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 ABSTRACT 

 

Phase Change Materials (PCMs) have garnered significant attention over recent 

years due to their efficacy for thermal energy storage (TES) applications. High latent heat 

of PCMs enable enhanced storage densities which in turn translate into compact form 

factors of TES platforms utilizing PCMs. TES platforms mitigate the deviations between 

energy demand and supply, i.e., they absorb heat during periods of surplus in energy 

supply and release the stored energy during periods of deficit in energy supply.  PCMs are 

envisioned for futuristic applications and are also deployed in a wide range of TES 

platforms in the industry - ranging from solar power plants, building energy management, 

HVAC, chemical process industries, waste heat recovery systems (such as desalination 

and food processing), domestic water heating, to thermal management of electronics (to 

list a few). Inorganic PCMs have high latent heat values (compared to organic PCMs) but 

suffer from several reliability issues. A major reliability issue with inorganic PCMs is the 

high degree of supercooling needed to initiate nucleation (which compromises the 

reliability, net energy storage capacity and power rating of the TES platform). “Cold 

Finger Technique (CFT)” can obviate these issues wherein a small fraction of the total 

mass of PCM is left in a solid phase to aid spontaneous nucleation (thus reliability is 

enhanced at a marginal expense to the net storage capacity while power rating of the TES 

remains unaffected).  In this study, a machine learning (ML) technique, more specifically 

artificial neural networks (ANN), are implemented to enhance the efficacy of CFT. 

Temperature transients from PCM melting experiments are used as inputs to an ANN to 
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predict the time required to attain a predefined melt percentage in real time. Performance 

and efficacy of the machine learning techniques that utilize surface temperature transients 

(instead of measurement of PCM temperatures) is also investigated. Surface temperature-

based monitoring strategies can be applied to PCM filled heat sinks to enhance operational 

reliability of thermal management platform using non-intrusive approaches (such as for 

electronics applications). The results show that an artificial neural network is capable of 

providing predictions apriori regarding the time to attain a chosen melt-fraction (e.g., 90% 

melt-fraction) with a considerable accuracy.  
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CHAPTER I  

INTRODUCTION  

 

1.1 PCMs for Latent Heat Thermal Energy Storage 

Thermal Energy Storage (TES) platforms mitigate the deficits during unbalanced 

fluctuations in energy supply and demand. Latent heat thermal energy storage systems 

(LHTESS) are an effective means to store energy in small form factors and they provide 

the added benefit of yielding higher systemic efficiencies due to their operating envelope 

being limited to a narrow temperature range (i.e., the phase transition temperature). TES 

platforms leveraging Phase Change Materials (PCM) have been explored for a variety of 

applications, such as: in building energy management and concentrated solar power 

generation [1, 2]. One of the most promising applications of PCM based LHTESS is a 

supplemental cooling platform for electric power plants as it can relieve the stress on 

freshwater resources for cooling [3].  

A variety of factors (e.g., rapid economic development, population explosion, and 

global climate change) have led to rising demands for freshwater resources. An ever-

increasing strain on these resources have led to the interdependencies in the food-energy-

water (FEW) nexus. The issues associated with FEW nexus are predicted to intensify in 

the near future. A major proportion of the total electricity generation in the United States 

(and globally) is from thermoelectric power plants - which use coal, oil, natural gas, or 

nuclear fissionable materials as fuel (and in turn, require the cooling of steam from the 

turbine exhaust). The cooling platforms typically rely on cooling towers that consume 
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large amounts of freshwater resources. In 2015, thermoelectric electric power producers 

alone consumed 4.3 billion gallons of freshwater per day [4]. 

As mentioned before, for power plants operating on the Rankine cycle, the steam 

powered turbines require cooling of the steam exhaust in order to generate electric power. 

Conventionally, cooling water derived from cooling towers is used condense the steam 

from the turbine exhaust. In this process, the evaporative cooling strategies used in cooling 

towers (to obtain the cooling water that are fed to the condensers) result in consumption 

of massive amounts of freshwater resources. In the United States, 40 % of the total water 

withdrawals were by thermoelectric power plants. Much of this water (85-95%) is utilized 

for operating the cooling towers. In 2015, power plants withdrew 133 billion gallons of 

surface water per day, 72% of which were freshwater withdrawals [4]. After withdrawal, 

significant portion of the water is lost through evaporation while a major portion of the 

consumed water is discharged at a higher temperature and is typically diverted into 

neighboring waterbodies (the hot water discharged from the power plants - in turn - 

stresses the aquatic eco-system). For coal fired power plants utilizing wet cooling (which 

provides better systemic efficiencies and lower cost of power), more than 80% of the 

withdrawn water is consumed in this process [5]. Thus, energy generation is highly 

dependent on the accessibility to and availability of freshwater resources. However, the 

conventional cooling methods are not sustainable in the long run due to declining water 

resources in various regions of the world. Freshwater scarcity will in turn cause heavy 

reliance on energy intensive sources of water supply such as desalination. It is projected 
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that desalination shall account for 15% of the end energy use in the Middle East in 2040 

[6]. 

Dry cooling (instead of ‘wet’ cooling) can decrease the consumption of cooling 

water for steam condensation by 95%. These systems cool or condense a fluid in a heat 

exchanger without using water. Fig. 1 shows a schematic of a dry cooling system. Dry 

cooling platforms condense the steam from the turbine exhaust - directly in finned-tube 

air-cooled heat exchanger platforms and return the condensate to the boiler (without using 

any makeup water). Indirect dry cooling configurations circulate water through a 

condenser and a convective air-cooled heat exchanger in a closed loop. Unsurprisingly, 

dry cooling systems suffer from a couple of challenges making them unattractive for 

power producers. Firstly, the air-side heat transfer coefficients are significantly lower than 

the water side heat transfer coefficients. This translates into large surface area 

requirements. Larger systems require higher upfront investments and operation costs. 

Secondly, from a thermodynamic standpoint, the lower limit of the steam condensation 

temperature in an air-cooled condenser is the ambient dry bulb temperature. Whereas, for 

evaporative cooling (‘wet’ cooling), the steam condensation takes place at the ambient wet 

bulb temperature. On an average, the dry bulb temperature is higher than the wet bulb 

temperature by about 3-5 oC [7]. A higher temperature at the turbine exhaust means a loss 

in power output and lower systemic efficiencies (thus resulting in higher cost of electrical 

power production). In addition, on hot days the systemic efficiencies and reliability are 

severely compromised for power plants that are dry-cooled.  
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Since the performance of dry cooled power plants are highly sensitive to ambient 

air temperatures, supplemental cooling solutions can alleviate the limitations imposed by 

the inefficiencies inherent in air cooling, primarily due to temperature excursions. Hot 

days lead to elevated turbine back pressures, thus decreasing the power output. Ultimately, 

the energy conversion efficiency of the power plant is diminished on the days with 

elevated temperatures. 

 

Figure 1 Schematic of a dry cooling sytem. Reprinted from [4] 

 

A supplemental cooling platform can be realized typically by deploying LHTESS 

(such as by utilizing a suitable PCM candidate). In such a system, during the day, the air 

temperature is lowered by cooling it in the LHTESS prior to passing it into the air inlet 

section of the air-cooled steam condenser (in which case, the PCM in the LHTESS melts 

while cooling the incoming air from the ambient). Alternately, the steam can be condensed 

directly in the LHTESS platform (while melting the solidified PCM in the process).  

During the night, the stored energy in the melted PCM is released to the ambient (which 
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is typically at a significantly lower temperature at night) and in the process the PCM is 

solidified during the cooler night time conditions.  

Typically, inorganic PCMs (such as salt hydrates) pack in higher levels of specific 

enthalpy for phase change, than that of the organic PCMs. For salt hydrates - the storage 

temperatures (i.e., the phase change temperature) can be tuned by varying the water 

content in the chemisorbed states. This customization capability highlights the versatility 

of inorganic PCMs, particularly salt hydrates with varying levels of hydration, in 

supplemental cooling platforms for a wide range of operating conditions (and therefore 

can be designed to respond to wide variability in climatic or ambient conditions). 

A system perspective can be adopted to appreciate how TES can enhance the 

resilience of a dry-cooled powerplant. Resilience of a system refers to its ability to 

decrease the impact of negative shocks on its performance and respond to the disruptions 

in a favourable manner. Creation of resilient industrial processes can reduce the losses 

faced by the stakeholders and end users in the face of expected or unexpected disaster. 

These disasters could include natural calamities, economic collapses or even terrorist and 

cyber-attacks. With industrial processes in mind, a set of 12 principles/ strategies can be 

applied to create disaster resilient designs [8]. One of the strategies is reliability — i.e., 

the ability of the designed process to function without failing. Reliability can be defined 

as “the probability that a unit shall perform its intended function until a specified point in 

time under encountered use conditions” [9]. The conditions of operation are critical in 

determining a system’s reliability. This determination often involves modelling the 

probability of failure and time to failure. 
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For dry cooled powerplants operating in arid climates, the summer daytime 

temperatures can be high enough to warrant a powerplant shutdown. The increasing 

turbine backpressures pose an acute risk of damage to the turbine itself. These temperature 

excursions can lead to the disruptions in operations. Currently, the emergency response 

for powerplant operators is to shut down the powerplant which is not a hallmark of a 

resilient design. Resilient systems are fail-safe by design, adapt to changing conditions, 

and recover rapidly. Figure 2 shows the various stages that a resilient system goes through 

following a disruptive event [8]. For dry cooled powerplants thermal energy storage is an 

example of a design which adapts the system to respond to high ambient temperature 

conditions. During the night, when the temperatures are lower, the process flow changes 

to ensure solidification of the PCM, thus displaying reconfigurability (which is yet another 

strategy to design resilient processes).  Hence, in a broad sense, TES using PCM is a 

strategy for a resilient design of a dry-cooled powerplant.  

 

Figure 2 Stages of resilience after a disruptive event. Reprinted from [8] 
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1.2 PCMs for Electronics Thermal Management 

Thermal management of electronics is important for maintaining their operating 

temperatures since lower operating temperatures are necessary for extending their life-

span and reliability of operation as well as for maximizing their performance. Progressive 

miniaturization of device features in electronics products (such as computers and 

processors) has resulted in a widespread deployment of electronics that are ubiquitous in 

domestic and industrial scenarios. The sharp rise in the demand for high performance 

computing in every aspect of consumer and commercial segments (e.g., internet-of-things/ 

IoT, block-chain commerce, social media, GPS navigation in cell phones using cloud 

computing, etc.) is fueling the trend for miniaturization and real-time computing at a rapid 

pace. Consequently, heat flux and temperature levels in electronics are escalating, in 

devices ranging from hand-held products (e.g., cell phones, gaming consoles, etc.) to 

large-scale platforms (e.g., computing farms and data centers). However, semiconductor 

reliability and performance diminish at elevated operating temperatures as well as non-

uniformities in temperature distribution within chips and packages (e.g., due to formation 

of hot spots arising from transient surge in computing threads allocated non-uniformly to 

processor arrays). The rate of heat removal has to be greater than or equal to its generation 

in order to maintain the right junction temperatures. In addition, the acute monitoring and 

reliable management of transient and localized hot spots in individual chips and packages 

(particularly in computer-server farms) is needed urgently. Higher junction temperatures 

result in a shortened lifespan of a semiconductor device, particularly due to hot spots (as 
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it causes local thermo-mechanical stresses that reduces the operational life-span of the 

chips and packages). In fact, the chances of failure increase exponentially, if a localized 

area on a chip heats up beyond the specified temperature limits [10]. This result is based 

on the widely known Black’s equation [11]. Moreover, integration—a direct consequence 

of miniaturization—has resulted acute severity in non-uniform heat flux generation within 

individual chips and packages. The rapid progression of miniaturization in semiconductor 

technologies has largely followed the famous Moore’s law [12]—which simply states that 

the number of transistors on a microchip will double every two years. However, the 

doubling rate has started to falter in recent times, primarily due to the failure of the industry 

in meeting the heat dissipation loads and temperature uniformity requirements [13]. 

Removal of a high heat flux at appropriate temperatures is a constant challenge faced by 

the electronics industry. Researchers have considered varied approaches for electronics 

cooling over the years. 

 Traditional cooling techniques typically consist of external air-cooled heat sinks, 

and are inadequate for modern electronics applications. Emerging technologies include: 

(i) Heat pipes; (ii) Heat pumps; (iii) Microchannels; (iv) Spray cooling; (v) Phase Change 

Material (PCM) based cooling strategies; (vi) Free cooling; (vii) heat-sinks leveraging 

liquid-vapor phase change; and (viii) Thermoelectric cooling [14]. A number of studies 

on these techniques have highlighted their efficacy [15-17]. Among these, passive cooling 

methods based on PCMs has garnered significant attention in recent times. Properties like 

high latent heat, narrow operating temperature envelope, high specific heat, and small 

volume expansivity (during melting) translate into compact form factors. A numerical 
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study of a novel design of a heat sink utilizing hollow aluminum pin fins filled with PCM 

showed that a small amount of PCM could stabilize the microprocessor temperatures [18]. 

An experimental study of cooling of a personal digital assistant (PDA) using n-eicosane 

as a phase change material for heat storage showed that the PCM stabilized the junction 

temperatures and the effectiveness of such a heat storage unit (in terms of storage capacity 

and power ratings) depends on the amount of PCM used as well as the shape of the package 

[19]. PCMs can be used for thermal control of intermittently used electronics such as 

mobile phones, digital video cameras, wearable electronics (or portable electronics) and 

similar electronics devices. The thermal resistance of the device (which in turn governs 

the power rating) and storage capacity of the TES platform (i.e., the PCM mass and shape 

of the package) are the critical design parameters in this type of a passive system where 

the prior knowledge of the duty cycle is also important [20]. A PCM based heat sink 

(where the PCM was deployed typically within the cavities of the packaging in the heat 

sink)—placed on a plastic quad flat package mounted on a printed circuit board—was 

shown to have an improved cooling performance as compared to the case without PCM at 

high power levels (q > 2 W) [21]. Another study reported that at higher power levels, the 

operation time (i.e., time required for the heat sink to reach a set temperature) was 

enhanced for a given volume of PCM in the heat sink (compared to the case without PCM) 

[22]. It has been established that combining a PCM based heat sink with forced air 

convection is superior in reducing peak temperatures than a traditional air-cooled heat sink 

without PCM. Moreover, the latent heat of the PCM extends the duration of operation and 

delays the time required for reaching the peak temperature.  However, in order for TES 



 

10 

 

platforms to be effectively used in thermal management of electronics - prior knowledge 

of the typical duty cycle is crucial for ensuring success of the design and in operation. In 

addition, PCMs should exhibit the following characteristics—(i) appropriate phase 

transition temperature; (ii) low volume expansion; (iii) high thermal conductivity, latent 

heat, and specific heat; (iv) material compatibility (non-corrosive) including chemical 

stability; (v) low supercooling during freezing (or preferably, no supercooling); (vi) low 

cost [23]. All the criteria can be seldom met and often a trade-off must be made for 

achieving the desired design conditions.    

 

1.3 Supercooling in PCMs 

Based on their chemical composition, PCMs can be categorized as follows: (1) 

organics, (2) inorganics, and (3) eutectics. Examples of organic PCMs include paraffins, 

waxes and bio-derived fats (long-chain fatty molecules or organic polymer materials). Salt 

hydrates such as LiNO3 · 3[H2O] and metallics like Gallium are popular inorganic PCMs. 

Eutectics are a combination of two or more PCMs with similar melting and freezing points 

(e.g., metal eutectics and metallic or semiconductor-based alloys). Salt hydrates have a 

higher volumetric energy storage capacity (40-125 kWh/m3) than paraffins (40-60 

kWh/m3) due to their high densities [24]. So, in systems where volume is a constraint, salt 

hydrates can be a better option. However, salt hydrates undergo incongruent melting and 

often require large supercooling to initiate nucleation. When salt hydrates melt, the solid 

crystal structure breaks and releases chemisorbed water molecules (depending on their 

stoichiometric ratio for the chemical hydration process). The amount of water is not 
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always sufficient to dissolve the anhydrous salt completely causing incongruent melting. 

As a result, upon freezing, the salt fails to recombine with water immediately. On the other 

hand, supercooling is the phenomenon where solidification is achieved only when the 

PCM temperature is significantly lower than the thermodynamic phase transition 

temperature. At the fusion temperature, the rate of nucleation is very low. A low nucleation 

rate limits the efficacy of a PCM heat sink—as the latent heat is not released 

spontaneously. In a TES application, supercooling hinders the reliability of the energy 

storage platform and often compromises their performance metrics.  

Methods to address supercooling can be categorized into passive and dynamic 

techniques. Addition of nucleating agents is a widely studied passive technique to mitigate 

supercooling. Using Borax as a nucleating agent (at 1.9% mass fraction) the degree of 

supercooling for a thickened sample of Glauber’s salt was reduced from 15 oC to 3~4 oC 

[25]. Supercooling in sodium acetate trihydrate (SAT) was entirely obviated upon addition 

of aluminum nitride (AlN) nanoparticles (at mass fraction of 5%) and mixed with carboxyl 

methyl cellulose (CMC) as a thickening agent at 4% mass fraction [26]. Supercooling in 

SAT was also reduced by adding silver nanoparticles and the authors reported that the 

efficacy of this additive is a function of the concentration of the particles [27]. Similarly, 

copper hydroxyl nitrate hydrate (CHNH) catalyst enhances nucleation in lithium nitrate 

trihydrate (LNT). Models suggest that the minimizing the mismatch in the lattice structure 

of the salt and the additive (e.g., catalyst) is effective in reducing the degree of 

supercooling [28].  Zinc hydroxyl nitrate and zinc oxide nucleators were shown to reduce 

the supercooling in zinc nitrate trihydrate by 8.8 oC and 8.2 oC, respectively [29]. The 
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effect of various additives (e.g., nucleating agents) on reducing the degree of supercooling 

in salt hydrates has been reviewed extensively [30, 31].  

In contrast to the heterogenous seeding techniques, the ‘cold finger technique’ 

(CFT) is an example of a homogenous nucleation technique where a small portion of the 

salt hydrate is un-melted and maintained in a solid phase (which is in contact with the 

liquid phase), and this un-melted portion is very effective in promoting spontaneous 

nucleation. A localized spot can be maintained in a solid phase by adding extra insulation 

or exerting pressure. Another way to implement the cold finger technique is to halt the 

melting process of the PCM just prior to achieving complete melting and starting the 

freezing process prior to complete melting (during thermocycling involving repeated 

melting and solidification). For instance, the heat source could be removed when the PCM 

reaches 85% melt, leaving 15% un-melted to serve as the promoter for spontaneous 

nucleation (when the freezing cycle is initiated). Hence, by leveraging CFT spontaneous 

nucleation can be achieved quite effectively albeit at the expense of a reduction in the 

energy storage capacity. For a TES application deployed for thermocycling (i.e., repeated 

melting and freezing cycles), CFT afforded a reliable and effective strategy for reducing 

the degree of supercooling in LNT (from 16 oC for completely melted mass of PCM) to 

0.5 oC ~ 1 oC for over 800 cycles of repeated melting and freezing [32].  

A successful implementation of this technique depends on the ability to reliably 

control (and also predict) the duration of the melting cycle of the PCM. A possible way to 

implement this technique necessitates achieving a particular target value of melt-fraction 

(e.g., 90% melt-fraction) with sufficient precision and accuracy for the purpose of 



 

13 

 

maximizing the storage capacity while also achieving the desired reliability of operation. 

When the system reaches this target point (say 90% melt-fraction), the solidification 

process could be initiated (i.e., without proceeding to a 100% melt-fraction). Ideally, the 

time to reach the target point needs to be predicted in real time as the PCM undergoes 

melting. Hence, combining CFT with a time forecasting technique can successfully 

mitigate supercooling. Machine learning (ML) algorithms can be of significant utility, 

especially in situations mentioned here for LHTESS platforms (e.g., using salt hydrates), 

where there is a lack of accurate theoretical models describing coupled and non-linear 

thermal-hydraulic behavior at the system level. ML models are inherently robust as they 

are device independent and are based on behavioral data. ML models are most effective 

where large volumes of prior data are available for “training”. 

