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ABSTRACT

The aim of this work is to study the flow behavior of magnetorheological polishing

fluids/ slurries, with specific focus on answering the following two research questions: a)

What is the suitable model for a polishing slurry in the absence of magnetic fields? and

how to select a model from among a class of possible models in an objective manner?, b)

What causes segregation and brush formation in MR polishing fluids in the presence of

magnetic fields? and how does shearing affect the segregated structure?

In the first half of the work, an experimental study was conducted to find appropriate

models for polishing slurries. In the later half of the work, a mixture theory based model

was used for the segregation and rheological behavior of the magnetorheological (MR)

polishing mixture. Then numerical studies are conducted to study the segregation behavior

of the mixture under stationary and couette type bulk flow conditions in the presence of

magnetic fields.

In the work for identifying rheological models for polishing fluids, a novel means

for obtaining rheological properties of polishing slurries for a given class of models by

combining CFD and measurements of Torque vs Speed Data is discussed. Experiments

were conducted using a custom-built torsional rheometer that subjects the polishing fluid to

conditions that are similar to polishing. Comparison with the analytical solution indicates

that side wall and inertial effects (ignored in the analytical solution) significantly affect the

values of the parameters of any given model even under nominally slow rates of rotation.

This significantly affects model selection as described below.

Using statistical inference techniques (the Akaike Information Criterion), among the

three rheological models, namely the Bingham fluid model, the Power-law model and the

Herschel-Bulkley model, considered for the fluid, the Herschel-Bulkley model seems to be
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a significantly better fit compared to other models for the slurry. The results suggest that

a systematic combination of computational-statistical-data science approach is necessary

for identifying model parameters even for slow flows as compared to currently used data

reduction methods based on analytical solutions for torsional flow that ignore inertial and

side-wall effects.

Segregation and flow behavior of the MR polishing mixture is modeled using mixture

theory. The dipole-current circuit approach was used to model the magnetic behavior of

the polishing fluid. Balance equations for the bulk mixture fluid and the relative flow of

the magnetic component are derived. Thermodynamically consistent constitutive models

were developed for the fluid to exhibit segregation through diffusion and flow of the bulk

mixture during the polishing process. A mixture model for the bulk flow velocity, formu-

lated using the volume concentrations of the component as weights, is observed to enforce

the incompressibilty constraint directly on the bulk velocity. Thus, this approach can eas-

ily accommodate the simple incompressible models used to experimentally characterize

the mixture.

A polishing mixture with a magnetic component concentration of 50 % is considered

in simulations. Decoupled and coupled simulations of stationary mixture under different

magnetic field boundary conditions were performed. The results showed that coupling the

magnetic field equations with the convection-diffusion equations is necessary to capture

the segregation and formation of brushes in the mixture. A non-dimensionalized study of

simulations of a perturbed stationary fluid identifies that the segregation behavior of the

mixture depends upon the magnetic coefficient and the initial brush width of the perturba-

tion in the fluid.

Evolution of the magnetic component’s concentration in a segregated fluid while un-

dergoing a couette type flow in the presence of uniform magnetic field is simulated. It

is observed that, at low shear rates, the mixture is able to segregate periodically as the
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brushes are reformed after breaking. But, at higher shear rates, the segregated mixture

mixes completely.
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NOMENCLATURE

ρ, A, α, β ... scalars

v, h, Q ... tensors (1st, 2nd and higher orders) (boldface)

ρm, vm variables associated with the magnetic constituent

ρa, va variables associated with the abrasive constituent

vax, vay x and y component of the vector va

p⊗ v tensor product (pivj êij) of tensors p and v

A ·B scalar product (Aij...Bij...) of tensors A and B of equal
dimensions

AB product (Ai...jBj...k) of tensors A and B

AT transpose of tensor A

∂a
∂t

, ∂p
∂t

or a,t, p,t local time derivative of the scalars (a) or tensors (p)

grad(ρ), grad(v) gradient of scalars (ρ) or tensors (v)
grad(ρ)i = ρ,i and grad(v)ij = vi,j

div(v), div(T) divergence of tensor (v, T)
div(v) = vi,i and div(T)i = Tij,j

curl(A) curl of the vector A
curl(A)i = εijkAj,k
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1. INTRODUCTION

Polishing Fluids are primarily used in achieving nanoscale finish on workpieces. There

are a variety of mechanical polishing methods currently in vogue, including Jet Polishing,

Chemical Mechanical Polishing, Abrasive Flow Finishing, Magnetorheological (MR) Fin-

ishing, etc. The advantages to using a fluid media for polishing is the ability to easily carry

the abrasives to the workpiece surface and carry the abraded chips back after polishing as

opposed to using a solid abrasive surface. In Jet Polishing, Abrasive Flow Finishing and

MR finishing the flow of the abrasive-laden fluid relative to the workpiece is utilized to

polish the surface of the workpieces. Moreover, in MR finishing the segregation of the

fluid determines the regions of polishing and forces in the polishing process. As a result,

the rheological properties of the fluids play a crucial role in determining the Material Re-

moval Rate of the process and the final roughness of the workpiece polished through MR

finishing.

Generally, all these methods have been widely successful in global polishing of sur-

faces that are easily accessible. With the advancement of technology, increasingly compli-

cated structures with complicated (and sometimes inaccessible) shapes are used for differ-

ent applications. One such case is biomedical implants where complex shapes and joints

are used to bring out close structural behavior as that of the joints being replaced. These

implants need two different types of surfaces for their application. A rough surface at the

regions where they are in contact with the bone and a smooth surface at the regions of joint

where they need to slip against each other. These implants with these complicated shapes

need to be polished differently at these localized regions.

For such cases, MR finishing (slurries of magnetic and non-magnetic abrasive parti-

cles) is one of the popular techniques where magnetic fields are used to segregate and

1



increase the viscosity of a abrasive-laden MR fluid for polishing as well as drive the flow

in a controlled manner. This controllability using magnetic fields help in localized polish-

ing of surfaces. This method is suitable for polishing irregular geometries as the "polishing

pad" easily conforms to the shape of the workpiece during the process.

The normal and shear forces applied at the surface of the workpiece play an important

role in determining the material removal and roughness of the workpiece. The segregated

structure of the fluid under flow determine the regions of polishing and the rheological

properties of the mixture. In this thesis (Chapter ) we at first identify appropriate models

through experimentation, modelling and simulation for polishing fluid with high concen-

tration of particles. Later we discuss the development of a multi-phase mixture theory

based model for MR polishing mixture. And numerical simulations are performed to study

the segregation behavior of the fluid under different flow conditions and magnetic fields.
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2. NANOFINISHING OF BIOMEDICAL IMPLANTS1

2.1 Need and Significance of biomedical implant polishing

Biomedical implants are manufactured medical devices that are augmented to human

(or animal) bones and tissues to support or replace an existing structure and/or enhance an

organ’s performance. The market for implants is growing at 5% annually and expected to

exceed $35B by 2019 [16, 17]. Among these, dental, orthotic implants (including those for

hip, knee, spine and foot joints), and heart pacemakers share the bulk of the current market.

Moreover, in the near future, the use of artificial heart, cranium, and spinal implants is set

to experience over 5 % growth rate. In particular, orthotic implants serve as structural

aids when augmented to the bone. They are normally secured to the bones using nuts

and bolts, or just placed in the cavity as structural fillers [18]. These are mostly made of

materials such as stainless steel (316L SS), Cobalt-Chromium alloys (CoCrMo), Titanium

(Ti), Titanium alloys (Ti6Al4V, Ti6Al7Nb, TiNi), a variety of ceramic materials with or

without acrylic cement [19], and soft polymers, such as Ultra High Molecular Weight

Polyethylene (UHMWP) and polyurethane. These materials are chosen to promote bio-

acceptance, i.e., (a) implantation is not known to cause undesirable mechanical, chemical

or biological stress, and (b) the implant bonds well and promotes the growth of the bone

and the nearby tissues.

A collection of different orthotic implants is given in figure 2.1. Here, we can ob-

serve that every implant is primarily composed of two types of surfaces. A textured

surface on the regions which bond and mesh with the bone, and an ultrasmooth surface

(Ra < 100 nm) at the locations where the components slide against each other (i.e., bear-

1Reproduced with permission of The Licensor through PLSclear from Naveen Thomas, Ashif Iquebal
Sikandar, and Satish Bukkapatnam. "Nanofinishing of biomedical implants." Nanofinishing Science and
Technology. CRC Press, 2016. 569-616. Copyright[2016] by Taylor and Francis
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Figure 2.1: A montage of orthotic implants showing the different surface texture require-
ments at different areas.

ing surfaces). Furthermore, these surfaces have complex shapes, sizes and form factors to

match a patient’s anatomy. Formation of a positive bond between the bone, nearby hard

tissue and the implant over the course of the healing time is referred to as bone integra-

tion or osseointegration. Osteointegration is necessary whenever an implant is inserted

into regions where a cavity needs to be filled, a broken bone needs to be restored, or a

joint is replaced [20]. The following factors play a primary role in osseointegration: (a)

growth of bone tissue on the implant surface [21], (b) adsorption of the proteins onto the

surface of the implant (bioactivity) that leads to adhesion [22], (c) tissue growth through

the pores of the implant to form a strong bond with the bone. Local biological, mechani-

cal, surface compatibility and finishing determine the durability of the moving parts in the

joints as well as the speed and the strength of osseointegration along the bonding surfaces.

Statistical analysis of Shalabi et al. [21] suggests that higher surface roughness results

in a higher bone to implant contact area and higher torque resistance. They noted that a
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roughness Ra of 0.5 – 8.5 µm was most conducive for osseointegration. This generalizes

an earlier finding of Alberktsson et al. [23] that Ra of 1-1.5 µm is needed for the growth

of the bone cells. Gotz et al. [24] found that titanium alloy (Ti6Al4V) implants, which

were Laser-blasted to produce surfaces with pores of the order of 200 µm and a surface

roughness of Ra 7.5 µm, promoted surface integration through deposition and in-growth

of the bone tissue. Aniket et al. [25] conducted experiments to study the early osteoblast

growth on titanium alloy (Ti6Al4V) implants versus similar alloy implants coated with

bioactive silica-calcium phosphate nanocomposite (SCPC50). They observed that the sur-

face roughness of the coating promoted the attachment of the cells to the implant surface,

but the uncoated surface promoted the growth of the cell. This is because uncoated sur-

face enhances the concentration of a linear polymer microfilament called Factin near the

surface which promotes cell growth. Lundgren et al.’s [26] investigations on the growth

of bone tissue suggests that the extent of bone growth was not significantly different be-

tween a turned smooth surface (Sa = 0.48 ± 0.3 µm) and a titanium oxide blasted surface

(Sa = 1.54 ± 0.3 µm), but more mineralized bone was in direct contact with titanium oxide

blasted implant. In this context, Anselme et al.’s [22] investigations with titanium implants

and Deng et al.’s [27] with hydroxyapatite based composites suggest that (a) the adhesion

power of the cells were higher on rougher surfaces, and (b) surface roughness plays an

important role in the integration of bone.

As noted in the foregoing, while microscopic roughness is essential for bone growth,

ultrasmooth finish Ra < 0.5 µm is necessary on the bearing surfaces (e.g., at hip and knee

joints) to ensure performance as well as durability under dynamic loading. As the world

population ages, the challenges associated with realizing ultrasmooth finish on the bearing

surfaces of joints are set to grow. For example, joint replacement surgeries are growing

at over 15 % annual rates, especially in the developed countries, to address issues with

arthritic complications and permanent damage to bones and bearing surfaces in old age.
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Implants for these applications contain surfaces that slide and bear during their function-

ing.

Joint implants possess components that are in continuous relative motion with each

other throughout their life. This relative motion of implant surfaces can lead to surface

erosion, chipping, and deformation of the geometry of the implants over time. Deformed

and worn implants cause debilitation of functions, squeaky noises, stiffening and dislo-

cation of the joints, as well as significant inconvenience and pain to the patient. Smooth

finishing of these surfaces is essential to minimize wear. Primary material combinations

employed for joint surfaces include polymer linings, metal on polymer, ceramic on poly-

mer, metal on metal, and ceramics. Pertinently, polymer liner materials include acrylic,

nylon, ultra high molecular weight polyethylene, polyurethane, and polypropylene. Metals

used for joint implants include medical grade titanium, and cobalt chromium while ceram-

ics includes Alumina, Zirconia, and Diamond thin films [28]. The first generation implant

materials were metallic with appropriate surface treatments. Metal-on-metal components

offer strong wear resistance of below 0.05 mm/year. However, the abraded asperities are

known to dissolve into and contaminate the bloodstream causing some health concerns

and known hazards such as metallosis, where the worn-out debris deposit and aggregate in

the soft tissues causing pain. While polymer linings allow economic generation of ultra-

smooth surfaces, they are prone to chipping and create micrometer-scale debris. The issue

of debris and high rate of wear (> 0.1 mm/year for most common materials) has been noted

to be a significant limiter of an implant life. Ceramic and advanced polymeric implants

are under investigation for various applications, and many of their variants are in various

stages of clinical testing and regulatory approval process.

From a tribological standpoint, these implant surfaces are designed to have a lower

coefficient of friction [29],[30],[31]. Consequently, very low surface roughness (Ra <

1 µm) is needed for implant bearing surfaces to ensure smooth slipping [30] The ease of
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sliding between the surfaces can be measured using a factor known as lambda ratio (Λ)

[32]

Λ =
hmin√

R2
a(head) +R2

a(cup)

(2.1)

where, hmin is the theoretical film thickness of the lubricating film, and, Ra(head) and

Ra(cup) are the roughness parameters associated with the two relatively sliding surfaces of

the joint. It is suggested that higher the lambda ratio (Λ) of the bearing surfaces, lower is

the wear rate in the implants.

Thus, finish requirements for biomedical implants tend to be localized—certain parts

of the implant would require rough porous surfaces to facilitate osseointegration. Certain

other regions, notably the ones whose surfaces are under relative sliding motion, would

require a smooth surface finish, in order to reduce friction, and hence wear. This differen-

tial surface finish requirement restricts the use of several traditional as well as advanced

finishing processes, including Chemical Mechanical Polishing (CMP), Electro Chemical

Mechanical Polishing (ECMP) and Electro Chemical Polishing (ECP) to finish. The re-

mainder of this chapter discusses various techniques reported in the literature for polishing

biomedical implant surfaces, with emphasis placed on the techniques employed to achieve

sub-micrometer scale finish, referred to as ultrasmooth finish in the biomedical implant

parlance.

2.2 Classification of finishing methods for biomedical implants

Surface finishing processes for biomedical implants can be mainly classified into (a)

mechanical, (b) chemical, (c) electrochemical, (d) vacuum deposition, (e) laser and ther-

mal treatment techniques [33]. It may be noted that some of these techniques aim to
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impart specific surface texture on a smooth surface, and others aim to create ultrasmooth

surfaces with nanometric scale finish. Conventionally, the industry has been employing

handheld polishers for finishing bio-medical implants, especially to achieve differential,

localized polishing. Such processes tend to be laborious and demand extreme dexterity.

Alternatively, localized electro-chemo-mechanical etching methods have been investigated

[34],[35]. However, they require elaborate masking to achieve localization of material re-

moval. Many of the methods investigated focus on providing surface texture conducive for

osseointegration. Limited techniques have been investigated for nanofinishing of implant

surfaces. However, as stated in the foregoing, localized finishing of free-form geometries

remains an open issue. The remainder of this section will introduce and provide a critical

review of various approaches for polishing implant surfaces.

2.2.1 Fine Abrasive based Nanofinishing

Mechanical finishing methods mainly include using fine abrasive particles to treat and

polish the surface of the implant. These techniques, as mentioned earlier may be used to

create specific textures and/or to provide an ultrasmooth finish.

2.2.1.1 Sandblasting

Sandblasting is used primarily to create sub-micrometer textures on ultrasmooth fin-

ished surfaces to promote osseointegration. Here, abrasive beads (φ ≈ 70-900 µm) made

of alumina, carborundum (SiC), or glass [36],[37],[38] are impinged onto the desired re-

gions of the surface. For example, Taga et al. [37] employed this process to create textured

surfaces with roughness Ra in the range of 0.5 – 2.5 µm. Their investigations also sug-

gested that carborundum would provide an effective performance both in terms of achiev-

ing texture control as well as improving the structural properties, such as fracture resis-

tance [36]. It was also noted in literature that the hardness and brittleness (alternatively,

toughness) of the abrasive particle, the blast-head power, abrasive powder flow rate, pulse
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intervals and finishing time are the main parameters that determine the surface character-

istics. The process is however limited to finishing external surfaces that are in direct line

of vision to the blast-heads.

2.2.1.2 Abrasive Flow Finishing

Abrasive flow finishing (AFF) uses a slurry consisting of fine abrasive particles mixed

into a viscoelastic medium (henceforth referred to as the medium) to flow under pressure

on the target surface to create an ultrasmooth finish [2]. For example, Subramanian et al.

[39] employed AFF technique to polish a hip implant to nano-scale roughness to create

ultrasmooth-slipping surfaces. This process can be tuned to polish a variety of rough,

porous implants to the required micro-roughness to promote adhesion to the bone.

The key process parameters in this technique are the pressure in the medium, number

of cycles, flowrate and rheology of the medium, and the abrasive particle size and concen-

tration. Increase in pressure, the number of cycles or the flow rate of the medium increases

the material removal rate (MRR) in the process. The medium’s viscosity has a high influ-

ence on the final roughness and MRR. The viscosity, however, is hard to control during

the process as it is dependent on factors, such as flow rate and temperature. Generally, a

higher viscosity in the medium results in a higher removal rate [2]. The roughness of the

workpiece is dependent on the size of the abrasive particles as well. The major limitation

in this approach is that local polishing cannot be achieved without the use of masks and

elaborately designed confinements. Moreover, as the flow of the abrasive particles on the

surface is unidirectional and reciprocative, a uniform surface finish is not assured in all the

directions along the surface.

2.2.1.3 Bonnet Polishing

The “Precession” tooling for bonnet polishing was first introduced by Walker et al.

[40],[41] for polishing glass surfaces. It uses a flexible bonnetshaped inflated membrane
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(cf. figure 2.2) pressed onto a target surface in such a way that the axis of the head is at

an angle to the normal on the surface of the workpiece. This angle is called as precess

angle. The bonnet is rotated about both the H axis (see figure 2.2) and the normal (A axis)

to achieve the precessions movement for smooth finishing. The compliance of the bonnet

helps in conforming to the freeform shape of the surface being polished. Slurry formed

by mixing fine abrasive particles [7, 42, 43] in deionized water with a specific surfactant

[44],[45] is used at the interface. Automated tool motion (CNC control) is used to ensure

that the workpiece is finished to the desired surface quality and form. Pertinently, Zeng

et al. [42] employed bonnet polishing method to produce a multi-radius hip joint implant

made of CoCr material using alumina 3µm abrasives. A roughness level of Sa ≈ 16.1 nm

was achieved by the process.

The MRR in bonnet polishing is dependent on the machine parameters, such as precess

angle, head speed, tool offset, the down pressure, and the slurry composition[7, 46]. These

parameters bear a nonlinear relationship to the surface roughness of the implant. While

versatile in term of the surface forms that can be bonnet polished, the process is limited to

polishing only the outer surfaces of the workpiece and it is not suitable to polish internal

surfaces and narrow pathways. The radius of curvature of concave workpieces that can be

polished by using this technique is limited by the size of the bonnet and the form of the

target surface on the workpiece.

2.2.1.4 Magnetic Polishing

Most common variants of magnetic polishing processes for biomedical implants use

a magnetic or magnetorheological fluid (MR fluid) mixed with abrasive particles. The

performance of the process largely depends on the magnetorheological properties of the

fluid in terms of the variation of the stiffness and other elastic properties of the fluid with

magnetic field strengths. In particular, higher elastic modulus of the stiffened fluid helps
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Figure 2.2: Bonnet polishing machine for polishing optical surfaces [1]
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in abrading the surface, but at the same time conforming to the free-form surface of a

workpiece [10]. The magnetic field can also be used to control the relative motion as well

as the down force required for polishing. However, in some cases, a physical tool may be

employed to generate the down force. For example, Sidpara et al. [47] developed a MR

fluid based ball end tool to polish the free-form surface of a knee implant. Other parame-

ters that influence the surface finish include abrasive particle size, fluid concentration and

hardness as well as the strength of the magnetic field. The advantage of using MR fluids is

its ability to conform to the shape of the workpiece which is primarily helpful in polishing

free-form surfaces of different materials such as glass, CoCr and titanium alloys.

2.2.2 Non-Abrasive based Nanofinishing

The main non-traditional finishing methods reported in the literature include chemical,

electrochemical and laser finishing techniques. The commonality among these methods is

that the main material removal mechanism is not mechanical abrasion or deformation of

surface asperities.

2.2.2.1 Chemical Etching

Several chemical methods have been employed to treat and prepare the surface of an

implant to make it suitable for insertion into the human body [33]. Chemical etching

methods have been employed to achieve varied purposes, including cleaning the surface to

remove grease and chemicals, texturing the surface for subsequent finishing or patterning,

and passivation of the surface to improve in-use corrosion resistance performance of me-

chanical finishing processes. Acid etching processes are by far the most common chemical

etching processes reported for finishing biomedical implants.

Acid etching, as the name suggests, employs a mixture of highly concentrated acids

to erode the surface of an implant to achieve the desired texture. This treatment involves

washing the surface of the implant with the acids, including nitric, sulphuric and/or phos-
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phoric acids at pH < 0.1 and oftentimes with negative pH to create micro-pits for rough-

ening the surface. For example, Sittig et al. [48] employed concentrated nitric acid with

hydrogen fluoride to etch the surface of titanium and titanium alloys to produce a surface

roughness of around 3-5 µm. The surface dissolution rate in the workpiece is dependent on

key parameters, such as the pH of the acid and the concentration of complexing agent. The

choice of chemicals relative to the implant material plays a vital role because of diverse

mechanisms involved in an etching process. For example, nitric acid by itself has no effect

on the surface roughness of titanium and its alloys, but instead nitric acid with hydrofluoric

acid (HNO3-HF) increases the surface roughness of titanium through grain-structure and

lattice orientation-dependent dissolution of the surface. In Ti6Al7Nb and Ti6Al4V alloys

HNO3-HF increases the surface roughness through selective dissolution of α–phase alloy.

2.2.2.2 Electrochemical Treatment

Electrochemical polishing methods aim to selectively remove material from surfaces

of the electrode or a workpiece via electrolytic reactions [33]. Two variants of this pro-

cess are electropolishing and anodic oxidation. Electropolishing is primarily used to treat

the surface of stainless steel and can be extended to titanium alloys. The workpiece sur-

face is dissolved into the electrolyte in a controlled manner through an electrochemical

reaction. It uses a mixture of strong acids as electrolyte. The metallic workpiece (an-

ode) is dissolved into the acid through oxide formation [49]. Most of the surface can be

smoothened through this process except the pits that are present at the grain boundaries of

the micro-structure [33]. Latifi et al., [50] discovered that if electropolishing is followed

by acid dipping the surface roughness could be further improved. They achieved a surface

roughness of Sa ≈ 0.96 ± 0.29 nm in 316L stainless steel by employing this procedure.

Larsson et al. [49] showed that when electropolishing of titanium was followed by anodic

oxidation, the oxide layer may exhibit the texture conducive for the growth of osteoblasts
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on the surface. Hryniewicz et al. [51] studied magnetoelectropolishing, a variant of elec-

tropolishing. They reported that the dissolution rate and micro-roughness characteristics

of the workpiece are dependent on the strength of the magnetic field.

2.2.2.3 Laser Treatment

This process employs pulsed Nd:YAG [24] lasers to create tiny surface pores that serve

as nucleation sites for subsequent growth of bone structure that interlocks itself onto the

implant. A unique advantage of this technique is that the microscale pores created in this

process support the ingrowth of bone [24]. Also, as it is a non-contact process it provides

a better control over the patterns desired on the surface. For example, Faeda et al. [52]

showed that titanium implants textured using a laser beam (Ra ≈ 1.38±0.23µm) resulted

in better bonding with the bone in terms of the torque required to break the implant free

from the bone.

While localization is hard to achieve with free-abrasive methods, many geometric fea-

tures are inaccessible to hand-held polishers. On the other hand, bulk polishing methods

based on chemical and/or electrochemical effects need some kind of masks or physical

barriers to confine material removal to desired regions. Table 1 summarizes various tech-

niques for finishing biomedical implants. Among these, Bonnet, AFF and magnetic pol-

ishing are most promising approaches for achieving nanoscale finish on implant surfaces.

In particular, recent advances in magneto-viscoelastic fluids offer an interesting oppor-

tunity for localized polishing at drastically reduced times [53],[54]. These methods are

described in more detail in the following sections.

2.3 Advances in Abrasive Flow Finishing

Abrasive flow based polishing was first introduced by McCarty in 1960s [55] as a

method to deburr and polish metal products at difficult to reach regions. The AFF meth-

ods employ a medium made up of fine abrasive particles mixed with polyborosiloxane,
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commonly referred to as the silly putty [56]. The abrasion occurs when the pressurized

medium flows along the surface of the workpiece. These methods can be applied to pol-

ish internal as well as external surfaces of a biomedical implant [56]. AFF technique is

normally used in aircraft and automobile industry to finish complex shapes and extremely

small orifices, such as fuel injector nozzles, which are not normally amenable to conven-

tional polishing [57]. Recently, these techniques have been further advanced to polish

biomedical implants to fine tolerances and finish [39]. The key advantage of AFF is its de-

formable medium which conforms to the surface during the finishing process. The MRR

and surface finish of the final product depends on different process parameters includ-

ing the pressure in the medium, concentration and geometrical properties of the abrasive

particles and the flow characteristics of the medium such as viscosity.

2.3.1 Process setup and mechanism

An AFF setup consists of two hydraulic cylinders filled with abrasive medium con-

nected to hydraulic systems that reciprocatively pump the medium between the cylinders

[58]. For internal polishing, the workpiece is mounted between the cylinders in such a

way that there is a leak proof pathway for the medium to flow along the surface of the

work-piece between the cylinders. As illustrated in schematic of internal polishing setup

shown in figure 2.3(a) & 2.3(c), the abrasive medium is pushed through the workpiece

to achieve material removal. For external polishing, the workpiece is mounted inside a

cylinder which is again connected to the two cylinders(figure, 2.3(b)) [39]. The medium

primarily consists of a viscoelastic carrier fluid with suspended abrasive particles. The

percentage of abrasive particles may vary from 5% to 75% by volume [2]. Generally, the

viscosity of the polymer medium is chosen based on the viscosity that is desired of the

abrasive medium. The composition may vary as per the size and complexity of the surface

being polished. The medium is pumped through the workpiece at pressures, ranging from
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7-220 bars according to the requirements of surface finish and component materials [56].

Generally, there are three types of AFF methods, namely, one-way, two-way and or-

bital AFF depending on the relative motion between the abrasive medium and the target

surface. In one way AFF, the abrasive medium is passed through the workpiece in only

one direction and is collected on outflow into a reservoir. Figure 2.3(a) illustrates a typical

one-way AFF setup indicating the flow of the medium through the workpiece. In such

a flow finishing, the finishing process is faster as fresh medium without any microchips

or broken abrasive particles, is passed through the workpiece every cycle [59]. In a two

way AFF, as shown in figure 2.3(b), the abrasive medium flows back and forth through the

workpiece shearing the surface during both the motions. Here, the same medium with the

abraded chips from the workpiece are repeatedly used, thus decreasing its effectiveness

over time. But, higher number of cycles can be achieved in a short time as the need for a

reservoir is avoided. This is the most popular technique of AFF. Orbital finishing method

is used for polishing external surfaces and edges. This method differs from the other two

methods, in that additional small orbital eccentric oscillations are applied on the workpiece

while the medium is flowing through, as shown in figure 2.3(c) [60]. Small vibrations of

the order of 0.5 – 5 mm cause the medium to locally compress very close to the edges,

increasing the down pressure generated for finishing the edge [56],[ 61].

As with all finishing processes, the MRR and the finish depend mainly on two parame-

ters, namely, the normal down force acting on the surface and the relative motion between

the polishing medium and the workpiece. In AFF, the bulk pressure of the medium gener-

ates the required normal force onto the surface for polishing. The relative motion between

the medium and the surface is achieved by the flow of the medium. The preference for a

viscoelastic material as opposed to a viscous fluid is attributed to the fact that the former

restricts the rotation of the abrasive particles during the abrasive action, thereby creating a

rubbing action to achieve a finer finish. Gorana et al. [61] stated that this rubbing mech-
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Figure 2.3: Schematic showing different setups in AFF (a) One way AFF (b) Two way
AFF (c) Orbital AFF [2]
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anism of polishing dominates in AFF, but the effect of ploughing is also evident on the

surface.

2.3.2 Materials

As discussed in the earlier sections, the abrasive medium consists of polymeric vis-

coelastic material and fine abrasive particles thoroughly mixed into a homogeneous mix-

ture. The commonly reported polymer medium used in AFF are of two types, Silicon-

based polymers and Rubber-based polymers. Among these, polyborosiloxane is the most

popular silicon-based medium used in AFF processing [62]. The rubber based polymers

being studied in the literature include natural rubber, butyl rubber, or styrene butadiene

derivatives. The most commonly used abrasives in AFF are silicon carbide (SiC) and

Alumina (Al2O3) with an average size of 10-200 µm in concentrations of 5-75 % of the

medium [2].

2.3.3 Process Parameters

The main process parameters that influence the MRR and the surface quality in the

AFF process are (a) the bulk pressure in the medium, (b) flowrate of the abrasive fluid,

(c) rheology of the medium, (d) the abrasive particle size and concentration, and (e)the

number of flow cycles.

2.3.3.1 Pressure in the Medium

The pumping pressure in AFF relates directly to the normal force applied during the

lapping process. An average pressure of at least 4 MPa is needed in the medium to observe

significant polishing in the workpiece [63]. Figure 2.4(a) summarizes the variation of

material removal in a unit time with pressure [3]. Here, we can observe that in all cases the

MRR increases with increase in extrusion pressure. Though the MRR and the amount of

material chipped increases with increase in medium pressure, the same cannot be deduced
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Figure 2.4: (a) Variation of material removal with Extrusion Pressure (b) Variation of the
change in roughness with extrusion pressure (c) Variation of material removal with number
of cycles[3]

for the surface finish. Figure 2.4(b) describes the effect of increasing pressure on the

change in surface roughness. It shows that the Sa initially increases to a certain limit and

then decreases with the increase in pressure.

2.3.3.2 Medium Flowrate

The flowrate of the abrasive medium affects primarily the uniformity of the finish

during the process. This is calculated using the volume of medium pumped during any

particular cycle and dividing it by the processing time. It is reported that the lower flow

rates of the medium, although would slow the process, leads to a very uniform finish

[57][61]. On the other hand, faster flow rates result in increased MRR. An exception to

this effect is observed in brass where the flow rate of the medium has almost no effect on

the material removal [57].
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2.3.3.3 Rheology of the Medium

The apparent viscosity of the fluid has a high impact on the polishing effect of the

process. It is of primary importance in internal polishing of macro and micro channels.

Medium with low viscosity is preferred for channels with small cross section and long

lengths. Generally, higher viscosity is preferred for shorter channel lengths. The viscosity

of the final medium is largely dependent on the size and the concentration of the abrasive

particles along with the viscosity of the polymer. It is independent of the pressures acting

on them, thereby maintaining a constant viscosity for different working pressures [3].

Moreover, rheological studies suggest that increase in shear rate, induced by the flowrate

in the medium, reduces the viscosity of the material [3],[64].

2.3.3.4 Abrasive Particle Size and Concentration

The characteristics of the abrasive particles have direct as well as indirect effects on the

finishing process. The concentration of the abrasive enhances the MRR and surface finish.

However, post a certain amount of concentration, the finishing depends on the particle size

and the mechanical properties of the medium. A further increase in concentration does

not have a significant effect on the finishing process [57]. The particle size of the abrasive

particles affect the finishing process in two ways, it affects the cutting characteristics such

as the width of cut during polishing and indirectly affects the depth of cut during the

finishing process [57]. It is observed that the flexible medium with large particles results

in a smooth surface finish as the depth of cut is low.

2.3.3.5 Number of Cycles

As every cycle results in abrasion of the workpiece to some extent, we can observe that

the total material removed, increases with increase in the number of cycles the medium is

passed through the workpiece. The MRR is normally higher in the initial cycles and de-
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Figure 2.5: Schematic of MFA-AFF setup[4]

creases in the later cycles which can be observed from the slope of the graphs as illustrated

in figure 2.4 [3]. This is partially attributable to the degradation of the medium.

2.3.4 Variants

In order to improve the process efficiency and the final finish numerous hybrid pol-

ishing processes have been developed. These different variants of AFF are, (a) Magnetic

AFF, (b) Centrifugally Assisted AFF, (c) Ultrasonic Flow Polishing. These variants tend

to enhance different aspects of the polishing process, and they need to be chosen as per the

workpiece and polishing requirements.

2.3.4.1 Magnetic Abrasive Flow Finishing

In magnetic AFF, Carbonyl Iron Particles (CIP) are added to the medium. An exter-

nal magnetic field is applied to increase the down force imparted to the workpiece by the

medium or control its flow characteristics. There are two variants of magnetic AFF based

on the medium and functionalities, (a) Magnetically Assisted AFF and (b) Magnetorheo-

logical AFF.
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Figure 2.6: Schematic of an experimental setup of a Centrifugally Assisted AFF [5]

2.3.4.1.1 Magnetically Assisted AFF: Here, the magnetic field is applied to attract

the CIP towards the workpiece as shown in figure 2.5. This causes an increase in the

density of abrasive particles close to the finishing surface and increase in the normal force

onto the surface resulting in improved MRR during the finishing process. This method

is not very effective for workpieces made of ferromagnetic materials, but are effective in

finishing materials, such as Brass and Aluminum. This is because of the shielding and

reverberation effects from the ferromagnetic workpieces.[4]

2.3.4.1.2 Magnetorheological AFF: Here, the magnetic field is instead applied to pri-

marily manipulate the rheological properties of the medium. The application of magnetic

field results in the formation of a thick network of the CIP that restrict the rotation of the

abrasive particles while flowing. This improves the cutting action of the particles, hence

increasing the MRR and rate of the finishing.
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2.3.5 Ultrasonic Flow Polishing

This process was invented in 1998 by Cheema and Jones [2],[65]. In this technique, the

medium flowing through the workpiece during the process, is excited using an ultrasonic

probe. This excitement of the medium activates the abrasive particles to interact more with

the peaks on the surface resulting in faster finishing.

2.3.6 Relevance to Biomedical Implants

Biomedical implants are normally made to match the shape of bones, teeth, etc. with

complex 3D surfaces. Polishing of these free form surfaces generally require specialized

tools that can adapt to the shape of the implant. AFF is very conducive for polishing these

implants as the abrasive medium can assume the shape of the workpiece being polished.

Subramanian et al. [39] experimented and achieved a surface roughness Ra of 11 nm on

hip prosthesis using AFF.

2.3.7 Limitations

Although the abrasive medium is flexible to reach inaccessible regions in the part, and

can conform to complex shapes, its flow is generally reciprocative in nature. Because

of such a flow pattern the polishing lay lines at any point are unidirectional in nature.

Hence, even though the process yields a fairly smooth finish, one can observe significant

differences in the roughness values along different directions. Also, localized polishing is

hard to achieve unless the undesired regions are masked. Working pressures of the process

also tend to be high (7-220 bars). Consequently, expensive and massive setups are needed

to run the process.

2.4 Advances in Bonnet Polishing

Bonnet polishing is a widely used polishing method for finishing aspheric surfaces

of lenses and mirrors. This method can also be used for finishing freeform bioimplants.
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Bonnet polishing was introduced by Walker et al. [40],[66] at Zeeko Ltd. as Precessions

tooling for optical surfaces. This technique employs a multi-axis CNC machine with a

polishing bonnet attached to an end.

2.4.1 Process Setup and Mechanism

A bonnet (see figure 2.6) is made up of an inflatable membrane filled with pressurized

fluid (eg. air) to serve as a flexible polishing pad [66]. This construction of a bonnet helps

in conforming to the shape of the surface to be polished. This flexible pad is attached to the

rotating head of a multi-axis CNC machine for polishing. As shown in figure 2.2, the arms

connected to the CNC machine are oriented in different directions with motor controls.

This gives the machine the freedom to reach complicated surfaces at different angles as

required. An abrasive slurry consisting of sub-micrometer scale abrasive particles mixed

with surfactants and other ingredients is introduced onto the surface to be bonnet polished

[44]. During polishing, the bonnet head is brought in contact with the surface of the

workpiece such that the axis of the Head (H-axis) is at an angle to the normal to the surface

of the workpiece which is called as precess angle (α in figure 2.7). While polishing,

the bonnet is rotated about these two different axes (H-axis and A-axis in figure 2.7) to

generate the rubbing action for polishing. This technique of rotating the bonnet in multiple

directions is called as Continous Precession. This method can also be used for very low

scale form correction of workpieces [67]. As the process is computer controlled, localized

polishing to any required roughness level is possible. It also offers a high MRR for fast

polishing to achieve nanometric surface finish (Sa ≈ 16.1 nm) on implants [42].

