
MODEL REDUCTION AND DEEP LEARNING APPROACHES IN RESERVOIR

SIMULATION

A Dissertation

by

JINGYAN ZHANG

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Yalchin Efendiev
Co-Chair of Committee, Yuhe Wang
Committee Members, Raytcho Lazarov

Jianxin Zhou
Head of Department, Sarah Witherspoon

December 2021

Major Subject: Mathematics

Copyright 2021 Jingyan Zhang

ABSTRACT

Numerical simulation of problems involving media with multiple spatial scales has important

applications in many engineering and scientific areas, including material science, chemistry and

unconventional reservoir simulation. While performing high-fidelity simulations is a primitive

method in obtaining accurate approximation results, explicitness for complex models naturally

gives rise to the need of large system of equations, due to the multiple scales and high contrast

properties intrinsic to the reservoir. This will result in large degrees of freedom and will require

enormous computational costs.

From the perspective of simulation, performing optimal reservoir management has always been

challenging and extensive research efforts have been devoted to developing numerical methods

with both accuracy and efficiency. One category of typical approaches include Heterogeneous

Multiscale Methods, Variational Multiscale Methods and Multiscale Finite Element Methods. In

such methods, effective properties are computed on a coarse-grid scale, which is much coarser than

the fine-grid scale while multiscale basis functions are constructed to capture local oscillatory ef-

fects and to recover fine-scale information as needed. However, with more complex high-contrast

heterogeneous media, such methods are insufficient in representing medium properties. In this dis-

sertation, we discuss and analyze a novel multiscale model reduction approach for dual-continuum

model, which serves as a powerful tool in subsurface formation applications from reservoir simu-

lation.

Another category of approaches over the decades falls into surrogate modeling and physics-

based model reductions to mitigate the difficulties induced by discretization of the nonlinear partial

differential equations. Such techniques, such as POD-based methods, have been applied success-

fully in multi-phase flow problems and can efficiently maintain accuracy while establishing models

with reduced complexity. However, such methods has no guarantee on solution stability and may

lead to unphysical solutions, especially in the case of multi-phase flow simulation. Consequently,

ii

many ad-hoc remedies have been implemented in recent years, including techniques based on deep

learning, which has been proved with capability in approximating a wide variety of functions. In

this dissertation, we also investigate methodologies of performing numerical simulations in com-

bination with deep learning approaches for predicting nonlinear multi-phase dynamics in reservoir

simulation.

iii

ACKNOWLEDGMENTS

Firstly, I want to express my uttermost gratitude to my advisor, Dr. Yalchin Efendiev, for his

continuous guidance and support throughout my graduate studies at Texas A&M University. Dr.

Efendiev has always been supportive and provided me with precious opportunities to attend work-

shops, conferences and professional internship, which allow me to exchange ideas with researchers

from different areas to broaden my horizons and to build up my own professional network. He has

always been patient and inspiring to my research and career development. He is also caring when

I’m faced with any difficulties. I sincerely appreciate all his contributions of time and ideas in

helping me finish this dissertation.

Secondly, I am very grateful to my co-advisor, Dr. Yuhe Wang, for his professional suggestions

and help on my research. Dr. Wang was very generous for supporting me to visit China University

of Petroleum for a semester. During the visit, he also provided me with great opportunities to

attend conferences and communicate with people having different areas of expertise.

Besides, I would also like to thank Dr. Raytcho Lazarov and Dr. Jianxin Zhou for taking their

precious time serving as my committee. Their insightful comments and encouragement are very

beneficial to me in the completion of this dissertation. I am also very grateful to Dr. Bicheng

Yan and Dr. Siu Wun Cheung for patiently explaining research ideas and providing useful advice

whenever I encountered difficulties. Moreover, sincere appreciation goes to Dr. Yanfang Yang,

Dr. Yating Wang and Dr. Min Wang for sharing their precious experience and suggestions. Their

selfless help has made my graduate life more smooth.

I appreciate all the help from the Department of Mathematics of Texas A&M University. It

would be difficult for me to pursue my doctorate degree without the support of the department. The

Department of Mathematics gives me many opportunities to attend different seminars, conferences

and workshops, which helped me to explore future development of my research. The opportunities

to engage in outreach programs also enriched my PhD life with warmth and joy. Special thanks

also go to all my dear friends for their support and company throughout the ups and downs during

iv

my life at Texas A&M University.

Last but not least, I want to express my profound gratitude to my parents for their support and

love. Without their understanding and encouragement, I would not have been able to focus on my

study.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a dissertation committee consisting of Professors Yalchin Efendiev

of the Department of Mathematics and Professor Yuhe Wang of the Department of Petroleum En-

gineering.

All other work conducted for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by a fellowship from Texas A&M University.

vi

NOMENCLATURE

GMsFEM Generalized Multiscale Finite Element Method

Ω Spatial domain

T h Fine-scale partition

T H Coarse-scale partition

h The fine mesh size

H The coarse mesh size

Kj A coarse-grid element

Ωi A fine grid cell

EH Coarse-grid edge

γij edge of fine cells Ωi and Ωj

Ki,m Coarse oversampled region

φl An auxillary basis function

ψl A multiscale basis function

κ Permeability

p Pressure

s Saturation

vii

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . vi

NOMENCLATURE . vii

TABLE OF CONTENTS . viii

LIST OF FIGURES . x

LIST OF TABLES. xiv

1. INTRODUCTION . 1

1.1 Literature . 1
1.2 Organization of this dissertation . 5

2. ANALYSIS OF NON-LOCAL MULTICONTINUUM UPSCALING FOR DUAL CON-
TINUUM MODEL . 7

2.1 Dual continuum model . 7
2.2 Method description. 8
2.3 Convergence analysis . 12
2.4 Numerical results. 28

2.4.1 Experiment 1. 29
2.4.2 Experiment 2. 30

3. DEEP MODEL REDUCTION-MODEL LEARNING FOR RESERVOIR SIMULATION
. 37

3.1 Preliminaries . 38
3.1.1 POD-DEIM . 40

3.1.1.1 Proper Orthogonal Decomposition . 40
3.1.1.2 Discrete Empirical Interpolation Method . 41

3.1.2 Nodal basis functions. 42
3.2 Deep global model reduction learning . 43

3.2.1 Main idea . 43
3.2.2 Network structure . 44

viii

3.3 Numerical results. 45
3.3.1 Experiment 1. 47

3.3.1.1 25 nodal basis case . 48
3.3.1.2 5 nodal basis case . 49

3.3.2 Experiment 2. 50
3.3.2.1 25 nodal basis case . 50
3.3.2.2 5 nodal basis case . 50

3.3.3 Experiment 3. 52

4. IMAGE-BASED PHYSICS-CONSTRAINT WORKFLOW FOR MULTI-PHASE FLOW
SIMULATION IN HETEROGENEOUS MEDIA . 56

4.1 Preliminaries . 56
4.1.1 Governing equation. 57
4.1.2 IMPES . 58

4.2 Methodology . 59
4.2.1 Image-based neural networks . 59

4.2.1.1 U-Net . 60
4.2.1.2 Fourier Neural Operator. 62

4.2.2 Loss function . 64
4.3 Numerical results. 66

4.3.1 Experiment 1. 69
4.3.2 Experiment 2. 71
4.3.3 Discussion . 74

5. SUMMARY AND CONCLUSIONS . 78

REFERENCES . 80

ix

LIST OF FIGURES

FIGURE Page

2.1 An illustration of fine mesh, coarse mesh and oversampling domain. 9

2.2 High contrast permeability field for the experiments. 29

2.3 Source term f2 in Experiment 1. 30

2.4 Plots of the numerical approximations of pressure with coarse mesh size H =
1/64 and m = 8 oversampling layers in Experiment 1. Left: first continuum.
Right: second continuum. First row: fine-scale solution. Second row: coarse-scale
average of fine-scale solution. Third row: NLMC solution. 31

2.5 Log-log scale plot of relative error and coarse mesh size in Experiment 1. Slope of
the best fit line for e(1)

L2 is 3.8082. Slope of the best fit line for e(2)

L2 is 4.0377. 32

2.6 Source term f2 in Experiment 2. 33

2.7 Plots of the numerical approximations of final-time pressure with coarse mesh size
H = 1/64 and m = 8 oversampling layers in Experiment 2. Left: first continuum.
Right: second continuum. First row: fine-scale solution. Second row: coarse-scale
average of fine-scale solution. Third row: NLMC solution. 34

2.8 Log-log scale plot of relative error and coarse mesh size in Experiment 2. Slope of
the best fit line for e(1)

L2 is 4.6172. Slope of the best fit line for e(2)

L2 is 4.7039. 35

2.9 Plots of the NLMC numerical approximations of pressure at various time instants
with coarse mesh size H = 1/64 and m = 8 oversampling layers in Experiment 2.
Left: first continuum. Right: second continuum. First row: t = 1.25. Second row:
t = 2.5. Third row: t = 5. 36

3.1 Illustrations of nodal basis functions. 42

3.2 An illustration of deep neural network. 43

x

3.3 Figures of permeability fields. Left: plot of logarithm of κ(0). Middle: plot of
logarithm of κ(0.1). Right: difference of κ(0) and κ(0.1). Republished with per-
mission of Society of Petroleum Engineers (SPE), from ”Deep Model Reduction-
Model Learning for Reservoir Simulation”, by Jingyan Zhang, Siu Wun Cheung,
Yalchin Efendiev, Eduardo Gildin, and Eric T. Chung, 2019. SPE Reservoir Sim-
ulation Conference, Copyright [2019] by Society of Petroleum Engineers; permis-
sion conveyed through Copyright Clearance Center, Inc. 46

3.4 Illustrations of production rates for training and testing. Left: Experiment 1. Right:
Experiment 2. Republished with permission of Society of Petroleum Engineers
(SPE), from ”Deep Model Reduction-Model Learning for Reservoir Simulation”,
by Jingyan Zhang, Siu Wun Cheung, Yalchin Efendiev, Eduardo Gildin, and Eric
T. Chung, 2019. SPE Reservoir Simulation Conference, Copyright [2019] by So-
ciety of Petroleum Engineers; permission conveyed through Copyright Clearance
Center, Inc. 47