 

1.4 Artificial Neural Network Principles 

Artificial neural networks are capable of fitting complex, non-linear mappings 

between inputs and outputs [33]. An ANN can be defined as a parallel distributed 

processing system capable of learning from experiences [34]. ANNs are built to construct 

relationships between parameters without detailed knowledge about the system. The most 

basic kind of an ANN is the fully connected multilayer perceptron (MLP) model. In such 

networks, the neuron is the fundamental processor of information. These neurons (also 

referred to as ‘nodes’) are arranged in progressive layers. In case of a fully connected 

MLP, a neuron receives and processes the input from the neurons in the previous layer 

into an output. A neuron can be mathematically characterized by: (i) bias (b); and (ii) 
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activation function (f). Each synaptic connection is associated with a weight (w). Inside 

every node the activation function acts on the weighted inputs from the previous layer. Let 

the subscript n denote the serial number of the layer. The input vector to the layer can be 

represented by an. The functional relationship between the output of one layer (which is 

the input to the subsequent layer, an+1) is shown below: 

𝒂𝒏+𝟏 = 𝒇(𝒘𝑻𝒂𝒏 + 𝒃)                                                             (1) 

Developing an ANN involves three steps: training, validation, and testing. The 

input output data can be divided into three sets, i.e., one unique set of data that is dedicated 

for each stage. The weights and biases are randomly initialized. Output is obtained using 

these random parameters. A cost function is implemented to quantify the degree of 

disagreement between the generated output and the actual output (which serves as the 

validation step). The error values obtained in the validation step is propagated backwards 

from the output to the input layer which is then used for adjusting the weights and biases. 

A gradient descent algorithm is typically applied to modify the biases and weights to 

optimize (minimize) the cost function. This combination of feedforward and 

backpropagation process is continued iteratively until the target error (or desired value of 

the gradient) is achieved; or the number of passes (epochs) reaches a specified value. A 

typical example of the cost function is the sum of squared errors (SSE) on the validation 

dataset depicted in Equation (2) where p is the actual output and p’ is the value predicted 

by the ANN model at any given iteration. Also, N denotes the size of the validation set. 

The third stage involves testing the efficacy of the ANN on the test dataset which was not 

encountered by the ANN during the training or the validation stage. 
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   𝑺𝑺𝑬 =  ∑(𝒑 − 𝒑′)𝟐

𝑵

𝒊=𝟏

                                                                    (𝟐) 

Radial Basis Function Network (RBF-NN) is another class of ANNs which has 

gained popularity particularly in modelling thermophysical properties, such as that of 

nanofluids [35]. RBF-NNs were first introduced by Broomhead and Lowe [36]. This kind 

of an ANN is characterized by three layers – input, hidden, and output layer. Application 

of RBF-NN has been popular in contemporary literature reports, especially for function 

approximation. The fundamental difference between an MLP model and an RBF-NN 

network is in the computation taking place in the neurons. A radial basis function, φ is the 

activation function in the latter type of an ANN which operates on the Euclidean norm 

between the neuron center and the input vector. A connection weight then acts on the 

resultant to yield an output as shown below: 

𝒚 (𝒙) =  ∑ 𝒘𝒊𝝋(‖𝒙 − 𝒙𝒊‖)

𝒏

𝒊=𝟏

                                                      (3) 

 

1.5 Motivation and Goals 

The availability of freshwater is becoming increasingly scarce and costly due to 

increased demand while it is geographically unevenly distributed (with a few regions 

having large freshwater resources while geographical regions with arid climates facing 

severe shortages and scarcity along with other regions facing acute seasonal fluctuations 

or severe flooding that is accelerated by climate change). Hence, with rapid population 

growth and increased demand of freshwater resources along with impacts of climate 
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change, there is an acute strain on this valuable resource. Power plants consume trillions 

of gallons of freshwater annually. It may be noted that 36% of the thermoelectric power 

production capacity in the U.S. is from powerplants that use once-through cooling systems 

[37]. These plants withdraw large amounts of water from nearby waterbodies and release 

it back at higher temperatures (that can cause issues associated with thermal pollution of 

water bodies – such as biofouling and adversities to flora and fauna in the eco-systems 

associated with these water bodies). The sustainability of such cooling system is a topic 

of concern. Innovations are sought in the field of dry cooling technologies. Current state 

of the art of dry cooling technologies is insufficient and are a detriment to achieving 

satisfactory levels of plant efficiency and therefore to their techno-economic feasibility.   

Supplemental cooling systems are needed to facilitate dry cooling particularly in 

warmer regions of the world. PCM based LHTESS can be a potential solution to provide 

additional cooling and mitigating these debilitating issues.  

On the other hand, rapid advances in electronics have resulted in a superior 

performance that have accrued from squeezing larger number of device features into 

progressively smaller length scales. As a result, waste heat generation has increased 

exponentially while the operating temperature limits are at the risk of being violated (thus 

degrading device performance, reducing the operational life-spans and compromising the 

operational reliability due to frequent formation of transient, localized and acute hot-spots; 

which in turn has increased the frequency of failures that have resulted from 

maldistribution of debilitating thermo-mechanical stresses within the electronics chips and 

packages). Hence, efficient cooling technologies are needed to avoid device failure due to 
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overheating and maldistribution of temperature profiles within these electronics devices 

and packages. PCMs can rapidly absorb the excess heat while melting partially in the 

process within the contained packages, thus damping the peaks in temperature fluctuations 

caused by the maldistribution of the heat released during intermittent operation (duty-

cycles) and can slowly release the excess heat while solidifying back to the initial state 

(when the device is idle). Thus, this strategy can extend the operational capabilities of the 

heat sink under critical load conditions [38]. As a result, the heat sinks can be designed 

for base load while the TES platform (with PCM) can be designed to absorb the peak loads 

and therefore deployed in tandem for meeting the supplemental cooling needs.   

Passive thermal management for electronics using phase change materials (PCM) 

has significant potential in this regard. Passive systems are simpler and require less 

maintenance (since there are no moving parts). For this application, an ideal PCM should 

exhibit favorable material and thermophysical properties, such as, high heat capacity, high 

latent heat of fusion, and small volumetric changes during phase transition (with 

preferably, tunable melting or freezing points). Such properties enable high energy storage 

capacities to be achieved in compact form factors while enhancing reliability of operation 

and extending the life-span of electronics devices and packages.  

For the two applications outlined above, salt hydrates are particularly promising 

PCM candidates due to their favorable thermophysical and thermodynamic properties. 

However, one of the main drawbacks of salt hydrates is the need for supercooling to 

initiate nucleation. The motivation of this study is to enhance the systemic reliability of a 

PCM-based energy storage. For electronics thermal management applications, 
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supercooling hampers the effectiveness of a PCM filled heat sink. Hence, obviating the 

need for supercooling can be projected to have a significant impact on the state of the art. 

It is preferable that the temperature distribution of the electronics devices and packages 

are monitored in a non-intrusive manner (as insertion of additional sensors into packages 

can be a costly maneuver and add to the manufacturing as well as operational costs). 

Surface mounted temperature sensors can be an effective way to monitor the thermo-

mechanical “health” of electronics devices. A control scheme that is effective and 

efficacious (by leveraging surface mounted sensor arrays) is highly desirable. Also, there 

is an acute need for robust forecasting strategies that minimize the number of sensors 

required for these monitoring and control schemes.   

Hence, a goal of this study is to develop a novel method and to test the efficacy of 

this novel method for implementing the “cold finger technique (CFT)” with the intent of 

obviating supercooling, particularly for inorganic PCMs. An additional goal of this study 

is to explore the efficacy of this novel method for TES applications involving both: (a) 

monitoring the PCM temperature (for mitigating freshwater usage in power production 

applications); and (b) monitoring the surface (package) temperature of the PCM 

containment (for electronics thermal management applications). Artificial neural networks 

(ANN) based techniques are therefore utilized to use the measured temperature values as 

inputs in order to predict in real-time - the time remaining to reach a predefined melt-

fraction as the PCM melts. Secondly, a large volume of experimental data was generated 

in this study (temperatures recorded by an array of thermocouples, thermography images 

recorded by Infra-Red (I.R.) cameras, melt-fraction data, etc.) with the goal of validating 
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the efficacy of the ANN models for future studies involving computational fluid dynamics 

(CFD) simulations. These data sets can also be utilized in the future for developing 

machine learning (ML) based algorithms (that leverage image processing of the 

thermography images recorded by the I.R. cameras at fixed intervals in time and are linked 

to the particular melt-fraction estimated using the thermocouple data obtained in tandem 

with the acquisition of these I.R. images) for predicting the melt-fraction, perhaps based 

on just a single I.R. image. Such future approaches envisioned from this study will 

magnify the impact of ANN and ML models in enhancing the efficacy of TES (PCM) 

platforms.  

1.6 Objective and Scope 

The objective of this study is to accurately predict in real time, the time remaining to 

reach a preselected melt percentage for a PCM undergoing phase transition from solid to 

liquid. The intention is to use the temperatures recorded at specific locations within the 

melting mass of PCM - as inputs to an ANN model – for the purpose of estimating the 

instantaneous values of melt-fraction as well as the time remaining to attain a preselected 

melt-fraction. With electronics applications in mind, another objective is to use surface 

temperature data (recorded by a fixed set of thermocouples that are mounted on the 

exterior surface of the containment wall) for estimating the time remaining to achieve a 

desired (and set) value of melt-fraction. Hence, the efficacy of two different approaches 

utilizing the same ANN model is compared. These are:  

1. using temperature data from sensors immersed within the body of the PCM at 

locations corresponding to meniscus levels of the liquid coinciding with specific 
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values of melt-fraction of the PCM (i.e., transient PCM-temperature data for 

training of the ANN model); and  

2. using temperature data from sensors mounted on the surface of the cylindrical 

container at locations corresponding to meniscus levels of the liquid coinciding 

with specific values of melt-fraction of the PCM (i.e., transient surface-

temperature data for training of the ANN model). 

Since ANNs fall under the category of supervised learning, labelled data is needed 

for the training step. The data for training the network is obtained from PCM melting 

experiments. The ability to make apriori predictions (i.e., forecasting using ANN 

techniques) is significant for power generation (improving reliability by using 

supplemental cooling, eliminating freshwater usage, etc.) and electronics thermal 

management (reducing hot spots, extending life-span of electronics, enhancing computing 

performance, elevating operational reliability, etc.) as it enables the successful 

implementation of the cold finger technique (CFT) and thus obviates supercooling.  

The scope of the experiments is limited to a specific PCM only (since this study is 

focused on proving the feasibility of the proposed ANN techniques and the focus of this 

study is not on improving the performance of any PCMs). PureTemp 29 (with a melting 

point of 29 oC) is selected for these experiments and for obtaining the data set needed for 

both developing and validating (training and optimizing) the ANN models as well as 

testing the efficacy of the predictions (forecasting in real-time) from the ANN models. 

Ease of performing the experiments (with minimal complications) and reliability of 

acquiring the temperature data (as well as the desire for maintain simplicity of the 
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experimental apparatus) guide the selection of this particular PCM. Further, the topology 

of the artificial neural network (ANN) is fixed.  Optimization of the ANN topology is out 

of scope of this study – since proving the feasibility of this strategy is the main goal of this 

study. The neural network is composed of three hidden layers and each layer has 512 

nodes. The Rectified Linear Unit (ReLU) activation function is used in the network nodes. 

The cost function for the training purpose is the Mean Squared Error (MSE). ADAM 

optimizer is deployed as the gradient descent algorithm.  
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CHAPTER II  

EXPERIMENTAL METHODS AND DATA PROCESSING* 

 

2.1 Experimental Apparatus and Procedure 

The experimental apparatus and procedures (to generate the raw data which is 

subsequently modified for ANN training purposes) is presented in this chapter. The 

description of the experimental procedure is categorized as follows:  

1. Calibration of thermocouples (using water bath).  

2. Calibration of the thermocouple location and placement (using measured aliquots 

of water). 

3. Melting-cycle experiments (for acquisition of transient PCM-temperature and 

transient surface temperature data) along with flow visualization (using digital 

camera) and thermography (using Infra-Red / I.R. Camera). 

The PCM melting experiments involve melting a known volume of PCM (that is 

completely solidified initially) in a graduated measuring cylinder with thermocouples 

located at certain heights from the bottom of the cylinder. The thermocouples were 

mounted at specific locations – both within the volume of the cylinder as well as on the 

outside surface of the cylinder. These locations were determined strategically in order to 

measure the temperature transients at particular heights (from the bottom).  

 

*Part of the data reported in this chapter is reprinted with permission from “Leveraging Machine Learning 

(Artificial Neural Networks) for Enhancing Performance and Reliability of Thermal Energy Storage 

Platforms Utilizing Phase Change Materials” by Aditya Chuttar, Ashok Thyagarajan, and Debjyoti 

Banerjee, 2021. Journal of Energy Resources Technology, 144(2): 022001, Copyright 2021 by ASME 
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The vertical heights were chosen strategically to correspond to the level of the liquid 

meniscus of the melted PCM for a pre-determined value of melt-fraction. The heat source 

for melting is a current carrying Nichrome coil that was mounted inside the cylinder and 

at the base of the cylinder. The melt front (solid-liquid interface) originates at the base and 

propagates upwards during the course of the melt-cycle. 

 

2.1.1 Thermocouple Calibration 

PFA insulated, fine gage (36 AWG) K-type thermocouple wires (make: Omega) 

are chosen for fabrication of the temperature sensors. The fine diameter ensures the 

thermocouple wires occupy least possible volume within the PCM mass. Chromel (+) and 

Alumel (-) wires of adequate lengths are welded together (at one end) using a 

thermocouple-wire welder (make: Omega). The thermocouple wires are labelled and the 

thermocouples are then ready to be calibrated.  

The thermocouples were calibrated in a water bath under steady state conditions. 

The bath temperature was varied from 20 oC to 40 oC. An NIST calibrated thermometer 

(Least Count: 0.1 oC) was used for measuring the bath temperature. The isothermal water 

bath setup used in these calibrations experiments is manufactured by Cole Parmer (Model: 

Polystat). After the calibration step, the measurement uncertainty of the temperature 

transients recorded by the thermocouples were estimated to lie in the range 0.3% to 0.8%.  

Thermocouples were calibrated in the temperature range of 20 to 40 oC. Steady 

state temperature values that were recorded by the thermocouples immersed in the water 

bath were recorded for ~2 minutes at a rate of  0.25 Hz using a digital data acquisition 
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apparatus (DAQ). The DAQ consisted of NI SCXI 1303 board with the NI SCXI 1000 

chassis (National Instruments), for connecting the thermocouple lead wires and for 

recording the temperature data. The data acquisition was automated using LabView™ 

software (National Instruments). Calibration was performed for water bath temperature 

maintained at: 20 oC, 25 oC, 30 oC, 35 oC, and 40 oC. The calibration constants were 

computed in these temperature ranges by fitting a linear function between the values 

recorded by the NIST thermometer and temperature values measured by each 

thermocouple – based on the voltage output from each thermocouple (for the five 

temperatures listed above). Since the NIST thermometer can be used to measure 

temperature with a precision of 0.1 oC, while the DAQ platform can record the output from 

each thermocouple with 16-bit precision: the calibration-step decreases the precision of 

the temperature measurements but increases their accuracy (closeness to the actual value 

of the temperature).  The calibration curves for the different thermocouples used in this 

study are provided in Appendix A. The uncertainty in temperature measurement can arise 

from various sources: (1) uncertainty due to the DAQ precision (uDAQ), (2) statistical 

uncertainty (us), and (3) the precision of the NIST thermometer (ut). The component of the 

measurement uncertainty arising from the precision (or truncation errors) of the DAQ 

(uDAQ) is expressed as: 

 𝒖𝑫𝑨𝑸 (%) =

(𝑻𝒄𝒂𝒍.𝒉 − 𝑻𝒄𝒂𝒍,𝒍)

𝟐𝑵𝒃𝒊𝒕 − 𝟏
𝑻𝑫𝑨𝑸

∗ 𝟏𝟎𝟎                                          (𝟒) 

where, Tcal,h denotes the higher end of the calibration temperature range and Tcal,l is the 

lower end. Nbit is corresponds to the DAQ resolution (16-bits). It is a measure of the 
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number of discrete levels that can represent an analog signal. TDAQ is the temperature 

measured by the data acquisition system.  

𝒖𝒕 (%) =
𝑳. 𝑪.

𝑻𝒕𝒉𝒆𝒓𝒎
  ∗ 𝟏𝟎𝟎                                                   (𝟓) 

L.C. is the least count of the thermometer and Ttherm is the temperature measured by the 

thermometer. 

𝒖𝒔(%) =  
𝝈𝒔

𝑻𝑫𝑨𝑸
∗ 𝟏𝟎𝟎                                                    (𝟔) 

where, σs is the standard deviation of the steady state temperature data. The total 

uncertainty, utotal in a thermocouple reading is the root of the sum of squares of each 

uncertainty and is given by (7). Thus, we obtain a value of utotal corresponding to each 

temperature—20 oC, 25 oC, 30 oC, 35 oC, and 40 oC.  The average value for utotal from 

these is the uncertainty in the thermocouple measurement.  

𝒖𝒕𝒐𝒕𝒂𝒍(%) =  √𝒖𝑫𝑨𝑸
𝟐 + 𝒖𝒕

𝟐 + 𝒖𝒔
𝟐                                     (𝟕) 

While reporting the average ambient temperature during a PCM melting 

experiment, an additional source of statistical uncertainty needs to be accounted for. This 

is attributed to the spread of the ambient temperature over a range of values throughout 

the experiment. This additional component of uncertainty, uamb, is quantified by the 

standard deviation of the ambient temperature data recorded in any experiment.  

𝒖𝒂𝒎𝒃 (%) =
𝝈𝒂𝒎𝒃

𝑻𝒂𝒎𝒃,𝑫𝑨𝑸
∗ 𝟏𝟎𝟎                                          (𝟖) 

Table 7 in Appendix B summarises the uncertainties (in percentage) for different 

thermocouples used for obtaining the transient temperature data. The total uncertainty in 
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measurement for any thermocouple lies between 0.3 % and 0.8 %. The steps followed to 

obtain the total uncertainty (for the thermocouple located at a height corresponding to 30% 

melt-fraction within the PCM as an example) are also summarised in Appendix B.  

 

2.1.2 Mounting of Thermocouples  

The location of the thermocouples along the axis of the cylinders and its outer 

surface is based on the particular location of the liquid meniscus of the PCM (as it melts 

progressively) corresponding to chosen and specific values of melt-fraction of the PCM. 

A series of volume calibration experiments were performed in the measuring cylinder 

(before performing the PCM experiments) to determine the height corresponding to a 

particular value of the volume of liquid phase. This was performed by filling the measuring 

cylinder with a fixed quantity of water and noting the level of the liquid meniscus, as 

follows. With the heater assembly and the thermocouple positioning apparatus inside the 

cylinder, water is poured in 5 ml aliquots. The water level rise is recorded until the water 

reaches the 50 ml mark. Due to the volume occupied by the apparatus inside, the volume 

level shown by the cylinder is higher than the actual volume of water in it. Fig. 3 shows 

the filled volume as a function of the actual volume. Using the densities of the solid and 

liquid PCM phases, the cylinder markings corresponding to the chosen melt-fractions are 

determined.  
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Figure 3. Actual volume versus apparent volume of water in the cyllinder. 