2.4.1.1 Mechanism

The mechanism of bonnet polishing is very similar to that of lapping and other me-

chanical fine-abrasive finishing processes [68],[69]. These models attempt to predict the

MRR by modifying the Preston equation [70] to accommodate the process behavior pe-
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Figure 2.7: Schematic of an experimental setup of a Centrifugally Assisted AFF [5]

culiar to bonnet polishing. For conventional polishing processes, material removal rate

(MRR = ∆h ⁄ ∆t where ∆h is a notional reduction in the asperity height after a period,

∆t, of polishing time) is predicted by Preston equation [70],

MRR = CpPv (2.2)

where, Cp is the Preston coefficient, which includes the effects of the process parame-

ters affecting the interaction between the workpiece and the tool (e.g., pH, slurry, type of

abrasive, etc.), P is the down pressure applied (i.e., normal force, F per unit contact area,

Ac, on the workpiece being polished), and v is the relative velocity between the part and

the tool. This equation indicates that for conventional polishing MRR is controlled by

the applied normal load and the relative velocity between the workpiece and the polishing

tool/pad.

The key difference in the behavior can be attributed to the spherical (balloon like)

25



shape of the bonnet which gives a non-uniform pressure distribution on the surface of the

workpiece. Through experimentation under static conditions, this pressure distribution

on the contact surface of the workpiece was found to be near-Gaussian as illustrated in

figure 2.8 [6]. This is modeled using a modified Gaussian equation. Hence, the height of

material removed varies locally at the polishing spot. The equation for the computation of

the material removal at a point B in the polishing spot, modeled by Cheung et al. [68], is

given by,

MB = kPmexp(
−1

2
(
rB
b

)
λ

)VBtd (2.3)

where, MB is the height of the material removed at B, k is the Preston coefficient, Pm

is the maximum pressure observed at the center of the spot, rB is the distance from the

center of the spot O to B, b and λ are the parameters of the pressure distribution, VB is

the relative velocity at B and td is the dwell time of the tool. Eq. (3) is also known as

the Tool Influence Function (TIF) of the polishing process as it gives the material removal

from the polishing area as a function of rB. This function can be used to predict the shape

of the surface for form correction during polishing [46],[6]. The integral of TIF over the

polishing spot gives the material removal from the region of the workpiece. The material

removal rate can be computed as the material removal per unit dwell time on the surface.

It is important to note that the relative velocity at the point is dependent on the rota-

tional speeds of the bonnet about both the H and A axes and the precess angle between

them. Precessions rotation of the bonnet is needed as the polishing cuts from only the

rotation about H-axis are unidirectional in nature. In order to achieve a uniformly pol-

ished surface, the bonnet needs to be rotated about the A-axis at the precess angle also to

constantly change the direction of cutting in the polishing spot. This process of polishing
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Figure 2.8: Distribution of pressure on the surface of the workpiece in static conditions [6]

using both the head axis rotations and A-axis rotations is called as continuous precession

polishing and was first suggested by Bingham et al. [71]. Pan et al. [1] suggested that

a random abrasive path during continuous precessions results in a more uniform surface

finish as compared to single precession polishing.

2.4.2 Materials

Bonnet polishing employs a variety of abrasives, such as alumina, diamond powder,

and cerium oxide for polishing different types of materials. For example, cerium ox-

ide with a particle size of < 1 µm is suitable for polishing glass surfaces such as lenses

[44],[72]. Metals such as cobalt chromium alloys [42],[46]and metal plated surfaces

are usually polished with harder abrasives, such as diamond or alumina with particle

sizes ranging from 2 µm to 9 µm depending on the desired finish of the polished sur-
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face [73],[74][81]. Soft materials that can trap the abrasive particles such as polyurethane

and polishing “microcloth” are used for manufacturing bonnets.

2.4.3 Process Parameters

The process parameters such as precess angle, bonnet offset, head speed and tool pres-

sure directly affect the efficiency of the process and the quality of the final surface. The

final surface roughness of the workpiece is also dependent on the size and hardness of

the abrasive particles. The following subsections describe the effects of these parameters

for finishing CoCr surfaces with a GR35 polyurethane bonnet and 3 µm alumina abrasive

particles on a 7-axis bonnet polishing machine [7].

2.4.3.1 Precess Angle

In bonnet polishing, precess angles from 5º to 30º are generally used for the polishing

process. Figure 2.9(a) shows the variation of the MRR with respect to the precess angle of

the bonnet. It shows that an increase in precess angle increases MRR. A six-fold increase

in MRR was observed by increasing the precess angle from 5º to 30º. This increase in

MRR can be attributed to the increase in both contact area and the relative speed at the

polishing spot.

2.4.3.2 Bonnet Tool Offset

The tool offset is the distance by which the surface of the bonnet is compressed by the

workpiece during the polishing process which is indicated as d in figure 2.7. An increase

in the offset of the polishing tool increases the contact area of the polishing tool on the

workpiece. As shown in figure 2.9(b), the increase in the contact area and the pressure at

the surface resulting from increasing the tool offset leads to an initial increase in MRR.

The MRR peaks at a limit and is then followed by a decreasing trend. This is due to the

drop in contact pressure at high tool offset of the bonnet.
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Figure 2.9: Variation of the MRR in Bonnet Polishing with respect to different process
parameters such as (a) Precess Angle (b) Tool offset (c) Head Speed and (d) Tool Pressure
[7]

2.4.3.3 Head Speed

Head speed refers to the rotational speed of the bonnet head about the H-axis. The

effect of the increase in the head speed on the MRR is the same as that of the speed of

rotation in lapping. As summarized in figure 2.9(c), the MRR increases linearly with the

head speed. This is in agreement with the Preston equation [70] in the context of lapping.

The linear relationship between the material removal rate and the relative velocity shown

in Eq. (3) is validated through the experimental results in figure 2.9(c).

2.4.3.4 Bonnet pressure

The bonnet pressure refers to the bulk pressure of the fluid filled inside the bonnet.

Under static tool conditions with constant tool offset, an increase in tool pressure would

increase the contact pressure on the workpiece [6]. However, under dynamic working

29



conditions TIF of the process is not affected significantly with increase in bonnet pressure.

As a result, only a slight increase in MRR is observed when bonnet pressure is increased.

Hence, as shown in figure 2.9(d), the effect of bonnet pressure on MRR is not significant

in comparison with the other parameters such as the precess angle, tool offset and head

speed.

2.4.3.5 Tool Path

Tool Path plays a vital role on the surface roughness and the uniformity of the polishing

surface. As the TIF suggests, MRR over the polishing spot is not constant. Moreover, the

polishing spot is generally much smaller in size than the workpiece. This can result in a

non-uniform local polishing if the bonnet is kept stationary at the spot. Hence, the tool is

moved along the surface at a certain feed rate for polishing the whole surface. The path

followed by the tool too plays a vital role in determining the uniformity of the finish. Dunn

et al. [8] experimented with a randomized unicursal tool path on the surface as opposed

to raster tool paths (see figure 2.10). These images suggest that periodic structures are

formed on the surface from raster tool paths. These surfaces have a high Rt with low Ra.

On the other hand, randomized tool paths yield a more uniform surface with less periodic

structures and Rt values comparable with Ra.

2.4.4 Variants

Bonnet polishing is a secondary finishing process that is best suited for creating ul-

trasmooth finish on surfaces that are already prefinished to a certain extent via grinding

and other primary finishing processes. This process is not effective with unfinished initial

surfaces. Hence, a variant to the basic bonnet polishing method based on using an abrasive

jet to prepolish a machined surface has been investigated [73],[74]. This process variant

was found to drastically reduce bonnet wear and more efficiently achieve an ultrasmooth

surface [73],[74].
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Figure 2.10: Surface images of the workpiece after regular straight path and unicursal path
[8]

2.4.5 Limitations

One of the primary drawbacks with bonnet polishing is that it is a contact polishing

process, making it necessary to use mechanical arms and links to reach the polishing spot.

This restricts the use of bonnet polishing only to external surfaces and accessible to in-

ternal locations of a biomedical implant. Also, the concavity of the surface that can be

efficiently polished is limited by the dimensions of the bonnet and the range of precess

angles achievable in the equipment. Concave surfaces with curvatures higher than that of

the bonnet are often difficult to polish using this technique.

2.5 Advances in Magnetic Polishing

Magnetic field assisted polishing processes are based on applying a magnetic field on

abrasive-mixed magnetic fluid for surface finishing. In the presence of magnetic fields,

magnetic particles in the fluid align themselves in the direction of the magnetic field. This

increases the apparent stiffness of the Bingham fluid to provide the desired elastic proper-

ties to facilitate polishing, expose the abrasive particles to the workpiece surface, and/or
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exert the desired down force.

The use of a magnetic field for polishing was first reported in 1940 for cleaning oxide

scales and polishing welded joints [75]. Later efforts focused more on developing im-

proved process designs and fluid compositions to achieve improved polishing results with

different workpiece geometries. For example, Shimada et al. [76] developed a magnetic

compound fluid to increase the apparent viscosity as well as the stability of the dispersed

particles. Their work greatly overcomes the earlier limitations of magnetic and MR flu-

ids. Shinmura et al. [77] employed bonded magnetic abrasive particles to polish steel and

silicon nitride cylinders. Subsequently, Fox et al. [78] investigated the effects of using un-

bounded magnetic abrasive particles in a cylindrical magnetic abrasive finishing process.

Their experimental results suggested an increase in MRR and surface roughness compared

to bonded abrasives. They have also observed that imparting axial vibration to the work-

piece resulted in a better surface finish due to the improved flow pattern and tribological

regimes and increasing the magnetic flux density yielded higher MRR and better surface

finish [78].

Kim et al. [79] used a pressurized jet of magnetic abrasive particles through a noz-

zle to finish internal surfaces of a workpiece with non-circular cross sections. While the

magnetic field is used to attract the abrasive particles towards the workpiece surface, they

are dragged along the cylinder’s surface via the pressurized jet simultaneously to facilitate

polishing. More recently, Wang et al. [80],[81] employed a gel with magneto-rheological

properties to finish a cylindrical workpiece. The steel workpiece was treated as a pole of

the magnet and was rotated at high speeds to create a relative motion between the asperi-

ties and abrasive particles. An axial vibration was introduced to impart a uniform surface

finish.
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2.5.1 Process Setup and Mechanism

The mechanism of a magnetic polishing process is primarily governed by the behav-

ior of the magnetic (mostly MR) fluid in the presence of magnetic field. MR fluids are

particularly attractive for polishing because they can (a) transport the abrasive particles

to the cutting zone and remove abraded chips and heat to prevent scratching and thermal

damage, respectively, (b) reach internal surfaces and profiles that are inaccessible to con-

ventional polishing tools, (c) mitigate abrasive and process degradation as the fluid can be

continuously recycled, monitored and conditioned, (d) provide optimal stiffness to meet

various polishing needs, and (e) augment other polishing processes (e.g., abrasive flow/jet

polishing) to improve the process efficiency, especially for optical surfaces [9].

2.5.1.1 Setup

Over the past few decades, several magnetic polishing setups have been designed and

customized to meet the needs of a variety of workpiece materials and geometries. Among

these, a schematic of a commercial machine tool, originally invented by Kordonski [9]

for polishing aspheric surface of lenses [82] is shown in figure 2.11. In the setup, nozzle

delivers the MR fluid charged with abrasive particles onto the vertical rotating wheel. The

rotary wheel carries the fluid to the converging work zone between the lens (workpiece)

and the wheel. An electromagnet placed transversely to the carrier wheel magnetizes the

MR fluid, thus increasing its viscosity and yield stress. Upon the application of magnetic

fields, the material stiffens and abrasive particles segregate to the surface of the fluid to

promote material removal (along the exposed face of the fluid) [10]. This switching of

the rheological properties of the fluid to a higher apparent viscosity and stiffness in the

presence of magnetic field is associated with the formation of Flexible Magnetic Abrasive

Brushes (FMAB) [10]. These brushes change profile according to the surface form, as well

as employing magnetic jigs that form chains of abrasive particles, resulting in material re-
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Figure 2.11: Magnetorheological Finishing [9]

moval from both external [10] as well as internal surfaces [83]. Whereas in cases where

bonded abrasives are used, the magnetic forces in these magnetically active bonded abra-

sive particles provide the required down force and relative motion in the abrasive particles

for finishing. As the wheel rotates, the used MR fluid is collected by a suction system

which is then conditioned and recycled for the next cycle [9].

2.5.1.2 Mechanism

The material removal mechanism in this process is illustrated in figure 2.12. Figure

2.12(a) shows the randomly arranged abrasive and iron particles in a non-magnetized MR

fluid. Figure 2.12(b) shows the alignment of carbonyl iron particles along the magnetic

lines of force with abrasive particles suspended on the top. Figure 2.12(c) shows the
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Figure 2.12: Schematic of material removal process in Magnetorheological Finishing [10]

sheared fluid with abrasive particles in contact with the workpiece surface while abrading

the surface, thus removing material. Here the relative motion is caused by the rotation of

the carrier wheel and the sweeping motion of the lens. The magnetic force provides the

normal component of the force while the tangential component of the force is generated

by the rotation of the carrier wheel. The sweeping motion of the lens contributes to both

the normal as well as the tangential force components. The relative motion between the

workpiece and the abrasive-mixed MR fluid removes the material in the form of micro and

nano-chips [10].

Mori et al. [11] suggested that the down force influences the indentation of the abrasive

particle on the surface of the workpiece. The tangential force contributes to restoring par-

ticles to their equilibrium chain structures from the disturbances as the workpiece rotates,

asperity removal, and to spinning the abrasive particles to help climb off the valleys.

Studies have been on the different aspects of magnetorheological polishing such as the

force causing the segregation of the abrasive particles in the fluid. Tani et al. [84] described

a method that uses several permanent magnets of alternating poles to set up a spatial field

gradient both vertically and horizontally with MR fluid comprised of unbonded abrasives.

The non-uniform field has a strength of the order of 50-350 kA/m. The magnetic fluid is
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composed of 10-15 nm ferrocolloid-magnetite (Fe3O4) in eicosyl naphthalene and 40 vol

% 4 µm SiC. The part is rotated over the fluid and the workpiece is polished due to the rel-

ative motion of the part with respect to the “lap" created by the levitational buoyancy force.

The removal rate for an acrylic resin was approximately 2 µm/min over the part surface.

Here, it is suggested that, the horizontal field gradient prevent the abrasive particles from

“rolling away” along with the workpiece. And the vertical gradient causes the magnetic

particles to move downward towards the permanent magnets in turn driving the abrasive

particles up to the region between the magnetic particles and the workpiece. These mag-

netic levitation forces which allow the abrasive particles stay afloat is proportional to the

gradient in the magnetic field [85],[86] and is given by,

Fz
V

= (ρf − ρs)g − µo(M · ∇H)z (2.4)

where, Fz is the levitational buoyant force, V is the volume of abrasive particles, ρf

is the mass density of magnetic fluid, ρs is the mass density of abrasive particles, g is the

acceleration due to gravity, µo is the permeability of free space, M is the ferric induction

of magnetic fluid, and ∇H is the gradient in the magnetic field. Studies[84] also suggest

an increase in MRR with increasing magnetic fields. This is attributed to the increase in

buoyancy force resulting from the application of the magnetic field.

Shorey et al. [87] and Miao et al. [88] have studied the mechanism of material removal

in the MR finishing process. Contrary to relating levitation forces to material removal,

they stated that the material removal in MR fluids is primarily due to shear forces and not

due to normal forces. This was based on the fact that the normal forces due to magnetic

levitation (buoyant) (1 × 10−9 N) and the normal stress due to bulk deformation and/or

hydrodynamic pressure due to flow of MR fluid into converging gap (1× 10−7 N) [87] are

negligibly low in comparison with the forces obtained in conventional polishing (0.007 N
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and 0.065 N) [89], while the MRRs are still comparable. Miao et al. [88] reported the

following expression for MRR in magnetorheological finishing processes

MRRMFF = C ′p(MRF (τ,FOM))

E

KcH2
V

· τ · v (2.5)

where, MRRMFF is the material removal rate for MR Finishing, C ′p(MRF (τ,FOM)) is

the modified Preston’s coefficient which in turn is a function of the shear stress τ and the

material’s Figure of Merit FOM, E is the elastic modulus of the workpiece, Kc is the frac-

ture toughness of the workpiece, HV is the Vicker’s Hardness of the workpiece and v is

the relative velocity of the MR fluid with respect to the workpiece. This expression is con-

sistent with hydrodynamic models reported in literature for material removal in polishing

processes.

Other studies on magnetic fluid polishing include finishing of edges based on forming

a converging gap between the edge and the magnetized MR fluid [90], MR fluid flow,

viscosity and temperature are controlled [91]. Augmented abrasive jet finishing has been

developed to enhance MRR (magnetic field is used to pull and collimate abrasive jet,

thus reducing the load on the fluid pump). Studies have also been conducted on finishing

of deep concave surfaces [92], polishing of elastic workpieces in freezing medium [93],

as well as chemo-mechanical polishing of ceramic balls [94]. The prior investigations

have also provided evidence of interesting coupling between hydrodynamics and magnetic

effects that affect polishing performance [95].

2.5.2 Materials

A magnetic polishing medium primary includes three major components (a) the mag-

netic fluid, (b) the abrasive particles, and (c) supplementary components (e.g. surfactants,

such as oleic acid, tetramethylammonium hydroxide) that may be employed to increase

colloidal stability of the fluid. In unbonded magnetic polishing medium, alumina, SiC
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and CeO2 particles of the order of 1-25 µm size are mixed with magnetic fluids to form

the abrasive medium. The nonmagnetic nature of these abrasive particles produces the re-

quired magnetic levitating force which results in the formation of the FMAB for polishing.

The magnetic fluids used for polishing can belong to one of the following four categories:

(a) magnetic fluids or ferrofluids which comprise of nanometric-sized carbonyl iron parti-

cles suspended in a carrier fluid such as water, oil, and eicosyl naphthalene with the help

of stabilizers [84]. (b) MR fluids use larger ferromagnetic particles of the order of mi-

crometers which are suspended in oil or water-based medium using suitable stabilizers or

polymers. (c) Magnetic compound fluid suggested by Shimada et al. [76] includes both

micro- and nano-scale particles where α-cellulose particles are used to stabilize the fluid.

(d) Magnetic abrasive gels where the magnetic and abrasive particles are suspended in

silicone gel which acts as a viscoelastic medium to suspend the particles [81].

Apart from these, the bonded abrasive particles can also be used with proper solvents

and stabilizers. Mori et al. [96],[93] reported the application of sintered magnetic abra-

sives where small abrasive particles (alumina ∼ 5µm [11]) are attached to the surface of

large carbonyl iron particles (70-170 µm [11]). Bando et al. [97] have also reported the use

of bonded magnetic abrasive particles synthesized through electroless plating of diamond

abrasives onto ferrous particles for polishing alumina ceramic tubes [98].

2.5.3 Process Parameters

The MRR and surface finish of magnetic polishing processes are dependent on process

parameters such as (a) strength of the magnetic field, (b) abrasive particle properties and

type of magnetic particles, (c) down force, and (d) the relative motion of the particles.

2.5.3.1 Magnetic field strength

With an increase in the magnetic field strength, the yield stress (based on Bingham

model) of the magnetic fluid increases [99]. This results in an increase in the pressure
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exerted by the magnetic particles on the abrasive particles and the workpiece thereby in-

creasing the MRR. One of the main advantages in magnetic field assisted finishing pro-

cesses is the ability of the method to continuously recycle abrasive particles. However, if

the magnetic field strength is increased beyond a critical point the abrasive particles are not

recycled as they are held against the workpiece surface under high pressure, thus resulting

in worn out edges of the active abrasive particles and progressively lower MRR.

2.5.3.2 Abrasive and magnetic particle properties

Geometrical and physical properties of the abrasive and the magnetic particles play

a major role in influencing the surface finish. For example, when a steel grit is used as

the ferromagnetic particles (FP), surface finish and MRR are better than with an iron grit

[100]. This is because a steel grit was able to distribute the pressure more uniformly to

the abrasive particles because of its polyhedron shape, compared to a spherical iron grit.

Additionally, the hardness of the steel grit was much higher than that of the iron grit. This

leads to more surface abrasion and hence increased MRR. Also, larger FP yielded higher

MRR and surface roughness [100] because magnetic forces on the particles are directly

proportional to their volume. Thus, larger FP had higher magnetic forces acting on them.

This increased the average pressure on each abrasive particle, thereby increasing the MRR

[85]. However, excessively high magnetic force prevented the rolling of the FP which

resulted in decreasing the pressure on the abrasive particles, thereby lowering the MRR

[100]. ask them

Also, larger the abrasive particle size, higher was the MRR. However, large particle

sizes also lead to higher surface roughness. Smaller abrasive particles yielded better sur-

face roughness but low MRR. This is because the smaller the size of the particles, the

lower was the average pressure and shear stress exerted by the FP on each abrasive par-

ticle. Thus, as the average pressure on the abrasive particles decreases, lesser material is
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removed and better surface roughness is obtained [100].

2.5.3.3 Down Force

Down force is one of the most crucial parameters for polishing. In magnetic field

assisted polishing, down force on the workpiece can be applied broadly in two ways:

(a) using a physical tool to push the magnetic fluid against the workpiece or vice-versa,

and (b) using the magnetic fields itself to attain the required down force. The first case

is mostly used for polishing the external geometries, curved surfaces, etc. For example,

down force in curved and free-form geometries can be applied using a CNC controlled

magnetic ball end tool covered with the magnetic fluid [101]. Here, the radius of the ball

end tool becomes a limiting factor for polishing small geometrical features. Magnetic

fields, on the other hand, provide an inherent advantage of flexibility in polishing hard

to reach areas as well as internal geometries, for example, pipes and capillary tubes. An

appropriate combination of electromagnets may be needed to adjust the magnetic fields

at the target spot to create the required down force. For internal geometries, Yamaguchi

et al. [102] developed a magnetic configuration to polish the internal surfaces of a thin

capillary tube. The tube was initially filled with the magnetic fluid and then an external

magnetic configuration was used to agitate the abrasive particles and provide the down

force necessary for polishing.

2.5.3.4 Effect of relative motion

The motion of the abrasive particles relative to the surface plays a vital role in material

removal. The relative motion between the workpiece and the MR fluid can be achieved

through different methods. In most cases, the fluid is agitated relative to the surface of the

workpiece either mechanically with the help of wheels, jets, magnetic ball, etc., or using

magnetic field itself. Yamaguchi et al. [103],[102] reported the use of magnetic fields to

move the abrasive mixed fluid relative to the workpiece.
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Figure 2.13: Schematic showing the motion of abrasive particles and the forces at the
interface during polishing at peaks and valleys [11]

Since the pressure in this process is very low, an abrasive particle moving along the

surface of the workpiece is free to rotate on the target area. But, in the presence of magnetic

field the chains formed by the FP trap the abrasive particles and stop them from rotating

while in contact with the surface of the workpiece. Hence, it is the shearing forces created

by the abrasive particles trapped by the magnetic chains that result in finishing of the

surface of the workpiece.

The material removal mechanism was further investigated by Mori et al. [11]. They

had used sintered abrasive made by aggregating iron with alumina particles to form mag-

netic abrasives as shown in figure 2.13. It was noted that the normal force acting on the

abrasive particle was responsible for the indentation of the abrasive particle on the surface

of the workpiece. To investigate the tangential force, it was assumed that when the work-

piece rotates, the balance in the chain structure of the abrasive particles was disturbed, and

the abrasive particle at the edge moves a distance dx from its balanced point. As a result, a

tangential (frictional) force acts to bring the particle back in the equilibrium position [11].

In figure 2.13, the dashed line represents the equilibrium location of the abrasive particle.
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This equilibrium position of the abrasive particle is perturbed due to the combined effect

of friction force between the workpiece surface and the abrasive particle during their rel-

ative motion, as well as the repulsive force between the abrasive particles. This results

in a return force Fh. If the abrasive particle’s equilibrium location is in the vicinity of a

crest, the return force Fh results in an asperity material removal. On the other hand, if

the abrasive particle’s indenting point is in a trough, Fh acts in the center of the abrasive

particle and a reaction force acts at the edge of the abrasive. Thus, a moment acts on the

particle and makes it to rotate and climb the crest. This tendency of the particle to rotate

and climb the hill is also due to the fact that, the cutting resistance of the material will be

larger at the bottom of a crest owing to larger volume of material to be removed. Hence,

the material climbs along the crest with increasing Fh and ultimately cuts material from

the top of the hill, where there is minimal cutting resistance.

Among the process parameters, tangential speed v and strength of the magnetic field B

(that determines the down force P ) are the major determinants of MRR and surface finish

[104]. While the magnetic field contributes to an increase in MRR, the surface finish

improves with increase in speed v as it promotes “sloshing” of abrasive particles [104].

Thus, depending on the size, form and type of material being polished, and the type and

size of the abrasive particles being used, it is critical to choose optimum magnetic field

strength and rotational speed to obtain the desired surface finish.

2.5.4 Variants

Different hybrid methods of polishing have been developed along with magnetic pol-

ishing to improve the performance of the polishing process. Prior efforts also investigated

the use of electrochemical action (EMAF) to create a passivation layer [105], normal vi-

brations (VMAF) to enhance the MRR [106], and lubricants to improve fluid flow and

hence finish [98]. Characteristics of the FMAB, especially the effects of rotation speeds
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and magnetic field on the particle distribution, cutting forces and MRR [107], as well as

the augmentation of ultrasonic vibration [108] has also been studied.

2.5.5 Relevance to Biomedical Implants

The ability of the polishing technique to achieve nanoscale finishes and conform to

the shape of the workpiece is particularly useful in finishing of implants to ultrasmooth

finish. Sutton et al. [109] used a setup similar to the polishing setup described in figure

2.11 to polish hip implant ball with magneto-rheological abrasive fluids. MAF was also

successfully employed by Sidpara et al. [47] and Yamaguchi et al. [110] to polish a

Knee Femoral implant to a surface roughness of Ra ≈ 28 nm and Sa ≈ 5 nm. Both the

research groups used a ball shaped magnetic pole to locally focus the magnetic abrasive

fluid forming the FMAB which were used to polish the implant by rotating the pole.

2.5.6 Limitations

While great progress has been made towards adapting magnetic field and MR fluid

to finish various materials and geometric shapes, issues pertaining to localization, such as

confining the magnetic fluid-abrasive mix to polish the desired areas by applying “optimal”

time-space variation of the magnetic field has received little attention. Recent advances in

electro-permanent magnets, and magneto-viscoelastic fluidics provide some interesting

possibilities for localized polishing.

2.6 Summary

Biomedical implants are medical devices that are surgically placed into the body to

enhance and support an organ in its functioning. A variety of metals such as stainless

steel (316L SS), titanium alloys (Ti, Ti6Al7Nb, Ti6Al4V, TiNi), cobalt chromium alloy

(CoCrMo), ceramics such as zirconia, sapphire, and alumina, polymers such as Ultra High

Molecular Weight Polyethylene, polyurethane, nylon, and polyethylene are used to man-
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ufacture orthotic implant components. An implant needs to be chemically, mechanically

and biologically accepted by the body without causing any undue stress during its lifetime.

For joint implants, two broad types of surfaces need to be prepared to achieve joint

objectives of bio-acceptance and functional durability. A surface with micro-roughness

at the interface between the implant and the bone tissue which promotes osseointegration,

including promotion of growth of bone tissue on the surface, and adsorption of the proteins

onto the surface. A surface roughness Ra in the range of 0.5–8.5 µm is known to be

most conducive to achieve this objective. An ultrasmooth finish (< 50 nm) on the sliding

surfaces ensures high durability and smooth movement of the implant at the joints, and

inhibits debris formation. The smoothness, often quantified by ease of sliding (λ) varies

depending on the material combinations and application.

In order to meet these differential surface requirements in an implant, namely, textured

surface to promote osseointegration and ultrasmooth finished surface for smooth sliding.

Two broad categories of processes are employed to achieve these surface needs. Textur-

ing of surfaces can be achieved using sandblasting, chemical etching and laser treatment.

Nanofinishing process employed in this context include abrasive flow finishing (AFF),

bonnet polishing, magnetic polishing and electrochemical treatment. Among these, me-

chanical methods such as AFF, bonnet polishing and magnetic polishing are best suited to

finish complex 3D shapes using free abrasive particles.

In AFF, a homogenous mixture of fine abrasive particles suspended in a viscoelastic

medium is pumped through the surface of the workpiece at very high pressures (7-220

bars). The high pressures and the normal stress developed as a result of the flow of the

medium cause the abrasive particles to impinge onto the surface and generate a finished

surface. In bonnet polishing, a deformable bonnet membrane inflated with a fluid rotates

about two different axes along with the abrasive fluid to finely finish the surface of the

workpiece. The two rotating axes are oriented at a precess angle. Most magnetic polishing
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methods are based on creating FMAB with abrasive particles trapped in the chains of

magnetic particles. An FMAB can easily conform to the shape of the implant so that

the abrasive particles can polish the surface of the workpiece. External mechanical force

and/or the magnetic fields are employed to apply the down force necessary for polishing.

Localization of polishing operation is hard to achieve using the current finishing meth-

ods. Most techniques are limited to bulk polishing, compelling us to rely on manual meth-

ods or the use of elaborate surface masks for polishing local regions. Some techniques are

limited by the size constraints of the machine for effective polishing. Significant contri-

butions are yet to be made for polishing local regions of different sizes in implants with

complex shapes to nanoscale smoothness.
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3. LITERATURE REVIEW

As discussed in section 2.5 on magnetic polishing, the behavior of the polishing pro-

cess is highly dependent on the polishing fluid’s rheological properties and its control by

magnetic fields. For the purpose of localization of polishing, a thorough understanding of

both the change in rheological properties and segregation of the fluid in the presence of

magnetic fields is necessary. This behavior of the fluid is also dependent on the composi-

tion of the abrasives and the magnetic particles in the fluid and their individual properties.

This motivates us to conduct a rheological characterization of the fluid to gain knowledge

on behavior of the fluid in the presence and absence of magnetic fields.

3.1 Rheology of Slurries

One of the early contribution to the literature of rheology of slurries was given by

Einstein in 1906 [111]. In this seminal work, he gave a theoretical development of the

variation of the viscosity for suspensions with low concentration of particles in newtonian

fluids. The rheological behavior was finally derived to be newtonian whose viscosity is a

function of the volume fraction of the particles as shown in equation 3.2.

T = −PI + ηD (3.1)

where, η = ηf (1 +
5

2
xp) (3.2)

where, η is the viscosity of the suspension, ηf is the viscosity of the medium, xp is the vol-

ume concentration of particles, T is the stress in the suspension and D is the deformation

rate of the suspension.

One of the initial experimental studies on the viscosity measurement was performed by
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Mooney et al. [112]. In this paper, dilute suspensions with spherical particles was studied

and the results were observed to be conforming to the theoretical predictions by Einstein

though his work didn’t focus on particles such as glass or abrasive particles. Another

early study on the rheological properties of granular fluids was conducted by Thomas et

al. [113]. In this work a study of the viscosity observed through experiments for particle

suspensions were conducted for different volume fractions of solids. The data of viscosity

was fit using a power series with respect to volume fraction.

In another experimental work by Lewis and Neilsen [114], the rheology of the fluids

were reported to be similar to the results of the work by Mooney et. al [112] where

the viscosity is modeled as an exponential function of the volume fraction. In a similar

experimental work conducted by Krieger [115] this viscosity is modeled as a power-law

behavior with respect to the volume fraction. In these early works, the behavior of the

dilute granular fluids were modeled as a newtonian fluid though viscosity were modeled

with respect to the volume fraction of the particles using different models.

In the later works reported in the literature, shear thinning effects of the granular flu-

ids were also observed, studied and reported. This behavior of the fluids were primar-

ily observed in fluids with higher volume ratio of particles in the medium. These Non-

Newtonian behavior of the fluid have been attributed to different behaviors of the particles

in the fluid matrix. The factors influencing the behavior include Brownian motion, in-

ertial effects and the volume fraction of the particles moving in the fluid. These effects

for a neutrally buoyant steady state flow can been summarized in the literature to study

of 3 dimensionless numbers describing the flow, namely Péclet number(Pe), Reynold’s

number(Re) and the volume fraction of solids in the suspension [116]. Hence, giving the

effect as,

µ

µ0

= f(Pe,Re, φ) (3.3)
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where,

Pe =
6πµ0a

3γ̇

kT
(3.4)

Re =
ρ0a

2γ̇

µ0

(3.5)

where medium properties such as viscosity µ0, density ρ0, particle properties such as

radius a, thermal energy kT and nominal shear rate γ̇ affect the final generalized viscosity

µ of the suspension.

Here the Péclet number Pe is ratio of the hydrodynamic forces from the medium flow-

ing past the particles and diffusive forces of mixing caused by Brownian motion (thermal

energy). Hence, we can observe that low particle size and high thermal energy will de-

crease the value of Pe in the suspension. Hence, the effect of the Brownian motion is

found to be effective for Pe ≤ 103 values[116]. Reynold’s number is the ratio of the iner-

tial forces of the particle to the viscous forces by the medium on the particle. Hence, the

inertial effects of the particles dominate the viscosity of the suspension when Re ≥ 10−3.

The inertial effects in the fluid seem to result in segregation in some viscometers such as

Couette Viscometer and parallel-plate viscometers. Hence, for the cases with higher Pe

value (as the size of MR particles > 1 µm ) and low Re value the fluid flow behavior is

dominated by the volume fraction of particles in the slurry.

Mueller et al.[12] in a recent paper conducted a detailed study of the properties of

monodisperse particle suspensions. In this study, particles of different aspect ratios and

volume fractions were studied to find the flow behavior. This study was limited to only

the shear stresses developed by the fluid in a parallel-plate rheometer. Upon study it was

concluded that Herschel-Bulkley Model [117] was an excellent model for such suspen-

sions. The fitting parameters or the material constants of the fluid was reported to be

varying as per the model of Maron & Pierce [118]. The material parameters seem to
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Figure 3.1: Schematic of the fluid flow and rheology at different volume fractions of par-
ticles (a) Fluid in a highly dilute suspension. (b) Fluid with low concentration showing
increase in viscosity with Newtonian Behavior. (c) Fluid with higher concentration of par-
ticles with inter particle interaction showing shear thinning behavior (d) Fluid with much
higher concentration of particles showing yield stress behavior at zero shear rate (e) Fluid
with very high concentration of particles showing a shear band behavior with a yield stress
[12]
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vary differently based on the ratio of the volume fraction with the maximum possible vol-

ume fraction (φ/φm) for such fluids. For particle suspensions with spherical particles,

with 0 ≤ φ/φm ≤ 0.35 Newtonian fluid behavior is reported. For suspensions with

0.35 ≤ φ/φm ≤ 0.8 shear thinning behavior is reported for such fluids. It was also

reported that the fluids produced an appreciable yield stress for φ/φm ≥ 0.8. The appre-

ciably different behavior of the fluid at these volume ratios of particles in the fluid is due to

different mechanisms of flow and particle interactions as shown in 3.1.The shear thinning

behavior of the slurry at higher volume fraction of particles is due to the particle-particle

interactions at low shear rates which is lost as the shear rates are increased. Most of the re-

search in the literature model slurries as a single continua. Some attempts have also been

made to model slurries as a mixture under different boundary conditions. Ravindran et

al. [119] also presented a numerical study of slurry flowing down an inclined plane using

mixture theory. Johnson et al. [120] solved the flow of slurry in as a mixture between

two flat plates. Massoudi [121] presented a mixture model for particulate fluids where the

interaction forces between the fluid and solid particles such as, drag, diffusion, slip-shear

lift, spin lift, virtual mass and Basset forces were considered.

3.2 Rheology of MR fluids

MR Fluids are particle suspensions which consist of magnetic particles in a non mag-

netic fluid medium. The most common media used for this purpose are Newtonian Fluids

such as oil and water. Due to the presence of magnetic particles in the media the rheology

of the fluids can be controlled using magnetic fields. It has been observed generally that

the particles tend to align along the magnetic field lines causing an increase in the viscosity

of the suspension. This property of the material was first used to invent magnetic clutches,

brakes and dampers [122]. Researchers studied the rheological properties of these fluids

for these applications.

50



The experimentation on the MR fluids have been conducted in different modes such as

valve mode, shear mode, squeeze mode etc [123]. Experiments in shear mode have been

conducted extensively on MR fluids for its applications in clutches, brakes and polishing.

These were conducted by modifying commercially available rheometers to suit the pur-

pose. Different type of rheometers which use concentric cylinders [124], Parallel Plates

[125] [126] and Cone-Plate [125] geometries have been used to study these fluids. In

general it has been observed that these fluids exhibit yield stress behavior. In some cases

experiments have also reported shear thinning behavior for the fluid as shown in figure3.2

and 3.3. This behavior of the fluid is highly dependent on the particle concentration and

the applied magnetic fields. Note that in figure3.2 exhibited shear thinning in a relatively

smaller range of rates this is because of the lower concentration of the particles in fluid. In

figure3.3 the shear thinning behavior of the fluid is observed over the whole range of rates

which may be due to the higher concentration of particles in the medium.

