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ABSTRACT

Intrusion detection systems (IDS) play a critical role in cybersecurity and are used to iden-

tify malicious behaviour in network traffic. The weakness of modern approaches is that they are

reactive responses reliant on having an understanding of the types of attacks the network might

encounter, or policies based on assumed user behavior. This method requires someone to analyze

past attacks to develop a preventive measure and to build policies around expected user behavior.

Since it relies on human intervention, it is often slow to respond and can poorly anticipate the

needs of the system. It is also often inadequate because it is susceptible to any new attack that does

not fit the predefined expectations for malicious activity.

Traditional machine learning (ML) models, such as Decision Tree, Random Forest or Clus-

tering algorithms, have been used to analyze network traffic and detect attacks that are already

within a system, but can range in detection time from minutes to months, and are not a preventive

measure. Deep learning (DL) models provide an alternative solution that can classify data based

on high-level features extracted in near real time. This means that a deep learning IDS can operate

without the domain expertise and human intervention required with traditional machine learning

models. DL models also tend to outperform traditional ML in both efficiency and accuracy when

dealing with large datasets.

First we reviewed several anomaly-based intrusion detection datasets, such as the widely used

KDD-99 and CIC-DDoS2019, and the relevant research that had used ML and DL methods for

intrusion detection. Next, multiple model configurations using Convolutional Neural Network

(CNN) and Recurrent Neural Network (RNN) layers were trained on the CIC-DDoS2019 dataset

in order to perform multiclass classification. The results were then used to guide future work in

developing a novel DL model.

For the primary contribution of the research we then designed BLoCNet, a novel IDS model

based on the combination of a CNN and Bidirectional Long Short-Term Memory (BLSTM) deep

learning methods that performs multiclass classification. Using an extensive preprocessing, train-
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ing, and testing protocol, we show that BLoCNet is over 98% accurate when classifying the in-

dividual attacks in the CIC-IDS2017 dataset, 100% accurate with the IoT-23 dataset, and outper-

forms most of the related work with higher precision and recall of individual classes. We also

demonstrate that BLoCNet is dataset independent by evaluating it with two topical datasets while

maintaining a the high level of accuracy.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Research Motivation

The number of cyber attacks has grown considerably in recent years. From data breaches in

multinational companies [4][5], to robot networks (known as botnets) based on the ever growing

number of Internet of Things (IoT) devices [6], to ransomware holding small towns hostage [7][8],

the frequency and type of attacks continues to grow. These attacks can cripple local governments,

critical infrastructure, and hospitals by denying access to their systems, encrypting their data, and

demanding a ransom in order to regain control. In April 2021, hackers gained access to the net-

work of the Colonial Pipeline, a critical piece of US infrastructure, and shutdown the system with

ransomware [9]. This led to two weeks of downtime, a mass panic in the Southeast United States,

and a payout of $90 million. In September 2020, IBM X-Force reported a 500% year over year

increase in the number of IoT based attacks [10].

An increasingly popular solution for preventing attacks is to use an Intrusion Detection Sys-

tems (IDS). The current proposals for the most successful IDSs use Deep Learning (DL) neural

networks as the defining feature of their models [11]. Deep learning networks such as Convolu-

tional Neural Network (CNNs) [12][13] and Long Short-Term Memory (LSTMs) [14][15] have

been tested against datasets containing malicious network traffic and have been shown to be up to

98% accurate in classifying the attacks. However, the high overall accuracy is not always reflected

in identifying the individual classes of attacks. Also, the relevance of many of the datasets used

for testing leaves room for improvement. The research objective of this study is to determine if a

novel deep learning model can improve the overall performance, both in overall accuracy and in

identifying individual cyber attacks in the data.

1.2 Literature Review

This work builds upon previous research in using machine learning (ML) and deep learning

models as an IDS. It also explores new configurations of model layers to increase the performance
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metrics and the models’ ability to identify unique attacks. As the review of other research papers

will show, deep learning models have been used with varying levels of success for cyber attack

detection. However, most of the work is restricted by the use of older or limited datasets, im-

plements only binary classification of attacks, or has poor performance when identifying unique

attacks when performing multi-class classification.

1.2.1 Background on Deep Learning

This section will cover a brief explanation of the underlying layers and functions used in the

proposed DL model, BLoCNet, as well as an overview of the machine learning libraries used

during development. Deep learning can be thought of as the latest progression of using neural net-

works for performing machine learning tasks [11][16], as illustrated in Figure 1.1. Deep learning

typically refers to a model that uses three or more layers of neural networks to perform a given

task. By stacking layers the model is able to extract more information from the data and results in

less human intervention compared to traditional ML algorithms.

Figure 1.1: Progression of AI research as nesting dolls. [1]

2



1.2.1.1 ANN

An artificial neural network (ANN) is constructed from interconnected nodes, or neurons. Each

node can have many inputs, where each input is assigned a different weight, but outputs only one

value. They were designed as a means to replicate the neurons in the human brain, and are often

visually represented in a similar manner. However, in practise they do not truly function the same

way as a biological neuron. Any layer in the network that is between the input and output is

considered a hidden layer and follows the same "many inputs, single output" for each neuron, as

seen in Figure 1.2.

Figure 1.2: Artificial Neural Network with one hidden layer. [2]

3



1.2.1.2 CNN

The convolutional neural network (CNN) is one of the most widely used artificial neural net-

work layers. CNNs are highly effective at learning local patterns within data, and the patterns

themselves are translation invariant. This means that once the model recognizes a pattern, it can

then be identified anywhere else in the data as being the same feature. Figure 1.3 illustrates the

first layer identifying unique features, with a second layer adding context to the combinations of

various features in order to recognize the image as a cat.

Figure 1.3: CNN feature extraction for image classification. [3]

CNNs are the current gold standard for image recognition because of their ability to recognize

4



learned features anywhere in an image [17][18][19]. It operates by sliding a fixed-size window, or

filter, across the data frame. The frame can range from a single to many dimensional tensors. CNN

outputs another data frame, which is a tensor with a length equal to the number of features minus

window size and added depth dimension consisting of the weighted features from each step of the

window. A convolution is the act of applying two functions to create a third function. In the case of

the CNN this is represented by applying the filter to the original input in order to create the output

feature map. An example can of a 3 dimensional image with a 3x3 filter is shown in Figure 1.4.

Figure 1.4: Illustration of the convolution process. [3]
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1.2.1.3 RNN

A Recurrent Neural Network (RNN) uses sequential or time series data to predict the next

values in the data. This is achieved by storing some of the current data in memory located in each

of the neurons. The prior input data is then used to add contextual information in the next round,

shown in Figure 1.5. RNNs are typically used in natural language processing (NLP), language

translation, and speech recognition due to the sequential and context based nature of the data.

Figure 1.5: Output from the RNN is used as context of the next input. [3]

1.2.1.4 BLSTM

A Long Short-Term Memory layer is an advanced RNN layer where the previous data is carried

for a longer period of time. This provides increased contextual information and results in improved

prediction. A Bidirectional LSTM (BLSTM) can be thought of as two opposing LSTM layers,

providing context the previous and next nodes. This was a breakthrough for speech prediction [20].

