) of BP is 𝛿𝑥,𝐿 ← ∇𝑎𝐶𝑥⨀𝜎′(𝑧𝑥,𝐿). Here, ∇𝑎𝐶𝑥 is the

17

rate of change of output w.r.t the output activation (i.e., the difference of actual classified

output from FC of CNN architecture and the target output). 𝜎′(𝑧𝑥,𝐿) is the derivative of the

ReLU function in the final FC stage of the CNN architecture. Outputs from the final FC

stage of the CNN architecture are fed to an analog subtraction and multiplication unit to

determine 𝛿𝑥,𝐿. Using Eq. (4) and the computed 𝛿𝑥,𝐿, we calculate the error for the (L-

1)th layer using the following equation:

𝛿𝑥,𝐿−1 ← ((𝑤𝐿)𝑇 × 𝛿𝑥,𝐿)⨀𝜎′(𝑧𝑥,𝐿−1) (7)

where, 𝑤𝐿 is weight matrix obtained from Lth layer of feedforward CNN architecture

through the peripheral circuit. The details of the peripheral circuit are explained in the next

subsection. Fig.2.3 shows the backpropagation between the final layer l=L and its

penultimate layer l=L-1. As illustrated in Fig.2.3, there is an N number of wavelength

carriers coming from a mode-locked laser array. The value of N for a layer equals to the

output feature size for the corresponding layer in the CNN architecture, e.g. N equals 49

(7×7) for the last layer. Each wavelength in layer L is modulated with error 𝛿𝑥,𝐿 by an MRM

tuned to that wavelength. In Fig.2.3, the violet MRM is tuned to modulate 𝜆1. Now the jth

MRM’s output is 𝑀𝑅𝑀𝑗 = 𝛿𝑗
𝑥,𝐿 ∗ 𝐴 sin(

2𝜋

𝜆𝑗
𝑡 + ∅). Each 𝑀𝑅𝑀𝑗 is split into two equal parts.

The first part is sent to the weight-update circuitry to update the corresponding weights in

the CNN architecture. The other part is fed to a WDM multiplexer. A WDM multiplexer is

used to combine multiple light wavelengths into a single multi-wavelength carrier. After

multiplexing, the combined optical signal is split into M parts where M equals the number

of neurons in layer L-1. Each part is fed to a multi-wavelength waveguide. As a result, in

18

each waveguide there are N wavelengths each carrying data 𝛿𝑗,𝑛
𝑥,𝐿 ∗ 𝐵 sin(

2𝜋

𝜆𝑗
𝑡 + ∅), where

1 ≤ 𝑛 ≤ 𝑁, 𝐵 =
𝐴

2𝑁
. Each weight 𝑤𝑖𝑗

𝐿 of the transpose of 𝑤𝐿 obtained from the peripheral

circuit is modulated to a light carrier. This results in:

𝑀𝑖,𝑛 = 𝑤𝑖𝑗
𝐿 ∗ 𝛿𝑗,𝑛

𝑥,𝐿 ∗ 𝐴 sin(
2𝜋

𝜆𝑗
𝑡 + ∅) (8)

Now, each 𝑀𝑖,𝑛 is modulated with 𝑎𝑛
𝐿 which is a derivative of the ReLU functions of layer

L-1 (equal to 𝜎′(𝑧𝑥,𝐿−1) in Eq. (7)). Then, 𝑀𝑖,𝑛 becomes,

𝑀𝑖,𝑛 = 𝑤𝑖𝑗
𝐿 ∗ 𝛿𝑗,𝑛

𝑥,𝐿 ∗ 𝑎𝑛
𝐿 ∗ 𝐴 sin(

2𝜋

𝜆𝑗
𝑡 + ∅) (9)

Next, a photodiode is used to demodulate photonic data from each waveguide. The

photodiode demodulates the combined output 𝑀𝑖,𝑛 for all wavelengths in a waveguide

which is nothing but the matrix-vector multiplication identical to Eq. (7). The output of each

photodiode is passed through a signal conditioning and filtering circuit to remove unwanted

noises. Details of the conditioning circuit are omitted for brevity. The output from the signal

conditioning circuit looks as follows:

𝛿𝑥,𝐿−1 = ((𝑤𝐿)𝑇 × 𝛿𝑥,𝐿)⨀𝑎𝐿 (10)

where, 𝛿𝑥,𝐿−1 is the error to be propagated from layer (L-1) to (L-2). The same procedure as

above is continued until the 1st layer is reached. While doing the backpropagation, the error

value in each layer is also fed to the corresponding weight-update circuit, which is discussed

in more detail below.

2.3.1.3. Weight update and peripheral circuitry

For weight-update, each element of a weight kernel in any layer l of CNN

architecture can be written as 𝑤𝑘,𝑗
𝑙 . Please note that l=L for the final layer. Each 𝑤𝑘,𝑗

𝑙 is stored

19

in a memristor of a memristor bank in layer l as 𝐺𝑘,𝑗
𝑙 (which is the conductance of a memristor

cell). The weight-update equation for 𝑤𝑘,𝑗
𝑙 (or, 𝐺𝑘,𝑗

𝑙) can be written as per Eq. (5), as follows:

𝐺𝑛𝑒𝑤(𝑘,𝑗)
𝑙 ← 𝐺𝑜𝑙𝑑(𝑘,𝑗)

𝑙 −
𝜂

𝑚
× 𝛿𝑘

𝑙 × 𝑂𝑗
𝑙−1 (11)

where, 𝑂𝑗
𝑙−1 is the jth output from the POOL of the (l-1) layer of the CNN architecture.

Fig.2.4 illustrates the weight-update circuitry for any layer l. As shown in Fig.4, 𝛿𝑘
𝑙 is

obtained from the BP architecture as a photonic signal. 𝑂𝑗
𝑙−1, which is collected from the

peripheral circuit, is used to modulate the light carrier carrying the error value 𝛿𝑘
𝑙 . The

modulated output is demodulated using a photodiode and then sent to a signal conditioning

circuit. In the signal conditioning circuit, first the analog signal is filtered (from noises) and

passed through a subtractor to obtain new 𝐺𝑘,𝑗
𝑙 as depicted in Eq. 9). The previous

conductance or weight value 𝐺𝑜𝑙𝑑(𝑘,𝑗)
𝑙 is fed to the subtractor from the lth layer memristor

bank. The new conductance value 𝐺𝑘,𝑗
𝑙 is now fed to the equivalent memristor control circuit

to update its weight value. The conditioning circuit as well as the memristor control circuit

are inspired from [29].

Figure 2.4: Weight-update circuitry for any layer l

20

The output 𝑀𝑃𝑗 from the POOL of a layer l can be written as 𝑀𝑃𝑗
𝑙. During the

feedforward training phase, each 𝑀𝑃𝑗
𝑙is stored as conductance in a memristor in the

peripheral circuitry. This is used in backpropagation as 𝑂𝑗
𝑙 , an output of the lth layer (as per

Eq. (11)). Each 𝑀𝑃𝑗
𝑙 is sent to a signal conditioning circuit and then a memristor control

circuit. The resulting electronic signal is used to update the conductance (or weight value)

of the memristor.

2.4. Case Study

In this section, we demonstrate the working principle of a pipelined BPhoton-CNN

architecture for a CNN benchmark VGG [38] on the ImageNet dataset [42]. We select a

particular configuration, namely, VGG-A for the case study. However, we also experiment

with all variants of the VGG [38] and LeNet [39] benchmarks as shown in Table I and

discussed in Section V. Using microarchitectures of the convolution layer, ReLU layer,

POOL layer, interface layer, and FC layer, we configured BPhoton-CNN as illustrated in

Fig. 2.5(a) for VGG-A application with four FE stages. The details of it are as follows.

VGG for the ImageNet dataset operates on a 224×224 image input. BPhoton-CNN is

designed to convolve 56×56 pixels at a time, i.e., one BPhoton-CNN cycle. Therefore, it

requires 16 BPhoton-CNN cycles to execute a 224×224 image. Please note that a BPhoton-

CNN cycle is different from its clock cycle. Here, one BPhoton-CNN cycle refers to the

complete feature extraction and feature classification of a 56×56 image. The SRAM register

array in BPhoton-CNN is of size 2 KB to store the 56×56 input data. CONV performs feature

extraction on 28×28 input data at a time in a pipelined manner. FE in BPhoton-CNN is

performed as explained in the CONV architecture (ref: Fig.2.2).