 

The following expressions help us to determine the location of a thermocouple, 

i.e., for co-location with the corresponding height of the meniscus - for a specific melt-

fraction, M (%). In what follows, V (ml) stands for actual volume when the apparent 

volume measured by the cylinder is V’ (ml).  Let VL,100 (ml) be the actual volume of 100% 

liquid PCM in the cylinder when the liquid meniscus is at the maximum mark (the cylinder 

capacity). V’L,100 denotes the apparent volume of liquid in the cylinder. For experiments in 

this study, V’L,100 is equal to 50 ml. The actual volume of the PCM upon solidification is 

denoted by VS,0 and is given by (9).  

𝑽𝑺,𝟎 =  
𝝆𝑳

𝝆𝑺
∗ 𝑽𝑳,𝟏𝟎𝟎                                                       (𝟗) 

The apparent volume of the PCM is given by the linear relationship from Fig. 3. 

For a generalized expression, let the linear relationship between apparent volume and 

actual volume be given by (10). 
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𝑽 = 𝑪𝟏𝑽′ + 𝑪𝟐                                                          (𝟏𝟎) 

The volume of liquid PCM in the cylinder (for melt-fraction, M) is denoted by 

VL,M  and is given by (11). In these calculations the melt-fraction (M) is expressed as a 

percentage value. In (11), V’L,M  is the corresponding milliliter level of the solid-liquid 

interface measured by the graduated cylinder.  

𝑽𝑳,𝑴 = 𝑪𝟏𝑽′𝑳,𝑴 + 𝑪𝟐                                               (𝟏𝟏) 

Hence, the actual liquid volume, VL,M is given by (12).  

𝑽𝑳,𝑴 =  
𝑴

𝟏𝟎𝟎
∗

𝝆𝑺

𝝆𝑳
∗ 𝑽𝑺,𝟎                                             (𝟏𝟐) 

Combining (9), (11) and (12) to compute V’L,M  (the level of the liquid-solid 

interface corresponding to a melt-fraction M) is the final step. The obtained V’L,M  (ml) 

provides level of the thermocouple along the axis of the cylinder corresponding to a melt-

fraction, M. Thus, a correlation is derived using this method in order to determine the 

location of a thermocouple as a function of a selected value of melt-fraction.  

Interestingly, there exists a maximum value of melt-fraction such that the 

thermocouple at that point remains inside the PCM mass throughout the experiment. This 

occurs due to PCM volume shrinkage. Upon solidification of the PCM, the thermocouples 

mounted at locations corresponding to higher values of melt-fraction (which are initially 

submerged in the liquid PCM) are then exposed to air (instead of being submerged in the 

solidified mass of PCM) since the air-PCM interface recedes upon complete solidification 

of the PCM. In this experiment, thermocouples mounted at locations corresponding to 

melt-fraction exceeding 95% - therefore - would not be immersed in the PCM during the 

entirety of the experiments. Hence, at the beginning of the melt-cycle these thermocouples 
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would be exposed to air (and will record the temperature of the surrounding air). However, 

towards the final stages of the melt cycle (when the melt-fraction exceeds 95%), these 

thermocouples will be submerged in the liquid PCM and would record the temperature of 

the liquid phase of the PCM. 

 

2.1.3 PCM Melting Experiments 

Thermocycling experiments were conducted in this study to obtain a dataset 

consisting of temperature transients and the corresponding values of melt-fraction. 

PureTemp 29™ is chosen as the candidate PCM in these experiments. The salient 

properties of Pure Temp29TM are listed in Table 1 [37]. The data from these experiments 

were used for training an ANN model. The goals of these experiments and numerical 

simulations were focused on deploying the ANN model for real-time prediction of the 

time required to reach a target value of melt-fraction (e.g., 85%). The errors in the 

predictions (compared to experimental data) were obtained from this study with the goal 

of identifying the ANN model that yields the best performance. 

Solid sample of PCM was heated in a graduated measuring cylinder (with total 

volume of 50 ml) and with a least count of 1 ml. The experiments were performed until 

the PCM was melted completely. Broadly, the apparatus consists of four components: (i) 

the graduated measuring cylinder; (ii) K-type thermocouples; (iii) heater coil; and (iv) 

Data acquisition system.   

The heater assembly is composed of a Nichrome wire (coil) connected to a DC 

power supply. The coil is placed at the bottom of the cylinder for melting the PCM for a 
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fixed value of input power. The ends of the coil are connected to a DC supply by means 

of insulted connecting wires. Such a configuration means that when the liquid meniscus 

is at 0 ml marking (i.e., there is no melting), the PCM is at a 0% melt-fraction. Whereas, 

when the liquid meniscus is at the 50 ml marking, the PCM is at 100% melt-fraction. The 

thermocouples are placed at particular locations (within the volume of the PCM) and along 

the axis of the cylinder corresponding to 30%, 60%, 85%, 90%, 95%, and 99% melt-

fraction. On the outer surface of the measuring cylinder, the surface-mounted 

thermocouples are located at heights corresponding to 30%, 60%, 90% and 99% melt-

fraction. In addition to these sets, another thermocouple is located at a distance of 1 cm 

above the 50 ml mark on the outside surface of the measuring cylinder, i.e., at a distance 

of 1 cm above the height of the meniscus corresponding to 100% melt-fraction. Thermal 

paste (OmegabondTM) is used as a glue to mount the thermocouples on the outside surface 

of the measuring cylinder. The thermocouples are calibrated in the temperature range of 

20 oC to 40 oC. The calibration step involves the measurement of the steady state 

temperature of each thermocouple when placed in a water bath and the temperature 

measurements were recorded by an automated digital data acquisition system for a period 

of 2 minutes. The calibration was performed for fixed temperature values (of the water 

bath) corresponding to 20 °C, 25 °C, 30 °C, 35 °C, and 40 °C. The calibrations were 

performed using a NIST calibrated mercury thermometer with a least count of 0.1 °C . The 

resultant calibration error (instrument/ bias error and statistical error) is estimated to be 

less than ± 0.1°C  with a 68% statistical confidence (i.e., within one standard deviation of 

the average value).  
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Table 1 Salient Properties of PureTemp29™ [39] 

Property Value 

Enthalpy of Phase Change 202 J/g 

Heat Capacity of Solid 1.77 J/g oC 

Heat Capacity of Liquid 1.94 J/g oC 

Density of Solid 0.94 g/ml 

Density of Liquid 0.85 g/ml 

Conductivity of liquid 0.15 W/m oC 

Conductivity of solid 0.25 W/m oC 

 

A digital data acquisition system (NI SCXI 1303 board with the NI SCXI 1000 

chassis, from National Instruments Inc.) was used for recording the transient temperature 

data from the thermocouples. The data acquisition process was automated using 

LabviewTM software (from National Instruments Inc.). The photograph of the experimental 

setup is shown in Fig. 4. Figure 5 schematically depicts the different components of the 

experimental apparatus. A plastic tube was inserted into the measuring cylinder (prior to 

filling it with PCM). The plastic tube was used for mounting the thermocouples and for 

the purpose of placing the beaded ends of the thermocouples at specific locations precisely 

along the vertical direction. The lower end of the plastic tube was sealed to prevent PCM 

from seeping in, and the thermocouple wires emerged out of the upper end of the plastic 

tube. The cylinder is filled with liquid PCM up to the 50 ml mark and allowed to solidify 

under ambient conditions. Digital images of the whole volume of PCM within the 
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measuring cylinder were captured every 60 s during the melting experiments in order to 

monitor the rise of the liquid-solid interface along the vertical direction. An infra-red (I.R.) 

camera was used to capture I.R. images intermittently at specific intervals of time. The 

I.R. images were used to monitor the temperature distribution and ascertain temperature 

uniformity within different parts of the experimental apparatus. Representative I.R. 

images are shown in Fig. 6. Appendix G includes the I.R. images generated during the 

course of experiments done in this study. Each image corresponds to a specific time of its 

capture after the heating process has commenced (i.e., after the heater is switched on). The 

time of capture is stored along with the image. 

 

 

Figure 4 Photograph of the experimental apparatus used in the study. 
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Figure 5 Schematic of the experimental apparatus used in this study. 

 

Using the apparatus, melting experiments were performed by setting the heater 

voltage at a constant value. The thermocouple and the visual data (digital images and IR 

images) were recorded until complete melting of the PCM was achieved. Experiments 

were performed for three sets of heater input voltages—2.8V (1.6W), 2.6V (1.4 W), and 

2.3V(1.08W). Each experiment was conducted twice to verify repeatability of the 

experimental data. The transient temperature data recorded by the thermocouples is plotted 

using a line graph.. Figure 7 shows the transient temperature profile recorded by 

thermocouples that were mounted within the mass of PCM (“transient PCM-temperature 

data”). Fig. 8 shows the transient temperature profile recorded by thermocouples mounted 

on the surface of the measuring cylinder (“transient surface-temperature data”). In these 

plots, the abscissa denotes the elapsed time in seconds [s]. 
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Figure 6 Images of the PCM undergoing melting in the cylinder for heater input 

power of 1.6 W (2.8 V input condition). 

 

 

Figure 7 Temperature transients of the PCM recorded by the thermocouples 

mounted within the experimental apparatus for a heater input voltage of 2.6 V (1.4 

W power input). 
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Figure 8. Temperature transients recorded by the thermocouples measuring the 

cylinder surface temperatures for a heater input voltage of 2.6 V (1.4 W power 

input). 

 

2.2 Data Preparation for ANN Training and Validation 

The goal of this study was to predict in real-time (i.e., at any instant during the 

melting process) — the time remaining to attain the target melt-fraction, for instance an 

85% melt-fraction. In deep learning terms, for this case, the “time to reach 85% melt-

fraction” is the label. This label is obtained by subtracting the time recorded corresponding 

to each temperature measurement (consisting of the following set: [T30, T60, T85, T90, T95, 

T99, T’30, T’60, T’90, T’99, Tambient]) from the time when melt fraction of 85% is attained. 

The target value of 85% melt-fraction is achieved when the melt front hits the particular 

thermocouple inside the PCM mass (indicated by the sudden rise in temperature recorded 

by that particular thermocouple). This point is indicated by the temperature profile of that 

thermocouple (Fig. 7). The temperature curve begins to plateau after a sharp increase. The 
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time stamp on this point serves our purpose for generating the labels. Thus, in the example, 

the label is obtained from the T85 temperature transient. 

However, if the label is in the form of dimensional time in seconds, this technique 

would not be scalable as the time for melting is a function of the heater voltage. With a 

heater voltage of 2.3 V, the PCM volume takes about 4.5 hours to melt completely. In 

contrast, with a 2.8 V heater voltage, the PCM melts in about 3 hours. Hence, a 

nondimensional quantity, referred to as ‘reduced time’, is formulated. 

Nondimensionalizing the time parameter allows us to train the ANN using one 

experimental dataset and predict for another case. This reduced time, τ, is obtained by 

taking the ratio of the elapsed time to the time when the target value (e.g., 85% melt-

fraction) is achieved.  It follows that the nondimensional form of the label is then the 

complementary value of τ (i.e., obtained by subtracting τ from unity and is denoted by τ’).  

Let t  denote the time elapsed from the initiation of the melting process for which 

corresponding temperature measurements — [T30, T60, T85, T90, T95, T99, T’30, T’60, T’90, 

T’99, Tambient] are captured by the DAQ. The variable t’
m is the time remaining to attain a 

specific melt fraction (m) at any time t.  The total time taken by the PCM to reach the melt-

fraction of m (expressed as a percentage) is denoted by tm. For all t during any experiment 

performed in this study, the relationship between t’
m and tm can be expressed as follows:  

𝒕′𝒎 = 𝒕𝒎 − 𝒕                                                              (𝟏𝟑) 

The non-dimensional elapsed time corresponding to t is denoted by τm and is expressed as:  

𝝉𝒎 =
𝒕

𝒕𝒎
                                                                    (𝟏𝟒) 
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Finally, the label chosen as the output parameter of the ANN is denoted by τ’m and can 

be expressed as: 

𝝉′
𝒎 = 𝟏 −  𝝉𝒎                                                             (𝟏𝟓) 

Thus, we have a value of τ’m corresponding to each transient temperature data 

point. Further, each temperature data point is composed of a set of 11 temperatures—[T30, 

T60, T85, T90, T95, T99, T’30, T’60, T’90, T’99, Tambient]. Figure 9 depicts the plot of PCM 

temperatures as a function of nondimensional time (τ85) and was obtained after 

implementing the aforementioned steps. In this study, four ANN system frameworks are 

explored. These frameworks differ from one another in terms of the inputs and the target 

melt-fractions. The topology (number of nodes, layers) of the neural network is the same 

in all the frameworks. Table 2 summarizes these frameworks.  
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Figure 9. Temperature transients from the three thermocouples mounted within 

the experimental apparatus for a heater input voltage of 2.6 V, plotted as a function 

of the non-dimensional time (τ85). 

 

Table 2 Summary of datasets utilized for training and validating the ANN models 

Serial 

No.  

Preselected Melt-

fraction (%) 

ANN input 

(Temperatures in oC) 

ANN output 

1 90 T30, T60, T85 τ'90 

2 90 T’30, T’60, T’90 τ'90 

3 85 T30, T60, T90 τ'85 

4 85 T’30, T’60, T’90 τ'85 
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The MLP model (i.e., the artificial neural network/ ANN model) is trained using τ’
m as the 

label and the three temperature inputs (recorded by the experiment for a particular power 

input). The training process is based on the well-known back-propagation algorithm which 

modifies the weights and biases of a node as it iterates through the dataset. The training 

process is stopped by using the ‘early stopping’ approach. In other words, when the MSE 

does not improve substantially upon further iterations, the training process is halted. The 

neural network in this study is composed of three hidden layers and each layer has 512 

nodes. The Rectified Linear Unit (ReLU) activation function is used in the network nodes. 

The cost function for training purposes is the Mean Squared Error (MSE). The mean 

squared error is computed over the complete training dataset, i.e., over all the temperature 

measurements in the training dataset. In other words, the squared sum error (SSE) is 

computed for each point. At the end of each iteration in the backpropagation algorithm, 

the MSE is obtained by computing the average of the squared sum errors corresponding 

to every data point. ADAM optimizer is deployed as the gradient descent algorithm.  The 

predictions are generated for all the six combinations of training/ prediction by utilizing 

the three datasets. A Multilayer Perceptron (MLP) Network is devised with input nodes. 

Figure 10 shows the topology of the neural network for the framework corresponding to 

serial no. 3 in Table 2, (i.e., the PCM temperatures, marked as: T30, T60 and T90; which 

constitute the three inputs and the output of the ANN – which is τ’
85). 
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Figure 10. Topology of the MLP network predicting τ’85 (as a function of T30, T60, 

and T90). 
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CHAPTER III  

RESULTS AND DISCUSSION* 

 

3.1 Introduction 

This chapter consists of three sections: 

1. Prediction of time to reach 90% melt-fraction using transient PCM temperature 

data (located at meniscus levels corresponding to 30%, 60%, and 85% melt-

fraction) for training the ANN model.  

2. Prediction of time to reach 90% melt-fraction from the transient surface-

temperatures data (located at meniscus levels corresponding to 30%, 60%, and 

90% melt-fraction) for training the ANN model.  

3. Comparison of predicted values for the time to reach 85% melt-fraction by the 

ANN model using two different approaches: (a) transient PCM-temperature data; 

and (b) transient surface-temperature data. The temperature data are acquired from 

thermocouples located at meniscus levels corresponding to 30%, 60%, and 90% 

melt-fraction. 

 

 

 

 

 

 

*Part of the data reported in this chapter is reprinted with permission from “Leveraging Machine 

Learning (Artificial Neural Networks) for Enhancing Performance and Reliability of Thermal Energy 

Storage Platforms Utilizing Phase Change Materials” by Aditya Chuttar, Ashok Thyagarajan, and 

Debjyoti Banerjee, 2021. Journal of Energy Resources Technology, 144(2): 022001, Copyright 2021 

by ASME 
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Three datasets corresponding to a different voltage and power input condition for 

the heater are considered in this study: 2.3V, 2.6V, and 2.8V. The experiments performed 

for 2.3V input to the heater corresponds to a current of 0.47A and a power input of 1.08 

W. When the heater input voltage is 2.6V, the heater draws a current 0.54A and a power 

input of 1.4W. For 2.8V input, the current and power inputs are 0.58A and 1.6W, 

respectively. It is to be noted that a total of 6 PCM melting experiments were performed—

two for each heater power input (2.3 V, 2.6 V, 2.8 V). Experiments were conducted twice 

to ensure that they are repeatable. However, for a particular heater voltage, the output of 

one experiment is utilised for data processing and subsequently, training the neural 

network. For instance, from the two available datasets for 2.6 V (1.4 W) heater input, one 

is used for training the ANN model. All the results summarised in the sections that follow 

are computed from dataset constituting the experimental output from one experiment 

corresponding to each of the three heater input voltages.  

The time taken to reach 100%, 90%, and 85% melt for the three datasets is depicted 

by means of a bar chart in Fig. 11. The difference between the time to reach a given melt-

fraction among the data sets shows wide variability for the chosen power input conditions. 

For instance, the time to reach 100% melt for 2.3V set and 2.6V set is 15,658 s and 13,157 

s, respectively (a difference of 2,500 s). Whereas time to reach 90% melt for 2.3 and 2.6V 

experiments is 13,670 s and 12,729 s respectively (a difference of 940 s). Similar trend 

can be observed between 2.3V and 2.8V sets as well. This trend can be attributed to 

increasing heat losses to the ambient from the lateral walls of the cylinder as the solid-

liquid PCM interface moves upwards. The ambient temperature plays a key role in 



 

43 

 

determining the heat loss due to heat loss by free convection from warmer surface of the 

measuring cylinder (than the ambient). The average ambient temperatures during the 

experiments are listed in Table 3.  The minimum and maximum ambient temperatures are 

also shown. All the temperatures are reported at 68% confidence level.  

 
Figure 11. Time to reach specific melt-fraction as a function of heater voltage. 

 

Table 3 Ambient temperatures during PCM melting experiments 

Experiment 

Heater 

Voltage (V) 

Min. Ambient 

Temperature (o C)  

 

Max. Ambient 

Temperature (o C) 

 

Avg. Ambient 

Temperature 

(o C) 

2.3V 21.7± 0.09 22.9± 0.09 22.1± 0.1 

2.6V 21.0 ± 0.08 22.6± 0.09 21.6 ± 0.1 

2.8V 21.0 ± 0.08 21.8 ± 0.09 21.2 ± 0.1 
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The absolute value of the time required to completely melt the PCM for a given 

heater power is highly sensitive to minor variations in the ambient temperature. For the 

same heater voltage, the time to reach a 100% melt-fraction can thus vary for different 

instances of the experiment. The repeatability of the experiments can be established by 

plotting temperature transients recorded by a thermocouple, e.g., T30 against non-

dimensional time (where the total time spans from 0 to 100% melt). As an example, Figs. 

12-14 shows the repeatability of the 2.8V experiment . The initial temperature of the solid 

PCM at the beginning of the two instances of the 2.8V experiment are different (due to 

different ambient conditions) causing the deviations observed in Figs. 11-13. Between 

Experiment-1 and Experiment-2, the PCM temperatures are different at 100 = 0 (at the 

beginning of the experiment). The graphs showing the repeatability of 2.3V and 2.6V 

experiments have been included in Appendix C.  

 

Figure 12. Comparison of temperature profiles in two different experiments for 

verifying the repeatability of the experiments: for the thermocouples mounted at 

the location corresponding to the height of the liquid meniscus for PCM melt-

fraction of 30% and for heater input power of 1.6 W (2.8 V input). 
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Figure 13. Comparison of temperature profiles in two different experiments for 

verifying the repeatability of the experiments: for the thermocouples mounted at 

the location corresponding to the height of the liquid meniscus for PCM melt-

fraction of 60% and for heater input power of 1.6 W (2.8 V input). 