3.2.1 Modeling of MR Fluids

There have been two types of models developed for MR fluids, continuum and discrete

[123]. In continuum models the whole fluid is treated as a continuum and the bulk and sur-

face behavior is modeled whereas in discrete models the behavior of individual particles in

the fluid such as particle-particle interaction (mechanical and magnetic) and particle-fluid

interaction are modeled[127, 128]. Numerous models have been used to model the MR

fluid out of whom Bingham fluid model and Herschel-Bulkley models are most commonly

used. A list of the different models used are shown in Table 3.1.

Among the models discussed in most papers the common factor that could be observed

is the presence of a yield stress (τy) in most. The other constants used in the models seem

to vary among the models. It is reported that these parameters depend primarily upon the

particle concentration (φ) and the magnetic field strength (H) applied on the material[123].
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Figure 3.2: shear stress vs. shear rate graph for a MR fluid with 5 % concentration of
magnetic particles suspended in silicone oil in the presence of magnetic field compared
with the behavior at no magnetic field(continuous line). Note the constant viscosity of
the fluid post-yield for the fluid. Pictures of microscopy of the distribution of particles
at each rate, A) very low shear rates where a structure is maintained, B) low shear rates
where were the structure is broken where shear thinning is observed and C) high shear
rates where the viscosity is almost constant

The effect of the Péclet number and Reynolds number have been neglected in all the works

as the fluids considered here have particles with sizes of the order of micrometers and

bulk velocity of the fluid is maintained low. Since, the magnetic field also plays a role

in determining the rheology of the fluids two other dimensionless number namely Mason

number (Mn) and lambda (λ) number are also used to characterize the fluid. The equations

both these number is given below,

Mn =
8ηf γ̇

µ0µfβ2H2
0

(3.6)
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Figure 3.3: Viscosity vs. shear Rate graph for a concentrated MR fluid (55% by weight)
in zero magnetic field (unfilled circle) and when 0.2 T magnetic field is applied(filled
square). Note that the viscosity continues to drop with increase in shear rates suggesting
shear thinning behavior

λ = 4πµ0µfβ
2a3H2

0

1

kT
(3.7)

β =
µp − µf
µp + 2µf

(3.8)

where µf , µ0 and µp are the magnetic permeability of the fluid, free space and particle,

a is the size of the magnetic particles and H0 is the applied magnetic field strength, ηf is

the viscosity of the medium, γ̇ is the shear rate, k is the Boltzmann constant and T is the

temperature of the fluid.

Here, Mn is the ratio of the viscous forces acting on the particle to the magnetic forces

in the fluid and λ is the ratio of the magnetic forces to the diffusive forces (due to thermal

energy) in the fluid [129]. Here it has been observed that the secant viscosity (η = τ/γ̇)

is dependent on the Mason number for fluids modeled as Bingham fluids. The relation
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Table 3.1: Different models used to model MR fluids in the literature

Rheological Model Equation
Bingham Fluid τ = τy + µγ̇ |τ | > τy
Herschel-Bulkley τ = τy + µγ̇n |τ | > τy
Casson

√
τ =
√
τy +

√
µγ̇ |τ | > τy

Biviscous τ =

{
µ1γ̇ τ ≤ τ1

τy + µγ̇ |τ | > τ1

Cross τ = (µ∞ + µ0−µ∞
1+λγ̇

)γ̇

between the viscosity and the Mason number is given below [123],

η

η∞
= 1 + (

Mn

Mn′
)−1 (3.9)

Mn′ =
Cφηf
η∞

(3.10)

Here the relation between the magnetic field and the viscosity is given through the

Mason number. It has been generally reported that the shear stress is dependent on the

magnetic field as a power law behavior as shown in equation 3.11. Literature by Ramos

et al. [130] and Bosis et al. [131] suggest b = 2 for low concentrations but for similar

concentrations Claracq et al. [125] and Chin et al. [132] suggest b = 1.5. The value of a

varies from 0.5 (Claracq et al. [125]), 1 (Chin et al.[132]) in the literature.

τy ∝ φaHb (3.11)

Apart from the variation in the viscosity of the material MR fluids at high concentra-

tions have been observed to produce normal stress differences [126]. These effects of the

fluid show dependency on the magnetic fields applied on the fluid. The normal force ap-
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plied by the fluid on Torsional Plate varies with the applied field in both static and dynamic

cases [126]. The dependency of the static normal force (FN ) is reported as follows,

FN ∝ |B|2.4 (3.12)

where, |B| is the magnitude of the magnetic field near the sample. The normal stress

produced under shear is reported to vary linearly with the magnetic field as shown below

[126],

N1 = 7.2|τ | − 42 (3.13)

N2 = 1.8|τ | − 22 (3.14)

where, N1 and N2 are the normal stress differences(primary and secondary) and τ is the

shear stress experienced by the fluid

These modeling approaches are motivated from the experiments conducted on the flow

behavior of the fluids. A mathematical modeling of the MR fluids was provided by Brigad-

nov and Dorfmann [133] where a complete model for isotropic incompressible MR fluid

was suggested as given below,

T = −P I + α21|D|q−1B⊗B + (α30 + α32|B|2)D + (α31 + α33|B|2)|D|q−2D

+(α40 + α41|D|q−2)(d ·B⊗B + B⊗B · d)

where T is stress in the fluid, P is the pressure, D is the deformation rate tensor, B is the

magnetic field and q is a material parameter along with the coefficients αij that depend on

55



temperature. Constraints on the coefficients are given below,

α30 ≥ 0, α31 ≥ 0, α32 ≥ 0, α33 ≥ 0,

α32 +
4

3
α40 ≥ 0, α33 +

4

3
α41 ≥ 0,

|α21| ≤
√

3

2
[α32 + α33 +

4

3
(α40 + α41)]

As seen above, most of the models thus developed assume the MR fluid to be a single

continua. Such an approach is not applicable to MR polishing fluids where the particle

segregation under a magnetic field is a critical aspect of the behavior. In this regard,

the approach we seek to follow is more akin to the mixture theory model for electro-

rheologcial fluids of Rajagopal and Ruzika [134]. Here, the solid particles were assumed

to be a continuum phase along with the carrier fluid as another phase.

Molecular Dynamics models have been used to develop models for segregation [135]

and brush formations in MR fluids. Here the individual magnetic and abrasive particles

are modeled as spheres moving in a fluid medium. Such models have been successful

in modeling the chain formation of the particles and their behavior in shear flow [136].

But, these models are highly computationally expensive for modelling behaviors of fluid

in macro-scale domains.

3.3 Conclusions

Most of the rheology experiments in the literature are restricted to the study of non-

magnetic slurries which give a very detailed idea on the characteristics based on the parti-

cle concentration and parameters. There exists extensive literature on the rheology of MR

fluids but most have been restricted to only magnetic particles with no non magnetic parti-

cles in the slurry. Moreover, there is a huge variation in the models and constants reported

in the experiment may be due to different additives being added to the fluid. The literature
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is very few on rheological characterization of MR polishing fluids especially discussing

on the dependence of the parameters on the magnetic fields. Moreover, work needs to be

performed to find the normal and shear stresses developed by the fluid upon shear on a

workpiece.

The fluid has been confined inside the test cell for most experiments on concentrated

granular media. But, in all these cases the fluid has been assumed to be slipping with

respect to the confining wall. These assumptions would produce in consistencies in the

experimentation of the bulk properties and especially the properties of the contact shear

forces.

In all the research conducted in the literature it has been observed the dependence of

the material constants are modeled as some power or polynomial function of the applied

magnetic field. But, the magnetic forces on both the magnetic and non-magnetic particles

are functions of the gradient of the magnetic fields too. The dependence of these quantities

on the gradient also needs to be studied for effective simulation of the fluid behavior in the

presence of the fields.
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4. OBJECTIVES AND SCOPE

4.1 Objectives

The primary objective of this dissertation is to study the rheological characteristics of

polishing fluids. In the literature on polishing fluids and granular media we generally find

that the models were assumed apriori by the investigator while studying the properties

of polishing media and MR fluids. In rheology experiments, it is observed that the fluid

geometry and the boundary conditions are idealized to analytically compute the torque vs.

speed (moving boundary) relationship while computing the constitutive model parameters.

While simulating the behavior of magnetorheological polishing fluids, segregation and

coupling of the magnetic fields with particle distribution are neglected, assuming the fields

acting on the fluid. The research in this dissertation aims to study and fill these gaps in our

knowledge in this field.

Thus, in this dissertation we pursue the following research objectives.

• Study the relative merits (model complexity, goodness of fit, etc) of different consti-

tutive models for characterizing the rheology of polishing fluids.

• Study the effect of the reduction of the fluid geometry in the rheometer for analytical

data fitting thorough numerical simulation.

• Model the segregation of magnetorheological polishing fluid using mixture theory.

• Study the effects of coupling the magnetic fields with the segregation process.

• Study the effect of shear flow on the segregated structure of the mixture.
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4.2 Scope

In this dissertation, we study the rheology and the effect of magnetic fields on mag-

netorheological polishing fluids. The experiments on the polishing fluids have been con-

ducted using a torsional rheometer at steady shear rates. The MR polishing fluid is mod-

eled as a mixture of continua to study the segregation of the fluid. Two-dimensional sim-

ulations of the polishing fluids under different conditions are studied in this dissertation.

4.3 Structure of the Dissertation

The dissertation has been structured as follows,

• Chapter 1, 2 and 3 introduces the research topic with literature survey on different

polishing methods, their mechanism, slurry rheology and rheology of magnetorheo-

logical fluids and magnetorheological polishing fluids.

• Chapter 4 discusses the objective and scope of this dissertation

• Chapter 5 discusses the design and development of the torsional rheometer used for

studying polishing fluids

• Chapter 6 discusses on mixed experimental-CFD-data science approach to rheolog-

ical measurement

• Chapter 7 discusses the development of a mixture theory model for simulating mag-

netorheological polishing fluids.

• Chapter 8 discusses the simulations performed using the mixture theory model.

• Chapter 9 concludes the dissertation with final remarks and future research direc-

tions.
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5. TORSIONAL RHEOMETER

5.1 Design of the Torsional Rheometer

A rheometer is a experimental setup where the flow properties of a fluid is studied

by inducing flow in the fluid and studying the forces developed by the fluid at a certain

flow rate. The most commonly used rheometers include rotational rheometers , capillary

viscometers and falling-ball rheometers, etc. In rotational rheometers the fluid sample is

subjected to shear through the rotation of the contact surfaces and the resistance torque to

the rotation is measured. Examples of rotational rheometers include cup and bob viscome-

ters, parallel plate viscometer, cone-plate viscometer, couette type viscometer, orthogonal

rheometer, etc. In capillary viscometers the fluid is flowed through a capillary or pipe us-

ing pressure or gravity and the resulting flow rate or velocity profile is measured to study

the fluid. And in falling-ball rheometers the motion of a heavy ball enclosed in a fluid due

to gravity is studied to evaluate the properties of the flow.

Among rotational rheometers, Couette-type viscometer where the fluid is contained

between two coaxial cylinders and one of them is rotated to shear the fluid is quite popular

to study viscous fluids. Another popular viscometer used for studying rheology is parallel-

plate viscometer whose schematic is given in Fig 5.1. As shown in the figure, in these

viscometers the fluid is contained between two parallel plates and is subjected to shear

by rotating one of the plates relative to the other plate. As a result of this relative motion

between the plates in the viscometer the fluid here is also subjected to simple shear. But,

the relative speed between the surfaces of the viscometer varies linearly with respect to

the distance from the axis of rotation of the plates. This variation of the relative speed

and the constant height of the fluid results in a linearly varying shear rate in this type of

viscometer with respect to the radius. Hence, the Torque sensed at either ends of the plates
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is the cumulative torque from the fluid. There are 2 types of experimental modes used

in these types of viscometers namely, Controlled Stress Experiments and Controlled Rate

Experiments [137]. In controlled stress experiments the total torque sensed at the plate is

maintained to be constant through a sensor based control loop by changing the speed of the

plate while recording the sample data. Whereas in controlled rate experiments the shear

rate on the fluid is maintained as constant while collecting the sample data. The mode of

flow used by these viscometers are also known as Torsional Flow [138].

Figure 5.1: The schematic of a parallel plate viscometer showing the velocity profile and
the stresses developed in the fluid. Observe that since the bottom plate is rotating the
relative speed would vary with respect to the distance from the axis of rotation

Parallel plate viscometers are preferred in comparison to Couette type ones as (a)these

viscometers are more versatile by being able to conduct experiments are different thick-

nesses of fluid [137], (b) the normal load developed by the non-newtonian fluids under

shear due to normal stress differences in the fluid can also be easily studied in these types

of rheometers and, (c) In case of rheology studies of magnetorheological fluids, magnetic
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fields can be easily applied perpendicular to the shearing surfaces which is similar to pol-

ishing. As a result, this type of viscometer is suitable for studying polymer fluids, particle

suspensions and MR fluids.

For the study of concentrated particle suspensions, the design of the parallel-plate vis-

cometer needs to be altered with an addition of a wall around the fluid sample contained

for the study. This confinement helps in holding the fluid in contact with the Top plate

during the shearing of the fluid. Through this the rheometer would subject the fluid to a

torsional flow and in practice have the wall also contribute to the flow induced in the setup.

5.1.1 Description of the Rheometer

For the experimental investigations a parallel plate rheometer has been developed

by modifying a orthogonal rheometer to be run in the torsional mode. This orthogonal

rheometer was provided by Dr. Rajagopal for conducting studies on polishing media. The

schematic of the experimental setup is shown in Fig 5.2. Fig 5.3 is the photograph of the

Torsional Rheometer. The setup can divided into sensing, actuating and test cell units.

Controlled rate experiments are conducted in the rheometer by maintaining the shear rate

using the motor actuating unit.

The setup consists of two sensing units, for measuring the torque developed by the fluid

and the rate of rotations.The torque sensor, connected to the Top Plate is made up of a thin

hollow cylinder onto which a strain gauge full bridge is attached. The cylinder deforms

due to the torque applied at the Top Plate. This shear deformation is measured using

the strain gauge bridge. The signals developed by the strain gauge bridge is calibrated

using predetermined torques on the sensor. The details of the design and calibration of the

sensor is given sections 5.2 and 5.3. The speed sensor in the setup consists of a encoded

markings attached to the rotating shaft. These markings are read using a IR emitter-sensor

for calculating the rotational speed of the shaft or the bottom cup. Details of the design of

62



Figure 5.2: Schematic of the Torsional Rheometer. The components of the test cell are
shown in detail with the abrasive sheets stuck on the contacting surfaces of the fluid.
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Figure 5.3: Test Equipment for Torsional Testing of Particle Suspensions

the speed sensor is given in section 5.4.

5.1.1.1 Test Cell

The setup includes a test cell, with a Top Plate and a Bottom Cup, where the fluid is

contained during the experiment. In the test cell, the Top Plate is fixed to setup and the

bottom cup is rotated during the experiment. As shown in the schematic in Fig 5.2, the

torque developed due to traction forces at the surface in contact with Top Plate is measured

by using the Torque Sensor. The bottom cup is rotated to cause the shear and the rotational

speed is measured using a speed sensor. In the test cell the Top Plate and the Bottom Cup
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are connected co-axially. The fluid filled in the cup and is brought in contact with the

Top Plate by lifting the cup to meet the Top Plate. The excess fluid overflown above the

Top Plate is removed and the test is conducted by rotating the bottom cup of the setup. In

this form of setup, the height of the fluid in the chamber is set to be constant during the

experiment. Hence, these experiments belong to the Constant Volume type of experiments.

Here the sand papers of grit size same as the particles in the fluid are attached to the Top

Plate, Bottom Cup and the walls of the Test Cell to ensure that a no-slip boundary at the

contact surfaces and uniformity of surface behavior at all the boundaries. This helps us in

assuming No-Slip conditions at the boundary of the fluid while fitting rheological models.

5.2 Design of the Torque Sensor: Structural and Circuit

The Torque Sensor used in this setup is based on the concept of adding a flexible

torsional unit to the Top Plate that could produce considerable strains under the torque.

Schematic of the torque sensor is shown in Fig 5.5. The sensor mainly consists of the

flexible unit which is a hollow cylinder that produces considerable strains(easily detectable

using a strain gauge) at the required range of torques, a rigid support at an end and a

rigid connection for the Top Plate of the Test Chamber. The cylinder is designed with a

thickness such that for the intended torque range the stresses in the cylinder is within the

elastic limits of the material. As shown in the Fig 5.5, two half bridge strain gauges are

attached on opposite sides of the curved face of the flexible cylinder. The gauges forming

the bridge are positioned at an angle of +45°and -45°with respect to the axis of the cylinder.

This full bridge is connected to a signal conditioner which applies a excitation voltage of

5 V to the bridge. The signal produced by the sensor due to the applied torque of the order

of mV. Hence, it is filtered and amplified by the conditioner. The conditioned signal is

recorded using a Data Acquisition System.

The detailed circuit diagram of the full bridge sensor is shown in Fig 5.4. This config-
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uration helps the bridge to read only the shear component of the strains with respect to the

frame of reference along the axis of the cylinder. This is because the strains both along and

perpendicular to the axis shall produce equal longitudinal strains in the half bridges due to

symmetry and this would result in no change in potential across the signal terminals in Fig

5.4. But, the simple shear component of the stress in the cylinder shall result in a equal

tension and compression stresses along the + 45 °and -45 °directions of the gauges. The

difference in the axial strains thus produced is detected by the circuit. Hence, this sensor

unit is able to measure the torque applied along the axis of the cylinder while remaining

insensitive to the axial strains along the axis which includes the bending and axial loads.

The raw signal thus produced from the torque sensor is recorded for future analysis.

This analysis and design is only a theoretical approach to the development of a good

design for the sensor unit. Though the signal to torque correlation can be developed using

this analysis, the relation may not be accurate due as this is sensitive to small errors that can

occur in pasting the strain gauges and at the connections of the sensors. Hence, a detailed

calibration of the sensor for torsional loads have been conducted to find the relation.

5.3 Calibration for Torque Load

A calibration experiment of a Torque sensor is done by recording the signals generated

by known torques applied on the sensor. The signals, thus observed, is then modeled (in

this case linearly) with respect to the torques to establish the relationship and the accuracy

of the sensor is computed using the signals from repeated cycles of experiments.

As discussed earlier though the relation between the signal voltage and the torque ap-

plied can be calculated theoretically, the values thus computed may not be accurate enough

due to discrepancies in the development of the sensor, measurement of the dimensions etc.

Hence, a more accurate estimation of the relation between the signals and the Torque ap-

plied could be generated directly through calibration experiments.
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Figure 5.4: Basic Circuit Diagram for the Full Bridge of the Strain Gauges attached to the
sensor. The resultant signal voltage is hence compensated for the temperature effects and
the signal voltage (∆V ∝ τ )

5.3.1 Calibration Methodology

Calibration of the Torque sensor is performed by applying a known torque to the sensor

with the help of calibration weights. The schematic of the Torque calibration setup is given

in Fig 5.6. It consists of two strings attached and passed around a circular disk connected

to the sensor that is connected to loading pans. The pulleys help in redirecting the vertical

pulling force of the weights to horizontal forces. The forces generated in the strings form

a couple as shown in Fig 5.6. The torque (Tsen) generated by these forces on the torque

sensor are given below,

Tsen = mgd (5.1)
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Figure 5.5: Schematic of the Torque Sensor with the Half Bridge which has two strain
gauges that are oriented at 45°and -45°to the horizontal

where, m is the mass on each loading pan, g is gravitational acceleration and d is the

diameter of the disk attached to the sensor.

It is to be noted that for each load setting equal masses added on each pan of the setup.

The signals generated by the sensor and the mass added to the pans are recorded for the

correlation which is discussed in the next section.

5.3.2 Results from the calibration experiment

The results from the calibration experiment conducted on the torque sensor is shown

in Fig 5.7. The tests shown include two cycles of loading and unloading curves for loads

of upto 1 kg on each side. Each signal voltage is calculated by taking the average of last 2

minutes of data collected from a 3 minute data-set for each load. The model is constructed

using both the unloading curves of the data is shown in the figure. The value of linear

constants of the model and the accuracy of the calibration curve is calculated based on the
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Figure 5.6: Schematic of the setup used to Calibrate the Torque Sensor. The weights on
both the sides are maintained the same for the application of equal loads.

same procedure suggested by ASTM standard for Pressure sensors[139]. The final model

relating the torque with the signals generated is given below,

Tsen = 0.823Vsen + 0.0041 Nm (5.2)

where Tsensor is the torque applied on the Top Plate and Vsen is the signal voltage in

volts (V).

The accuracy in linearity for the calibration curve is ±6.8% . The repeatability ac-

curacy in the sensor is ±1.11%. The Hysteresis accuracy of the sensor is observed to be

lowest which is about ±9.45%. Hence, the final accuracy of the sensor is about ±9.45%.

This accuracy in a rheometer for granular media is quite good as it has been observed in

the literature that the signals recorded during the experiment on granular media vary by

close to ±10% during experimentation.
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Figure 5.7: Calibration curve of Torque Sensor for the application of known torque loads.A
linear model of Vsen vs. Tsen is developed for the sensor

5.4 Design of the Speed Sensor: Structural and Circuit

Since, the equipment is a controlled rate rheometer the shear rate is maintained con-

stant throughout the collection of a signal at a single setting. And this rate of rotation of

the cup is needed to be recorded for finding the material parameters. This in our case is

done by finding the speed of rotations of the shaft connecting the motor to the cup using a

speed sensor as shown in Fig 5.2.

The sensor for this was developed using the same idea as that is popularly used to

design rotary encoder where detection of equally spaced markers of known spacing is

used to calculate the speed of rotating shafts.
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5.4.1 Design of the Sensor

The basic design of the sensor includes two units, a marker unit pasted to the shaft

and a sensing unit connected to the ground. During the operation of the sensor the marker

unit rotates along with the shaft. The sensing unit consists of an IR emitter and sensor.

The marker unit has 20 black and 20 white markers of equal length placed alternatively

to cover the circumference of the shaft. Hence, each marker exactly covers π/20 rotation

of the shaft. The infrared rays emitted by the emitter is reflected by the marker before

being sensed by the sensor which produces a voltage proportional to the intensity of the

rays received. Since, different markers have different reflectivity to the rays this can be

used to distinguish between the markers. During the operation the voltage produced by

the voltage is recorded along with the time-stamp from the computer of that record.

Figure 5.8: Schematic of the Speed sensor used to measure the speed of the bottom cup.
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Figure 5.9: Raw Data collected for 3 different shaft speeds over time. The peaks of these
signals are found the time difference between them is used to find the shaft speed.

5.4.2 Calculation of Speed from the Data

A sample raw data from the sensor is shown in Fig 5.9. From this data for each setting

the time stamps associated with each peaks of the signal is calculated which are the time

points of white markers being detected. Since, two adjacent white markers are at an angle

of π/10 the speed of rotation (Ω) is calculated as shown below,

Ω(
ti + ti+1

2
) =

π

10(ti+1 − ti)
rad/s =

3

(ti+1 − ti)
RPM (5.3)

where ti and ti+1 are timestamps of adjacent markers detected in seconds(s).

Since the result is a direct calculation of the speed there is no need for calculation

though this method was independently verified by calculating the rotational speed by tak-

ing the video of the markers.

5.5 Conclusions

In this chapter, the development of a torsional rheometer has been described. The

torsional rheometer was modified from an Orthogonal rheometer used to study granular

72



fluids. The rheometer was modified by adding a torque sensor and an encoder to collect

the torque and speed data from the equipment. The sensors were calibrated to check for re-

peatability and reliability of signals. This equipment was used do conduct the experiments

discussed in chapter 6.
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6. MIXED EXPERIMENTAL-CFD-DATA SCIENCE APPROACH FOR

RHEOLOGICAL MEASUREMENT1

6.1 Abstract

We discuss a novel means for obtaining rheological properties of polishing slurries by

combining statistical inference techniques (the Akaike Information Criterion), CFD and

Torque vs Speed Data. The data was obtained by using a custom built torsional rheometer

that subjects the polishing fluid to conditions that are similar to polishing. Our comparison

indicates that side wall and inertial effects significantly affect the values of the parameters

of any given model even under nominally slow rates of rotation. When these are consid-

ered, the Herschel-Bulkley model seems to be a significantly better fit compared to two

other popular other models for the slurry. The results suggest that a systematic combina-

tion of computational-statistical-data science approach is necessary for identifying model

parameters even for a slow flows as compared to currently used data reduction methods

based on analytical solutions for torsional flow that ignore inertial and side-wall effects.

6.2 Introduction

Polishing is one of the important tasks in the manufacturing industry while finishing

components for assembly. This helps us in controlling the roughness of surfaces of a

product. Reduction in the roughness of surfaces reduces the friction generated at these lo-

cations from sliding. Sometimes a certain degree of roughness is needed for the optimum

functionality of the component such as medical implants [23, 140]. We are interested in

polishing processes that employ an abrasive fluid composed of suspended abrasive parti-

1Reproduced with permission from Naveen Thomas, Arun R. Srinivasa, and Satish TS Bukkapatnam.
"A mixed experimental-CFD-data science approach for rheological measurement of polishing fluids." Me-
chanics of Advanced Materials and Structures 27.13 (2020): 1167-1177. Copyright[2020] by Taylor and
Francis
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cles in a fluid medium to accomplish the polishing of the surface. The types of fluid media

used with abrasives include oil or water based media used in chemical-mechanical pol-

ishing [141], Magneto-Rheological polishing [142] and dilatant media for abrasive flow

polishing [143]. The rheology of the fluid medium, which is a mixture of the base fluid

with fine scale particles, governs the motion of the fluid over the surface under a specified

condition, and hence the polishing output in these techniques [144]. The rheology of such

fluids is of interest of study in the thesis. In particular we will compare the rheological

parameters for polishing fluids obtained from torsional rheometer data using analytical

methods with approaches using CFD simulations.

Early experiments on solid suspensions were conducted on dilute suspensions with

spherical particles like glass beads [145]. Typically, these experiments to study particulate

suspensions employed different types of geometries of test cells and of relative motion,

such as torsional mode [12], and pipe flows [146]. Testing particulate media especially

for fluids with high concentration of particles require confinement of the sample to ensure

consistency in the contact of the fluid with the surfaces and repeatibility in test results

[147, 148]. Initially, the rheology of such fluids were earlier modeled as newtonian with

viscosity dependent on volume fraction of particles [112]. [114] and [115] modeled this

variation in viscosity as a power law function of the volume-fraction of particles. More

recently, Non-newtonian models have been developed for fluids with high concentration of

particles in the fluid [149]. The most common models that are employed are the Bingham

fluid model, power law model and the Herschel-Bulkley model which are listed in Table

6.2. In the works that model the slurry as an effective fluid medium, the choice of the

model for the behavior of the fluid is made before the analysis of the fluid and only the

final parameters found using a fit for the models to the data is reported. The approach

is also to idealize the geometry of the setup and the flow of the fluid such as neglecting,

(a) the side wall effects in some setups and (b) the inertial effects from the fluid flow
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to achieve a analytical solution to the flow problem [150]. This method of approach to

experimentation of the fluid is being re-examined in this thesis.

Estimation of material parameters of non-linear solids such as tissues and polymeric

materials through simulations are thoroughly discussed in the literature. [151] have pro-

vided an overview of some of these approaches. For example, the data on the displace-

ment field collected using full field techniques such as Digital Image Correlation (DIC) is

used in tandem with Finite Element Model Updating Method (FEMU) or Virtual Fields

Method (VFM) to estimate the properties. In FEMU, the residuals of the measured forces

with modeled forces is used to estimate the parameters through updating the finite element

model. [152] uses Akaike Information Criteria (AIC) along with goodness of fit criteria in

the study of myocardial tissues to rank and select appropriate models. But, here the AIC

values rather than Akaike weights are used for ranking and selection of model. [153] in a

recent paper has used AIC for model reduction from a large parameter model for myocar-

dial tissue but has used ratios of AIC rather than Akaike weights to determine the reduced

model. But as shown in Eq. 6.3, AIC has mixed units whose differences have can predict

the likelihood for a model [154] whereas ratios as used by [153] do not have consistent

units.

In contrast to these efforts, in the field of rheology, systematic model selection is has

been rarely used in the experiments of rheological properties [155]. [156] recently pro-

vided a Bayesian inference approach to quantitatively select the number of modes for a

multimode Maxwell model for non-Newtonian fluids. [157] have compared the coeffi-

cient of determination (R2) and AIC in predicting computed rheological models for non-

Newtonian fluids. The estimation of the material parameters in the models are conducted

using a analytical approach to fit the data.

In this chapter, we show that the application of simulation based updating along with an

information criteria based model selection, for constitutive parameter estimation of non-
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linear materials gives significantly different results than the analytical approaches consid-

ered above. This is because, the boundary effects (which are neglected in the analytical

approaches) have significant influence with non-traditional fluid geometries.

In the approach used here, a polishing slurry is subjected to torsional flow similar to

its actual use in polishing and the torque versus speed characteristics are recorded. Then

three different fluid models are considered and the parameters are determined by analytical

methods. We then develop a special technique (based on the Nelder-Mead minimization

technique [158]) to obtain parameters by using Computational Fluid Dynamics (CFD)

simulation. The two methods are compared to show that there is a discrepancy between

the parameters that are obtained. Furthermore, we compare the three models by using the

AIC for both the Analytical and the CFD approaches and show that the results as to the

most appropriate model choice may be different.

This chapter has been organized into the following sections, (a) section 6.3 describes

the experimental procedure for the torsional experiments, (b) section 6.4 discusses the

model class used to fit the data, (d) section 6.5 describes the different approaches of anal-

ysis used to compute the parameters and the method of comparison used for model se-

lection, (e) section 6.6 discusses the results obtained from the analysis and (f) section 6.7

concludes about the findings from the experiments and the analysis techniques.

6.3 Experimental Procedure

6.3.1 Testing Materials

The materials used in the experiments are polishing fluids, made-up of abrasive parti-

cles mixed in a Newtonian medium. This solid suspension here consists of silicon carbide

(SiC) abrasive particles (800G grit size) obtained from Panadyne Abrasives mixed with

mineral oil that was procured from AniMed. The details of the quantity of ingredients

used in preparing the fluids for experimentation is given below in Table 6.1. Viscosity
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Figure 6.1: a) Particle suspension used for the experimentation. Note that the fluid doesn’t
form a flat top surface unlike mineral oil which is indicates the yield stress behavior of the
suspension. b) Test Cell used to contain the fluid for the experimentation. Note that the
surfaces in contact with the fluid is glued with sandpaper of the same grit size

of the mineral oil used is 77.18 ± 15.82 mPas. The final fluid sample is made by adding

the abrasives in small quantities while stirring the fluid to ensure that there is no clumps

formed while mixing.

Ingredient Density (g/cc) Weight Ratio Volume Ratio
Mineral Oil 0.823 0.34 0.63

SiC 3.21 0.66 0.37

Table 6.1: Details of the Materials used in preparing the particulate fluid

The concentration of particles used in the sample is sufficient to change the character-

istics of the fluid from a newtonian fluid to slurry. The final suspension is observed to not

settle to a flat surface, rather retains a texture as shown in Fig 6.1a, thus indicating that

there might be a yield stress behavior exhibited by the fluid. The high particle concentra-

tion also ensures very low sedimentation during the preparation and experimentation of

the fluid giving consistent results upon repeated testing.
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6.3.2 Torsional Rheometer

The rheological study of solid suspension is conducted in a torsional rheometer shown

in Fig 6.2a. The schematic of the rheometer and the parts is shown in Fig 6.2b. It is

designed to contain the fluid in a test cell, which consists of a top plate and a bottom cup,

and shear it by rotating the cup at a steady rate. The torque applied by the shearing fluid

on the top plate is sensed and used to characterize its properties.

Figure 6.2: The Test Setup used to conduct rheological experiments on polishing fluids. a)
Torsional rheometer during the experiment. b) Schematic of the rheometer assembly with
the top plate and bottom cup with the fluid.

The test cell bottom cup is of 3.5 in diameter and has a wall to ensure that the fluid
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is contained in the cell through-out the experiment. The top plate is of diameter of 3 in

which ensures a gap of 0.25 in with the wall which is higher than the test heights for the

experiments.The surfaces that come in contact with the granular fluid, in the top plate and

bottom cup, are prepared by gluing sandpaper of the same grit size (800G) as the particles

[147]. Fig 6.1b shows the prepared test cell that is used to conduct experiments. After

adding the fluid into the test cell, the cup is connected to the motor and the top plate is

connected to the torque sensor as shown in Fig 6.2.

The speed of the cup shearing the fluid, and the torque experienced at the top plate due

to the fluid is measured using sensors that were built in-house. The speed is measured in

between the motor and the cup and the torque sensor is connected to the top plate keeping

it stationary. The speed sensor, as shown in Fig 6.3, can be divided into 2 units, a marker

unit attached to the shaft of the motor and a sensing unit connected to the computer. The

marker unit, designed based on rotary encoder design, consists of alternating black and

white markers glued to the shaft. The sensing unit consists of an infra-red emitter and

sensor which is connected to the data acquisition system and the computer. Since a total

of 20 markers have been used to cover the circumference of the shaft, the time interval

between sensing successive markers is be used to calculate the angular velocity of the

shaft for an angle of π
10

.

The torque experienced at the top plate of test cell is measured by a custom-built torque

sensor, which consists of a thin hollow cylinder that twists considerably under the required

torque range. The schematic of the Torque sensor built is shown in Fig 6.3. It consists of

a hollow cylinder through which the torque at the top plate acts. The strain developed

in the cylinder is sensed by a full bridge strain gauge sensor that is glued to the surface

of the cylinder. The signal thus observed is conditioned and used to compute the torque

experienced by the top plate due to the fluid. The torque sensor is calibrated using a

predetermined torque applied using weights and recording the signals from the sensor.
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Figure 6.3: Schematic of both the torque and speed sensor in the setup. The torque sen-
sor includes 2 half bridge strain gauges glued on diametrically opposite locations on the
cylinder (only one half bridge is visible). The signal produced is conditions and ampli-
fied before acquisition. The markers on the shaft (cross-section) is read using an infra-red
emitter and sensor to calculate the speed of the shaft.

The calibration experiments on the sensor indicate a calibration curve, M = (0.8237V +

0.0041) Nm relating the torque (M ) to the signal voltage (V ).

6.3.3 Experimental Testing

The prepared suspension sample is added to the bottom cup. Since the particle concen-

tration is high, this fluid doesn’t easily flow forming a shape as shown in Fig 6.1a. Hence,

care must be taken while bringing the top plate in contact with the fluid to not trap any

air between the fluid and the surface. This is done by shaping the fluid to ensure no air is

trapped, moving the cup slowly to meet the plate and by preshearing the fluid at different

stages to remove the air bubbles trapped at contact. The final configuration is tested for

trapped air, by checking the trend of the torque signal at a steady shear rate.

The fluid thus in contact with the test cell, is presheared for 20 min before conducting

the actual experiment by spinning the cup at 1 RPM [12]. This is done to remove any

initial orientation of the particles in the cup. Consistent torques are observed once the
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sample is presheared before the experiment. The data for the speed and torques at different

speeds are collected and evaluated to study the characteristics of fluid. In this thesis, the

experimental results of only one concentration of particles is used to conduct experiments

at three different heights of fluid to study the effect of experimental procedure on the

calculation material properties of the fluid. At each height, controlled rate experiments

were run at each setting for 180 s and the data of the last 120 s were used to calculate the

torque and the speed values.

6.4 Modeling of the Flow Properties

There are a many models to choose from to model the flow of particulate suspensions,

namely power law model [146], Bingham model [115], Herschel-Bulkley model [12],

Casson model [146], etc. For the purpose of modeling the fluid, we have chosen a model

that is pure a shear thinning fluid (power law model) and compared it with a model that

has a yield stress but no shear thinning (Bingham model) and finally a model that has both

yield stress and shear thinning behavior (Herschel–Bulkley model) in the set of models to

be used to model the fluid. The constitutive equations for these models chosen to model the

behavior obtained in the raw data have been given in Table 6.2. The best model parameters

for each of these models are thus calculated using the analytical approach as well as a CFD

based approach (described in section 6.5). The performance of these model parameters

obtained is compared by using AIC to select the best model to describe the rheological

behavior of the polishing media (described in section 6.4.1).

6.4.1 Model Selection Using Akaike Information Criterion

The goal of any constitutive model is to express the information in the fluid behavior

in a compact form. The choice of an appropriate model is more of an art than science as it

is difficult to identify the true model that expresses the behavior just from the raw data that

includes noise from data collection. The classical approach in least squares fitting method
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Model Constitutive Equation

Power-Law τ = kγ̇n−1D

Bingham fluid D = (1− min(τ0,||τ ||)
||τ || )τ

µ

Herschel-Bulkley γ̇n−1D = (1− min(τ0,||τ ||)
||τ || )τ

k

where, τ = dev(T)

Table 6.2: Models used for Modeling the flow properties of the solid suspension, where T
is the stress, p the pressure, D is the shear rate in the fluid and γ̇ being the magnitude of
D (γ̇ =

√
D : D) with τ0, k and n being material parameters in these different models.

is to study the goodness of fit for the data for this choice. But, this approach has a tendency

to over-fit the the data. This is not a good approach as the model would be affected by the

noise in the data collection.

