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ABSTRACT 

 

Deep learning algorithms are highly energy and memory-intensive as their 

performance increases with an increasing amount of data. Moore’s law coming to an end 

and the ever-increasing demand for high computational power by Deep Learning 

algorithms are becoming a major issue. Another factor slowing down the fast Deep 

learning algorithms is the interconnect delay. This calls for a modern computing 

architecture that doesn’t physically separate memory and computation elements as done 

in Von Neumann's architecture. Memristor, the fourth fundamental circuit element, comes 

to the rescue. Owing to its less power consumption, more efficient and non-volatile nature, 

memristors claim to be a possible replacement for DRAM. Another advantage of 

memristor design is that it can be arranged in a crossbar arrangement. This makes it 

suitable to perform the dot-product operation and can be used in Convolutional Neural 

Network (CNN) architecture. BPhoton-CNN, proposed in this work, is a memristor-based 

CNN architecture that uses photonic Backpropagation for designing a complete analog 

system for training and inference.  Despite showing the characteristics of a highly 

promising device for in-situ computing, memristive devices suffer from reliability issues 

given their non-linear nature. The proposed work also discusses the effect of one such 

non-linear characteristic called Aging. The effect of aging on the performance of deep 

learning accelerators and different methods to counter aging have been proposed in this 

work. 
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1. INTRODUCTION  

 

Artificial Intelligence (AI) is ubiquitous in today’s world. Deep learning (DL), a 

powerful AI method, supports a wide range of commercial and research aspects. Ranging 

from medical diagnostics to image processing to deep-sea exploration, DL has garnered 

special attention due to its ability to learn and predict with high accuracy and precision. 

The popularity of Deep learning is fueled by Big Data. The performance of a DL model 

increases almost exponentially with the amount of data.as seen in Fig.1.1 [1].  

 

Figure 1.1: Performance of DL models w.r.t. amount of data. Reprinted from [1] 

 

One of the most popular deep learning methods is Convolutional Neural Network 

(CNN) and it has been used in various application domains like computer vision and 

natural language processing (NLP). Convolution-based models have an exorbitant number 

of weight parameters. Take for instance the ResNet-50[2] architecture which has 23 

million weight parameters. As the complexity of problems and demand for accurate 



 

2 

 

predictions is increasing, the models are becoming larger and deeper with an appetite for 

a huge amount of data. In the future, we can expect to have even bigger networks that will 

be able to solve much more complex problems. This increases the demand for faster 

computational resources, additional memory storage, and faster communication between 

memory and computational resources. As Deep Neural Networks are becoming the driving 

core of a lot of critical applications, it becomes imperative to design adequate 

computational and memory resources to accommodate intensive applications. 

1.1. Pitfalls of current modern architecture  

In 1965, Gordon Moore predicted that the number of transistors was doubling 

every 24 months and would continue to do so [3]. But the recent decade is experiencing 

the end of Moore’s law. This is because as the transistor becomes smaller, leakage current 

increases leading to increased heat dissipation. To compensate for the performance loss 

due to the slowing down of device scaling, multi-core processors and GPUs have been 

used to perform complex computations.  

 

Figure 1.2: Moore’s Law slowdown in Intel Processor. Reprinted from [4] 
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Neural networks are trained on a large amount of data and require high bandwidth 

memory resources. Training a ResNet-50 model requires around 7.5 GB of local DRAM 

storage [59]. Over the last four decades, when Moore’s law prevailed, there was significant 

growth in processor speeds without any substantial change in memory technology. Fig.1.3 

shows an increasing gap between the processor’s computational speed and memory 

performance.  

 

Figure 1.3: Processor-memory gap. Reprinted from [6] 

 

To improve memory performance in modern systems many novel techniques are 

being adopted. Interconnects are improved to reduce data transfer latency between 

bandwidth agents [7,17] and CPU/GPU caches were introduced to reduce the average time 

and energy to access data from the main memory [8,9,18]. However, caches are also 

constrained as the increase in cache size causes more latency and complexity in the design. 

For example, a high-performance GPU usually has only 512KB of L1-cache with each 

core [10]. But DNNs train on huge datasets and strive for accurate predictions demanding 

enormous memory capacity (in the range of tens of gigabytes). Thus, data is stored in the 

DRAM or off-chip memory. During training, a neural network requires transferring data 
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from off-chip memory devices to caches before it reaches the processing unit for 

computation. This data movement between CPU/GPU and DRAM consumes twice the 

energy as consumed by floating-point operations [11]. Off-chip memory is already 

constrained by bandwidth and latency. And now this continuous data transfer also 

increases the power consumption. Thus, the current architectures have design constraints 

that inhibit their ability to handle complex neural networks. 

Gartner [12] predicts that transistor-based semiconductor technology will hit a 

digital wall by 2025. The research community has now started exploring new paradigms 

that are small in size yet energy efficient to be able to outperform traditional general-

purpose hardware in power-hungry artificial intelligence applications. One such new 

approach is Neuromorphic or brain-inspired computing. The human brain is the most 

sophisticated computer in the world. It consists of about 100 billion neurons, making in 

the order of 100 trillion connections, and performs 100B TFlops per sec with just 20W 

power consumption [13]. Spiking Neural Networks (SNN)-an artificial neural network 

that closely mimics natural neural networks [14], TrueNorth by IBM-a brain-inspired 

machine using neuromorphic CMOS integrated circuit that consumes 70 milliwatts of 

power [15], and Loihi by Intel labs-an asynchronous spiking neural network (SNN) that 

is about 1000 times more energy-efficient than the conventional computation 

technique GPU [16] are few existing neuromorphic architectures that use analog 

component for computation.  

However, all these architecture uses DRAM for data storage and thus incur high 

Analog-to-Digital (ADC) and Digital-to-Analog (DAC) power consumption and memory 
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latency. They do solve the computational raised bottleneck, because of the decline in 

Moore’s law, but still face the memory bottleneck. 

So, the need of the hour is a system that doesn’t physically separate memory and 

computation elements. This will reduce the latency and power consumption of moving 

data between memory and computing resources and will result in faster computation. This 

has shifted the interest towards a complete analog system that is energy-efficient and 

reliable. 

1.2. Opportunities with Memristor 

1.2.1. What is a memristor? 

In 1971, Leon Chua described Memristor, arguing that it should be included along 

with resistor, capacitor, and inductor as the fourth fundamental circuit element [19]. 

Memristor is termed from Memory and Resistor because it’s a resistor with the capability 

to store memory. It is an electrical resistance switch that can retain a state of internal 

resistance based on the history of applied voltage and current. Memristor was first realized 

by HP labs in 2008 [20].  

Fig.1.4 shows the four circuit elements where the fourth element is the memristor. 

Memristance (M) of a memristor can be defined as [20]: 

𝑀(𝑞)  =  𝑑𝜑 𝑑𝑞⁄  = 𝑣𝑑𝑡 𝑖𝑑𝑡⁄  =  𝜈 𝑖⁄                                      (i) 

Where i is the electric current, v is voltage, q is charge and ϕ is magnetic flux. 
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Figure 1.4: Four fundamental circuit elements. Reprinted from [20] 

 

As proposed by HP lab in [20], memristors are made of a thin semiconductor film 

(TiO2) containing two regions: One doped with oxygen vacancies called the doped region, 

and the other is the undoped region as seen in fig.1.5. This film is surrounded by two metal 

contacts. The doped region has low resistance Ron and the undoped region has high 

resistance, Roff. When a voltage is applied across the device, vacancies will move towards 

the undoped region, resulting in the shift of the boundary.  

 

Figure 1.5: Memristor 
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1.2.2. Why Memristor? 

Memristor devices are non-volatile in nature. So, they retain the value of resistance 

even if the voltage supply has been disconnected. Thus, memristor cells can be used to 

store information and unlike DRAM, where capacitors drain their charge after the power 

has been removed, memristor will store the values till another positive or negative voltage 

has been applied. As stated by R. Stanley Williams, a researcher from HP labs [21]: 

“Memristors can be made extremely small, and they function like synapses. 

Using them, we will be able to build analog electronic circuits that could 

fit in a shoebox and function according to the same physical principles as 

a brain…” 

Also, Chua showed that it will take a circuit of around 15 transistors and other passive 

elements to emulate the behavior of a single memristor cell [21]. Various research has 

shown that Memristors use less power for operation and a memristor array consisting of 

millions of cells is 10 to 100 times faster than a GPU [22, 23]. 

Thus, memristor claims to be a possible replacement for DRAM, owing to its less 

power consumption and more efficiency. Moreover, memristors can also be used for 

computation along with memory storage.  