 

 

Figure 14. Comparison of temperature profiles in two different experiments for 

verifying the repeatability of the experiments: for the thermocouples mounted at 

the location corresponding to the height of the liquid meniscus for PCM melt-

fraction of 85% and for heater input power of 1.6 W (2.8 V input). 
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3.2 Prediction of Time to Reach 90% Melt-Fraction (Using PCM Temperature 

Data at 30%, 60%, and 85% Melt-fractions) 

This section presents the results of the ANN predictions. The ’90 parameter is the 

output of the ANN. The input to the ANN is constituted of the PCM temperatures at 30%, 

60%, and 85% melt-fraction levels. The three experimental data sets generated by varying 

the heater voltage (2.3 V, 2.6 V, and 2.8 V) are used in different sets of combinations for 

training the ANN and validating the efficacy of each prediction. For instance, an ANN 

trained on the 2.6 V data set is deployed to make predictions on the 2.3 V set and the 2.8 

V set. For a graphical presentation, the predictions of the ANN are depicted on a scatter 

plot for any combination of the training and prediction datasets.  The solid red line (y = x 

curve) serves as a reference for deviations of the predictions from the actual (“true” 

experimental) values. 

  

3.2.1 Training Set: 2.6 V, Prediction Set: 2.8V 

Using 2.6 V data obtained from the experiments as the training data, the 

predictions for the 2.8 V dataset are shown in Fig. 15. The vertical dotted lines in Fig. 15 

(and similar figures that follow) denote the points when the melt front hits the particular 

thermocouple, i.e., when the melt front reaches the specific melt-fraction (in this case, 

30%, 60%, and 85%). The ’90 value at that point is identified and a dotted line intersecting 

the x-axis at that point is plotted. On the non-dimensional scatter plot (e.g. Fig. 15), the 

green dotted line represents the point when the melt front reaches the respective 

thermocouple for the training set whereas the blue dotted line denotes the same for the 
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prediction set. Fig. 15 is dimensionalized by multiplying ’90 values by the time taken to 

reach 90% melt corresponding to the prediction set. In this case (training Set: 2.6 V, 

prediction Set: 2.8V), the factor of multiplication is 9,888 s (the time taken by the PCM 

to reach 90% melt when the heater voltage is 2.8 V). Fig. 16 shows the resultant scatter 

plot.  

 

Figure 15. Scatter plot comparing the ANN predictions with experimental data (the 

actual values for τ’) for test data set of 2.8 V (and training data set of 2.6 V). 
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Figure 16. Scatter plot comparing the ANN predictions with experimental data for 

test data set of 2.8 V (and training data set of 2.6 V). 

 

In order to ascertain the source of the deviations, an error term is formulated. as 

the difference between the predicted value and the actual value of time (in seconds).  Fig. 

17 depicts a line graph showing the variation of the error throughout the melting cycle. It 

is evident from the plot that the predictions from the ANN model (time to reach 90% melt-

fraction at any instant) match the actual values with considerable accuracy throughout the 

cycle. In fact, for a training/prediction combination of 2.6 V/ 2.8 V, the average absolute 

error in the final 1800 s (0.5 hours) before reaching 90% melt-fraction is about 4 minutes 

(230 s) which is a minute fraction of the total cycle time. A low error is desired particularly 

at the final stages, i.e. when the PCM is about to reach a melt fraction of 90% so that the 

melting cycle can be halted in time in a real life application of this method. 
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Figure 17 Error in predictions by the ANN model for 2.8 V dataset (training data 

set of 2.6 V) 

 

3.2.2 Training Set: 2.8 V, Prediction Set: 2.6 V 

The ANN is now trained using the 2.8 V data set and is deployed to obtain 

predictions for the 2.6 V dataset. The results are depicted in Figs. 18-19. In this case, the 

average error in predictions is computed to be 309 s during the final half an hour before 

the 90% melt-fraction is reached. Upon comparing Figs. 16 and 18, we see that the scatter 

plot has shifted below the y=x curve in the case of training with 2.8 V dataset and 

predicting for the 2.6 V dataset. In Fig. 18 (when the training and prediction sets were 2.6 

V and 2.8 V, respectively), the scatter plot lies above the y = x curve. 
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Figure 18. Scatter plot comparing the ANN predictions with experimental data (the 

actual values for τ’) for test data set of 2.6 V (and training data set of 2.8 V). 

 

 

Figure 19. Error in predictions by the ANN model for 2.6 V dataset (training data 

set of 2.8 V). 
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In the two sets of predicted values considered so far (corresponding to the training 

data sets of 2.6 V and 2.8V), the scatter plots tend to flatten in the region between 85% 

and 90% melt-fraction (between the dotted lines at 85% and 90% melt-fraction in Fig. 16 

and 18). It is to be noted that the thermocouple at 90% melt-fraction is outside this range 

(30–85%). Hence, the ANN is not able to discern the distinction between points when the 

melt-fraction is in excess of 85% —i.e., between melt-fraction values of say, 87% and 

90%—as sharply. In other words, the temperatures recorded by the three thermocouples 

(at 30%, 60%, and 85% melt-fraction) at an instant when the melt-fraction is 87% are not 

too distinct from those at an instant when the melt-fraction is 90%. The reason behind this 

discrepancy is that all the three thermocouples are immersed in the liquid pool by this 

point in time during the execution of the experiments. This translates into similar 

predictions at time instants after the melt front has passed the thermocouple located at the 

85% melt-fraction. As a result, we obtain a flattened scatter plot toward the end of the melt 

cycle. 

3.2.3 Training Set:2.3 V; Prediction Set: 2.6 V 

The ANN model trained using 2.3V dataset (for the transient PCM temperature 

data) is used for predicting the value of time remaining to reach 90% melt fraction (for the 

2.6 V input condition). The resulting scatter plot is shown in Fig. 20 and Fig. 21. As 

discussed previously, the scatter plot tends to flatten towards the end (at melt faction 

greater than 85%). The average absolute error during the final half an hour is 374 s.  
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Figure 20. Scatter plot comparing the ANN predictions with experimental data (the 

actual values for τ’) for test data set of 2.6 V (and training data set of 2.3 V). 

 

 

Figure 21. Scatter plot comparing the ANN predictions with experimental data for 

test data set of 2.6 V (and training data set of 2.3 V). 
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Considering the average absolute error in the last half an hour before 90% melt-

fraction is achieved (as the metric quantifying the efficacy of the technique presented in 

this study), Table 4 summarizes this quantity for all the 6 training/prediction combinations. 

The errors are less than 5% for the predicted values of the time remaining to reach 90% 

melt-fraction. These errors are of the order of 10 minutes.  

Table 4 Average absolute error in predictions during final 1800 s prior to attaining 

a melt-fraction fraction of 90% 

Training 

Prediction 

2.3 V 

[1.08 W] 

 

2.6 V 

[1.4 W] 

 

2.7 V 

[1.6 W] 

2.3 V [1.08 W]  670 s 680 s 

2.6 V [1.4 W] 374 s  315 s 

2.8 V [1.6 W] 215 s 230 s  

 

In this section, we demonstrated a representative procedure to achieve real time 

prediction of the time remaining to reach a preselected melt-fraction as a PCM melts in a 

LHTESS platform. The aim is to use this technique to provide real time predictions so that 

the melting cycle can be halted in time to have a residual mass of PCM in a solid state.  

 

3.3 Prediction of Time to Reach 90% Melt-fraction using Cylinder Surface 

Temperatures at 30%, 60%, and 90% melt-fraction 

The motivation to explore the efficacy of utilizing surface temperatures arises from 

the packaging aspects in passive thermal management of electronics. PCMs are considered 

to be attractive candidates for augmenting the efficacy of passive cooling platforms that 
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are deployed at the board/subcomponent level during transient operation of electronics 

devices. When deployed in a heat sink that leverages PCM based passive thermal 

management systems for cooling of electronic chips and packages, this maverick approach 

(using the second method) affords cheaper costs, better sustainability, higher reliability 

and resilience.  

This section explores the effectiveness of utilizing the transient surface-

temperature data for training the ANN model with the goal of predicting the values of the 

parameter: ’90 (non-dimensional time to remaining to reach 90% melt-fraction). As in the 

previous section, scatter plots for different training/prediction combinations are utilized to 

ascertain the efficacy of this strategy. It can be noted that the labels (’90) for training the 

ANN are generated from the thermocouple at 90% melt level inside the PCM mass. On 

the other hand, the input to the ANN model consists of the transient surface-temperature 

data recorded by the thermocouple located at the 90% melt-fraction level (along with that 

of the thermocouples located at melt-fractions corresponding to 30% and 60%). It may be 

noted that there is a phase lag between the temperature response for thermocouple pairs 

located at the same level, i.e., for PCM-temperature and surface-temperature for a given 

value of melt-fraction (e.g., 30%, 60% or 90%).   

Fig. 22 shows the results for the 2.6 V/ 2.8 V training/ prediction combination. We 

see that the predictions are less smooth than those with PCM temperatures. The surface 

temperatures are subject to higher noise than PCM temperatures due to transient effects of 

ambient conditions. This feature is evident in Fig. 23 (which shows the results for a 

training/prediction combination of 2.3 V/ 2.8 V) as well. Table 5 summarizes the average 
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absolute errors in prediction in the final 1800 s (prior to attaining a melt-fraction of 90%) 

for all combinations of training and prediction datasets.. The graphs showing the 

remaining training/prediction combinations have been included in Appendix E.  

 

 

Figure 22. Scatter plot comparing the ANN predictions (using T’30, T’60, T’90) with 

experimental data for test data set of 2.8 V (and training data set of 2.6 V). 
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Figure 23. Scatter plot comparing the ANN predictions (using T’30, T’60, T’90) with 

experimental data for test data set of 2.8 V (and training data set of 2.3 V). 

 

Table 5. Average absolute error in predictions ( from T’30, T’60, T’90) during final 

1800 s prior to attaining a melt-fraction of 90%. 

Training 

Prediction 

2.3 V  

[1.08 W] 

2.6 V  

[1.4 W] 

2.8 V  

[1.6 W] 

2.3 V [1.08 W]  240 s 204 s 

2.6 V [1.4 W] 368 s  102 s 

2.8 V [1.6 W] 239 s 190 s  
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3.4 Performance Comparison of ANN trained on Surface Temperatures with an 

ANN trained on PCM Temperatures 

The profile of transient surface-temperature data recorded in these experiments 

were similar to that of the temperature transients recorded within the mass of PCM.  The 

ANN model is trained using the transient PCM-temperature data recorded in the 

experiments: and are denoted as T30, T60, and T90 (as the inputs). Another ANN model is 

trained using the transient surface-temperature data recorded in the same experiments: and 

are denoted as T’30, T’60, and T’90 (as the inputs) instead of the PCM temperatures. The 

topology of the neural networks and the  ’ labels are the same as before. 

 

3.4.1 Training Set: 2.6 V; Prediction Set: 2.8 V 

Using the 2.6V dataset for training and deploying the ANN model (trained using 

transient PCM-temperature data) to obtain the predictions on the 2.8V input condition then 

yields the scatter plot in Fig. 24. However, when we use transient surface-temperature data 

to train the ANN model, the scatter plot is not as smooth. This is evident in Fig. 25. The 

surface thermocouples are exposed to higher levels of noise from the ambient environment 

(as compared to that of the thermocouples immersed in the mass of PCM). As a result, the 

profile of the transient surface-temperature data is not as smooth (as compared to that of 

the transient PCM-temperature data). Hence, the fluctuations in the predicted values are 

observed to be higher for the ANN models trained using the transient surface-temperature 

data. Despite this impediment, the average error in the last 1800 s is 502 s (~6% of the 

total cycle time).  
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Figure 24. Scatter plot comparing the ANN predictions (using T30, T60, T90) with 

experimental data for test data set of 2.8 V (and training data set of 2.6 V). 

 

 

Figure 25. Scatter plot comparing the ANN predictions (using T’30, T’60, T’90) with 

experimental data for test data set of 2.8 V (and training data set of 2.6 V). 
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3.4.2 Training Set: 2.3 V; Prediction Set: 2.8 V 

A significant difference is observed between the performances of the ANN trained 

on transient PCM temperature data versus that of the ANN trained on transient surface 

temperature data (for the particular case of 2.3 V/ 2.8 V training/ prediction sets). The 

ANN model is trained on the 2.3 V set and deployed to predict on the 2.8 V dataset. The 

results for the predictions from the ANN model are plotted in Fig. 26. At approximately 

3000 s prior to reaching 85% melt-fraction, the prediction error is observed to peak to a 

value of -1000 s. However, the average absolute error in the last 1800 s (before reaching 

85% melt fraction) is 331 s, which corresponds to a minute fraction (~4%) of the total time 

to reach 85% melt-fraction. In this specific case, the deviations are substantially 

minimized when surface temperatures are deployed to train the network, as evident in Fig. 

27. Scatter plots for other combinations of training and prediction datasets are included in 

Appendix F.   
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Figure 26. Scatter plot comparing the ANN predictions (using T30, T60, T90) with 

experimental data for test data set of 2.8 V (and training data set of 2.3 V). 

 

 

Figure 27. Scatter plot comparing the ANN predictions (using T’30, T’60, T’90) with 

experimental data for test data set of 2.8 V (and training data set of 2.3 V). 
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 At lower melt-fractions, the prediction errors are lower for ANN model trained 

using transient surface-temperature data than that of the ANN model trained using 

transient PCM temperature data (for target melt fraction of 85%). Line graphs are utilized 

to compare the error in prediction for the two input categories — transient surface-

temperature data and transient PCM-temperature data. For instance, in Fig. 28 (training 

set: 2.3 V, prediction set: 2.6 V), for abscissa values in the range of 6,000 s to 10,000 s; 

lower values of absolute error are obtained for the predictions from the ANN model trained 

using transient surface-temperature data, compared to that of the ANN model trained using 

PCM temperature data. This trend is again evident in Fig. 29 (training set: 2.8 V, prediction 

set: 2.6 V) for abscissa values ranging between 6,500 s and 9,000 s.  

 

Figure 28 Comparison of error in predictions from the ANN model trained using 

transient surface-temperature data and transient PCM-temperature data (for test 

data set of 2.6V and training data set of 2.3V). 
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For yet another case (training set: 2.6 V, prediction set: 2.3 V), it can be seen from 

Fig. 30 that the predictions from the ANN model (that was trained using transient surface-

temperature data) yields lower magnitudes of the absolute error than that of the ANN 

model trained using the PCM temperature data for abscissa values ranging from 7,000 s 

to 12,000 s. Similar trends (lower error in the initial stages of the cycle) are evident in the 

rest of training/ prediction combinations (Figs. 31-32).  

 

 

Figure 29. Comparison of error in predictions from the ANN model trained using 

transient surface-temperature data and transient PCM-temperature data (for test 

data set of 2.6V and training data set of 2.8V). 
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Figure 30. Comparison of error in predictions from the ANN model trained using 

transient surface-temperature data and transient PCM-temperature data (for test 

data set of 2.3V and training data set of 2.6V).  

 

 

Figure 31. Comparison of error in predictions from the ANN model trained using 

transient surface-temperature data and transient PCM-temperature data (for test 

data set of 2.8 V and training data set of 2.3V).  
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Figure 32. Comparison of error in predictions from the ANN model trained using 

transient surface-temperature data and transient PCM-temperature data (for test 

data set of 2.3 V and training data set of 2.8 V).  

 

Table 6 summarizes the average absolute errors in prediction in the final 1800 s 

(prior to attaining a melt-fraction of 85%) for all combinations of training and prediction 

datasets. %. Comparison of the tabulated errors (between Table 3 and Table 4), shows that 

the transient surface-temperature data do not conclusively provide a better strategy for 

training the ANN models (instead of leveraging the transient PCM-temperature data), 

specifically for improving the accuracy of the predictions during the final stages of melt-

cycle and close to the target values of the melt-fraction. Despite being higher the 

magnitude of the errors is still less than 600 s (10 minutes), when the real-time forecasting 

is performed 1800 s (30 minutes) prior to reaching the target melt-fraction of 85% Green 

colored cells depict the input (transient surface-temperature data or transient PCM-

temperature data) providing for a lower magnitude of error. Whereas, red cells denote a 

higher magnitude of error. Comparison of the tabulated errors, shows that the transient 
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surface-temperature data do not conclusively provide a better strategy for training the 

ANN models (instead of leveraging the transient PCM-temperature data), specifically for 

improving the accuracy of the predictions during the final stages of melt-cycle and close 

to the target values of the melt-fraction. However, the errors are still appreciably low. 

From a functional standpoint, we can feed surface temperatures to an ANN to predict the 

time to reach a predefined melt-fraction. It may be noted that underprediction of the time 

is desirable (it is more reliable) – since over-prediction of the time can cause complete 

melting of the PCM in the TES – which is a catastrophic failure (since the PCM would 

then need to be supercooled to achieve nucleation and freezing). For electronics with 

intermittent operating cycles (i.e., fluctuating duty cycles), this method can be used to 

leverage the benefits accrued for deploying salt hydrates as PCMs in TES platforms 

(higher reliability and energy storage capacities with augmented power ratings) while also 

obviating supercooling.   

Table 6 Average absolute error in the final 1800 s (prior to attaining a melt-fraction 

of 85%) for different training/prediction data-set combinations using transient 

PCM temperature data or transient surface-temperature data  

 

 ANN Inputs – PCM 

Temperatures  

 ANN Inputs – Surface 

Temperatures 

Prediction 

Training 

2.3 V 2.6 V 2.8 V  2.3 V 2.6 V 2.8 V 

2.3 V   190 s 331 s 2.3 V  202 s 206 s 

2.6 V  423 s  167 s 2.6 V 589 s  502 s 

2.8 V  654 s 233 s  2.8 V 280 s 448 s  
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Also, it may be noted that for ANN model predictions using transient PCM-

temperature data, the error in the predictions is lower when the input power (or input 

voltage) for the training data is closer to the input voltage of the prediction set. In other 

words, when 2.6 V data is used for training, the error in the predictions is lower for 2.8 V 

input conditions than that of the 2.3 V input conditions. Similarly, when the 2.8 V data is 

used for training, the error in the predictions is lower for 2.6 V input conditions than that 

of the 2.3 V input conditions. 

In contrast, it may be noted that for ANN model predictions using transient 

surface-temperature data, the error in the predictions is lower when the input power (or 

input voltage) for the training data is starkly different compared to the input voltage of the 

prediction set. In other words, when 2.8 V data is used for training, the error in the 

predictions is lower for 2.3 V input conditions than that of the 2.6 V input conditions. 

Similarly, when the 2.3 V data is used for training, the error in the predictions is lower for 

2.8 V input conditions than that of the 2.6 V input conditions. This contrast in the 

prediction capabilities of the ANN model can be attributed to the nature of the training 

data set itself. On closer observation, it may be noticed that the transient surface-

temperature data has more acute levels of fluctuations (owing to exposure to free 

convection to the ambient air) than that of the transient PCM temperature data (owing to 

the high thermal energy storage capacity locally within the PCM)—that tends to damp out 

any acute temperature fluctuations due to their higher thermal-inertia/ thermal-inductance 

and thermal-capacitance. 
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Also, it is worth noting that for ANN model predictions using transient surface-

temperature data, the error in the predictions is lower when the input power (or input 

voltage) for the training data is 2.3 V. The error in the predictions is highest when the 

input power (or input voltage) for the training data is 2.6 V. Whereas, the error in the 

predictions is moderately high when the input power (or input voltage) for the training 

data is 2.8 V. This anomalous trend can be explained by exploring the nuances of the 

experimental observations. During the melting cycle, especially at higher power input 

conditions (2.6 V and 2.8 V experiments) – it was observed that the rate of propagation of 

the melt front was fast enough that it partially lifted the solid mass of PCM above it by a 

minute amount. This was akin to a hydraulic ram actuation caused by the volumetric 

expansion due to solid-to-liquid phase change as the liquid PCM —which has lower 

density than that of the solid phase (and the solid mass of PCM above the melted liquid-

phase) —acts like a hermetically sealed piston preventing the liquid PCM for leaking up. 