3.5 Figures of observation points in experiment 1. Left: 25 nodal basis case. Right: 5
nodal basis case. Republished with permission of Society of Petroleum Engineers
(SPE), from ”Deep Model Reduction-Model Learning for Reservoir Simulation”,
by Jingyan Zhang, Siu Wun Cheung, Yalchin Efendiev, Eduardo Gildin, and Eric
T. Chung, 2019. SPE Reservoir Simulation Conference, Copyright [2019] by So-
ciety of Petroleum Engineers; permission conveyed through Copyright Clearance
Center, Inc. 48

3.6 Figures of observation points for Experiment 2. Left: 25 nodal basis case. Right: 5
nodal basis case. Republished with permission of Society of Petroleum Engineers
(SPE), from ”Deep Model Reduction-Model Learning for Reservoir Simulation”,
by Jingyan Zhang, Siu Wun Cheung, Yalchin Efendiev, Eduardo Gildin, and Eric
T. Chung, 2019. SPE Reservoir Simulation Conference, Copyright [2019] by So-
ciety of Petroleum Engineers; permission conveyed through Copyright Clearance
Center, Inc. 51

3.7 An illustration of 50 observation points for the second neural network used in Ex-
periment 3.. 53

3.8 An illustration of neural network used in Experiment 3. 53

3.9 Figures of reconstructed and reference fine-scale solutions in Experiment 3. Left:
fine-scale solution reconstructed from 5 nodal parameter input. Middle: fine-scale
solution reconstructed from 25 nodal parameter output. Right: reference solution. . . . 54

xi

4.1 An illustration of U-net architecture used in this work. Boxes represents multi-
channel features in the forward feeding network. Blank filled boxes represents
output features before each average pooling phase in the extracting path. The image
sizes of each level are labeled on the left of the graph. The number of filters,
which is also the number of output properties of each extracting or expansive step
is labeled above each box. nin and nout are the numbers of channels of the input
and output images respectively. 61

4.2 Figure of the Fourier neural operator. The network consists of 3 fully connected
layers and 4 Fourier layers. The feature information is labeled on the top of each
layer in the format of nC@(nH , nW). 63

4.3 Realizations of permeability fields used in all experiments. 67

4.4 An example of pore volume rate randomly generated for the two experiments. 67

4.5 Plots of percentage relative L2 errors in predicting pressure fields with U-net using
different loss function schemes. Left: Lmse, average of enp is 1.47%, average of e10

p

is 1.71%. Right: L1, average ofenp is 1.70%, average of e10
p is 2.02%.. 70

4.6 Plots of percentage relative L2 errors in recursively simulating saturation fields
with U-net-predicted pressure using different loss function schemes. Left: Lmse,
average of enp is 18.73%, average of e10

p is 24.03%. Right: L1, average of enp is
6.58%, average of e10

p is 9.71%. 70

4.7 Plots of percentage relative L2 errors of predicted interface flux and recursively
simulated saturation fields with in experiment 1. Left: interface flux prediction
errors, average error for all vnpred is 0.89%; for v10

pred is 1.34%. Right: saturation
simulation errors, average error for all cases is 0.30%; for time step 10 is 0.53%. 71

4.8 Figures of final time saturation and streamline for test realization case 8 in Ex-
periment 1. Top row: saturation. Second row: error of saturation. Bottom row:
streamline. Left: U-net pressure model with L1. Middle: interface flux model.
Right: fine-scale reference. 72

4.9 Figures of pressure and errors of p10
pred in the test realization 4 in Experiment 2.

Top: pressure. Bottom: absolute difference of pressure compared to reference.
First column: FNO with 12 filters. Second column: FNO with 20 filters. Right:
fine-scale pressure p10

ref. 73

4.10 Figures of temporal FNO prediction and simulation error for different test realiza-
tions in Experiment 2. Left: pressure prediction error. Right: saturation simulation
error. First row: 12 filters. Second row: 16 filters. Third row:20 filters. 75

xii

4.11 Figures of final time saturation and streamline for test realization case 4 in Ex-
periment 2. Top row: saturation. Second row: error of saturation. Bottom row:
streamline. First column: FNO with 12 filters. Second column: FNO with 20
filters. Third column: fine-scale reference. 76

xiii

LIST OF TABLES

TABLE Page

2.1 Convergence of eL2 with respect to coarse mesh size H in Experiment 1. 30

2.2 Comparison of eL2 error with different number of oversampling layers m for H =
1/32 in Experiment 1.. 32

2.3 Comparison of eL2 error with different number of oversampling layers m for H =
1/64 in Experiment 1.. 32

2.4 Convergence of eL2 with respect to coarse mesh size H in Experiment 2. 33

3.1 Mean of observation percentage error with different training data in 64 neuron
network, Experiment 1. Republished with permission of Society of Petroleum En-
gineers (SPE), from ”Deep Model Reduction-Model Learning for Reservoir Sim-
ulation”, by Jingyan Zhang, Siu Wun Cheung, Yalchin Efendiev, Eduardo Gildin,
and Eric T. Chung, 2019. SPE Reservoir Simulation Conference, Copyright [2019]
by Society of Petroleum Engineers; permission conveyed through Copyright Clear-
ance Center, Inc.. 49

3.2 Mean of observation percentage error with different training data in 300 neuron
network, Experiment 1. Reprinted with permission from ”Deep Global Model
Reduction Learning in Porous Media Flow Simulation” by Siu Wun Cheung, Eric
T. Chung, Yalchin Efendiev, Eduardo Gildin, Yating Wang and Jingyan Zhang,
2020. Computational Geosciences, Volume 24, Pages 261–274, Copyright [2020]
by Springer. 49

3.3 Mean of observation percentage error with different training data in 5 nodal basis
case in Experiment 1. Republished with permission of Society of Petroleum Engi-
neers (SPE), from ”Deep Model Reduction-Model Learning for Reservoir Simula-
tion”, by Jingyan Zhang, Siu Wun Cheung, Yalchin Efendiev, Eduardo Gildin, and
Eric T. Chung, 2019. SPE Reservoir Simulation Conference, Copyright [2019] by
Society of Petroleum Engineers; permission conveyed through Copyright Clear-
ance Center, Inc.. 50

xiv

3.4 Mean of observation percentage error with different training data in 25 nodal basis
case in Experiment 2. Republished with permission of Society of Petroleum Engi-
neers (SPE), from ”Deep Model Reduction-Model Learning for Reservoir Simula-
tion”, by Jingyan Zhang, Siu Wun Cheung, Yalchin Efendiev, Eduardo Gildin, and
Eric T. Chung, 2019. SPE Reservoir Simulation Conference, Copyright [2019] by
Society of Petroleum Engineers; permission conveyed through Copyright Clear-
ance Center, Inc.. 51

3.5 Mean of observation percentage error with different training data in 5 nodal basis
case in Experiment 2. Republished with permission of Society of Petroleum Engi-
neers (SPE), from ”Deep Model Reduction-Model Learning for Reservoir Simula-
tion”, by Jingyan Zhang, Siu Wun Cheung, Yalchin Efendiev, Eduardo Gildin, and
Eric T. Chung, 2019. SPE Reservoir Simulation Conference, Copyright [2019] by
Society of Petroleum Engineers; permission conveyed through Copyright Clear-
ance Center, Inc.. 52

3.6 Mean of different percentage errors in Experiment 3. 54

4.1 Average percentage prediction and simulation errors for all test cases and final time
cases given different setting of loss weight parameter in Experiment 2. 73

4.2 Average percentage prediction and simulation errors for all test cases and final time
cases given different number of filters in Experiment 2. 73

4.3 CPU time cost related to different modules in proposed workflow. Prediction time
is based on a scale of 80 test cases. The time costs involving numerical simulator
is calculated by an average of 10 simulation on realizations. 76

4.4 Summary of the best prediction and simulation metrics of different neural network
modules. 77

xv

1. INTRODUCTION

1.1 Literature

Reservoir management is a complex process to be performed given the multidisciplinary nature

of all of the steps involved in combining proper reservoir modeling, data processing and decision

support directives. From a simulation stand-point, performing optimal reservoir management has

always been challenging due to the complexities and uncertainties intrinsic to reservoir dynamics

[1]. Accurate simulation results can be obtained by exploring the full spectrum of uncertainties and

optimal control settings using high fidelity models. In the case of large fractures, Discrete Fracture

Model (DFM) and Embedded Fracture Model (EFM) are used to explicitly define fracture networks

with accuracy [2, 3, 4]. However, this leads to solving expensive large-scale system of equations,

which can be unmanageable given the computational infrastructure at one’s disposal. In many

cases, it is a critical obstacle to the fast changing decision-making process related to real-time data

optimization and assimilation [5, 6].

To overcome this difficulty, research efforts had been devoted to constructing numerical solvers

on a coarse grid, which is typically much coarser than the fine grid which captures all the het-

erogeneities in the medium properties. Typical approaches involve computing upscaled effective

properties in each local coarse-grid block or representative volume [7, 8]. Such approaches are

known to be insufficient when more than one important modes exist in the same coarse block or

representative volume. In these cases, more efficient upscaling methods, typically the multicontin-

uum models, are employed [9, 10, 11, 12, 13, 14]. In such approaches, several effective properties

are formulated in each coarse block and interaction terms are defined to characterize the trans-

fer between different continua. Another class of methods is the multiscale methods, including

Heterogeneous Multiscale Methods (HMM) [15, 16, 17], Variational Multiscale Methods (VMS)

[18, 19, 20, 21] and Multiscale Finite Element Method (MsFEM) [22, 23]. Similar to upscaling

approaches, multiscale scale is to construct numerical solvers on the coarse grid, which is typically

1

much coarser than the fine grid which captures all the heterogeneities in the medium properties.

Instead of computing the effective medium properties, multiscale basis functions which are re-

sponsible for capturing the local oscillatory effects of the solution are constructed and coarse-scale

macroscopic equations are formulated. The solution of the coarse-scale system can then be used

to recover fine-scale information with the multiscale basis functions.