In practise they allow for more accurate prediction based on relation to the previous and upcoming

words, providing grammar contextualization.
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1.2.1.5 Dense

A Dense layer is a neural network where each neuron is fully connected to each of the neurons

of the previous layer. This provides each neuron with all of the available information and calculates

a statistical likelihood of matching each neuron’s expected output. They are often used as the final,

classifying layer of a model where each neuron is associated with a label or class in the dataset.

1.2.1.6 MaxPooling

Max Pooling is an operation used to quickly down sample a feature map, similar to the filter

in a CNN but without as much processing time and less finesse in feature selection. Instead of

applying weighted values across a filter it simply takes the maximum value within each window.

It is often used in conjunction with a CNN layer to further highlight the most important features in

the feature map.

1.2.1.7 BatchNormalization

Batch normalization is the process of normalizing the data between layers in the network to

maintain the learned weights of in each of the layers. This is common for deep networks where

the data has many opportunities for different representation at the deeper layers. By normalizing

the values throughout the learning process it helps stabilize the neuron weights and can reduce the

overall training time.

1.2.1.8 Dropout

A Dropout layer is a means of forcing the previous layer to forget, or drop, a percentage of

random weights in the neurons. This helps prevent overfitting to the training data by forcing the

previous layer to highlight more important features.

1.2.1.9 Epoch

An epoch refers to a period of time, and in the case of machine learning is the term that denotes

the number of training rounds for a model.
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1.2.1.10 TensorFlow

TensorFlow is an open-source software library for machine learning and artificial intelligence,

with particular focus on deep neural networks. It is developed by Google and was first released

in September 2015. It has sense become one of the two dominate libraries used in production and

research deep learning applications. It is available for C++ and Python, with this research strictly

using the Python distribution.

1.2.1.11 Keras

Keras is an open-source software library that provides Python a high level application pro-

gramming interface for TensorFlow. It was developed by Francois Chollet, Senior Staff Software

Engineer at Google, and released in March 2015. Keras initially supported many machine learn-

ing backends, but is now fully integrated with TensorFlow. This was the primary tool used for

developing the models in this research.

1.2.2 Related Work

Table 1.1 shows an overview of the related work that was reviewed in preparation for this

project. For each work, it provides a brief description of the contributions, the algorithms or

models that evaluated, the datasets used for training and evaluation, and some of the results in

terms of accuracy or precision. A few of these papers that are more relevant to this work, due to

the models and/or datasets that were used, are discussed in detail.

Intrusion detection systems (IDS) are the first line of defense in detecting and preventing mali-

cious behaviour. The primary weakness is that they are reactive responses reliant on prior knowl-

edge of attacks. Much of the modern research in developing an IDS has used classical machine

learning techniques to improve detection rates. Ionut Indre [22], in their work from 2016, com-

bined several ML techniques in their model including support-vector machines (SVM), Decision

Trees, and K-Means algorithms [34]. The model had successful results for the time, with precision

rates of 98.4% using a Passive-Aggressive Classifier for binary and 89.5% with Decision Tree Re-

gression for multi-class classification against the KDD-99 dataset. Research since then has steered
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Reference Year Algorithm Dataset Description Best Performance

[21] 2020 RNN CIC-DDoS2019
Proposed a model for binary

classification of DDoS attacks ACC = 99%

[22] 2016 ML KDD-99
Proposes a model consisting of many ML

techniques for binary and multiclass classification P = 98.4%

[23] 2020 DL KDD-99, CIFAR-10
Review of DL techniques used in
cybersecurity from 2014 to 2020 N/A

[24] 2019 ML CIC-DDoS2019
Proposes a new taxonomy and dataset

consisting of various DDoS attacks N/A

[25] 2019 DL
CIC-IDS2018, KDD-99,

CIFAR-10 Review of popular DL techniques at the time N/A

[26] 2019 DL
NSL-KDD, KDD-99,

ISCX, CTU-13
Review of 75 different papers on

cybersecurity threats and DL methods N/A

[12] 2021 CNN CIC-IDS2017
Proposes a model for multiclass

classification using the CIC-IDS2017 dataset ACC = 99.8%

[27] 2021 VNN KDD-99, CTU-13
Proposes a model combining several DL

algorithms to perform binary classification ACC = 99.9%

[28] 2021 ANN+LSTM MAWILab
Proposes a model for

multiclass classification ACC = 74.9%

[13] 2019 PCCN CIC-IDS2017
Proposes a model to combat unbalanced

unbalanced datasets for multiclass classification DR = 99.9%

[29] 2018 CNN NSL-KDD
Proposes and compares CNN model against
RNN for binary and multiclass classification ACC = 99.5%

[30] 2019 CNN KDD-99
Proposes and compares a model for
binary and multiclass classification ACC = 99.2%

[14] 2021 ML+DL NSL-KDD, CIC-IDS2017
Proposes a hybrid model for

binary and multiclass classification ACC = 85%

[15] 2020 CNN+LSTM NSL-KDD
Proposes model with specified DL

techniques to fully use network traffic data ACC = 84.3%

[31] 2020 ML+DL NSL-KDD, CIC-IDS2018
Proposes a model to combat class

imbalance for multiclass classification ACC = 97%

[32] 2018 ML+DL
NSL-KDD, KDD-99,

DARPA, ADFA
Review of ML and DL techniques

in network IDS N/A

[33] 2021 CNN
Bot-IoT, MQTT-IoT-IDS2020,

IoT-23
Proposes a model for binary and

multiclass classification for IoT attacks ACC = 90%

Table 1.1: Literature Review Overview
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towards deep learning models that have improved performance with both older, traditional datasets

and newer, more topical datasets.

Early research experimenting with DL for an IDS typically involved the use of one DL algo-

rithm at a time [32]. Two of the most common are Convolutional Neural Networks (CNN) and

Recurrent Neural Networks (RNN). It was thought that RNN models would be well suited for a

network IDS because of the contextualization of time and sequence in the data [23]. M. Elsayed et

al [21] showed successful results when using a RNN model combined with an auto-encoder. The

model was tested with the CIC-DDoS2019 dataset and was able to achieve 99% accuracy when

performing binary classification, improving on the results traditional ML methods.

S. Ho et al [12] proposed a CNN model built from two sets of two dimensional CNN layers,

each followed by a fully connected pooling layer. The model was trained on the CIC-IDS2017

dataset and used the CICFlowMeter extracted features. The use of Conv2D layers required the

addition of four padding features to the dataset and then reshaping to a 9x9 tensor. The model was

able to achieve 99.8% accuracy in multiclass classification, but suffered from the same issue as

others using the CIC-IDS2017 in that a few classes are extremely underrepresented and results in

poor recall.

K. Wu et al [29] proposed a similar to model that of S. Ho et al, two tiers CNN followed by

pooling layers, in this case the pooling layers were not fully connected though. This was trained

using the NSL-KDD dataset, a slightly improved and preprocessed version of the KDD-99 dataset,

and produced results comparable to other RNN models and better than traditional ML techniques.

They claim CNN models are better suited to larger datasets since they require fewer parameters

than RNN, saving time and computational power. Although these DL algorithms prove to have

higher overall accuracy, dataset imbalance prevents them from accurately detecting underrepre-

sented attacks when performing multiclass classification [13].

I. Ullah et al [33] tested three variations of CNN models designed as an IDS for Internet

of Things (IoT) networks, with the differences being the use of Conv1D, Conv2D, and Conv3D

layers. In their data preprocessing they implemented recursive feature elimination (RFE) to reduce
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the number of features to 64. This was used in an attempt to extract the most relevant features prior

to training and to have a feature set size appropriate for consistent training across the three models.