21

Fig. 2.5(b) demonstrates the pipelined data flow of the feedforward operation in

BPhoton-CNN. We consider a 2.5 GHz clock. Therefore, the clock cycle periodTsm = 400

ps. As shown in Fig. 2.5(b), at t=Tsm, the first set of 28×28 pixels from SRAM (i.e., A) are

convolved (64 filters/features) and are stored in memristors in the peripheral circuit. The

other three set of 28×28 pixels are namely, B, C, and D. Note that CONV convolves a 28×28

input in one clock cycle. As FE1 for VGG-A consists of one convolution layer (see Table

2.1), convolved outputs of CONV-1 of FE1 is directly sent to the modulation phase. In the

modulation phase, each convolved output is modulated by an MRR of a particular tuning

wavelength to a light carrier of that wavelength in the DWDM waveguide group. The

DWDM waveguide group can accommodate 784 wavelengths or in other words 4 features

of size 28×28. The time required for convolved data of one FE to arrive at the next FE, 𝑇𝐹𝐸

= modulation time + ReLU time + POOL time + interface time = 20 ps + 10 ps + 10 ps +

10 ps = 50 ps. From t=𝑇𝑠𝑚 to t=2𝑇𝑠𝑚, CONV(A) outputs from the peripheral circuit of

𝐹𝐸1are modulated, ReLU and POOL’ed, and then fed to FE2. There can be 8 such data

movements as
𝑇𝑠𝑚

𝑇𝐹𝐸
= 8. In one data movement, 4 28×28 features can be processed.

Therefore, at t=2𝑇𝑠𝑚, 32 CONV(A) features arrive at FE2. Similar to CONV(A), from

t=2𝑇𝑠𝑚 to t=3𝑇𝑠𝑚, 32 CONV(B) features; from t=3𝑇𝑠𝑚 to t=4𝑇𝑠𝑚, 32 CONV(C) features;

from t=4𝑇𝑠𝑚 to t=5𝑇𝑠𝑚, 32 CONV(D) features are convolved and stored in the peripheral

circuit of 𝐹𝐸2. After this, from t=5𝑇𝑠𝑚 to t=6𝑇𝑠𝑚, the remaining 32 CONV(A) features in

𝐹𝐸1 are convolved in 𝐹𝐸2. In this way, by t=6𝑇𝑠𝑚, all the 64 CONV(A) features in 𝐹𝐸1are

convolved with 128 𝐹𝐸2 filters to produce 128 features and stored in the memristors of its

peripheral circuit.

22

Figure 2.5: (a) VGG-A implemented on BPhoton-CNN (b) Pipelined dataflow in

feedforward operation in BPhoton-CNN.

Similarly, remaining 32 B, C, and D features are convolved and stored (Fig. 2.5(b))

by t=7𝑇𝑠𝑚, t=8𝑇𝑠𝑚, and t=9𝑇𝑠𝑚 respectively. 𝐹𝐸1 has 64 features, 𝐹𝐸2 has 128 features,

𝐹𝐸3 has 256 features, etc, as per the VGG-A configuration (Table 2.1). It is important to

note that 64 CONV(A) features from 𝐹𝐸1are convolved with 128 memristive WMAs

23

(kernels/filters) to produce 128 CONV(A) features for 𝐹𝐸2. Similarly, 128 CONV(A)

features from FE2are convolved with 256 WMAs to produce 256 CONV(A) features for

𝐹𝐸3.

A, B, C, and D are convolved separately until 𝑡 = 10𝑇𝑠𝑚 when all of them arrive at

𝐹𝐸3 as 256 7×7 features each. Now, all of these features are merged together to form 256

28×28 features. Therefore, it will require another 8𝑇𝑠𝑚 time (i.e., t=10𝑇𝑠𝑚 to t=18𝑇𝑠𝑚) to

send 256 28×28 features from 𝐹𝐸3 and convolve them as 512 14×14 features at 𝐹𝐸4.

Similarly, convolution, ReLU, and POOL are performed in 𝐹𝐸4 and 𝐹𝐸5. As illustrated in

Fig. 2.5(b), at t=24𝑇𝑠𝑚, 512 features are obtained from 𝐹𝐸5 for 56×56 pixels. As shown in

Fig. 2.5(a), features from 𝐹𝐸5 are stored in SRAM until all the 224×224 pixels are extracted.

For 224×224 pixels, it will take 16×24𝑇𝑠𝑚=384𝑇𝑠𝑚=153.6ns. After this, all the features are

retrieved from SRAM and fed to FC for feature classification. The first FC operation

requires (𝑇𝑠𝑚 + 𝑇) time as it is identical to FE.

The second FC operation requires T time as no more SRAM read is needed. This

means that BPhoton-CNN requires 153.6 ns (for FE) +𝑇𝑠𝑚 + 2𝑇 = 154 ns, for one forward

pass. After a forward pass, the FC output is sent to the BP architecture for backpropagation.

Each layer in BP requires 𝑇𝑏 units of time where 𝑇𝑏 = (error modulation to light carrier) +

(split time) + (WDM multiplexing time) + (split time) + (weight modulation time) + (ReLU

function derivative modulation time) + (photodiode time) = 10 ps + 10 ps + 10 ps + 10 ps +

10 ps + 10 ps +20 ps = 80 ps. It takes 6𝑇𝑏 units of time to complete one backward pass.

24

FE1

FE2

FE3

FE4

FE5

VGG-A 3×3, 64, 1 3×3, 128, 1 3×3, 256, 2 3×3, 512, 2 3×3, 512, 2

F
C

-4
0
9
6
,2

F
C

-1
0
0
0
,
1
 VGG-B 3×3, 64, 2 3×3, 128, 2 3×3, 256, 2

1×1, 256, 1

3×3, 512, 2

1×1, 256, 1

3×3, 512, 2

1×1, 256, 1

VGG-C 3×3, 64, 2 3×3, 128, 2 3×3, 256, 3 3×3, 512, 3 3×3, 512, 3

VGG-D 3×3, 64, 2 3×3, 128, 2 3×3, 256, 4 3×3, 512, 4 3×3, 512, 4

LeNET-

A

3×3, 6,1 3×3, 6,1 3×3, 16,2 3×3, 16, 4 3×3, 120, 1

F
C

8
4
,1

LeNET-B 3×3, 6,1 3×3, 6,1 3×3, 256, 1 3×3, 16,6 3×3, 120, 1

Table 2.1: CNN Benchmark Configuration For VGG, LeNeT

In summary, BPhoton-CNN requires 154 ns for one forward pass and 80 ps for a

backward pass. The ultra-fast nature of photonic interconnects allows for high-speed

backpropagation in BPhoton-CNN.

2.5. Experimental Analysis

2.5.1. CAD for Bphoton-CNN

We use IPKISS [42], a commercial optoelectronic CAD tool, to design and

synthesize all of the photonic components of BPhoton-CNN. All of the synthesized

components are integrated together to design BPhoton-CNN. For all of the photonics

components, we consider a 32nm IPKISS library. The parametric details for BPhoton-CNN

are obtained from [30]. We developed a C++ based architectural simulator which takes

device- and link-level parameters from IPKISS, to estimate performance of BPhoton-CNN

accelerator for several benchmarks.