However, for more complex high-contrast heterogeneous media, each local coarse region con-

tains several high-conductivity regions and multiple multiscale basis functions are required to rep-

resent the local solution space. The aforementioned multiscale methods typically use one basis

function per coarse region, which is insufficient and may give rise to large error. To this end,

it is crucial to systemically enrich the multiscale space with suitable fine-scale information for

low-dimensional solution representation. One such approach is the Generalized Multiscale Finite

Element Method (GMsFEM) [24, 25, 26, 27], which involves the construction appropriate snap-

shots space which consists of fine-scale data for solution representation by local snapshot problems

and the construction of multiscale basis functions by performing feature extraction through local

spectral decompositions to the snapshot space. Since multiscale basis functions are identified for

multiscale solution representation in high-contrast heterogeneous media, multiple basis functions

from the spectral problem are required to attain a small error. By introducing adaptivity [28, 27],

one can add multiscale basis functions in selected regions. The connection of GMsFEM to multi-

continuum models is discussed in [29], and GMsFEM are successfully applied to multicontinuum

models that originate from fracture models and contain nonlinearities [30, 31, 32, 33].

More recently, a combination of GMsFEM and localization has been discussed in [34] as the

approach of Constraint Energy Minimizing GMsFEM (CEM-GMsFEM). The method uses over-

sampling computational regions for the construction of multiscale basis functions. The first step

is to find the auxiliary multiscale basis functions by GMsFEM. The second step is to construct

multiscale basis functions by minimizing energy functionals subject to certain constraints, the pur-

pose of which is to localize the multiscale basis functions. The method has been applied to various

discretization and model problems [35, 36, 31, 37], and it has been theoretically and numerically

2

verified that the multiscale solutions spanned by the multiscale basis functions in CEM-GMsFEM

have both spectral convergence and mesh dependent convergence.

On the other hand, to mitigate the computational effort induced by the discretization of the un-

derlying coupled nonlinear partial differential equations, numerous techniques have been adapted

over the decades. Surrogate modeling and physics-based model reduction, e.g., POD-based meth-

ods, have been applied successfully in multi-phase flow simulation [38, 39, 40, 41, 42, 43]. In

many cases, it is shown that reduced-order modeling techniques are efficient in maintaining high

level accuracy while reducing the complexity of models. However, there is not a general theory or

methodology that can guarantee stable solutions for all test cases, especially when testing inputs

are very different from the one used to generate the reduced models. Many ad-hoc remedies have

been implemented in recent years [44, 45, 41], and some new ideas relying on machine learning

techniques have been devised to compute robust projection basis [42, 43] . In particular [43] uses

Recurrent Neural Nets to alleviate the computational cost associated with the training step (offline

step), but no physical relation of the POD basis and the degrees of freedom (e.g. solution values

at selected locations) is provided. This can lead to unphysical solutions, especially in the case of

multi-phase flow systems.

In recent years, deep learning has attracted lots of attention. The concept of deep learning has

been applied to a wide range of applications and has gained remarkable success in many fields

including image and speech recognition. The core of deep learning is about training different ar-

tificial neural networks, inspired by the biological neural system, to achieve different targets. A

typical branch of artificial neural network is the Deep Neural Network (DNN), which normally

consists of an input layer, an output layer and several hidden layers in between. Each layer con-

tains several neurons and each neuron can process and transfer signals to other neurons through

connections.

There have been a lot of studies in the literature on the ability of neural networks in approxi-

mating a wide class of functions. Many researchers have also provided theory on the expressivity

of deep neural networks [46, 47, 48, 49, 50, 51]. The multi-layer structure utilize DNN the ability

3

to solve complex problems and approximate complicated functions. Some activation functions,

used as nonlinear signal transformation, can determine whether a neuron is activated or not. This

inspires many works in exploiting deep learning for solving nonlinear differential equations and

model reductions. Examples can be seen in [52], where deep neural network is used to represent

the trial function in the Ritz method. This utilize deep neural network the ability in solving Poisson

problems and eigenvalue problems. Another work is given in [53]. The author builds a connec-

tion between residual networks (ResNet) and transport equation, which propose a continuous flow

model for ResNet and shows an alternative perspective to understand deep neural networks.

Efforts have also been made in developing physics-constrained surrogate modeling for partial

differential equations. In the development of physics-informed neural network (PINN), loss func-

tions are regularized by physics governing equations through automatic differentiation so that the

consistency between the neural networks and the physics of fluid flow in porous media is guaran-

teed [54]. While PINNs can predict fluid dynamics by physics with medium complexity, they still

suffer from the curse of dimensionality and high computational costs induced by high nonlinearity.

Recently, image-based approaches have also been developed to predict flow dynamics in porous

media. The typical approaches leverage convolutional neural networks (CNN), which have existed

for decades [55]. CNNs have a wide range of successful applications in areas including video and

image recognition [56], image segmentation [57] and natural language processing [58]. They are

specialized to capture spatial and temporal patterns in images. With locally connected layers, they

can perform more efficiently in training while maintaining the capability of extracting rich hidden

features. This inspires works in approximating nonlinear relationships between geological maps

and flow maps in fluid flow in porous media [59, 60, 61]. Examples can be seen in [62], where

Bayesian deep convolutional encoder-decoder networks show good results as surrogate models

for solving stochastic PDEs. In another work [63], a residual convolutional neural network is

developed to predict subsurface flow dynamics in channelized permeability field.

4

1.2 Organization of this dissertation

In Chapter 2, we will develop and analyze a rigorous multiscale upscaling method for dual con-

tinuum model, which serves as a powerful tool in subsurface formation applications. Our proposed

method is capable of identifying different continua and capturing non-local transfer and effective

properties in the computational domain via constructing localized multiscale basis functions. The

construction of the basis functions consists of solving local problems defined on oversampling

computational region, subject to the energy minimizing constraints that the mean values of the lo-

cal solution are zero in all continua except for the one targeted. The basis functions constructed are

shown to have good approximation properties. We provide rigorous mathematical analysis on that

the method has a coarse mesh dependent convergence. We also present some numerical examples

to illustrate the performance of the proposed method.

In Chapter 3, we will study the application of model reduction techniques, combining with

multi-layer neural network approaches for simulations of nonlinear multi-phase flow, taking into

account both the observed data and physical modeling concepts. The output of the multi-layer

network is regarded as the solution at current time step given initial time and input parameters,

which come from various sources including permeability fields and source terms. We select basis

functions of the global reduced order model such that the degrees of freedom can represent the

solutions at observation points. In such manner, learning of basis functions, which can also be

accomplished by neural networks, can be avoided. We will investigate how the neural network

architecture, including the number of layers and neurons, affects the approximation of the forward

map in the governing nonlinear equations of multi-phase flow.

In Chapter 4, we will further investigate efficient image-based deep learning techniques for ap-

proximating the dynamics of multi-phase flow. A hybrid workflow using both deep neural network

and numerical simulator is designed and tested. By breaking down the coupled multi-phase flow

system into pressure and saturation equations, relying on the capability of image-based operations,

we are able to construct efficient surrogate models using image-based neural networks to predict

pressure, which can be later fed into explicit fine-scale saturation solvers for the simulating of sat-

5

uration. Physics-based loss functions are introduced into the training process to further guarantee

spatial continuity and temporal stability in the proposed scheme. Some numerical examples are

included to illustrate the efficiency and accuracy of the proposed workflow.

6

2. ANALYSIS OF NON-LOCAL MULTICONTINUUM UPSCALING FOR DUAL

CONTINUUM MODEL

In this chapter, we provide rigorous mathematical analysis on the nonlocal multicontinuum

(NLMC) upscaling method for a dual continuum model. The auxiliary basis functions are simply

defined in each coarse block for each continuum, which represents fractures and matrix. To be

more precise, in each oversampling domain, the auxiliary basis functions are constant in a contin-

uum, and each has mean value one for the chosen continuum and zero otherwise. Out of the over-

sampling domain, the value of the basis functions are zero. The degrees of freedom is the same as

the number of the continua, which is the minimal number needed to represent the heterogeneous

property of the reservoir. To obtain the multiscale basis functions, we solve local minimization

problems in oversampling computational domain. We show that the minimizer has a good decay

property. With a proper number of oversampling layers, the basis functions derived can well cap-

ture the fine-grid information. Moreover, we show that the method has a convergence dependent

on coarse mesh size. We also present some numerical examples to depict the performance of the

method.

The chapter is organized as follows. In Section 2.1 we present the dual continuum model. The

proposed method is introduced in Section 2.2 and analyzed in Section 2.3. In Section 2.4 some

numerical experiments are demonstrated to confirm the the theory.

2.1 Dual continuum model

We consider the following dual continuum model [10, 64, 13]

c1
∂p1

∂t
− div(κ1∇p1) + σ(p1 − p2) = f1,

c2
∂p2

∂t
− div(κ2∇p2)− σ(p1 − p2) = f2,

(2.1)

in a computational domain Ω ⊂ R2. Here, for i = 1, 2, ci is the compressibility, pi is the pressure,

κi is the permeability, and fi is the source function for the i-th continuum. In addition, the continua

7

are coupled through the mass exchange, and σ is a parameter which accounts for the strength of

mass transfer between the continua. One particular application of the dual continuum model (2.1)

is to represent the global interactive effects of the unresolved fractures and the matrix. In this work,

we consider high-contrast channelized media. We prescribe the initial condition pi(0, ·) = p0
i in Ω

and the boundary condition pi(t, ·) = 0 on ∂Ω for t > 0.