At one point, when sufficient amount of PCM has melted, the plastic tube embedded in 

the solid mass of PCM (which causes an opposing reaction force) restores of the solid 

mass of PCM back towards the original position. This caused a ripple effect in the 

temperature transients that were recorded by both the thermocouples embedded in the 

PCM and by the thermocouples mounted on the surface of the measuring cylinder (this 

occurred typically towards the end of the melt cycle and at high values of melt fraction, 

when the melt fraction exceeded ~80%). The temperatures dip slightly. As a result, the 

training data set for these cases cause distortions in the parameters defining each neuron 

in the ANN model (i.e., the weight and the bias). Consequently, the predictions from these 
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ANN models display high magnitudes of error and are also less reliable (i.e., often cause 

over-predictions).  However, at lower power input conditions (2.3 V experiments) – the 

melt front propagated very slowly (since the power input was barely in excess of the heat 

loss from the measuring cylinder by free convection). As a result, the solid mass of PCM 

was virtually undisturbed in these experiments. As a result, there is less distortion in the 

parameters defining individual neurons. Consequently, the predictions from the ANN 

model trained using transient surface temperature data from the 2.3 V experiments have 

better fidelity and the magnitude of the error is lower. Further, the predictions are more 

reliable (i.e., the results tend to underpredict the time required to reach the target value of 

85% melt fraction) for major portion of the melt cycles. The plots of the experimental data 

for the different heater power inputs are provided in the Appendix H. In addition to the 

above discussed aspects, the predictions on uncalibrated temperature data are presented in 

Appendix J. Further, results in Appendix K deal with two aspects: (1) the effect of utilizing 

data with different degrees of noise for training the ANN, and (2) the effect of utilizing a 

consolidated data set (consisting of data from experiments with different heater power 

inputs).  
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CHAPTER IV  

CONCLUSION AND RECOMMENDATIONS 

 

4.1 Summary of Results 

In this study, a representative procedure for achieving real-time predictions of the 

time remaining to reach a chosen melt-fraction is demonstrated. The core of this procedure 

is an artificial neural network (ANN) which is used for predicting the values of a non-

dimensional parameter, ’. This parameter is a non-dimensional equivalent of the time 

remaining in the PCM melting process to reach a chosen value (target value) of the melt 

fraction (i.e., such that the PCM attains a chosen melt-fraction). This study proves the 

feasibility for obtaining real-time predictions using MLP/ ANN models for improving the 

reliability and efficacy of TES platforms that leverage PCMs. This approach therefore 

enables the successful deployment of ‘Cold Finger Technique’ (CFT) to obviate 

supercooling. Thus, the storage capacity of the TES is maximized while also enhancing 

the reliability and resilience of the cooling strategy. This is achieved by deploying the 

MLP/ ANN models for real-time prediction of the time remaining to attain a target 

(predefined) melt-fraction during the melting-cycle. The target value of melt-fraction 

chosen in this study is 85% (or 90%). Experiments were performed using digital data 

acquisition apparatus (including flow visualization by a digital-camera, I.R. thermography 

measurements for verification of temperature uniformity in different segments of the 

experimental apparatus and measurement of temperature transients using thermocouples 

that were mounted strategically at specific locations corresponding to the location of the 
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liquid meniscus of the PCM for chosen values of melt-fractions). The experiments were 

performed for power input values of 1.08 W, 1.4 W and 1.6 W. Data sets obtained for a 

chosen power input condition was used for predicting (and validating) the values for 

another set of power input conditions. Two different approaches were explored for training 

the ANN models: (1) by using transient PCM temperature data; and (2) by using transient 

surface-temperature data. 

The central idea of this study was to cross-test the ANN performance for different 

sets of training and validation data. Three different cases were studied to explore the 

efficacy of the method.  

Case 1: 

Initially the ANN model is trained to predict the value of time remaining to reach 

90% melt-fraction (’90). The ANN model is trained using transient PCM-temperature data 

obtained from thermocouples located at elevations corresponding to meniscus locations 

for melt-fraction values of 30%, 60%, and 85%. The predictions are achieved with an 

uncertainty as low as ± 5 minutes (± 10 minutes for two of the six combinations) in the 

final half an hour before 90% melt-fraction is achieved.  

Case 2: 

Similarly, the ANN model is trained using transient surface-temperature data 

obtained from thermocouples located at elevations corresponding to meniscus locations 

for melt-fraction values of 30%, 60%, and 90% (denoted as T’30, T’60, and T’90, 

respectively). The ANN model is trained to predict the value of time remaining to reach 

90% melt-fraction (’90). The error from the ANN model predictions is lower for the case 
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involving training data sets that are based on the transient surface-temperature data (as 

compared to that of the ANN model predictions involving training data sets that are based 

on the transient PCM-temperature data). The lower error is chiefly due to one of the inputs, 

T’90, being on the same level as the melt front when the PCM is at the target melt-fraction 

of 90%.  

Case 3: 

The ANN model is trained to predict the value of time remaining to reach 85% 

melt-fraction (’85). The ANN model is trained using two different strategies: (a) transient 

PCM-temperature data; and (b) transient surface-temperature data. The ANN model is 

trained using transient PCM-temperature data obtained from thermocouples located at 

elevations corresponding to meniscus locations for melt-fraction values of 30%, 60%, and 

90% (denoted as T30, T60, and T90, respectively). Also, in a separate study, the ANN model 

is trained using transient surface-temperature data obtained from thermocouples located 

at elevations corresponding to meniscus locations for melt-fraction values of 30%, 60%, 

and 90% (denoted as T’30, T’60, and T’90, respectively).  Comparison of the errors in the 

predictions obtained from the ANN model for the two different strategies reveals that the 

latter strategy (i.e., leveraging transient surface-temperature data for training the ANN 

model) can indeed be utilized to improve the reliability of deploying CFT for a PCM based 

TES platform for providing supplemental cooling (especially, for thermal management in 

electronics cooling applications). On a granular level, the transient surface-temperature 

data suffer from higher levels of noise (i.e., larger levels of temperature fluctuations), 
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which in turn cause higher levels of fluctuations in the predicted values obtained from the 

ANN model.  

4.2 Conclusion 

In this study, the feasibility of a novel forecasting tool (based on ANN model) has 

been demonstrated for the purpose of improving the efficacy and reliability of CFT.  This 

innovative machine learning technique can enhance the resilience of a dry-cooled 

powerplant. Data analytics and digitalisation are the innovations of the fourth industrial 

revolution. These innovations can aid in further development of resilient infrastructure as 

well as robust manufacturing processes. The relationship between sustainability and 

resilience is also apparent from this work. If power production is to remain sustainable in 

the near future, resilient designs are the way forward. The target applications of this 

technique include supplemental cooling platforms that can be deployed in a variety of 

applications that require PCM based TES devices (e.g., for reducing water usage in power 

plants, thermal management for electronics cooling applications, building thermal 

management, etc.) 

For ANN models trained using transient PCM-temperature data, lower magnitudes 

of error in the predicted values were obtained when the input power of the training data 

set was similar to that of the predicted data set. For example, lower magnitudes of error 

were obtained when the training data set from the 2.6 V experiments were utilized for 

predicting the temporal values for the 2.8 V experiments. Similarly, lower magnitudes in 

error were obtained when the training data set from the 2.8 V experiments were utilized 

for predicting the temporal values for the 2.6 V experiments. In contrast, the magnitudes 



 

73 

 

of error were higher (and the values were over-predicted, i.e., the predictions were 

unreliable for major proportion of the melt cycle) for the 2.3 V experiments when either 

the data set from 2.6 V or from 2.8 V were utilized for training the ANN model. In general, 

the accuracy of predictions afforded by ANN models that were trained using transient 

surface-temperature data was higher in the initial stages of the cycle (however, higher 

levels of error are observed for these cases in the final stages of the melting cycle).  

An anomalous decrease in temperature trends was observed for the temperature 

transients recorded at higher power input conditions (both for surface temperature and 

PCM temperature data). This was due to the volumetric expansion of the trapped liquid 

phase (upon melting from the solid phase) which caused the solid mass of PCM above to 

be displaced up (followed subsequently by a downward motion of the solid PCM caused 

by the restoring force of the plastic tube adhering to the solid mass of PCM at the top) – 

resulting in a sharp decrease in the temperature values recorded by thermocouples that 

were already submerged in the liquid PCM (and for the surface thermocouples that were 

mounted at similar heights from the base of the measuring cylinder). Consequently, the 

parameters for each neuron (e.g., weight, bias, etc.) in the ANN model were likely to be 

distorted – thus causing higher magnitude of errors in the predicted values and the 

predictions were unreliable (i.e., due to overpredictions) for major proportion of the melt 

cycle.  

Following conclusions were derived from this study and are summarized below: 

• The ANN technique developed in this study yields more accurate results, particularly 

in the final stages of the melting cycle, especially if the target melt-fraction is within 
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the range of melt-fractions used in the training data set for the corresponding 

temperature-transients. This strategy can obviate the insensitivity of the predicted 

values of the time remaining to attain the target value of melt-fraction that accrued 

from the ANN model predictions in the final stages of the melting cycle.  

• When PCM temperature transients are used for training the ANN model, the errors in 

predictions are minimized if the heater input voltages (or input power values) are in 

similar ranges for both the training data-set and the prediction data-set. 

• The error in predictions from the ANN model (trained on transient surface-temperature 

data) is lower as compared to that of the transient PCM-temperature data sets, 

especially during the initial stages of the melting cycle (generally, when melt-fractions 

are less than 60%).  

• ANN models trained using transient surface-temperature data corresponding to lower 

power input conditions yield lower magnitudes of error (since anomalous temperature 

transients were minimized at lower power input conditions due to the gradual 

progression of the PCM upwards into the mass of solid PCM). The predictions were 

also found to be reliable for major proportion of the melt cycle (i.e., the values were 

underpredicted).  

• This method does not demand additional equipment or additives (such as nucleating 

agents and gelling agents, thus avoiding additional costs and operational burdens). 

Since additives degrade over time – this adds to the uncertainty for long-term operation 

and can compromise the reliability. 
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• A strength of this method is that it is independent of the absolute values of the 

temperatures. This implies that even if a thermocouple is wrongly calibrated (or if the 

thermocouple calibration is compromised), the predictions from the ANN model 

would still be fairly accurate (e.g., for the time remaining to attain a target value of 

melt-fraction). 

Motivated by the potential application of inorganic PCMs in TES (that can be 

deployed for enhancing the reliability and resilience of thermal management devices), 

especially in electronics chip cooling platforms, in this study, the efficacy of deploying 

deep learning is explored for enhancing the energy storage capacity for CFT (without 

compromising the power rating) by forecasting the time required to reach a target melt-

fraction. In these applications, the direct measurement of PCM temperature is often not 

possible due to packaging related issues. Measurement of surface-temperature transients 

are preferable for electronics packages (especially for those that are filled with PCMs) due 

to their simplicity, low cost, better reliability, as well as ease of manufacturing and 

fabrication. This strategy can yield lower failure rates while also providing ease of access 

for maintenance and repair operations. Forecasting strategies based on transient surface-

temperature data also enable retrofitting of existing thermal-management platforms in 

electronics devices thus rendering additional capabilities for real-time predictions using 

ANN models (e.g., the time remaining for reaching a target melt-fraction of PCMs that 

are filled inside the electronics package). These capabilities do not typically accrue from 

strategies involving measurement of temperature transients from sensors that are 

immersed within the volume of PCM, i.e., from temperature sensors mounted inside the 
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electronics package (instead of the surface-mounted temperature sensors).  Hence, this 

study demonstrates the efficacy of ANN models for electronics chip cooling applications 

and can be used in conjunction with PCM filled heat sinks to improve their reliability for 

thermal management applications (e.g., in data centers) while also impacting the 

sustainability of these data-centers by reducing the usage of water (e.g., reducing the 

demand for chilled water and, in-turn, the evaporative losses from the cooling towers) as 

well as the net power consumption by the data centers. Secondary benefits that accrue 

from such endeavors – include augmented cooling capabilities and enhanced performance 

of the thermal management platforms, better durability and increased longevity of the 

computing platforms; since - more effective deployment of the thermal management 

platforms that leverage such real-time predictions capabilities from the ANN models result 

in better temperature uniformity (i.e., mitigating the hot-spots in the packages of the 

electronics chips and within the chips themselves).  

 

4.3 Recommendations 

Based on the findings of this study, following recommendations are provided to 

improve the robustness and scalability and further prove the efficacy of the tool developed 

in this study.  

• Experimental validation of the numerical predictions from the ANN model can be 

explored for a TES platform that leverages salt hydrates as PCMs (such as Glauber’s 

salt).  
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• Training the neural network with a consolidated data set consisting of multiple duty 

cycles can be explored (for the purpose of further minimizing the errors in the 

predicted values). 

• The neural network topology can be optimized. Parameters like number of hidden 

layers, number of nodes in a hidden layer can be optimized to prevent overfitting or 

underfitting of the training set.  

• To establish the robustness of this algorithm, uncertainties in temperature 

measurement can be incorporated in the ANN training process and quantifying the 

resultant uncertainty in the time.  

• Infrared images captured in the experiments can be used to train an artificial neural 

network or a separate class of machine learning technique to develop an advanced 

monitoring tool.  

• Implementing these experimental studies and ANN model development on actual 

(e.g., “commercially off-the shelf” or “COTS”) electronics chips that leverage PCM 

filled heat sinks. 

• The results from this study can be complemented by exploring alternate experimental 

platforms (e.g., different aspect ratios of the measuring cylinder and for different types 

of PCMs, inclination angle of the measuring cylinder containing different types of 

PCMs, location of heater, types of heaters, location of individual sensors, different 

ranges of power inputs, etc.). 
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APPENDIX A 

THERMOCOUPLE CALIBRATION CURVES 

 

 

Figure 33. Calibration curve for thermocouple measuring T30. 

 

 

Figure 34. Calibration curve for thermocouple measuring T60. 
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Figure 35. Calibration curve for thermocouple measuring T85. 

 

 

Figure 36. Calibration curve for thermocouple measuring T90. 
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Figure 37. Calibration curve for thermocouple measuring T’30. 

 

 

Figure 38. Calibration curve for thermocouple measuring T’60. 

 



 

87 

 

 

Figure 39. Calibration curve for thermocouple measuring T’90. 

 

 

Figure 40. Calibration curve for thermocouple measuring the ambient temperature. 
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APPENDIX B 

COMPUTING TOTAL MEASUREMENT UNCERTAINTY OF TEMPERATURE 

DATA 

Table 7 Measurement uncertainties for different thermocouples 

Thermocouple uDAQ (%) ut (%) us (%) utotal (%) 

T30 0.0011 0.36 0.053 0.36 

T60 0.0011 0.36 0.072 0.37 

T85 0.0011 0.36 0.406 0.54 

T90 0.0011 0.36 0.071 0.37 

T’30 0.0011 0.36 0.268 0.45 

T’60 0.0011 0.36 0.067 0.36 

T’90 0.0011 0.36 0.074 0.37 

Tamb 0.0011 0.36 0.702 0.79 

 

B.1 Sample Uncertainty Calculation for the Thermocouple located at a Height 

Corresponding to 30% melt-fraction within the PCM (T30) 

For the thermocouple located at a height corresponding to 30% melt-fraction 

within the PCM, the following steps are followed to compute the total uncertainty. The 

steady state temperature data is collected for a duration of ~2 minutes (at a rate of 0.25 

Hz) at water bath temperatures—20 °C, 25 °C, 30 °C, 35 °C, and 40 °C. A sample step by 

step calculation is shown here as an example (for the calibration performed with the water 

bath temperature set a fixed value of 20 °C). 

1. Computation of uDAQ – uncertainty due to DAQ precision  
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The expression for computing uDAQ (in percentage) is:  

𝒖𝑫𝑨𝑸 (%) =

(𝑻𝒄𝒂𝒍.𝒉 − 𝑻𝒄𝒂𝒍,𝒍)

𝟐𝑵𝒃𝒊𝒕 − 𝟏
𝑻𝑫𝑨𝑸

∗ 𝟏𝟎𝟎                                                 (𝐵. 1) 

where, Tcal,h = Upper limit of the temperature range (used for calibration) = 40 °C 

 Tcal,l  = Lower limit of the temperature range (used for calibration) = 20 °C 

TDAQ = Mean Temperature measured by the DAQ (mean of the values recorded 

in 2 minutes). 

Nbit = DAQ precision, which is equal to 16 in this work.  

Substituting Tcal,h = 40 °C, Tcal,l  = 20 °C, TDAQ = 20.233 °C and Nbit = 16, in Equation 

(B.1): 

𝒖𝑫𝑨𝑸 (%) =

(40 − 20)
216 − 1
20.233

∗ 100 = 0.0015  % 

 

2.  Computing ut – uncertainty due to the precision of the NIST calibrated thermometer 

      The formula for computing ut (as a percentage value) is: 

𝒖𝒕 (%) =
𝑳. 𝑪.

𝑻𝒕𝒉𝒆𝒓𝒎
  ∗ 𝟏𝟎𝟎                                                            (𝐵. 2) 

where, Ttherm = temperature of the water bath as read by the thermometer 

 L.C.  = Least count of the thermometer 

Substituting Ttherm = 19.7 °C (which is the actual value of the water bath temperature, i.e., 

for the target value of the water bath temperature – which was set for 20 °C), L.C = 0.1°C 

in Equation (B.2),  

𝒖𝒕 (%) =
0.1 

19.7
  ∗ 100 = 0.507  %  
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3. Computing us – statistical uncertainty considering the temporal fluctuations in the 

values of the measured data.  

The formula for computing us (as a percentage value) is: 

𝒖𝒔(%) =  
𝝈𝒔

𝑻𝑫𝑨𝑸
∗ 𝟏𝟎𝟎                                                              (𝐵. 3) 

where, s= standard deviation of the steady state temperature data measured at a bath 

temperature of 20 °C,    

TDAQ = Mean Temperature measured by the DAQ, i.e., one of the thermocouples 

that were immersed in the water bath (mean of the values recorded for a total 

duration of 2 minutes at a sampling rate of 0.25 Hz). 

Substituting s = 0.0148, and TDAQ = 20.233 in (B.3),  

𝒖𝒔(%) =  
0.0148

20.233
∗ 100 = 0.0732 % 

4. Computing utotal – total uncertainty (%) 

The formula for computing us (as a percentage value) is: 

𝒖𝒕𝒐𝒕𝒂𝒍(%) =  √𝒖𝑫𝑨𝑸
𝟐 + 𝒖𝒕

𝟐 + 𝒖𝒔
𝟐                                             (𝐵. 4) 

Substituting uDAQ = 0.0015 %, ut = 0.50 %, and us = 0.073 %, in (B.4) 

𝒖𝒕𝒐𝒕𝒂𝒍(%) =  √0.00152 + 0.502 + 0.0732    =  0.51 %      

 

Using a procedure similar to the sample uncertainty calculations at 20 °C shown 

above, steps 1 to 4 were repeated for obtaining the respective measurement uncertainty 

values corresponding to 25 °C, 30 °C, 35 °C, and 40 °C. The resulting uncertainties are 

summarised in the following table. The average uncertainty is obtained by considering 

the mean of the total uncertainty for all five temperatures: 



 

91 

 

Table 8 Summary of uncertainties in temperature measurement for T30 

corresponding steady state temperatures—20 οC, 25 οC, 30 οC, 35 οC, 40 οC 

Water Bath Temperature (oC) uDAQ (%) ut (%) us (%) utotal (%) 

20 0.0015 0.5076 0.0732 0.5128 

25 0.0012 0.4048 0.0589 0.4091 

30 0.0010 0.3367 0.0411 0.3392 

35 0.0008 0.2890 0.0538 0.2940 

40 0.0007 0.2525 0.0385 0.2554 

Average:  0.0011 0.3581 0.0531 0.3621 

 

Hence, the average value of the total measurement uncertainty for the 

thermocouple located at a height corresponding to 30% melt-fraction (within the PCM) is 

0.36% which makes the first entry in the column corresponding to utotal (%) in table 7.  