25

2.5.1.1. Power, Area, and Performance Models

We use Caphe [42] for modeling power and area of all photonic elements such as

modulators, demodulators, waveguides, lasers, etc. The energy and area parameters for

memristors are adapted from [30]. We use integration and fire mechanism-based DAC

identical to PipeLayer [30] in our design. The power and area models are adapted

accordingly from PipeLayer. We also use power and area parameters from [29] for the ADC

array used in the FC layer of BPhoton-CNN. We use Caffe [43], a deep learning framework,

to train the datasets in conjunction with photonic component results from IPKISS. We

manually map each of our benchmarks in waveguides, max-pool, buffers, and FC of

BPhoton-CNN. This ensures zero pipeline hazards between any two layers in BPhoton-

CNN. We compare the performance of BPhoton-CNN with a state-of-the-art CNN

accelerator, namely PipeLayer [40]. We evaluate for the following metrics: Computational

efficiency represents the total number of fixed point operations performed per unit area in

one second (GOPS/s/mm2); Energy efficiency refers to the number of fixed point operations

performed per watt (Giga operations per watt or GOPS/s/W); Throughput is the total number

of operations per unit time (GOPS/s); and lastly, Prediction error rate is the percentage of

error in inferring any datasets

2.5.1.2. Benchmark and dataset

We use two widely used CNN benchmarks: VGG-Net [38] and LeNet [41]. We

consider four variants of the VGG benchmark: VGG-A, VGG-B, VGG-C, and VGG-D and

two variations of LeNet (LeNet-A and LeNet-B). The configuration of all stages of VGG-

Net and LeNet benchmarks identical to [30]. For VGG, we use ImageNet dataset [41] having

26

224×224 images. For LeNet, we use 60,000 224×224 images of MNIST datasets [44] for

training and 10,000 224×224 images for testing.

2.5.2. Performance Analysis:

Fig.2.6 demonstrates speedup (throughput) of BPhoton-CNN and PipeLayer [30]

compared to the baseline GPU implementation results, also from [30], for four variations

of the VGG and two variants of the LeNet benchmarks. The GPU-based accelerator

performs with an average throughput of 310 GOPS/s. PipeLayer shows an average

throughput of 87000 GOPS/s. The proposed BPhoton-CNN shows an average throughput

of 2784000 GOPS/s. The superior performance of BPhoton-CNN is due to the intelligent

integration of ultra-fast memristors and high-speed photonic components such as MRAs,

SOAs, and comparators. The overall throughput of PipeLayer is affected by inter-layer

data conversion with relatively slow ADCs. Also, PipeLayer spends most of its time in

sequential weight updates during training. However, BPhoton-CNN has an inherent

advantage due to its photonic parallel weight update mechanism. On average, BPhoton-

CNN outperforms PipeLayer and GPU by 35× and 345× in terms of speedup, respectively.

Finally, for the results presented in Fig. 2.6, the variance of speedup across benchmarks is

1650 with a standard deviation of 40.02.

Fig.2.7 illustrates the effects of weight resolution on overall speedup of BPhoton-

CNN. With the rise in weight resolution, there is a very little degradation in speedup (5%

lower for 32-bit compared to 16-bit). This is due to the additional delay in storing 32-bit

data in SRAM compared to 16 or 8-bit data. However, data conversion is done either at the

beginning or at the end of the forward pass in BPhoton-CNN. Therefore, the effect is very

27

minimal. Furthermore, it can also be noted from Fig.2.7 that the speedup has a slightly

decreasing trend from VGG-A to VGG-D. This is due to the increase in total number of

convolution layers from VGG-A to VGG-D.

Figure 2.6: Speedup (throughput) comparison across accelerators

Figure 2.7: Speedup of BPhoton-CNN w.r.t. weight resolution.

Fig.2.8 illustrates the normalized computational efficiency (CE) (i.e., the total

number of fixed-point operations performed per unit area in one second (GOPS/s/mm2))

comparison of the proposed BPhoton-CNN and memristor crossbar based PipeLayer [30]

28

with respect to a baseline GPU based design. First of all, the proposed BPhoton-CNN

architecture shows a computational efficiency variance of 302 (17.38 GOPS/s/mm2) which

is reasonable considering its high computational efficiency. Furthermore, PipeLayer uses

memristor crossbars for the bulk of its arithmetic operations. Each memristor crossbar has

a CE of 1707 GOPS. However, the overall CE of PipeLayer comes down to 1485 GOPS

due to its extensive usage of data conversions. Also, ReLU and POOL are performed by a

digital ALU in PipeLayer. This requires more memory to store intra-layer data for

synchronizing with its pipeline mechanism. The superiority of BPhoton-CNN comes from

the fact that it is a completely analog accelerator. Therefore, BPhoton-CNN does not involve

inter-layer data conversions or storage for synchronization. AD and DA conversions are

done either at the beginning or at the end of feature extraction in BPhoton-CNN. In addition

to the compute efficient memristor, BPhoton-CNN also uses high speed SOA as ReLU

which has a CE in the order of 50000 GOPS/s/mm2 [29]. As shown in Fig.7, BPhoton-CNN

has 31× and 320× higher computational efficiency compared to PipeLayer and GPU,

respectively.

Figure 2.8: Normalized computational efficiency across accelerators.

29

2.5.3. Energy Savings

We compare the energy efficiency of BPhoton-CNN with PipeLayer and GPU as

shown in Fig.2.8. The average energy efficiency for PipeLayer is 142.9 GOPS/s/W which

is 7.17× higher than GPU based accelerator. BPhoton-CNN works with an average energy

efficiency of 6432 GOPS/s/W. PipeLayer replicates its early feature extraction layers

several times (close to 50K times) to maintain a balanced pipeline. This involves excessive

use of high-power consuming data conversions. BPhoton-CNN uses passive optical

components such as waveguides and comparators, in addition to energy-efficient

components such as ring modulators/demodulators, SOAs, and memristor. Also, BPhoton-

CNN uses very few ADCs/DACs compared to PipeLayer. As shown in Fig.8, we obtain

45× and 360× improvements in energy efficiency for BPhoton-CNN compared to PipeLayer

and GPU, respectively. Overall, the variance of energy efficiency of BPhoton-CNN across

benchmarks is 6.96 with a standard deviation of 2.63.

2.6. Conclusions

This work demonstrates a fully analog CNN accelerator called BPhoton-CNN that

integrates compute-efficient memristors and ultra-fast photonic components. BPhoton-CNN

comprises a completely analog photonic backpropagation architecture. Further, the

proposed architecture deploys (i) a reconfigurable convolution design in each CNN layer to

emulate a range of sample CNN models; (ii) a novel approach for analog signed-weight

arithmetic in the memristive convolution layers. Compared to PipeLayer [30] and GPU,

BPhoton-CNN architecture shows higher computational and energy efficiency due to the

use of energy-efficient SOAs, optical comparators, and due to its use of a fully analog

30

feature extraction method. We demonstrated that the proposed design has the potential to

achieve up to 35× acceleration in training in addition to 31× improvement in computational

efficiency and 45× energy saving compared to the state-of-the-art with similar accuracy.

Our future work will address the issue of the broader applicability of our accelerator to other

types of deep learning models, e.g., deep neural networks (DNNs).

31

3. ISSUE WITH MEMRISTOR

3.1. Non-ideal characteristics of a memristor

Despite showing the characteristics of a highly promising device for in-situ

computing, memristor does have a few drawbacks. As memristors are non-linear in nature,

they have a few reliabilities issue that needs attention before memristors can be made

industry-ready.

The complexity of deep learning models is increasing to cater to the need for

complex problems and to satisfy the high accuracy demand. A larger and deeper neural

net will require a large memristor crossbar array to represent it. This increases the

complexity of designing the crossbar. Also, large crossbar arrays have a higher chance of

suffering from leakage current and other non-ideality parameters, which results in

erroneous conductance values. As the dot-product computation is performed at each

memristor cell, this error propagates through the crossbar array, increasing manifold in the

case of a large network.

This error reduces the accuracy significantly and makes memristor-based

neuromorphic computing unsuitable for applications in the field of medical diagnostic or

autonomous driving, where a wrong prediction incurs a heavy loss.

Memristor cell faces modeling as well as reliability issues. Modeling a memristor

is challenging because of its non-ideal characteristics [24,25]. Most of the modeling has

been done in the simulator and hence it becomes important that the model depicts the

32

behavior of the device correctly [24]. Some major reliability issues faced by the memristor

devices are due to the non-ideal characteristics described in section 3.1.1 to 3.1.6.