Let V = [H1
0 (Ω)]2. Also, for a subdomain D ⊂ Ω, we denote the restriction of V on D by

V (D). The weak formulation of (2.1) then reads: find p = (p1, p2) such that p(t, ·) ∈ V and

c

(
∂p

∂t
, v

)
+ aQ(p, v) = (f, v), (2.2)

for all v = (v1, v2) with v(t, ·) ∈ V . Here, (·, ·) denotes the standard L2(Ω) inner product. More-

over, the bilinear forms are defined as:

ci(pi, vi) =

∫
Ω

ci(x)pivi dx,

c(p, v) =
∑
i

ci(pi, vi),

ai(pi, vi) =

∫
Ω

κi(x)∇pi · ∇vi dx,

a(p, v) =
∑
i

ai(pi, vi),

q(p, v) =
∑
i

∑
i′

∫
Ω

σ(pi − pi′)vi dx,

aQ(p, v) = a(p, v) + q(p, v).

(2.3)

2.2 Method description

In this section, we will describe our proposed method in detail. To start with, we introduce

the concepts of coarse and fine meshes. We start with a plain partition of calculation domain Ω,

T H . This partition is called a coarse mesh, which does not necessarily resolve any multiscale

features. We denote one element in T H as K and name it as a coarse element. Here, H > 0 is

8

the coarse mesh size. We denote the number of coarse elements and coarse grid nodes as N and

Nc respectively. The collection of all coarse element edges is called EH . To sufficiently resolve

the solution, we refine the coarse mesh T H into a fine mesh T h, where h > 0 is called the fine

mesh size. We remark that the fine grid system is only used in locally solving process, where

all local problems are solved continuously. Therefore, we don’t consider fine grid in our analysis

hereinafter.

Next, we clarify more notions concerning every coarse element. Letting Kj ∈ T H be the

j-th coarse element, an oversampling domain Kj,m is defined by expanding Kj with m layers of

coarse elements in Ω. An illustration of the fine-coarse-oversampling mesh system is given in

Figure 2.1. Moreover, similar to the partition of computational domain Ω, for i = 1, 2, we denote

Kj = ∪L
(j)
i

l=1K
(i,j)
l , where L(j)

i denotes the number of high conductive channels plus matrix within

Kj for continua i.

Oversampling domain
with 1 layer, Ki,1

Ki

K

Figure 2.1: An illustration of fine mesh, coarse mesh and oversampling domain.

We now proceed to describing the proposed method step by step.

Step 1. Definition of auxiliary basis functions. Within Kj(j = 1, . . . , N), for each l =

9

1, . . . , L
(j)
i , we directly define our auxiliary basis function φ(i,j)

l ∈ P 0(T h) ∩ L2(Kj) as

φ
(i,j)
l =

1

|K(i,j)
l |
I
K

(i,j)
l

. (2.4)

Here, |K(i,j)
l | denotes the area ofK(i,j)

l and I
K

(i,j)
l

is the characteristic function. The local auxiliary

space for continua i is constructed as

V (i,j)
aux = span{φ(i,j)

l |1 ≤ l ≤ L
(j)
i }. (2.5)

Furthermore, we define the local auxiliary space as

V j
aux = V (1,j)

aux × V (2,j)
aux . (2.6)

The global auxiliary space is defined as the direct sum of all local auxiliary spaces as

Vaux = ⊕Nj=1V
j

aux. (2.7)

Step 2. Construction of multiscale basis functions. For the convenience of describing the

method and the subsequent convergence analysis, for all v = (v1, v2) ∈ [L2(Kj)]
2, we introduce a

local projection operator πj : [L2(Kj)]
2 → Vaux as

πj(v) =

L
(j)
1∑
l=1

(v1, φ
(1,j)
l)φ

(1,j)
l ,

L
(j)
2∑
l=1

(v2, φ
(2,j)
l)φ

(2,j)
l

 (2.8)

and a global projection operator π : [L2(Ω)]2 → Vaux is defined as

π(v) =
N∑
j=1

πj(v), ∀v ∈ [L2(Ω)]2. (2.9)

With these tools, we can define a set of global multiscale basis functions ψ(i,j)
l by solving a

10

saddle point problem: for every coarse element Kj in Ω, find ψ(i,j)
l ∈ V and T i,j,li′,j′,l′ ∈ R such that

aQ(ψ
(i,j)
l , w) +

2∑
i′=1

∑
K

(i′,j′)
l′ ⊂Ω

T i,j,li′,j′,l′(w · ei′ , φ
(i′,j′)
l′) = 0, ∀w ∈ V,

(ψ
(i,j)
l · ei′ , φ(i′,j′)

l′) = δi,i′δl,l′δj,j′ , ∀K(i′,j′)
l′ ⊂ Ω.

(2.10)

The global multiscale finite element space is thus defined as

Vglo = span{ψ(i,j)
l |1 ≤ l ≤ L

(j)
i , 1 ≤ j ≤ N, i = 1, 2}. (2.11)

Here, ei is the canonical basis for R2. δi,i′ , δl,l′ and δj,j′ are the delta Dirac function. We remark

that if we denote Ṽ as the null space of the global projection operator π, for any ψ(i,j)
l ∈ Vglo, we

have

aQ(ψ
(i,j)
l , v) = 0, ∀v ∈ Ṽ . (2.12)

This implies that with respect to the inner product of aQ, Ṽ ⊂ V ⊥glo. As a matter of fact, Ṽ = V ⊥glo.

As our analysis suggests, the global basis functions exhibit exponential decay properties and

have small values outside a sufficiently large oversampling region. The fact suggests that we can

save computational costs without introducing huge error by truncating the domain. This inspires

the definition the localized multiscale basis functions which are constructed in the similar way but

on localized oversampled domains Kj,m of every Kj ⊂ Ω: find ψ(i,j)
l,ms ∈ V (Kj,m) and T

i,j,l

i′,j′,l′ ∈ R

such that for i = 1, 2, we have

aQ(ψ
(i,j)
l,ms , w) +

2∑
i′=1

∑
K

(i′,j′)
l′ ⊂Kj,m

T
i,j,l

i′,j′,l′(w · ei′ , φ(i′,j′)
l′) = 0, ∀w ∈ V (Kj,m),

(ψ
(i,j)
l,ms · ei′ , φ

(i′,j′)
l′) = δi,i′δl,l′δj,j′ , ∀K(i′,j′)

l′ ⊂ Kj,m.

(2.13)

We use the local multiscale basis functions to obtain the multiscale finite element space, which

11

will be used for deriving the multiscale solution, as

Vms = span{ψ(i,j)
l,ms |1 ≤ l ≤ L

(j)
i , 1 ≤ j ≤ N, i = 1, 2}. (2.14)

Step 3. Multiscale solution. The process of finding the multiscale solution can be described

as follows. Find pms = (pms,1, pms,2) with pms(t, ·) ∈ Vms s.t. for all v = (v1, v2) with v(t, ·) ∈ Vms,

c

(
∂pms

∂t
, v

)
+ aQ(pms, v) = (f, v). (2.15)

2.3 Convergence analysis

In this section, we will analyze the proposed method. First, we define the following norms and

semi-norms on V :

‖p‖2
c = c(p, p),

‖p‖2
a = a(p, p),

|p|2q = q(p, p),

‖p‖2
aQ

= aQ(p, p),

‖p‖2
L2(Ω;κ) =

∑
i

(κ
1
2
i pi, κ

1
2
i pi),

‖p‖2
L2(Ω;κ−1) =

∑
i

(κ
− 1

2
i pi, κ

− 1
2

i pi).

(2.16)

12

For a subdomain D =
⋃
j∈J Kj as a union of coarse grid blocks, we also define the following local

norms and semi-norms on V :

‖p‖2
a(D) =

∑
j∈J

a(j)(p, p),

|p|2q(D) =
∑
j∈J

q(j)(p, p),

‖p‖2
aQ(D) =

∑
j∈J

a
(j)
Q (p, p),

‖p‖2
L2(D;κ) =

∑
j∈J

(κ
1
2
i pi, κ

1
2
i pi)L2(Kj),

‖p‖2
L2(D;κ−1) =

∑
j∈J

(κ
− 1

2
i pi, κ

− 1
2

i pi)L2(Kj).

(2.17)

We remark that

‖p‖L2(D;κ) ≤ κ
1
2 ‖p‖[L2(D)]2 ,

‖p‖L2(D;κ−1) ≤ κ−
1
2 ‖p‖[L2(D)]2 .

(2.18)

In addition, we introduce some operators which will be used in our analysis, namely Rglo :

V → Vglo given by: for any u ∈ V , the image Rglou ∈ Vglo is defined by

aQ(Rglou, v) = aQ(u, v), ∀v ∈ Vglo, (2.19)

and similarly, Rms : V → Vms given by: for any u ∈ V , the image Rmsu ∈ Vms is defined by

aQ(Rmsu, v) = aQ(u, v), ∀v ∈ Vms. (2.20)

We also define C : V → V given by: for any u ∈ V , the image Cu ∈ V is defined by

(Cu, v) = c(u, v), ∀v ∈ V. (2.21)

13

Moreover, the operator A : D(A) → [L2(Ω)]2 is defined on a subspace D(A) ⊂ V by: for any

u ∈ D(A), the image Au ∈ [L2(Ω)]2 is defined by

(Au, v) = aQ(u, v), ∀v ∈ V. (2.22)

The following lemma shows that the projection operator Rglo has a good approximation prop-

erty with respect to the aQ-norm and L2-norm.

Lemma 1. Let u ∈ D(A), then we have u−Rglou ∈ Ṽ and

‖u−Rglou‖aQ ≤ CH ‖Au‖L2(Ω;κ−1) . (2.23)

and

‖u−Rglou‖[L2(Ω)]2 ≤ CH2κ−
1
2 ‖Au‖L2(Ω;κ−1) . (2.24)

Proof. By (2.19), we directly get u−Rglou ∈ Vglo. This yields

aQ(u−Rglou,Rglou) = 0. (2.25)

Thus, we have

aQ(u−Rglou, u−Rglou) = aQ(u−Rglou, u)− aQ(u−Rglou,Rglou)

= aQ(u−Rglou, u)

= aQ(u, u−Rglou)

= (Au, u−Rglou)

≤ ‖Au‖L2(Ω;κ−1) ‖(u−Rglou)‖L2(Ω;κ)
.

(2.26)

Since u − Rglou ∈ Ṽ , we have πj(u − Rglou) = 0 for all l = 1, 2, . . . , Lj and j = 1, 2, . . . , N .