A memristor cell can be designed in a crossbar arrangement and thus dot-product 

computation can be performed using Kirchhoff’s current and voltage law. A dot product 

computation is the basis of a deep learning model as it is required while calculating the 

weighted summation of inputs. Further, memristor uses analog vector multiplication 

which is 100 X more efficient than traditional computational resources like GPU [31].  
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This has shifted the focus toward neuromorphic computing using memristor like 

ISAAC [28] and PipeLayer [30]. ISAAC uses a memristor crossbar array for each layer 

in the neural network in a highly pipelined manner and PipeLayer is an enhancement of 

ISAAC where the crossbar array size has been improved to improve the pipeline. Although 

this architecture shows promising results, they incur heavy area and power overhead due 

to inter-layer data conversions which require the use of Analog-to-Digital (ADC) and 

Digital-to-Analog (DAC) converters.  

In earlier approaches, only one layer was made analog (mainly convolution layer 

in a CNN architecture), whereas the rest of the computation (in RELU and MaxPool) was 

still done in traditional processor and memory resources. So, the challenge is to develop a 

complete analog accelerator that does both training and inference.  
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2. BPHOTON-CNN – A COMPLETE ANALOG NEUROMORPHIC COMPUTING* 

 

2.1. Motivation 

1In today’s era of big data, the volume of data that computing systems process is 

increasing exponentially. Deep learning has become state-of-the-art across a broad range 

of big data applications such as speech processing, image recognition, genomic prediction, 

etc. Convolutional neural networks (CNNs) are a popular deep learning framework with 

superior accuracy on applications that deal with videos and images. However, CNN's are 

highly energy and memory-intensive, requiring enormous computational resources. With 

Moore’s law coming reaching its limit, traditional Von Neuman systems such as 

heterogeneous CPU/GPU platforms cannot offer this high computational demand, within 

reasonable power and processing time limitations. Therefore, several FPGA [27] and 

ASIC [28] approaches have been proposed to accomplish large-scale deep learning 

acceleration.  

A CNN comprises of two stages: training and inference (i.e., validation). Most 

hardware accelerators for CNNs in prior literature focus only on the inference stage, while 

the training is done offline using GPUs. However, training a CNN is several hundred times 

more compute and power-intensive than its inference [29]. Moreover, for many 

applications, training is not a one-time activity, especially under changing environmental 

 

*Reprinted with permission from “BPhoton-CNN: An Ultrafast Photonic 

Backpropagation Accelerator for Deep Learning” by Dang, D., Khansama, A., Mahapatra, 

R. and Sahoo, D., 2020. In Proceedings of the 2020 on Great Lakes Symposium on VLSI, 

pp. 27-32. 



 

10 

 

and system conditions, where re-training of CNN at regular intervals is essential to 

maintaining prediction accuracy for the application over time. This calls for an energy-

efficient training accelerator in addition to the inference accelerator.  

Training a CNN, in general, employs a backpropagation algorithm that demands 

high memory locality and computes parallelism. Recently, a few resistive memory 

(ReRAM or memristor crossbar) based training accelerators have been demonstrated for 

CNNs, e.g. ISAAC [28], PipeLayer [30], RCP [33], and MNN [34]. ISAAC, RCP, and 

MNN use highly parallel memristor crossbar arrays to address the need for parallel 

computations in CNNs. In addition, ISAAC uses a very deep pipeline to improve system 

throughput. However, this is only beneficial when a large number of consecutive images 

can be fed into the architecture. Unfortunately, during training, in many cases, a limited 

number of consecutive images need to be processed before weight updates. The deep 

pipeline in ISAAC also introduces frequent pipeline bubbles. Compared to ISAAC, 

PipeLayer demonstrates an improved pipeline approach to enhance throughput. However, 

RCP, MNN, ISAAC, and PipeLayer involve several analog-to-digital (AD) and digital-

to-analog (DA) conversions which become a performance bottleneck, in addition to their 

large power consumption. Also, training in these accelerators involves sequential weight 

updates from one layer to another. This incurs inter-layer waiting time for synchronization, 

which reduces overall performance. This calls for an analog accelerator that can drastically 

reduce the number of AD/DA conversions, and inter-layer waiting time. It has been 

recently demonstrated that a completely analog matrix-vector multiplication is 100× more 

efficient than its digital counterpart implemented with an ASIC, FPGA, or GPU [31]. HP 
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labs have showcased a memristor dot product engine that can achieve a speed-efficiency 

product of 1000× compared to a digital ASIC [31]. Vandroome et al. in [32] have 

demonstrated a small-scale efficient recurrent neural network using analog photonic 

computing. A few efficient on-chip photonic inference accelerators have also been 

proposed in [35], [36]. However, a full-fledged analog CNN accelerator that is capable of 

both training and inference has yet to be demonstrated.  

In this section, we propose BPhoton, a novel silicon photonics-based backpropagation 

accelerator for training CNNs. BPhoton works in conjunction with a highly efficient 

memristor-integrated photonic feedforward CNN accelerator. We call it BPhoton-CNN 

which a first-of-its-kind memristor-integrated silicon photonic CNN accelerator for end-

to-end analog training and inference. It is intended to perform highly energy-efficient and 

ultra-fast training for deep learning applications with state-of-the-art prediction accuracy.  

2.2. Convolutional Neural Networks 

2.2.1. Basics of CNN 

Convolutional neural networks (CNNs) are a class of feed-forward neural 

networks commonly used for analyzing visual imagery for image classification and object 

detection/prediction tasks. CNN in general comprises of three types of layers: convolution 

layer (CONV), pooling layer (POOL), and a fully connected layer (FC). Generally, CONV 

is accompanied by a non-linear activation function, such as ReLU. Depending on the 

sequence in which these layers are arranged, there are different CNN models, such as 

AlexNet [37], VGG [38], LeNet [39], etc. 
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2.2.2. Backpropagation Algorithm 

CNN operates in two stages: training and inference (testing). In the training phase, 

the filter weights (and biases) in CONV and FC layers are learned by using a 

backpropagation (BP) algorithm. The BP algorithm involves a forward and a backward pass 

in the deep network.  

Given a training sample x in the forward pass, the weighted input sum (convolution) 

z is computed for neurons in each layer l with some initial filter weights w (and bias b) 

followed by neural activation 𝜎(𝑧) (ReLU(z) in our work), and POOL. The final layer L 

computes the output label of the overall network for every forward pass. This can be 

summarized as follows: 

Forward Pass: For each layer l, 

   𝒛𝒙,𝒍 ← 𝒘𝒍𝒂𝒙,𝒍−𝟏 + 𝒃𝒍                       (1) 

𝒂𝒙,𝒍 ← 𝝈(𝒛𝒙,𝒍)            (2) 

The output error in the final prediction, 𝛿𝑥,𝐿 is a result of errors induced by the neurons in 

each hidden layer during the forward pass. To compute the error contribution of a neuron in 

the previous layer i.e., 𝛿𝑥,𝑙, the final error is backpropagated through the network starting 

from the output layer. This can be summarized as follows: 

Output error: At the final layer L, 

 𝛿𝑥,𝐿 ← ∇𝑎𝐶𝑥⨀𝜎′(𝑧𝑥,𝐿)             (3) 

Backward Pass: For each layer l, 

𝛿𝑥,𝑙 ← ((𝑤𝑙+1)𝑇 × 𝛿𝑥,𝑙+1)⨀𝜎′(𝑧𝑥,𝑙)            (4) 
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Here, ∇𝑎 is the gradient of 𝑎𝑥,𝑙, and 𝜎′(𝑧𝑥,𝐿) is derivative of 𝜎(𝑧𝑥,𝐿). These error 

contributions are necessary to update the filter weights w and biases b in the respective layers 

using a gradient descent method. In gradient descent, the forward and backward pass happen 

iteratively until the cost function is minimized and the network is trained. This can be 

summarized as follows: 

Gradient Descent: For each layer l and m training samples with learning rate 𝜂, 

𝑤𝑙 ←  𝑤𝑙 − 
𝜂

𝑚
∑ 𝛿𝑥,𝑙 × (𝑎𝑥,𝑙−1)𝑇

𝑥      (5) 

𝑏𝑙 ←  𝑏𝑙 − 
𝜂

𝑚
∑ 𝛿𝑥,𝑙

𝑥      (6) 

The next section presents the details of the proposed BPhoton-CNN architecture.  

2.3. BPHOTON-CNN Architecture 

2.3.1. Overview 

Our proposed BPhoton-CNN architecture is a fully analog, scalable, and 

configurable memristor-integrated photonic CNN accelerator design. Unlike previously 

proposed state-of-the-art CNN accelerators [28], [30], the BPhoton-CNN accelerator 

enables completely analog end-to-end training and testing for a CNN.  

Fig.2.1 gives a high-level overview of this BPhoton-CNN architecture. As shown 

in the figure, BPhoton-CNN comprises of three parts: feedforward CNN accelerator 

architecture, backpropagation accelerator architecture, and weight update and peripheral 

circuitry. The analog feedforward CNN accelerator is inspired from [36]. It enables 

Feature Extraction (FE) through a memristive convolution layer and silicon photonics-

based ReLU and pooling layers. The feedforward CNN accelerator uses memristive 

multiplication for Feature Classification (FC). The entire backpropagation accelerator is 



 

14 

 

implemented in the photonic realm using MRMs, splitters, and multiplexers. Finally, 

BPhoton-CNN’s weight update and peripheral circuitry are implemented through a group 

of memristors. 