In Information theory the information lost in choosing a particular model is quantified

using the Kullback-Liebler distance (K-L distance). The K-L distance between the con-

ceptual truth f and model g is defined for continuous function as the integral in Eq. 6.1

[154].

I(f, g) =

∫
f(x)ln(

f(x)

g(x|θ)
dx (6.1)

where f(x) and g(x) are the probability distributions the conceptual truth and the model,

and θ is the parameters in the model. Akaike showed that the critical quantity for measure

for model selection is the relative K-L distance for each of the models. This is used to

develop the Akaike Information Criterion [159] given below,

AIC = −2ln(L(θ)) + 2d (6.2)
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where, L(θ) is the likelihood function for parameters (θ) and d is the degrees of free-

dom in the model. AIC introduces a ’principle of parsimony’ to the choice of model using

2d as a bias in the calculation. Hence, a model that minimizes this criterion is chosen to

be an appropriate model that fits the data judiciously. Since we use use least squares (LS)

fitting in this thesis, a corrected form of AIC, shown in Eq.6.3, which includes the effect

of smaller sample set is considered for the criterion.

AICc = 2nd ln(σ̂) + 2d
nd

nd − d− 1
(6.3)

where

σ̂2 =

∑
ε̂2

nd
(6.4)

andAICc is the corrected AIC, σ̂2 is the maximum likelihood estimate of the variance, ε̂ is

the estimated residuals for a particular model with respect to the data, nd is the number of

samples. In LS fitting, d is the total number of estimated regression parameters including

the variance. Once the AICc values are estimated, the model with the minimum value

is chosen for calculating the likelihood for each model, i, and subsequently the Akaike

weights using the Eq.s 6.5 and 6.6 given below,

L̂(gi) = exp(−1

2
(AICc,i −min(AICc,i))) (6.5)

wi =
L̂(gi)∑
j L̂(gj)

(6.6)

These weights are used to rank the models and select an appropriate model for the

media. It should also be noted that the models can also be averaged to develop new models

if we achieve significant weights for 2 or more models in this estimation.
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Another criterion popularly used in the literature for model selection is Bayesian Infor-

mation Criterion (BIC) developed by [160]. This information criterion used in this method

is given below,

BIC = 2nd ln(σ̂) + 2d ln(nd) (6.7)

In this method the BIC estimated using Eq. 6.7 is used in a similar manner to develop

weights and subsequently select appropriate models for estimation. This criterion is not

suggested for using in estimation of rheological models for the following reasons,

(a) BIC in the development of the criterion, assumes a global set of modeling parameters

from which different nested models can be created to estimate the behavior [160].

This model is referred to as the true model whose estimation is the goal of the

criterion. This assumption is not appropriate here as there are no true rheological

model that exists for any fluid. Moreover, we do not have a global set of parameters

in rheological models from which nested models could be created for estimation as

the parameters in a rheological model are not causative rather are coefficients of an

equation used to fit the sample data.

(b) The primary difference in the criteria shown in Eq.s 6.3 and 6.7 are the weights

used for the bias in the estimation. The weight in AICc is high for lower number

of samples which tends to 1 as more samples are considered whereas the weight in

BIC is low for smaller number of samples which tends to infinity for more samples.

This means that BIC tends to under-fit or mistrust the data for higher number of

samples to avoid false positives. This is not true for rheological studies as more

experiments with repeatability conducted on the same material generally improves

our trust on the raw data collected in the experiments[161].
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6.5 Approaches to Analysis

Two different approaches to computation of the material parameters have been em-

ployed in this study. One is the traditional approach that uses an analytical expression

developed for the torque experienced at the top plate for each model and other where CFD

simulations are used to compute the same. In both the cases, the material parameters are

computed by using the same objective function to fit the models. In the analytical approach

the objective function is minimized using Least Squares fit whereas in the CFD simulation

a direct search algorithm is used.

6.5.1 Objective Function

The material parameters for each model is computed through minimization of an ob-

jective function. The objective function E(m1,m2,m3), for a combination of parameters

in a model, is calculated as a weighted L2 norm of the difference in the torques with the

experimental results which is shown in Eq. 6.8.

E(m1,m2,m3) =

p∑
i=1

Wi(Me(ωi)−Mm(ωi,m1,m2,m3))2 (6.8)

where, i corresponds to different data points in the experiment, Wi is the weight for each

data point, ωi is the rotational speed of the bottom cup,Me(ωi) is the experimental Torques

observed at the speed of ωi and Mm(ωi,m1,m2,m3) is the torque calculated for the same

speed and material parameters m1,m2 and m3.

The minimization of this objective function is used to find the solution for the material

parameters for the models. Weighted average of the squared error is used to highlight the

degree of importance that we give the data points collected at every speed setting. In this

study, the weights for the data collected at zero speed is taken as zero, whereas the weights
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for the other speed settings are taken as one. This is because of the huge variation of the

average data that is observed at this speed of the cup. The variation of the average data for

other speed settings, as shown in Fig 6.5, is within the range of variance in these individual

data making it more reliable. The different material parameters for the models are given

in Table 6.3.

Model m1 m2 m3

Power law k n -
Bingham fluid τ0 µ -

Herschel-Bulkley τ0 k n

Table 6.3: The material parameters m1, m2 and m3 for the models described in Eq. 6.8.

6.5.2 Analytical Approach

The analytical solutions for the torques developed at the top plate for different models

are given in Table 6.4. The torques developed by these models in a CFD based analysis

is computed using the simulation software and cannot be represented as a expression as

given in the Table. In all the cases, the least squares objective function defined in Eq. 6.8

is used for optimization and compared to find best fit model and parameters that can be

used to judge the behavior of the fluid.

6.5.3 CFD Simulation

A simulation of the test cell is created in Star CCM+ for the analysis of the fluid

modeled with different models. Fig 6.4 shows the axisymmetric model for the fluid with

a thickness of 0.121 in . The model created using the ‘Axisymmetric Swirl Model’ in

StarCCM+ to study the torsional flow of the fluid. This model is discretized with a quadri-

lateral mesh. All the boundary conditions of the walls are set to no slip condition as we
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Model Torque (Analytical Solution)

Power law M = 2πR3k(ωR)n

(n+3)hn

Bingham fluid M = 2πR3τ0
3

+ 2πR4µω
4h

Herschel-Bulkley M = 2πR3τ0
3

+ 2πR3k(ωR)n

(n+3)hn

Table 6.4: Analytical Solution for the Torques developed at the Top Plate of the test setup
during a Torsional Experiment for different models where, M is the torque, ω is the rota-
tional speed of the cup, R is the Radius of the Top Plate and h is the height of the fluid in
the setup.

assume at all the boundaries except air. The top plate and its wall shown in Fig 6.4 is

maintained as stationary and the bottom cup and the wall set to rotate at the given angular

speed for the analysis. The residual limits for convergence is chosen to be 10−8 for the

momentum in all directions. The torque experienced by the top plate and the top plate wall

is computed and reported by the simulation in every step. A grid independence study was

conducted by taking a sample geometry of height 0.7 in in the simulation and by assuming

a coarse mesh to start with. In each iteration the base size was halved and the reported

torque, for a rotation rate of 5 RPM was plotted the find that a mesh with 10,976 cells

gives a grid independent output for the torque. This base size was used in the meshes of

other heights for uniformity and grid independence.

Furthermore, we have verified the CFD simulations by conducting simulations mim-

icking the absence of the side wall by imposing the condition of no shear stress on the

side walls. We observed that the Torque obtained by the CFD solution is identical to that

obtained by the analytical means.
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Figure 6.4: The schematic of the test setup with the ‘Axisymmetric 2D model mesh’ used
for analysis of the fluid. The boundaries of the fluid with the cup is set to moving at the
required rotational speed and the boundaries with the top plate is set stationary. The torque
is calculated from the wall stresses at the top plate.

6.5.4 Direct Search Algorithm for finding the Properties

In order to compute the parameters from the experimental data using the simulation

models, any direct search algorithms could be adopted. Nelder-Mead optimization method

[158] has been used here to compute the parameters, since this is known to be a robust

method that does not require gradient of the cost function to be computed (which is very

very expensive for the CFD simulation). This method is coded into a macro in the sim-

ulation software for conducting analysis at different speeds of the cup and compute the

parameters that give a minimum for the objective function.

The Nelder-Mead Optimization method uses a simplex of different points and its eval-

uated objective function to optimize and find the minima of the function. This method

uses the value at these points to estimate the next best point in the step. In every step, the
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point with the highest error gets replaced by a better point in the parameter space leading

to the solution.

Direct search algorithms are quite relevant to these problems as the simulations can be

used to only find the torque values for different parameters and the gradient with respect

to the parameters is unknown to the user. Since it is a heuristic method to find the solution,

the time taken to estimate the solution parameters for the problem will depend on the

initial simplex assumed, the model for fluid behavior and the complexity of the simulation

used to evaluate the torque values. In this study, the initial simplex for the problem with q

number of parameters is taken by taking the set of parameters computed from the analytical

approach and reducing just one parameter by 30 % to get new points, thus forming a

simplex of (q + 1) number of points in the parameter space.

Termination of the optimization is usually done using conditions such as a limit to

the size of the simplex, improvement observed in every step, etc. For this problem, the

iterations for a solution is terminated when the difference in the parameters are less than

2% of the value. The parameter set with the lowest objective function is chosen among

the points in the simplex. The solution to the optimization problem is observed to achieve

within 25-30 steps for each data-set of experiment.

6.6 Results and Discussion

6.6.1 Experimental Results

Experiments were conducted by shearing fluids of different heights (0.167 in, 0.126 in

and 0.077 in) in the test cell. The raw data from the experiments conducted at a height of

0.126 in is given in Fig 6.5. These heights were chosen as much higher than the particle

size (> 100dp) to observe the bulk property of the fluid. The tests were conducted on only

one concentration of the fluid as the study is to compare the outcome of different strategies

of computation of material parameters. The consistency of prediction of these models for
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all the heights of the experiments are used for the comparison.

Figure 6.5: Torque vs. rotational speed data collected from the experiments at a height of
0.126 in which shows a typical data-set for the fluid. Note that the torque is observed at
zero shear. The data for speed starts at 1 RPM as the motor cannot sustain lower speeds
for shearing. The bars show the 95% confidence interval of the data observed at each
speed.The average of the data clearly indicate a trend in the behavior of the fluid.

6.6.2 Comparison of Results for Analytical and CFD based Approach

The data obtained is fit with the three models using the objective function given in

Eq. 6.8 for each height. The average of the parameters obtained for the heights is used to

describe the final model in all the approaches. It is understood that the average values of

the properties do not describe the average behavior of the material [162].

However our method is consistent with a Bayesian approach to parameter estimation

wherein the probability distribution for the parameters is obtained from different runs and

averages of the parameters are used to create an averaged model.

Moreover, philosophically, if the inferred “model parameters" vary with the geometry

of the sample it is clear the the confidence in the model should be low (as seen from
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a Bayesian perspective). For this reason, we have computed the model parameters for

different heights so as to study their variations with height. The models with averaged

parameters are only used to compare using the AICC criterion.

The values of the parameters obtained for the power law model using both the analyt-

ical and CFD simulation is given in Table 6.5. Here in both the cases, we observe that

the parameters for the fluid do not vary significantly with different heights. On the other

hand, we see that the inferred model parameters for the Bingham Plastic model(Table 5)

varies significantly with the height . Though the consistency of the results reflect confi-

dence in the model, the comparison of the results with other models in terms of the of the

information lost in the fit will provide a quantiative judgement of the model. .

Height (in) Analytical Solution CFD based Method

k (Pas) n k (Pas) n

0.167 135.0 0.189 88.7 0.183

0.126 139.5 0.167 92.5 0.183

0.077 127.0 0.179 88.8 0.180

Average 133.8 0.178 90.0 0.182

Table 6.5: Comparison of results of the parameters for power law model (k,n) between the
Analytical and CFD based approaches of analysis

The values of the material parameters for the Bingham fluid model is given in Table

6.6. From the model parameters we can observe that the value of both the yield shear

stress and the viscosity of the fluid vary from one experiment to another for the samples.

Even though the values of yield shear stress (τ0) of the fluid, considered in this model,

are consistent the values of viscosity (µ) vary close to 50% between the experiments at
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0.167 in to 0.077 in heights. This effect would generally indicate that the Bingham fluid

model is not suitable for the fluid. This can be easily observed in the analytical approach

by manipulating the equation for torque given in Table 6.8 to the equation below,

τr = τ0 +
3µ

4
γ̇ (6.9)

where,

τr =
3M

2πR3
, (6.10)

γ̇ =
ωR

h
(6.11)

where, τr is the reduced shear stress and γ̇ is the apparent shear rate in the fluid. Note that,

this gives only a reduced form of the data and is not directly related to the model. The

data thus reduced using Eq. 6.9 is plotted and shown in Fig 6.6. This evaluation helps

in judging that Bingham fluid model is not appropriate while using analytical approach as

the trend is not described by the model.

But, such an illustration is not possible for a simulation based fitting of the model in

the raw data. AIC based approach (discussed in section 6.6.3) to compare the models

will address this disadvantage of the CFD based approach and give a more quantitative

approach to the decision.
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Height (in) Analytical Solution CFD based Method

τ0 (Pa) µ (Pas) τ0 (Pa) µ (Pas)

0.167 121 14.3 82 7.7

0.126 131 11.3 92 6.2

0.077 131 7.1 92 4.8

Average 127.7 10.9 88.7 6.2

Table 6.6: Comparison of results for the Bingham fluid model (τ0,µ)

Figure 6.6: Reduced shear stress vs shear rate for the fluid built for analytical study of the
properties. Note that the slopes of the data for different heights vary even though the data
is quite close to each other.

For Herschel-Bulkley model, the objective function is observed to be not sensitive to

the change in yield stress in the model when evaluated through curve-fitting. This results
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in a huge variation in the parameters obtained from individual experiments. But, the value

of the objective function for these values indicate a very good fit to ignore the model

on this basis. Moreover, the value of torque data at zero shear indicate towards a yield

stress behavior. Hence, the value of the yield stress is chosen from the torques observed

at zero speed in the setup. The yield stress is computed to be the mode of zero shear

torques observed in the experiments. The frequency distribution of the zero shear torques

are given in Fig 6.7. The yield stress can be calculated from the expression for the zero

shear torque for a given yield stress. Equation 6.12 is used to find the yield stress for the

analytical approach.

τ0an =
3Tmod
2πR3

(6.12)

where, τ0an is the yield shear stress for analytical solution, Tmod is the mode torque ob-

served from the zero shear data in the experiments. The mode torque (Tmod) was observed

to be 0.01125 Nm and the yield stress (τ0an) to be 91.7 Pa.

For the CFD model, the yield stress cannot be computed directly from an expression as

an analytical form doesn’t exist. The stress is thus computed by running the CFD analysis

for a trial low speed (≈ 10−4 RPM) for a chosen yield stress for the model and finding

the torque at the speed. The yield stress and torque thus computed is used to calculate the

yield stress for the model as shown in Eq. 6.13 below.

τ0cfd =
τ0tr

Ttr
Tmod (6.13)

where τ0cfd is the yield stress for the Herschel-Bulkley Model for CFD calculations, τ0tr
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is the trial yield stress used in the low speed simulation, Ttr is the trial Torque computed

for the top plate and Tmod is the mode of the zero shear torque data observed in the ex-

periments. Using Eq. 6.13, the yield stress (τ0) is obtained as 65.5 Pa. The material

parameters, k and n calculated using this yield stress are given in Table 6.7. In the Tables

6.5, 6.6 and 6.7 we can observe that the parameters τ0 and k estimated using both the ap-

proaches vary by 50% to 80%. This effect can be directly attributed to the side wall and

inertial effects that are ignored in the analytical approach.

Figure 6.7: The frequency distribution of the zero shear data for all the experiments.
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Height (in) Analytical Solution CFD based Method

τ0 (Pa) k (Pas) n τ0 (Pa) k (Pas) n

0.167 91.7 42.79 0.47 65.5 20.91 0.55

0.126 91.7 48.44 0.40 65.5 26.29 0.46

0.077 91.7 45.86 0.33 65.5 24.63 0.44

Average 91.7 45.69 0.40 65.5 23.94 0.48

Table 6.7: Comparison of results for Herschel-Bulkley Fluid model (τ0, k,n)

6.6.3 Comparison of the Models

Tables 6.8 and 6.9, list the comparison of the models for both the approaches of mod-

eling the fluid behavior. The list includes the standard deviation, AICc values, Likelihood

and the Akaike weights for the models. For the Herschel-Bulkley model the degrees of

freedom is chosen to be 4 even though it is fixed before fitting as it is a parameter changing

which will affect the fit of the model. Here, we can observe that the deviation is lowest

for power law model in the analytical approach and Herschel-Bulkley in the CFD based

approach. The Akaike weights, given in Table 6.8, quantify the relative probability of

each model in comparison. The analytical approach indicates that the power law model

accurately predicts the behavior of the fluid where as, CFD based approach gives that the

Herschel-Bulkley model performs best (wi = 0.991) in comparison with the other models

in comparison. This suggests that the Herschel-Bulkley model performs better at describ-

ing the fluid even though it is more complex. In both the approaches the Bingham fluid

model performs very poorly. The quantitative approach here gives a clear indication that

even for CFD based approach Bingham model is not suitable for the model, similar to the

comparison of data as shown in Fig 6.6 indicated the same for analytical approach. AIC
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also provides with an opportunity to compare the results among both the approaches to-

gether which give the results given in Table 6.10. This indicates that the Herschel-Bulkley

model in CFD approach is the most likely model with a weight of 99.1 %. The final

standard deviation of the model estimation using a CFD based Herschel-Bulkley model is

8.24× 10−4 Nm. The final model fit to the Torque data is shown in Fig 6.8. The compar-

ison of the models in both the approaches also indicate that the analytical approach since

it ignores the side wall and inertial effects models the fluid behavior poorly resulting in a

very poor fit. This can be observed in the standard deviation of the data about the model

as well.

Model Power law Bingham fluid Herschel-Bulkley

σ̂ (Nm) 8.08× 10−4 1.17× 10−3 8.20× 10−4

d 3 3 4

AICc -962.28 -912.06 -958.06

AICc −min(AICc) 0 50.22 4.22

L(model) 1 1.24× 10−11 0.12

Akaike Weights (wi) 0.892 9.2× 10−12 0.108

Table 6.8: Comparison of the different models in predicting behavior of the fluid using
analytical solutions.
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Model Power law Bingham fluid Herschel-Bulkley

σ̂ (Nm) 7.09× 10−4 1.09× 10−3 6.51× 10−4

d 3 3 4

AICc -980.0 -921.7 -989.51

AICc −min(AICc) 9.50 67.79 0

L̂(model) 0.009 1.90× 10−15 1

Akaike Weights (wi) 0.0085 1.89× 10−15 0.991

Table 6.9: Comparison of the different models in predicting behavior of the fluid using
simulation

Model σ̂ (Nm) AICc

AICc−
min(AICc) L̂(model)

Akaike
Weights (wi)

Analytical Models

Power law 8.08× 10−4 -962.3 27.2 1.23× 10−6 1.22× 10−6

Bingham fluid 1.17× 10−3 -912.1 77.4 1.53× 10−17 1.52× 10−17

Herschel-Bulkley 8.20× 10−4 -958.1 31.4 1.49× 10−7 1.47× 10−7

CFD based Models

Power law 7.09× 10−4 -980.0 9.50 8.66× 10−3 0.00858

Bingham fluid 1.09× 10−3 -921.7 67.8 1.90× 10−15 1.89× 10−15

Herschel-Bulkley 6.51× 10−4 -989.5 0 1.00 0.991

Table 6.10: Comparison among all the analysis approaches and the models in predicting
behavior of the fluid.
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Figure 6.8: The results of the CFD based Herschel-Bulkley model fit to the data giving the
final fit for the test results at 0.167 in, 0.126 in and 0.077 in of heights.
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6.7 Conclusion

In this dissertation, torsional flow experiments conducted using a non-traditional test

cell is modeled using analytical and CFD approaches for power law, Bingham fluid and

Herschel-Bulkley models to study its rheological behavior.

When one inspects tables 6.5, 6.6 and 6.7, it becomes evident that the model parameters

obtained from the analytical approach are widely different than those obtained by the CFD

approach (in some cases the differences is of the order of 80%). Since we have already

demonstrated that the analytical and CFD approaches agree when the side wall conditions

are ignored, we infer that this difference is due to the effect of the side walls.

This indicates that, the idealization about the flow of the fluid and neglecting the flow

of fluid in the gap of the setup can have a significant impact on the properties obtained for

the fluid.

Moreover, Table 6.10 shows that the Akaike weights of the analytical approach were

much lower in comparison to the weights in CFD based approach. The high Akaike

weights and lower standard deviation in the CFD based estimation of models show the

higher predictability of the fluid achieved through the CFD based analysis of the fluid be-

havior. Thus, the assumption that the wall effect on the fluid flow being negligible may

not be a good assumption to follow in cases where experiments are conducted on non-

idealistic geometries. In such cases, a method that uses the simulations will provide a

more accurate estimation of the parameters for the models of the fluid.

After the complete comparison of the models as given in Table 6.10, The Herschel-

Bulkley model found using the CFD based analysis is observed to represent the behavior

of the fluid with a higher probability. Specifically the results suggest that compared to

the other models, the Herschel-Bukley model with parameters, yield stress τ0 = 65.45

Pa, k = 23.94 Pas and n = 0.48 provides a very good approximation to the observed
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experimental data. The suggested model for the rheology of the fluid for polishing is

limited to low shear rates of upto 12 s−1.

We note that, from a Bayesian perspective, it would be beneficial to provide a full

probability distribution for the parameters and use that for predictions. However, we are

simply using the average of the limited number of values of the parameters as a “maximum

likelihood” value of the parameters.
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7. FORMULATION OF SEGREGATION AND FLOW IN MAGNETIC POLISHING

FLUIDS

7.1 Introduction

As we saw in the last section, the nonmagnetic response of the abrasive slurry is most

readily modeled as a Herschel-Bulkley model. However, in the presence of a magnetic

field, models for the fluid have to account for the segregation of the particles in the pres-

ence of a magnetic field. Given the rather high loading of the fluid (particle density ex-

ceeding 30%) and the resulting almost paste-like consistency, and the need to couple with

a magnetic field, we hypothesize that a simplified mixture theory approach (where we ju-

diciously eliminate certain terms) with a coupled magnetic field will be suitable, rather

than considering individual particles. We turn to the modeling of this aspect of the fluid

response next.

The slurry is made up of 2 types of particles, namely, magnetic particles suspended in

oil and abrasive particles suspended in oil. In many cases, the oil is mixed with surfactants

that retard the settlement of the particles in the mixture. During the polishing operation,

the job and the mechanical equipment apply traction forces on the surfaces of the bulk

of the fluid, whereas the magnetic forces are applied as body force on the magnetic com-

ponent of the fluid. These magnetic forces will result in segregation and change in the

rheological properties of the mixture. This gives the mixture a flow that can only be ana-

lyzed by studying its individual components, rather than the bulk fluid mixture as a single

continuum.

In general, the mixture has three components namely, magnetic particles, abrasive

particles and oil with surfactants. A typical example of a polishing scenario is shown

as a schematic in Figure 7.1. In this example, the magnetic polishing fluid is held between
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Figure 7.1: Schematic showing a typical polishing slurry in operation. Here the workpiece
moves with respect to the slurry and the magnet applies a field from the bottom of the
slurry. Here, the magnetic fields need to be calculated for the full field including the air,
but the flow of the slurry needs to be solved within the fluid region of the slurry.

the workpiece and a stationary surface. The workpiece is then moved at a given velocity

to polish the surface of the workpiece. In order to solve such a problem, we would need to

solve for the magnetic fields in the entire space, including air and the magnet. Whereas,

the flow and segregation of the magnetic polishing fluid needs to be solved only within the

domain of the mixture. Hence, the entire problem can be subdivided into two problems, (a)

Magnetics problem, which needs to be solved for the entire space and (b) Flow problem,

which needs to be solved within the fluid domain. The magnetic fields in the system

depend not just upon the magnet but also upon the concentration and distribution of the

magnetic particles in the polishing mixture. The flow behavior of the polishing mixture is

also affected by the magnetic fields, as they apply body forces onto the magnetic particles

and change the rheological properties of the polishing mixture. Hence, this problem is a

coupled problem.
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7.2 Magnetic Field Formulation

The primary source of the stratification and diffusion in the fluid is the magnetic force

that is applied on the ferrous (magnetic) particles. This is due to the presence of a magnetic

field that can be applied either using electromagnetic coils or permanent magnets onto the

fluid. The formulation discussed in this thesis studies with the effect of permanent magnets

or magnetic field flux from the boundaries onto an abrasive magnetic fluid.

7.2.1 Maxwell’s equations of Electromagnetism

The Maxwell’s equations of electromagnetism for a material continua[163, 164] is

shown in equations 7.1 to 7.4 given below,

div(De) = ρe (7.1)

div(B) = 0 (7.2)

curl(E) = −∂B

∂t
(7.3)

curl(H) = Je +
∂De

∂t
(7.4)

where, De is the electric displacement, ρe is the charge density, E is the electric field,

B is the magnetic field, H is the magnetic field strength and Je is the current density in

the media. The current density is the flux of the charges in the material giving rise to a

balance law for the charges in the media as given below,

∂ρe
∂t

+ div(Je) + div(ρeve) = 0 (7.5)

where, ve is the velocity of the media carrying the charges. The constitutive relations for
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an electromagnetic media relating the magnetic and electric field [164] is given below,

B = µH = µ0(H + M) (7.6)

De = εE = ε0E + Pe (7.7)

Here, the magnetic permeability µ is not a constant but depends upon the concentra-

tion of magnetic particles at that location and represents the effect of the particles on the

magnetic field. This is one aspect of the coupling that we will consider in the paper. The

other aspect is the effect of the magnetic field on the particle segregation, which will be

considered when we consider the flow problem. This results in what is usually referred to

as “two-way" coupling.

When we consider the polishing of materials using magneto-rheological fluids, the

fluid flows across space in the presence of magnetic field. Moreover, when the fluid seg-

regates, the magnetic field in the space also changes inside the material. This will induce

eddy currents in the magnetic particles resulting in mechanical forces in the materials,

which can be inferred from equation 7.3. In this thesis, this effect in the material is ignored

and may be considered in the future to study the electromagnetic effects on the polishing

processes. This assumption along with the assumption that there is no polarization(Pe),

free charges (ρe) or current (Je) in the whole system simplifies equations 7.1 to 7.4 to the

following,

div(De) = 0 (7.8)

curl(E) = 0 (7.9)

div(B) = 0 (7.10)

curl(H) = 0 (7.11)
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where,De = ε0E (7.12)

B = µ0(H + M) (7.13)

This assumption reduces the problem to a scenario similar to magnetostatics. Con-

sidering equations 7.8, 7.9 and 7.12 along with the condition that the infinity boundary

conditions for E and De to be zero would lead to a solution of zero electric field and

electric displacement throughout the space. Considering equation 7.11, the H-field in the

media can be assumed to be the gradient of a scalar potential (φ) satisfying the equations

naturally. The B-field can be calculated through this potential and used to set up a Poisson

equation for the potential (φ) as shown in 7.15. This method of using a scalar poten-

tial along with other formulation for magnetostatic problems is discussed by Dular et al.

[165]. The potential is thus computed using the electromagnetic equations 7.14 and 7.15

as follows.

H = grad(φ) (7.14)

div(B) = div(µgrad(φ)) = 0 (7.15)

The constitutive equation for the magnet is given by the following equation,

B = µ0(H + Mmag) (7.16)

where Mmag is the permanent magnetization of the magnet. Here, the permanent mag-

netization of the magnet acts as a source for the magnetic fields in the system. All the

materials in the system that are non-magnetizable (e.g., air, workpiece, etc.) will have a

permeability same as the permeability of free space(µ0 = 4π × 10−7). Another material

of interest to the problem is the magnet polishing fluid in the polishing process. Here,
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the permeability of the fluid (µ), relating the H-field and the B-field in the mixture, is a

function of the concentration of the magnetic component in the mixture. The permeabil-

ity of the mixture is represented as a function of the permeabilities of the magnetic slurry

component(µm) and abrasive slurry component (µa) using rule of mixtures as given below.

µ(xm) = xmµm + (1− xm)µa

= xmµ0 + xmχmµ0 + (1− xm)µ0

= (1 + xmχm)µ0 (7.17)

where, xm is the volume fraction and χm is the magnetic susceptibility of the magnetic

component in the polishing mixture. This formulation for the permeability of the polish-

ing mixture is inferred from the experimental results published by Simon et al. [13]. The

experimental results for the effective permeability of MR fluids are given in Fig 7.2. In

the literature, the effective permeability for MR fluids are modelled using nonlinear re-

lationships. But, in the context of this study, the particle concentrations of the polishing

fluids are around 0.3-0.4 as discussed in Chapter 6. Hence, this relationship gives a good

estimate for the effective permeability of the polishing mixture, as the concentration of

magnetic particles will never be above 0.4.

7.2.2 Interface Conditions

Since we have a system where a permanent magnet is used outside the fluid in air, the

solution of the magnetic field and potential is to be calculated across all these multiple ma-

terials. Continuity of these field across all materials is to be considered in the formulation.

The continuity of the fields are as follows, on the boundary of a material.
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Figure 7.2: The experimental results for the effective permeability (µ(xm)/µ0) of MR
fluids at different volume fraction of magnetic particles [13]

φa = φb (7.18)

Ha × n = Hb × n (7.19)

Ba · n = Bb · n (7.20)

where, φa, Ha, Ba and φb, Hb, Bb are the magnetic potential, H-field and B-field on

the opposite sides of the domain divided by the interface respectively and n is the normal

to the interface.

7.2.3 Magnetic Body Forces, Body Couples and Energy Production

Electromagnetic fields interact with matter, applying forces and couples onto the me-

dia. They also cause energy production in the material through interaction. Microscop-

ically, the electromagnetic fields interact with the electrons and protons in the material
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[166, 167]. Body forces, body couples and energy production observed in the macroscopic

scale is the volume average of this microscopic interaction in the material [167].

In the literature, generally the electromagnetic forces are modeled as body forces

(bmag) as postulated by Lorentz or Maxwell. The same force can also be represented

in the form of stress that can be computed using the relationship given in equation 7.21.

This stress is called as Maxwell Stress (TM ) was introduced by Maxwell in his treatise

[163].

div(TM) = bmag (7.21)

The magnetic force will be considered as a body force (bmag) in the entire development

of the model in this thesis, as it is easier to compute the effect of the Maxwell stress on

the mechanical state variables are essentially the same as the electromagnetic body forces.

The electromagnetic forces, couples and energy production in this thesis are computed

using the dipole-current circuit model for electrodynamics in moving media [164, 167].

This model of electromagnetic forces was used in modeling electro-rheological materials

by Rajagopal and Ruzika [168] and modeling magneto-rheological fluids by Brigadnov

and Dorfmann [133].

The electromagnetic body force (bmag), body couple (Cmag) and the magnetic energy

production (wmag) produced in an electromagnetic media in the presence of electromag-

netic fields modeled through the Dipole-Current Circuit Model [164] is given in the equa-

tions below,

bmag = ρeE + Je ×B + grad(E)TPe + grad(B)TM

∂(Pe ×B)

∂t
+ div((Pe ×B)⊗ v)

Cmag = Pe × E + M×B + v ×Pe ×B
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wmag = Je · E + E · ∂Pe

∂t
−M · ∂B

∂t
+ div((Pe · E)v)

where, v is the velocity of the media, ρe is the free charge density, E is the electric field,

B is the B-field, Je is the current density and Pe is the polarization of electric dipoles in

the media. Considering the same assumptions that were discussed above, we consider

that the electric field, electric displacement, polarization and the current in the fluid to be

zero. Thus, the final form of the magnetic body force (bmag), body couple (Cmag) and the

magnetic power energy production (wmag) as given below,

bmag = grad(B)TM (7.22)

Cmag = M×B (7.23)

wmag = −M · ∂B

∂t
(7.24)

These forces, couples and energy production shown in equations 7.22 to 7.24 will be

used later in the chapter to model the flow equations of the polishing mixture.

7.3 Field Theory and Balance Laws of the mixture

In this thesis, the polishing fluid is modeled using mixture theory. Modeling the pol-

ishing fluid as a mixture helps in modeling the segregation of the fluid during the polishing

process. Mixture theory has been used for modeling the flow of slurries by Ravindran et

al.[119]. Mixture theory has also been used for modeling electro-rheological fluids by

Rajagopal et al. [134]. In these models, the solid particles have been assumed a single

continuum component mixed with the base fluid as the other component. Considering a

similar approach, the magneto-rheological polishing fluid needs to be modeled as a mix-

ture of three continua, (a) magnetic particle component, (b) abrasive particle component

and (c) the base fluid component.But, for these magnetic polishing slurries in confined
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regions, we have observed that the particles essentially behave like wet granular media

where each particle being coated by a layer of viscous fluid that convects with it. We will

therefore assume the mixture to be essentially consisting of two types of constituents, one

a magnetic slurry with high concentration of magnetic particles and the other an abrasive

slurry with high concentration of polishing abrasives, mixed to get the magnetic polishing

mixture. This idea of the description of the mixture is illustrated in the schematic given in

figure 7.3. Such an approach simplifies the flow problem to just two components, easing

the modeling and simulation complexity.

Figure 7.3: Schematic showing the formation of the polishing slurry through mixing of
the component slurries, namely the magnetic slurry and the abrasive slurry

In this thesis, we study the mixture in the presence of magnetic fields in purely eulerian

perspective, where the variables describing the properties of the fluids are simply modeled

as fields in space. Specifically, we do not follow the particles to find the macro behavior

of the fluid, rather study the flow and change of a state variable at a particular region in

space. The motivation behind this approach is to ensure that the description of the fluid
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properties are consistent with the description of electromagnetic fields, which are entirely

in eulerian or field theoretic descriptions.

The mechanical state variables are those quantities defined at a point in the domain

of the fluid which on integration through the whole volume of the domain will yield the

extensive properties of the fluid. The state variables considered in this approach include

density, momentum, entropy and energy of the fluid which upon integration on the whole

domain yields the mass, total momentum, total entropy and total energy in the fluid. In

order for the analysis and discussion of the evolution of these variables, we consider a

small differential volume of the mixture, referred to as a representative volume element

(RVE), in space and consider the change of these state variables over time.

Let us consider, a state variable (ε) in a RVE of the mixture. The rate of change of the

state variable in the RVE can be evaluated using the following general balance equation,

∂ε

∂t
+ div(εv) + div(J) = R (7.25)

where, v is the velocity of the fluid and J is the state variable’s flux. Here, the first term

in the equation is the production of state variable such as production of chemical species

due to chemical reactions, entropy production, energy and momentum production due to

external body force in the material in the RVE. The second term is the net outflow of the

state variable due to the transportation of the field carrying continuum. And, the last term

is the net outflow of the state variable due to the flux of the state variable which occurs due

to diffusion, contact stress, conduction of heat, etc. at the boundaries of the RVE.

7.3.1 Balance Laws of the Mixture

We assume that any point in space can be occupied by the magnetic slurry component

as well as the abrasive slurry component. Let us assign index ’m’ to the magnetic slurry

component of the mixture and index ’a’ to the abrasive slurry component of the fluid. The
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state of the mixture is defined through density (ρi), momentum (pi) and energy (ui) fields

of the 2 constituents, B-field (B) acting on the space and the entropy (s) of the bulk fluid.

The balance laws for the density, momentum, angular momentum, entropy and energy of

the components in the mixture are given below [169]. These equations are of the structure

described in equation 7.25.

∂ρi

∂t
+ div(ρivi) = 0 ∀ i = m, a (7.26)

∂pi

∂t
+ div(pi ⊗ vi)− div(Ti) = bimag + f i ∀ i = m, a (7.27)

∂(r× pi)

∂t
+ div(r× pi ⊗ vi) = div(r×Ti) + r× (bimag + f i) + Ci

mag ∀ i = m, a

(7.28)

∂s

∂t
+ div(sv) + div(h) = ξ (7.29)

∂ui

∂t
+ div(uivi) + div(Qi) = wiint + wimag ∀ i = m, a (7.30)

where, t is time, vi is the velocity of the component i, Ti is the stress, bimag is the

magnetic body force, f i is the interaction force, Ci
mag is the body couple wimag is the

magnetic energy supplied of the component i, v is the velocity, h is the entropy flux,

Q is the energy flux and ξ is the entropy production of the mixture. Since, the magnetic

component of the mixture is magnetizable and responds to the magnetic fields, bmmag, Cm
mag

and wmmag are computed using equations 7.22 to 7.24 and bamag, Ca
mag and wamag are taken

as zero.