14

Moreover, the Poincaré inequality gives

∫
K

(i,j)
l

[(u−Rglou) · ei]2 ≤ CH2

∫
K

(i,j)
l

|∇[(u−Rglou) · ei]|2. (2.27)

This yields that

‖(u−Rglou)‖2
L2(Ω;κ)

=
∑
i

∥∥∥κ 1
2
i (u−Rglou) · ei

∥∥∥2

L2(Ω)

=
∑
i

∑
K

(i,j)
l ⊂Ω

∥∥∥κ 1
2
i (u−Rglou) · ei

∥∥∥2

L2(K
(i,j)
l)

≤ CH2 ‖u−Rglou‖2
aQ
.

(2.28)

Thus, we have

‖u−Rglou‖2
aQ
≤ CH ‖Au‖L2(Ω;κ−1) ‖u−Rglou‖aQ , (2.29)

which gives the estimate in the (2.23).

The proof of (2.24) follows a duality argument. Define w ∈ V such that

aQ(w, v) = (u−Rglou, v) ∀v ∈ V. (2.30)

Then we have

‖u−Rglou‖2
[L2(Ω)]2

= (u−Rglou, u−Rglou) = aQ(w, u−Rglou). (2.31)

Taking v = Rglow ∈ Vglo in (2.19), we obtain

aQ(u−Rglou,Rglow) = 0. (2.32)

15

Since w ∈ D(A) and Aw = u−Rglou, we have

‖u−Rglou‖2
[L2(Ω)]2

= aQ(w −Rglow, u−Rglou)

≤ ‖w −Rglow‖aQ ‖u−Rglou‖aQ
≤
(
CH ‖Aw‖L2(Ω;κ−1)

)(
CH ‖Au‖L2(Ω;κ−1)

)
≤
(
CHκ−

1
2 ‖Aw‖[L2(Ω)]2

)(
CH ‖Au‖L2(Ω;κ−1)

)
≤ CH2κ−

1
2 ‖u−Rglou‖[L2(Ω)]2

‖Au‖L2(Ω;κ−1) .

(2.33)

Next, we show that the global basis functions are localizable. For the purpose of this, for

each coarse block K, we define a bubble function B such that B(x) > 0,∀x ∈ int(K) and

B(x) = 0, ∀x ∈ ∂K. We will take B =
∏

xk
χHk , where χHk is coarse scale partition of unity on

K. Based on the bubble function, we define a constant as follows.

Cequiv = sup
Kj∈T H ,v∈Vaux

‖v‖2
[L2(Kj)]2∥∥∥B 1

2v
∥∥∥2

[L2(Kj)]2

. (2.34)

Lemma 2. For all vaux ∈ Vaux, there exists a function v ∈ V such that

π(v) = vaux, ‖v‖2
aQ
≤ D ‖vaux‖2

L2(Ω;κ) , supp(v) ⊂ supp(vaux), (2.35)

where D =
C2
T

H2 + 2 maxi

∥∥∥σiκi∥∥∥L∞(Ω)
and CT is the maximum of vertices over all coarse elements.

Proof. Without loss of generality we assume vaux ∈ V j
aux with ‖vaux‖[L2(Kj)]2 = 1. We consider the

following saddle point problem: find v ∈ V0(Kj) and T i′l′ ∈ R such that

aQ(v, w) +
2∑

i′=1

∑
K

(i′,j)
l′ ⊂Kj

T i
′

l′ (w · ei′ , φ(i′,j)
l′) = 0, ∀w ∈ V0(Kj),

((v − vaux) · ei′ , φ(i′,j)
l′) = 0, ∀K(i′,j)

l′ ⊂ Kj.

(2.36)

16

The well-posedness of the above saddle point problem is equivalent to the existence of ṽ ∈ V0(Kj)

such that

(ṽ, vaux) ≥ C1 ‖vaux‖2
L2(Kj ;κ) , ‖ṽ‖aQ(Kj) ≤ C2 ‖vaux‖L2(Kj ;κ) , (2.37)

where C1, C2 are constants to be determined. Taking ṽ = Bvaux, we have

(ṽ, vaux) =
∥∥∥B 1

2vaux

∥∥∥2

[L2(Kj)]2
≥ C−1

equiv ‖vaux‖2
[L2(Kj)]2 . (2.38)

On the other hand, on every K(i,j)
l , we have

∇(ṽ · ei) = B∇(ṽ · ei) +∇B(ṽ · ei). (2.39)

By definition of Vaux, ‖B∇(ṽ · ei)‖L2(Kj) = 0. At the same time, |B| ≤ 1, |∇B| ≤ CTH
−1. Thus,

∥∥∥κ 1
2
i ∇(ṽ · ei)

∥∥∥2

L2(Kj)
≤ C2

T
H2
‖κi(ṽ · ei)‖2

L2(Kj) . (2.40)

This yields

‖ṽ‖2
a(Kj) ≤

C2
T

H2

∑
i

∥∥∥κ 1
2
i (vaux · ei)

∥∥∥2

L2(Kj)
(2.41)

and

|ṽ|2q(Kj) ≤ 2 max
i

∥∥∥∥σiκi
∥∥∥∥
L∞(Kj)

∑
i

∥∥∥κ 1
2
i (vaux · ei)

∥∥∥2

L2(Kj)
. (2.42)

Thus, we have

‖ṽ‖2
aQ(Kj) ≤

(
C2
T

H2
+ 2 max

i

∥∥∥∥σiκi
∥∥∥∥
L∞(Ω)

)
‖vaux‖2

L2(Kj ;κ) , (2.43)

This guarantees the existence and uniqueness of v ∈ V0(Kj) and T i′l′ ∈ R satisfying (2.36), in

which v satisfies our desired properties.

Here, we make a remark that we can assume D ≥ 1 without loss of generality.

In order to estimate the difference between the global basis functions and localized basis func-

tions, we need the notion of a cutoff function with respect to the oversampling regions. For each

17

coarse grid Kj and M > m, we define χM,m
j ∈ span{χHk } such that 0 ≤ χM,m

j ≤ 1 and χM,m
j = 1

on the inner region Kj,m and χM,m
j = 0 outside the region Kj,M .

The following lemma shows that our multiscale basis functions have a decay property. In

particular, the global basis functions are small outside an oversampling region specified in the

lemma, which is important in localizing the multiscale basis functions. By truncating the support of

the multiscale basis function ψ(i,j)
l,ms into the oversampled region Kj,m, it introduces an discrepancy

to the global basis function ψ
(i,j)
l which scales with an exponent −m, where m is the number

of oversampled layers. It is formally stated and proved by Caccioppoli-like arguments in the

following Lemma.

Lemma 3. Given φ(i,j)
l ∈ V j

aux and an oversampling region Kj,m with number of layers m ≥ 2.

Let ψ(i,j)
l,ms be a localized multiscale basis function defined on Kj,m given by (2.13), and ψ(i,j)

l be the

corresponding global basis function given by (2.10). Then we have

∥∥∥ψ(i,j)
l − ψ(i,j)

l,ms

∥∥∥2

aQ
≤ E

∥∥∥φ(i,j)
l

∥∥∥2

L2(Kj ;κ)
, (2.44)

where E = 8D(2 +D)(1 + CH2)
(

1 + (C
1
2D

1
2H + CH2)−1

)1−m
.

Proof. By Lemma 2, there exists v ∈ V such that

π(v) = φ
(i,j)
l , ‖v‖2

aQ
≤ D

∥∥∥φ(i,j)
l

∥∥∥2

L2(Ω;κ)
, supp(v) ⊂ Kj. (2.45)

We take η = ψ
(i,j)
l − v ∈ V and ζ = v − ψ(i,j)

l,ms ∈ V (Kj,m). Then π(η) = π(ζ) = 0 and hence

η, ζ ∈ Ṽ . We first see that for Kj′ ⊂ Kj,m−1,

πj′(χ
m,m−1
j η) = πj′(η) = 0, (2.46)

since χm,m−1
j = 1 on Kj,m−1 and η ∈ Ṽ . On the other hand, for Kj′ ⊂ Ω \Kj,m,

πj′(χ
m,m−1
j η) = πj′(0) = 0, (2.47)

18

since χm,m−1
j = 0 on Ω \Kj,m. Therefore, we have supp

(
π(χm,m−1

j η)
)
⊂ Kj,m \Kj,m−1. Again,

by Lemma 2, there exists β ∈ V such that

π(β) = π(χm,m−1
j η), ‖β‖2

aQ
≤ D

∥∥π(χm,m−1
j η)

∥∥2

L2(Kj,m\Kj,m−1;κ)
, supp(β) ⊂ Kj,m \Kj,m−1.

(2.48)

Take τ = β − χm,m−1
j η ∈ V (Kj,m). Again, π(τ) = 0 and hence τ ∈ Ṽ . Now, by the variational

problems (2.10) and (2.13), we have

aQ(ψ
(i,j)
l , w) +

2∑
i′=1

∑
K

(i′,j′)
l′ ⊂Ω

T i,j,li′,j′,l′(w · ei′ , φ
(i′,j′)
l′) = 0, ∀w ∈ V,

aQ(ψ
(i,j)
l,ms , w) +

2∑
i′=1

∑
K

(i′,j′)
l′ ⊂Kj,m

T
i,j,l

i′,j′,l′(w · ei′ , φ(i′,j′)
l′) = 0, ∀w ∈ V (Kj,m)

(2.49)

Taking w = τ − ζ ∈ V (Kj,m) and using the fact that τ − ζ ∈ Ṽ , we have

aQ(ψ
(i,j)
l − ψ(i,j)

l,ms , τ − ζ) = 0, (2.50)

which implies

∥∥∥ψ(i,j)
l − ψ(i,j)

l,ms

∥∥∥2

aQ
= aQ(ψ

(i,j)
l − ψ(i,j)

l,ms , ψ
(i,j)
l − ψ(i,j)

l,ms)

= aQ(ψ
(i,j)
l − ψ(i,j)

l,ms , η + ζ)

= aQ(ψ
(i,j)
l − ψ(i,j)

l,ms , η + τ)

≤
∥∥∥ψ(i,j)

l − ψ(i,j)
l,ms

∥∥∥
aQ
‖η + τ‖aQ .