 

Figure 2.1: An overview of BPhoton-CNN architecture. 

 

2.3.1.1. Feedforward CNN Architecture 

An image dataset is considered as the input data and its classification as the 

application to be executed with BPhoton-CNN. The CNN accelerator in BPhoton-CNN 

architecture (see Fig.2.1) performs feedforward feature extraction (FE) followed by 

feature classification of input images. The FE in the CNN architecture is carried out using 

multiple FE stages (𝐹𝐸𝑖). After all of the features are extracted, feature classification is 

performed using one or more fully-connected layers (FC). 

Fig. 2.2 illustrates the microarchitecture of an FE stage. Each FE stage comprises 

of multiple memristor-based convolution layers (CONV), a semiconductor-optical 

amplifier (SOA)-based ReLU layer, an optical comparator-based max-pooling (POOL) 
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layer, and an interface layer. BPhoton-CNN’s FE adopts a completely analog computing 

paradigm by avoiding inter-layer A- to-D (Analog-to-Digital) and D-to-A (Digital-to-

Analog) conversions compared to state-of-the-art CNN accelerators [28], [30] which use 

analog memristive convolution and digital CPU/GPU based ReLU and Pooling. The 

feedforward CNN accelerator is designed to convolve 56x56 image input at a time. The 

detailed working of this feedforward accelerator is not explained due to brevity; we focus 

completely on the backpropagation architecture which is the major contribution of this 

chapter.  

 

Figure 2.2: Microarchitecture of Feature Extractor (FE) in BPhoton-CNN 

 

2.3.1.2. Backpropagation Architecture 

BPhoton-CNN’s backpropagation (BP) architecture employs analog microring 

modulators, photodiodes, multiplexers, and splitters to perform completely analog matrix-
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multiplication and other arithmetic operations. In contrast, previously proposed CNN 

accelerators [28], [30] adopt a hybrid approach by using analog memristors for matrix 

multiplications and digital CPU/GPU for other arithmetic operations, which requires 

performance hindering A-to-D and D-to-A conversions.  

Our analog BP architecture mainly involves computing matrix-vector multiplication 

in the backward pass. A photonic modulator is used for analog amplitude modulation of a 

light carrier. In its simplest term, analog amplitude modulation is the multiplication of a 

scalar input with an analog signal. The authors in [40] have demonstrated photonic 

modulator-based analog multipliers. Fig. 2.3 illustrates the microarchitecture of the 

proposed BP accelerator design. It is based on photonic matrix-vector multiplication using 

microring modulators (MRMs). We use MRMs for their high accuracy and quality factor.  

 

Figure 2.3: Backpropagation architecture in BPhoton-CNN which presents the 

backpropagation between the final layer l=L and penultimate layer l=L-1 

 

We now describe the operation of the proposed BP architecture. As discussed in Eq. 

(3), the error at the final layer (l=L) of BP is  𝛿𝑥,𝐿 ← ∇𝑎𝐶𝑥⨀𝜎′(𝑧𝑥,𝐿). Here, ∇𝑎𝐶𝑥 is the 
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rate of change of output w.r.t the output activation (i.e., the difference of actual classified 

output from FC of CNN architecture and the target output). 𝜎′(𝑧𝑥,𝐿) is the derivative of the 

ReLU function in the final FC stage of the CNN architecture. Outputs from the final FC 

stage of the CNN architecture are fed to an analog subtraction and multiplication unit to 

determine 𝛿𝑥,𝐿. Using Eq. (4) and the computed 𝛿𝑥,𝐿, we calculate the error for the (L-

1)th layer using the following equation: 

𝛿𝑥,𝐿−1 ← ((𝑤𝐿)𝑇 × 𝛿𝑥,𝐿)⨀𝜎′(𝑧𝑥,𝐿−1)                           (7) 

where, 𝑤𝐿 is weight matrix obtained from Lth layer of feedforward CNN architecture 

through the peripheral circuit. The details of the peripheral circuit are explained in the next 

subsection. Fig.2.3 shows the backpropagation between the final layer l=L and its 

penultimate layer l=L-1. As illustrated in Fig.2.3, there is an N number of wavelength 

carriers coming from a mode-locked laser array. The value of N for a layer equals to the 

output feature size for the corresponding layer in the CNN architecture, e.g. N equals 49 

(7×7) for the last layer. Each wavelength in layer L is modulated with error 𝛿𝑥,𝐿 by an MRM 

tuned to that wavelength. In Fig.2.3, the violet MRM is tuned to modulate 𝜆1. Now the jth 

MRM’s output is 𝑀𝑅𝑀𝑗 = 𝛿𝑗
𝑥,𝐿 ∗ 𝐴 sin(

2𝜋

𝜆𝑗
𝑡 + ∅). Each 𝑀𝑅𝑀𝑗 is split into two equal parts. 

The first part is sent to the weight-update circuitry to update the corresponding weights in 

the CNN architecture. The other part is fed to a WDM multiplexer. A WDM multiplexer is 

used to combine multiple light wavelengths into a single multi-wavelength carrier. After 

multiplexing, the combined optical signal is split into M parts where M equals the number 

of neurons in layer L-1. Each part is fed to a multi-wavelength waveguide. As a result, in 
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each waveguide there are N wavelengths each carrying data 𝛿𝑗,𝑛
𝑥,𝐿 ∗ 𝐵 sin(

2𝜋

𝜆𝑗
𝑡 + ∅), where 

1 ≤ 𝑛 ≤ 𝑁, 𝐵 =
𝐴

2𝑁
. Each weight 𝑤𝑖𝑗

𝐿  of the transpose of 𝑤𝐿 obtained from the peripheral 

circuit is modulated to a light carrier. This results in:                                                                                          

𝑀𝑖,𝑛 = 𝑤𝑖𝑗
𝐿 ∗ 𝛿𝑗,𝑛

𝑥,𝐿 ∗ 𝐴 sin(
2𝜋

𝜆𝑗
𝑡 + ∅)                       (8) 

Now, each 𝑀𝑖,𝑛 is modulated with 𝑎𝑛
𝐿  which is a derivative of the ReLU functions of layer 

L-1 (equal to 𝜎′(𝑧𝑥,𝐿−1)  in Eq. (7)).  Then, 𝑀𝑖,𝑛 becomes, 

𝑀𝑖,𝑛 = 𝑤𝑖𝑗
𝐿 ∗ 𝛿𝑗,𝑛

𝑥,𝐿 ∗ 𝑎𝑛
𝐿 ∗ 𝐴 sin(

2𝜋

𝜆𝑗
𝑡 + ∅)                       (9) 

Next, a photodiode is used to demodulate photonic data from each waveguide. The 

photodiode demodulates the combined output 𝑀𝑖,𝑛 for all wavelengths in a waveguide 

which is nothing but the matrix-vector multiplication identical to Eq. (7). The output of each 

photodiode is passed through a signal conditioning and filtering circuit to remove unwanted 

noises. Details of the conditioning circuit are omitted for brevity. The output from the signal 

conditioning circuit looks as follows: 

𝛿𝑥,𝐿−1 = ((𝑤𝐿)𝑇 × 𝛿𝑥,𝐿)⨀𝑎𝐿                       (10) 

where, 𝛿𝑥,𝐿−1 is the error to be propagated from layer (L-1) to (L-2). The same procedure as 

above is continued until the 1st layer is reached. While doing the backpropagation, the error 

value in each layer is also fed to the corresponding weight-update circuit, which is discussed 

in more detail below. 

2.3.1.3. Weight update and peripheral circuitry 

For weight-update, each element of a weight kernel in any layer l of CNN 

architecture can be written as 𝑤𝑘,𝑗
𝑙 . Please note that l=L for the final layer. Each 𝑤𝑘,𝑗

𝑙 is stored 
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in a memristor of a memristor bank in layer l as 𝐺𝑘,𝑗
𝑙 (which is the conductance of a memristor 

cell). The weight-update equation for 𝑤𝑘,𝑗
𝑙 (or, 𝐺𝑘,𝑗

𝑙 ) can be written as per Eq. (5), as follows: 

𝐺𝑛𝑒𝑤(𝑘,𝑗)
𝑙 ←  𝐺𝑜𝑙𝑑(𝑘,𝑗)

𝑙 − 
𝜂

𝑚
× 𝛿𝑘

𝑙 × 𝑂𝑗
𝑙−1                   (11) 

where, 𝑂𝑗
𝑙−1 is the jth output from the POOL of the (l-1) layer of the CNN architecture. 