3.1.1. Aging

Aging is an inevitable process that reflects the performance degradation of a device

with time. Memristor stores values in the form of conductance states. Aging in memristor

occurs due to continuous switching of the conductance value. While using memristor

crossbar for deep learning applications, weight values are mapped linearly to the

memristor’s conductance values [52]. During training, weight values are updated

continuously. This requires continuous rewriting of the conductance values by applying

appropriate pulse. With aging, the ability of memristors to hold the expected conductance

values decreases as the and this affects the performance of deep learning accelerators. This

occurs because the value of Roff decreases with time or as frequency of switching

increases. As it is an irreversible process and contributes the most in deep learning

performance degradation, it has been studied extensively in this work. Aging has been

discussed in detail in 3.2.

3.1.2. Device variability

Memristors are arranged in a crossbar fashion to mimic the behavior of a neural

network layer. Ideally, each memristor in the crossbar is expected to behave identically

but the fabrication process introduces variability between devices. The doping

concentration, temperature, and other physical parameters play a vital role in causing the

variance. This variability affects the conductance and memresistance of the device which

causes the memristor to produce a non-ideal output. Also, it has been found that the

33

variability of Roff is higher than that of Ron [47,53]. This can cause the neural network to

predict incorrect outputs which can adversely affect the deep learning application running

in real-time. The device-to-device variability is the inherent nature of device

manufacturing. Though fabrication methodologies have been improved [48,49] to

minimize the variation, they cannot be eliminated completely. Much work has been done

to simulate the memristor considering the device-to-device variability [26]. Novel

techniques have been introduced to minimize the change in the output due to variability

[48,49].

3.1.3. Non-linear device characteristics

Most of the memristor devices have been simulated taking into consideration the

ideal linear I-V characteristics. However, non-ideal memristors have non-linear I-V device

characteristics, especially at high voltage [26]. Modeling such non-ideal characteristics

accurately and efficiently becomes challenging. A non-linear I/V characteristics graph for

VTEAM [46] modeled using MemTorch [26] is shown in fig.3.1.

Figure 3.1: Non-linear I-V characteristics of VTEAM model

34

[26] determines the I/V characteristics of each device and stores them in a Lookup Tables

[LUT] and uses this to calculate the output current during inference.

3.1.4. A finite number of conductance state

Memristor devices are known to have multiple levels of conductance states. These

conductance states can be switched by applying an appropriate pulse to the device for a

certain duration and amplitude and hence can be used to store data in the device [45]. The

levels are bounded by Roff, the maximum resistance state during the off state, and Ron, the

lowest resistance state [50]. Between these bounds, the conductance levels are defined.

But as discussed in 3.1.1 and 3.1.2, device-device variability and aging could cause these

resistances to change. This would result in non-uniform distribution of conductance state

between devices. As devices age from their pristine state, this non-linearity becomes more

evident. This leads to degradation of the crossbar which would adversely affect the

accuracy of the model. Deterministic discretization of these conductance states is one way

to overcome this condition [51]. Since discretization provides more error tolerance, it

significantly improves accuracy. But inevitable factors like aging continue to degrade the

crossbar and the above methods would eventually succumb to failure.

3.1.5. Device Failure

As discussed in 3.1.1., fabrication plays an important role in deciding the

characteristics of a memristor device. Due to fabrication issues, and effect of external

factors like temperature and increased frequency of switching voltage/pulse, the

memristor device becomes susceptible to failure [45]. Device gets stuck either at low

resistance state (LRS) Ron or at high resistance state (HRS) Roff or fail to electroform at

35

pristine stage. The memristor devices stuck at a particular resistance cannot be

reprogrammed and it results in loss of accuracy during a neural network implementation.

In the next section we will discuss how aging of memristor crossbar affects performance

of deep learning accelerators. We will also briefly describe the simulator MemTorch [26]

that is used in this work.

3.2. Aging is a devil!

As discussed in the previous section, aging is a non-ideal characteristic of

memristor which can significantly degrade the performance of the device over time. As

memristors are nanoscale devices, fabrication process is not easy, and they show large

process variation. This results in large variation in device parameters mainly, Roff and Ron.

As described in 3.1.1, the conductance values of a memristor cell need to be tuned or

programmed frequently to store the corresponding weight value and a high voltage is

applied across the memristor cell to do this tuning. Frequent high voltage would mean

high current across the memristor filament, and this changes the internal structure of the

cell by increasing temperature in the filament region [45]. The constant switching reduces

the range of conductance values and thus the number of conductance states. So, even if

we want to map a trained weight to a desired conductance state, it will map to a

conductance value different from than desired conductance. This occurs because of the

decrease in maximum resistance Roff of the memristor cell as shown in Fig.3.2, and that

causes memristors to lose their conductance levels with time. Thus, a memristor that can

be programmed to level 5 when in the pristine state can only be programmed to level 3

after time t. Even after repeated try to reprogram the device, the value will not go above

36

the aged R value. This results in wrong weight values stored in the memristor crossbar and

thus generate error. As, this error propagates through the whole crossbar during

computation, the accuracy is affected.

Figure 3.2: Effect of aging on Roff . Adapted from [52]

Experiments done by [53] concludes that the maximum value of resistance (Roff)

ages faster than that of minimum resistance (Ron). We leverage this change of Roff as the

devices ages and model an aging function. Incorporating this function in an ideal

memristive deep neural network (MDNN) shows how accuracy of a deep learning model

is affected by aging of a memristor device. In the next sections, we will discuss the

proposed method to model aging in a MDNN.

3.2.1. Modelling Aging

Since aging plays a vital role in degrading memristor performance over time, this

work tries to capture the effect of aging on a DL model. MemTorch[26] was used as a

simulator to incorporate the aging function in an ideal MDNN. The basic idea behind

aging is that continuously rewriting conductance values changes the internal structure of

37

the device and thus it is not able to store the ideal Roff value i.e. the maximum resistance

decreases as the device ages.

To model aging, first a Deep Neural Network (DNN) was defined using PyTorch.

Then weights of the neural network were linearly scaled into conductance values of

memristor crossbar array using the following equation:

𝑔𝑖,𝑗 =
(𝑊𝑖,𝑗 −𝑊𝑚𝑖𝑛) ∗(𝑔𝑚𝑎𝑥−𝑔𝑚𝑖𝑛)

(𝑊𝑚𝑎𝑥 −𝑊𝑚𝑖𝑛)
+ 𝑔𝑚𝑖𝑛 (12)

Where, 𝑊𝑚𝑖𝑛 and 𝑊𝑚𝑎𝑥 is minimum and maximum weight values of a layer in the neural

network. 𝑔𝑚𝑎𝑥 is 1
𝑟𝑜𝑛

⁄ or maximum conductance and 𝑔𝑚𝑖𝑛 is 1
𝑟𝑜𝑓𝑓

⁄ or minimum

conductance value of the memristor device used.

The generated conductance values represent the weights of the MDNN equivalent

model. The model is then tuned to account for the changed weight values during linear

scaling by using linear regression on the generated output and the desired output for a

randomly produced input. The resulting model is an ideal MDNN.

Non-ideality aging was modeled in the ideal MDNN by using the proposed

function. The aging function defined in this work assumes that the Roff values of a

memristor decrease with time and this causes the number of conductance levels to drop.

Once the number of levels decreases, the percentage of devices which cannot be

programmed beyond Roff value increases. Input to the aging function is the value of

maximum resistance as it ages and the percentage of devices that will age for that

resistance value. As all memristor device performs differently in a real scenario, we cannot

assume that all the devices will age at the same time and in the same manner. So, the user

can define the rate of decrease of maximum resistance as the device ages and the

38

percentage of devices that will age. Fig.3.3. shows the algorithm for the proposed aging

function. The conductance matrix of the ideal MDNN was changed to incorporate the

updated resistance values due to aging. As not all devices age in a similar manner, the

devices that will age were selected randomly from the crossbar. The resultant is an MDNN

model with aging.