(2.51)

19

By (2.48), we have

∥∥∥ψ(i,j)
l − ψ(i,j)

l,ms

∥∥∥2

aQ
≤ ‖η + τ‖2

aQ

=
∥∥(1− χm,m−1

j)η + β
∥∥2

aQ

≤ 2
(∥∥(1− χm,m−1

j)η
∥∥2

aQ
+ ‖β‖2

aQ

)
≤ 2

(∥∥(1− χm,m−1
j)η

∥∥2

aQ
+D

∥∥χm,m−1
j η

∥∥2

L2(Kj,m\Kj,m−1;κ)

)
.

(2.52)

For the first term on the right hand side of (2.52), since

∇
(
(1− χm,m−1

j)(η · ei)
)

= (1− χm,m−1
j)∇(η · ei)− (η · ei)∇χm,m−1

j , (2.53)

and |1− χm,m−1
j | ≤ 1, we have

∥∥(1− χm,m−1
j)η

∥∥2

a
≤ 2

(
‖η‖2

a(Ω\Kj,m−1) + ‖η‖2
L2(Ω\Kj,m−1;κ)

)
. (2.54)

On the other hand, we have

|(1− χm,m−1
j)η|2q ≤ |η|2q(Ω\Kj,m−1). (2.55)

Therefore, we arrive at

∥∥(1− χm,m−1
j)η

∥∥2

aQ
≤ 2

(
‖η‖2

aQ(Ω\Kj,m−1) + ‖η‖2
L2(Ω\Kj,m−1;κ)

)
. (2.56)

For the second term on the right hand side of (2.52), using the fact that |χm,m−1
j | ≤ 1, we have

∥∥π(χm,m−1
j η)

∥∥2

L2(Kj,m\Kj,m−1;κ)
≤
∥∥χm,m−1

j η
∥∥2

L2(Kj,m\Kj,m−1;κ)

≤ ‖η‖2
L2(Kj,m\Kj,m−1;κ) .

(2.57)

20

To sum up, we have

∥∥∥ψ(i,j)
l − ψ(i,j)

l,ms

∥∥∥2

aQ
≤ 4 ‖η‖2

aQ(Ω\Kj,m−1) + (4 + 2D) ‖η‖2
L2(Ω\Kj,m−1;κ) . (2.58)

Since η ∈ Ṽ , using Poincaré inequality, we obtain

‖η‖2
L2(Ω\Kj,m−1;κ) ≤ CH2 ‖η‖2

aQ(Ω\Kj,m−1) . (2.59)

Combining all the estimates, we have

∥∥∥ψ(i,j)
l − ψ(i,j)

l,ms

∥∥∥2

aQ
≤ (4 + 2D)(1 + CH2) ‖η‖2

aQ(Ω\Kj,m−1) . (2.60)

Next, we will prove a recursive estimate for ‖η‖2
aQ(Ω\Kj,m−1). We take ξ = 1−χm−1,m−2

j . Then

ξ = 1 in Ω \Kj,m−1 and 0 ≤ ξ ≤ 1. Hence, using

∇(ξ2(η · ei)) = ξ2∇(η · ei) + 2ξ(η · ei)∇ξ, (2.61)

we have

|ξη|2a = a(η, ξ2η) + ‖η‖2
L2(Kj,m−1\Kj,m−2;κ) , (2.62)

which results in

‖η‖2
aQ(Ω\Kj,m−1) ≤ ‖ξη‖

2
aQ
≤ aQ(η, ξ2η) + ‖η‖2

L2(Kj,m−1\Kj,m−2;κ). (2.63)

We will estimate the first term on the right hand side of (2.63). Following the preceding argument,

we see that supp(π(ξ2η)) ⊂ Kj,m−1 \Kj,m−2. By Lemma 2, there exists γ ∈ V such that

π(γ) = π(ξ2η), ‖γ‖2
aQ
≤ D

∥∥π(ξ2η)
∥∥2

L2(Kj,m−1\Kj,m−2;κ)
, supp(γ) ⊂ Kj,m−1 \Kj,m−2.

(2.64)

21

Take θ = ξ2η − γ. Again, π(θ) = 0 and hence θ ∈ Ṽ . Therefore, we have

aQ(ψ
(i,j)
l , θ) = 0. (2.65)

Additionally, supp(θ) ⊂ Ω \Kj,m−2. Recall that, in (2.45), we have supp(v) ⊂ Kj . Hence θ and

v have disjoint supports, and

aQ(v, θ) = 0. (2.66)

Therefore, we obtain

aQ(η, θ) = aQ(ψ
(i,j)
l , θ)− aQ(v, θ) = 0. (2.67)

Note that ξ2η = θ + γ. Using (2.64), we have

aQ(η, ξ2η) = aQ(η, γ)

≤ ‖η‖aQ(Kj,m−1\Kj,m−2) ‖γ‖aQ(Kj,m−1\Kj,m−2)

≤ D
1
2 ‖η‖aQ(Kj,m−1\Kj,m−2)

∥∥π(ξ2η)
∥∥
L2(Kj,m−1\Kj,m−2;κ)

.

(2.68)

Since |ξ| ≤ 1, we have

∥∥π(ξ2η)
∥∥
L2(Kj,m−1\Kj,m−2;κ)

≤
∥∥ξ2η

∥∥
L2(Kj,m−1\Kj,m−2;κ)

≤ ‖η‖L2(Kj,m−1\Kj,m−2;κ) . (2.69)

Hence, the right hand side of (2.63) can be estimated by

‖η‖2
aQ(Ω\Kj,m−1) ≤ D

1
2 ‖η‖aQ(Kj,m−1\Kj,m−2) ‖η‖L2(Kj,m−1\Kj,m−2;κ) + ‖η‖2

L2(Kj,m−1\Kj,m−2;κ).

(2.70)

Since π(η) = 0, using Poincaré inequality, we have

‖η‖2
L2(Kj,m−1\Kj,m−2;κ) . ≤ CH2 ‖η‖2

aQ(Kj,m−1\Kj,m−2) , (2.71)

22

which implies

‖η‖2
aQ(Ω\Kj,m−1) ≤ (C

1
2D

1
2H + CH2) ‖η‖2

aQ(Kj,m−1\Kj,m−2) . (2.72)

Therefore,

‖η‖2
aQ(Ω\Kj,m−2) = ‖η‖2

aQ(Ω\Kj,m−1) + ‖η‖2
aQ(Kj,m−1\Kj,m−2)

≥
(

1 + (C
1
2D

1
2H + CH2)−1

)
‖η‖2

aQ(Ω\Kj,m−1) .
(2.73)

Inductively, we have

‖η‖2
aQ(Ω\Kj,m−1) ≤

(
1 + (C

1
2D

1
2H + CH2)−1

)1−m
‖η‖2

aQ(Ω\Kj)

≤
(

1 + (C
1
2D

1
2H + CH2)−1

)1−m
‖η‖2

aQ
.

(2.74)

Finally, we estimate the term on the right hand side of (2.74). Recall from the first property of v in

(2.45), we have π(v) = φ
(i,j)
l , which implies

(v · ei′ , φ(i′,j′)
l′) = δi,i′δl,l′δj,j′ , ∀K(i′,j′)

l′ ⊂ Ω. (2.75)

Taking w = η in (2.10), we have

aQ(ψ
(i,j)
l , η) = 0, (2.76)

which implies

‖ψ(i,j)
l ‖aQ ≤ ‖v‖aQ . (2.77)

Using a triangle inequality and the second property of v in (2.45), we have

‖η‖aQ =
∥∥∥ψ(i,j)

l − v
∥∥∥
aQ
≤ 2 ‖v‖aQ ≤ 2D

1
2

∥∥∥φ(i,j)
l

∥∥∥
L2(Kj ;κ)

. (2.78)

Combining (2.60), (2.74) and (2.78), we obtain our desired result.

23

The following lemma shows that, similar to the global projection operator Rglo, our localized

multiscale finite element projection operator Rms can also provide a good approximation with

respect to the aQ-norm and L2-norm.

Lemma 4. Let u ∈ D(A). Let m ≥ 2 be the number of coarse grid layers in the oversampling

regions in (2.13). If m = O
(
log
(
κ
H

))
, we have

‖u−Rmsu‖aQ ≤ CH ‖Au‖L2(Ω;κ−1) . (2.79)

and

‖u−Rmsu‖[L2(Ω)]2 ≤ CH2κ−
1
2 ‖Au‖L2(Ω;κ−1) . (2.80)

Proof. We write

Rglou =
2∑
i=1

N∑
j=1

L
(j)
i∑
l=1

α
(i,j)
l ψ

(i,j)
l ∈ Vglo (2.81)

and define

w =
2∑
i=1

N∑
j=1

L
(j)
i∑
l=1

α
(i,j)
l ψ

(i,j)
l,ms ∈ Vms. (2.82)

By (2.20), we have

‖u−Rmsu‖aQ ≤ ‖u− w‖aQ ≤ ‖u−Rglou‖aQ + ‖Rglou− w‖aQ (2.83)

24

By Lemma 3, we have that

‖Rglou− w‖2
aQ

=

∥∥∥∥∥∥
2∑
i=1

N∑
j=1

L
(j)
i∑
l=1

α
(i,j)
l (ψ

(i,j)
l − ψ(i,j)

l,ms)

∥∥∥∥∥∥
2

aQ

≤ C(m+ 1)2

N∑
j=1

∥∥∥∥∥∥
2∑
i=1

L
(j)
i∑
l=1

α
(i,j)
l (ψ

(i,j)
l − ψ(i,j)

l,ms)

∥∥∥∥∥∥
2

aQ

≤ CE(m+ 1)2

N∑
j=1

∥∥∥∥∥∥
2∑
i=1

L
(j)
i∑
l=1

α
(i,j)
l φ

(i,j)
l

∥∥∥∥∥∥
2

L2(Kj ;κ)

≤ CE(m+ 1)2 ‖Rglou‖2
L2(Ω;κ)

.