Fig.2.4 illustrates the weight-update circuitry for any layer l. As shown in Fig.4, 𝛿𝑘
𝑙  is 

obtained from the BP architecture as a photonic signal. 𝑂𝑗
𝑙−1, which is collected from the 

peripheral circuit, is used to modulate the light carrier carrying the error value 𝛿𝑘
𝑙 . The 

modulated output is demodulated using a photodiode and then sent to a signal conditioning 

circuit. In the signal conditioning circuit, first the analog signal is filtered (from noises) and 

passed through a subtractor to obtain new 𝐺𝑘,𝑗
𝑙  as depicted in Eq. 9). The previous 

conductance or weight value 𝐺𝑜𝑙𝑑(𝑘,𝑗)
𝑙 is fed to the subtractor from the lth layer memristor 

bank. The new conductance value 𝐺𝑘,𝑗
𝑙  is now fed to the equivalent memristor control circuit 

to update its weight value. The conditioning circuit as well as the memristor control circuit 

are inspired from [29]. 

 

Figure 2.4: Weight-update circuitry for any layer l 
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The output 𝑀𝑃𝑗 from the POOL of a layer l can be written as 𝑀𝑃𝑗
𝑙. During the 

feedforward training phase, each 𝑀𝑃𝑗
𝑙is stored as conductance in a memristor in the 

peripheral circuitry. This is used in backpropagation as 𝑂𝑗
𝑙 , an output of the lth layer (as per 

Eq. (11)). Each 𝑀𝑃𝑗
𝑙 is sent to a signal conditioning circuit and then a memristor control 

circuit. The resulting electronic signal is used to update the conductance (or weight value) 

of the memristor.  

2.4. Case Study 

In this section, we demonstrate the working principle of a pipelined BPhoton-CNN 

architecture for a CNN benchmark VGG [38] on the ImageNet dataset [42]. We select a 

particular configuration, namely, VGG-A for the case study. However, we also experiment 

with all variants of the VGG [38] and LeNet [39] benchmarks as shown in Table I and 

discussed in Section V. Using microarchitectures of the convolution layer, ReLU layer, 

POOL layer, interface layer, and FC layer, we configured BPhoton-CNN as illustrated in 

Fig. 2.5(a) for VGG-A application with four FE stages. The details of it are as follows.  

VGG for the ImageNet dataset operates on a 224×224 image input. BPhoton-CNN is 

designed to convolve 56×56 pixels at a time, i.e., one BPhoton-CNN cycle. Therefore, it 

requires 16 BPhoton-CNN cycles to execute a 224×224 image. Please note that a BPhoton-

CNN cycle is different from its clock cycle. Here, one BPhoton-CNN cycle refers to the 

complete feature extraction and feature classification of a 56×56 image.  The SRAM register 

array in BPhoton-CNN is of size 2 KB to store the 56×56 input data. CONV performs feature 

extraction on 28×28 input data at a time in a pipelined manner. FE in BPhoton-CNN is 

performed as explained in the CONV architecture (ref: Fig.2.2).  
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Fig. 2.5(b) demonstrates the pipelined data flow of the feedforward operation in 

BPhoton-CNN. We consider a 2.5 GHz clock. Therefore, the clock cycle periodTsm = 400 

ps. As shown in Fig. 2.5(b), at t=Tsm, the first set of 28×28 pixels from SRAM (i.e., A) are 

convolved (64 filters/features) and are stored in memristors in the peripheral circuit. The 

other three set of 28×28 pixels are namely, B, C, and D. Note that CONV convolves a 28×28 

input in one clock cycle. As FE1  for VGG-A consists of one convolution layer (see Table 

2.1), convolved outputs of CONV-1 of FE1 is directly sent to the modulation phase. In the 

modulation phase, each convolved output is modulated by an MRR of a particular tuning 

wavelength to a light carrier of that wavelength in the DWDM waveguide group. The 

DWDM waveguide group can accommodate 784 wavelengths or in other words 4 features 

of size 28×28. The time required for convolved data of one FE to arrive at the next FE, 𝑇𝐹𝐸 

= modulation time + ReLU time + POOL time + interface time = 20 ps + 10 ps + 10 ps + 

10 ps = 50 ps. From t=𝑇𝑠𝑚 to t=2𝑇𝑠𝑚, CONV(A) outputs from the peripheral circuit of 

𝐹𝐸1are modulated, ReLU and POOL’ed, and then fed to FE2. There can be 8 such data 

movements as 
𝑇𝑠𝑚

𝑇𝐹𝐸
= 8. In one data movement, 4 28×28 features can be processed. 

Therefore, at t=2𝑇𝑠𝑚, 32 CONV(A) features arrive at FE2. Similar to CONV(A), from 

t=2𝑇𝑠𝑚 to t=3𝑇𝑠𝑚, 32 CONV(B) features; from  t=3𝑇𝑠𝑚 to t=4𝑇𝑠𝑚, 32 CONV(C) features; 

from t=4𝑇𝑠𝑚 to t=5𝑇𝑠𝑚, 32 CONV(D) features are convolved and stored in the peripheral 

circuit of 𝐹𝐸2. After this, from t=5𝑇𝑠𝑚 to t=6𝑇𝑠𝑚,  the remaining 32 CONV(A) features in 

𝐹𝐸1 are convolved in 𝐹𝐸2. In this way, by t=6𝑇𝑠𝑚, all the 64 CONV(A) features in 𝐹𝐸1are 

convolved with 128 𝐹𝐸2 filters to produce 128 features and stored in the memristors of its 

peripheral circuit. 
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Figure 2.5: (a) VGG-A implemented on BPhoton-CNN (b) Pipelined dataflow in 

feedforward operation in BPhoton-CNN. 

 

Similarly, remaining 32 B, C, and D features are convolved and stored (Fig. 2.5(b)) 

by t=7𝑇𝑠𝑚, t=8𝑇𝑠𝑚, and t=9𝑇𝑠𝑚 respectively. 𝐹𝐸1 has 64 features, 𝐹𝐸2 has 128 features, 

𝐹𝐸3 has 256 features, etc, as per the VGG-A configuration (Table 2.1). It is important to 

note that 64 CONV(A) features from 𝐹𝐸1are convolved with 128 memristive WMAs 
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(kernels/filters) to produce 128 CONV(A) features for 𝐹𝐸2. Similarly, 128 CONV(A) 

features from FE2are convolved with 256 WMAs to produce 256 CONV(A) features for 

𝐹𝐸3. 

A, B, C, and D are convolved separately until 𝑡 = 10𝑇𝑠𝑚 when all of them arrive at 

𝐹𝐸3 as 256 7×7 features each. Now, all of these features are merged together to form 256 

28×28 features. Therefore, it will require another 8𝑇𝑠𝑚 time (i.e., t=10𝑇𝑠𝑚 to t=18𝑇𝑠𝑚 ) to 

send 256 28×28 features from 𝐹𝐸3 and convolve them as 512 14×14 features at 𝐹𝐸4. 

Similarly, convolution, ReLU, and POOL are performed in 𝐹𝐸4 and 𝐹𝐸5. As illustrated in 

Fig. 2.5(b), at t=24𝑇𝑠𝑚, 512 features are obtained from 𝐹𝐸5 for 56×56 pixels. As shown in 

Fig. 2.5(a), features from 𝐹𝐸5  are stored in SRAM until all the 224×224 pixels are extracted. 

For 224×224 pixels, it will take 16×24𝑇𝑠𝑚=384𝑇𝑠𝑚=153.6ns. After this, all the features are 

retrieved from SRAM and fed to FC for feature classification. The first FC operation 

requires (𝑇𝑠𝑚 + 𝑇)  time as it is identical to FE. 

The second FC operation requires T time as no more SRAM read is needed. This 

means that BPhoton-CNN requires 153.6 ns (for FE) +𝑇𝑠𝑚 + 2𝑇  = 154 ns, for one forward 

pass. After a forward pass, the FC output is sent to the BP architecture for backpropagation. 

Each layer in BP requires 𝑇𝑏 units of time where 𝑇𝑏 = (error modulation to light carrier) + 

(split time) + (WDM multiplexing time) + (split time) + (weight modulation time) + (ReLU 

function derivative modulation time) + (photodiode time) = 10 ps + 10 ps + 10 ps + 10 ps + 

10 ps + 10 ps +20 ps = 80 ps. It takes 6𝑇𝑏 units of time to complete one backward pass.  

 

 



 

24 

 

   

FE1 

 

FE2 

 

FE3 

 

FE4 

 

FE5 

 

VGG-A 3×3, 64, 1 3×3, 128, 1 3×3, 256, 2 3×3, 512, 2 3×3, 512, 2 

F
C

-4
0
9
6
,2

  

F
C

-1
0
0
0
, 
1
 VGG-B 3×3, 64, 2 3×3, 128, 2 3×3, 256, 2  

1×1, 256, 1 

3×3, 512, 2 

1×1, 256, 1 

3×3, 512, 2  

1×1, 256, 1 

VGG-C 3×3, 64, 2 3×3, 128, 2 3×3, 256, 3 3×3, 512, 3 3×3, 512, 3 

VGG-D 3×3, 64, 2 3×3, 128, 2 3×3, 256, 4 3×3, 512, 4 3×3, 512, 4 

LeNET-

A 

3×3, 6,1 3×3, 6,1 3×3, 16,2 3×3, 16, 4 3×3, 120, 1 

F
C

8
4
,1

 

LeNET-B 3×3, 6,1 3×3, 6,1 3×3, 256, 1 3×3, 16,6 3×3, 120, 1 

 

Table 2.1: CNN Benchmark Configuration For VGG, LeNeT 

In summary, BPhoton-CNN requires 154 ns for one forward pass and 80 ps for a 

backward pass. The ultra-fast nature of photonic interconnects allows for high-speed 

backpropagation in BPhoton-CNN. 