Figure 3.3: Algorithm for aging function

3.2.2. Experimental Analysis

MemTorch[26] was used as a simulator for this work. MemTorch is an open-

source simulation framework for memristors and is based on a well-known PyTorch

library. The integration of MemTorch with PyTorch helps in the simulation of complex

ML and DL models. MemTorch is programmed in C++ and python, and it inherently

supports the use of GPU using CUDA which enhances the computation speed of deep

neural networks.

func aging(R
age
, device_aged,

conductance_matrix):

 g_min = 1/R
age

 length = len(conductance_matrix)

 num_select = length * device_aged

 idx = random (1, length, num_select)

 for i in idx:

 conductance_matrix[i] = g_min

 return conductance_matrix

39

First, a Deep neural network (DNN) with two conv2d layers and two Linear layers

is defined using PyTorch. The model was trained on the MNIST dataset [44]. A training

accuracy of 99.25% and a testing accuracy of 99% was achieved for the DNN model.

Then the memristor model to be considered for the experiment was defined. This model

is used as a base for generating the crossbar arrays. Currently, MemTorch supports 4

different models for Memristor. These models are based on VTEAM [46], Stanford PKU

RRAM model [54], linear ion drift model [20], and data-driven Verilog-A RRAM model

[55]. VTEAM or Voltage Threshold Adaptive Memristor model is used in this work as it

has a threshold voltage of 0.2V and a value less than that will not make any changes in the

conductance values of the device. The parameters used for the VTEAM model are defined

in table 3.1.

Model VTEAM

Device Length 3nm

Vthreshold 0.2 V

Mapping Routine Linear

Column Double

ADC Resolution 8

Table 3.1 : Memristor model parameters

A test accuracy of 98.46% was obtained when the test dataset was executed on the

ideal MDNN model. MemTorch is also capable of modeling non-ideal characteristics

discussed in section 3.1. Though Device variability, nonlinear device characteristics,

device failure, and the number of conductance states have been modeled by the

40

MemTorch, the aging is not considered while modeling. This work takes advantage of the

current MemTorch framework and extends it by modeling the aging of memristors. A

complete flow chart of MemTorch including the proposed aging function is described in

fig.3.3.

Figure 3.4: Flowchart describing MemTorch along with proposed Aging function

The MDNN model with the incorporated aging function was tested on the test

dataset for different values of Raged and different percentages of aging. Two cases were

considered.

Case 1: Roff was aged exponentially and for every value of Raged, the aging percentage was

increased linearly. It was observed that as more and more device ages the accuracy

decreases significantly as shown in Fig.3.5. It was also observed that the decrease in

41

accuracy as aging increases is steeper when the R-value is lower. For example, the

accuracy with R value set at 1.95E5 ohms decreased to around 50% when only 20% of

devices were aged whereas the accuracy remained close to 98% when R was 5E7 ohms.

The value of Ron or minimum resistance was kept the same for all the cases. Thus, we can

conclude that when the difference between maximum and minimum resistance is less, the

effect of aging is more profound. This can be explained as the number of conductance

states of a memristor device is bounded by Roff and Rmin. If the difference between Roff

and Rmin is small, we will have a smaller number of conductance states. And as aging

affects the Roff value, an aged device will have even fewer conductance states and thus

accuracy is affected adversely.

Figure 3.5:Test accuracy vs percentage of device stuck at R_off for different R_off

42

Case 2: Roff was aged linearly and as the value of R decreases, the aging percentage was

increased. This represents a more realistic simulation as when a device ages, the value of

R decreases and with time more and more devices will age. As R ages, the aging

percentage was selected randomly between 8-12%. It was kept lower to observe a gradual

degradation in performance with aging. The crossbar array was then updated to reflect this

aged behavior and was tested on test dataset. This was then repeated till the percentage of

aging reaches 100%. Fig.3.6. shows the graph obtained for this experiment. The graph

shows that as device ages, the accuracy decreases. This is because, aging changes the value

of Roff and thus decrease the number of conductance states. This affects the weights stored

in the crossbar as conductance as they cannot reach the desired value. This generated error

which degrades the performance of MDNN.

Figure 3.6: Test accuracy VS aging

43

The above results prove that accuracy of a deep neural network is significantly

hampered as the memristor ages. Although various works have been done to counter

aging, such an extensive study on the effect of aging on accuracy is limited. Now that we

have established that aging of memristor crossbar plays a significant role in the

development of memristor based neuromorphic computing for deep learning models, we

will see some approaches to counter aging.

3.2.3. Existing approaches to counter aging

The effect of aging has been studied extensively as it is a major factor affecting

the reliability of memristors. As aging decreases the number of conductance states of the

memristor device, [57] uses binary weighted memristive devices which have only two

states 0 and 1. Some also use an extra row of memristors which can be used to substitute

the row that is aged [58]. The addition of these redundant rows increases the lifetime of

the memristor crossbar but incurs extra hardware costs. Aging occurs because of frequent

rewriting of conductance values by applying high voltage. High voltage results in high

current across the filament and thus changes the internal structure of the device. If the

current through the filament is decreased, then aging also decreases. This technique has

been adopted by various researchers to reduce the effect of aging. [56] uses sinusoidal

pulses as programming voltage instead of DC voltage as the average is reduced. We will

also use this technique but from software perspective. In the next section we will discuss

about the proposed method to counter aging.

44

4. AGING AWARE MEMRISTOR CROSSBAR

In this section we will discuss how to counter aging to develop an aging aware

memristor crossbar array for reliable deep learning application. As discussed in previous

section, aging occurs due to changes made in the memristor filament because of current

flowing through it. High current increases the temperature across the device and over time

this degrades performance or memristor cell. So, if the current across the filament

decrease, then process of aging can be slowed down.

Various work has been done to reduce the current flow and thus reduce aging. [52]

proposed one such method called skewed weight training. Skewed weight training is done

by concentrating the weight values to a smaller value during training. Training is done

using software, and then weights are linearly mapped into the conductance of memristor

crossbar. So, if we reduce the value of weight, it will result in lower conductance values

and high resistance values. High resistance will mean that less current will flow through

the memristor cell and thus slows down the advance of aging. In our proposed work, we

will incorporate skewed weight training to generate a DNN model which will be converted

into a MDNN using the simulator memristor. Then effect of aging on a skewed weight

trained memristive model will be studies using our propose aging function.

4.1. Skewed weight trained Deep Neural Network

Skewed weight training means concentrating the weights to a smaller region while

training the model. Fig.4.1. shows the weight distribution during weight initialization.

Skewed weight training will reduce the variance of the weight distribution graph.

45

Figure 4.1: Weight distribution during initialization

Before understanding how skewed weight training is done, it is important to

understand how neural network update weight values during training.

4.1.1. Neural Network training

Training a fully connected neural network consist of forward and backward

propagation. In forward propagation, the provided input is multiplied with weight values

and intermediate variables are calculated in forward direction that is from input layer to

output layer and finally output is generated. First step is to multiply weight vector(W1)

with given input vector (X).

𝑧 = 𝑊1𝑋 (13)

Second step is to pass the generated output through an activation function ∅.

ℎ = ∅(𝑍) (14)

The generated output serves as input for the next layer where both steps are repeated till

output layer is reached.

46

In backward propagation, weight values are reassigned moving backward from

output layer to input layer. The generated output(zi) after forward propagation is compared

with the expected output(yi) to calculate loss using loss function.

L = cost (zi, yi) (15)

Then gradient of weight function with respect to weight function is calculated for each

weight value in a layer 𝑊𝑖𝑗
𝑘 where k is the layer.

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = 𝛿𝐿/𝛿𝑊𝑖𝑗
𝑘 (16)

The gradient is subtracted from the weight value at that layer to get the new weight value.

This gradient is backpropagated till the input layer and all weights are updated.

4.1.2. Skewed weight training

An extra term is added to the loss calculated in eq.15 which increases the value of

gradient and thus the weight value becomes small. The updated loss can be represented

as:

L = cost (zi, yi) + skew(𝑊𝑖𝑗
𝑘 , 𝑊𝑘′) (17)

where 𝑊𝑖𝑗
𝑘 is weight value for kth layer and 𝑊𝑘′ is the reference weight for kth layer around

which the weights are skewed.