An additional benefit is improved training time due to feature reduction. The selected features

were then applied to all of the datasets prior to testing. All three CNN models proposed performed

impressively with this feature selection on multiple different datasets, including the IoT-23. Each

model was tested performing binary and multiclass classification, with the Conv2D model have a

slight edge over the others. However, in their data processing the chose to select additional samples

of underrepresented classes from other datasets but still presented the results as the performance

on a single dataset, making it difficult to have a direct comparison.

Building upon the success demonstrated with CNN and RNN models, recent work has started

to explore more complex CNN and RNN architectures. The work done by Y. Zhang et al [13] pro-

poses a unique solution to remedy the imbalance in many datasets by implementing a parallel cross

convolutional neural network (PCCN). In this configuration one branch uses CNN and the other

uses a fully convolutional network (FCN). The fully convolutional layers provide up-sampling that

improves training on the underrepresented classes, but at the cost of processing time. The model

produced high and relatively even detection rates across all the classes in the CIC-IDS2017 dataset

with an overall accuracy of 99.9%.

The BAT model proposed by T. Su et al [15] uses a combination of CNN and RNN layers,

specifically bidirectional long short-term memory (BLSTM) layers as the RNN. In theory, the

combination the two neural networks would provide the benefits of both and extract the most

information from the available features. In practice, it did not solve the issue of poor classification

and recall associated with the imbalanced datasets as they noticed underrepresented classes had

much lower detection rates. The model was tested on the NSL-KDD dataset, which represents an

out of date, imbalanced dataset, with multiple classes extremely underrepresented.

The proposed model, BLoCNet, builds upon the concepts used in the BAT model [15] and com-

bines CNN and BLSTM layers. The results show significantly improved performance compared

to the related work in all metrics tested. The model was initially trained with the CIC-IDS2017
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dataset, a more recent and diverse dataset when compared to the KDD-99 and NSL-KDD datasets

used in the related works. The model was then validated by training it with the IoT-23 dataset to

show that it is dataset invariant. To further improve the performance, multiple sampling and feature

reduction techniques were implemented along the way.
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2. PRELIMINARY RESEARCH

2.1 Advanced Networking and Security Project

As preparation for my thesis research I was able to begin learning about the deep learning meth-

ods used for intrusion detection and publicly available datasets while enrolled in CSCE 665: Ad-

vanced Networking and Security during the Spring 2021 semester. The course assigned a semester

long project with the goal of implementing a unique approach to any area of cybersecurity. I chose

to begin testing simple deep learning models on the CIC-DDoS2019 dataset in order to guide the

direction of my future research.

2.2 Dataset Evaluation

While conducting the literature review for the project, I found that one of the most commonly

used datasets in early deep learning research, and even somewhat recent works, was the Knowledge

Discovery and Data Cup 1999 dataset (KDD-99) [35]. It contains two weeks of benign network

traffic and five weeks of network traffic containing four attacks. The attack types consist of De-

nial of Service (DoS), Probe, Root to Local (R2L), and User to Root (U2R). The dataset is also

preprocessed and contains the feature extraction from the Wireshark packet capture (PCAP) files.

While this was the standard for intrusion detection and early machine learning models, it has many

downsides. As shown in Table 2.1, it is highly imbalanced with nearly 80% of the data consisting

of attacks, compared to typical network traffic that would be closer to 99% benign traffic. The R2L

and U2R attacks are extremely under-represented and statistically insignificant when compared

to the overall size of the dataset. The dataset is also over 20 years old and not representative of

modern network traffic feature extraction tools or modern attacks. Thus, it is not a quality dataset

for a modern intrusion detection system.

The CIC-DDoS2019 dataset was ultimately selected for this project based the comprehensive

variety and up to date attacks that it contains. It is provided by the Canadian Institute for Cyberse-

curity (CIC) [36]. The CIC is based at the University of New Brunswick and has become one of
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Label Samples (%)
Normal 1033374 19.8%

DoS 4114845 78.9%
Probe 45268 0.86%
R2L 15676 0.3%
U2R 297 0.006%
Total 5209460 100%

Table 2.1: KDD99 Data Distribution

leading sources for collecting and creating both real world and simulated datasets that are intended

for research and are publicly available. The data was recorded over two days and contains the

simulated benign network traffic of 25 users along with the Distribute Denial of Service (DDoS)

attacks. In total 12 distinct types of DDoS attacks were launched on the network:

1. UDP: A User Datagram Protocol (UDP) flood is a type of denial-of-service attack in which

a large number of UDP packets are sent to a targeted server with to overwhelm that devices

ability to process and respond. The firewall protecting the targeted server can also become

exhausted as a result of UDP flooding, resulting in denial-of-service to legitimate traffic. A

UDP flood works primarily by exploiting the steps that a server takes when it responds to a

UDP packet sent to one of its ports.

2. SNMP: Simple Network Management Protocol (SNMP) reflection involves creating a flood

of responses to a single spoofed IP address. During the attack, the perpetrator sends out a

large number of SNMP queries with a fake IP address to multiple connected devices that

reply to the fake IP address. The attack volume grows as more and more devices continue

to reply, and eventually the target network is brought down under the collective volume of

these SNMP responses.

3. NetBIOS: The primary purpose of NetBIOS is to allow applications on separate computers

to communicate and establish sessions to access shared resources and to find each other over

a local area network. The NetBIOS reflection DDoS attack generates 2.56 to 3.85 times
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more response traffic sent to the target than the initial queries sent by the attacker.

4. LDAP: The Lightweight Directory Access Protocol (LDAP) is a widely used protocol for

user authentication and directory services on corporate/commercial networks. By sending

requests using a spoofed source IP address, that of the victim, to various servers on the

internet the attacker is able to direct the server responses to the spoofed address instead

of the real sender. The use of the LDAP protocol is detrimental to the victim due to the

amplification of traffic: small queries made by the attacker can cause big responses from

Internet servers, which in turn flood the victim with lots of packets.

5. TFTP: A Trivial File Transfer Protocol (TFTP) attack borrows from the code used in other

UDP-based reflection attacks. It relies on being on able to overload the target IP address

based on TFTP requests and can exceed data rates of 1 Gbps.

6. NTP: A Network Time Protocol (NTP) amplification attack is a reflection-based, volumetric

distributed DDoS attack in which an attacker exploits an NTP server functionality in order to

overwhelm a server with an increased amount of UDP traffic, leaving the target infrastructure

inaccessible to regular queries to get the network’s time information.

7. SYN: A synchronize (SYN) flood attack aims to make a server unavailable to legitimate

traffic by consuming all available server resources. By flooding the server with connection

request packets (TCP packet with the the SYN flag set to one), the attacker is able to over-

whelm the available resources on a targeted server causing it to respond to legitimate traffic

sluggishly or not at all.

8. WebDDoS: A specific DDoS attack targeting web servers by attempting to disrupt the normal

traffic of the targeted server. It overwhelms the target or its surrounding infrastructure with

a flood of Internet Hypertext Transfer Protocol (HTTP) traffic.