2.5. Experimental Analysis 

2.5.1. CAD for Bphoton-CNN 

We use IPKISS [42], a commercial optoelectronic CAD tool, to design and 

synthesize all of the photonic components of BPhoton-CNN. All of the synthesized 

components are integrated together to design BPhoton-CNN. For all of the photonics 

components, we consider a 32nm IPKISS library. The parametric details for BPhoton-CNN 

are obtained from [30]. We developed a C++ based architectural simulator which takes 

device- and link-level parameters from IPKISS, to estimate performance of BPhoton-CNN 

accelerator for several benchmarks. 

 



 

25 

 

2.5.1.1. Power, Area, and Performance Models  

We use Caphe [42] for modeling power and area of all photonic elements such as 

modulators, demodulators, waveguides, lasers, etc. The energy and area parameters for 

memristors are adapted from [30]. We use integration and fire mechanism-based DAC 

identical to PipeLayer [30] in our design. The power and area models are adapted 

accordingly from PipeLayer. We also use power and area parameters from [29] for the ADC 

array used in the FC layer of BPhoton-CNN. We use Caffe [43], a deep learning framework, 

to train the datasets in conjunction with photonic component results from IPKISS. We 

manually map each of our benchmarks in waveguides, max-pool, buffers, and FC of 

BPhoton-CNN. This ensures zero pipeline hazards between any two layers in BPhoton-

CNN. We compare the performance of BPhoton-CNN with a state-of-the-art CNN 

accelerator, namely PipeLayer [40]. We evaluate for the following metrics: Computational 

efficiency represents the total number of fixed point operations performed per unit area in 

one second (GOPS/s/mm2); Energy efficiency refers to the number of fixed point operations 

performed per watt (Giga operations per watt or GOPS/s/W); Throughput is the total number 

of operations per unit time (GOPS/s); and lastly, Prediction error rate is the percentage of 

error in inferring any datasets 

2.5.1.2. Benchmark and dataset 

We use two widely used CNN benchmarks: VGG-Net [38] and LeNet [41]. We 

consider four variants of the VGG benchmark: VGG-A, VGG-B, VGG-C, and VGG-D and 

two variations of LeNet (LeNet-A and LeNet-B). The configuration of all stages of VGG-

Net and LeNet benchmarks identical to [30]. For VGG, we use ImageNet dataset [41] having 
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224×224 images. For LeNet, we use 60,000 224×224 images of MNIST datasets [44] for 

training and 10,000 224×224 images for testing. 

2.5.2. Performance Analysis: 

Fig.2.6 demonstrates speedup (throughput) of BPhoton-CNN and PipeLayer [30] 

compared to the baseline GPU implementation results, also from [30], for four variations 

of the VGG and two variants of the LeNet benchmarks. The GPU-based accelerator 

performs with an average throughput of 310 GOPS/s. PipeLayer shows an average 

throughput of 87000 GOPS/s. The proposed BPhoton-CNN shows an average throughput 

of 2784000 GOPS/s. The superior performance of BPhoton-CNN is due to the intelligent 

integration of ultra-fast memristors and high-speed photonic components such as MRAs, 

SOAs, and comparators. The overall throughput of PipeLayer is affected by inter-layer 

data conversion with relatively slow ADCs. Also, PipeLayer spends most of its time in 

sequential weight updates during training. However, BPhoton-CNN has an inherent 

advantage due to its photonic parallel weight update mechanism. On average, BPhoton-

CNN outperforms PipeLayer and GPU by 35× and 345× in terms of speedup, respectively. 

Finally, for the results presented in Fig. 2.6, the variance of speedup across benchmarks is 

1650 with a standard deviation of 40.02. 

Fig.2.7 illustrates the effects of weight resolution on overall speedup of BPhoton-

CNN. With the rise in weight resolution, there is a very little degradation in speedup (5% 

lower for 32-bit compared to 16-bit). This is due to the additional delay in storing 32-bit 

data in SRAM compared to 16 or 8-bit data. However, data conversion is done either at the 

beginning or at the end of the forward pass in BPhoton-CNN. Therefore, the effect is very 
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minimal. Furthermore, it can also be noted from Fig.2.7 that the speedup has a slightly 

decreasing trend from VGG-A to VGG-D. This is due to the increase in total number of 

convolution layers from VGG-A to VGG-D.  

 

Figure 2.6:  Speedup (throughput) comparison across accelerators 

 

Figure 2.7: Speedup of BPhoton-CNN w.r.t. weight resolution. 

 

Fig.2.8 illustrates the normalized computational efficiency (CE) (i.e., the total 

number of fixed-point operations performed per unit area in one second (GOPS/s/mm2)) 

comparison of the proposed BPhoton-CNN and memristor crossbar based PipeLayer [30] 
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with respect to a baseline GPU based design. First of all, the proposed BPhoton-CNN 

architecture shows a computational efficiency variance of 302 (17.38 GOPS/s/mm2) which 

is reasonable considering its high computational efficiency. Furthermore, PipeLayer uses 

memristor crossbars for the bulk of its arithmetic operations. Each memristor crossbar has 

a CE of 1707 GOPS. However, the overall CE of PipeLayer comes down to 1485 GOPS 

due to its extensive usage of data conversions. Also, ReLU and POOL are performed by a 

digital ALU in PipeLayer. This requires more memory to store intra-layer data for 

synchronizing with its pipeline mechanism. The superiority of BPhoton-CNN comes from 

the fact that it is a completely analog accelerator. Therefore, BPhoton-CNN does not involve 

inter-layer data conversions or storage for synchronization. AD and DA conversions are 

done either at the beginning or at the end of feature extraction in BPhoton-CNN. In addition 

to the compute efficient memristor, BPhoton-CNN also uses high speed SOA as ReLU 

which has a CE in the order of 50000 GOPS/s/mm2 [29]. As shown in Fig.7, BPhoton-CNN 

has 31× and 320× higher computational efficiency compared to PipeLayer and GPU, 

respectively. 

 

Figure 2.8: Normalized computational efficiency across accelerators. 
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2.5.3. Energy Savings 

We compare the energy efficiency of BPhoton-CNN with PipeLayer and GPU as 

shown in Fig.2.8. The average energy efficiency for PipeLayer is 142.9 GOPS/s/W which 

is 7.17× higher than GPU based accelerator. BPhoton-CNN works with an average energy 

efficiency of 6432 GOPS/s/W. PipeLayer replicates its early feature extraction layers 

several times (close to 50K times) to maintain a balanced pipeline. This involves excessive 

use of high-power consuming data conversions. BPhoton-CNN uses passive optical 

components such as waveguides and comparators, in addition to energy-efficient 

components such as ring modulators/demodulators, SOAs, and memristor. Also, BPhoton-

CNN uses very few ADCs/DACs compared to PipeLayer. As shown in Fig.8, we obtain 

45× and 360× improvements in energy efficiency for BPhoton-CNN compared to PipeLayer 

and GPU, respectively. Overall, the variance of energy efficiency of BPhoton-CNN across 

benchmarks is 6.96 with a standard deviation of 2.63. 

2.6. Conclusions 

This work demonstrates a fully analog CNN accelerator called BPhoton-CNN that 

integrates compute-efficient memristors and ultra-fast photonic components. BPhoton-CNN 

comprises a completely analog photonic backpropagation architecture. Further, the 

proposed architecture deploys (i) a reconfigurable convolution design in each CNN layer to 

emulate a range of sample CNN models; (ii) a novel approach for analog signed-weight 

arithmetic in the memristive convolution layers. Compared to PipeLayer [30] and GPU, 

BPhoton-CNN architecture shows higher computational and energy efficiency due to the 

use of energy-efficient SOAs, optical comparators, and due to its use of a fully analog 
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feature extraction method. We demonstrated that the proposed design has the potential to 

achieve up to 35× acceleration in training in addition to 31× improvement in computational 

efficiency and 45× energy saving compared to the state-of-the-art with similar accuracy. 

Our future work will address the issue of the broader applicability of our accelerator to other 

types of deep learning models, e.g., deep neural networks (DNNs).
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3. ISSUE WITH MEMRISTOR 

 

3.1. Non-ideal characteristics of a memristor 

Despite showing the characteristics of a highly promising device for in-situ 

computing, memristor does have a few drawbacks. As memristors are non-linear in nature, 

they have a few reliabilities issue that needs attention before memristors can be made 

industry-ready. 

The complexity of deep learning models is increasing to cater to the need for 

complex problems and to satisfy the high accuracy demand. A larger and deeper neural 

net will require a large memristor crossbar array to represent it. This increases the 

complexity of designing the crossbar. Also, large crossbar arrays have a higher chance of 

suffering from leakage current and other non-ideality parameters, which results in 

erroneous conductance values. As the dot-product computation is performed at each 

memristor cell, this error propagates through the crossbar array, increasing manifold in the 

case of a large network. 