The reference weight is selected in the range of weights of the model and the

weight distributions are skewed around this reference weight. Original weight values that

lie in the left and right side of the reference weight are penalized. This can be done as

represented in equation:

47

𝑠𝑘𝑒𝑤(𝑊𝑖𝑗
𝑘 , 𝑊𝑘′

) = {
∑ 𝜆1 . ||𝑊𝑘 − 𝑊𝑘′||

2𝑛𝑜. 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟𝑠
𝑘= 1 when 𝑊𝑘 < 𝑊𝑘′

∑ 𝜆2 . ||𝑊𝑘 − 𝑊𝑘′||
2𝑛𝑜. 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟𝑠

𝑘= 1 when 𝑊𝑘 > 𝑊𝑘′
 (18)

Where, 𝜆1 ,𝜆2 are the penalty factors for the weights on the left and right side of reference

weight respectively.

This updated loss function is then used to calculate the weight values to make the

weight distribution graph skewed around the reference weight.

4.1.3. Experimental setup and Results

The PyTorch model defined in section 3.2.2. is used for this experiment. In the

model, we used ADAM optimizer[60] to calculate the gradient. To incorporate skewed

weight learning during training, we designed a revised version of the Adam algorithm,

where the above loss function was implemented. The reference weight was selected to be

a factor of the standard deviation of the original initialized weight for each layer i.e.

𝑊𝑘′
= 𝜎I * delta_scale. (19)

where delta_scale represents the factor with which standard deviation was multiplied to

obtain the reference weight.

Different values of 𝜆1 , 𝜆1 and delta_scale was considered to find the best-suited

value with no performance degradation with training a neural network with skewed

weight. Table 4.1. represents different values considered for the experiment.

Fig.4.2(a) represents the weight distribution graph of the original PyTorch model without

skewed weight training and fig.4.2(b) shows the weight distribution graph after skewed

weight training.

48

𝝀𝟏 0,1,0.5,0.1,0.08,0.05,0.01,0.005,0.001

𝝀𝟐 0,1,0.5,0.1,0.08,0.05,0.01,0.005,0.001

delta_scale 0.75,1,1.5,2,-0.75,-1,-1.5,-2

Table 4.1: Different values of 𝝀𝟏 , 𝝀𝟏 and delta_scale considered

Figure 4.2: (a) Weight distribution graph before skewed weight training (b) Weight

distribution graph after skewed weight training

49

In Fig.4.2(a) the variance of weight distribution is higher than in fig.4.2(b) where

skewed weight training is implemented. Thus, it can be deduced that the skewed weight

training results in weights being skewed around the reference weight.

Different values of 𝜆1 , 𝜆2 and delta_scale, where delta_scale represents the factor

with which standard deviation was multiplied to obtain the reference weight, were

considered to find the best range for which the weight values can be skewed without

compromising on the accuracy.

 Figure 4.3: Scatter Plot for different values of 𝝀𝟏 , 𝝀𝟐 and delta_scale

It can be observed from fig.4.3 that lower value of 𝜆1 and 𝜆2 gives better accuracy.

When 𝜆1 and 𝜆2 are 0.001, the accuracy is above 99% which is comparable with the

accuracy of an unskewed model. Whereas 𝜆1 and 𝜆2 was increased to 0.01, the accuracy

dropped below 98%. This is because, higher 𝜆1 and 𝜆2 means more penalization or

increased loss value. This will increase the gradient and thus weight value decreases. As

50

weight value decreases, the learning during forward propagation will be affected which

will result in less accuracy. Also, accuracy is better when the delta-scale is in between -1

to 0.75 i.e., in the middle region. This is because the weight distribution follows a nearly

normal distribution curve. And in a normal distribution majority of value (around 68%) is

located in between (-1 * 𝜎) and (1 * 𝜎). As delta_scale represents the factor with which

standard deviation was multiplied to obtain the reference weight, the performance of the

model will be better when the reference weight is selected to be in the 68% range.

The above graph showed how different parameters affect the accuracy of a model.

Now, we will consider how they affect the reduction in minimum and maximum weight

values or variance of the weight distribution graph.

Figure 4.4: Accuracy Vs Min_weight reduction for different values of 𝝀𝟏 ,𝝀𝟐 and

delta_scale

51

Figure 4.5: Accuracy Vs Max_weight reduction for different values of 𝝀𝟏 ,𝝀𝟐 and

delta_scale

Fig.4.4 and fig.4.5 shows the plot of accuracy vs reduction in minimum and

maximum weight for different values of 𝜆1 , 𝜆2 and delta_scale in a skewed weight trained

model. It can be observed that higher value of 𝜆1 , and 𝜆2 results in the maximum

percentage of reduction in weight values but at the cost of accuracy. When 𝜆1 , 𝜆2 values

were set at 0.1 and 0.08, around 85% reduction in minimum weight value was observed

but accuracy was only 91.64%. This can be explained as higher 𝜆1 and 𝜆2 means weights

will be penalized with a higher value and thus, more weights will be skewed around

reference weight.

The model was trained for different values of 𝜆1 , 𝜆2 and delta_scale to find the

best tradeoff between accuracy and skewed percentage. Table 4.2. shows a few results.

52

𝜆1 𝜆2 delta_scale Max_weight

reduction %ge

Min_weight

reduction %ge

Accuracy

0.001 0.001 -1 32.8% 46.8% 99.18%

0.01 0.005 -1 52% 61.4% 98.22%

0.1 0.08 0.75 65% 85% 91.64%

Table 4.2: Accuracy and weight reduction percentage for different values of 𝝀𝟏 ,

𝝀𝟐 and delta_scale

The best range of 𝜆1 , 𝜆2 and delta_scale that reduces the minimum and maximum

weight value without significant compromise on accuracy was found to be 𝜆1 =

0.01, 𝜆2 = 0.005 𝑡𝑜 0.001 and delta_scale = -1. Also, for 𝜆1 > 0.1 and 𝜆2 >0.08, the

model performs very poorly.

4.2. Skewed weight trained memristive model

The idea behind skewed weight training was to reduce conductance value across

memristor cells to reduce the current and hence slow down aging. In the previous section,

we discussed how skewed weight training reduces the weight variance by a significant

amount without much loss in accuracy. Now, in this section, we will discuss how skewed

weight training also helps to counter aging.

The skewed weight trained neural network model was converted into a memristive

model using steps described in section 3.2.2. This results in a Skewed weight-trained

53

MDNN. The proposed aging function was applied to the MDNN and a test dataset was

used to see the effect of aging on a skewed weight-trained memristive model.

Figure 4.6: Effect of aging on Skewed weight trained model and traditional weight

trained model

The effect of aging on a skewed weight trained MDNN and a traditional weight

trained MDNN was compared as shown in Fig.4.6. When all the memristor were at pristine

state, the accuracy achieved by the skewed weight trained model was comparable to the

traditional model accuracy. But as the devices age, the decrease in accuracy of the

unskewed model is steeper than the skewed model. This shows that when a model is

skewed, the effect of aging is slowed down.

54

5. CONCLUSION AND FUTURE WORK

5.1. Conclusion

Memristor is a fundamental non-linear device that has a huge potential in Deep

Learning applications. The property of the memristor to store the data and perform

compute operations can be exploited in performing the dot operations in deep learning

algorithms. The weights in a DL model can be stored as the conductance of the device and

current can be converted to dot sum product of the matrix. This provides the benefits of

reducing the latency of fetching the data from memory cache or DRAM and executing it

on the processor. Like any electrical device memristor also has many non-linear

characteristics and is prone to degrade with aging.

In this work, we designed a completely analog memristor-based photonic CNN

architecture called BPHOTON-CNN. It integrates an efficient memristor with fast

photonic components. Compared to state-of-the-art architecture, the proposed BPhoton-

CNN shows improvement in energy and computational efficiency.

Then we studied how different non-idealities affect the performance of a

memristor device. Aging, which is a non-reversible and inevitable process, challenges the

reliability of a memristor crossbar. We modeled an aging function to consider the effect

of aging in a memristive device. This function was incorporated as an extension to an

existing simulator MemTorch[26]. Performance of the memristive neural network after

introducing the non-ideality aging was studied and a decrease in accuracy was observed

as the memristor device ages.

55

Then we demonstrated skewed weight training which is a software approach to

counter aging. A skewed weight trained memristive network was introduced with the

proposed aging function and its performance was studied. We showed that skewed weight

trained MDNN ages slower than traditional weight trained.