9. MSSQL: This attack occurs when a Microsoft Structure Query Language (MSSQL) Server

responds to a client query or request, attempting to exploit the Microsoft SQL Server Resolu-
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tion Protocol. The attack can use the protocol to leverage SQL servers by executing scripted

requests using a forged IP address to make it appear that it is coming from the target server.

The number of existing instances present on the affected SQL server determines the power

or amplification factor of the attack.

10. UDP-Lag: This is an attack that disrupts the connection between the client and the server.

This attack is often used in online gaming where the players want to slow down or interrupt

the movement of other players to outmaneuver them.

11. DNS: A Domain Name Server (DNS) flood is an attack that floods a particular domains

DNS servers in an attempt to disrupt DNS resolution for that domain. By disrupting DNS

resolution, a DNS flood attack will compromise a website, API, or web application’s ability

respond to legitimate traffic. DNS flood attacks can be difficult to distinguish from normal

heavy traffic because the large volume of traffic often comes from a multitude of unique

locations, querying for real records on the domain, mimicking legitimate traffic.

12. SSDP: A Simple Service Discovery Protocol (SSDP) attack is a reflection-based distributed

denial-of-service (DDoS) attack that exploits Universal Plug and Play (UPnP) networking

protocols in order to send an amplified amount of traffic to a targeted victim, overwhelming

the targets infrastructure and taking their web resources offline.

2.3 Data Analysis and Preprocessing

The CICFlowMeter [37] is a tool created by the CIC for network traffic flow generation and

analysis. It takes PCAP files for input, determines the flow direction based on the first packet, and

proceeds to calculate more than 80 statistical features. The features include:

‘Flow ID’, ‘Src IP’, ‘Src Port’, ‘Dst IP’, ‘Dst Port’, ‘Protocol’, ‘Timestamp’, ‘Flow Dura-

tion’, ‘Total Fwd Packet’, ‘Total Bwd packets’, ‘Total Length of Fwd Packet’, ‘Total Length of Bwd

Packet’, ‘Fwd Packet Length Max’, ‘Fwd Packet Length Min’, ‘Fwd Packet Length Mean’, ‘Fwd

Packet Length Std’, ‘Bwd Packet Length Max’, ‘Bwd Packet Length Min’, ‘Bwd Packet Length
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Mean’, ‘Bwd Packet Length Std’, ‘Flow in Bytes/s’, ‘Flow in Packets/s’, ‘Flow IAT Mean’, ‘Flow

IAT Std’, ‘Flow IAT Max’, ‘Flow IAT Min’, ‘Fwd IAT Total’, ‘Fwd IAT Mean’, ‘Fwd IAT Std’,

‘Fwd IAT Max’, ‘Fwd IAT Min’, ‘Bwd IAT Total’, ‘Bwd IAT Mean’, ‘Bwd IAT Std’, ‘Bwd IAT

Max’, ‘Bwd IAT Min’, ‘Fwd PSH Flags’, ‘Bwd PSH Flags’, ‘Fwd URG Flags’, ‘Bwd URG Flags’,

‘Fwd Header Length’, ‘Bwd Header Length’, ‘Fwd Packets/s’, ‘Bwd Packets/s’, ‘Packet Length

Min’, ‘Packet Length Max’, ‘Packet Length Mean’, ‘Packet Length Std’, ‘Packet Length Variance’,

‘FIN Flag Count’, ‘SYN Flag Count’, ‘RST Flag Count’, ‘PSH Flag Count’, ‘ACK Flag Count’,

‘URG Flag Count’, ‘CWE Flag Count’, ‘ECE Flag Count’, ‘Down/Up Ratio’, ‘Average Packet

Size’, ‘Avg Fwd Segment Size’, ‘Avg Bwd Segment Size’, ‘Fwd Avg Bytes/Bulk’, ‘Fwd Avg Pack-

ets/Bulk’, ‘Fwd Bulk Rate Avg’, ‘Bwd Bytes/Bulk Avg’, ‘Bwd Packet/Bulk Avg’, ‘Bwd Bulk Rate

Avg’, ‘Subflow Fwd Packets’, ‘Subflow Fwd Bytes’, ‘Subflow Bwd Packets’, ‘Subflow Bwd Bytes’,

‘FWD Init Win Bytes’, ‘Bwd Init Win Bytes’, ‘Fwd Act Data Pkts’, ‘Fwd Seg Size Min’, ‘Active

Mean’, ‘Active Std’, ‘Active Max’, ‘Active Min’, ‘Idle Mean’, ‘Idle Std’, ‘Idle Max’, ‘Idle Min’,

‘Label’

where Fwd and Bwd indicate the forward and backward flow of traffic, IAT denotes values

calculated relative to two packets, and ECE is Explicit Congestion Notification Echo.

Each of the attack types and benign traffic were processed by the CICFlowMeter and saved in

individual comma separated values (CSV) files, grouped by the day of their collection, resulting in

a dataset of 28.9 GBytes. Given the scope of the project and limited computational power at the

time, the decision was made to under-sample the dataset and use just a snapshot for training. The

final distribution is shown in Table 2.2. The benign traffic was kept as the majority class with each

of the attacks accounting for just under 5% of the remaining data, with the exception of WebDDoS

which had very few samples.

Before training a machine learning model, the dataset generally requires some form of prepro-

cessing. This would include accounting for missing or infinite values, removing any unnecessary

features, normalizing numeric values, and encoding non-numeric values.
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Label Samples (%)
Benign 141861 54.2%

NetBIOS 11998 4.58%
SSDP 11996 4.58%
SNMP 11996 4.58%
UDP 11995 4.58%

MSSQL 11994 4.58%
SYN 11992 4.58%

LDAP 11991 4.58%
DNS 11990 4.58%

UDP-Lag 11854 4.53%)
NTP 11848 4.53%

WebDDoS 15 (<0.001%)
Total 261530 100%

Table 2.2: Under-sampled CIC-DDoS2019 Data Distribution

For the DDoS2019 dataset, first any samples that included missing (NaN) or infinite (inf) val-

ues in any of their data fields were removed. The removal of these samples was chosen rather than

replacing the values due to the varied range of the features. For instance, replacing them with a 0

or 1 value would not have been appropriate. Next, any socket information (such as ‘Src IP’, ‘Src

Port’, ‘Dst IP’, ‘Dst Port’, or ‘Protocol’) or unique identifying features were removed to prevent

overfitting of the data that was not representative of an attack. This included the source IP, desti-

nation IP, source port, destination port, timestamp, flow ID, and similar HTTP fields. The "Label"

column was then removed from the dataset, encoded based on an index value associated with each

attack type, and saved as an independent "y" value for training. The dataset was then normalized

using a MinMax scalar in order to produce values ranging from 0 to 1. This is necessary for a

machine learning model to effectively perform at scale and uses the formula seen in Equation 2.1.

ScaledV alue =
x−min(x)

max(x)−min(x)
(2.1)
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2.4 ML Models Used

In order to decrease the prototyping and testing times, this project used predefined layers with

standard parameters and activation functions, and each model would perform multi-class classifi-

cation, i.e., identify the different types of cyber attacks. The dataset would be evaluated using four

different model configurations to compare the effectiveness and potentially gain insight into a path

to pursue for my thesis research. Each of the models was trained for 50 epochs.

1. 3-Layer CNN: A three-layer model consisting of an input layer with a size equal to the

feature set, a single hidden layer, and dense output layer equal to the number of labels.