This error reduces the accuracy significantly and makes memristor-based 

neuromorphic computing unsuitable for applications in the field of medical diagnostic or 

autonomous driving, where a wrong prediction incurs a heavy loss. 

Memristor cell faces modeling as well as reliability issues. Modeling a memristor 

is challenging because of its non-ideal characteristics [24,25].  Most of the modeling has 

been done in the simulator and hence it becomes important that the model depicts the 
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behavior of the device correctly [24]. Some major reliability issues faced by the memristor 

devices are due to the non-ideal characteristics described in section 3.1.1 to 3.1.6.  

3.1.1. Aging 

Aging is an inevitable process that reflects the performance degradation of a device 

with time. Memristor stores values in the form of conductance states. Aging in memristor 

occurs due to continuous switching of the conductance value. While using memristor 

crossbar for deep learning applications, weight values are mapped linearly to the 

memristor’s conductance values [52]. During training, weight values are updated 

continuously. This requires continuous rewriting of the conductance values by applying 

appropriate pulse. With aging, the ability of memristors to hold the expected conductance 

values decreases as the and this affects the performance of deep learning accelerators. This 

occurs because the value of Roff decreases with time or as frequency of switching 

increases. As it is an irreversible process and contributes the most in deep learning 

performance degradation, it has been studied extensively in this work. Aging has been 

discussed in detail in 3.2. 

3.1.2. Device variability 

Memristors are arranged in a crossbar fashion to mimic the behavior of a neural 

network layer. Ideally, each memristor in the crossbar is expected to behave identically 

but the fabrication process introduces variability between devices. The doping 

concentration, temperature, and other physical parameters play a vital role in causing the 

variance. This variability affects the conductance and memresistance of the device which 

causes the memristor to produce a non-ideal output. Also, it has been found that the 
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variability of Roff is higher than that of Ron [47,53]. This can cause the neural network to 

predict incorrect outputs which can adversely affect the deep learning application running 

in real-time. The device-to-device variability is the inherent nature of device 

manufacturing. Though fabrication methodologies have been improved [48,49] to 

minimize the variation, they cannot be eliminated completely. Much work has been done 

to simulate the memristor considering the device-to-device variability [26]. Novel 

techniques have been introduced to minimize the change in the output due to variability 

[48,49]. 

3.1.3. Non-linear device characteristics 

Most of the memristor devices have been simulated taking into consideration the 

ideal linear I-V characteristics. However, non-ideal memristors have non-linear I-V device 

characteristics, especially at high voltage [26]. Modeling such non-ideal characteristics 

accurately and efficiently becomes challenging. A non-linear I/V characteristics graph for 

VTEAM [46] modeled using MemTorch [26] is shown in fig.3.1. 

 

Figure 3.1: Non-linear I-V characteristics of VTEAM model 
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[26] determines the I/V characteristics of each device and stores them in a Lookup Tables 

[LUT] and uses this to calculate the output current during inference. 

3.1.4. A finite number of conductance state 

Memristor devices are known to have multiple levels of conductance states. These 

conductance states can be switched by applying an appropriate pulse to the device for a 

certain duration and amplitude and hence can be used to store data in the device [45]. The 

levels are bounded by Roff, the maximum resistance state during the off state, and Ron, the 

lowest resistance state [50]. Between these bounds, the conductance levels are defined. 

But as discussed in 3.1.1 and 3.1.2, device-device variability and aging could cause these 

resistances to change. This would result in non-uniform distribution of conductance state 

between devices. As devices age from their pristine state, this non-linearity becomes more 

evident. This leads to degradation of the crossbar which would adversely affect the 

accuracy of the model. Deterministic discretization of these conductance states is one way 

to overcome this condition [51]. Since discretization provides more error tolerance, it 

significantly improves accuracy. But inevitable factors like aging continue to degrade the 

crossbar and the above methods would eventually succumb to failure. 

3.1.5. Device Failure 

As discussed in 3.1.1., fabrication plays an important role in deciding the 

characteristics of a memristor device. Due to fabrication issues, and effect of external 

factors like temperature and increased frequency of switching voltage/pulse, the 

memristor device becomes susceptible to failure [45]. Device gets stuck either at low 

resistance state (LRS) Ron or at high resistance state (HRS) Roff or fail to electroform at 
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pristine stage. The memristor devices stuck at a particular resistance cannot be 

reprogrammed and it results in loss of accuracy during a neural network implementation. 

In the next section we will discuss how aging of memristor crossbar affects performance 

of deep learning accelerators. We will also briefly describe the simulator MemTorch [26] 

that is used in this work. 

3.2. Aging is a devil! 

As discussed in the previous section, aging is a non-ideal characteristic of 

memristor which can significantly degrade the performance of the device over time. As 

memristors are nanoscale devices, fabrication process is not easy, and they show large 

process variation. This results in large variation in device parameters mainly, Roff and Ron. 

As described in 3.1.1, the conductance values of a memristor cell need to be tuned or 

programmed frequently to store the corresponding weight value and a high voltage is 

applied across the memristor cell to do this tuning. Frequent high voltage would mean 

high current across the memristor filament, and this changes the internal structure of the 

cell by increasing temperature in the filament region [45]. The constant switching reduces 

the range of conductance values and thus the number of conductance states. So, even if 

we want to map a trained weight to a desired conductance state, it will map to a 

conductance value different from than desired conductance. This occurs because of the 

decrease in maximum resistance Roff of the memristor cell as shown in Fig.3.2, and that 

causes memristors to lose their conductance levels with time. Thus, a memristor that can 

be programmed to level 5 when in the pristine state can only be programmed to level 3 

after time t. Even after repeated try to reprogram the device, the value will not go above 
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the aged R value. This results in wrong weight values stored in the memristor crossbar and 

thus generate error. As, this error propagates through the whole crossbar during 

computation, the accuracy is affected. 

 

Figure 3.2: Effect of aging on Roff . Adapted from [52] 

 

Experiments done by [53] concludes that the maximum value of resistance (Roff) 

ages faster than that of minimum resistance (Ron). We leverage this change of Roff as the 

devices ages and model an aging function. Incorporating this function in an ideal 

memristive deep neural network (MDNN) shows how accuracy of a deep learning model 

is affected by aging of a memristor device. In the next sections, we will discuss the 

proposed method to model aging in a MDNN. 

3.2.1. Modelling Aging  

Since aging plays a vital role in degrading memristor performance over time, this 

work tries to capture the effect of aging on a DL model. MemTorch[26] was used as a 

simulator to incorporate the aging function in an ideal MDNN. The basic idea behind 

aging is that continuously rewriting conductance values changes the internal structure of 
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the device and thus it is not able to store the ideal Roff value i.e. the maximum resistance 

decreases as the device ages.  

To model aging, first a Deep Neural Network (DNN) was defined using PyTorch. 

Then weights of the neural network were linearly scaled into conductance values of 

memristor crossbar array using the following equation:  

𝑔𝑖,𝑗 =  
(𝑊𝑖,𝑗  −𝑊𝑚𝑖𝑛) ∗(𝑔𝑚𝑎𝑥−𝑔𝑚𝑖𝑛)

(𝑊𝑚𝑎𝑥  −𝑊𝑚𝑖𝑛)
+ 𝑔𝑚𝑖𝑛        (12)

   

Where, 𝑊𝑚𝑖𝑛  and 𝑊𝑚𝑎𝑥  is minimum and maximum weight values of a layer in the neural 

network.  𝑔𝑚𝑎𝑥  is 1
𝑟𝑜𝑛

⁄   or maximum conductance and  𝑔𝑚𝑖𝑛 is 1
𝑟𝑜𝑓𝑓

⁄  or minimum 

conductance value of the memristor device used.  

The generated conductance values represent the weights of the MDNN equivalent 

model. The model is then tuned to account for the changed weight values during linear 

scaling by using linear regression on the generated output and the desired output for a 

randomly produced input. The resulting model is an ideal MDNN. 

Non-ideality aging was modeled in the ideal MDNN by using the proposed 

function. The aging function defined in this work assumes that the Roff values of a 

memristor decrease with time and this causes the number of conductance levels to drop. 

Once the number of levels decreases, the percentage of devices which cannot be 

programmed beyond Roff value increases. Input to the aging function is the value of 

maximum resistance as it ages and the percentage of devices that will age for that 

resistance value. As all memristor device performs differently in a real scenario, we cannot 

assume that all the devices will age at the same time and in the same manner. So, the user 

can define the rate of decrease of maximum resistance as the device ages and the 
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percentage of devices that will age. Fig.3.3. shows the algorithm for the proposed aging 

function. The conductance matrix of the ideal MDNN was changed to incorporate the 

updated resistance values due to aging. As not all devices age in a similar manner, the 

devices that will age were selected randomly from the crossbar. The resultant is an MDNN 

model with aging. 