5.2. Future work

In this work, a trained deep neural network was converted into a memristive neural

network. The effect of non-idealities was studied on the memristive model for inference.

This can be extended to study the effect of aging on a memristor model during training.

Also, the effect of skewed weight training on a memristor model can be extended for

training.

Along with aging, other non-idealities also affect the reliability of a memristor

device. This calls for a function that considers all the non-idealities and designs a

reliability-aware model to give the best performance in the long run.

56

REFERENCES

[1] M. Z. Alom et al., “A State-of-the-Art Survey on Deep Learning Theory and

Architectures,” Electronics, vol. 8, no. 3, Mar. 2019, doi:

10.3390/electronics8030292.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image

Recognition.” [Online]. Available: http://image-net.org/challenges/LSVRC/2015/

[3] G. E. Moore, “Cramming More Components onto Integrated Circuits.”

[4] John Hennessy and David Patterson, Computer Architecture: A Quantitative

Approach, 6/e. 2018

[5] Dang, D., Khansama, A., Mahapatra, R. and Sahoo, D., 2020, September. BPhoton-

CNN: An Ultrafast Photonic Backpropagation Accelerator for Deep Learning.

In Proceedings of the 2020 on Great Lakes Symposium on VLSI(pp. 27-32).

[6] Hennessy, John L. and David A. Patterson. Computer Architecture: A Quantitative

Approach. 4th ed., p. 289. Elsevier, 2007.

[7] Grecu, C., Ivanov, A., Saleh, R. and Pande, P.P., 2006, October. NoC interconnect

yield improvement using crosspoint redundancy. In 2006 21st IEEE International

Symposium on Defect and Fault Tolerance in VLSI Systems (pp. 457-465). IEEE.

[8] Zukowski, M., Heman, S., Nes, N. and Boncz, P., 2006, April. Super-scalar RAM-

CPU cache compression. In 22nd International Conference on Data Engineering

(ICDE'06) (pp. 59-59). IEEE.

57

[9] Smith, A.J., 1987. Line (block) size choice for CPU cache memories. IEEE

transactions on computers, 100(9), pp.1063-1075.

[10] Agarwal, N., Nellans, D., Ebrahimi, E., Wenisch, T.F., Danskin, J. and Keckler,

S.W., 2016, March. Selective GPU caches to eliminate CPU-GPU HW cache

coherence. In 2016 IEEE International Symposium on High Performance Computer

Architecture (HPCA) (pp. 494-506). IEEE.

[11] Farmahini-Farahani, A., Ahn, J.H., Morrow, K. and Kim, N.S., 2015, February.

NDA: Near-DRAM acceleration architecture leveraging commodity DRAM devices

and standard memory modules. In 2015 IEEE 21st International Symposium on

High Performance Computer Architecture (HPCA) (pp. 283-295). IEEE.

[12] Cooney, M., 2021. Gartner: Top strategic predictions for 2022 and beyond. Network

World. Available at: https://www.networkworld.com/article/3637951/gartner-top-

strategic-predictions-for-2022-and-beyond.html.

[13] Moravec, H., 1998. When will computer hardware matches the human

brain. Journal of evolution and technology, 1(1), p.10.

[14] Xin, J. and Embrechts, M.J., 2001, July. Supervised learning with spiking neural

networks. In IJCNN'01. International Joint Conference on Neural Networks.

Proceedings (Cat. No. 01CH37222) (Vol. 3, pp. 1772-1777). IEEE.

[15] Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R., Cassidy, A.S., Sawada, J., Akopyan,

F., Jackson, B.L., Imam, N., Guo, C., Nakamura, Y. and Brezzo, B., 2014. A million

spiking-neuron integrated circuit with a scalable communication network and

interface. Science, 345(6197), pp.668-673.

58

[16] Davies, M., Srinivasa, N., Lin, T.H., Chinya, G., Cao, Y., Choday, S.H., Dimou, G.,

Joshi, P., Imam, N., Jain, S. and Liao, Y., 2018. Loihi: A neuromorphic manycore

processor with on-chip learning. Ieee Micro, 38(1), pp.82-99.

[17] Li, J. and Cheng, C.K., 1995, April. Routability improvement using dynamic

interconnect architecture. In Proceedings IEEE Symposium on FPGAs for Custom

Computing Machines (pp. 61-67). IEEE.

[18] Nugteren, C., Van den Braak, G.J., Corporaal, H. and Bal, H., 2014, February. A

detailed GPU cache model based on reuse distance theory. In 2014 IEEE 20th

International Symposium on High Performance Computer Architecture

(HPCA) (pp. 37-48). IEEE.

[19] Chua, L., 1971. Memristor-the missing circuit element. IEEE Transactions on

circuit theory, 18(5), pp.507-519.

[20] Strukov, D.B., Snider, G.S., Stewart, D.R. and Williams, R.S., 2008. The missing

memristor found. nature, 453(7191), pp.80-83.

[21] Williams, R.S., 2021. How we found the missing memristor. IEEE Spectrum.

Available at: https://spectrum.ieee.org/how-we-found-the-missing-memristor.

[22] Cai, F., Correll, J.M., Lee, S.H., Lim, Y., Bothra, V., Zhang, Z., Flynn, M.P. and Lu,

W.D., 2019. A fully integrated reprogrammable memristor–CMOS system for

efficient multiply–accumulate operations. Nature Electronics, 2(7), pp.290-299.

[23] Nichols, B.M., Mazzoni, A.L., Chin, M.L., Shah, P.B., Najmaei, S., Burke, R.A. and

Dubey, M., 2016. Advances in 2D materials for electronic devices.

In Semiconductors and Semimetals (Vol. 95, pp. 221-277). Elsevier.

59

[24] James, A.P. ed., 2019. Deep Learning Classifiers with Memristive Networks: Theory

and Applications (Vol. 14). Springer.

[25] James, A., 2020. Introductory Chapter: Challenges in Neuro-Memristive Circuit

Design. Memristors: Circuits and Applications of Memristor Devices, p.3.

[26] Lammie, C., Xiang, W., Linares-Barranco, B. and Azghadi, M.R., 2020. MemTorch:

An open-source simulation framework for memristive deep learning systems. arXiv

preprint arXiv:2004.10971.

[27] Zhang, C., Sun, G., Fang, Z., Zhou, P., Pan, P. and Cong, J., 2018. Caffeine: Toward

uniformed representation and acceleration for deep convolutional neural

networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 38(11), pp.2072-2085.

[28] Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J.P., Hu,

M., Williams, R.S. and Srikumar, V., 2016. ISAAC: A convolutional neural network

accelerator with in-situ analog arithmetic in crossbars. ACM SIGARCH Computer

Architecture News, 44(3), pp.14-26.

[29] Gokmen, T. and Vlasov, Y., 2016. Acceleration of deep neural network training with

resistive cross-point devices: Design considerations. Frontiers in neuroscience, 10,

p.333.

[30] Song, L., Qian, X., Li, H. and Chen, Y., 2017, February. Pipelayer: A pipelined

reram-based accelerator for deep learning. In 2017 IEEE International Symposium

on High Performance Computer Architecture (HPCA) (pp. 541-552). IEEE.

60

[31] Hu, M., Strachan, J.P., Li, Z., Grafals, E.M., Davila, N., Graves, C., Lam, S., Ge, N.,

Yang, J.J. and Williams, R.S., 2016, June. Dot-product engine for neuromorphic

computing: Programming 1T1M crossbar to accelerate matrix-vector multiplication.

In 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC) (pp. 1-6).

IEEE.

[32] Vandoorne, K., Dambre, J., Verstraeten, D., Schrauwen, B. and Bienstman, P., 2011.

Parallel reservoir computing using optical amplifiers. IEEE transactions on neural

networks, 22(9), pp.1469-1481.

[33] Gokmen, T., Onen, M. and Haensch, W., 2017. Training deep convolutional neural

networks with resistive cross-point devices. Frontiers in neuroscience, 11, p.538.