7.3.2 Solution to Balance of Angular Momentum

In this section, we look into the balance of angular momentum equations of the com-

ponents given in equation 7.28. First, let us consider the body couples applied onto the

components of the mixture by the magnetic fields. Since we model the magnetic com-

ponent to get magnetized in the direction of the magnetic fields, we get the following
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derivation.

Cm
mag = M×B

= xmχmH× µH

= 0 (7.31)

Ca
mag = 0 (7.32)

Substituting the above equations for the body couples into the balance of angular mo-

mentum equations, and additionally substituting equation 7.27 into the angular momentum

balance law gives the following derivation for the stress of each component.

∂(r× pi)

∂t
+ div(r× pi ⊗ vi) = div(r×Ti) + r× (bimag + f i)

=⇒ r× ∂pi

∂t
+ vi × pi + r× div(pi ⊗ vi) = ε : TiT + r× div(Ti)

+ r× (bimag + f i)

=⇒ ε : TiT = r× (0)

= 0 (7.33)

From equation 7.33, we can infer that the stress of the components of the mixture is

symmetric.

7.3.3 Remarks

As observed here in equations 7.26 to 7.30, the conservation of mass, momentum and

energy of the fluid is written for both the components individually, but the equation on

the production of entropy is taken for the whole bulk of the fluid. A more comprehensive

approach would be to posit these laws for each component separately rather than the bulk

fluid [169]. However, we propose to simplify the situation by assuming one entropy and
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one temperature for all the constituents. This will considerably ease the application of the

second law in the form of the Clausius-Duhem inequality. This in turn helps in construct-

ing constitutive equations that are consistent with the second law of thermodynamics. The

formulation and simulations are designed to ensure that the conservation equations given

in 7.26 to 7.30 are satisfied by the components but executed using the bulk flow as the pri-

mary flow and the relative motion of the individual components to be secondary in nature.

The details of this approach to modeling are discussed in section 7.4.

7.4 Modeling Approach

The standard approach in mixture modeling is to use the conservation equations for

individual components in the mixture to calculate the state variable of these components.

The bulk behavior of the fluid is then calculated using mixture equations. However, in

application, we are primarily interested in the flow behavior of the bulk mixture and segre-

gation behavior of the magnetic component. Experiments studying the mixtures evaluate

the bulk properties of the mixture rather than individual components. Moreover, the bulk

output of the fluid is of importance to the polishing process. Hence, in this thesis, we study

the bulk flow behavior of the fluid and separate the interaction behavior of the fluid in the

mixture and study them individually.

The bulk properties of the mixture depend upon how the state, flux and production

variables of the bulk mixture are modeled with respect to the individual components from

equations 7.26 and 7.27. Some variables can be computed with additive properties and

some using rule of mixtures. Variables such as the density (ρ), momentum (p), stress

(T), traction (t), net interaction force (f ), energy (u), energy flux (Q) and net interaction

energy (wint) can be modeled as the sum of the corresponding variables of the individual
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components as shown in the equations below,

ρ = ρm + ρa (7.34)

p = pm + pa (7.35)

T = Tm + Ta (7.36)

t = tm + ta (7.37)

f = fm + fa = 0 (7.38)

u = um + ua (7.39)

Q = Qm + Qa (7.40)

wint = wmint + waint = 0 (7.41)

where, tm and ta are the partial traction in the components. Since the interaction forces

are internal forces between the components, we take the net interaction force on the bulk

fluid (f ) to be zero [169]. This means that the production of momentum in individual

components are due to both the interaction forces and the body forces (external forces),

whereas the momentum production in the bulk fluid is entirely due to the magnetic body

forces acting on the fluid. Furthermore, note that the stress T is the actual stress acting

on the fluid mixture and the stresses Tm and Ta are the partial stresses acting on the

components. The net interaction energy (wint) of the bulk fluid is also taken as zero. The

individual component’s interaction energies include the energy supplied by the interaction

forces in the components.
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7.4.1 Mass and Volume Concentration of the components

Using the above equations, we can define the mass concentration (ci) and volume con-

centration (xi) of the components as follows,

ci =
ρi

ρ
(7.42)

xi =
ρi

ρi∗
∀ i = m, a (7.43)

where, ρi∗ is the filled density of component ‘i’ i.e., the density of the mixture or

component when the whole volume is ’filled’ by the component ‘i’ (xi = 0). This value is

constant for a fixed domain of the mixture and is dependent on the density and size of the

particles along with the density of the oil.

7.4.2 Bulk velocity formulation

Generally, the velocity (v) of the bulk fluid is calculated from the bulk momentum in

the literature using the equation below[169],

v =
p

ρ

= cmvm + cava (7.44)

However, in this thesis, we do not use the above definition. We develop an approach

based on a general rule of mixtures. At this stage, we introduce two scalars αm and αa and

use a mixture average velocity for the bulk as given below.

v = αmvm + αava

where, αm, αa ≥0 and αm + αa = 0 (7.45)
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where, αm and αa are the weights (not to be mistaken for the force of gravity) used to

calculate the average velocity for the bulk. The choice of the appropriate weights for the

mixture velocity is discussed in section 7.5. With this approach, we can compare different

methods for assigning the average mixture properties (by choosing different definitions for

αi). Specifically, we will compare the differences in the formulations when the weights

are chosen to be the mass concentration (ci) as compared to the volume concentrations (xi)

and show that the volume additivity constraint is more easily and intuitively enforced by

using the volume averaged velocity.

In the mixture, with the definition of the bulk fluid velocity given in equation 7.45, we

can define a relative velocity to each component in the mixture. This relative velocity of

the components with respect to the bulk flow results in stratification of the components in

the mixture. The relative velocity (v̂i) of the components in the bulk is defined below.

v̂i = vi − v (7.46)

Therefore, the individual velocities of the components can be expressed using the bulk

velocity and the relative velocity as given below,

vi = v + v̂i (7.47)

Substituting the equation 7.46 in equation 7.45, we get the following relation, which

is a useful property that can be used in relating the relative velocities of the individual

components.

αmv̂m + αav̂a = 0 (7.48)

119



This definition for the bulk velocity of the fluid does not change the definition of the

bulk momentum given in equation 7.35, rather redefines it into the following form.

p = ρv + ρmv̂m + ρav̂a (7.49)

Using the above definitions for the bulk fluid, we compute the balance laws for the bulk

and diffusive velocities in the mixture. The derivation and description of these balance

laws are discussed in section 7.8.

7.5 Kinematic Constraint: Volume Additivity Constraint

Volume additivity constraint, which means that the sum of the volumes of the compo-

nents of a mixture is constant, ensures the incompressibility of the overall bulk fluid. We

apply this condition as both the constituents of the mixture are incompressible in nature.

As a result, even though the volume of the constituents in a particular RVE of bulk fluid

changes with time, the sum of the volumes of the constituents in the constituents will be

constant. Hence, we can derive the following relationship between the densities of the con-

stituents using the definition of the volume concentrations (xm and xa ) given in equation

7.43.

V m + V a = V

=⇒ xm + xa = 1

=⇒ ρm

ρm∗
+
ρa

ρa∗
= 1 (7.50)

The filled densities of both the magnetic and abrasive fluid constituents are constants,

as both the constituents are incompressible in nature. The filled densities for the con-

stituents ρm∗ and ρa∗ form a constraint on the densities of the components.

Now, to find the constraints in bulk velocity and diffusive velocities that this relation

120



leads to, we need to first partially differentiate equation 7.50 with respect to time. Later,

upon substitution of equation 7.26 into the relation will give the constraint as shown below.

∂

∂t
(
ρm

ρm∗
+
ρa

ρa∗
) =

∂(1)

∂t

=⇒ 1

ρm∗

∂ρm

∂t
+

1

ρa∗

∂ρa

∂t
= 0

=⇒ −div(ρmvm)

ρm∗
− div(ρmvm)

ρa∗
= 0

=⇒ div(xmvm + xava) = 0 (7.51)

Equation 7.51 is the primary equation that constraints flow velocities of the 2 com-

ponents and ensures the incompressibility of the components and the bulk fluid. In this

study, the constraint is calculated in terms of the bulk velocity and diffusive velocity of the

magnetic component. The derivation of the constraint of this form is as follows,

div(xmv + xmv̂m + xav + xav̂a) = 0

=⇒ div(v) + div(xmv̂m + xav̂a) = 0 (7.52)

Now substituting equation 7.48 into the above constraint relation, we get the following,

div(v) + div(
xmαa − xaαm

αa
v̂m) = 0 (7.53)

The equation above is the volume addititivity constraint, expressed in terms of the

bulk velocity and the relative velocity of the magnetic constituent. Here, the choice of

the weights for calculating the bulk mixture’s velocity will give an appropriate constraint

on the bulk and the relative velocities. If the weights αi are assumed to be the mass

concentration ci of the components, then the relationship is derived to be the following
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[169].

div(v) + div(
xmca − xacm

ca
v̂m) = 0

=⇒ div(v) + div((
ρmρa

ρm∗ ρ
− ρmρa

ρa∗ρ
)
ρ

ρa
v̂m) = 0

=⇒ div(v) + div((
1

ρm∗
− 1

ρa∗
)ρmv̂m) = 0

=⇒ div(v) + div((1− ρm∗
ρa∗

)q̂m) = 0 (7.54)

If the weights αi are assumed to be the volume concentration xi of the components,

then the relationship is derived to be the following.

div(v) + div(
xmxa − xaxm

xa
v̂m) = 0

=⇒ div(v) = 0 (7.55)

Out of the 2 possibilities discussed above, the choice of the weights determine the con-

straint equation for the mixture. As shown in equation 7.54, if we choose αi to be the mass

concentration (ci) then the resultant bulk fluid will be compressible. This does not mean

that the mixture is compressible, but that the bulk fluid thus chosen through mixture theory

is of a compressible form. Hence, the constitutive model that needs to be chosen for such a

bulk fluid needs to reflect such a behavior. If we choose αi to be the volume concentration

(xi) of the components, then the bulk fluid needs to follow the incompressibility constraint.

In the literature experimenting on such mixtures, the bulk fluid is usually modeled as an

incompressible fluid. In this study, the same form of constitutive model for bulk is studied

in detail. Hence, we choose the weights (αi) to be the volume concentration (xi) of the
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components for modeling the bulk fluid of the mixture as given below,

v = xmvm + xava (7.56)

7.6 Balance Laws: Bulk and Magnetic Fluid (Relative Flow)

In this section, we employ the modeling approach discussed in section 7.4 to the gov-

erning equations of the mixture given in equations 7.26, 7.27 and 7.30. This will result in

the balance laws for the bulk mixture and the magnetic component of the mixture.

7.6.1 Conservation of Mass

The conservation of mass for the bulk fluid is calculated by adding the conservation

equations for the individual constituents (see equation 7.26) to obtain the conservation

equation for the bulk fluid.

∂ρ

∂t
+ div(ρv) + div(ρmv̂m + ρav̂a) = 0

=⇒ ∂ρ

∂t
+ div(ρv) + (ρm∗ − ρa∗)div(q̂m) = 0 (7.57)

where, q̂m = xmv̂m (7.58)

The balance equation for the volume concentration of the magnetic constituent can

be evaluated by dividing equation 7.26 of the magnetic component, with ρm∗ which is a

constant.

∂ρm

∂t
+ div(ρmv) + div(ρmv̂m) = 0

=⇒ ∂xm

∂t
+ div(xmv) + div(q̂m) = 0 (7.59)
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7.6.2 Momentum Balance Laws

Using the same approach for the momentum balance laws, we can compute the balance

law for the bulk fluid. First, we divide the equations for the components with their filled

densities(ρi∗).

∂pi

∂t
+ div(pi ⊗ vi) = div(Ti) + bimag + f i ∀ i = m, a

=⇒ ∂xivi

∂t
+ div(xivi ⊗ vi) =

1

ρi∗
[div(Ti) + bimag + f i] ∀ i = m, a

Upon summing the equations for i = m, a the derivation for the equation velocity of

the bulk fluid can be calculated as follows,

∂(xmvm + xava)

∂t
+ div(xmvm ⊗ vm + xava ⊗ va) =

div(Tm)

ρm∗
+
div(Ta)

ρa∗
+

bmmag
ρm∗

+
fm

ρm∗
+

fa

ρa∗

Evaluating the left hand side (LHS) of the above equation, we get

LHS =
∂(xmvm + xava)

∂t
+ div(xmvm ⊗ vm + xava ⊗ va)

=
∂v

∂t
+ div((xmvm + xava)⊗ v) + div(xmvm ⊗ v̂m + xava ⊗ v̂a)

=
∂v

∂t
+ div(v ⊗ v) + div(vm ⊗ (xmv̂m) + va ⊗ (xav̂a))

=
∂v

∂t
+ div(v ⊗ v) + div((vm − va)⊗ (xmv̂m))

=
∂v

∂t
+ div(v ⊗ v) + div((v̂m − (−x

m

xa
)v̂m))⊗ (xmv̂m))

=
∂v

∂t
+ div(v ⊗ v) + div(

xmv̂m ⊗ v̂m

xa
)
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Evaluating the right hand side (RHS) of the equation, we get

RHS =
div(Tm)

ρm∗
+
div(T−Tm)

ρa∗
+

bmmag
ρm∗

+
fm

ρm∗
− fm

ρa∗

=
1

ρa∗
div(T) + (

1

ρm∗
− 1

ρa∗
)div(Tm) +

bmmag
ρm∗

+ (
1

ρm∗
− 1

ρa∗
)fm

The final equation for the velocity of the bulk fluid evaluated by substituting the LHS

and the RHS into the original equation comes out to be,

∂v

∂t
+ div(v ⊗ v) =

1

ρa∗
div(T) + (

1

ρm∗
− 1

ρa∗
)div(Tm) +

bmmag
ρm∗

+ (
1

ρm∗
− 1

ρa∗
)fm + div(v̂m ⊗ v̂a) (7.60)

In order to calculate the equation of flux of particles (q̂m) in the fluid, we start with the

momentum balance equation for the constituent. The momentum contribution through the

bulk fluid to the constituent is separated through substitution of the bulk momentum equa-

tion given in equation 7.60 into the equation given below. The derivation of the equation

is given below,

∂xmvm

∂t
+ div(xmvm ⊗ vm) =

1

ρm∗
[div(Tm) + bmmag + fm]

Simplifying the LHS of the above equation, we get the following derivation,

LHS =
∂xmvm

∂t
+ div(xmvm ⊗ vm)

=
∂xm(v + v̂m)

∂t
+ div(xm(v + v̂m)⊗ (v + v̂m))

=
∂xmv

∂t
+ div(v ⊗ xmv) +

∂q̂m

∂t
+ div(q̂m ⊗ v) + div(v ⊗ q̂m) + div(q̂m ⊗ v̂m)

= (
∂xm

∂t
+ div(xmv) + div(q̂m))v + xm

∂v

∂t
+ grad(v)(xmv + q̂m)
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+
∂q̂m

∂t
+ div(q̂m ⊗ v) + div(q̂m ⊗ v̂m)

On substituting equations 7.59 and 7.60 into the equation given above, we get the

following form for the LHS.

LHS = (0)v + xm(−div(v ⊗ v) +
1

ρa∗
div(T) + (

1

ρm∗
− 1

ρa∗
)div(Tm) +

bmmag
ρm∗

+ (
1

ρm∗
− 1

ρa∗
)fm + div(v̂m ⊗ v̂a)) + grad(v)(xmv + q̂m)

+
∂q̂m

∂t
+ div(q̂m ⊗ v) + div(q̂m ⊗ v̂m)

=
∂q̂m

∂t
+ div(q̂m ⊗ v) + xmdiv(v̂m ⊗ v̂a) + grad(v)q̂m + div(q̂m ⊗ v̂m)

+ xm(
1

ρa∗
div(T) + (

1

ρm∗
− 1

ρa∗
)div(Tm) +

bmmag
ρm∗

+ (
1

ρm∗
− 1

ρa∗
)fm)

Substituting the above equation into the original equation, we get

∂q̂m

∂t
+ div(q̂m ⊗ v) + xmdiv(v̂m ⊗ v̂a) + grad(v)q̂m + div(q̂m ⊗ v̂m)

=
1

ρm∗
[div(Tm) + bmmag + fm]

− xm(
1

ρa∗
div(T) + (

1

ρm∗
− 1

ρa∗
)div(Tm) +

bmmag
ρm∗

+ (
1

ρm∗
− 1

ρa∗
)fm)

= (
xa

ρm∗
+
xm

ρa∗
)div(Tm)− xm

ρa∗
div(T) + xa

bmmag
ρm∗

+ (
xa

ρm∗
+
xm

ρa∗
)fm

=
ρ

ρm∗ ρ
a
∗
div(Tm)− xm

ρa∗
div(T) + xa

bmmag
ρm∗

+
ρ

ρm∗ ρ
a
∗
fm

The final equation for the rate of change of flux of the magnetic constituent in the

mixture is given by the equation below.

∂q̂m

∂t
+ div(q̂m ⊗ v) + xmdiv(v̂m ⊗ v̂a) + grad(v)q̂m + div(q̂m ⊗ v̂m)

=
ρ

ρm∗ ρ
a
∗
div(Tm)− xm

ρa∗
div(T) + xa

bmmag
ρm∗

+
ρ

ρm∗ ρ
a
∗
fm (7.61)
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7.6.3 Energy Balance Equations

The balance laws for the energy of the components given in equation 7.30 is considered

to compute the energy balance law for the bulk mixture. We calculate the bulk fluid’s

energy conservation equation by adding the energy equations of the constituents, as given

below.

∂um

∂t
+ div(umvm) + div(Qm) +

∂ua

∂t
+div(uava) + div(Qa)

= wmint + wmag + waint

=⇒ ∂u

∂t
+ div(umvm + uava) + div(Q) = wmag (7.62)

The balance of energy equation developed above is used in the following section to

compute the production of entropy in the system and further develop constitutive models

for the mixture.

7.7 Constitutive Modeling of the Mixture

7.7.1 Energy Function

The first step to finding the constitutive equations is to define an energy function for

the mixture. In general, this energy function for the mixture is the sum of the internal

energy and the kinetic energy of the constituents of the mixture. The kinetic energy of the

mixture can be written as the sum of the kinetic energies of the constituents of the mixture,

as there is no interactive kinetic energy to the mixture. But, the internal energy is defined

as a single function for the mixture which depends upon the density of the constituents

and the entropy of the system and a magnetic energy that depends upon the density of

the magnetic constituent and the B-field in the mixture. The shape of the mixture is not

considered in this assumption for the energy equation, as the slurry is assumed to be a

fluid that doesn’t store energy in its shape. The energy function for the components can be
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chosen as follows,

um = xmu0(ρm, ρa, s) + umag(ρ
m,B) +

pm · pm

2ρm
(7.63)

ua = xau0(ρm, ρa, s) +
pa · pa

2ρa
(7.64)

When we add the energies of the constituents given in equations 7.63 and 7.64 we get

the energy of the bulk fluid as follows,

u = (xm + xa)u0(ρm, ρa, s) +
pm · pm

2ρm
+

pa · pa

2ρa
+ umag(ρ

m,B)

= u0(ρm, ρa, s) +
pm · pm

2ρm
+

pa · pa

2ρa
+ umag(ρ

m,B) (7.65)

With the form of the energy function given above in equation 7.65, the driving forces

for each of the state variables (ε = [ρi, s,pi,B]), that include the density and momenta

of the constituents and the entropy of the mixture, can be computed by differentiating the

energy function with respect to the state variables. The driving forces (Π) for each of the

state variables (ε) thus computed is given below,

Π :=
∂u

∂ε

Ai :=
∂u

∂ρi

=
∂u0

∂ρi
− pi · pi

2(ρi)2
+
∂umag
∂ρi

= Ai0 −
pi · pi

2(ρi)2
+ Aimag (7.66)

vi :=
∂u

∂pi

=
pi

ρi
(7.67)
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θ :=
∂u

∂s
(7.68)

M̄ :=
∂u

∂B

=
∂umag
∂B

(7.69)

where, Ai is the chemical potential of the constituents, θ is the temperature in the

bulk fluid and M̄ is the magnetic driving force in the fluid. These relations for the driving

forces are used to calculate the entropy production in the mixture and compute the primary

constraint on the flux state variables in the mixture. We also use these to compute the final

constitutive models for the dependent variables from a form of the potential energy that

we assume for u0.

7.7.2 Clausius-Duhem Inequality for the Mixture

The second law of thermodynamics states that the entropy of the universe at the end

of every process cycle will either increase or remain constant. Hence, assuming that a

material’s entropy through any process is non-negative ensures that all processes with

the material complies by the second law of thermodynamics. In order to ensure this we

assume that in the mixture the net entropy production in particular RVE of the material

as a result of local change in entropy, entropy added due to transportation and due to the

flux of entropy in the RVE is non-negative. This approach of constraining the entropy

production locally has been discussed in detail by Rajagopal and Tao [169]. This results

in the inequality given below,

ξ ≥ 0 (7.70)

θξ ≥ 0 (7.71)
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The inequality given above is achieved as the temperature of the mixture is always non-

negative. Hence, we compute the expression for θξ and enforce the inequality given in

equation 7.71 to ensure that the mixture follows the second law of thermodynamics for all

processes.

Now let’s look at the conservation equations given in equations 7.26,7.27, 7.29 and

7.30 and split the individual velocities in the transportation terms to sum of bulk veloc-

ity (v) and individual relative velocities (v̂i) in the mixture. The relative velocities thus

separated are included into the flux of the state variables. This assumption helps in con-

sidering the terms ρiv̂i and pi ⊗ v̂i as diffusing flux of mass and momentum respectively

and assuming constitutive model for inter-diffusion of the constituents in the mixture (sec-

tion 7.7.3). It also eases the derivation by assuming a universal transportation velocity for

all the state variables in the mixture. Hence, we get the following form for the balance

equations of the mechanical state variables.

∂ρi

∂t
+ div(ρiv) + div(ρiv̂i) = 0 ∀ i = m, a

∂pi

∂t
+ div(pi ⊗ v) + div(pi ⊗ v̂i −Ti) = bimag + f i ∀ i = m, a

∂s

∂t︸︷︷︸
∂ε̃(j)
∂t

+ div(sv)︸ ︷︷ ︸
div(ε̃(j)v)

+ div(h)︸ ︷︷ ︸
div(Q̃(j))

= ξ︸︷︷︸
r̃(j)

From the form of the equations written above, we can write a general form for the bal-

ance equations of the mechanical state variables (ε̃ = [ρm, ρa,pm1 ,p
m
2 ,p

m
3 ,p

a
1,p

a
2,p

a
3, s]

T )

in terms of bulk fluxes (Q̃ = [ρmv̂m, ρav̂a,pm1 v̂m−Tm
1 ,p

m
2 v̂m−Tm

2 ,p
m
3 v̂m−Tm

3 ,p
a
1v̂

a−

Ta
1,p

a
2v̂

a −Ta
2,p

a
3v̂

a −Ta
3,h]T ) and production rates (r̃ = [0, 0,bmmag(1) + fm1 ,b

m
mag(2) +

fm2 ,b
m
mag(3) + fm3 , f

a
1 , f

a
2 , f

a
3 , ξ]

T ) as given below. This assumes that transportation of the

state variables occur only due to the bulk velocity (v).
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∂

∂t



ρm

ρa

pm1

pm2

pm3

pa1

pa2

pa3

s


︸ ︷︷ ︸

ε̃

+div(



ρm

ρa

pm1

pm2

pm3

pa1

pa2

pa3

s



⊗


v1

v2

v3



︸ ︷︷ ︸
ε̃⊗v

)

+div(



ρmv̂m1 ρmv̂m2 ρmv̂m3

ρav̂a1 ρav̂a2 ρav̂a3

pm1 v̂m1 −Tm
11 pm1 v̂m2 −Tm

12 pm1 v̂m3 −Tm
13

pm2 v̂m1 −Tm
21 pm2 v̂m2 −Tm

22 pm2 v̂m3 −Tm
23

pm3 v̂m1 −Tm
31 pm3 v̂m2 −Tm

32 pm3 v̂m3 −Tm
33

pa1v̂
a
1 −Ta

11 pa1v̂
a
2 −Ta

12 pa1v̂
a
3 −Ta

13

pa2v̂
a
1 −Ta

21 pa2v̂
a
2 −Ta

22 pa2v̂
a
3 −Ta

23

pa3v̂
a
1 −Ta

31 pa3v̂
a
2 −Ta

32 pa3v̂
a
3 −Ta

33

h1 h2 h3


︸ ︷︷ ︸

Q̃

) =



0

0

bmmag(1) + fm1

bmmag(2) + fm2

bmmag(3) + fm3

fa1

fa2

fa3

ξ


︸ ︷︷ ︸

r̃

(7.72)

Hence, the balance law for the individual component ε̃(j) is of the form given in equation

7.73 below.

∂ε̃(j)
∂t

+ div(ε̃(j)v) + div(Q̃(j)) = r̃(j) ∀ j = 1, 2, ..., 9 (7.73)
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We can also write the balance equation of the energy of the bulk mixture similarly, as the

transportation due to the bulk flow velocity and a composite flux due to both the relative

velocity of the individual constituents and their fluxes.

∂u

∂t
+ div(umvm + uava) + div(Qu) = wmag

=⇒ ∂u

∂t
+ div(uv) + div(umv̂m + uav̂a + Qu︸ ︷︷ ︸

=Q̃u

) = wmag (7.74)

With this form of the balance equation for the energy of the mixture, we perform the

following derivation of the energy equation using the understanding that the energy of the

mixture is a function of the state variables as defined in section 7.7.1. Here, the magnetic

energy supplied by the magnetic fields given in equation 7.24 is substituted.

∂u

∂t
+ div(uv) + div(Q̃u) = wmag

=⇒
∑

Πj ∂ε
j

∂t
+ div(uv) + div(Q̃u) = wmag

=⇒
9∑
j=1

Π̃(j)

∂ε̃(j)
∂t

+ M̄ · ∂B

∂t
+ div(uv) + div(Q̃u) = −M · ∂B

∂t

=⇒
9∑
j=1

Π̃(j)

∂ε̃(j)
∂t

+ (M̄ + M) · ∂B

∂t
+ div(uv) + div(Q̃u) = 0

Now, substituting the equation for the rate of change of the state variable (ε̃(j)) from

equation 7.73 into the equation above, we get the following form for the energy balance

equation.

9∑
j=1

Π̃(j)(r̃(j) − div(ε̃(j)v)− div(Q̃(j)))

+(M̄ + M) · ∂B

∂t
+ div(uv) + div(Q̃u) = 0
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=⇒ (M̄ + M) · ∂B

∂t
+

9∑
j=1

Π̃(j)r̃(j)

+div(uv)−
9∑
j=1

Π̃(j)div(ε̃(j)v) + div(Q̃u)−
9∑
j=1

Π̃(j)div(Q̃(j)) = 0

=⇒ (M̄ + M) · ∂B

∂t
+

9∑
j=1

Π̃(j)r̃(j)

+(u−
9∑
j=1

Π̃(j)ε̃(j))div(v) + (grad(u)−
9∑
j=1

Π̃(j)grad(ε̃(j))) · v

+div(Q̃u −
9∑
j=1

Π̃(j)Q̃(j)) +
9∑
j=1

grad(Π̃(j)) · Q̃(j) = 0 (7.75)

In equation 7.75, we get the net energy balance in the bulk mixture due to the indi-

vidual state variables in the mixture. Here, each summation terms in the equation indicate

different phenomenon due to the behavior of the state variables of the constituents in the

mixture. (M̄ + M) · ∂B
∂t

is the net energy produced or dissipated in the RVE of the bulk

fluid due to the change in magnetic induction in the mixture. Here, the model for the driv-

ing force (M̄) quantifies the amount of energy dissipated due to eddy currents developed

in the mixture. As discussed in section 7.2, this energy is taken as zero as we assume

that no eddy currents are produced in the mixture (magneto quasistatics).
∑9

j=1 Π̃(j)r̃(j) is

the total energy produced in the bulk fluid due to the production of the state variables in

the RVE. (u−
∑9

j=1 Π̃(j)ε̃(j))div(v) and (grad(u)−
∑9

j=1 Π̃(j)grad(ε̃(j))) · v are the net

energy lost due to the convection of the bulk fluid in the RVE. div(Q̃u −
∑9

j=1 Π̃(j)Q̃(j))

is the net work done on the RVE due to flux of the state variables at the boundaries.∑9
j=1 grad(Π̃(j)) · Q̃(j) is the net internal energy dissipated due to the interaction between

the flux and the driving forces in the RVE.

Now, we compute the summation terms individually and substitute them into the bal-

ance equation to get the final balance equation in terms of the state variables, their driving
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forces and fluxes. This is expressed in terms of the bulk velocity and the relative velocity

of the magnetic constituent. This will be useful in the ensuring the Clausius-Duhem in-

equality under the constitutive models designed for the bulk flow behavior and magnetic

constituent behavior. Now, first we work on the energy produced by the production of the

state variables in the RVE. We compute the summation and compute the energy production

in terms of the bulk velocity (v) and the relative velocity of the magnetic media.

9∑
j=1

Π̃(j)r̃(j) = Am(0) + Aa(0) + vm · (bmmag + fm) + va · fa + θξ

= θξ + (bmmag + fm + fa) · v + (bmmag + fm) · v̂m + fa · v̂a

= θξ + bmmag · v + (bmmag + fm) · v̂m − fa · x
m

xa
v̂m

= θξ + bmmag · v + (bmmag + fm − xm

xa
fa) · v̂m

= θξ + bmmag · v + (bmmag + (1 +
xm

xa
)fm) · v̂m

= θξ + bmmag · v + (bmmag +
fm

xa
) · v̂m (7.76)

Now let’s look at the pressure energy produced in the RVE due to the expansion and

contraction of the bulk fluid in transportation. We can define a thermodynamic pressure in

the bulk fluid due to the mechanical co-energy in the bulk fluid as follows,

(u−
9∑
j=1

Π̃(j)ε̃(j))div(v) = −p̂ div(v) (7.77)

where, p̂ =
9∑
j=1

Π̃(j)ε̃(j) − u

Now, let’s evaluate the net external transportation energy at the boundaries of the bulk
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RVE. At first, let’s compute the gradient of total energy(u(ρi,pi, s,B)) in the bulk fluid.

grad(u) =
9∑
j=1

Π̃(j)grad(ε̃(j)) + grad(B)T
∂u

∂B

=
9∑
j=1

Π̃(j)grad(ε̃(j)) + grad(B)TM̄

Thus, the production of the net external transportation energy at the boundaries of the

RVE is as follows,

(grad(u)−
9∑
j=1

Π̃(j)grad(ε̃(j))) · v = grad(B)TM̄ · v (7.78)

Now, let’s evaluate the net external work done in the RVE of the bulk fluid due to

material, momentum, entropy and energy fluxes into the bulk RVE. We start by computing

the net energy flux into the RVE.

Q̃u −
9∑
j=1

Π̃(j)Q̃(j) = Qu +
∑

i∈{m,a}

uiv̂i − (
∑

i∈{m,a}

(Aiρiv̂i + (pi ⊗ v̂i −Ti)Tvi) + θh)

= Qu +
∑

i∈{m,a}

uiv̂i − (
∑

i∈{m,a}

((Ai0 + Aim −
pi · pi

2(ρi)2
)ρiv̂i

+ (pi ⊗ v̂i −Ti)Tvi) + θh)

= Qu − (
∑

i∈{m,a}

(Ai0ρ
iv̂i −TiTvi) + θh)

+
∑

i∈{m,a}

(uiv̂i − (Aim −
pi · pi

2(ρi)2
)ρiv̂i − (pi ⊗ v̂i)Tvi)

The flux of energy into the RVE is defined as the flux of energies due to all the fluxes

of the individual state variables into the RVE. This is the external work done by the fluxes

onto the RVE at its boundaries. This also mean that we assume that only mechanical state

variables of the system does external work on the RVE and the magnetic fields does an
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internal work through the production term (wmag) assumed earlier in the energy balance

equation.

Qu =
∑

i∈{m,a}

(Ai0ρ
iv̂i −TiTvi) + θh (7.79)

Substituting this form of the energy flux (Qu), given in equation 7.79, into the net

external flux expression, Q̃u −
∑9

j=1 Π̃(j)Q̃(j), to compute the following derivation. Into

this expression we also substitute the expressions for the energy of the constituents, given

in equations 7.63 and 7.64, to get the final form of the expression.

Q̃u −
9∑
j=1

Π̃(j)Q̃(j) =
∑

i∈{m,a}

(uiv̂i − (Aim −
pi · pi

2(ρi)2
)ρiv̂i − (pi ⊗ v̂i)Tvi)

=
∑

i∈{m,a}

((xiu0 +
pi · pi

2ρi
)v̂i − Aimρiv̂i − (pi · vi − 1

2
pi · vi))v̂i)

+ umagv̂
m

= u0

∑
i∈{m,a}

xiv̂i +
∑

i∈{m,a}

(
1

2
pi · vi − 1

2
pi · vi)v̂i)

+ umagv̂
m − Ammρmv̂m

= (umag − Ammρm)v̂m

Now calculating the divergence of the net external flux into the RVE we get the final

form of the net external flux into the RVE.

div(Q̃u −
9∑
j=1

Π̃(j)Q̃(j)) = div((umag − Ammρm)v̂m)

= grad(umag − Ammρm) · v̂m + (umag − Ammρm) div(v̂m)

= (
∂umag
∂ρm

grad(ρm) + grad(B)T
∂umag
∂B

− ρm grad(Amm)
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− Amm grad(ρm)) · v̂m − p̂m div(v̂m)

= (grad(B)TM̄− ρm grad(Amm)) · v̂m − p̂m div(v̂m) (7.80)

Now, let’s evaluate the internal work done by the interaction of the fluxes with the

driving forces of the state variables.

9∑
j=1

grad(Π̃(j)) · Q̃(j) =
∑

i∈{m,a}

(grad(Ai) · (ρiv̂i) + grad(vi) · (pi ⊗ v̂i −Ti))

+ grad(θ) · h

=
∑

i∈{m,a}

(grad(Ai0 + Aim −
pi · pi

2(ρi)2
) · (ρiv̂i)

+ grad(vi) · (pi ⊗ v̂i −Ti)) + grad(θ) · h

=
∑

i∈{m,a}

(grad(Ai0) · (ρiv̂i)− grad(vi) ·Ti) + grad(θ) · h

+ grad(Amm) · ρmv̂m −
∑

i∈{m,a}

grad(
vi · vi

2
) · (ρiv̂i)

+
∑

i∈{m,a}

grad(vi) · (pi ⊗ v̂i)

=
∑

i∈{m,a}

(grad(Ai0) · (ρiv̂i)− grad(vi) ·Ti) + grad(θ) · h

∑
i∈{m,a}

(grad(vi)v̂i · pi − 1

2
2grad(vi)Tvi · (ρiv̂i))

+ grad(Amm) · ρmv̂m

=
∑

i∈{m,a}

(grad(Ai0) · (ρiv̂i)− grad(vi) ·Ti) + grad(θ) · h

+ grad(Amm) · ρmv̂m

Now changing the above expression to the form of bulk and relative velocity of the
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magnetic medium.

9∑
j=1

gradΠ̃(j) · Q̃(j) = grad(Am0 ) · (ρmv̂m) + grad(Aa0) · (ρav̂a)− grad(vm) ·Tm

− grad(va) ·Ta + grad(θ) · h + grad(Amm) · ρmv̂m

= ρm grad(Am0 ) · v̂m − ρa grad(Aa0) · x
m

xa
v̂m − grad(v) ·Tm

− grad(v) ·Ta − grad(v̂m) ·Tm − grad(−x
m

xa
v̂m) ·Ta

+ grad(θ) · h + ρmgrad(Amm) · v̂m

= (ρm grad(Am0 ) + ρm grad(Amm)− ρax
m

xa
grad(Aa0)) · v̂m

− grad(v) ·T− grad(v̂m) ·Tm + grad(
xm

xa
v̂m) ·Ta

+ grad(θ) · h

Considering the relationship between the volume concentrations of the constituents,

the following relationship can be computed.

xm + xa = 1

=⇒ grad(xm) + grad(xa) = 0

=⇒ grad(xa) = −grad(xm)

Substituting the above equations into the internal work relationship.

9∑
j=1

gradΠ̃(j)) · Q̃(j) = (ρm grad(Am0 ) + ρm grad(Amm)− ρax
m

xa
grad(Aa0)) · v̂m

− grad(v) ·T− grad(v̂m) ·Tm +
xm

xa
grad(v̂m) ·Ta

+ v̂m ⊗ grad(
1

xa
− 1) ·Ta + grad(θ) · h
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= (ρm grad(Am0 ) + ρm grad(Amm)− ρax
m

xa
grad(Aa0)

− 1

(xa)2
Tagrad(xa)) · v̂m − grad(v) ·T

− grad(v̂m) · (Tm − xm

xa
(T−Tm)) + grad(θ) · h

= (ρm grad(Am0 ) + ρm grad(Amm)− ρax
m

xa
grad(Aa0)

+
T−Tm

(xa)2
grad(xm)) · v̂m − grad(v) ·T

− grad(v̂m) · (Tm − xmT)

xa
+ grad(θ) · h (7.81)

Substituting equations 7.76, 7.77, 7.78, 7.80 and 7.81into the original balance of en-

ergy equation, given in equation 7.75, we get the following derivation for the form of the

balance equation.