 

 

 

 

 

 

 

Figure 3.3: Algorithm for aging function 

 

3.2.2. Experimental Analysis 

MemTorch[26] was used as a simulator for this work. MemTorch is an open-

source simulation framework for memristors and is based on a well-known PyTorch 

library. The integration of MemTorch with PyTorch helps in the simulation of complex 

ML and DL models. MemTorch is programmed in C++ and python, and it inherently 

supports the use of GPU using CUDA which enhances the computation speed of deep 

neural networks.  

func aging(R
age
, device_aged, 

conductance_matrix): 

 g_min = 1/R
age
 

 length = len(conductance_matrix) 

 num_select = length * device_aged 

 idx = random (1, length, num_select) 

 for i in idx: 

  conductance_matrix[i] = g_min 

 return conductance_matrix 
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First, a Deep neural network (DNN) with two conv2d layers and two Linear layers 

is defined using PyTorch. The model was trained on the MNIST dataset [44]. A training 

accuracy of 99.25% and a testing accuracy of 99% was achieved for the DNN model.  

Then the memristor model to be considered for the experiment was defined. This model 

is used as a base for generating the crossbar arrays. Currently, MemTorch supports 4 

different models for Memristor. These models are based on VTEAM [46], Stanford PKU 

RRAM model [54], linear ion drift model [20], and data-driven Verilog-A RRAM model 

[55].  VTEAM or Voltage Threshold Adaptive Memristor model is used in this work as it 

has a threshold voltage of 0.2V and a value less than that will not make any changes in the 

conductance values of the device.  The parameters used for the VTEAM model are defined 

in table 3.1. 

Model VTEAM 

Device Length 3nm 

Vthreshold 0.2 V 

Mapping Routine Linear 

Column Double 

ADC Resolution 8 

 

Table 3.1 : Memristor model parameters 

 

A test accuracy of 98.46% was obtained when the test dataset was executed on the 

ideal MDNN model. MemTorch is also capable of modeling non-ideal characteristics 

discussed in section 3.1. Though Device variability, nonlinear device characteristics, 

device failure, and the number of conductance states have been modeled by the 
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MemTorch, the aging is not considered while modeling. This work takes advantage of the 

current MemTorch framework and extends it by modeling the aging of memristors. A 

complete flow chart of MemTorch including the proposed aging function is described in 

fig.3.3. 

 

Figure 3.4: Flowchart describing MemTorch along with proposed Aging function 

 

The MDNN model with the incorporated aging function was tested on the test 

dataset for different values of Raged and different percentages of aging. Two cases were 

considered. 

Case 1: Roff was aged exponentially and for every value of Raged, the aging percentage was 

increased linearly. It was observed that as more and more device ages the accuracy 

decreases significantly as shown in Fig.3.5. It was also observed that the decrease in 
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accuracy as aging increases is steeper when the R-value is lower. For example, the 

accuracy with R value set at 1.95E5 ohms decreased to around 50% when only 20% of 

devices were aged whereas the accuracy remained close to 98% when R was 5E7 ohms. 

The value of Ron or minimum resistance was kept the same for all the cases. Thus, we can 

conclude that when the difference between maximum and minimum resistance is less, the 

effect of aging is more profound. This can be explained as the number of conductance 

states of a memristor device is bounded by Roff and Rmin. If the difference between Roff 

and Rmin is small, we will have a smaller number of conductance states. And as aging 

affects the Roff value, an aged device will have even fewer conductance states and thus 

accuracy is affected adversely.  

 

 
Figure 3.5:Test accuracy vs percentage of device stuck at R_off for different R_off 
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Case 2: Roff was aged linearly and as the value of R decreases, the aging percentage was 

increased. This represents a more realistic simulation as when a device ages, the value of 

R decreases and with time more and more devices will age. As R ages, the aging 

percentage was selected randomly between 8-12%. It was kept lower to observe a gradual 

degradation in performance with aging. The crossbar array was then updated to reflect this 

aged behavior and was tested on test dataset. This was then repeated till the percentage of 

aging reaches 100%. Fig.3.6. shows the graph obtained for this experiment. The graph 

shows that as device ages, the accuracy decreases. This is because, aging changes the value 

of Roff and thus decrease the number of conductance states. This affects the weights stored 

in the crossbar as conductance as they cannot reach the desired value. This generated error 

which degrades the performance of MDNN. 

 

Figure 3.6: Test accuracy VS aging 
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The above results prove that accuracy of a deep neural network is significantly 

hampered as the memristor ages. Although various works have been done to counter 

aging, such an extensive study on the effect of aging on accuracy is limited. Now that we 

have established that aging of memristor crossbar plays a significant role in the 

development of memristor based neuromorphic computing for deep learning models, we 

will see some approaches to counter aging. 

3.2.3. Existing approaches to counter aging 

The effect of aging has been studied extensively as it is a major factor affecting 

the reliability of memristors. As aging decreases the number of conductance states of the 

memristor device, [57] uses binary weighted memristive devices which have only two 

states 0 and 1. Some also use an extra row of memristors which can be used to substitute 

the row that is aged [58]. The addition of these redundant rows increases the lifetime of 

the memristor crossbar but incurs extra hardware costs. Aging occurs because of frequent 

rewriting of conductance values by applying high voltage. High voltage results in high 

current across the filament and thus changes the internal structure of the device. If the 

current through the filament is decreased, then aging also decreases. This technique has 

been adopted by various researchers to reduce the effect of aging. [56] uses sinusoidal 

pulses as programming voltage instead of DC voltage as the average is reduced. We will 

also use this technique but from software perspective. In the next section we will discuss 

about the proposed method to counter aging. 
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4. AGING AWARE MEMRISTOR CROSSBAR 

 

In this section we will discuss how to counter aging to develop an aging aware 

memristor crossbar array for reliable deep learning application. As discussed in previous 

section, aging occurs due to changes made in the memristor filament because of current 

flowing through it. High current increases the temperature across the device and over time 

this degrades performance or memristor cell. So, if the current across the filament 

decrease, then process of aging can be slowed down.  

Various work has been done to reduce the current flow and thus reduce aging. [52] 

proposed one such method called skewed weight training. Skewed weight training is done 

by concentrating the weight values to a smaller value during training. Training is done 

using software, and then weights are linearly mapped into the conductance of memristor 

crossbar. So, if we reduce the value of weight, it will result in lower conductance values 

and high resistance values. High resistance will mean that less current will flow through 

the memristor cell and thus slows down the advance of aging. In our proposed work, we 

will incorporate skewed weight training to generate a DNN model which will be converted 

into a MDNN using the simulator memristor. Then effect of aging on a skewed weight 

trained memristive model will be studies using our propose aging function. 

4.1. Skewed weight trained Deep Neural Network 

Skewed weight training means concentrating the weights to a smaller region while 

training the model. Fig.4.1. shows the weight distribution during weight initialization. 

Skewed weight training will reduce the variance of the weight distribution graph.  



 

45 

 

 

Figure 4.1: Weight distribution during initialization 

 

Before understanding how skewed weight training is done, it is important to 

understand how neural network update weight values during training.  

4.1.1. Neural Network training 

Training a fully connected neural network consist of forward and backward 

propagation. In forward propagation, the provided input is multiplied with weight values 

and intermediate variables are calculated in forward direction that is from input layer to 

output layer and finally output is generated. First step is to multiply weight vector(W1) 

with given input vector (X).  

𝑧 =  𝑊1𝑋                                                                  (13) 

Second step is to pass the generated output through an activation function ∅. 

ℎ =  ∅(𝑍)                                                                         (14) 

The generated output serves as input for the next layer where both steps are repeated till 

output layer is reached.  
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In backward propagation, weight values are reassigned moving backward from 

output layer to input layer. The generated output(zi) after forward propagation is compared 

with the expected output(yi) to calculate loss using loss function.  

L = cost (zi, yi)              (15) 

Then gradient of weight function with respect to weight function is calculated for each 

weight value in a layer 𝑊𝑖𝑗
𝑘 where k is the layer.  

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =  𝛿𝐿/𝛿𝑊𝑖𝑗
𝑘                (16) 

The gradient is subtracted from the weight value at that layer to get the new weight value. 

This gradient is backpropagated till the input layer and all weights are updated. 

4.1.2.  Skewed weight training 

An extra term is added to the loss calculated in eq.15 which increases the value of 

gradient and thus the weight value becomes small. The updated loss can be represented 

as: 

L = cost (zi, yi) + skew(𝑊𝑖𝑗
𝑘 ,  𝑊𝑘′)             (17)

  

where 𝑊𝑖𝑗
𝑘 is weight value for kth layer and 𝑊𝑘′ is the reference weight for kth  layer around 

which the weights are skewed.  