2. 4-Layer CNN: This used the same configuration as before with addition of a pooling layer

before the dense output layer.

3. 5-Layer CNN: An auto encoder that performed feature encoding and then decoding before

the dense output layer.

4. Simple RNN: A three-layer model using the Simple RNN function, a hidden layer, and a

dense output layer.

2.5 Evaluation and Results

The performance of the models was assessed using the following metrics: accuracy (A), pre-

cision (P), recall (R), and F1-score (F1). They were applied at the macro level for overall perfor-

mance but also on a class by class analysis. These four metrics are calculated using four variables

known as the true positive (TP), true negative (TN), false positive (FP), and false negative (FN)

values. A TP represents correct classification of an attack while a TN represents a correct classifi-

cation of a benign packet. On the other hand, a FP indicates the incorrect classification of a benign

packet while FN represents the incorrect classification of an attack packet. Using these values,

accuracy, precision, recall and F1-score can be calculated using Equations 2.2, 2.3, 2.4, and 2.5.

The accuracy of the model is the percent of correctly classified samples over the total number
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of samples and is calculated by Eq. 2.2.

A =
TP + TN

TP + TN + FP + FN
(2.2)

The precision of the model is the percent of correctly classified positive samples over the total

number of predicted positive samples and is calculated by Eq. 2.3.

P =
TP

TP + FP
(2.3)

The recall of the model is the percent of correctly classified positive samples over the total

number of actually positive samples and can is calculated by Eq. 2.4.

R =
TP

TP + FN
(2.4)

The F1-score of the model is another way of measuring accuracy and represents the harmonic

average of precision and recall. It is calculated by Eq. 2.5.

F1 = 2× P ×R

P +R
(2.5)

When testing the performance of the models we placed an emphasis on the ability to accurately

identify individual attacks while performing multi-class classification and compared our results

with other models and related works. The accuracy and loss were also tracked during the training

process for additional insight into the effectiveness of each model.

The results for each model are shown in Table 2.3. The 3 Layer CNN was the only model to

produce results that approached acceptable across all performance metrics, shown in Figure 2.1,

with an accuracy close to 80%. While this was the best of the models tested it was still under

performing compared to much of the related work. During the training process, 20% of the training

data is reserved to test the model at the end of each epoch. The results are used to adjust the

weights within the model and are tracked as model accuracy and loss over each epoch. As seen in
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Figure 2.1: 3 Layer CNN Training Accuracy and Loss

Model Accuracy Loss Precision Recall F1
3 Layer CNN 79.5% 0.428 80% 79% .76
4 Layer CNN 59.3% 1.099 61% 63% .58
5 Layer CNN 59% 0.985 63% 63% .59
SimpleRNN 61.6% 0.942 55% 62% .57

Table 2.3: Model Performance on DDoS2019

Figure 2.1, the test data following each epoch closely follows the training data. This indicates a

positive training response, but the spikes are a result of the model not learning the underrepresented

classes. When the training curves begin to level out it is a sign that the model may begin to over fit

the data. Conversely, if the curves still showed a gradient after the 20 epochs it would suggest that

the model could benefit from additional training. The other models that were tested all had very

high loss and large spikes during training, resulting in low performance metrics.

2.6 Lessons Learned

This was a first step into deep learning and there were many takeaways. Under sampling the

dataset was useful for quick testing and training for this project but a larger set of samples would

have improved the performance of the models. The default learning rate was likely too high for the

number of features in the dataset. The configuration of the model layers was also sub-optimal and

needed improvement. Overall I learned a lot from this project, which prepared me for the research
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into novel deep learning methods.
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3. BLoCNet

The primary goal of this project is to develop a novel deep learning (DL) model for cyber

attack detection. After conducting the literature review and reflecting on the previous project, two

unique datasets were identified for use in the training and testing of the model. The CIC-IDS2017

dataset will be used for initial prototyping and testing of the novel model, and the IoT-23 dataset

as a second more topical dataset for further validation and to ensure the performance is dataset

independent. The results will then be compared against the performance of other published DL

models.

3.1 Dataset Evaluation

The choice of datasets was based on the following metrics for high quality data:

1. Accessibility: The data needs to be publicly available. One of the biggest challenges for

IDS design is the lack of recent and relevant publicly available datasets. As data has become

a valuable asset many organizations have resorted to withholding their data. With network

traffic there is also a privacy issue and why many newer datasets are simulated network

traffic. The CIC-IDS2017 dataset can be obtained from the CIC [36]. The IoT-23 dataset is

provided by Avast [38], but can be found in preprocessed CSVs created by I. Ullah et al [33]

at Ontario Tech University [39].

2. Completeness: The data needs to be comprehensive in its domain. Often times a dataset

will contain one or more under represented classes. Depending on the relative size of the

dataset this can lead to poor performance and/or require additional methods of preprocessing

in order to compensate. Both datasets suffer from one or more under represented classes but

have enough merit in the remaining data to justify their selection.

3. Consistency: The captured data should match the label associated with it. Both datasets

were produced by reliable sources and have been scrutinized by other research.
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4. Integrity: The attributes of the dataset need to be maintained. An abundance of missing

entries, NaN or Inf values reduces the usefulness of the dataset. Neither dataset saw a sig-

nificant reduction in samples after preprocessing.

5. Validity: The data needs to be an appropriate choice for the intended use case. Both datasets

were created with the purpose of being used for IDS research.

6. Timeliness: The data should be up-to-date and relevant. The CIC-IDS2017 represents one

of the newest all around IDS datasets and the IoT-23 dataset is only a year old, consisting of

highly topical data in subject of IoT devices.

3.1.1 CIC-IDS2017

The CIC-IDS2017 dataset was created due to the lack of reliable datasets for anomaly based

intrusion detection, with a top priority placed on diverse, realistic background traffic. The dataset

contains the benign network traffic and an up to date collection of 14 common network attacks.

The traffic was simulated starting Monday July 3, 2017 at 9 a.m. and ran through Friday July 7,

2017 at 5 p.m., consisting of the abstract traffic for 25 simulated users across HyperText Transfer

Protocol (HTTP), HyperText Transfer Protocol Secure (HTTPS), File Transfer Protocol (FTP),

Secure Shell (SSH), and email protocols, along with the directed attacks on the network. Each

attack has been sorted from the network traffic packet capture (PCAP) files into their own coma

separated value (CSV) files with 79 unique features being tracked using the CIC FlowMeter tool.

The 14 attacks in the dataset are:

1. DoS HULK: A HTTP Unbearable Load King (HULK) attack is a DDoS attack that over-

whelms the resources in a web server by flooding the server with requests for one or more

URLs from multiple source machines.

2. Port Scan: A port scan is used to determine what ports on a network are open and potentially

sending or receiving data. This is exploited by attackers to find vulnerabilities in network

security and identify potential targets for further attacks.
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3. DDoS: A Distributed Denial of Service attack. The dataset does not specify the specifics of

this class.

4. DoS GoldenEye: GoldenEye is another form of HTTP flood attack buy dynamically gener-

ates the URL requests in order to randomize its agents in an attempt to keep the connection

alive and avoid the detection methods used on static HTTP flood requests.

5. FTP-Patator: Patator is a multi-purpose tool used to brute force the login of numerous pro-

tocols, in this case FTP.