 

B.2 Uncertainty in ambient temperature during a PCM melting experiment 

The ambient temperature varies during the duration of the experiment. Hence, 

while reporting the average ambient temperature during a particular experiment, an 

additional source of statistical uncertainty (due to the temporal fluctuations in the 

measured values during the course of the experiment) needs to be taken into account.  

 

𝒖𝒂𝒎𝒃(%) =  
𝝈𝒂𝒎𝒃

𝑻𝒂𝒎𝒃,𝑫𝑨𝑸
∗ 𝟏𝟎𝟎                                                    (𝐵. 5) 
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where, amb = standard deviation in the measured ambient temperature data during the 

course of a PCM melting experiment 

Tamb,DAQ = Mean Temperature measured by the DAQ, i.e., one of the 

thermocouples that were recording the ambient temperature (the mean of the 

values recorded for a total duration of the PCM melting experiment at a sampling 

rate of 0.20 Hz). 

As an example, for the 2.6 V heater input experiment Tamb,DAQ = 22.26 οC, amb = 0.24 οC 

𝒖𝒂𝒎𝒃(%) =  
0.24

22.26
∗ 100 = 1.09 %                   

Therefore, while reporting the average temperature during the 2.6 V heater input 

experiment, in addition to an uncertainty of 0.79% (from table 7), an uncertainty of 1.09 

% is taken into account. The total uncertainty is given by Equation B.6. 

𝒖𝒕𝒐𝒕𝒂𝒍,𝒂𝒎𝒃(%) =  √𝒖𝑫𝑨𝑸
𝟐 + 𝒖𝒕

𝟐 + 𝒖𝒔
𝟐 + 𝒖𝒂𝒎𝒃

𝟐                                   (𝐵. 6) 

Substituting the values,  

𝒖𝒕𝒐𝒕𝒂𝒍,𝒂𝒎𝒃(%) =  √0.792 + 1.092       = 1.34 %     

Using the calibration constants from Fig. 40, the corrected value of temperature is 

computed corresponding to a thermocouple reading of Tamb,DAQ = 22.26 οC.  

0.9945 × (22.26) − 0.5793 = 21.6 𝑜𝐶 

Therefore, the ambient temperature during the 2.6 V heater input experiment is 21.6 ±0.1 

οC.  
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APPENDIX C 

REPEATABILITY OF PCM MELTING EXPERIMENTS 

 

 

Figure 41. Temperature profile comparison for T30 for two experiments with a 

heater voltage of 2.6 V. 

 

 

Figure 42. Temperature profile comparison for T60 for two experiments with a 

heater voltage of 2.6 V. 
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Figure 43. Temperature profile comparison for T85 for two experiments with a 

heater voltage of 2.6 V. 

 

 

Figure 44. Temperature profile comparison for T90 for two experiments with a 

heater voltage of 2.6 V. 
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Figure 45. Temperature profile comparison for T30 for two experiments with a 

heater voltage of 2.3 V. 

 

 

Figure 46. Temperature profile comparison for T60 for two experiments with a 

heater voltage of 2.3 V. 
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Figure 47. Temperature profile comparison for T85 for two experiments with a 

heater voltage of 2.3 V. 

 

 

Figure 48. Temperature profile comparison for T90 for two experiments with a 

heater voltage of 2.3 V. 
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APPENDIX D 

SCATTER PLOTS: PREDICTING TIME TO REACH 90% MELT FROM T30, T60, T85 

 

Figure 49. Scatter plot comparing the ANN predictions with experimental data (the 

actual values for τ’) for test data set of 2.8 V (and training data set of 2.3 V. 

 

 

Figure 50. Scatter plot comparing the ANN predictions with experimental data for 

test data set of 2.8 V (and training data set of 2.3 V). 
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Figure 51. Scatter plot comparing the ANN predictions with experimental data (the 

actual values for τ’) for test data set of 2.3 V (and training data set of 2.8 V). 

 

 

Figure 52. Scatter plot comparing the ANN predictions with experimental data for 

test data set of 2.3 V (and training data set of 2.8 V). 
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Figure 53. Scatter plot comparing the ANN predictions with experimental data (the 

actual values for τ’) for test data set of 2.3 V (and training data set of 2.6 V). 

 

 

Figure 54. Scatter plot comparing the ANN predictions with experimental data for 

test data set of 2.3 V (and training data set of 2.6 V). 
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APPENDIX E 

PREDICTING TIME TO REACH 90% MELT FROM T’30, T’60, T’90 

 

Figure 55. Scatter plot comparing the ANN predictions (from T’30, T’60, T’90) with 

experimental data (the actual values for τ’) for test data set of 2.6 V (and training 

data set of 2.3 V). 

 

 

Figure 56. Scatter plot comparing the ANN predictions (from T’30, T’60, T’90)  with 

experimental data for test data set of 2.6 V (and training data set of 2.3 V). 
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Figure 57. Scatter plot comparing the ANN predictions (from T’30, T’60, T’90)  with 

experimental data (the actual values for τ’) for test data set of 2.3 V (and training 

data set of 2.6 V). 

 

 

Figure 58. Scatter plot comparing the ANN predictions (from T’30, T’60, T’90)  with 

experimental data for test data set of 2.3 V (and training data set of 2.6 V). 
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Figure 59. Scatter plot comparing the ANN predictions (from T’30, T’60, T’90)  with 

experimental data (the actual values for τ’) for test data set of 2.3 V (and training 

data set of 2.8 V). 

 

 

Figure 60 Scatter plot comparing the ANN predictions (from T’30, T’60, T’90)  with 

experimental data for test data set of 2.3 V (and training data set of 2.8 V) 
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Figure 61 Scatter plot comparing the ANN predictions (from T’30, T’60, T’90)  with 

experimental data (the actual values for τ’) for test data set of 2.6 V (and training 

data set of 2.8 V) 

 

Figure 62 Scatter plot comparing the ANN predictions (from T’30, T’60, T’90)  with 

experimental data for test data set of 2.6 V (and training data set of 2.8 V) 
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APPENDIX F 

SURFACE V/S PCM TEMPERATURES: PREDICTING TIME TO REACH 85% 

MELT FROM [T’30, T’60, T’90] AND [T30, T60, T90] 

 

Figure 63. Scatter plot comparing the ANN predictions for time to reach 85% melt-

fraction (from T’30, T’60, T’90) for test data set of 2.3 V (training data set of 2.6 V) 

 

 

Figure 64. Scatter plot comparing the ANN predictions for time to reach 85% melt-

fraction (from T’30, T’60, T’90) for test data set of 2.3 V (training data set: 2.6 V). 
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Figure 65 Scatter plot comparing the ANN predictions  for time to reach 85% melt-

fraction (from T’30, T’60, T’90) for test data set of 2.3 V (training data set: 2.8 V). 

 

 

Figure 66 Scatter plot comparing the ANN predictions for time to reach 85% melt-

fraction (from T’30, T’60, T’90) for test data set of 2.3 V (training data set: 2.8 V). 
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Figure 67. Scatter plot comparing the ANN predictions for time to reach 85% melt-

fraction (from T’30, T’60, T’90) for test data set of 2.6 V (training data set of 2.3 V). 

 

 

Figure 68. Scatter plot comparing the ANN predictions for time to reach 85% melt-

fraction (from T’30, T’60, T’90) for test data set of 2.6 V (training data set: 2.3 V). 
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Figure 69. Scatter plot comparing the ANN predictions for time to reach 85% melt-

fraction (from T’30, T’60, T’90) for test data set of 2.6 V (training data set of 2.8 V). 

 

 

Figure 70. Scatter plot comparing the ANN predictions for time to reach 85% melt-

fraction (from T’30, T’60, T’90) for test data set of 2.6 V (training data set: 2.8 V). 
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APPENDIX G 

INFRA-RED IMAGES CAPTURED DURING EXPERIMENTS 

I.R. Images captured for 2.6 V (1.4 W input power) experiments at specified times 

 

 

Figure 71. I.R. Images captured during 2.6V (1.4 W) experiment. 

 

 

  

 

t=1667 s 

 

t=2986 s 

 

t=5527 s 

 

t=8316 s 

 

t=11167 s 

 

t=12807 s 
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I.R. Images captured for 2.3 V (1.08 W input power) experiment at specified times 

  

t=916 s t= 2876 s 

t=5086 s 

 

t=5587 s 

t=7767 s t=11729 s 

t=12757 t=15531 s 

 

Figure 72. IR Images captured during 2.3V (1.08 W) experiments. 
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I.R. Images captured for 2.8 V (1.6 W input power) experiments at specified times 

 

t=855 s t=1385 s 

t=2406 s t=3100 s 

t=4146 s t=6227 s 

t=7907 s t=10510 s 

 

Figure 73. IR Images captured during 2.8V (1.6 W) heater input experiment 
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APPENDIX H 

TEMPERATURE TRANSIENTS FOR DIFFERENT HEATER INPUT VOLTAGES 

 

Figure 74. Plots of transient PCM-temperature data and transient surface-

temperature data for different heater input voltage (and power input) conditions 

recorded in the experiments. 

 



 

112 

 

 

Figure 75. Comparison of the transient PCM-temperature data and transient 

surface-temperature data for different heater input voltage (power input) 

conditions recorded in the experiments. 
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(Under Review) (Results in Appendix K) 
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APPENDIX J 

RESULTS FROM A PUBLISHED WORK* 

A. Chuttar, N. Shettigar, A. Thyagrajan and D. Banerjee, "Deep Learning to 

Enhance Transient Thermal Performance and Real-Time Control of an Energy 

Storage (TES) Platform," 2021 20th IEEE Intersociety Conference on Thermal and 

Thermomechanical Phenomena in Electronic Systems (iTherm), 2021, pp. 1036-1044, 

doi: 10.1109/ITherm51669.2021.9503247. 

Experimental Apparatus and Procedure 

PCM Melting Experiments 

In order to implement an ANN based algorithm for the prediction of time to reach 

a predefined melt fraction (e.g., a melt fraction of 90%), PCM melting experiments were 

conducted in this study. The data obtained from these experiments is used for training a 

neural network. PCM is melted in a graduated cylinder of volume 50 ml and a least count 

of 1 ml. The experimental apparatus is composed of three parts: (1) The heater assembly, 

(2) thermocouples mounted on a 3D printed plastic jig (for measuring temperature 

transients at specific vertical heights along the axis of the cylinder within the mass of 

PCM), and (3) a data acquisition apparatus (consisting of a digital image acquisition 

apparatus at specific intervals in time and a digital data acquisition apparatus for recording 

the temperatures from the thermocouples at specific intervals in time).  

 

* © 2021 IEEE. Reprinted, with permission from, A. Chuttar, N. Shettigar, A. Thyagrajan and D. 

Banerjee, "Deep Learning to Enhance Transient Thermal Performance and Real-Time Control of an 

Energy Storage (TES) Platform," 2021 20th IEEE Intersociety Conference on Thermal and 

Thermomechanical Phenomena in Electronic Systems (iTherm), 2021 
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The heater assembly consists of a Nichrome wire (coil) connected to a DC power supply. 

The coil is placed at the bottom of the cylinder. Insulated wires were used to connect the 

ends of the coil to the terminals of the DC power supply. Four T-type thermocouples were 

used to capture the temperature transients. The thermocouples were calibrated for the 

temperature range 20o C to 40o C. The errors in the measured temperatures were found to 

be less than 1%. The raw data are modified using the calibration constants prior to training 

the neural network. Three of the thermocouples are placed at specific locations within the 

cylinder corresponding to 40%, 65%, and 90% melt fraction. The fourth thermocouple 

records the ambient air temperature. Thermocouple data is recorded using LabView 

software with the help of a digital data acquisition apparatus (NI 9211 thermocouple input 

module, National Instruments Inc.). Fig. 1 shows an image of the experimental apparatus 

while Fig. 2 schematically depicts the components involved.  

 

Fig. 1 Image of the experimental apparatus used in the study 
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Fig. 2 Schematic of the experimental apparatus used in the study 

A 3-D printed plastic jig is used to mount the thermocouple junctions at the desired 

specific locations in the cylinder and the cylinder is then filled with the desired mass of 

PCM. A digital camera is used to track the melting process throughout the duration of the 

experiment. Infrared images are captured intermittently to provide a visual representation 

of the temperature distribution in the PCM mass. Sample IR images are shown in Fig. 3.  

 

Fig. 3 IR Images of a PCM undergoing melting in a graduated cylinder 

The PCM used was PureTemp29 with a melting point of 29o C. Experimental 

datasets are generated using this apparatus by varying the voltage supplied to the heater. 

Datasets for heater voltages of 2.3V, 2.6V and 2.8V are considered in this study. The 

output of the experiment for heater voltage input of 2.3V is shown in Fig. 5. The 
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temperature transients for each thermocouple are represented in a line graph. T1, T2 and 

T3, denote the temperatures recorded by thermocouples mounted at 40%, 65%, 90% melt 

locations, respectively. The temperature at a point increases gradually upon powering the 

heater. However, a progressive rise in temperature is observed when the melt front reaches 

a particular thermocouple. The temperature eventually reaches a constant value after the 

melt front has passed through this location. The slight drop in temperature from the peak 

to the end of the cycle can be attributed to heat losses through the glass cylinder. These 

losses increase as the experiment progresses since the surface area of the glass in contact 

melted PCM increases with time. The ambient temperature is also shown in this plot. The 

abscissa (x-axis) denotes the elapsed time. 

Data Preparation and ANN Training 

To reiterate, the aim is to predict the time remaining to attain an 90% melt fraction 

at any moment during the melting process. In Deep Learning terms, the time to reach 90% 

melt, is the label for our purpose. This label is obtained by subtracting the time recorded 

by the data acquisition from the time when the preselected melt of 90% is attained (i.e., 

90% melt is achieved when the melt front hits the third thermocouple). This occurs when 

the temperature profile of T3 flattens after a sharp increase. The time stamp on this point 

serves our purpose for generating the labels. A Multilayer Perceptron (MLP) Network is 

devised with three input nodes. The topology of the network is depicted in Fig. 4. 
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Fig. 4 Topology of the MLP network 

 T1, T2 and T3, constitute the three inputs for the MLP network. Instead of using an 

absolute value of time, a nondimensional quantity, referred to as reduced time, is 

formulated. Nondimensionalizing time allows us to train the ANN using one experimental 

dataset and predict for another one. This reduced time, τ, is obtained by taking the ratio of 

the elapsed time to the time when a 90% melt is achieved. It follows that the 

nondimensional form of the label is unity minus τ and is denoted by τ’. Fig. 6 depicts the 

plot of temperature as a function of nondimensional time (τ) and was obtained after the 

implementing following the steps (summarized in this paragraph). 

 

Fig. 5 Temperature Transients recorded from the three thermocouples mounted 

within the graduated cylinder for a heater voltage of 2.3 V. 
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Fig. 6 Temperature Transients from the three thermocouples mounted within the 

graduated cylinder for a heater voltage of 2.3 V, plotted against the non-dimensional 

time (τ) 

 

  The three inputs are: T1, T2, and T3. The output of the ANN is τ’. Using this output 

as the label and the three temperature inputs, a neural network is trained. The training 

process is based on the well-known backpropagation algorithm which modifies the 

weights and biases of a node as it iterates through the dataset [12]. ADAM optimizer is 

used in the ANN for this study [13]. The salient parameters of the optimizer are tabulated 

in Table 1. The neural network is composed of three hidden layers and each layer has 512 

nodes each. The Rectified Linear Unit (ReLU) activation function is used for the nodes. 

The cost function for the training purpose is the Mean Squared Error (MSE). The 

predictions are generated for all the six combinations of training/prediction with the three 

datasets.  
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Table 1 Hyperparameters of the ADAM Optimizer 

Parameter Value 

 (learning rate) 0.001 

β1 0.9 

β2 0.999 

 10-7 

 

 To test the robustness of the technique implemented in this study, this method was 

used to predict the time to attain 80% melt fraction. This target melt fraction cannot be 

deterministically evaluated as there is no thermocouple at that location. The time point at 

which 80% melt fraction is reached is determined from the location of the meniscus that 

are recorded in the digital images. If the meniscus level of the liquid PCM in the cylinder 

at 100% melt is 50 ml, the volume marking corresponding to 40 ml marks the 80% melt 

(this is after accounting for the volume occupied by the heater and the mount). Hence, 

when the PCM melt front is at 40 ml level, the PCM is said to have a melt fraction of 80%. 

The time interval between the images and the serial numbers of the sequence of the images 

are used to obtain the time corresponding to each image. The corresponding point in the 

temperature profile is thus identified. The procedure summarised in the previous 

paragraph is followed to obtain predictions for the time needed to reach 80% melt fraction. 

Two sets of experiments were performed for the heater voltage setting of 2.6 V (in order 

to verify the repeatability of the experiments). The repeatability of the experiments is 

evident from Fig. 7 and Fig. 8.  
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Fig. 7 Temperature profile comparison of two experiments for the 40% melt point 

with a heater voltage of 2.6V 

 

 

Fig. 8 Temperature profile comparison of two experiments for the 65% melt point 

with a heater voltage of 2.6V 

 

The durations of the melting cycle for the two experiments differ by ~1800s (for a 

total nominal value of ~16,000 seconds (showing the experiments are repeatable to within 

~90%). The slight variability within the two experiments is due to small variations in the 

ambient temperature conditions between the two sets of experiments. However, a 

temperature profile plotted against the non-dimensional time provides more succinct 
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evidence of the repeatability of the experiments implemented in this study. The plots 

obtained by using non-dimensional time show that instant when the melt front reaches 

each of these thermocouples is highly repeatable (i.e., when normalized for the total 

duration of each experiment). This is shown in Fig. 7 and 8. In addition, the experiments 

were repeated (Fig. 7 and Fig. 8) using both K-type thermocouples (Experiment 1) and T-

type thermocouples (Experiment 2). The results show that the instant at which the melt 

front reaches a particular value of melt fraction (as recorded by either of these 

thermocouples) is highly repeatable (especially, when plotted as a function of the non-

dimensional time).  

 

Results and Discussion 

Time Taken by PCM to Reach 90% Melt 

 The time duration to reach a percentage melt of 90% is depicted in Fig. 9 for 

the three sets under consideration. The number of points available for training an ANN 

are: 4640 (for 2.3 V experiments), 3025 (for 2.6 V experiments), and 2240 (for 2.8 V 

experiments). Subsequently, the time to reach a 90% melt for a dataset is predicted by 

using a neural network that was trained by using each of the other two datasets separately. 

For instance, a neural network trained on the 2.6 V data is deployed to make predictions 

on both 2.3V and 2.8V datasets. The predictions are depicted on a scatter plot. The solid 

red line (which is the y = x curve) is meant to serve as a reference for the deviations from 

the ideal. Both dimensional and non-dimensional plots are shown. The error is quantified 

by the difference between the predictions and actual values of time to reach 90% melt. 



 

123 

 

With the 2.6V data as the training set, the predictions on the 2.8V set are shown in Fig. 10 

and Fig. 11. The error in predictions is plotted in Fig. 12. 