(M̄ + M) · ∂B

∂t
+

9∑
j=1

Π̃(j)r̃(j)

+(u−
9∑
j=1

Π̃(j)ε̃(j))div(v) + (grad(u)−
9∑
j=1

Π̃(j)grad(ε̃(j))) · v

+div(Q̃u −
9∑
j=1

Π̃(j)Q̃(j)) +
9∑
j=1

grad(Π̃(j)) · Q̃(j) = 0

=⇒ (M̄ + M) · ∂B

∂t
+ θξ + bmmag · v + (bmmag +

fm

xa
) · v̂m

−p̂ div(v) + grad(B)TM̄ · v + (grad(B)TM̄− ρm grad(Amm)) · v̂m

−p̂m div(v̂m) + (ρm grad(Am0 ) + ρm grad(Amm)− ρax
m

xa
grad(Aa0)

+
T−Tm

(xa)2
grad(xm)) · v̂m − grad(v) ·T− grad(v̂m) · (Tm − xmT)

xa

+grad(θ) · h = 0

=⇒ θξ + grad(θ) · h− grad(v) · (T + p̂I)− grad(v̂m) · (Tm − xmT

xa

+p̂mI) + (M̄ + M) · ∂B

∂t
+ (bmmag + grad(B)TM̄) · v + (bmmag
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+grad(B)TM̄ +
fm

xa
− ρm grad(Amm) + ρm grad(Amm)

+ρm grad(Am0 )− ρax
m

xa
grad(Aa0) +

T−Tm

(xa)2
grad(xm)) · v̂m = 0

=⇒ θξ + grad(θ) · h− grad(v) · (T + p̂I)− grad(v̂m) · (Tm − xmT

xa
+ p̂mI)

+(M̄ + M) · ∂B

∂t
+ (bmmag + grad(B)TM̄) · v + (bmmag + grad(B)TM̄

+
fm

xa
+ ρm grad(Am0 )− ρax

m

xa
grad(Aa0) +

T−Tm

(xa)2
grad(xm)) · v̂m = 0

From this, we calculate the entropy energy produced in the RVE as follows

θξ = −grad(θ) · h + grad(v) · (T + p̂I) + grad(v̂m) · (Tm − xmT

xa
+ p̂mI)

− (M̄ + M) · ∂B

∂t
− (bmmag + grad(B)TM̄) · v − ((bmmag + grad(B)TM̄)xa

+ fm + ρmxa grad(Am0 )− ρaxm grad(Aa0) +
T−Tm

xa
grad(xm)) · v̂

m

xa
(7.82)

Equation 7.82 is the final expression developed for θξ from the energy balance equation

after considering the form of the energy function and the energy flux in the mixture. This

expression is represented in terms of the bulk velocity (v) and the diffusive velocity of the

magnetic component (v̂m). To this expression we apply the Clausius-Duhem inequality

to ensure that the mixture always undergoes processes with non-negative production of

entropy given in equation 7.71. The final inequality thus computed is given below.

−grad(θ) · h + grad(v) · (T + p̂I) + grad(v̂m) · (Tm − xmT

xa
+ p̂mI)

−(M̄ + M) · ∂B

∂t
− (bmmag + grad(B)TM̄) · v − ((bmmag + grad(B)TM̄)xa

+fm + ρmxa grad(Am0 )− ρaxm grad(Aa0) +
T−Tm

xa
grad(xm)) · v̂

m

xa
≥ 0

(7.83)

The inequality given in 7.83 acts as a constraint to the constitutive models for the
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fluxes h, T, Ai and the interactive force fm in the mixture. This constraint is the entropy

constraint on the mixture, which ensures that the constitutive models of the mixture follows

the second law of thermodynamics.

7.7.3 Constitutive Models

The constitutive models for the mixture are to be defined such that both the Clausius-

Duhem inequality in equation 7.83 and the volume additivity constraint given in equation

7.55 are satisfied. Thus, we define the following inequality where the volume additivity

constraint is added to the original inequality with a Legendre Multiplier (λ) creating the

mixture’s inequality constraint that all constitutive models in the mixture needs to satisfy.

−grad(θ) · h + grad(v) · (T + p̂I) + grad(v̂m) · (Tm − xmT

xa
+ p̂mI)

−(M̄ + M) · ∂B

∂t
− (bmmag + grad(B)TM̄) · v − ((bmmag + grad(B)TM̄)xa

+fm + ρmxa grad(Am0 )− ρaxm grad(Aa0) +
T−Tm

xa
grad(xm)) · v̂

m

xa

+λ div(v) ≥ 0

−grad(θ) · h + grad(v) · (T + (p̂+ λ)I) + grad(v̂m) · (Tm − xmT

xa
+ p̂mI)

−(M̄ + M) · ∂B

∂t
− (bmmag + grad(B)TM̄) · v − ((bmmag + grad(B)TM̄)xa

+fm + ρmxa grad(Am0 )− ρaxm grad(Aa0) +
T−Tm

xa
grad(xm)) · v̂

m

xa
≥ 0

(7.84)

As discussed earlier, this inequality is applied locally in the mixture. This will ensure

that the inequality is satisfied globally by the whole mixture. A set of models for the fluxes

can be assumed that satisfies only the above equation, resulting in a thermodynamically

consistent set of models that are coupled. It is already discussed in section 7.7.2 that this is

a stricter approach as we ensure the inequality locally at every point on the domain rather

than on the global entropy production of the mixture.
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In this thesis, a much simpler approach is taken by assuming that each term in the above

equation satisfies the inequality individually [169]. This approach gives a simple form for

the constitutive equation that can be globally satisfied by the mixture. Such an approach

will also uncouple the models in such a way that any subset of the models assumed will

also satisfy the second law of thermodynamics. Also, in order to ensure that the models

satisfy Galilean Invariance, the term of the equation dependent on the velocity of the bulk

fluid is to be assumed as zero. Hence, with the above assumption, the set of constraints on

the models that can be assumed for the mixture is given below.

−(M̄ + M) · ∂B

∂t
≥ 0 (7.85)

−(bmmag + grad(B)TM̄) · v = 0 (7.86)

−grad(θ) · h ≥ 0 (7.87)

grad(v) · (T + (p̂+ λ)I) ≥ 0 (7.88)

grad(v̂m) · ((Tm − xmT)

xa
+ p̂mI) ≥ 0 (7.89)

− 1

xa
[(bmmag + grad(B)TM̄)xa + fm + ρmxagrad(Am0 )− ρaxmgrad(Aa0)

+
(T−Tm)

xa
· grad(xm)] · v̂m ≥ 0 (7.90)

div(v) = 0 (7.91)

Thus, constitutive models are chosen for the mixture such that they reflect the expected

behavior from the fluid too and also satisfy the inequalities given in equations 7.85 to 7.90.

This is achieved by choosing appropriate energy functions for the mixture. Discussions

on models that are more general are given by Rajagopal and Tao [169], Rajagopal and

Wineman [170], Brigadnov and Dorfmann [133], etc. In this thesis, we consider a set of

simple models that qualitatively reflect the behavior of the polishing fluid.
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7.7.3.1 Magnetic Model

In order to model the magnetic behavior of the mixture, we assume a model such that

the no entropy is produced due to the magnetic driving force in the mixture. That is, the

internal energy due to the magnetic behavior is conservative in nature. Hence, we get the

following model for M̄.

M̄ = −M (7.92)

The model above means that we take the driving force in the magnetic fluid to be the

negative of the magnetization of the magnetic fluid in the presence of an external magnetic

field. Assuming such a model for the driving force gives the following derivation for the

magnetic energy (umag) in the magnetic media.

M̄ =
∂umag
∂B

=⇒ ∂umag
∂B

= −M

= −µ0 χ(ρm)

µ(ρm)
B

=⇒ umag = −1

2

χ(ρm)

1 + χ(ρm)
B2 (7.93)

where, χ(ρm) is the magnetic susceptibility of the magnetic component of the mixture.

This depends on the density of the magnetic particles in the mixture. In this thesis, we

assume a linear model for the susceptibility of the magnetic media.

Now let’s consider the model for the magnetic force developed in the mixture. This

model has to satisfy the equality given an equation 7.86 to satisfy Galealian Invariance.
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The model for the magnetic force is given below.

bmmag = −grad(B)TM̄

= grad(B)TM (7.94)

Note that the above model for the magnetic body force (bmmag) is not a new constitutive

model developed for the mixture, but rather reflects upon the internal consistency of the

Dipole-current circuit model developed for electromagnetic media discussed in section

7.2. Such an entropy conserving model is assumed for this material to be consistent with

the earlier works given in the literature for magnetic polishing [133, 171, 168].

7.7.3.2 Entropy Flux

Secondly, we model the entropy flux in the mixture. In the scope of this simulation, we

do not study or compute the entropy in the mixture. Hence, the simplest possible model

for entropy flux (h) is used, as given below.

h = −kθgrad(θ) (7.95)

The model given in equation 7.95 gives the simplest form that the no entropy flux into

the mixture is directly proportional to the gradient of temperature in the bulk fluid. This

is the simplest model chosen as entropy evolution in the mixture is not of interest in this

study and this model on substitution satisfies the inequality in equation 7.87.

7.7.3.3 Bulk Rheology

Next, we model the flow behavior of the bulk fluid as an incompressible fluid, whose

deviatoric stress is dependent on the rate of Deformation Tensor (D) of the bulk mixture,
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B-field (B) and concentration (xm) of the magnetic component, as given below,

T = −P I + TE(D,B, xm) (7.96)

where, D =
1

2
(grad(v) + (grad(v))T )

P ≥ 0

where, P is the pressure in the fluid and TE is the extra stress in the fluid. The above

model gives an incompressible fluid behavior which is compatible with the model for the

bulk fluid velocity taken in equation 7.56. In the above model on substitution of inequality

7.88, we get the following.

grad(v) : (T + (p̂+ λ)I) = grad(v) : (−P I + TE(D,B, xm) + (p̂+ λ)I)

= TE(D,B, xm) : D + div(v)(p̂+ λ− P )

= TE(D,B, xm) : D ≥ 0 (7.97)

The above model allows us to choose different incompressible models for the bulk

mixture such that the constraint given in equation 7.97 is satisfied. Different models that

can be used for the bulk mixture include, power-law model, Bingham model and Herschel-

Bulkley model that were discussed in detail in chapter 6. These models are symmetric

models for the rheology of the bulk mixture. We can assume that due to the coupled effects

of the magnetic fields on the fluid. The materials constants of the bulk fluid model to be

a dependent on the magnitude of the magnetic field acting upon it. Several experiments

study this effect of the magnetic field on the rheological material constants. This would

again result in symmetric dependence of the rheological behavior on the magnetic fields.

But, it is also observed that the direction of the magnetic field has significant effect on the

rheological behavior of the fluid as well [172, 173]. We ignore this effect of the direction
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of the magnetic field in this thesis to keep the model simple. Another important behavior

of the magnetic fluid mixtures is the slip and friction behavior at the boundaries. We do

not discuss these models in this thesis, as we are interested in the behavior of the fluid

in known flow. However, this is an important characteristic to be considered to study the

polishing effects of these fluids.

7.7.3.4 Stress in Magnetic Component

Next, we model the flow behavior of the magnetic fluid in the mixture. Here, we take

the following model for the stress (Tm),

Tm = xmT− p̂mI (7.98)

Computing the magnetic thermodynamic pressure acting on the magnetic component

of the fluid we get the following derivation.

p̂m = umag −
∂umag
∂ρm

ρm

= −1

2
µ0 x

mχm B2 − (− 1

2ρm∗
µ0 χ

m B2)ρm

= 0 (7.99)

Therefore, the model for the stress in the magnetic constituent of the mixture reduces

to the following form.

Tm = xmT (7.100)

This model considers that the partial stress acting on constituent 1 is the volume frac-

tion times the total stress caused by the bulk fluid. As a result, this means that diffusive

velocity of the magnetic fluid is not caused by the partial stress in the magnetic fluid. This
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is the simplest model that can be taken for the magnetic fluid. It can be understood by

substituting the model into the inequality given in equation 7.89 as evaluated below.

grad(v̂m) · (Tm − xmT)

xa
= grad(v̂m) · (xmT− xmT)

xa

= 0 (7.101)

Thus, this model uncouples the relative velocity from the stress in the mixture. Hence,

the diffusive velocity in the mixture in this model is caused by the interactive forces (f i)

between the constituents.

7.7.3.5 Interaction Forces in Magnetic Component

The model chosen for the interactive forces is given below,

fm = −k1q̂
m − (ρmxagrad(Am0 )− xmρagrad(Aa0))

− (1− xm)T

xa
· grad(xm)

= −k1q̂
m − (ρmxagrad(Am0 )− xmρagrad(Aa0))−Tgrad(xm) (7.102)

where, q̂m = xmv̂m

Equation 7.102 gives a model for the interactive forces that are dependent on the chem-

ical potential of the constituents, the partial stress in constituent 2 and the diffusive flux of

the constituents in the mixture. On substituting this model in the inequality 7.90, we get

the following,

− 1

xa
[(bmmag + grad(B)TM̄)xa + fm + ρmxagrad(Am0 )− ρaxmgrad(Aa0)

+
(T−Tm)

xa
· grad(xm)] · v̂i

= k1
xm

xa
v̂m · v̂m ≥ 0 (7.103)

147



The above inequality suggests a model for the interactive forces that are diffusive in nature.

The forces are currently modeled in terms of the chemical potential Ai0, whose model is

dependent on the function chosen for the internal energy function u0. Hence, we choose

an appropriate model for the internal energy u0 to derive the equations for the final form

of the interactive forces. The internal energy has 3 components, (a) the energy due to

formation of a mixture, (b) the interfacial energy due to formation of boundaries between

phases [174] and (c) the thermal energy in the mixture. The internal energy thus chosen is

as follows,

u0(ρi, s) = k2(
∑

i∈{m,a}

ρi

ρi∗
ln(

ρi

ρi∗
))− k3

2

∑
i∈{m,a}

grad(
ρm

ρm∗
) · grad(

ρa

ρa∗
) + θs

= k2(
∑

i∈{m,a}

xiln(xi))− k3

2
grad(xm) · grad(xa) + θs (7.104)

where, k2 and k3 are diffusive material constants associated with homogeneous and

inhomogeneous distribution of constituents in the bulk mixture. Calculating the chemical

potentials (Ai0) and their gradients (grad(Ai0)) from equation 7.104 we get,

Am0 =
∂u0

∂ρm
− div(

∂u0

∂grad(ρm)
)

= k2(ln(xm)
∂xm

∂ρm
+ xm

1

xm
∂xm

∂ρm
− 0 + 0) +

k3

2
div(grad(xa)

∂grad(xm)

∂grad(ρm)
)

= k2(ln(xm) + 1)
∂xm

∂ρm
+
k3

2
div(grad(xa))

∂xm

∂ρm

=
k2

ρm∗
(ln(xm) + 1) +

k3

2ρm∗
div(grad(xa)) (7.105)

grad(Am0 ) =
k2

ρm∗ x
m
grad(xm) +

k3

2ρm∗
grad(div(grad(xa)))
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=
k2 grad(xm)

ρm∗ x
m

+
k3

2ρm∗
grad(div(grad(xa))) (7.106)

Similarly, the expressions for the abrasive constituent are derived as follows,

Aa0 =
k2

ρa∗
(ln(xa) + 1) +

k3

2ρa∗
div(grad(xm)) (7.107)

grad(Aa0) =
k2 grad(xa)

ρa∗x
a

+
k3

2ρa∗
grad(div(grad(xm))) (7.108)

Now, let’s evaluate the component of interactive forces generated due to the chemical

potential in the constituents, as described in equation 7.102.

(ρmxagrad(Am0 )− xmρagrad(Aa0))

= xmxa(ρm∗ grad(Am0 )− ρa∗grad(Aa0))

= xmxa(ρm∗ (
k2 grad(xm)

ρm∗ x
m

+
k3

2ρm∗
grad(div(grad(xa))))

− ρa∗(
k2 grad(xa)

ρa∗x
a

+
k3

2ρa∗
grad(div(grad(xm))))

= xak2 grad(xm)− xmk2 grad(xa) +
k3x

mxa

2
grad(div(grad(xa)))

− k3x
mxa

2
grad(div(grad(xm)))

= k2 grad(xm)− k3 x
mxagrad(div(grad(xm))) (7.109)

Hence, the final constitutive equation for the interactive forces developed in the mag-

netic component of the mixture is as shown below.

fm = −k1q̂
m − k2 grad(xm) + k3x

mxagrad(div(grad(xm)))−Tgrad(xm) (7.110)

Based on the constitutive models chosen above for the fluid the simulations will reflect

dissipation behavior of the mixture due to viscous flow of the bulk fluid and diffusion of
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the constituents due to the interactive forces. Any dissipation due to the relative flow of

individual constituents and their individual stresses are assumed to be zero in this model.

Such a bare minimum simple model is possible here due to the approach of taking the bulk

of the mixture and the diffusion of magnetic constituent as the governing equations rather

than considering individual constituents separately in the mixture equations. The final

form of the energy function(u) for the bulk mixture assumed for modeling the polishing

mixture is given below,

u(ρm, ρa,pm,pa, s,B) = u0(ρm, ρa, s) +
pm · pm

2ρm
+

pa · pa

2ρa
+ umag(ρ

m,B)

= k2(
∑

i∈{m,a}

xiln(xi))− k3

2
grad(xm) · grad(xa) + θs

+
pm · pm

2ρm
+

pa · pa

2ρa
− 1

2

χ(ρm)

1 + χ(ρm)
B2 (7.111)

7.8 Field Equations of the Polishing Fluid

The final form of the balance equations were computed in section 7.6. The models

for the mixture are also computed in section 7.7. The interest of this thesis is to study

the stratification and the flow behavior of the mixture. Hence, the mass and momentum

balance equations along with the magnetic field equations and the associated models are

of primary interest of study in the thesis. A simplified form of the flow equations of the

mixture can be achieved by substituting the models of the magnetic fluid (stress (Tm) and

interaction force (fm)) into the momentum balance equations.

Substituting the models for stress in the magnetic component (Tm) and interaction

force (fm) in the magnetic fluid into the momentum balance equation of the bulk fluid we

get the following derivation for the bulk momentum balance equation.

∂v

∂t
+ div(v ⊗ v) =

1

ρa∗
div(T) + (

1

ρm∗
− 1

ρa∗
)div(Tm) +

bmmag
ρm∗
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+ (
1

ρm∗
− 1

ρa∗
)fm + div(v̂m ⊗ v̂a)

=
1

ρa∗
div(T) + (

1

ρm∗
− 1

ρa∗
)div(xmT) +

bmmag
ρm∗

+ (
1

ρm∗
− 1

ρa∗
)(−k1q̂

m − k2 grad(xm) + k3x
mxagrad(div(grad(xm)))

−Tgrad(xm)) + div(v̂m ⊗ v̂a)

=
1

ρa∗
div(T) + (

1

ρm∗
− 1

ρa∗
)xm div(T) + (

1

ρm∗
− 1

ρa∗
)TTgrad(xm)

− (
1

ρm∗
− 1

ρa∗
)Tgrad(xm) +

bmmag
ρm∗

+ div(v̂m ⊗ v̂a)

+ (
1

ρm∗
− 1

ρa∗
)(−k1q̂

m − k2 grad(xm) + k3x
mxagrad(div(grad(xm))))

= (
xm

ρm∗
+
xa

ρa∗
)div(T) +

bmmag
ρm∗

+ div(v̂m ⊗ v̂a)

− (
1

ρm∗
− 1

ρa∗
)(k1q̂

m + k2 grad(xm)− k3x
mxagrad(div(grad(xm))))

(7.112)

Upon substituting the models for stress (Tm) and interaction force (fm) in the magnetic

fluid into the momentum balance equation of the bulk fluid we get the following derivation

for the balance of flux in the mixture.

∂q̂m

∂t
+ div(q̂m ⊗ v) + xmdiv(v̂m ⊗ v̂a) + grad(v)q̂m + div(q̂m ⊗ v̂m)

=
ρ

ρm∗ ρ
a
∗
div(Tm)− xm

ρa∗
div(T) + xa

bmmag
ρm∗

+
ρ

ρm∗ ρ
a
∗
fm

=
ρ

ρm∗ ρ
a
∗
div(xmT)− xm

ρa∗
div(T) + xa

bmmag
ρm∗

+
ρ

ρm∗ ρ
a
∗
(−k1q̂

m − k2 grad(xm) + k3x
mxagrad(div(grad(xm)))−Tgrad(xm))

=
xm

ρa∗
(
ρ

ρm∗
− 1)div(T) +

ρ

ρm∗ ρ
a
∗
TT grad(xm) + xa

bmmag
ρm∗
− ρ

ρm∗ ρ
a
∗
T grad(xm)

− ρ

ρm∗ ρ
a
∗
(k1q̂

m + k2 grad(xm)− k3x
mxagrad(div(grad(xm))))
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=
xm

ρa∗
(
xmρm∗ + xaρa∗

ρm∗
− 1)div(T) + xa

bmmag
ρm∗

− ρ

ρm∗ ρ
a
∗
(k1q̂

m + k2 grad(xm)− k3x
mxagrad(div(grad(xm))))

=
xm

ρa∗
(
xaρa∗
ρm∗
− xa)div(T) + xa

bmmag
ρm∗

− ρ

ρm∗ ρ
a
∗
(k1q̂

m + k2 grad(xm)− k3x
mxagrad(div(grad(xm))))

= xmxa(
1

ρm∗
− 1

ρa∗
)div(T) + xa

bmmag
ρm∗

− ρ

ρm∗ ρ
a
∗
(k1q̂

m + k2 grad(xm)− k3x
mxagrad(div(grad(xm))))

=⇒ ∂q̂m

∂t
+ div(q̂m ⊗ v) + xmdiv(v̂m ⊗ v̂a) + grad(v)q̂m + div(q̂m ⊗ v̂m)

+
ρ

ρm∗ ρ
a
∗
k1q̂

m = xmxa(
1

ρm∗
− 1

ρa∗
)div(T) + xa

bmmag
ρm∗

− ρ

ρm∗ ρ
a
∗
(k2 grad(xm)− k3x

mxagrad(div(grad(xm))))

(7.113)

Ultimately, for a general polishing mixture with magnetic and abrasive constituents,

the final set of the field equations needed to solve for the state variables [ρ, xm,v, q̂m] are

given below. These are a collected form of all the field equations developed in the sections

above. These state variables can be used to compute the state variables of the constituents

([ρm, ρa,pm,pa]).

The field equations for the mixture are,

curl(H) = 0

div(B) = 0

∂ρ

∂t
+ div(ρv) = −(ρm∗ − ρa∗)div(q̂m)
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∂v

∂t
+ div(v ⊗ v) = (

xm

ρm∗
+
xa

ρa∗
)div(T) +

bmmag
ρm∗

− (
1

ρm∗
− 1

ρa∗
)(k1q̂

m + k2 grad(xm)− k3x
mxagrad(div(grad(xm))))

+ div(v̂m ⊗ v̂a)

∂xm

∂t
+ div(xmv) = −div(q̂m)

∂q̂m

∂t
+ div(q̂m ⊗ v) + xmdiv(v̂m ⊗ v̂a) + grad(v)q̂m + div(q̂m ⊗ v̂m)

+
ρ

ρm∗ ρ
a
∗
k1q̂

m = xmxa(
1

ρm∗
− 1

ρa∗
)div(T) + xa

bmmag
ρm∗

− ρ

ρm∗ ρ
a
∗
(k2 grad(xm)− k3x

mxagrad(div(grad(xm))))

subject to the constraint,

div(v) = 0

where,

B = µ0(1 + xmχm)H

q̂m = xmv̂m

xa = 1− xm

v̂a = −x
m

xa
v̂m

T = −P I + TE(D,B, xm)

bmmag = χm xm grad(B)TH
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7.9 Some Special Cases

7.9.1 Flow Equations for Creeping Flow

In this section, we focus on the diffusion and flow of the magnetorheological fluids

under creeping flow, where the velocity of the fluid is small. Since, the velocity of the fluid

is small, we can assume the convective components of the momentum and the diffusive

flux equations to be zero. Also, we neglect the body force due to gravity on the fluid as

the magnetic forces are assumed to be much greater in comparison. This results in the

body force in the magnetic constituent (bmmag) to be solely contributed by the attraction

forces acting on the particles due to the magnetic field and the body force in the abrasive

constituent (ba) to be zero. Hence, we achieve the following set of final equations for the

fluid.

∂ρ

∂t
+ div(ρv) = −(ρm∗ − ρa∗)div(q̂m) (7.114)

∂v

∂t
= (

xm

ρm∗
+
xa

ρa∗
)div(T) +

bmmag
ρm∗

− (
1

ρm∗
− 1

ρa∗
)(k1q̂

m + k2 grad(xm)

− k3x
mxagrad(div(grad(xm)))) (7.115)

∂xm

∂t
+ div(xmv) = −div(q̂m) (7.116)

∂q̂m

∂t
+

ρ

ρm∗ ρ
a
∗
k1q̂

m = xmxa(
1

ρm∗
− 1

ρa∗
)div(T) + xa

bmmag
ρm∗

− ρ

ρm∗ ρ
a
∗
(k2 grad(xm)− k3x

mxagrad(div(grad(xm)))) (7.117)

where,

q̂m = xmv̂m

T = −P I + TE(D,B, xm)
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(7.118)

7.9.2 Diffusion in a Stationary Fluid

In this case, we assume a mixture which is stationary in the presence of magnetic field.

In such a fluid, the bulk velocity of the fluid is assumed to be zero. Substituting the zero

bulk velocity into the balance equations of fluid we get the following equations.

∂ρ

∂t
= −(ρm∗ − ρa∗)div(q̂m) (7.119)

(
xm

ρm∗
+
xa

ρa∗
)grad(P ) =

bmmag
ρm∗
− (

1

ρm∗
− 1

ρa∗
)(k1q̂

m + k2 grad(xm)

− k3x
mxagrad(div(grad(xm)))) (7.120)

∂xm

∂t
= −div(q̂m) (7.121)

∂q̂m

∂t
+

ρ

ρm∗ ρ
a
∗
k1q̂

m = −xmxa( 1

ρm∗
− 1

ρa∗
)grad(P ) + xa

bmmag
ρm∗

− ρ

ρm∗ ρ
a
∗
(k2 grad(xm)− k3x

mxagrad(div(grad(xm)))) (7.122)

7.9.3 Constituents with Equal Densities

When both the constituents are of same density while they occupy the whole fluid

volume, the mixture flow behavior is simplified and leads to the following equations. This

is relevant only in some specific cases in polishing fluid when the filled densities of both

the magnetic and abrasive particles are similar in the mixture.

ρm∗ = ρa∗ (7.123)

ρ = xmρm∗ + xaρa∗

= ρm∗ (7.124)
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ci =
ρi

ρ

=
ρi

ρi∗
= xi (7.125)

This simplification results in the following balance equations for the mixture.

∂ρ

∂t
+ div(ρv) = 0 (7.126)

ρm∗
∂v

∂t
= div(T) + bmmag (7.127)

∂xm

∂t
+ div(xmv) = −div(q̂m) (7.128)

ρm∗
∂q̂m

∂t
+ k1q̂

m = xabmmag − k2 grad(xm)

+ k3x
mxagrad(div(grad(xm))) (7.129)

7.10 Conclusions

In this chapter, we modeled the behavior of a magnetorheological polishing fluid using

Mixture Theory. The polishing fluid was assumed to be a mixture of magnetic slurry com-

ponent and abrasive slurry component. Dipole-current circuit model was used to model

the magnetic behavior of the polishing fluid. The field equations of the components have

been resolved into the field equations for the bulk mixture and relative flow of the magnetic

component. Through this, the field equations for the bulk mixture fluid and the relative

flow of the magnetic component were derived. Thermodynamically consistent constitutive

models were developed for the fluid to exhibit segregation through diffusion and flow of

the bulk mixture during the polishing process. It was identified that a mixture model for

the bulk flow velocity formulated using the volume concentration of the component pro-

vides field equations and constraints for the bulk mixture, where simpler incompressible

constitutive models can be used to model the flow of the bulk mixture. The constitutive
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models chosen for the mixture assumes a dissipative nature for the shearing of the bulk

fluid, diffusion flow of the components during segregation and flow of heat in the mixture.

This set of field equations have been used in chapter 8 to simulate the behavior of the

polishing fluid under different conditions.
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8. SIMULATION OF CONVECTION-DIFFUSION AND STRATIFICATION IN

STATIC FLUID

8.1 Finite Element Formulation

The finite element analysis for the simulation of the slurry mixture is carried out using

FEniCS (Finite Element ‘ni’ Computational Software) [175, 176]. This is an open source

computing platform where partial differential equations can be solved in a general sense.

Conventional CFD based methods such as OpenFoam, Fluent [177] and StarCCM+ im-

plement only second order partial differential equations (PDEs) whereas FEniCS allows

using higher-order PDEs as well, which are essential in this case.

All the field equations for the behavior of the polishing fluid described in section 7.9.1

are used here to develop a weak formulation of the differential equations. These equations

are used to solve for the state variables in the problem. Note that the field equations are

dynamic in nature. The fields, thus, are not only functions of space but also of time. If one

attempts to compute the state variables simultaneously, one may need to first discretize the

time domain using finite difference method (Crank–Nicolson Method) and then solve for

the space domain using finite element discretization. Let us consider that for every time

step, the state of the system at time t is known and the state at time t+ ∆t is of interest for

computation. The time discretized form of the field equations for the system are given in

the following equations.

div(µ(xm
t+ ∆t

2
) grad(φt+∆t/2)) = 0

vt+∆t − vt
∆t

− (
xm
t+ ∆t

2

ρm∗
+
xa
t+ ∆t

2

ρa∗
)div(Tt+ ∆t

2
)−

bm
mag t+ ∆t

2

ρm∗

−(
1

ρm∗
− 1

ρa∗
)(k1q̂

m
t+ ∆t

2
+ k2 grad(xm

t+ ∆t
2

)− k3x
m
t+ ∆t

2
xa
t+ ∆t

2
grad(div(grad(xm

t+ ∆t
2

))) = 0

158



xmt+∆t − xmt
∆t

+ div(xm
t+ ∆t

2
vt+ ∆t

2
) + div(q̂m

t+ ∆t
2

) = 0

q̂mt+∆t − q̂mt
∆t

− xm
t+ ∆t

2
xa
t+ ∆t

2
(

1

ρm∗
− 1

ρa∗
)div(Tt+ ∆t

2
)− xa

t+ ∆t
2

bm
mag t+ ∆t

2

ρm∗

+
ρt+ ∆t

2

ρm∗ ρ
a
∗

(k1q̂
m
t+ ∆t

2
+ k2 grad(xm

t+ ∆t
2

)− k3x
m
t+ ∆t

2
xa
t+ ∆t

2
grad(div(grad(xm

t+ ∆t
2

))) = 0

In the above equations, we need to solve for xmt+∆t, vt+∆t and φt+∆t simultaneously at

every time step. Moreover, the equations are nonlinear in terms of the concentration of the

magnetic constituent. This makes the computation of the state variables quite complicated.

Hence, we perform a serial operator splitting of the equations and variables [178] in the

problem like Alternate Direction Implicit (ADI) methods [179]. A flowchart describing

the approach to the simulation is given in figure 8.1. In the flowchart, we may note that

for any time step the current concentration of the magnetic particles are used to compute

the magnetic fields and the magnetic field thus computed is used to solve the convection-

diffusion problem, computing the new concentration and magnetic particle flux at the end

of the time step. This updated new concentration field is then used to compute the magnetic

fields for the next time step. Since the class of simulations in this thesis assume the flow

field of the bulk fluid, the momentum balance equation is not solved in any time step.

The pressure field or stress state at the steady state or in any required time step is directly

computed using the concentration field at that time by solving the momentum balance

equation. We will further simplify the balance equations to solve for the evolution of the

concentration under the influence of magnetic fields for a known flow. In order to do

this, we will simplify the balance laws further to eliminate the need to calculate the bulk

velocity as described in section 8.3.

The magnetic and convection-diffusion problems are solved by an adaptive time step

strategy. At each time step, the solution is first computed directly using the time step ∆t.

Then the solution is recomputed by halving the time step and the results are compared. If
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Figure 8.1: A basic flowchart showing the simulation strategy employed to compute the
concentration distribution of the magnetic particles in the mixture. Note that the magnetic
fields and concentration are not computed simultaneously, but rather operator split of the
variables are used to compute the variables one after another as shown in the figure.

the results are deemed to be sufficiently close, we proceed to the next time step; otherwise,

the time step is halved and the process is repeated. For the simulations discussed in this

chapter, the solutions are considered close if the L2 norm of their difference is less than

5 × 10−5, else the time step is halved. If the L2 norm is less than 8 × 10−6, the time step

is doubled for the subsequent time-step. For these values, the simulations were observed

to be stable.

8.2 Organization of the chapter

In this chapter, section 8.3 describes the simplification of the balance equations to make

them appropriate for a simplified weak form. Section 8.4 describes the weak form devel-

oped for the differential equations. Section 8.5 describes the general boundary conditions

for the problems considered in the chapter. Section 8.6 describes the material parameters

considered for the magnetic polishing mixture in the simulations. Section 8.7 describes

the general non-dimensionalization of the differential equations. Section 8.8 describes the
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mesh convergence study performed to choose an appropriate mesh for the simulations.

Section 8.9 describes the segregation simulations computed for a polishing mixture with

stationary bulk fluid under different magnetic fields. Section 8.11 describes the simula-

tions computed for a polishing mixture with bulk fluid under known shear flow. Finally,

section 8.12 draws conclusions on the modeling of the magnetic polishing mixture under

different flows in the presence of magnetic field.

8.3 Simplified form of the Differential Equations

In this thesis, we work with the behavior of the polishing fluids in known bulk flow in

the presence of the magnetic fields. Since the bulk flow is already known in these class

of problems, the bulk velocity and momentum is not required to be solved for every time

step. Hence, we can simplify the set of equations to solve only the magnetics problem

and the convection-diffusion problem. The bulk momentum equation is only solved to

compute the stress state of the bulk mixture at necessary time steps, reducing the com-

plexity of the differential equations. Thus, we simplify the convection-diffusion equation

by substituting for div(T) from the bulk momentum equation. This development of the

convection-diffusion equation is discussed in this section. Consider the set of bulk mo-

mentum and convection-diffusion equations given below from equations 7.114 to 7.117.

∂ρ

∂t
+ div(ρv) = −(ρm∗ − ρa∗)div(q̂m) (8.1)

∂v

∂t
= (

xm

ρm∗
+
xa

ρa∗
)div(T) +

bmmag
ρm∗

− (
1

ρm∗
− 1

ρa∗
)(k1q̂

m + k2 grad(xm)

− k3x
mxagrad(div(grad(xm)))) (8.2)

∂xm

∂t
+ div(xmv) = −div(q̂m) (8.3)
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∂q̂m

∂t
+

ρ

ρm∗ ρ
a
∗
k1q̂

m = xmxa(
1

ρm∗
− 1

ρa∗
)div(T) + xa

bmmag
ρm∗

− ρ

ρm∗ ρ
a
∗
{k2 grad(xm)− k3x

mxagrad(div(grad(xm)))} (8.4)

Here, equation 8.1 is not needed to be solved, as we can compute the bulk density

directly from the concentration of the magnetic constituents in the fluid. Computing the

expression for div(T) from equation 8.2, we get the following

div(T) =
1

xm + xaρr
[ρm∗

∂v

∂t
− bmmag + (1− ρr){k1q

m + k2grad(xm)

− k3x
mxagrad(div(grad(xm)))}] (8.5)

where, ρr =
ρm∗
ρa∗

We can further simplify the equations by substituting the expression for div(T) (from

equation 8.5) into the differential equation for the flux, qm (equation 8.4). The resulting

evolution equation for qm are derived as follows,

ρm∗
∂q̂m

∂t
− xmxa(1− ρr)div(T)− xabmmag

+(xmρr + xa){k1q̂
m + k2 grad(xm)− k3x

mxagrad(div(grad(xm)))} = 0

=⇒ ρm∗
∂q̂m

∂t
− xabmmag −

xmxa(1− ρr)
xm + xaρr

[ρm∗
∂v

∂t
− bmmag

+(1− ρr){k1q
m + k2grad(xm)− k3x

mxagrad(div(grad(xm)))}]

+(xmρr + xa){k1q̂
m + k2 grad(xm)− k3x

mxagrad(div(grad(xm)))} = 0

=⇒ ρm∗ (xm + xaρr)
∂q̂m

∂t
− ρm∗ xmxa(1− ρr)

∂v

∂t

−(xm + xaρr − xm(1− ρr))xabmmag
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+{(xmρr + xa)(xm + xaρr)− xmxa(1− ρr)2}

{k1q̂
m + k2 grad(xm)− k3x

mxagrad(div(grad(xm)))} = 0

=⇒ ρm∗ (xm + xaρr)
∂q̂m

∂t
− ρm∗ xmxa(1− ρr)

∂v

∂t
− ρrxabmmag

+ρr{k1q̂
m + k2 grad(xm)− k3x

mxagrad(div(grad(xm)))} = 0

=⇒ (xmρa∗ + xaρm∗ )
∂q̂m

∂t
− ρa∗xmxa(1− ρr)

∂v

∂t
− xabmmag

+{k1q̂
m + k2 grad(xm)− k3x

mxagrad(div(grad(xm)))} = 0 (8.6)

Equation 8.6 gives the final form of the evolution of the flux of the magnetic component

when the bulk momentum or velocity is known. Hence, the final set of equations being

solved including the magnetics problem is as follows,

div(µ(xm) grad(φ)) = 0 (8.7)

∂xm

∂t
+ div(xmv) = −div(q̂m) (8.8)

(xmρa∗ + xaρm∗ )
∂q̂m

∂t
+ k1q̂

m = ρa∗x
mxa(1− ρr)

∂v

∂t
+ xabmmag

− {k2 grad(xm)− k3x
mxagrad(div(grad(xm)))}

(8.9)

div(T) =
1

xm + xaρr
[ρm∗

∂v

∂t
− bmmag + (1− ρr){k1q

m + k2grad(xm)

− k3x
mxagrad(div(grad(xm)))}] (8.10)

8.4 Weak Form of the Differential Equations for a Stationary Fluid

In the following subsections, we develop the weak formulation of the PDEs discussed

above. In order to develop the weak formulation of the equations, test functions (φ†, x†

and v†) defined in the same function space as the corresponding state variables are con-

sidered. The operator split allows us to consider the coupled problem as a sequence of
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magnetic and convection-diffusion problems that are solved independently. The magnetic

and convection-diffusion problems are solved by an adaptive time step strategy, as dis-

cussed earlier.