6. SSH-Patator: Patator brute force login on SSH.

7. DoS slowloris: Slowloris is an application layer DoS attack launched from a single computer

that uses partial HTTP requests to open multiple connections and keep them open as long as

possible, in effect acting as a DDoS from one machine.

8. DoS Slowhttptest: SlowHTTPTest is a tool used to simulate common, low bandwidth appli-

cation layer DoS attacks.

9. Botnet: A botnet consists of many malware infected devices that are controlled remotely by

a central control server. The attacker can these direct all of the devices to perform a large

scale attack.

10. Web Attack - Brute Force: Brute force attacks use trial and error to guess correct login

information in order to access a secure system.

11. Web Attack - XSS: Cross site scripting (XSS) is a security vulnerability that allows an at-

tacker to cause a website to return malicious JavaScript to users.

12. Infiltration: Infiltration in cyber security is a broad term that can range from privilege es-

calation to a piece of malicious software on a computer. The dataset does not specify the

specifics of this class.
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13. Web Attack - SQL Injection: A SQL injection allows an attacker to view data that would

normally not be retrievable. By submitting a database query with malicious SQL code the

database can be hijacked to explore sensitive company information or private user data, and

in some cases can be used to gain root access to the underlying system.

14. Heartbleed: The Heartbleed vulnerability exploits the heartbeat functionality implemented

in OpenSSL, a toolkit for the Transport Layer Security (TLS) and Secure Sockets Layer

(SSL) protocols. The heartbeat is a 40KB message sent from the user that is then repeated

by the server to maintain the connection. However, the server does not check the size of the

message received and an attacker can exploit this by sending a smaller heartbeat message.

The returned message then contains the smaller heartbeat and any information in the memory

until the 40KB message is filled.

The dataset contains 2,830,743 samples, with Table 3.1 showing the breakdown for each of the

labels. One downside to resembling real world traffic is that the dataset is extremely unbalanced

with 80% benign traffic, unequal distribution among the attacks, and many of the attacks being

under represented.

3.1.2 IoT23

The IoT-23 dataset consists of network traffic from Internet of Things (IoT) devices captured

from 2018 to 2019 with 20 malware captures and three benign captures [38]. The attacks were

executed across multiple IoT devices as well as the benign traffic being captured from multiple

devices. The PCAPs were then analyzed with the CIC-FlowMeter resulting in a large dataset of

labeled attacks that matches the format of the IDS2017 dataset. The distribution of the attacks can

be found in Table 3.2. This was selected as the second dataset for testing since it is very new and

represents the evolving nature of cyber attacks leveraging the large quantity of IoT devices that are

easily exploited. The 9 attacks in the dataset are [38]:

1. DDoS: Based on the amount of traffic flow from a device to a specific IP address that would

indicate its use in a Distributed Denial of Service attack.
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Label Samples (%)
Benign 2273097 80.3%

DoS HULK 231073 8.16%
PortScan 158930 5.65%

DDoS 128027 4.52%
DoS GoldenEye 10293 0.36%

FTP-Patator 7938 0.28%
SSH-Patator 5897 0.208%

DoS slowloris 5796 0.205%
DoS Slowhttptest 5499 0.194%

Botnet 1966 0.069%
Web Attack Brute Force 1507 0.053%

Web Attack XSS 652 0.023%
Infiltration 36 0.001%

Web Attack SQL 21 <0.001%
Heartbleed 11 <0.001%

Total 2830743 100%

Table 3.1: CIC-IDS2017 Data Distribution

2. Okiru: Indicates the connection characteristics resemble an Okiru botnet. The signature is

similar to Mirai but it is a less common botnet.

3. PortScan: Port scans are used to find vulnerable targets in a network. A port scan from an IoT

device indicates malicious activity because IoT devices generally use the same protocols.

4. Attack: This label indicates some type of attack from an infected device to another host, and

can include brute force login, command injection in a request, etc.

5. Torii: Torii is another type of botnet and classified in the same manner as Okiru and Mirai

botnets.

6. C&C: The C&C label is attached to any traffic suggesting that a device was connected to

command control server. This was based on periodic connections to an unknown server or

a device downloading binaries from it.

7. HeartBeat: The HeartBeat label was attached to any traffic less than 1B that had a periodic
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Label Samples (%)
Normal 4313776 25.8%
DDoS 4619869 27.6%
Okiru 2999999 17.9%

PortScan 2999999 17.9%
Attack 1716778 10.3%
Torii 33858 0.002%
C&C 23981 0.001%

HeartBeat 12895 <0.001%
FileDownload 8035 <0.001%

Mirai 756 <0.001%
Total 16729946 100%

Table 3.2: IoT-23 Data Distribution

pattern to it, or was connected to a known C&C server.

8. FileDownload: It is rare that an IoT device would need to download any file so these events

were flagged as a means to compromise the device.

9. Mirai: Mirai is an IoT malware used to create large scale botnets and carries a distinct pattern

compared to other IoT botnets.

The dataset contains 16,729,946 samples, with Table 3.2 showing the breakdown for each of

the labels. The dataset contains five attacks that combined makeup less than 1% of the total.

However, four of them range from 4,000 to 33,000 samples and this proved to be sufficient for the

model to accurately identify them. Given that Okiru and Torii are less common than Mirai, it is

interesting that Okiru represents 17.9% of the dataset, Torii is 0.002%, while Mirai represents less

than 0.001%.

3.2 Data Analysis and Preprocessing

3.2.1 CIC-IDS2017

In order to prevent the model from overfitting based on unique identifiers it is best practice

to remove any network socket identifying information from the data. A socket is defined by the
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IP address and port number. Therefore, this would include removing the source and destination

IP address, source and destination port, and flow ID. The IDS2017 dataset is missing all of these

to begin with other than the destination port. We chose to include this in our testing in the event

that destination port alone was an identifier for any of the attack types. We chose to remove any

samples that included missing (NaN) or infinite (inf) values in any of their data fields. The values in

question ranged from data fields with six-digit positive or negative numbers to fields with decimal

numbers out to eight-digits, suggesting that replacing with zeroes may not yield the desired results

and thus chose to remove them.

The next step was to normalize the data. We used the MinMax scalar feature to normalize

all values to a continuous range between zero and one. This is necessary to avoid over influence

from the various units of measurement and leads to the results being more dependent on the char-

acteristics of the data. The "Label" column was then removed from the dataset and saved as an

independent "y" value for use in testing.

The initial round of testing resulted in a low average recall due to the under represented attacks

and imbalance of the data overall. To correct the imbalance in the dataset we used two different

oversampling methods. First, we artificially inflated samples from the five attacks that had the

lowest representation of samples by multiplying the total number of entries to roughly 4,000 as a

minimum. This is commonly used in data science, but it is generally not a recommended method

of oversampling for ML and DL applications as it can lead to overfitting the model [40]. However,

it was still used on the classes with fewer than 1,000 samples in the dataset rather than relying on

chance in random sampling or grouping similar attacks into larger, more generic categories.

Next, each of the classes was split into a training and testing set using stratified sampling

before being combined into the overall training and testing files [12]. This was done to ensure a

balanced representation of the attacks instead of relying on the random nature of the scikit-learn

(sklearn) train/test split tool. The training to testing ratio chosen was set to 0.8/0.2. In the training

set, another round of oversampling was done using Synthetic Minority Oversampling Technique

(SMOTE), a Python function from the imbalanced-learn (imblearn) library [40]. This method was
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chosen to create new attacks that were similar, but not exact duplicates of the underrepresented

classes.