 

Fig. 9 Bar chart showing the time taken to attain an 90% melt for heater voltages 

2.3V, 2.6V, and 2.8V 

 

 Figure 10 depicts the τ’ predictions of the neural network which are shown in 

a dimensional form in Fig. 11. It can be appreciated that the neural network is able to 

predict the remaining time with considerable accuracy throughout melting cycle. The 

vertical dotted lines mark the time when the melt front reaches the thermocouples at 40, 

65, and 90% melt respectively. The error in predictions, which is the difference between 

the predicted time and the actual time is plotted in Fig. 12. It is observed here that the error 

lower in the initial and final stages of the melt cycle. In fact, the average absolute error in 

the last half an hour of attaining 90% melt is 160 seconds. This means that we can predict 

the time remaining to reach the target melt apriori with an error of ~3 minutes. It is crucial 

that the error is low towards the end of the cycle in order to stop the heating cycle in time 

to implement the cold finger technique. The average error during last half an hour can thus 

be taken as a metric demonstrating the efficacy of this method.  
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Fig. 10 Scatter plot of the ANN predictions as a function of the actual values for 

2.8V data (Training set: 2.6 V). 

 

Fig 11 Scatter plot of the ANN predictions as a function of the actual values for 

2.8V data (Training set: 2.6 V). 
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Fig. 12 Error in predictions for 2.8V dataset (Training set: 2.6V) 

 The ANN trained on 2.6V data (which corresponds to 1.72 W of power input 

and input current of 0.662 Amps) is further deployed to make predictions on the 2.3 V 

dataset (which corresponds to power input of 1.33 W and input current of 0.575 Amps). 

Additional experiments were performed for 2.8 V (which corresponds to 2 W of power 

input and input current of 0.72 Amps). Fig. 13 shows that a higher deviation occurs when 

the melt front is in the vicinity of a thermocouple. The deviation is lower in the later stages 

of the cycle with an average absolute error of 300 seconds in the final 30 minutes. Fig. 14 

shows the error at all times in the cycle. An extreme training/prediction combination of 

2.8V/2.3V, respectively, shows that the deviations are the greatest near the 40% and 65% 

melt fractions. However, the error decreases as the experiment progresses towards the 90% 

melt fraction. Table I shows this metric for all the six training/prediction combinations. 
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Fig. 13 Scatter plot comparing the ANN predictions with experimental data for test 

data set of 2.3 V (and training dataset of 2.6 V). 

 

 

Fig. 14 Error in predictions for 2.3V dataset (Training set: 2.6V) 
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Table 2: Average absolute error in predictions during the last 1800 seconds before 

90% melt (seconds) 

 

 Training Set 

 
Prediction 

Set 

 2.3V 2.6V 2.8V 

2.3V  303.3 251.5 

2.6V 346.8  369.9 

2.8V 325.1 163.2  

 

Time Taken by the PCM to Reach 80% Melt 

 When predicting the value of time required for the PCM to reach 80% melt 

fraction, the 2.6 V and 2.8 V dataset pair yields substantially better results than any of the 

other combinations. The number of points available for training a neural network are 3806 

(for 2.3 V experiments), 2356 (for 2.6 V experiments), and 1768 (for 2.8 V experiments). 

These results are plotted in Figs.15 - 18. Similar to Table 1, the average absolute error in 

the last half an hour before 80% melt fraction is achieved - is tabulated in Table 3. The 

error is of the order of 10 minutes for most combinations. 
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Fig 15 Scatter plot comparing the ANN predictions with experimental data for test 

data set of 2.8 V (and training dataset of 2.6 V) 

 

 

Fig 16 Error in predictions for 2.6V dataset (Training set: 2.8V) 
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Fig 17 Scatter plot comparing the ANN predictions with experimental data for test 

data set of 2.6 V (and training dataset of 2.8 V). 

 

 

Fig. 18 Scatter plot comparing the ANN predictions with experimental data for test 

data set of 2.3 V (and training dataset of 2.8 V). 
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Table 3 Average absolute error in predictions during the last 1800 seconds before 

80% melt (seconds) 

 

 Training Set 

 
Prediction 

Set 

 2.3V 2.6V 2.8V 

2.3V  767.8 801.1 

2.6V 681.7  132.3 

2.8V 475.4 60.2  

 

 An experiment with a 2.6V heater voltage with uncalibrated K-type 

thermocouples (instead of T-type) was conducted to further investigate the efficacy of this 

method implemented in this study. As expected from the previous graphs, the ANN trained 

with the 2.8 V dataset performs better than the ANN trained on the 2.3 V dataset. The 

average deviation for the predictions of the ANN trained on the 2.3 V dataset is 960 s (in 

the last half an hour). The same metric for the predictions of the ANN trained with the 2.8 

V dataset is only 269 s. These errors are of the same order of magnitude as the predictions 

obtained from the calibrated dataset. We can thus say that the prediction accuracy of the 

method is insensitive to the malfunctioning of the sensors, i.e., the thermocouples. Hence, 

this demonstrates that the technique yields reliable outcomes even if the thermocouples 

are not calibrated (or inaccurately calibrated). The scatter plots are shown in Fig. 19 and 

Fig. 20.  
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Fig. 19 Scatter plot comparing the ANN predictions with experimental data for test 

data set of 2.6 V with uncalibrated K-type thermocouples (and training dataset of 

2.8 V). 

 

Fig. 20 Scatter plot comparing the ANN predictions with experimental data for test 

data set of 2.6 V with uncalibrated K-type thermocouples (and training dataset of 

2.3 V). 
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Conclusion and Future Directions 

The efficacy of using Deep Learning model for temporal predictions during 

melting of PCM was explored in this study to demonstrate the feasibility of this approach 

and with the aim of enhancing the performance of a PCM based TES system (e.g., to 

improve system reliability while also augmenting the effective energy storage capacity). 

Highly accurate predictions were achieved on the predicted time for realizing 90% melt 

fraction using a Feedforward Multilayer Perceptron Network. Although significant 

deviations were present in the middle stages of the cycle, the error was lower in the later 

stages of the cycle. The accuracy of predictions for 90% melt fraction are higher than that 

of 80% melt fraction. A strength of this method is that it is independent of the absolute 

values of the temperatures. This implies that even if a thermocouple is wrongly calibrated 

(or if the thermocouple calibration is compromised), the network would still be able to 

achieve fairly accurate time predictions. Another advantage is that the method does not 

demand additional equipment or nucleating agents. The ability to make apriori predictions 

holds significance as it enables a successful implementation of the cold finger technique. 

Supercooling is thus avoided, leading to an improved transient performance of the TES 

platform. High storage capacity provided by the inorganic PCMs can be effectively 

utilized without the reliability issues. This method can be applied to a commercial storage 

platform as there is no need for additional infrastructure besides a temperature 

measurement and acquisition system. A parametric optimization of the neural network is 

a further avenue to be explored. Additional studies are currently underway to forecast the 

time to reach melt fraction in the 95-100% range. In this endeavor, there is a preference 
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for underprediction (rather than over-predicting the required time to reach a desired melt 

fraction). For example, we would like to avoid an overprediction of the time to reach 99% 

melt. This is due to catastrophic failure considerations (since complete melting is likely to 

cause the PCM to solidify only after a certain degree of supercooling is achieved). On the 

other hand, if the time is underpredicted, a portion of the PCM will be solid (unmelted) 

and serve as the nucleation front when the PCM temperature is reduced to the melting 

point - thus obviating the need for supercooling for initiating nucleation and initiation of 

the solidification front (however, there will be a marginal sacrifice in the net energy 

storage capacity while improving system reliability). 
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APPENDIX K 

RESULTS FROM ARTICLE UNDER REVIEW 

“Exploring Efficacy of Machine Learning/ ML (Artificial Neural Networks/ ANN) 

for Enhancing Reliability of Thermal Energy Storage (TES) Platforms Utilizing 

Phase Change Materials (PCM)”, Authors: G. Ren, A. Chuttar, and D. Banerjee 

In order to observe how training data sets could affect the accuracy and reliability of 

the predictions from the ANN model, all of the collected data sets were categorized into 

six groups for training the ANN model, and are listed below:  

• Group I: 2.6 Volt (low noise) experiment data sets containing two sets of data with 

a total of 4657 data points.  

• Goup II: 2.8 Volt (low noise) experiment data sets containing two sets of data with 

a total of 3771 data points.  

• Group III: 2.6 and 2.8 V (low noise) experiment data sets containing four sets of 

data with a total of 8428 data points (combination of Group I and II).  

• Group IV: 2.6 V (low and high noise) experiment data sets containing four sets of 

data with a total of 10474 data points.  

• Group V: 2.8 Volt (low and high noise) experiment data sets containing four sets 

of data with a total of 6975 points of data.  

• Group VI: 2.6 and 2.8 Volt (low and high noise) experiment data sets containing 

eight sets of data with a total of 17449 data points (combination of group Group 

IV and V).  
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Three sub-sections within the “Results and Discussions” section provide a detailed 

description of the effects of using different training data sets on the efficiacy of the 

predictions obtained from the ANN model: 

• Part A demonstrates the efficacy of the predicitons by utilizing only low noise 

training data sets (from Groups I, II, and III).  

• Part B demonstrates the efficacy of the predicitons by utilizing both low noise 

and high noise training data sets (from Groups IV, V, and VI).  

• Part C, in contrast, demonstrates the sensitivity of the predictions to variations 

in experimental procedures (i.e., using different power inputs) and the size of 

data sets (which also includes all the groups of training data ranging from 

Groups I-VI).       

Results and Discussions 

Part A: 

 Results obtained by using Group I, II, and III for training data - were analyzed. 

Thus, errors in the predicted values by using low noise training data sets exclusively – for 

different values of power input (2.6 V and 2.8 V) were implemented and compared with 

actual experimental data (for 2.7 V). 

The ANN model was trained by using data obtained from the 2.6 V experiments 

with low noise (Group I). The predicted time for reaching 90% melt fraction (for power 

input of 2.7 V) was plotted as a function of the actual time required to reach 90% melt-

fraction and are plotted in Figure 1. 
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Figure 1: Group-I Training Data. Comparison of results predicted for 2.7 V 

experiments. 

 

 The plot shows that the ANN model underpredicts the time required to reach 90% 

melt by 930 s ~ 1090 s when the melt fraction is less than 30%. The error in the predictions 

from ANN model are lowest when the melt fraction progresses from 30% to 60%. 

However, in this range of melt fraction the ANN model progresses from underprediction 

(by ~ 660 s) to over-prediction (by ~2040 s). When the melt fraction progresses from 60% 

to 85% there is a sharp decrease in the plot, showing that the error in the prediction from 

the ANN model progresses from 2040 s over-prediction to ~1100 s underprediction. When 

the actual time required to reach 90% melt (value on the abscissa) has a value of 1700 s, 

the plot undergoes a quick recovery and virtually becomes a flat line (almost horizontal 

line) – showing that the predicted value to reach 90% melt (value on the ordinate) remains 

virtually unchanged at 1700 s, and in turn, intersecting with red line (which has a slope of 

1, i.e., an angle of 45°) for a value of 630 s on the abscissa. The plot shows that from the 



 

137 

 

beginning of the melting process to a melt fraction of 60%, the values predicted by the 

ANN model for the 2.7 V experiments (using training data set of Group I) are accurate to 

within 18 minutes for a total melting time of 9286 seconds or approximately 155 minutes 

(and for the actual time to reach 90% melt fraction being 8036 seconds or 134 minutes). 

However, there is a sudden drop in the prediction accuracy when the melt fraction ranges 

between 60% and 85%, where the error in the predictions can be as high as 2040 s or 34 

minutes. This shows that the efficacy of the predictions from the ANN model is degraded 

in the melt fraction ranging from 60% to 85% for 2.7 V experiments (when trained using 

Group 1 data set). The values predicted by the ANN model exceed the actual values (i.e., 

overprediction occurs) when the values on the abscissa are less than 630s (or 

approximately 11 minutes). This shows that the predictions from the ANN model should 

be discarded when the predicted values to reach 90% melt fraction are below 11 minutes 

(i.e., to avoid catastrophic failure of the TES platform). This also shows that the 

predictions are most reliable when the melt fraction is less than 60% and it is better to 

avoid any reliance on the model predictions for melt fractions exceeding 60% (or value of 

the ordinate less than 2700 s or approximately 45 minutes away from reaching 90% melt 

fraction). Hence, the predictions are accurate to within 18 minutes as long as the predicted 

values are more than 45 minutes. This anomalous trend in prediction capability of the 

ANN model (i.e., the accuracy of the prediction degrades when the predicted values are 

less than 1 hour to reach 90% melt fraction) can be ascribed to the distortions in the 

experimental data that occur during the final stages of the melt process. During the final 

stages of the melting process, a part of the melted PCM rises to the top surface and comes 

in contact with the thermocouples located at higher elevation (e.g., thermocouples located 
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at heights corresponding to melt fractions of 85% or higher). As a result, the 

thermocouples record oscillating values of temperature during the final stages of the 

melting process (i.e., within an hour of reaching 90% melt fraction). Therefore, this 

extraneous rise in the noise in the recorded signals (which is unavoidable with the current 

experimental apparatus) compromises the accuracy of the predictions obtained from the 

ANN model since the training data set inherently suffers from these types of distortions. 

The ANN model was trained by using data obtained from the 2.8 V experiments 

with low noise (Group II). The predicted time for reaching 90% melt fraction was plotted 

as a function of the actual time required to reach 90% melt fraction in Figure 2. 

 

Figure 2: Group-II Training Data. Comparison of results predicted for 2.7 V 

experiments. 

 

 The plot shows that the ANN model underpredicts the time required to reach 90% 

melt by 120 s ~ 1530 s when the melt fraction is less than 30%. The sudden drop of the 

prediction accuracy at the actual time required to reach 90% melt (value on the abscissa) 



 

139 

 

occurs at value of 5770 s. The error in the predictions from ANN model are lowest with 

high precision when the melt fraction progresses from 30% to 60%. However, in this range 

of melt fraction the ANN model progresses from underprediction (by ~ 490 s) to over-

prediction (by ~830 s). When the melt fraction progresses from 60% to 85% there is a 

continuous decrease in the plot, showing that the error in the prediction from the ANN 

model progresses from 880 s over-prediction to ~ 800 s underprediction. When the actual 

time required to reach 90% melt (value on the abscissa) has a value of 1300 s, the plot 

becomes a flat line virtually (almost horizontal line) – showing that the predicted value to 

reach 90% melt (value on the ordinate) remains virtually unchanged at 1300 s, and in turn, 

intersecting with red line (which has a slope of 1, i.e., an angle of 45°) for a value of 350 

s on the abscissa. The plot shows that from the beginning of the melting process to a melt 

fraction of 60%, the values predicted by the ANN model for the 2.7 V experiments (using 

training data set of Group II) are accurate to within 25 minutes for a total melting time of 

9286 seconds or approximately 155 minutes (and for the actual time to reach 90% melt 

fraction being 8036 seconds or 134 minutes). However, there is a sudden drop in the 

prediction accuracy when the melt fraction ranges between 60% and 85%, where the error 

in the predictions can be as high as 1120 s or 19 minutes. This shows that the efficacy of 

the predictions from the ANN model is degraded in the melt fraction ranging from 60% 

to 85% for 2.7 V experiments (when trained using Group II data set). The values predicted 

by the ANN model exceed the actual values (i.e., overprediction occurs) when the values 

on the abscissa are less than 310s (or approximately 5 minutes). This shows that the 

predictions from the ANN model should be discarded when the predicted values to reach 

90% melt fraction are below 5 minutes (i.e., to avoid catastrophic failure of the TES 
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platform). This also shows that the predictions are most reliable when the melt fraction is 

less than 60% and it is better to avoid any reliance on the model predictions for melt 

fractions exceeding 60% (or value of the ordinate less than 2700 s or approximately 45 

minutes away from reaching 90% melt fraction). Hence, the predictions are accurate to 

within 5 minutes as long as the predicted values are more than 45 minutes. This 

unexpected trend in prediction capability of the ANN model (i.e., the accuracy of the 

prediction degrades when the predicted values are less than 45 minutes to reach 90% melt 

fraction) can be ascribed to the distortions in the experimental data that occur during the 

final stages of the melt process. Reason for this discrepancy is the same as previously 

stated for results obtained in Group I predictions. 

The ANN model was trained by using data obtained from the 2.6 and 2.8 V 

experiments with low noise (Group III). The predicted time for reaching 90% melt fraction 

was plotted as a function of the actual time required to reach 90% melt fraction in Figure 

3. 

The plot shows that the ANN model oscillated between underprediction and 

overprediction. The plot starts with underprediction of 530 s, then proceeds to an 

overprediction of 310 s, eventually reaches underprediction of 1410 s. The sudden drop of 

the prediction accuracy is observed at the actual time required to reach 90% melt (value 

on the abscissa) corresponding to a value of 5770 s. The error in the predictions from ANN 

model are lowest (i.e., with high precision) when the melt fraction progresses from 30% 

to 60%. However, in this range of melt fraction the ANN model progresses from mostly 

underprediction (by ~ 900 s) to short period of over-prediction (by ~950 s). When the melt 

fraction progresses from 60% to 85% there is a rapid decrease in the ordinate values in the 
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plot, showing that the error in the prediction from the ANN model progresses from ~ 950 

s over-prediction to ~ 1630 s underprediction. When the actual time required to reach 90% 

melt (value on the abscissa) has a value of 1210 s, the plot becomes a flat line virtually 

(almost horizontal line) – showing that the predicted value to reach 90% melt (value on 

the ordinate) remains virtually unchanged at 1210 s, and in turn, intersecting with the red 

line (which has a slope of 1, i.e., an angle of 45°) for a value of 670 s on the abscissa. The 

plot shows that from the beginning of the melting process to a melt fraction of 60%, the 

values predicted by the ANN model for the 2.7 V experiments (using training data set of 

Group III) are accurate to within 16 minutes for a total melting time of 9286 seconds or 

approximately 155 minutes (and for the actual time to reach 90% melt fraction being 8036 

seconds or 134 minutes). However, there is a sudden drop in the prediction accuracy when 

the melt fraction ranges between 60% and 85%, where the error in the predictions can be 

as high as 1630 s or 27 minutes. This shows that the efficacy of the predictions from the 

ANN model is degraded in the melt fraction ranging from 60% to 85% for 2.7 V 

experiments (when trained using Group III data set). The values predicted by the ANN 

model exceed the actual values (i.e., overprediction occurs) when the values on the 

abscissa are less than 670 s (or approximately 11 minutes). This shows that the predictions 

from the ANN model should be discarded when the predicted values to reach 90% melt 

fraction are below 11 minutes (i.e., to avoid catastrophic failure of the TES platform). This 

also shows that the predictions are most reliable when the melt fraction is less than 60% 

and it is better to avoid any reliance on the model predictions for melt fractions exceeding 

60% (or value of the ordinate less than 2700 s or approximately 45 minutes away from 

reaching 90% melt fraction). Hence, the predictions are accurate to within 16 minutes as 
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long as the predicted values are more than 45 minutes. These counter-intuitive trends in 

the predicted values is caused by both: (1) anomalies in the experimental conditions; and 

(2) the enhanced noise levels caused by consolidating the various types of training data 

sets. The mixed training data sets could help improve the prediction accuracy when all the 

data sets possess similar melting characteristics (e.g., similar values for the toal durations 

of the experiments).  

Figure 4 shows the plot of the error in the predicted values (obtained from the ANN 

model) as a function of the actual time required to achieve 90% melt fraction. These error 

values are plotted for three groups of numerical simulations: Group I (training of the ANN 

model that was performed using data from 2.6 V experiments for training), Group II 

(training of the ANN model that was performed using data from 2.8 V experiments) and 

Group III (training of the ANN model that was performed by combining data sets from 

Group I and Group II). 

Plots for Group III show the best prediction (lowest error) when the melt fraction 

is less than 30%. However, for melt fraction less than 30% - the ANN model overpredicts 

(by less than 278 s); as observed in the plots for Group III case - where the actual time to 

reach 90% melt fraction ranges from 5900 s to 7200 s. However, for melt fraction less 

than 30%, the plots for Group II case show that they are always underpredicted by 180 s 

~ 700 s (i.e., between 3 ~ 10 minutes). Hence, the predictions from Group II may be less 

accurate (as compared to Group III) – but are more reliable (as they do not suffer from 

over-prediction – as over-prediction is likely to cause catastrophic failure of the TES 

platform).  
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Figure 3: Group-III Training Data. Comparison of results predicted for 2.7 V 

experiments. 