The reference weight is selected in the range of weights of the model and the 

weight distributions are skewed around this reference weight. Original weight values that 

lie in the left and right side of the reference weight are penalized. This can be done as 

represented in equation: 
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𝑠𝑘𝑒𝑤(𝑊𝑖𝑗
𝑘 ,  𝑊𝑘′

) =  {
∑ 𝜆1 .   ||𝑊𝑘 − 𝑊𝑘′||

2𝑛𝑜. 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟𝑠
𝑘= 1   when 𝑊𝑘 < 𝑊𝑘′

∑ 𝜆2 .   ||𝑊𝑘 − 𝑊𝑘′||
2𝑛𝑜. 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟𝑠

𝑘= 1   when 𝑊𝑘 > 𝑊𝑘′ 
             (18) 

Where, 𝜆1  ,𝜆2   are the penalty factors for the weights on the left and right side of reference 

weight respectively.  

This updated loss function is then used to calculate the weight values to make the 

weight distribution graph skewed around the reference weight.  

4.1.3. Experimental setup and Results 

The PyTorch model defined in section 3.2.2. is used for this experiment. In the 

model, we used ADAM optimizer[60] to calculate the gradient. To incorporate skewed 

weight learning during training, we designed a revised version of the Adam algorithm, 

where the above loss function was implemented. The reference weight was selected to be 

a factor of the standard deviation of the original initialized weight for each layer i.e.  

𝑊𝑘′
=  𝜎I * delta_scale.                                   (19) 

where delta_scale represents the factor with which standard deviation was multiplied to 

obtain the reference weight.  

Different values of 𝜆1 , 𝜆1  and delta_scale was considered to find the best-suited 

value with no performance degradation with training a neural network with skewed 

weight. Table 4.1. represents different values considered for the experiment. 

Fig.4.2(a) represents the weight distribution graph of the original PyTorch model without 

skewed weight training and fig.4.2(b) shows the weight distribution graph after skewed 

weight training. 
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𝝀𝟏  0,1,0.5,0.1,0.08,0.05,0.01,0.005,0.001 

𝝀𝟐  0,1,0.5,0.1,0.08,0.05,0.01,0.005,0.001 

delta_scale  0.75,1,1.5,2,-0.75,-1,-1.5,-2 

Table 4.1: Different values of 𝝀𝟏 , 𝝀𝟏  and delta_scale considered 

 

 

Figure 4.2: (a) Weight distribution graph before skewed weight training (b) Weight 

distribution graph after skewed weight training 



 

49 

 

In Fig.4.2(a) the variance of weight distribution is higher than in fig.4.2(b) where 

skewed weight training is implemented. Thus, it can be deduced that the skewed weight 

training results in weights being skewed around the reference weight. 

Different values of 𝜆1 , 𝜆2 and delta_scale, where delta_scale represents the factor 

with which standard deviation was multiplied to obtain the reference weight, were 

considered to find the best range for which the weight values can be skewed without 

compromising on the accuracy.  

 

       Figure 4.3: Scatter Plot for different values of 𝝀𝟏 , 𝝀𝟐 and delta_scale 

 

It can be observed from fig.4.3 that lower value of 𝜆1  and 𝜆2 gives better accuracy. 

When 𝜆1  and 𝜆2 are 0.001, the accuracy is above 99% which is comparable with the 

accuracy of an unskewed model. Whereas 𝜆1  and 𝜆2  was increased to 0.01, the accuracy 

dropped below 98%.  This is because, higher 𝜆1  and 𝜆2  means more penalization or 

increased loss value. This will increase the gradient and thus weight value decreases. As 
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weight value decreases, the learning during forward propagation will be affected which 

will result in less accuracy. Also, accuracy is better when the delta-scale is in between -1 

to 0.75 i.e., in the middle region. This is because the weight distribution follows a nearly 

normal distribution curve. And in a normal distribution majority of value (around 68%) is 

located in between (-1 * 𝜎 ) and (1 * 𝜎). As delta_scale represents the factor with which 

standard deviation was multiplied to obtain the reference weight, the performance of the 

model will be better when the reference weight is selected to be in the 68% range.  

The above graph showed how different parameters affect the accuracy of a model. 

Now, we will consider how they affect the reduction in minimum and maximum weight 

values or variance of the weight distribution graph.  

 

Figure 4.4: Accuracy Vs Min_weight reduction for different values of 𝝀𝟏  ,𝝀𝟐 and 

delta_scale 
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Figure 4.5: Accuracy Vs Max_weight reduction for different values of 𝝀𝟏  ,𝝀𝟐 and 

delta_scale 

 

Fig.4.4 and fig.4.5 shows the plot of accuracy vs reduction in minimum and 

maximum weight for different values of 𝜆1 , 𝜆2 and delta_scale in a skewed weight trained 

model. It can be observed that higher value of 𝜆1 , and 𝜆2 results in the maximum 

percentage of reduction in weight values but at the cost of accuracy. When 𝜆1 , 𝜆2  values 

were set at 0.1 and 0.08, around 85% reduction in minimum weight value was observed 

but accuracy was only 91.64%. This can be explained as higher 𝜆1 and 𝜆2 means weights 

will be penalized with a higher value and thus, more weights will be skewed around 

reference weight. 

The model was trained for different values of 𝜆1 , 𝜆2 and delta_scale to find the 

best tradeoff between accuracy and skewed percentage. Table 4.2. shows a few results. 
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𝜆1 𝜆2  delta_scale  Max_weight 

reduction %ge 

Min_weight 

reduction %ge 

Accuracy 

0.001 0.001 -1 32.8% 46.8% 99.18% 

0.01 0.005 -1 52% 61.4% 98.22% 

0.1 0.08 0.75 65% 85% 91.64% 

 

Table 4.2: Accuracy and weight reduction percentage for different values of 𝝀𝟏 , 

𝝀𝟐 and delta_scale 

 

The best range of 𝜆1 , 𝜆2  and delta_scale that reduces the minimum and maximum 

weight value without significant compromise on accuracy was found to be 𝜆1 =

0.01, 𝜆2 = 0.005 𝑡𝑜 0.001 and delta_scale = -1. Also, for 𝜆1 > 0.1 and 𝜆2  >0.08, the 

model performs very poorly. 

4.2. Skewed weight trained memristive model 

The idea behind skewed weight training was to reduce conductance value across 

memristor cells to reduce the current and hence slow down aging. In the previous section, 

we discussed how skewed weight training reduces the weight variance by a significant 

amount without much loss in accuracy. Now, in this section, we will discuss how skewed 

weight training also helps to counter aging.  

The skewed weight trained neural network model was converted into a memristive 

model using steps described in section 3.2.2. This results in a Skewed weight-trained 
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MDNN. The proposed aging function was applied to the MDNN and a test dataset was 

used to see the effect of aging on a skewed weight-trained memristive model. 

 

Figure 4.6: Effect of aging on Skewed weight trained model and traditional weight 

trained model 

 

The effect of aging on a skewed weight trained MDNN and a traditional weight 

trained MDNN was compared as shown in Fig.4.6. When all the memristor were at pristine 

state, the accuracy achieved by the skewed weight trained model was comparable to the 

traditional model accuracy. But as the devices age, the decrease in accuracy of the 

unskewed model is steeper than the skewed model. This shows that when a model is 

skewed, the effect of aging is slowed down. 

 



   

 

54 

 

5. CONCLUSION AND FUTURE WORK 

 

5.1. Conclusion 

Memristor is a fundamental non-linear device that has a huge potential in Deep 

Learning applications. The property of the memristor to store the data and perform 

compute operations can be exploited in performing the dot operations in deep learning 

algorithms. The weights in a DL model can be stored as the conductance of the device and 

current can be converted to dot sum product of the matrix. This provides the benefits of 

reducing the latency of fetching the data from memory cache or DRAM and executing it 

on the processor. Like any electrical device memristor also has many non-linear 

characteristics and is prone to degrade with aging.  

In this work, we designed a completely analog memristor-based photonic CNN 

architecture called BPHOTON-CNN. It integrates an efficient memristor with fast 

photonic components. Compared to state-of-the-art architecture, the proposed BPhoton-

CNN shows improvement in energy and computational efficiency.  

Then we studied how different non-idealities affect the performance of a 

memristor device. Aging, which is a non-reversible and inevitable process, challenges the 

reliability of a memristor crossbar. We modeled an aging function to consider the effect 

of aging in a memristive device. This function was incorporated as an extension to an 

existing simulator MemTorch[26]. Performance of the memristive neural network after 

introducing the non-ideality aging was studied and a decrease in accuracy was observed 

as the memristor device ages.  
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Then we demonstrated skewed weight training which is a software approach to 

counter aging. A skewed weight trained memristive network was introduced with the 

proposed aging function and its performance was studied. We showed that skewed weight 

trained MDNN ages slower than traditional weight trained. 

5.2. Future work 

In this work, a trained deep neural network was converted into a memristive neural 

network. The effect of non-idealities was studied on the memristive model for inference. 

This can be extended to study the effect of aging on a memristor model during training. 

Also, the effect of skewed weight training on a memristor model can be extended for 

training. 

Along with aging, other non-idealities also affect the reliability of a memristor 

device. This calls for a function that considers all the non-idealities and designs a 

reliability-aware model to give the best performance in the long run.  
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