3.2.2 IoT-23

For initial testing the IoT-23 dataset underwent the same preprocessing steps. Despite also hav-

ing imbalance issues, the number of samples for the underrepresented classes were much greater

than the classes in the CIC-IDS2017. For this reason, the IoT-23 dataset performed quite well in

initial testing. However, after reviewing the results of I. Ullah et al [33] the decision was made to

revisit the preprocessing and implement the RFE algorithm with the hopes of improving overall

performance. The goal was to reduce the number of features from the original 79 to just 64, with

the remaining features being the most important or relevant to classification. This was implemented

using the scikit-learn (sklearn) recursive feature elimination (RFE) function with a Decision Tree

Classifier as the estimator. Prior to applying RFE to the data, the majority classes were significantly

under sampled in order to inflate the relative presence of the underrepresented classes, resulting in

1,424,962 samples in the reduced dataset.

3.3 Model Design

The proposed novel deep learning model is BLoCNet. The BLoCNet model uses a combina-

tion of two types of deep learning neural networks: Convolutional Neural Network (CNN) and

Bidirectional Long-Short Term Memory (BLSTM). This combination allows for high level fea-

ture recognition from the CNN and the contextual processing of longer sequences in the BLSTM

layers [3]. A graphical outline of the model can be seen in Figure 3.1.

The data flow of BLoCNet:

1. Conv1D: The first layer of BLoCNet is a CNN layer. CNN is a deep learning algorithm that

can use spatial relationships to extract and reduce features [32]. A single layer CNN has a

shallow receptive field that is used for high level feature extraction from the total features in

each sample. This provides a reduction of parameters and helps improve training time and

performance. The layer has 64 neurons and a rectified linear (relu) activation function that
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Figure 3.1: The architecture of the BLoCNet model

transforms any negative values to 0, otherwise outputs the positive value.

2. The data is then sent to a max pooling layer for additional reduction in spatial size [26].

The max pooling provides a further reduction in overall features while highlighting the most

prominent features. Max pooling was used over average pooling in order to maintain the

feature highlights instead of averaging the values of the feature selection. This layer has a

pooling size of 10.

3. Batch normalization is then applied to the data, providing a consistent range of variables for

the proceeding layer. This allows for fine tuning of the neuron weights and a faster learning

rate.

4. Next is the first BLSTM layer. BLSTM can be traced back to the RNN, a recursive neural

network where the output is based on the previous data [26][32]. This is useful in an IDS

because many attacks have a pattern that can be identified in the sequence of features. LSTM

is an improved version of RNN that utilizes memory cells and forget gates [23][32]. It also

solves the vanishing gradient problem, which can occur as the input to a cell grows too
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large causing errors in the network [3][41]. The BLSTM uses both forward and backwards

LSTMs [15] for added contextualization. This layer has 64 units, which defines length of

the memory based cells, and gives an output of with a shape of 128.

5. Reshape is then applied to the date in order to add an additional "Null" dimension to the

tensor. This dimension is lost in the previous BLSTM layer but expected by the following

layers.

6. Max pooling is applied one more time, with a pooling size of 5 for feature reduction.

7. Another Batch normalization is performed prior to the second BLSTM layer.

8. The data is then processed by the second BLSTM layer, this time with 128 units in order to

increase the feature map prior to classification.

9. A Dropout function set to 40% is applied to the BLSTM output. This will ignore a random

selection of 40% of the output features and helps in tuning the neuron weights and highlight

the more important features.

10. A Dense layer is used for classification of the output. This layer contains a number of

neurons equal to the labels in the dataset, with each neuron connected to all of the outputs

from the second BLSTM. It uses a softmax activation to perform probabilistic classification

of the data.

The model is compiled with the Adam optimizer with learning rate of 0.0001 and loss function

of sparse categorical crossentropy in order to perform multiclass classification. It is then trained

over 20 epochs, with a train/test split of 20%, and a validation split of 20% applied to the training

data.

3.4 Evaluation

The performance of BLoCNet was also assessed using accuracy (A), precision (P), recall (R),

and F1-score (F1). These were presented in Section 2 and can be calculated using Equations 2.2,
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2.3, 2.4, and 2.5. will be applied at the macro level for overall performance but also on a class by

class analysis. These four metrics are calculated using four variables known as the true positive

(TP), true negative (TN), false positive (FP), and false negative (FN) values. A TP represents cor-

rect classification of an attack while a TN represents a correct classification of a benign packet. On

the other hand, a FP indicates the incorrect classification of an attack packet while FN represents

the incorrect classification of a benign packet. For this model an emphasis is placed on the ability

to accurately identify individual attacks while performing multiclass classification and the results

will be compared with other models and related works.

In summary, the design of BLoCNet leverages the strength of both CNN and BLSTM layers for

intrusion detection. Two datasets very identified due to their relevancy to modern attacks, recent

release, and covering to unique aspects of intrusion detection. In addition, a method for prepro-

cessing the datasets was proposed, including different techniques for handling data imbalances.
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4. RESULTS

This chapter highlights the results of BLoCNet when performing multiclass classification on

the CIC-IDS2017 and IoT-23 datasets. In both cases the model was trained twice; once with the

original dataset after preprocessing, and again with a sampling method applied to the data.

4.1 CIC-IDS2017

The initial testing of the CIC-IDS2017 gave promising results but still had room for improve-

ment. BLoCNet had an accuracy of 96%, precision of 96%, recall of 96%, and F1 score of .96.

However, the model struggled to properly classify most of the underrepresented classes, as seen in

the confusion matrix in Figure 4.1

Figure 4.1: Confusion matrix for IDS2017 dataset
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4.2 CIC-IDS2017 with SMOTE

The SMOTE oversampling technique was then applied to the CIC-IDS2017 dataset and tested

again. The BLoCNet model saw increased performance in all metrics with an overall accuracy

of 98%, with precision, recall, and F1 score of 90%, 83%, and 81, respectively. The model also

scored high metrics for all of the labels in the dataset, including the under represented attacks, as

seen in the confusion matrix in Figure 4.2.

Figure 4.2: Confusion matrix for IDS2017 dataset with SMOTE

When analyzing the training accuracy and loss it is easy to see the improvement from using

SMOTE. Figure 4.3b shows a much smoother curve for the test data and Figure 4.4b has a corre-

sponding loss curve. This is to be expected with the increased samples of underrepresented classes

due to SMOTE.
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(a) CIC-IDS2017 (b) CIC-IDS2017 with SMOTE

Figure 4.3: Training accuracy

(a) CIC-IDS2017 (b) CIC-IDS2017 with SMOTE

Figure 4.4: Training loss

For comparative results we also tested the SMOTE oversampled IDS2017 results against other

deep learning models. The results are shown in Table 4.1. While both the single and three layer

CNN models have high accuracy and precision, they lack the recall of individual attack classifica-

tion. This is likely attributed to the imbalance in the dataset and the high success rate using a CNN

for feature extraction. However, BLoCNet had the highest F1 score, showing a better balance of

precision and recall among each of the labels.
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Model Accuracy Precision Recall F1
BLoCNet 98% 90% 83% 81

CNN: 3 Layer 98% 88% 75% 77
CNN: 1 Layer 98% 93% 76% 78
RNN: LSTM 97% 74% 67% 69
Autoencoder 98% 80% 75% 76

DNN 98% 91% 73% 76

Table 4.1: Multiclass Classification Model Performance on IDS2017

4.3 IoT-23

The initial testing of BLoCNet with the IoT-23 dataset resulted in an accuracy of 100%, preci-

sion of 100%, recall of 100%, and F1 score of 1.0. However, the model struggled with two of the

underrepresented classes but due to the extreme imbalance of the dataset their impact was negligi-

ble in the overall results, as seen in Figure 4.5. The initial results were viewed as satisfactory until

the publication of the work by I. Ullah et al [33] in July.