(2.84)

Combining (2.83), (2.84) and Lemma 1, we have

‖u−Rmsu‖aQ ≤ CH ‖Au‖L2(Ω;κ−1) + CE
1
2 (m+ 1) ‖Rglou‖L2(Ω;κ)

. (2.85)

Now, we estimate ‖Rglou‖2
L2(Ω;κ)

. By Ponicaré inequality, we have

‖Rglou‖2
L2(Ω;κ)

≤ κ ‖Rglou‖2
[L2(Ω)]2

≤ Cpκκ
−1 ‖Rglou‖2

aQ
. (2.86)

Taking v = Rglou in (2.19) and by Cauchy-Schwarz inequality, we obtain

‖Rglou‖2
aQ

= aQ(u,Rglou) = (Au,Rglou) ≤ ‖Au‖L2(Ω;κ−1) ‖Rglou‖L2(Ω;κ)
. (2.87)

Combining (2.86) and (2.87), we obtain

‖Rglou‖L2(Ω;κ)
≤ Cκκ−1 ‖Au‖L2(Ω;κ−1) . (2.88)

This yields

‖u−Rmsu‖aQ ≤ C(H + κκ−1E
1
2 (m+ 1)) ‖Au‖L2(Ω;κ−1) (2.89)

25

To obtain desired result, we will need

H−1κκ−1E
1
2 (m+ 1) = O(1). (2.90)

Taking logarithm, we have

log(H−1) + log(κ)− log(κ) +
1−m

2
log
(

1 + (C
1
2D

1
2H + CH2)−1

)
= O(1). (2.91)

Therefore, if we take m = O
(
log
(
κ
H

))
, we have (2.79). The proof of (2.80) follows a similar

duality argument as in Lemma 1.

Now we are ready to obtain our main theorem on estimating error between p and pms.

Theorem 5. Suppose f ∈ [L2(Ω)]2. Let m ≥ 2 be the number of coarse grid layers of the over-

sampling domain in (2.13). Let p be the solution of (2.2) and pms of (2.15). If m = O
(
log
(
κ
H

))
,

we have

‖p(T, ·)− pms(T, ·)‖2
c +

∫ T

0

‖p− pms‖2
aQ

dt ≤ CH2κ−1

(∥∥p0
∥∥2

aQ
+

∫ T

0

‖f‖2
[L2(Ω)]2 dt

)
. (2.92)

Proof. Taking v = ∂p
∂t

in (2.2), we have

∥∥∥∥∂p∂t
∥∥∥∥2

c

+
1

2

d

dt
‖p‖2

aQ
=

(
f,
∂p

∂t

)
≤ C ‖f‖2

[L2(Ω)]2 +
1

2

∥∥∥∥∂p∂t
∥∥∥∥2

c

. (2.93)

Integrating over (0, T), we have

1

2

∫ T

0

∥∥∥∥∂p∂t
∥∥∥∥2

c

dt+
1

2
‖p(T, ·)‖2

aQ
≤ C

(∥∥p0
∥∥2

aQ
+

∫ T

0

‖f‖2
[L2(Ω)]2 dt

)
(2.94)

Similarly, by taking v = ∂pms
∂t

in (2.15) and integrating over (0, T), we obtain

1

2

∫ T

0

∥∥∥∥∂pms

∂t

∥∥∥∥2

c

dt+
1

2
‖pms(T, ·)‖2

aQ
≤ C

(∥∥p0
∥∥2

aQ
+

∫ T

0

‖f‖2
[L2(Ω)]2 dt

)
(2.95)

26

At the same time, by (2.2), we can see that

Ap = f − C ∂p
∂t
. (2.96)

Thus, we have

‖Ap‖2
[L2(Ω)]2 ≤ C

(
‖f‖2

[L2(Ω)]2 +

∥∥∥∥∂p∂t
∥∥∥∥
c

)
(2.97)

By the definition of p and pms in (2.2) and (2.15), respectively, we can get that ∀v ∈ Vms and

t ∈ (0, T), we have

c

(
∂(p− pms)

∂t
, v

)
+ aQ(p− pms, v) = 0. (2.98)

Thus, we have

1

2

d

dt
‖p− pms‖2

c + ‖p− pms‖2
aQ

= c

(
∂(p− pms)

∂t
, p− pms

)
+ aQ(p− pms, p− pms)

= c

(
∂(p− pms)

∂t
, p−Rmsp

)
+ aQ(p− pms, p−Rmsp)

≤
∥∥∥∥∂(p− pms)

∂t

∥∥∥∥
c

‖p−Rmsp‖c + ‖p− pms‖aQ ‖p−Rmsp‖aQ

≤
(∥∥∥∥∂p∂t

∥∥∥∥
c

+

∥∥∥∥∂pms

∂t

∥∥∥∥
c

)
‖p−Rmsp‖c +

1

2
‖p− pms‖2

aQ
+

1

2
‖p−Rmsp‖2

aQ
.

(2.99)

27

Integrating over (0, T) and using (2.96) by Lemma 4 with (2.18), we obtain

1

2
‖p(T, ·)− pms(T, ·)‖2

c +
1

2

∫ T

0

‖p− pms‖2
aQ

dt

≤
∫ T

0

(∥∥∥∥∂p∂t
∥∥∥∥
c

+

∥∥∥∥∂pms

∂t

∥∥∥∥
c

)
‖p−Rmsp‖c dt+

1

2

∫ T

0

‖p−Rmsp‖2
aQ

dt

≤
(∫ T

0

(∥∥∥∥∂p∂t
∥∥∥∥
c

+

∥∥∥∥∂pms

∂t

∥∥∥∥
c

)2

dt

) 1
2 (∫ T

0

‖p−Rmsp‖2
c dt

) 1
2

+
1

2

∫ T

0

‖p−Rmsp‖2
aQ

dt

≤
(∫ T

0

(∥∥∥∥∂p∂t
∥∥∥∥
c

+

∥∥∥∥∂pms

∂t

∥∥∥∥
c

)2

dt

) 1
2
(∫ T

0

CH4κ−2

(
‖f‖[L2(Ω)]2 +

∥∥∥∥∂p∂t
∥∥∥∥
c

)2

dt

) 1
2

+

∫ T

0

CH2κ−1

(
‖f‖[L2(Ω)]2 +

∥∥∥∥∂p∂t
∥∥∥∥
c

)2

dt

≤ CH2κ−1

∫ T

0

(∥∥∥∥∂p∂t
∥∥∥∥2

c

+

∥∥∥∥∂p∂t
∥∥∥∥2

c

+ ‖f‖2
[L2(Ω)]2

)
dt.

(2.100)

Combining (2.94), (2.95) and (2.100), we get the result in the theorem.

2.4 Numerical results

In this section, we present two numerical examples with high-contrast media to verify the

convergence of our proposed method, using a fine-scale approximation pf as a reference solution.

We will compute the coarse cell average p̄f of the fine-scale solution pf and p̄ms of the multiscale

solution pms, and compare the relative L2 error of coarse cell average, i.e.

e
(i)

L2 = ‖p̄f,i − p̄ms,i‖L2 , ‖p̄f,i − p̄ms,i‖2
L2 =

∑
K(p̄Kf,i − p̄Kms,i)

2∑
K(p̄Kf)2

, p̄Kf,i =
1

|K|

∫
K

pf,idx.

(2.101)

In all the experiments, we take the spatial domain to be Ω = (0, 1)2 and the fine mesh size

to be h = 1/256. An example of the media κ1 and κ2 used in the experiments is illustrated in

Figure 2.2. In the figure, the contrast values, i.e. the ratio of the maximum and the minimum in Ω,

of the media are κ1 = κ2 = 104. Unless otherwise specified, we set σ = 1.

28

50 100 150 200 250

50

100

150

200

250

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

(a) κ1

50 100 150 200 250

50

100

150

200

250

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

(b) κ2

Figure 2.2: High contrast permeability field for the experiments.

2.4.1 Experiment 1

In this experiment, we consider the dual continuum model under steady state

−div(κ1∇p1) + σ(p1 − p2) = f1,

−div(κ2∇p2)− σ(p1 − p2) = f2.

(2.102)

The source terms are given as f1(x, y) = 1 and f2(x, y) as shown in Figure 2.3. In Figure 2.4,

we plot the fine-scale solution, the coarse-scale average and the NLMC coarse-scale solution with

coarse mesh size H = 1/64 and number of oversampling layers m = 8, from which we observe

very good agreement between the coarse-scale average and the NLMC solution. In Table 2.1, we

present the relative L2 error with varying coarse grid size. With the number of oversampling layers

satisfying the sufficient condition, we can see that the error converges. The order of convergence

is numerically calculated from the slope of the best fit line of the log-log plot of the error against

the mesh size. As reflected in Figure 2.5, the order of convergence in this numerical experiment is

higher than the theoretical one.

We also compare the performance of different numbers of oversampling layers under fixed

coarse mesh size H . The results are summarized in Table 2.2 for H = 1/32 and Table 2.3 for

29

H = 1/64. It can be seen that the error decays quickly with respect to the number of oversampling

layers m for both cases, which verifies the fact that the oversampling region has to be sufficiently

large to obtain quality numerical approximations.

50 100 150 200 250

50

100

150

200

250

1

2

3

4

5

6

7

8

10
5

Figure 2.3: Source term f2 in Experiment 1.

H m Area Ratio e
(1)

L2 e
(2)

L2

1/8 3 87.5% 96.7318% 88.9818%
1/16 5 47.27% 32.3229% 19.3473%
1/32 6 16.50% 0.6045% 0.3680%
1/64 8 7.06% 0.0550% 0.0296%

Table 2.1: Convergence of eL2 with respect to coarse mesh size H in Experiment 1.

2.4.2 Experiment 2

In this experiment, we consider the dual continuum model with time dependency. This case

faces the similar issue with the error. f1(x, y) = 1 and f2(x, y) is depicted in Figure 2.6, which

represents a simplified five-spot well rate. The temporal domain is [0, T] with final time T = 5.