 

 

Figure 4: Comparison of error for predicted results for 2.7 V experiments (for 

training data using Groups I, II and III). 

 

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

0.00E+00 1.50E+03 3.00E+03 4.50E+03 6.00E+03 7.50E+03

P
re

d
ic

ti
o

n
 E

rr
o

r 
(s

ec
)

Actual Time to Reach 90% Melt (sec)

Part A Comparision

Group I

Group II

Group III

85% 60%
Melt

30%
Melt



 

144 

 

The only segments where Group II plots show over-prediction occur when the melt 

fraction is in the vicinity of 60% or 90%. In contrast, the plots for Group I oscillate 

frequently between under-prediction and over-prediction (with the highest error in the 

range of 1400 s (over-prediction) to 1880 s (under-prediction). Also, there is a sharp-rise 

and fall in the error values for the Group I plot when the melt fraction changes from 60% 

to 90%. As a result, predictions obtained for the Group I plot are deemed to be the most 

un-reliable. These trends can be rationalized by the fact that the total time to reach 100% 

melt fraction for the Group II data set (10799 s, 9849 s) is similar to that of the 2.7 V 

experiments (9286 s) while it is much larger in the Group I data set (12057 s and 13028 

s). Group III data set being a combination of Group I and Group II data – therefore affords 

a more reliable prediction by virtue of the larger size of the training data used for 

calibrating the ANN model. 

Part B: 

Predictions obtained by using Group IV, V, and VI training data sets were 

analyzed. Thus, error in the predicted values that were obtained by using mixed (both low 

and high noise) training data sets at different power input values (2.6 V and 2.8 V) were 

compared.  

 The ANN model was trained by using data obtained from the 2.6 V experiments 

with low and high noise (Group IV). The predicted time for reaching 90% melt fraction 

was plotted as a function of the actual time required to reach 90% melt fraction in Figure 

5. The plot shows that the ANN model oscillated between underprediction and 

overprediction when the melt fraction is less than 30%. The plots start with 

underprediction of ~ 360 s (6 minutes), then to an overprediction of ~ 760 s (8 minutes), 
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eventually reaching underprediction of ~990 s (16 minutes). The error in the predictions 

from ANN model are lowest with higher consistency when the melt fraction progresses 

from 30% to 60%. However, in this range of melt fraction the ANN model progresses 

from underprediction (by ~ 600 s) to overprediction (by ~ 930 s). When the melt fraction 

ranges from 60% to 85% there is a decrease in prediction accuracy in the plot, showing 

that the error in the prediction from the ANN model progresses from ~ 930 s 

overprediction to ~ 900 s underprediction. When the actual time required to reach 90% 

melt (value on the abscissa) has a value of 1380 s, the plot becomes a flat line virtually 

(almost horizontal line) – showing that the predicted value for reaching 90% melt (value 

on the ordinate) remains virtually unchanged at 1400 s, and in turn, intersecting with red 

line (which has a slope of 1, i.e., an angle of 45°) for a value of 710 s on the abscissa. The 

plot shows that from the beginning of the melting process to a melt fraction of 60%, the 

values predicted by the ANN model for the 2.7 V experiments (using training data set of 

Group IV) are accurate to within 15 minutes for a total melting time of 9286 seconds or 

approximately 155 minutes (and for the actual time to reach 90% melt fraction being 8036 

seconds or 134 minutes). However, there is a sudden drop in the prediction accuracy at 

the melt fraction of 30% and 85%, where the error in the predictions can be as high as 990 

s or 16 minutes. This shows that the efficacy of the predictions from the ANN model is 

degraded in the vicinity of the melt fraction values of 30% as well as 85% for the 2.7 V 

experiments (when trained using Group IV data set). The values predicted by the ANN 

model exceed the actual values (i.e., overprediction occurs) when the values on the 

abscissa are less than 710 s (or approximately 12 minutes). This shows that the predictions 

from the ANN model should be discarded when the predicted values reach 90% melt 
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fraction, i.e., corresponding to values below 12 minutes (i.e., to avoid catastrophic failure 

of the TES platform). This also shows that the predictions are most reliable when the melt 

fraction is between 30% and 60%. 

 

Figure 5: Group IV Training Data. Comparison of results predicted for 2.7 V 

experiments. 

   

The ANN model was trained by using data obtained from the 2.8 V experiments 

with low and high noise (Group V). The predicted time for reaching 90% melt fraction 

was plotted as a function of the actual time required to reach 90% melt fraction in Figure 

6. The plot shows that the results from the ANN model seem to demonstrate 

underprediction from the beginning of melting process until the melt fraction is in the 

vicinity of 90% (where the predicted values reach 190 s on the ordinate). The maximum 

error before 30% melt fraction is achieved is 1140 s or 19 minutes (underprediction). In 

contrast, the maximum underprediction in the predicted values (that occur for melt 

fractions ranging between 30% to 60%) is 780 s or 13 minutes. Thus, the error in the 
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predictions from ANN model are lowest when the melt fraction progresses from 30% to 

60%. When the melt fraction is in the vicinity of 60% to 85% there is a decrease of 

prediction accuracy in the plots, showing that the error in the predictions is 1070 s or 18 

minutes (underprediction). When the actual time required to reach 90% melt (value on the 

abscissa) has a value of 1230 s, the plot becomes a flat line virtually (almost horizontal 

line) – showing that the predicted value to reach 90% melt (value on the ordinate) remains 

virtually unchanged at 1230 s, and in turn, intersecting with red line (which has a slope of 

1, i.e., an angle of 45°) for a value of 440 s on the abscissa. The plot shows that from the 

beginning of the melting process to a melt fraction of 85%, the values predicted by the 

ANN model for the 2.7 V experiments (using training data set of Group V) are accurate 

to within 18 minutes for a total melting time of 9286 seconds or approximately 155 

minutes (and for the actual time to reach 90% melt fraction being 8036 seconds or 134 

minutes). However, there is a sudden drop in the prediction accuracy before the melt 

fraction met 30%, where the error in the predictions can be as high as 1140 s or 19 minutes. 

This shows that the efficacy of the predictions from the ANN model is degraded for the 

values of melt fraction in the vicinity of 30% as well as 85% for the 2.7 V experiments 

(when trained using Group V data set). The values predicted by the ANN model exceed 

the actual values (i.e., overprediction occurs) when the values on the abscissa are less than 

190 s (or approximately 3 minutes). This shows that the predictions from the ANN model 

should be discarded when the predicted values to reach 90% melt fraction are below 3 

minutes (i.e., to avoid catastrophic failure of the TES platform). This also shows that the 

predictions are most reliable from the beginning of melting process to melt fraction of 

85%. This overprediction at the end of the melting cycle can be explained as previously 
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stated in Group IV. The mixed 2.8 V training data sets successfully made the prediction 

from oscillating between overprediction and underprediction to only underprediction 

during most of the melting process. This proves that larger volume of data sets could 

reduce the prediction error.    

The ANN model was trained by using data obtained from the 2.6 and 2.8 V 

experiments with low and high noise (Group VI). The predicted time for reaching 90% 

melt fraction was plotted as a function of the actual time required to reach 90% melt 

fraction in Figure 7. The plot shows that the ANN model underpredicts and overpredicts 

the time required to reach 90% melt by 340 s and 190 s when the melt fraction is less than 

30%. The error in the predictions from ANN model are lowest when the melt fraction 

progresses from 30% to 60%. However, in this range of melt fraction the ANN model 

progresses from underprediction (by ~ 660 s) to over-prediction (by ~ 610 s). When the 

melt fraction progresses from 60% to 85% there is a sharp decrease in the plot, showing 

that the error in the prediction from the ANN model progresses to ~1100 s 

(underprediction). When the actual time required to reach 90% melt (value on the abscissa) 

has a value of 1540 s, the plot undergoes a quick recovery and keeps decreasing in 

prediction error. Consequently, it intersects with red line (which has a slope of 1, i.e., an 

angle of 45°) for a value of 620 s on the abscissa. The plot shows that from the beginning 

of the melting process to a melt fraction of 60%, the values predicted by the ANN model 

for the 2.7 V experiments (using training data set of Group VI) are accurate to within 10 

minutes for a total melting time of 9286 seconds or approximately 155 minutes (and for 

the actual time to reach 90% melt fraction being 8036 seconds or 134 minutes). However, 

there is a rapid drop in the prediction accuracy when the melt fraction ranges between 60% 
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and 85%, where the error in the predictions can be as high as 1100 s or 18 minutes. This 

shows that the efficacy of the predictions from the ANN model is degraded in the melt 

fraction ranging from 60% to 85% for 2.7 V experiments (when trained using Group VI 

data set). The values predicted by the ANN model exceed the actual values (i.e., 

overprediction occurs) when the values on the abscissa are less than 140s (or 

approximately 2 minutes). This shows that the predictions from the ANN model should 

be discarded when the predicted values to reach 90% melt fraction are below 2 minutes 

(i.e., to avoid catastrophic failure of the TES platform). This also shows that the 

predictions are most reliable and accurate when the melt fraction is less than 60% and it 

is better to avoid any reliance on the model predictions for melt fractions between 60% 

and 85% (or value of the ordinate between 2700 s and 1730 s or approximately 30 – 45 

minutes away from reaching 90% melt fraction). Thus, the predictions are accurate to 

within 10 minutes if the predicted values are more than 30 minutes. 

 

Figure 6: Group V Training Data. Comparison of results predicted for 2.7 V 

experiments. 
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Figure 7: Group VI Training Data. Comparison of results predicted for 2.7 V 

experiments. 

 

Figure 8 presents the plot of the error in the predicted values (obtained from the 

ANN model) as a function of the actual time required to achieve 90% melt fraction. These 

error values are plotted for three groups of numerical simulations: Group IV (training of 

the ANN model was performed by data from 2.6 V experiments with low and high noise), 

Group V (training of the ANN model was performed by data from 2.8 V experiments with 

low and high noise) and Group VI (training of the ANN model was performed by using 

combined data sets from Group IV and Group V). Plots for Group VI shows the best 

prediction (lowest error) throughout the entire melting process (until 90% melt fraction). 

As shown in Figure 8, for melt fraction less than 30%, the ANN model overpredicts (by 

less than 190 s); as observed in the plots for Group VI case - where the actual time to reach 

90% melt fraction ranges from 5900 s to 7200 s. The sudden rise and fall in prediction 

error in the vicinity of melt fraction of 60% and 90% (with maximum overprediction of 
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600 s and under prediction of 1436 s) is lower compared with that of Group IV. Also, for 

melt fraction less than 30%, the plots for Group V case show that they are always 

underpredicted by 320 s ~ 1140 s (i.e., between 5 ~ 19 minutes). Hence, the predictions 

from Group V may be less accurate (as compared to Group VI) – but are more reliable (as 

they do not suffer from overprediction because overprediction is likely lead to catastrophic 

failure of the TES platform). The only segments where Group V plot indicates 

overprediction is around the melt fraction of 60% and 90%. In contrast, the plots for Group 

IV oscillate frequently between underprediction and overprediction with the maximum 

overprediction of 1000 s and underprediction of 1085 s. Also, there is a large rise and fall 

in the error values for the Group IV plot when the melt fraction progresses from 60% to 

90%. As a result, predictions obtained from the Group IV plots are degraded substantially 

and are therefore considered to be the most unreliable. These trends can be explained by 

the fact that the total time to reach 100% melt fraction for the Group V dataset (10799 s, 

9849 s, 8458 s, and 8397 s) is similar to that of the 2.7 V experiments (9286 s) while it is 

much different in the Group IV dataset (12057 s, 13028 s, 11147 s, and 10858 s). Group 

VI data set is a combination of Group IV and Group V data, and it provides a more reliable 

and accurate prediction. Therefore, it proves that by consolidating a larger training data 

set (i.e., by almost quadrupling the data size) the accuracy of the predictions (i.e., 

forecasting) can be improved significantly (i.e., the error was minimized to less than 10 

minutes) for melt fraction values less than 60% and predicted values being more than 1 

hour (approximately). 
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Part C: 

 Prediction results for the 2.7 V experiments were obtained by using training data 

sets for the same power input conditions but with different size of input data sets (low 

noise data sets only as opposed to both low and high noise data sets) were analyzed. Thus, 

the effect of power input conditions (and the size of the training data sets) on prediction 

accuracy (and reliability of the predictions) were explored in this study. Figure 9 shows 

the plot of the error in the predicted values (obtained from the ANN model) as a function 

of the actual time required to achieve 90% melt fraction. These error values are plotted for 

two groups of numerical simulations: Group I (training of the ANN model was performed 

by utilizing data from 2.6 V experiments with low noise) and Group IV (training of the 

ANN model was performed by utilizing data from 2.6 V experiments with both low noise 

and high noise). 

Plot for Group IV shows the best prediction (lowest error) when the melt fraction 

is less than 30%. However, for melt fraction less than 30%, the ANN model results are 

overpredicted (by 730 s) as observed in the plots for Group IV case: where the actual time 

to reach 90% melt fraction ranges from 5900 s to 7500 s. In contrast, for melt fraction less 

than 30%, the plots for Group I indicates that it is always underpredicted by 1120 s ~ 600 

s (i.e., between 29 ~ 10 minutes). Thus, the predictions from Group I is less accurate (as 

compared to Group VI) but are more reliable (since overprediction will lead to a 

catastrophic failure of the TES platform). As melt fraction progresses from 30 % to higher 

values, the accuracy of the predictions utilizing Group IV data set is observed to be 

enhanced (until the actual time to reach 90% melt-fraction is 3826 s). This is in sharp 

contrast to the predictions obtained from Group I. Also, there is a sharp-rise and fall in the 
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error values for the Group I plot when the melt fraction changes from 60% to 90%. As a 

result, predictions generated by Group I are considered to be the less accurate. These 

trends show that larger training data sets can be helpful for improving the prediction 

accuracy even in the presence of minor levels of noise within the training data sets. 

 

 

Figure 8: Comparison of error for predicted results for 2.7 V experiments (for 

training data using Groups IV, V and VI). 

 

Figure 10 shows the plot of the error in the predicted values (obtained from the 

ANN model) as a function of the actual time required to achieve 90% melt fraction. These 

error values are plotted for two groups of numerical simulations: Group II (training of the 

ANN model was performed by data from 2.8 V experiments with low) and Group V 

(training of the ANN model was performed by data from 2.8 V experiments with low and 

high noise). Since results from Group V yield underprediction throughout the entire 

melting process (except the last 400 s), plot for Group V shows the best quality of 
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prediction: for both accuracy and reliability. However, for melt fraction less than 30%, the 

ANN model results show underprediction of 1147 s as observed in the plots for Group IV 

case where the actual time to reach 90% melt fraction is 5775 s. In contrast, for melt 

fraction less than 30%, prediction generated by Group II results show underprediction of 

1454 s, where the actual time to reach 90% melt fraction is 5766 s. Hence, the prediction 

from Group II is less accurate as compared to that of Group V. After melt fraction of 30%, 

results from Group II oscillates between overprediction (with maximum of 909 s) and 

underprediction (with maximum of 1164 s). However, results from Group V are 

underpredicted within that range. Hence, results from Group II are deemed to be less 

accurate and less reliable.  

Figure 11 shows the plot of the error in the predicted values (obtained from the 

ANN model) as a function of the actual time required to achieve 90% melt fraction. These 

error values are plotted for two groups of numerical simulations: Group III (training of the 

ANN model was performed by using data from 2.6 and 2.8 V experiments with low noise) 

and Group V (training of the ANN model was performed by using data from 2.6 and 2.8 

V experiments with low and high noise). Plot for Group VI are observed to provide results 

with the best quality, i.e., for both accuracy and reliability. For melt fraction less than 

30%, results from both Group III and VI oscillate (i.e., switch from underprediction to 

overprediction) within different range of values. Group III results show a maximum 

underprediction of 1764 s and overprediction of 313 s. In contrast, Group VI results show 

only a maximum underprediction of 475 s and overprediction of 238 s. From melt fraction 

ranging from 30% to 60%, Group VI prediction presents the maximum underprediction of 

656 s and overprediction of 588 s and a minimum error from 4286 s to 3076 s for the 
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values of time required to reach 90% melt fraction (abscissa value). However, Group III 

prediction shows maximum underprediction of 1033 s and overprediction of 822 s. Thus, 

the prediction from Group III is less accurate and reliable as compared to Group VI. These 

trends demonstrate that larger training data sets with different values of power inputs and 

a larger training data set (with low levels of noise) can be helpful for improving prediction 

accuracy and reliability. 

 

 

Figure 9: Comparison of error for predicted results for 2.7 V experiments (for 

training data using Groups I and IV). 
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Figure 10: Comparison of error for predicted results for 2.7 V experiments (for 

training data using Groups II and V). 

 

 

Figure 11: Comparison of error for predicted results for 2.7 V experiments (for 

training data using Groups III and VI). 
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Conclusion 

In this study, we developed and demonstrated the efficacy for achieving real-time 

prediction of the actual time remaining to reach a predefined melt fraction (chose by the 

user) for a candidate PCM during the melting process in a candidate LHTESS. A machine 

learning (ML) based approach utilizing artificial neuron network (ANN) is explored in 

this study for determining the efficacy and reliability for different types of training data. 

The purpose behind this endeavor is to improve the reliability of the ANN model for 

predicting the time remaining to reach a predefined melt fraction. For instance, highly 

accurate predictions were achieved for predicting the time remaining for realizing 90% 

melt fraction at any instant during an experiment (i.e., for real-time predictions during 

operations), using a feedforward MLP network (also termed as “FMLPN”). The results 

obtained in this study show that the reliability of this ANN model is maximized when size 

of the training data set is large (total eight sets of training data), and for conditions where 

each individual training data set is mutually consistent (i.e., they possess similar melting 

characteristics). Additionally, the results are almost insensitive to the variations in the 

different power input conditions. There is remarkable improvement in the prediction 

accuracy and reliability: provided that the data sets have similar melting characteristics 

(such as the value of total duration of the melting cycle). An eminent strength of this 

method is that training data sets obtained for a given set of power input conditions can be 

used to predict the melting time with high accuracy for another power input condition. For 

example, training data (from experiments conducted for the input voltage of 2.6 V and 2.8 

V) can be used to predict the target values of melt fraction for the 2.7 V experiments with 

high accuracy (i.e., predictions are within 10 minutes of actual values for duration of 
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experiments exceeding 2 hours). Also, the large training data set (with both low noise and 

high noise values) is observed to yield the best prediction accuracy and reliability. 

Therefore, these results will enable users of this approach to determine what type of data 

sets provide the best efficacy for the forecasting with sufficient reliability.  

 The techniques developed in this study therefore demonstrate the ability to predict 

the actual time remaining to reach the predefined melt fraction (e.g., 90%) with sufficient 

precision and accuracy. This capability will therefore enable the successful execution of 

the cold finger technique (CFT) while maximizing energy storage capacity (with minimal 

impact on the power rating) and enhancing the reliability of real time operations of TES 

platforms that utilize PCMs. Since CFT mitigates the supercooling problem of PCM, 

solidification time of PCM can be reduced significantly. This study demonstrates the 

feasibility and efficacy of ANN techniques for predicting the actual time remaining to 

reach the predefined melt-fraction with sufficient precision - both accurately and reliably. 

Future studies are recommended that are focused on the influence of the consistency of 

the training data sets on the robustness of the predictions obtained from these ANN 

models. In order to have the most accurate and reliable predictions from the results 

obtained from the ANN models, consistent and repeatable training data sets are required 

for different levels of power input. This will enable the elimination of the overprediction 

problem (which will cause catastrophic failure of the TES platforms deploying CFT 

techniques).  

  