Figure 4.5: Confusion matrix for IoT-23 dataset

37



4.4 IoT-23 under sampled with RFE

In order to improve performance on the IoT-23 the preprocessing of the dataset borrowed the

RFE application used by I. Ullah et al [33], as well as undersampling the majority classes. This

resulted in near perfect classification for all classes, with the most underrepresented class achieving

91%. Overall, the model maintained an accuracy of 100%, precision of 100%, recall of 100%, and

F1 score of 1.0. Figure 4.6 shows the final confusion matrix for testing of BLoCNet with the

IoT-23 dataset.

Figure 4.6: Confusion matrix for IoT-23 dataset under sampled with RFE

Again we see an improvement in the training accuracy and loss, but in this case due to under-

sampling and the use of RFE. Figure 4.7b shows a slightly smoother curve for the test data but

Figure 4.8b has avoids the large spikes in the loss curve.
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(a) IoT-23 (b) IoT-23 under sampled with RFE

Figure 4.7: Training accuracy

(a) IoT-23 (b) IoT-23 under sampled with RFE

Figure 4.8: Training loss

4.5 Comparison to Related Work

Table 4.2 shows a summary of the performance metrics for BLoCNet with each of the datasets.

The BAT model [15] uses a similar network architecture but is trained on the NSL-KDD

dataset, an older and less diverse dataset than the CIC-IDS2017 that we used. Their model was

only able to achieve 84% accuracy when performing multiclass classification on just 5 classes.

Comparing our results with the PCCN [13] we see similar accuracy and recall across all at-

tacks, however the PCCN model is using a unique feature extraction method that greatly reduces

the number of features in the data as well reducing the number of attacks by grouping under rep-
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Dataset Accuracy Precision Recall F1
CIC-IDS2017* 96% 96% 96% .96

CIC-IDS2017 w/ SMOTE 98% 98% 98% .98
IoT-23* 100% 100% 100% 1.0

IoT-23 under sampled w/ RFE 100% 100% 100% 1.0

Table 4.2: Summary of BLoCNet Performance
*poor classification of underrepresented classes

resented labels into general purpose labels. This could lead to overfitting by training a single label

with multiple attack variations and false classification due to the reduced feature size.

When comparing the results on the IoT-23 dataset, I. Ullah et al [33] have shown slightly

higher accuracy and recall of the underrepresented classes. However, it is difficult to make a direct

comparison due to their method of borrowing data from multiple datasets. Overall, BLoCNet has a

higher level of accuracy and a leading F1 score for the IoT-23 dataset compared to other reviewed

works.

These results show BLoCNet to be superior to other methods in overall accuracy, but partic-

ularly when identifying each of the unique attack types in a dataset. Where other models have

made compromises by using older datasets, drastically reducing the number of features, or com-

bining underrepresented classes in order to increase overall accuracy, we were able to maintain the

majority of features and accurately detect each of the unique classes in the dataset.
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5. CONCLUSION

5.1 Summary

This work explores a novel IDS framework, BLoCNet, for cyber attack detection using a hybrid

deep learning network composed of CNN and BLSTM layers. The convolutional layer allows the

model to recognize patterns in the features of the network traffic at a high level but in a relatively

fast computation time before passing into the slower BLSTM layers. The BLSTM layers then

capitalize on the forward and backward propagation of data to identify the attacks within the data

before classifying the sample by type of attack. BLoCNet differentiates itself from similar work in

that it uses a unique network architecture that takes advantage of the benefits offered by both CNN

and BLSTM layers in such a way that results in improved accuracy, precision, recall, and F1 score

compared to similar work. The primary improvement is in the classification of under represented

attacks in the CIC-IDS2017 and IoT-23 datasets.

5.2 Limitations

The BLoCNet model has some limitations. Many researchers have shown binary classification

to be trivial with most neural network architectures [21][25][29][30][14] which has the potential

to be useful as an early warning IDS but misses out on identifying the specific attack infiltrating a

network. The BLoCNet model uses a multiclass approach in order to provide more useful infor-

mation as an IDS with the goal of retaining the high accuracy in detection associated with binary

classification. The downside to this is that we need to account for unknown attacks in some way

since they may not resemble any of the known 15 attacks in the training dataset.

Another consideration is the removal of unique identifier features in the dataset and/or a re-

duction in the overall features. Most researchers chose to remove the source and destination IP

address, port number, and timestamp in order to prevent overfitting [21][12], while others chose to

implement their own feature extraction tool [13]. The CIC-IDS2017 dataset is already missing the

source IP, source port, and destination IP but still keeps the destination port. We chose to include
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this feature in the event that it correlates with a specific type of attack although this may lead to

overfitting. To verify our theory we tested the BLoCNet model with the same oversampled data

but without the destination port. In this test we did not observe any improvement to overall metrics

or unique attack classification. Actually we saw a reduction in performance of the model.

5.3 Future Work

In the future, the goal is to continue improving the detection rate for under represented at-

tacks while maintaining high performance metrics. This could potentially be achieved by using

additional feature reduction, different oversampling techniques, or a combination of both. Further

analysis of the features created by the CICFlowMeter combined with an understanding of the attack

signatures could potentially add insight to critical features. The IoT-23 dataset showed improved

performance when under sampled but could also be tested with SMOTE. This would increase the

underrepresented classes while maintaining all of the original samples in the majority classes. The

model could also be trained on newer datasets as they become available, or a collection of topical

datasets as seen with I. Ullah et al [33].

5.4 Contributions

This research work makes several contributions to the field of deep learning for cybersecurity

intrusion detection:

1. reviewed the relevant work that applied deep learning techniques for use as intrusion detec-

tion systems, including recently published work during the conclusion of testing BLoCNet.

2. proposed a novel IDS, BLoCNet, that uses a combination of CNN and BLSTM layers. This

hybrid approach leverages the high level feature extraction of the CNN along with the bidi-

rectional contextualization of the BLSTM layers.

3. examined the performance of the model and compared it with related work. Blocnet ex-

ceeded the performance of previous models across all performance metrics that we tracked,

but specifically the classification of unique attacks in the CIC-IDS2017 and IoT-23 datasets.

42



4. proposed three methods of preprocessing the data in order to compensate for the under rep-

resented attacks:

• by oversampling the under represented attacks to a baseline value before incorporating

a Synthetic Minority Oversampling TEchnique (SMOTE) in order to provide diversity

of the oversampled values.

• by reducing the number of features in the dataset using RFE the training time was

reduced while increasing the accuracy, precision, and recall across all attacks in the

datasets.

• by under sampling a sufficiently large dataset in order to scale down the over repre-

sented classes and increase the accuracy of identifying under represented classes.
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