8.4.1 Magnetics Problem

In order to solve the magnetics problem in the magnetic domain (ΩM ) we use equation

8.7 for the scalar potential (φ) such that the H-field is the gradient of this potential as

described in section 7.2. Since we solve for magnetic fields in the beginning of the time

step, the known concentration distribution (xmt ) computed in the earlier time step is used,

making it a differential equation of a single variable.

div(µ(xmt ) grad(φt+∆t)) = 0 (8.11)

The weak form of the magnetic equation given above is computed using a scalar test

function (φ†).

∫
ΩM

div(µ(xm(t)) grad(φt+∆t))φ
†dV = 0

=⇒ −
∫

ΩM

µ(xm(t)) grad(φt+∆t) · grad(φ†)dV +

∫
∂ΩM

φ†Bb · dA = 0 (8.12)

The body force due to the magnetic field in the system is computed as follows,

bmmag t+∆t = xmt χm grad(Bt+∆t)
THt+∆t

=
1

2

xmt χm

µ(xmt )
grad(Bt+∆t ·Bt+∆t) (8.13)
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where,

Bt+∆t = µ(xmt ) grad(φt+∆t) (8.14)

8.4.2 Convection-Diffusion Problem

The convection-diffusion problem is the most critical problem among all the field equa-

tions for the polishing mixture. The equation evolution of the concentration of the mag-

netic particle is non-linear and constrained by the condition, 0 ≤ xm ≤ 1. The equations

for the flux and the concentration of the magnetic component of the fluid need to be solved

simultaneously.

Hence, an operator split is again employed here with the concentration (xm, xa) at time,

t, considered for the coefficients of the magnetic force and the differential terms whereas

concentration at time, t+∆t inside the gradient terms resulting in a semi-implicit formula-

tion for the convection-diffusion problem. Thus, a simple linear equation for convection-

diffusion of the constituents in the mixture is achieved. The strong form of the finite

difference form of the equations is given below,

xmt+∆t − xmt
∆t

= −div(q̂m
t+∆t)

(xmt ρ
a
∗ + xat ρ

m
∗ )

q̂mt+∆t − q̂mt
∆t

+ k1q̂
m
t+∆t = xatb

m
mag t+∆t

− k2 grad(xmt+∆t)

+ k3x
m
t x

a
t grad(div(grad(xmt+∆t))) (8.15)

The flux can be computed directly from the finite difference scheme given in equation

8.15. The equation for the magnetic component (qm) is a third order differential equation

in terms of concentration of the magnetic component (xm). This will make the concen-

tration evolution equation to be a fourth order differential equation. In order to reduce
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the complexity of the problem, an additional variable, κ, is introduced and the problem is

solved using mixed formulation. The definition of κ is given below,

κ = div(grad(xmt+∆t)) (8.16)

It is important to note that the component of the chemical potential in the fluid that

minimizes the interface energy in the fluid as given in equation 7.105 is directly propor-

tional to the variable κ defined above. Hence, we simplify the equations by using a mixed

formulation with this κ and xm.

The weak form, thus, derived for the evolution of the concentration of the magnetic

component is given below.

∫
Ωf

xmt+∆t − xmt
∆t

x†dV −
∫

Ωf

q̂mt+∆t · grad(x†)dV +

∫
∂Ωf

x†q̂mt+∆t · dA = 0 (8.17)

q̂mt+∆t =
1

k1∆t+ xmt ρ
a
∗ + xat ρ

m
∗

[(xmt ρ
a
∗ + xat ρ

m
∗ )qmt

+ ∆t(−k2 grad(xmt+∆t) + k3x
m
t x

a
t grad(κ)))] (8.18)∫

Ωf

κ κ†dV +

∫
Ωf

grad(xmt+∆t) · grad(κ†)dV −
∫
∂Ωf

κ†grad(xmt+∆t) · dA = 0 (8.19)

8.4.3 Velocity - Pressure Problem

The pressure-velocity problem of the fluid is defined using the solutions computed

earlier in the convection-diffusion problem. Generally, this problem is not solved in every

time step for problems of stationary fluid or known flow, but rather for problems where

evolution of the velocity is necessary. For the problems of known flow, the equation is

solved for those instances where the pressure solution is to be computed using the time

series data of the solved convection-diffusion problem. For such cases, we compute the

velocity field as well along with the pressure and check if the resultant solutions match the
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initial assumptions for the fluid flow. A constitutive equation for the stresses is assumed

appropriately to match the assumed velocity field in the bulk fluid.

The momentum equation (given in equation 8.2) for the fluid when represented in the

finite difference form is shown below. The quadratic terms due to the transportation of the

bulk momentum is neglected for the simulations

vt+∆t − vt
∆t

− (
xmt+∆t

ρm∗
+
xat+∆t

ρa∗
)div(Tt+∆t)−

bmmag t+∆t

ρm∗

−(
1

ρm∗
− 1

ρa∗
)(k1q̂

m
t+∆t + k2 grad(xmt+∆t)− k3x

m
t+∆tx

a
t+∆tgrad(div(grad(xmt+∆t))) = 0

=⇒ vt+∆t − vt
∆t

− (xmt+∆t + xat+∆tρr)div(Tt+∆t)− bmmag t+∆t

−(1− ρr)(k1q̂
m
t+∆t + k2 grad(xmt+∆t)− k3x

m
t+∆tx

a
t+∆tgrad(div(grad(xmt+∆t))) = 0

where, ρr =
ρm∗
ρa∗

The weak form for the differential equation is given below,

∫
Ωf

(
vt+∆t − vt

∆t
) · v†dV +

∫
Ωf

Tt+∆t · grad((xmt+∆t + xat+∆tρr)v
†)dV

−
∫
∂Ωf

(xmt+∆t + xat+∆tρr)T
T
t+∆tv

† · dA−
∫

Ωf

bmmag t+∆t · v†dV

−(1− ρr)
∫

Ωf

(k1q̂
m
t+∆t + k2 grad(xmt+∆t)

−k3x
m
t+∆tx

a
t+∆tgrad(div(grad(xmt+∆t))) · v†dV = 0

(8.20)
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8.5 Boundary Conditions

8.5.1 Magnetics Problem

The boundary conditions for the magnetics problem depend upon the type of problem

being solved in polishing condition. For a scenario where the magnet is considered along

with the polishing fluid, the magnetic domain includes the polishing fluid, the magnet,

and air with infinite boundary. In such a case, we need to consider a large domain of air

and consider using open boundary condition. This is discussed in detail by Meeker [180].

In such simulations, we take the simplest approach by taking a large domain of air and

considering that the potential at the boundary to be zero. When the magnetic domain is

considered as the domain of the fluid, we define the boundary conditions for the magnetic

fields at the boundary of the fluids. In this thesis, we define the H-field at the boundaries

of the domain.

8.5.2 Convection-Diffusion Problem

For the convection-diffusion problem, the flux of the magnetic media at the boundaries

are set to zero. It is also assumed that no interfaces are formed at the boundaries, and

hence the interface energy at the boundaries are zero. This concludes that the gradient

of the concentration of magnetic particles at the boundaries are set to zero. There is also

an integral constraint that the average concentration of the magnetic component in the

mixture is constant in the whole domain. This integral condition applied in the weak form

is as follows,

∫
Ωf

xmt+∆tdV =

∫
Ωf

xm0 dV (8.21)

where, xm is the initial concentration of the magnetic media in the mixture. This condition

is not needed in the current simulations as we solve for the evolution of the concentration
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in time, where the concentration of the previous time step is used to compute the solu-

tion for the next time step. But, the condition is monitored through the progress of the

computations to check if errors of computations propagate.

8.5.3 Velocity-Pressure Problem

In this thesis, since the velocity of the bulk fluid is already assumed for the fluid, we

use the boundary conditions of the assumed velocity to solve this problem. The pressure

at the boundary with high abrasive particle concentration is chosen to be zero initially

to solve the problem, and then this solution is readjusted by setting the lowest observed

pressure to be zero in the domain.

8.6 Material Parameters for Simulation Studies

In this section, we discuss only the general properties of the polishing mixture used

in all the simulations. Some of these properties are universal constants, whereas some of

them are chosen for a carbonyl iron and silicon carbide abrasive polishing mixture. We

assume the mixture to be composed of a magnetic component(30 % magnetic particles in

oil) and an abrasive component (30% abrasive particles in oil).

The material properties of the magnetic fluid used in the simulations in this thesis is

given in Table 8.1. The permeability of free space is a universal constant which is given

in the table. The magnetic susceptibility of the magnetic fluid of 30% is taken from figure

7.2 which describes the experimental results for the magnetic susceptibility of MR fluids.

The filled density of the components is computed from the density of particles, carbonyl

iron (ρmp = 7860 kg/m3) and silicon carbide abrasive (ρap = 3210 kg/m3), and the density

of the base oil (ρoil = 823 kg/m3) using equations 8.22 and 8.23.

ρm∗ = 0.30ρmp + 0.70ρoil (8.22)
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ρa∗ = 0.30ρap + 0.70ρoil (8.23)

It is a difficult task to estimate the material parameters of the mixture without con-

ducting repeatable experiments on the magnetic mixture and evaluating the data with the

theoretical assumptions. In this thesis, we assume values for the coefficients which on

an order of magnitude closer to the existing theoretical models for particulate fluids and

qualitatively exhibit the behavior of the fluid.

The drag coefficient, k1, determines the stress developed by the resistance to the flux

of the components of the mixture with respect to the bulk fluid motion. A value or model

for this coefficient is not computed or reported in the literature for the model developed

in the dissertation. But, expressions for the drag coefficient exist in the literature for a

particulate mixture for relative flow between the particles and the base fluid for dilute

mixtures. Equation 8.24 shows the drag coefficient as a function of the viscosity of the

base oil (ηf ), the particle concentration (xp) and the average radius of the particles (rp) as

discussed by Massoudi [121]. The same equation has been used here to get an approximate

estimation of the drag coefficient and hence, a drag coefficient of 107 Pa s/m2 was chosen

for the components in the fluid. The material parameter, k2, which determines the mixing

energy in the mixture can also be approximated through the expression from the literature

[121]. But, using those formulas, we find that the value of k2 is very small. Hence, the

value of k2 was chosen to be 100 Pa/m2 as an approximation, as this would lead to a

mixture which upon simulations proved to be stable without separating and settling for

6-7 hours.

The interfacial energy constant (k3) is written as a function of the mixing constant (k2)

of the material and a length-scale property (li) of the fluid as given in equation 8.25. This

will help in the future while non-dimensionalizing the differential equation in determining

the length scale for the convection-diffusion problem. Also, li determines the thickness
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of the interface between the magnetic and abrasive brush media. Since we assume that

the components to be a continuum, theoretically the interface between the brushes can

be of zero thickness. But, since the actual fluid is made up of particles of finite radii

mixed and flowing in the oil, the actual interface will have a finite thickness with a much

more gradual variation in concentration. It has been qualitatively observed that abrasive

particles are stuck at the boundaries of the brushes, indicating an interface region [181].

But, experimental results have not been reported on the size of the interface region. Hence,

we assume an interface thickness of 5 mm is chosen to reflect this effect in the mixture for

the sake of simulations.

k1 =
9ηf (1 + 6.55xp)

2r2
p

(8.24)

k3 = k2l
2
i (8.25)

Table 8.1: Material properties assumed for magnetic polishing mixture.

Material Property Value
Permeability (µ0) of Free Space 4π × 10−7N/A2

Magnetic Susceptibility (χm) of MR fluid (30 %) 7
Filled density of magnetic component (ρm∗ ) 2934 kg/m3

Filled density of the abrasive component (ρa∗) 1540 kg/m3

Material parameter (k1) 107 Pa s/m2

Material parameter (k2) 100 Pa/m2

Material parameter (li) 5 mm
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8.7 Non-Dimensionalization of the Differential Equations

The system of differential equations is non-dimensionalized to study the factors that

contribute to the behavior of the magnetic mixture.

The differential equations are as given below,

div(µ(xm) grad(φ)) = 0 (8.26)

∂xm

∂t
+ div(xmv) = −div(q̂m) (8.27)

(xmρa∗ + xaρm∗ )
∂q̂m

∂t
+ k1q̂

m = ρa∗x
mxa(1− ρr)

∂v

∂t
+ xabmmag − {k2 grad(xm)

− k3x
mxagrad(div(grad(xm)))} (8.28)

(xm + xaρr)div(−P I + TE) =ρm∗
∂v

∂t
− bmmag + (1− ρr){k1q

m + k2grad(xm)

− k3x
mxagrad(div(grad(xm)))} (8.29)

In equation 8.29 we consider the general model for an incompressible fluid directly for

ease of non-dimensionalization. In order to non-dimensionalize the differential equation

we use the characteristic magnetic potential (φ0), length (l0), time (t0), magnetic particle

flux (q̂m0 ), bulk velocity (v0). Since the concentration (xm) does not have any dimensions,

we use it directly in our evaluation. The variables and operators of the differential equa-

tions can be written in terms of the non-dimensionalized form of the variables with the

characteristic variables as following.

t = t̄t0 (8.30)

div =
d̄iv

l0
(8.31)

grad =
¯grad

l0
(8.32)
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φ = φ̄φ0 (8.33)

v = v̄v0 (8.34)

T = −P0P̄ I + TE0T̄E (8.35)

q̂m = ¯̂qmq̂m0 (8.36)

bm
mag = b̄m

magb
m
0 (8.37)

Using the above definitions for the variables and non-dimensionalizing the differential

equations above, we get the following form of the differential equations in terms of non-

dimensinalized variables and operators.

div(µ(xm)grad(φ)) = 0

=⇒ µ0φ0

l20
d̄iv(µ̄(xm) ¯grad(φ̄)) = 0

=⇒ d̄iv(µ̄(xm) ¯grad(φ̄)) = 0 (8.38)

Non-dimensionalizing the H-field we get,

H0H̄ = grad(φ)

=
φ0

l0
¯grad(φ̄)

=⇒ H̄ =
φ0

l0H0

¯grad(φ̄) (8.39)

Non-dimensionalizing the magnetic force we get,

bmmag0b̄
m
mag = χmxmgrad(B)TH

= χmxmgrad(µ(xm)grad(φ))Tgrad(φ)
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=
µ0φ

2
0χ

m

l30
xm ¯grad(µ̄(xm) ¯grad(φ̄))T ¯grad(φ̄)

=⇒ b̄mmag =
µ0φ

2
0χ

m

l30b
m
mag0

xm ¯grad(µ̄(xm) ¯grad(φ̄))T ¯grad(φ̄) (8.40)

Now, non-dimensionalizing the balance equation for xm using the definitions given

in equations 8.30 to 8.37 we get the following form for the balance equation with the

non-dimensionalized quantities.

1

t0

∂xm

∂t̄
+
v0

l0
d̄iv(xmv̄) = − q̂

m
0

l0
d̄iv(¯̂qm)

=⇒ ∂xm

∂t̄
+
v0t0
l0
d̄iv(xmv̄) = − q̂

m
0 t0
l0

d̄iv(¯̂qm) (8.41)

Now, again non-dimensionalizing the balance equation for the flux of the magnetic

component (given in equation 8.28) using the definitions given in equations 8.30 to 8.37

we get the following derivation.

ρm∗ (xmρr + xa)
q̂m0
t0

∂ ¯̂qm

∂t̄
+ k1q̂

m
0

¯̂qm = xabmmag0b̄
m
mag

− k2

l0
¯grad(xm)

+
k3

l30
xmxa ¯grad(d̄iv( ¯grad(xm)))

=⇒ ρm∗
k1t0

(xmρr + xa)
∂ ¯̂qm

∂t̄
+ ¯̂qm =

bmmag0
k1q̂m0

xab̄mmag

− k2

l0k1q̂m0
¯grad(xm)

+
k2l

2
i

l30k1q̂m0
xmxa ¯grad(d̄iv( ¯grad(xm))) (8.42)

Finally, the non-dimensionalized form of the momentum balance equation (given in 8.29)
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using the definitions in equations 8.30 to 8.37 is derived as shown below.

(xm + xaρr)

l0
d̄iv(−P0P̄ I + TE0T̄E) =

ρm∗ v0

t0

∂v̄

∂t̄
− bmmag0b̄mmag + (1− ρr){k1q̂

m
0

¯̂qm

+
k2

l0
¯grad(xm)− k3

l30
xmxa ¯grad(d̄iv( ¯grad(xm)))}

=⇒ −(xm + xaρr)P0

k1q̂m0 l0
¯grad(P̄ )

+
(xm + xaρr)TE0

k1q̂m0 l0
d̄iv(T̄E) =

ρm∗ v0

k1q̂m0 t0

∂v̄

∂t̄
−
bmmag0
k1q̂m0

b̄mmag + (1− ρr){¯̂qm

+
k2

k1q̂m0 l0
¯grad(xm)

− k3

k1q̂m0 l
3
0

xmxa ¯grad(d̄iv( ¯grad(xm)))} (8.43)

We make the following simplifications on the characteristic variables by setting the

coefficients of some processes to 1. This will reduce the complexity of the problem and

set the equations in terms of the few important control characteristic values that we set for

the problem. First, let’s set the coefficient of φ̄ to 1 in equation 8.39.

φ0

H0l0
= 1

=⇒ φ0 = H0l0 (8.44)

Now, let’s set the coefficient of xm ¯grad(µ̄(xm) ¯grad(φ̄))T ¯grad(φ̄) in equation 8.40 to

1. Substituting the expression for φ0 given in equation 8.44 we compute the following

expression for bmmag0.

µ0φ
2
0χ

m

l30b
m
mag0

= 1

=⇒ bmmag0 =
µ0φ

2
0χ

m

l30

=
µ0H

2
0χ

m

l0
(8.45)
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Now, let’s set the coefficient of d̄iv(¯̂qm) in equation 8.41 to 1 to compute the following

expression for q̂m0 .

q̂m0 t0
l0

= 1

=⇒ q̂m0 =
l0
t0

(8.46)

Since the type of problems solved in this thesis are either stationary bulk fluid or bulk

fluid shearing at a constant known rate, it is useful to define the characteristic speed (v0)

in terms of the shear rate (γ0) in the bulk fluid as given below.

v0 = γ0l0 (8.47)

Now, setting the coefficient of ¯grad(xm) and xmxa ¯grad(d̄iv( ¯grad(xm))) to 1 in equation

8.42 we compute the following expression for t0 and l0.

k2

l0k1q̂m0
= 1

=⇒ k2t0
k1l20

= 1

=⇒ t0 =
k1l

2
0

k2

(8.48)

k2l
2
i

l30k1q̂m0
= 1

=⇒ k2l
2
i t0

l40k1

= 1

=⇒ k2l
2
i

l40k1

k1l
2
0

k2

= 1

=⇒ l0 = li (8.49)

Now, let’s assume the coefficient associated with the pressure term in equation 8.43 to
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be one to get a characteristic pressure for the system in terms of the material parameters.

P0

k1q̂m0 l0
= 1

=⇒ P0 = k1q̂
m
0 l0

= k1
l0

k1l20/k2

l0

= k2 (8.50)

Finally, assuming the following expression for TE0 in terms of an average viscosity

(η0) and the shear rate (γ0) in the material, we get a rough estimate of the characteristic

extra stress for the bulk fluid.

TE0 = η0γ0 (8.51)

Now, substituting all these expressions for the characteristic terms evaluated in equa-

tions 8.44 to 8.51 we get the following simplified form for all the balance equations.

d̄iv(µ̄(xm) ¯grad(φ̄)) = 0 (8.52)

∂xm

∂t̄
+
γ0k1l

2
i

k2

d̄iv(xmv̄) = −d̄iv(¯̂qm) (8.53)

ρm∗ k2

k2
1l

2
i

(xmρr + xa)
∂ ¯̂qm

∂t̄
+ ¯̂qm =

µ0H
2
0χ

m

k2

xab̄mmag − ¯grad(xm)

+ xmxa ¯grad(d̄iv( ¯grad(xm))) (8.54)

−(xm + xaρr) ¯grad(P̄ )

+
(xm + xaρr)η0γ0

k2

d̄iv(T̄E) =
ρm∗ γ0

k1

∂v̄

∂t̄
− µ0H

2
0χ

m

k2

b̄mmag + (1− ρr){¯̂qm

+ ¯grad(xm)− xmxa ¯grad(d̄iv( ¯grad(xm)))} (8.55)
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Through the simplifications done above, we were finally able to evaluate the non-

dimensionalized equations for the balance equations in terms of the material parameters

(ρm∗ , ρr, k1, k2, li, η0, µ0 and χm) and problem specific characteristic values for the H-field

(H0) and shear rate (γ0). Now, the values of these coefficients for any specific problem

dictates the behavior exhibited by the mixture. Since, we assume a single set of material

properties for the mixture, as shown in table 8.1, for all the simulations in this thesis, we

can further evaluate and simplify the coefficients as given below. For this analysis, we take

a characteristic viscosity of 30 Pas for the bulk fluid from the results of the experiments

conducted in Chapter 6. This is an inaccurate assumption, but it suits us to check the

relevance of shear forces in the system in comparison with diffusion.

γ0k1l
2
i

k2

= 2.5γ0 (8.56)

ρm∗ k2

k2
1l

2
i

= 1.17× 10−4 (8.57)

µ0H
2
0χ

m

k2

= 8.796× 10−8H2
0 (8.58)

η0γ0

k2

= 0.3γ0 (8.59)

ρm∗ γ0

k1

= 2.934× 10−4γ0 (8.60)

Through this non-dimensionalization scheme, we choose a length scale and time scale

for the problem that are normalized to the diffusion process. Hence, we compare every

other process, namely the magnetic forces developed, the shear flow of the bulk fluid and

inertial forces and the effect of the initial concentration of the magnetic component with

respect to this primary process. Now, studying the value of the coefficient computed in

equation 8.57 above, we find that the inertial effect of the flux of magnetic component

is insignificant in comparison to the diffusion in this fluid. Hence, we may neglect the
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inertial effects in the magnetic flux in the fluid. Equation 8.59 shows that the stress in the

mixture is significant in the computation of the bulk velocity of the bulk fluid for the shear

rates considered in the thesis. The details about the choice of characteristic values and its

effect on the behavior is discussed in detail later in this chapter.

8.8 Mesh Convergence Study

The appropriate size of the finite element mesh is found by conducting a mesh conver-

gence study described in the section. Convergence study on the mesh helps in simulating

numerical results for the evolution of the magnetic fields and concentrations in the mixture

that are independent of the mesh parameters used to compute them. The simulations of

the magnetic fields and the concentration of the magnetic particles were conducted on a

structured mesh (e.g., refer figure 8.3).

The appropriate mesh size for the mesh was found by comparing the results of final

equilibrium solution for infinitely long stationary bulk fluid with perturbed initial concen-

tration of magnetic particles in the presence of a constant H-field. The fluid is assumed to

occupy a rectangular domain of size 10 cm × 2 cm with periodic boundary conditions in

the x direction. The initial distribution of the magnetic particles is given in equation 8.61.

The fluid concentration assumed to be distributed sinusoidally in the x direction. The equi-

librium solution for the segregated fluid is used to compare the effect of the choice of mesh

sizes.

xm = 0.5 + 0.1 ∗ cos(πx
wb

) (8.61)

where, wb is the width of the brush with perturbed concentration of magnetic component.

The width of the brush here is chosen to be one-sixth of the length of the domain.

The material constants for the problem given in Table 8.1 are considered for the fluid.
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Figure 8.2: Schematic showing the mixture, with a constant H-field at the boundaries, used
for conducting a mesh convergence study for the fluid.

The H-field in the material assumed to be constant at the top and bottom boundaries. The

H-field is assumed to be 5× 103 A/m.

A schematic of the test problem used for mesh convergence is given in figure 8.2.

The mesh used for the simulations is a structured mesh where the domain is divided into

rectangular cells which are further divided into two right triangular mesh units as shown

in figure 8.3. Since every rectangular cell in the mesh is divided diagonally to form two

triangular mesh units, it is the size of the rectangular cells that are altered in this study.

The aspect ratio of 1:2 is used as the cell-size for the cells in the mesh. The initial mesh is

taken is by assuming 2 cells in the y direction. The aspect ratio of 1:2 results in 20 cells in

the x direction. This initial mesh is shown in figure 8.3. For every subsequent simulation,

the number of cells in the y direction is doubled. Thus, the simulations were run for the

number of cells 20×2, 40×4, 80×8, 160×16 and 32×320 for 5 s to find the equilibrium

solution. The equilibrium solution is checked by identifying if the flux (qm) goes to zero
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Figure 8.3: The base mesh used to find the convergent mesh for the simulation. Note that
the mesh has right triangular cells with an aspect ratio of 1:2 for the sides. In each step,
the cell size is reduced to half the earlier size. The center of the coordinates is chosen at
the center of the domain.

at 5 s. The maximum pressure in the fluid and the final distribution of the concentration of

the magnetic particles are used to find the appropriate mesh for simulations.

The results for the pressure and the final concentration state of the fluid was considered

in the domain. The results for the maximum pressure observed with respect to the no. of

cells in the y direction for different meshes are given in figure 8.4. Here, it is observed

that the maximum pressure for 80× 8 mesh is only 0.554 % different from the maximum

pressure for 160 × 16 mesh. Moreover, by further halving the mesh size, the maximum

pressure estimated improves only by 0.0001 %. This indicates that mesh becomes conver-

gent at 160 × 16 cell configuration and further refinement doesn’t improve the pressure

significantly.

The results for the concentration of magnetic component in the x direction at y = 0 is

given in figure 8.5. The results have been plotted only between [−0.025, 0.025] for com-

parison. The concentration distribution across the magnetic brush formed due to magnetic

segregation is shown in the figure. The data points for this graph are collected with a gap

of 0.1 mm along the x direction. Here, it can be directly observed that even though the re-

sults are significantly different for smaller number of cells, there is a very small difference

between the results for 80×8 cell mesh and 160×16 cell mesh. It is also observed that the

results for 320× 32 cell mesh is almost exactly the same as the result for a 160× 16 mesh,
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Figure 8.4: The maximum pressure computed in the domain versus the number of cells in
the y direction of the mesh. Note that the pressure computed for 80× 8 mesh (8 cells in y
direction) is only 0.5 % different from the pressure for 160× 16 mesh.

indicating that the problem achieves mesh independence at 160 × 16 cell configuration.

Thus, 160× 16 cell configuration is chosen as the mesh-independent configuration for the

domain. The mesh size for this cell configuration is 0.625 mm× 1.25 mm.
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Figure 8.5: Comparison of the concentration of the magnetic particles at y = 0 for the
different meshes. Note that the plot from the 320×32 mesh completely coincides with the
plot from 160× 16 mesh

8.9 Segregation in stationary polishing fluid under magnetic field

In this section, we study if the approach is able to simulate the formation of segregated

brushes in the fluid under magnetic fields. In the literature, segregation and formation

of brushes are simulated only for MR fluids (no abrasives are considered in the studies).

Moreover, the calculation of the distribution, flow behavior etc., based on the magnetic

fields assumed in the fluid or calculated based on the initial distribution of the particles

[181]. The problems of both the magnetic fields and flow behavior are simulated in a

decoupled method, i.e., the solution of flow behavior is assumed to not affect the mag-

netic fields inside the bulk fluid. A first order coupling of the H-field to the particles is

performed for molecular dynamics simulation of dilute MR fluids [182]. Here, we study

the results of the distribution achieved by coupling and decoupling the two behaviors as a
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continuum formulation for concentrated MR finishing mixtures. This study focuses on the

stratification of a stationary mixture (zero bulk velocity) due to different boundary condi-

tions on the fluid and initial conditions for the concentration of the magnetic component

in the mixture. The study helps in analyzing the effect of these conditions on the final

equilibrium distribution of components and pressure in the mixture.

8.9.1 Test Problem - Stationary Fluid with perturbed concentration

The behavior of a stationary fluid with a perturbed distribution of magnetic component

in the presence of a constant H-field is studied in this section. Experiments have been

conducted on dilute magnetic particulate fluids in the presence of a constant H-field where,

chain like structures are formed by the magnetic particles separating from the base fluid

[14]. One such experimental result showing the chains formed in dilute MR fluids are

shown in figure 8.6. Segregation study on MR polishing fluid under a uniform magnetic

field is not reported in the literature. Experimental observations on the segregated structure

of the fluid has been made for magnetic arrangements in polishing setups [15]. Figure

8.7 shows the segregated structure of an MR polishing fluid for a magnetic arrangement

using permanent magnets. Since polishing fluids have higher concentration of magnetic

particles, the polishing fluid generally segregates into brush like structures. This study

simulates this brush like formations in the fluid. The influence of the change in magnetic

fields due to the concentration changes in the mixture is studied in this section. For the

simulation, if we assume a constant distribution of the components in the fluid, it will

result in a constant B-field in the mixture. This leads to zero body forces to segregate

the mixture. But, the concentration will never be exactly constant through the volume

in practice, rather would be perturbed through the volume. Thus, the initial volume is

assumed to be perturbed to observe the effect of perturbation on the stability of the fluid

in the presence of a constant H-field. The basic setup is that of a mixture with 50 %
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Figure 8.6: Magnetic particle chains formed in a dilute MR fluid under uniform H-field
[14]

volume occupied by magnetic slurry in a mixture infinitely long in the x direction. This is

simulated using a rectangular domain of dimensions 10 cm×2 cm with periodic boundary

conditions in the x direction. A schematic of this setup with the magnetic fields is given in

figure 8.8
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Figure 8.7: a) Magnetic fixture used for polishing, b)Photographic view of tool with the
segregated MR finishing fluid and c) Magnified view of MR fluid brushes and abrasives
[15]

Figure 8.8: Schematic describing the basic setup of the mixture and magnetic fields for the
cases being discussed in the section
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In this test case, the magnetic particles are assumed to be uniformly distributed in

the domain but with a small perturbation in the x direction. The equation defining the

concentration of the magnetic component in the domain is given below,

xm = 0.5 + 0.1 cos(
πx

wb
) (8.62)

where wb is the width of concentrated regions (brushes) in the fluid. The width of the

brush here is chosen to be one-sixth of the length of the domain.

A uniform H-field of 5 × 103 A/m is applied at the top and bottom boundaries of the

domain. The setup of the fluid and the H-field at the boundaries are the same as given in

figure 8.8. The initial concentration of the magnetic component in the mixture before the

magnetic field is applied is given in figure 8.9. The simulations are run in two conditions.

• Decoupled - The magnetic fields for the initial distribution of the magnetic media is

computed and assumed to be unchanged throughout the segregation simulation

• Coupled - The magnetic fields are updated as the distribution of the magnetic media

in the fluid changes.

The final differential equations for a stationary mixture in the presence of constant

H-field is given below.

div(µ(xm) grad(φ)) = 0 (8.63)

∂xm

∂t
= −div(q̂m) (8.64)

(xmρa∗ + xaρm∗ )
∂q̂m

∂t
+ k1q̂

m = xabmmag − {k2 grad(xm)

− k3x
mxagrad(div(grad(xm)))} (8.65)

(xm + xaρr)div(−P I + TE) = −bmmag + (1− ρr){k1q
m + k2grad(xm)

− k3x
mxagrad(div(grad(xm)))} (8.66)
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Figure 8.9: Initial Concentration of the perturbed fluid in the presence of a uniform H-field
at the boundaries. Note that the regions with higher and lower concentrations of fluid are
of brush width wb.

where,

bmmag = χmxmgrad(B)TH (8.67)

The boundary conditions for the fluid are given below. Periodic boundary conditions

are applied at the boundaries x = −lf/2 and x = lf/2. The boundary conditions for the

constant H-field, zero flux and zero gradient for the concentration of magnetic components

are applied at the boundaries y = −wf/2 and y = wf/2.

φ|x=−lf/2 = φ|x=lf/2

xm|x=−lf/2 = xm|x=lf/2

q̂m|x=−lf/2 = q̂m|x=lf/2

H · n|y=−wf/2 = −5× 103A/m

H · n|y=wf/2 = 5× 103A/m
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q̂m · n|y=−wf/2 = q̂m · n|y=wf/2 = 0

grad(xm) · n|y=−wf/2 = grad(xm) · n|y=wf/2 = 0 (8.68)

The results of the simulations for the stationary fluid is given in the following section.

8.9.1.1 Results and Discussion

The results for the volume concentration of the polishing mixture after reaching steady

state is given in figure 8.10. The segregation of the components in the decoupled scenario

is minimal. This is due to smaller body forces developed due to the perturbation in the

initial concentration of the magnetic component. From the volume concentration in the

coupled simulation results, higher amount of segregation is observed as the change in the

magnetic fields are also considered. This indicates that the body forces on the magnetic

components change significantly with change in the concentration of the fluid driving the

segregation process in the mixture. This results in highly segregated brushes in the mix-

ture. Figure 8.11 shows the concentration of the magnetic component in the fluid at y = 0

in the x-direction. This shows the effect of coupling the magnetic field in the simulation

of the concentration evolution. Interfaces are formed with high gradients showing the

segregation of the components with interface width equal to the characteristic length of

the mixture. This effect is observed in the simulations as the perturbations cause a vary-

ing B-field in the fluid resulting in segregating that only further drives the segregation of

the mixture. The interfacial energy developed at the interfaces of the brushes counteract

the body forces, resulting in a smooth interface between the segregated regions. The de-

coupled simulation computes a low gradient of concentration at the edges of the brushes,

resulting in lower segregation. This results in computation of much smaller body forces

and pressure in the brushes, which are also an important factor in polishing. Thus, cou-

pled simulations are necessary to predict a more realistic segregated structure of the fluid,
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Figure 8.10: Volume Concentration of the magnetic component of the fluid at equilib-
rium in the mixture under a linearly varying H-field. Note that in the decoupled scenario
the fluid doesn’t segregate much due to very low body forces from the perturbed initial
condition, whereas in the coupled scenario the fluid segregates into brush like formation.

although this is computed in a decoupled approach in the literature.
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Figure 8.11: Comparison of the volume concentration of magnetic component of the mix-
ture at equilibrium condition with respect to the initial concentration of the component in
the mixture. Note that the volume concentration of the magnetic component has a huge
gradient at the boundaries of the segregated fluid which leads to the high pressure in the
inside the magnetic brushes.
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Figure 8.12: Comparison of the pressure in the mixture at equilibrium. Note that the
pressure in the coupled simulation is much higher than the pressure in the decoupled sim-
ulation. This pressure will result in a normal force on the workpiece at the top boundary

8.9.2 Fringe like H-field at the boundaries

In this scenario, we assume the H-field to vary linearly such that it is a maximum of

5× 103 A/m at the center and reduces to zero at the ends. The mixture will segregate due

to the gradient of the magnetic fields in the mixture. In this section, we study the effect

of coupling the magnetic field calculation to the concentration equations on the steady

state solution of the segregated fluid. In the earlier section, it was the perturbation of

the fluid that primarily drove the segregation process. In this scenario, the objective is to

study if the coupling influences the results significantly when the gradient of the external

field applied is the primary cause that drives the segregation of the fluid. Thus, a mixture

with constant distribution of magnetic particles is studied in the presence of a linearly

varying H-field to gauge the influence of coupling the magnetic fields to the concentration
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changes. The schematic of this configuration is given in figure 8.13. This scenario is

similar to fringe magnetic fields observed close to the edges of two magnets placed next to

each other to produce a constant magnetic field at the center. This simulation studies the

effect of magnetic gradient perpendicular to the field with change in magnetic component

distribution on the segregation and the stresses developed in a stationary fluid.