[34] Li, C., Belkin, D., Li, Y., Yan, P., Hu, M., Ge, N., Jiang, H., Montgomery, E., Lin,

P., Wang, Z. and Song, W., 2018. Efficient and self-adaptive in-situ learning in

multilayer memristor neural networks. Nature communications, 9(1), pp.1-8.

[35] Shen, Y., Harris, N.C., Skirlo, S., Prabhu, M., Baehr-Jones, T., Hochberg, M., Sun,

X., Zhao, S., Larochelle, H., Englund, D. and Soljačić, M., 2017. Deep learning with

coherent nanophotonic circuits. Nature Photonics, 11(7), pp.441-446.

[36] Dang, D., Dass, J. and Mahapatra, R., 2017, December. ConvLight: A convolutional

accelerator with memristor integrated photonic computing. In 2017 IEEE 24th

International Conference on High Performance Computing (HiPC) (pp. 114-123).

IEEE.

61

[37] Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2012. Imagenet classification with

deep convolutional neural networks. Advances in neural information processing

systems, 25, pp.1097-1105.

[38] Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for

Large-Scale Image Recognition. International Conference on Learning

Representations (ICLR), 2015

[39] LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P., 1998. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11), pp.2278-2324.

[40] Long, Y., Zhou, L. and Wang, J., 2016. Photonic-assisted microwave signal

multiplication and modulation using a silicon Mach–Zehnder modulator. Scientific

reports, 6(1), pp.1-6.

[41] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,

Karpathy, A., Khosla, A., Bernstein, M. and Berg, A.C., 2015. Imagenet large scale

visual recognition challenge. International journal of computer vision, 115(3),

pp.211-252.

[42] IPKISS-Photonic Framework. (2018) [online]. Available:

www.lucedaphotonics.com

[43] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama,

S. and Darrell, T., 2014, November. Caffe: Convolutional architecture for fast

feature embedding. In Proceedings of the 22nd ACM international conference on

Multimedia (pp. 675-678).

http://www.lucedaphotonics.com/

62

[44] The MNIST Database. (2018). [online]. Available:

http://yann.lecun.com/exdb/mnist/

[45] Fadeev, A.V. and Rudenko, K.V., 2021. To the Issue of the Memristor’s HRS and

LRS States Degradation and Data Retention Time. Russian Microelectronics, 50(5),

pp.311-325.

[46] Kvatinsky, S., Friedman, E.G., Kolodny, A. and Weiser, U.C., 2012. TEAM:

Threshold adaptive memristor model. IEEE transactions on circuits and systems I:

regular papers, 60(1), pp.211-221.

[47] Krestinskaya, O., Irmanova, A. and James, A.P., 2019, May. Memristive non-

idealities: Is there any practical implications for designing neural network chips?.

In 2019 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1-5).

IEEE.

[48] Pickett, M.D., Strukov, D.B., Borghetti, J.L., Yang, J.J., Snider, G.S., Stewart, D.R.

and Williams, R.S., 2009. Switching dynamics in titanium dioxide memristive

devices. Journal of Applied Physics, 106(7), p.074508.

[49] Kavehei, O., Cho, K., Lee, S., Kim, S.J., Al-Sarawi, S., Abbott, D. and Eshraghian,

K., 2011, August. Fabrication and modeling of Ag/TiO 2/ITO memristor. In 2011

IEEE 54th International Midwest Symposium on Circuits and Systems

(MWSCAS) (pp. 1-4). IEEE.

[50] Yi, W., Savel'Ev, S.E., Medeiros-Ribeiro, G., Miao, F., Zhang, M.X., Yang, J.J.,

Bratkovsky, A.M. and Williams, R.S., 2016. Quantized conductance coincides with

http://yann.lecun.com/exdb/mnist/

63

state instability and excess noise in tantalum oxide memristors. Nature

communications, 7(1), pp.1-6.

[51] Yu, S., 2018. Neuro-inspired computing with emerging nonvolatile

memorys. Proceedings of the IEEE, 106(2), pp.260-285.

[52] Zhang, S., Zhang, G.L., Li, B., Li, H.H. and Schlichtmann, U., 2019, March. Aging-

aware lifetime enhancement for memristor-based neuromorphic computing. In 2019

Design, Automation & Test in Europe Conference & Exhibition (DATE)(pp. 1751-

1756). IEEE.

[53] Uddin, M., Majumder, M.B., Rose, G.S., Beckmann, K., Manem, H., Alamgir, Z.

and Cady, N.C., 2016, July. Techniques for improved reliability in memristive

crossbar PUF circuits. In 2016 IEEE Computer Society Annual Symposium on VLSI

(ISVLSI) (pp. 212-217). IEEE.

[54] Jiang, Z., Yu, S., Wu, Y., Engel, J.H., Guan, X. and Wong, H.S.P., 2014, September.

Verilog-A compact model for oxide-based resistive random access memory

(RRAM). In 2014 International Conference on Simulation of Semiconductor

Processes and Devices (SISPAD) (pp. 41-44). IEEE.

[55] Messaris, I., Serb, A., Stathopoulos, S., Khiat, A., Nikolaidis, S. and Prodromakis,

T., 2018. A data-driven verilog-a reram model. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 37(12), pp.3151-3162.

[56] Chen, B., Lu, Y., Gao, B., Fu, Y.H., Zhang, F.F., Huang, P., Chen, Y.S., Liu, L.F.,

Liu, X.Y., Kang, J.F. and Wang, Y.Y., 2011, December. Physical mechanisms of

64

endurance degradation in TMO-RRAM. In 2011 International Electron Devices

Meeting (pp. 12-3). IEEE.

[57] Krestinskaya, O. and James, A.P., 2018, July. Binary weighted memristive analog

deep neural network for near-sensor edge processing. In 2018 IEEE 18th

International Conference on Nanotechnology (IEEE-NANO) (pp. 1-4). IEEE.

[58] Cai, Y., Lin, Y., Xia, L., Chen, X., Han, S., Wang, Y. and Yang, H., 2018, June.

Long live time: improving lifetime for training-in-memory engines by structured

gradient sparsification. In Proceedings of the 55th Annual Design Automation

Conference (pp. 1-6).

[59] Hanlon, J., 2020. How to solve the memory challenges of deep neural

networks. TOPBOTS. Available at: https://www.topbots.com/how-solve-memory-

challenges-deep-learning-neural-networks-graphcore/.

[60] Kingma, D.P. and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

	Abstract
	Dedication
	Acknowledgments
	contributors and funding sources
	Nomenclature
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1. Pitfalls of current modern architecture
	1.2. Opportunities with Memristor
	1.2.1. What is a memristor?
	1.2.2. Why Memristor?

	2. Bphoton-CNN – A complete analog neuromorphic computing*
	2.1. Motivation
	2.2. Convolutional Neural Networks
	2.2.1. Basics of CNN
	2.2.2. Backpropagation Algorithm

	2.3. BPHOTON-CNN Architecture
	2.3.1. Overview
	2.3.1.1. Feedforward CNN Architecture
	2.3.1.2. Backpropagation Architecture
	2.3.1.3. Weight update and peripheral circuitry

	2.4. Case Study
	2.5. Experimental Analysis
	2.5.1. CAD for Bphoton-CNN
	2.5.1.1. Power, Area, and Performance Models
	2.5.1.2. Benchmark and dataset

	2.5.2. Performance Analysis:
	2.5.3. Energy Savings

	2.6. Conclusions

	3. Issue with memristor
	3.1. Non-ideal characteristics of a memristor
	3.1.1. Aging
	3.1.2. Device variability
	3.1.3. Non-linear device characteristics
	3.1.4. A finite number of conductance state
	3.1.5. Device Failure

	3.2. Aging is a devil!
	3.2.1. Modelling Aging
	3.2.2. Experimental Analysis
	3.2.3. Existing approaches to counter aging

	4. Aging Aware memristor crossbar
	4.1. Skewed weight trained Deep Neural Network
	4.1.1. Neural Network training
	4.1.2. Skewed weight training
	4.1.3. Experimental setup and Results

	4.2. Skewed weight trained memristive model

	5. CONCLUSION AND FUTURE WORK
	5.1. Conclusion
	5.2. Future work

	references