Figure 8.13: Schematic showing the polishing mixture with linearly varying H-field for
Case – 1

The simulations were conducted for the following two conditions.

• Decoupled - The magnetic fields for the initial distribution of the magnetic media is

computed and assumed to be unchanged throughout the segregation simulation

• Coupled - The magnetic fields are updated as the distribution of the magnetic media
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in the fluid changes.

The final differential equations for a stationary mixture in the presence of linearly

varying H-field at the boundaries is given below.

div(µ(xm) grad(φ)) = 0 (8.69)

∂xm

∂t
= −div(q̂m) (8.70)

(xmρa∗ + xaρm∗ )
∂q̂m

∂t
+ k1q̂

m = xabmmag − {k2 grad(xm)

− k3x
mxagrad(div(grad(xm)))} (8.71)

(xm + xaρr)div(−P I + TE) = −bmmag + (1− ρr){k1q
m + k2grad(xm)

− k3x
mxagrad(div(grad(xm)))} (8.72)

where,

bmmag = χmxmgrad(B)TH (8.73)

The boundary conditions for the fluid are given below. The boundary conditions for the

constant H-field, zero flux and zero gradient for the concentration of magnetic components

are applied at the boundaries y = −wf/2 and y = wf/2.

H · n|x=−lf/2 = H · n|x=lf/2 = 0

q̂m · n|x=−lf/2 = q̂m · n|x=lf/2 = 0

H · n|y=−wf/2 = −5× 103(|x| − lf/2)

H · n|y=wf/2 = 5× 103(|x| − lf/2)

q̂m · n|y=−wf/2 = q̂m · n|y=wf/2 = 0

194



grad(xm) · n|y=−wf/2 = grad(xm) · n|y=wf/2 = 0 (8.74)

where n is the normal perpendicular to the boundary of the domain.

8.9.2.1 Results and Discussion

The results of the simulation for these two cases are given in Figures 8.14 to 8.16.

Figure 8.14 shows the distribution of the magnetic component of the fluid at steady state.

Similar to the earlier example, the segregation is much higher in the coupled simulation

in comparison to the decoupled simulations. Fig 8.15 shows that a much higher gradi-

ent is observed at the boundary of the segregated fluid. This is observed as the coupled

simulations do consider the segregation div en by the concentration also along with the

segregation due to magnetic fields. This results in a much higher pressure observed inside

the magnetic component, as shown in figure 8.16. Even in this scenario, we observe a 60

% reduction in the pressure in the segregated media when a decoupled magnetic field is

assumed to act on the fluid. These results indicate that the concentration of the magnetic

component in the mixture significantly affects the stresses and the magnetic fields in the

mixture. Hence, it is necessary to consider coupled simulation of the fluid to achieve an

accurate simulation of the fluid for all types of external magnetic fields
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Figure 8.14: The Volume Concentration of the magnetic component of the fluid at equi-
librium in the mixture under a linearly varying H-field. Note that the coupled simulation
of the fluid gives a more defined segregation of magnetic media in the mixture.
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Figure 8.15: Comparison of the volume concentration of the magnetic component of the
mixture at y = 0. Note that the coupled simulation has a higher gradient than the decou-
pled simulation at the boundary, as it considers both the effect of permeability change in
the mixture along the gradient in the magnetic field.
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Figure 8.16: Comparison of the Pressure fields in the decoupled and coupled simulations.
Note that the maximum pressure observed in the decoupled is much lower(60 %) than the
pressure in the coupled simulation
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8.10 Non-Dimensionalized study of Perturbed fluid in Constant H-field

In this section, we study the conditions for the segregation and mixing behavior of

the magnetic polishing mixture. Upon studying the behavior of fluid, we observe that

the fluid segregation behavior is dependent on the initial condition of the fluid and the

H-field applied at the boundaries of the fluid. For some perturbation brush widths in the

initial distribution, it is observed that the fluid completely segregates to magnetic brushes,

whereas for certain brush widths the fluid mixes to form a stable uniform mixture. In

this study, we hope to identify the hope to identify the non-dimensional factors in the

fluid and the external fields that decide this behavior of the mixture model. The non-

dimensionalized form of the differential equations for the stationary fluid problem (v = 0)

is given in the equations 8.75 to 8.78 from the equations 8.52 to 8.55. Since we assume

that the fluid is stationary, we take the shear rate in the fluid to be zero.

d̄iv(µ̄(xm) ¯grad(φ̄)) =0 (8.75)

∂xm

∂t̄
=− d̄iv(q̂m) (8.76)

ρm∗ k2

k2
1l

2
i

(xmρr + xa)
∂ ¯̂qm

∂t̄
+ ¯̂qm =

µ0H
2
0χ

m

k2

xab̄mmag − ¯grad(xm)

+ xmxa ¯grad(d̄iv( ¯grad(xm))) (8.77)

(xm + xaρr) ¯grad(P̄ ) =
µ0H

2
0χ

m

k2

b̄mmag − (1− ρr){¯̂qm

+ ¯grad(xm)− xmxa ¯grad(d̄iv( ¯grad(xm)))} (8.78)

Now considering the equations for the coefficients given in equations 8.56 to 8.60

for the material used in these simulations, we get the following final form for the non-
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dimensionalized differential equations in terms of the characteristic H-field H0.

¯̂qm = Cmagx
ab̄mmag − ¯grad(xm)

+ xmxa ¯grad(d̄iv( ¯grad(xm))) (8.79)

(xm + xaρr) ¯grad(P̄ ) = Cmagb̄
m
mag − (1− ρr){¯̂qm

+ ¯grad(xm)− xmxa ¯grad(d̄iv( ¯grad(xm)))} (8.80)

where, Cmag is the magnetic coefficient to b̄mmag which is computed for the problem as

follows,

Cmag =
µ0H

2
0χ

m

k2

= 8.796× 10−8H2
0 (8.81)

Now non-dimensionalizing the initial condition for the fluid problem using the charac-

teristic length for the fluid problem as derived below. Defining the x position in terms of

the characteristic length as shown in equation 8.82.

x = lix̄ (8.82)

The concentration of the magnetic component (xm) in terms of the non-dimensional

form of the x position is given in the equation below.

xm = 0.5 + 0.1 cos(
πx

wb
)

= 0.5 + 0.1 cos(
πx̄

w̄b
) (8.83)
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Figure 8.17: Segregation and mixing behavior of magnetic polishing mixture for different
magnetic field (H0) and initial brush width (wb)

where wb is the non-dimensionalized form of the width of the brush, as given below.

w̄b =
wb
li

(8.84)

Hence, the problem of the stationary fluid in the presence of constant H-field in the

boundaries is simplified to a2 parameter problem, where the characteristics of the behavior

of the fluid is governed by the parameters, the H-field at the boundaries (H0) and the width

of perturbation in concentration (brush width) (wb). Now, comparing the behavior of the

fluid for different combinations of H0 and wb we get the graph given in figure 8.17.

This behavior of the fluid for different magnetic fields (H0) and brush width (wb) indi-

cate that for a mixture with defined properties given by the material parameters, the fluid

mixing and segregation is governed by two opposing forces, the magnetic field that tries
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Figure 8.18: Segregation and mixing behavior of the magnetic mixture for different com-
binations of magnetic coefficients and non-dimensional brush widths for the problem

to segregate the fluid and the internal energy that tires to mix through the fluid through

diffusion. The effect of these can be motivated theoretically through substituting the ini-

tial condition into the problem and studying the direction of the flux generated for this

initial condition. Note that for the initial condition, the concentration only varies in the x

direction and is independent of the y coordinate. Therefore, the solution to the magnetics

problem (given in equation 8.63) is a linear φ field as given below.

φ = H0y (8.85)

where, H0 is the constant external H-field applied at the top and bottom boundaries. From
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this the non-dimensionalized form of the H-field (H̄) can be computed as follows,

H̄ =
1

H0

grad(φ)

= 1êy (8.86)

The non-dimensionalized magnetic force (b̄mag) is computed as follows,

b̄mag = xm ¯grad(µ̄(xm)H̄)T H̄

= xm
1

2µ̄(xm)
¯grad(µ̄(xm)2H̄ · H̄)

= xm ¯grad(µ̄(xm))

= xm ¯grad(
µ0(1 + χmxm)

µ0

)

= xmχm ¯grad(xm) (8.87)

Now substituting this in equation 8.79 describing the flux in the mixture, we get the

following form

¯̂qm = Cmagx
ab̄mmag − ¯grad(xm) + xmxa ¯grad(d̄iv( ¯grad(xm)))

= Cmagx
axmχm ¯grad(xm)− ¯grad(xm) + xmxa ¯grad(d̄iv( ¯grad(xm))) (8.88)

Now, substituting the initial condition (equation 8.83) into the above equation, we get the

following for flux ¯̂qm.

¯̂qm = [−xaxmχmCmag
0.1π

w̄b
sin(

πx̄

w̄b
) +

0.1π

w̄b
sin(

πx̄

w̄b
) + xmxa

0.1π3

w̄3
b

sin(
πx̄

w̄b
)]êx

= [−xaxmχmCmag + 1 + xmxa
π2

w̄2
b

]
0.1π

w̄b
sin(

πx̄

w̄b
)êx
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= [1 + xmxa(
π2

w̄2
b

− χmCmag)]
0.1π

w̄b
sin(

πx̄

w̄b
)êx

= Cq
0.1π

w̄b
sin(

πx̄

w̄b
)êx (8.89)

where,

Cq = [1 + xmxa(
π2

w̄2
b

− χmCmag)] (8.90)

The direction of the flux of the magnetic component q̂m can be studied with respect to the

gradient of the concentration in the mixture, given below.

grad(xm) = −0.1π

w̄b
sin(

πx̄

w̄b
)êx (8.91)

The behavior of the mixture can be studied by comparing equations 8.89 and 8.91. When

Cq is negative the fluid will segregate as the magnetic component will diffuse along the

gradient of the concentration further segregating the fluid, whereas when Cq is positive

the magnetic component will diffuse from the higher concentration to the lower concen-

trations resulting in a mixed fluid. Thus, it can be noted that the segregation behavior

of the mixture initially increases with increasing magnetic field and brush width in the

mixture. It is observed from the simulations that this behavior of the fluid continues until

a stable distribution of the magnetic component is achieved, either in the form of segre-

gated brushes or as a complete mixture. Also note that the amplitude of the perturbation

doesn’t play a role in deciding the behavior of the fluid. Thus, when a stationary fluid with

a perturbed concentration of magnetic component in x direction is subject to a constant

magnetic field the fluid segregates for all those brush widths above a brush width decided

by the coefficient Cmag and susceptibility χm of the mixture.
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8.11 Magnetic Mixture under shear flow

In this chapter, we primarily consider the magnetic polishing mixture in couette-like

motion. This bulk motion of the fluid is prescribed to the fluid and the behavior of the

particles under this motion of the fluid is studied to find the formation of magnetic brushes

inside the fluid. Breaking and reformation of the brushes have been studied in the liter-

ature using methods such as laser spectrometry for dilute magnetic fluids [183]. Chains

have been observed to be breaking and reforming for low shear rate, whereas at high shear

the chains break completely [183]. Simulations of such dilute single component partic-

ulate media have been conducted using molecular dynamics [136]. But, simulations on

concentrated multi-component magnetic mixtures where the particles segregate and form

brushes are not generally studied in the literature. The effect of different factors such as

the field strength and shear rate of the mixture on these brush formations is studied in this

section.

8.11.1 Shear flow applied to the segregated fluid

In this section, we discuss a problem where a perturbed fluid is subjected to constant H-

field while it is stationary. And then the segregated fluid is subjected to a known constant

shear flow to study how the characteristics of the magnetic brushes evolve under shear

flow condition. Here, we conduct a one way coupling of the fluid bulk flow behavior

to study the segregation behavior of the fluid. The bulk mixture velocity is assumed to be

unaffected by the magnetic field. Typically, in the literature [136], the velocity is computed

from the magnetic field which is already assumed. In this study, we rather assume the bulk

flow and rather consider the coupled effect of the magnetic field on the shearing fluid.

Generally, in polishing, the thickness of the magnetic mixture used is small in com-

parison to the size of the pad used to polish the work piece. Thus, we assume that the

velocity of the bulk fluid along the thickness is zero. Substituting this assumption into the
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incompressibility condition gives that the velocity of the fluid is only a function of y (we

assume the thickness to be along the y direction) as given below.

div(v) = 0

=⇒ ∂vx
∂x

+
∂vy
∂y

= 0

=⇒ ∂vx
∂x

= 0

=⇒ v = vx(y)êx (8.92)

Also, we take a zeroth order approximation for the extra stress (TE(xm, H0,D)) in the

bulk mixture with respect to the concentration of the magnetic component in the fluid as

shown in the equation below.

TE(xm, H0,D) = TE(0.5, H0,D) + (xm − 0.5)
∂TE(xm, H0,D)

∂xm

+
(xm − 0.5)2

2!

∂2TE(xm, H0,D)

∂xm2
+ ...

≈ TE(0.5, H0,D) (8.93)

Now, considering equation 8.54 describing the evolution of the flux, q̂m with the value

of the coefficient computed in equation 8.57 the following expression can be computed.

¯̂qm =
µ0H

2
0χ

m

k2

xab̄mmag − ¯grad(xm) + xmxa ¯grad(d̄iv( ¯grad(xm)))

=⇒ ¯̂qm + ¯grad(xm)− xmxa ¯grad(d̄iv( ¯grad(xm))) = Cmagx
ab̄mmag (8.94)

Now considering equation 8.55 and substituting equation 8.94 into the function, we

206



get a simplified form of the momentum balance equation. The inertial term in the equation

can be ignored, as equation 8.60 suggests that for the shear rates considered in this thesis

the inertial coefficient is much smaller than the other terms. Thus, the final equation of

momentum balance is given in equation 8.95.

−(xm + xaρr) ¯grad(P̄ )

+
(xm + xaρr)η0γ0

k2

d̄iv(T̄E) =
ρm∗ γ0

k1

∂v̄

∂t̄
− µ0H

2
0χ

m

k2

b̄mmag + (1− ρr){¯̂qm

+ ¯grad(xm)− xmxa ¯grad(d̄iv( ¯grad(xm)))}

=− Cmagb̄mmag + (1− ρr)Cmagxab̄mmag

=− (xm + xaρr)Cmagb̄
m
mag

=⇒ − ¯grad(P̄ ) +
η0γ0

k2

d̄iv(T̄E) =− Cmagb̄mmag (8.95)

Now looking the momentum balance in x direction from equation 8.95 above we get

the following,

−∂P̄
∂x̄

+
η0γ0

k2

(
∂T̄Exx

∂x̄
+
∂T̄Exy

∂ȳ
) = −Cmagb̄mmagx

=⇒ −∂P̄
∂x̄

+
η0γ0

k2

∂T̄Exy

∂ȳ
= −Cmagb̄mmagx

This implies that,

P̄ = Cmag

∫
b̄mmagxdx+

η0γ0

k2

∫
∂T̄Exy

∂ȳ
dx

=⇒ P̄ = Cmag

∫
b̄mmagxdx+

η0γ0

k2

∂T̄Exy

∂ȳ
x (8.96)

Since we try to solve the problem for an infinitely long domain in x direction by con-

sidering periodic boundary conditions at x = −lf/2 and x = lf/2, P̄ and
∫

b̄mmagxdx are
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equal at the two boundaries. On substituting these conditions into equation 8.96 we get

the following derivation for T̄Exy.

∂T̄Exy

∂ȳ
lf = 0

=⇒ ∂T̄Exy

∂ȳ
= 0

=⇒ T̄Exy = c1 (8.97)

Since T̄Exy is a function of the gradient of velocity (∂vx/∂y), equation 8.97 indicates

that the gradient of velocity is constant. Thus, a linear profile for the velocity (vx(y)êx)

in the y direction is a good assumption for the behavior of the fluid under couette type

boundary conditions when we ignore the bulk velocity in the y direction.

The initial fluid concentration chosen here is the same as the fluid concentration cho-

sen in the earlier perturbed problem in stationary condition. The equation of the variation

of the concentration of the magnetic particles is given in the equation below. In this prob-

lem, we assume that the magnetic field is first applied to the static fluid for 5 s when the

fluid segregates to form brushes. Then the fluid is sheared at a constant rate to study the

evolution of the brushes in the fluid.

xm = 0.5 + 0.1 ∗ cos(πx
wb

) (8.98)

where x is the position in the x direction and wb is the width of concentrated regions

(brushes) in the fluid. The width of the brush here is chosen to be one-sixth of the length

of the domain.

The velocity field in the bulk fluid is assumed to be linearly varying in the y direction,

resulting in a fluid shearing at a constant rate. The velocity profile for the fluid is given

208



below in equation 8.99.

v = γ0y êx (8.99)

The final differential equations for a flowing mixture in the presence of constant H-

field, considering a velocity field that is constant with respect to time, is given below.

div(µ(xm) grad(φ)) = 0 (8.100)

∂xm

∂t
+ div(xmv) = −div(q̂m) (8.101)

(xmρa∗ + xaρm∗ )
∂q̂m

∂t
+ k1q̂

m = xabmmag − {k2 grad(xm)

− k3x
mxagrad(div(grad(xm)))} (8.102)

(xm + xaρr)div(−P I + TE) = −bmmag + (1− ρr){k1q
m + k2grad(xm)

− k3x
mxagrad(div(grad(xm)))} (8.103)

where,

bmmag = χmxmgrad(B)TH (8.104)

v = γ0y êx (8.105)

The boundary conditions for the fluid are given below. Periodic boundary conditions

are applied at the boundaries x = −lf/2 and x = lf/2. The boundary conditions for the

constant H-field, zero flux and zero gradient for the concentration of magnetic components

are applied at the boundaries y = −wf/2 and y = wf/2.
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φ|x=−lf/2 = φ|x=lf/2

xm|x=−lf/2 = xm|x=lf/2

q̂m|x=−lf/2 = q̂m|x=lf/2

H · n|y=−wf/2 = −5× 103

H · n|y=wf/2 = 5× 103

q̂m · n|y=−wf/2 = q̂m · n|y=wf/2 = 0

grad(xm) · n|y=−wf/2 = grad(xm) · n|y=wf/2 = 0 (8.106)

Results obtained by conducting simulations for different shear rates are discussed in

the following sections.

8.11.1.1 Bulk shear rate of 1 /s

The results for the evolution of the concentration of magnetic component in the fluid

when it is sheared at a rate of 1 /s visualized using Paraview is given in figures 8.19

and 8.20. At first, we can observe that the brushes rotate and stretch due to shearing

while maintaining their segregated structure. At 6.62 s, it is observed that the brushes are

stretched enough for the segregated structure to become unstable. Due to this instability,

the mixing initiates at a point where the distance is minimum between adjacent brushes.

This results in diffusive mixing at that local area. But, then this region becomes an area that

attracts more magnetic particles due to the altered magnetic fields in the region, resulting

in a new brush being formed. As the fluid shears, migration of magnetic component into

this region grows and the original brush thickness is also reduced by the shearing action.

This results in a new brush being grown out of the magnetic particles moving from the

earlier brush to this newly formed brush. We can see that the magnetic brush is able to
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shift to the new brush of almost similar width as that of the static segregated mixture.

This process keeps continuing periodically. It is important to note that, the fluid doesn’t

get mixed completely, but rather is able to maintain its segregated behavior while shearing.

The segregated fluid keeps breaking and reforming with the adjacent structures at the same

pace as the shearing in the fluid.
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(a) Initial condition, t = 0 s (b) Static segregation, t = 2.58 s

(c) Complete static segregation, t = 4.88 s (d) Initial shearing, t = 5.66 s

(e) Mixing initiation, t = 6.62 s (f) Initiation of new brush, t = 6.90 s

(g) Completion of diffusion to new brushes, t =
7.25 s (h) Breakage of old extended brushes, t = 7.41 s

Figure 8.19: Evolution of the concentration of the magnetic particles in the mixture from
0s to 7.4 s.
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(a) Complete formation of new brushes, t =
7.81 s

(b) Extension of formation of the next brush, t =
8.31 s

(c) Complete formation of new brushes, t =
8.8 s

(d) growth of new brush and loss of old brushes,
t = 9.15 s

(e) The process of brush switching continues,
t = 9.65 s

Figure 8.20: Evolution of the concentration of the magnetic particles in the mixture from
7.8 s to 9.65 s. Note how the switching of the brushes continue as the fluid continues to
shear.
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8.11.1.2 Bulk shear rate of 5 /s

The evolution of the concentration of the magnetic component in the fluid when sheared

at a rate of 5 /s is given in figure 8.21 and 8.22. From the results, it can be observed that,

the fluid initially shears by maintaining its segregated structure, leading to stretching and

thinning of the brushes. By the time diffusive mixing starts, there are multiple locations

where the brushes are unstable. This results in mixing at multiple locations, as shown in

figure 8.21e. Thus, new brushes form at these locations. But, as the shearing continues,

the components mix at several locations while the most stable new brush formed reforms

and grows through the shearing. As shearing continues, the switching behavior of these

magnetic components continue, with new brushes that are not formed completely before

being mixed through shearing. This results in brushes and a switching pattern similar to

the earlier scenario. But, the thickness of the brushes are thinner than the earlier case.
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(a) Initial condition, t = 0 s (b) Static segregation, t = 1.45 s

(c) Complete static segregation, t = 4.875 s (d) shearing started, t = 5.2 s

(e) Mixing Initiation at multiple locations, t =
5.56 s

(f) Mixing and diffusion of magnetic component
leading to loss of brush structure, t = 5.7 s

(g) Partial brushes due to mixing, t = 5.79 s
(h) New Brush formation post mixing due to the
influence of the magnetic fields, t = 5.87 s

Figure 8.21: Evolution of the concentration of the magnetic component of the fluid from
0 to 5.87 s. Note that in the initial 5 s, the fluid is undergoing segregation while it is
stationary. In the following 0.875 s, the fluid undergoes shear
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(a) Completion of new brush formation, t =
5.95 s (b) stretching of the brush structure, t = 6.11 s

(c) Late formation of new brushes after shearing,
t = 6.34 s

(d) Continuation of shearing and stretching of
the newer brushes, t = 6.42 s

(e) Another set of brushes is formed, t = 6.55 s

Figure 8.22: Evolution of the concentration of the magnetic component of the fluid from
5.95 s to 6.87 s when the fluid is sheared at 5 /s. Note that the magnetic fields through dif-
fusion is able to segregate the magnetic component incompletely, as the diffusion process
is much slower in comparison to the shearing process of the bulk fluid. Also note that the
magnetic brushes formed are stretched longer and thinner by the shearing process due to
this disparity in the processes.
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8.11.1.3 Bulk shear rate of 20 /s

The results showing the evolution of the concentration of magnetic particles when the

fluid is sheared at a rate of 20 /s are given in figure 8.23. This results in a fluid which

initially shears in the same form as the other cases, continuing to stretch. But, when the

brushes meet at 5.27 s, instability occurs at all points near the center of the bulk of the

mixture. This leads to mixing up of the components at these regions. Compared to earlier

cases, the mixing of the components process is not local in the brushes. Thus, instead of

new brushes being formed, the components mix and flow as a single mixed fluid. Hence,

we can note that the segregated structure is lost in the whole bulk of the fluid due to

shearing.
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(a) Initial Condition, t = 0.0 s (b) Segregation in progress, t = 2.85 s

(c) Complete static segregation, t = 4.88 s (d) Initial shearing, t = 5.13 s

(e) Initiation of mixing at all the locations with
overstretched brushes, t = 5.272 s

(f) Mixing Continues as the brush structure is
highly unstable, t = 5.30 s

(g) Mixing of the mixture the segregation limited
to the boundaries of the fluid, t = 5.604 s (h) Mixing complete due to shearing, t = 6.0 s

Figure 8.23: Evolution of the concentration of magnetic component in the mixture while
being sheared at 20 /s. Note that when the coefficient of transport is much higher than
the coefficient of diffusion, the particles are no longer able to switch quickly enough to
maintain their segregated brush structure.
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8.11.1.4 Discussion

The primary effect in the media is that the fluid once segregated has a tendency to

maintain the brush formation even under shear flow due to the magnetic field. But, we can

notice that the brushes start to rotate and stretch as the fluid flows. This motion of the fluid

reduces the perpendicular distance between the brushes and with time results in brushes

with much smaller width. Also, the length of the interface region in the fluid increases due

to stretching. Thus, when the brush width reaches a critical value, the fluid starts to mix

through the brushes. Note that the nominal brush width at the center of the fluid (given in

figure 8.23e) is lesser than the minimum stable segregating width for the fluid as shown

in figure 8.17. It is this stretching and thinning behavior of the shearing of the fluid that

causes the mixing of the fluid at high shear rates. In the scenarios where the flux due

to magnetic fields has comparable response as the shearing process, the mixing initiates

only at limited regions on the brushes where the width of the abrasive region is minimum.

This localized mixing of the magnetic particles results in new brushes being formed which

gets stronger as the fluid shears, which eventually breaks through the same mechanism of

shearing. Thus, such a motion results in a periodic behavior in the fluid where the brushes

are constantly reformed and broken as the fluid shears.

The mixing and segregation behavior of the mixture under shear can be studied using

a coefficient of mixing entropy (Cmix) defined as given in equation 8.107. It is defined as

the average of the non-dimensionalized form of the mixing free energy in the mixture.

Cmix =

∫
Ωf
xmln(xm) + xaln(xa)dV∫

Ωf
dV

(8.107)

This coefficient is compared with shear angle (θγ) in the mixture as given below.

θγ = γ0t (8.108)
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Figure 8.24: Evolution of the average mixing entropy (Cmix) with respect to the shear
angle (θγ) for different coefficients of shear (Cγ). Note that for lower value of Cγ , Cmix
increases as new brushes are formed periodically through shearing. But, for higher values
of Cγ , Cmix reduces much more due to mixing from shearing.
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This evolution of Cmix is studied for different values of the coefficient of shear rate

(Cγ) which is the coefficient of d̄iv(xmv̄) in equation 8.53. This is the ratio of the shear

process with respect to the diffusion process in the mixture.

Cγ =
γ0k1l

2
i

k2

= 2.5γ0 (8.109)

The evolution of the average mixing entropy (Cmix) with respect to the shear angle of

the mixture (θγ) for different coefficients of shear rate (Cγ) is shown in figure 8.24. Cmix

takes a value of 0 for a fully segregated fluid with infinitely small interface between the

bushes and a value of -0.69 for a fully mixed fluid. When the fluid segregates, it forms a

finite sized interface between the brushes, leading to a Cmix value of -0.2 for the mixture.

As the fluid is sheared, Cmix reduces due to the stretching and thinning of the brushes

as observed in the figure. In all the cases, the slope of the reduction of Cmix increases

when the brushes start to mix. The segregated mixture starts to mix across the brushes at

a shear angle of 1.62 radians, 2.8 radians and 5.2 radians for Cγ values of 2.5, 12.5 and

50 respectively. For a Cγ value of 2.5, where the shearing process is comparable speed

to the diffusion process, the diffusion mixing of the brushes locally leads to a significant

reduction inCmix. As the fluid shears the brushes start to reform leading to the reformation

of the brushes and segregation of the mixture as indicated by the increase in Cmix. The

periodical variation of Cmix indicates the breaking and reformation of the brushes in the

mixture. It can also be observed that the mixture maintains the segregated behavior to

some extent. For a Cγ value of 12.5, where the shearing process is 12.5 faster than the

diffusion process, the diffusion mixing occurs at multiple points on the brushes, leading

to a huge reduction in Cmix. But, since the diffusion process is still able to cope with the

shearing process, the mixture doesn’t completely mix but rather continues to form thinner

brushes which break and reform through the shearing process. For a Cγ value of 50, where
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the shearing process is much faster than the diffusion process, the mixing of the brushes

occur at multiple regions, resulting in an almost mixed state of the bulk fluid. As indicated

in figure 8.24 for a high value of Cγ both the high shearing process and diffusive mixing

leads to completely mixed state of the fluid resulting in a low value of Cmix which cannot

be recovered as the mixing process from shearing is much higher. Thus, the coefficient

of shear rate (Cγ) of the fluid plays an important role in determining the segregation and

the thickness of brushes while shearing. The critical values of Cγ that govern behavior

of the segregated structure is dependent on Cmag as well as it governs the scale of non-

dimensional flux, ¯̂qm.

8.12 Conclusions

A polishing mixture with a magnetic component concentration of 50 % is considered

for simulations. The fluid concentration was initially perturbed in the presence of a uni-

form H-field for the first simulation. The same fluid was considered in a linearly varying

magnetic field in the second case. On comparing the simulation results from the decou-

pled and coupled scenarios, one can observe that higher amount of segregation occurs for

the coupled scenario for both test cases. The magnetic component of the fluid has relative

permeability of 7 with respect to the abrasive component. This high a difference between

the magnetic behavior of the fluid gives a characteristic change in the magnetic field dis-

tribution in the mixture as segregation occurs. This further leads to segregation, resulting

in the brush like formation that is observed in practice (figure 8.7). Thus, the body forces

developed in the fluid are closer to the simulation results captured by the coupled sce-

nario. This phenomenon can only be captured in simulation when the effect of segregation

of the mixture on the magnetic field and body forces is considered in the simulations. A

considerable difference in the results of the pressure is also observed in both the cases.

The pressure observed in the regions with the higher concentration of magnetic particles is
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much higher than the pressure in the abrasive regions. This pressure is observed as normal

force acting on the workpiece during polishing, thus, plays an important role in the mate-

rial removal from the surface of the workpiece. It is also to be noted that it is the abrasives

trapped at the interfaces at a much lower concentration that result in the material removal

in polishing.

Studying the evolution of the concentration of the magnetic component when the segre-

gated fluid is sheared under constant H-field indicate that the shearing process destabilizes

the brush structure of the fluid by stretching and thinning of the regions. If the diffusion

process is able to respond to this effect of shearing at a comparable rate, the segregation

of the fluid is maintained through formation of new brushes as the fluid shears. When the

shearing process is much higher to the diffusion process, the fluid is able to maintain a seg-

regated structure but with much thinner magnetic brushes and higher amount of mixing,

as indicated by the lower value of Cmix while shearing. And when the diffusion is unable

to respond to the shearing behavior this will lead to unstable structure in the fluid leading

to mixing of the fluid components destroying the segregated structure. This indicates that

there is a limit to the shearing rate that can be induced into the fluid through polishing dic-

tated by the material parameters and the magnetic field applied to the fluid beyond which

the segregated brush like formation critical to the polishing of the workpiece cannot be

achieved in the fluid.
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9. CONCLUSIONS

The research conducted in this thesis can be divided into 2 parts, experimental study

on polishing fluids to identify appropriate models and mixture modeling of the magneto-

rheological polishing fluid to simulate the segregation of a magneto-rheological polishing

mixture while flowing under magnetic fields.

In the experimental study, torsional flow experiments conducted using a non-traditional

test cell is modeled using analytical and CFD approaches, for power law, Bingham fluid

and Herschel-Bulkley models, to study its rheological behavior. It was identified that, the

idealization about the flow of the fluid and neglecting the flow of fluid in the gap of the

setup can have a significant impact on the properties obtained for the fluid. Thus, the as-

sumption that the wall effect on the fluid flow being negligible may not be a good assump-

tion to follow in cases where experiments are conducted on non-idealistic geometries. In

such cases, a method that uses the simulations will provide a more accurate estimation of

the parameters for the models of the fluid. Akaike Information Criterion was used to select

an appropriate model for the fluid. The high Akaike weights and lower standard deviation

in the CFD based estimation of models show the higher predictability of the fluid achieved

through the CFD based analysis of the fluid behavior.

Mixture theory was chosen to model the segregation and flow behavior of MR finishing

mixture. Dipole-current circuit model was used to model the magnetic behavior of the

polishing fluid. The field equations for the bulk mixture fluid and the relative flow of the

magnetic component were derived. Thermodynamically consistent constitutive models

were developed for the fluid to exhibit segregation through diffusion and flow of the bulk

mixture during the polishing process. It was identified that a mixture model for the bulk

flow velocity formulated using the volume concentrations of the component as weights,
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provide field equations and constraints for the bulk mixture where simpler incompressible

constitutive models can be used to model the flow of the bulk mixture.

For the purpose of simulations, a polishing mixture with a magnetic component con-

centration of 50 % is considered. The fluid concentration was initially perturbed in the

presence of a uniform H field for a stationary fluid. The same fluid was considered in a

linearly varying magnetic field in the second case. On comparing the simulation results

from the decoupled and coupled scenarios, it was identified that segregation of the mag-

netic component with a relative permeability of 7 with respect to the abrasive component

altered the magnetic forces significantly, resulting in a more pronounced segregation into

brush like formations. This phenomenon can only be captured in the simulation when the

influence of segregation mixture is taken into consideration in the simulations. Thus, cou-

pled simulations of the polishing fluid are necessary to simulate the segregation and the

pressure that arise in the fluid due to body forces from the magnetic field.

A non-dimensionalized study on the perturbed stationary fluid identified that for a

fluid with defined material parameters that is subject to a uniform magnetic field, the fluid

segregated or mixed based on the width of the brush for the initial concentration of the

fluid. There is a critical value of brush width below which the fluid mixed into a completely

mixed fluid and above which the fluid segregated completely to form brushes. This critical

brush width is a function of the magnetic coefficient (Cmag) of the mixture.

Simulations were performed for an infinitely long segregated fluid shearing in the pres-

ence of a uniform magnetic field. The simulations studied the evolution of the segregated

structure in the presence of a fixed magnetic field while being sheared at different rates. It

is observed that for low values of Cγ the mixture maintains its segregated brushes periodi-

cally which gets broken and reformed through shearing. For higher values of Cγ , the fluid

gets mixed at major regions, but the brush like segregation is maintained to some extent

by the mixture. At really high shear rates the fluid gets completely mixed with shearing
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and diffusive mixing through the brushes. The fluid behavior slowly transitions from the

segregated brush structure to completely mixed fluid as the shear rate increases in the fluid.

9.1 Recommendations for future work

The following research topics need attention in this subject: Experimental studies on

the material properties of MR polishing fluid. Simulations that study the influence of

magnetic field along with the shear rate and the brush width on the behavior of the fluid.

Two-way coupling of the velocity and concentration of the magnetic component, where the

influence of concentration distribution on both the magnetic fields and the velocity field of

the bulk fluid is taken into consideration. Inclusion of slip conditions at the boundaries of

the fluid where the fluid is in contact with the workpiece. Experimental studies on the local

shear and normal forces developed by MR polishing fluids under polishing conditions.
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APPENDIX A

RELATIONSHIP BETWEEN THE MASS AND VOLUME CONCENTRATIONS

In the formulation and simulation of the mixture, we see the use of two types of con-

centrations namely the mass concentration (ci) and the volume concentration (xi) of the

components. Even though in the formulation and simulation we use the the volume con-

centration as the primary state variable for calculating the presence of a particular com-

ponent in the mixture. We may need to calculate and use the mass concentration of a

component at a certain point. In this section we study the relationship of these concentra-

tions to the bulk density (ρ) and among themselves.

We can define the bulk density(ρ) as a function of both the volume concentration(xi)

and mass concentration (ci) using the equations given below,

ρ =
∑
i

xiρi∗ = xmρm∗ + xaρa∗ (A.1)

ρ =
∑
i

ciρi = cmρm + caρa (A.2)

where, ρm∗ and ρa∗ are the filled densities of the magnetic and abrasive components and ρm

and ρa are the densities of the magnetic and abrasive components.

As per the modeling approach, discussed in Chapter 7, the relation between xm and cm

is of importance and xa and ca can be calculated by taking its complement with respect to

1. Using the definition of cm given in equation 7.42 and substituting the relationship given

above we get the following expression for cm in terms of xm.
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cm =
ρm

ρ

=
xmρm∗

xmρm∗ + (1− xm)ρa∗

=
xm

ρr + (1− ρr)xm
(A.3)

where, ρr =
ρa∗
ρm∗

(A.4)

Rearranging equation A.3, we can also express xm in terms of cm as given below,

xm =
ρrc

m

1− (1− ρr)cm
(A.5)

As we use the gradients of the concentrations in our formulation, the relationship of

the gradients of the concentrations are also of importance in the study. This relationship

can be computed by taking the gradient of equation A.3. Note that ρr is constant as the

filled densities of the components are constant.

grad(xm) = ρrgrad(cm) + (1− ρr)(cmgrad(xm) + xmgrad(cm))

=⇒ [1− (1− ρr)cm]grad(xm) = [ρr + (1− ρr)xm]grad(cm)

=⇒ ρrc
m

xm
grad(xm) =

xm

cm
grad(cm)

=⇒ ρr
grad(xm)

(xm)2
=
grad(cm)

(cm)2
(A.6)

The relationships thus developed in equations A.3 and A.6, are useful to calculate the

mass or volume concentration in the mixture at any particular point when the other is

known in the mixture.
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