In Figure 2.7, we plot the fine-scale solution, the coarse-scale average and the NLMC coarse-scale

30

50 100 150 200 250

50

100

150

200

250
0

10

20

30

40

50

60

50 100 150 200 250

50

100

150

200

250
0

500

1000

1500

2000

2500

50 100 150 200 250

50

100

150

200

250

10

20

30

40

50

60

50 100 150 200 250

50

100

150

200

250

500

1000

1500

2000

2500

50 100 150 200 250

50

100

150

200

250

10

20

30

40

50

60

50 100 150 200 250

50

100

150

200

250

500

1000

1500

2000

2500

Figure 2.4: Plots of the numerical approximations of pressure with coarse mesh size H = 1/64
and m = 8 oversampling layers in Experiment 1. Left: first continuum. Right: second continuum.
First row: fine-scale solution. Second row: coarse-scale average of fine-scale solution. Third row:
NLMC solution.

solution with coarse mesh size H = 1/64 and number of oversampling layers m = 8. Again, the

NLMC solution is a good approximation for the coarse-scale average. In Figure 2.9, we depict

31

10 -2 10 -1

Coarse mesh size

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

R
el

at
iv

e
L

2
 e

rr
or

e (1)
L

2

e (2)
L

2

Best fit line e (1)
L

2

Best fit line e (2)
L

2

Figure 2.5: Log-log scale plot of relative error and coarse mesh size in Experiment 1. Slope of the
best fit line for e(1)

L2 is 3.8082. Slope of the best fit line for e(2)

L2 is 4.0377.

m Area Ratio e
(1)

L2 e
(2)

L2

3 4.79% 99.3677% 93.9357%
4 7.91% 76.6083% 55.1631%
5 11.81% 8.6605% 5.3115%
6 16.50% 0.6045% 0.3680%

Table 2.2: Comparison of eL2 error with different number of oversampling layers m for H = 1/32
in Experiment 1.

m Area Ratio e
(1)

L2 e
(2)

L2

2 0.61% 99.9102% 97.9631%
4 1.98% 99.1268% 91.9240%
6 4.13% 11.8898% 6.3181%
7 5.49% 0.7959% 0.4219%
8 7.06% 0.0550% 0.0296%

Table 2.3: Comparison of eL2 error with different number of oversampling layers m for H = 1/64
in Experiment 1.

the change of pressure at different time steps. In Table 2.4, we present the relative L2 error with

varying coarse grid size. Again, the error converges with the the coarse mesh size while the number

of oversampling layers satisfying the sufficient condition. As reflected in Figure 2.8, the order of

32

convergence in this numerical experiment is higher than the theoretical one.

50 100 150 200 250

50

100

150

200

250
-1500

-1000

-500

0

500

1000

1500

Figure 2.6: Source term f2 in Experiment 2.

H m Area Ratio e
(1)

L2 e
(2)

L2

1/8 3 87.5% 20.6422% 58.4975%
1/16 5 47.27% 1.1245% 2.6226%
1/32 6 16.50% 0.0254% 0.0717%
1/64 8 7.06% 0.0017% 0.0037%

Table 2.4: Convergence of eL2 with respect to coarse mesh size H in Experiment 2.

33

50 100 150 200 250

50

100

150

200

250

1

2

3

4

5

6

10
-3

50 100 150 200 250

50

100

150

200

250

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

50 100 150 200 250

50

100

150

200

250

1

2

3

4

5

6

10
-3

50 100 150 200 250

50

100

150

200

250
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

50 100 150 200 250

50

100

150

200

250

1

2

3

4

5

6

10
-3

50 100 150 200 250

50

100

150

200

250
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Figure 2.7: Plots of the numerical approximations of final-time pressure with coarse mesh size
H = 1/64 and m = 8 oversampling layers in Experiment 2. Left: first continuum. Right: second
continuum. First row: fine-scale solution. Second row: coarse-scale average of fine-scale solution.
Third row: NLMC solution.

34

10 -2 10 -1

Coarse mesh size

10 -4

10 -3

10 -2

10 -1

10 0

10 1

R
el

at
iv

e
L

2
 e

rr
or

e (1)
L

2

e (2)
L

2

Best fit line e (1)
L

2

Best fit line e (2)
L

2

Figure 2.8: Log-log scale plot of relative error and coarse mesh size in Experiment 2. Slope of the
best fit line for e(1)

L2 is 4.6172. Slope of the best fit line for e(2)

L2 is 4.7039.

35

50 100 150 200 250

50

100

150

200

250

0.5

1

1.5

2

2.5

3

3.5

10
-3

50 100 150 200 250

50

100

150

200

250
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

50 100 150 200 250

50

100

150

200

250

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10
-3

50 100 150 200 250

50

100

150

200

250

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

50 100 150 200 250

50

100

150

200

250

1

2

3

4

5

6

10
-3

50 100 150 200 250

50

100

150

200

250
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Figure 2.9: Plots of the NLMC numerical approximations of pressure at various time instants
with coarse mesh size H = 1/64 and m = 8 oversampling layers in Experiment 2. Left: first
continuum. Right: second continuum. First row: t = 1.25. Second row: t = 2.5. Third row:
t = 5.

36

3. DEEP MODEL REDUCTION-MODEL LEARNING FOR RESERVOIR SIMULATION ∗

In this chapter, we design novel multi-layer neural network architectures for simulations of

multi-phase flow taking into account the observed data (e.g., production data) and physical model-

ing concepts. Our approaches use deep learning concepts combined with model reduction method-

ologies to predict multi-phase flow dynamics. The use of reduced-order model concepts is impor-

tant for constructing robust deep learning architectures. The reduced-order models provide fewer

degrees of freedom and allow handling the cases relevant to reservoir engineering that is limited to

production and near-well data.

Multi-phase flow dynamics can be thought as multi-layer networks. More precisely, the solu-

tion, pressures and saturation, at the time instant n+1 depends on the solution at the time instant n

and input parameters, such as permeability, well rates, and so on. Thus, one can regard the solu-

tion as a multi-layer network, where each layer is a nonlinear forward map. The number of time

steps is user-defined quantity, which will be treated as an unknown within our deep learning algo-

rithms. We will rely on rigorous model reduction concepts to define unknowns and connections

for each layer. Novel proper orthogonal basis functions will be constructed such that the degrees

of freedom have physical meanings (e.g., represent the solution values at selected locations) and

basis functions have limited support, which will allow localizing the forward dynamics. This will

allow writing the forward map for the solution values at selected locations with pre-computed

neighborhood structure that will be used in deep learning algorithms.

In each layer, our reduced-order models will provide a forward map, which will be modified

("trained") using available data. It is critical to use reduced-order models for this purpose, which

will identify the regions of influence and the appropriate number of variables. Because of the

lack of available data, the training will be supplemented with computational data as needed and

∗Republished with permission of Society of Petroleum Engineers (SPE), from ”Deep Model Reduction-Model
Learning for Reservoir Simulation”, by Jingyan Zhang, Siu Wun Cheung, Yalchin Efendiev, Eduardo Gildin, and
Eric T. Chung, 2019. SPE Reservoir Simulation Conference, Copyright [2019] by Society of Petroleum Engineers;
permission conveyed through Copyright Clearance Center, Inc.

37

the interpolation between data-rich and data-deficient models. We will also use deep learning

algorithms to train the elements of the reduced model discrete system. In this case, deep learning

architectures will be employed to approximate the elements of the discrete system and reduced-

order model basis functions.

The numerical results will use deep learning architectures to predict the solution and reduced-

order model variables. Trained basis functions will allow interpolating the solution between the

observation points. We show how network architecture, which includes the neighborhood connec-

tion, number of layers, and neurons, affect the approximation. Our results show that with a fewer

number of layers, the multi-phase flow dynamics can be approximated. The proposed approach

uses physical model concepts and deep learning methods to design a novel forward map, which

combines the available data and physical models. This will benefit to develop a fast and data-based

algorithms for reservoir simulations.

The chapter is organized as follows. In Section 3.1, we introduce the governing equations

for the two-phase flow model and summarize the background methodology for POD-DEIM based

model reduction. We also include a subsection on Nodal Basis Functions which will be used to

connect Deep Learning and POD. In Section 3.2, the main idea of deep learning is introduced and

its connection to model reduction is investigated. A few test cases will be explored in Section 3.3.

Some discussion is also included in this section.

3.1 Preliminaries

In this section, we discuss the governing equations of the two-phase oil-water flow in porous

media, and a numerical solver for the problem with Proper Orthogonal Decomposition (POD) for

model order reduction and Discrete Empirical Interpolation Method (DEIM) for approximations

of nonlinear source functions.

Let Ω be the reservoir domain, in which the two phases, namely water (denoted by subscript

w) and oil (denoted by subscript o), of the flow are immiscible. The flow equation of the phase

38

velocity ua is described by the Darcy’s law:

ua = −µ−1
a kra(s)κ · ∇p, (3.1)

where κ is the permeability tensor, kra is the relative permeability to phase a, s is the (water)

saturation, and p is the pressure, for each phase a = w, o. Here, we assume the displacement is

dominated by viscous effects, so that the gravitational acceleration, capillary pressure effects and

compressibility effects can be neglected. The Darcy’s law is coupled with the conservation of mass

and this yields a initial-boundary value problem, known as the pressure-saturation equations:

−∇ · (λ(s)κ∇p) = qw + qo in Ω,

φ
∂s

∂t
+∇ · (fw(s)u) =

qw
ρw

in Ω,

u · n = 0 on ∂Ω,

s = 0 at t = 0.

(3.2)

Here, qa is the volumetric source term for phase a, u = uw + uo is the total velocity, φ is the

porosity, λ is the total mobility and f(s) is the flux function. To be precise,

λ(s) = λw(s) + λo(s) =
krw(s)

µw
+
kro(s)

µo
,

fw(s) =
λw(s)

λ(s)
=

krw(s)

krw(s) + µw
µo
kro(s)

.
(3.3)

For each time step, we first solve for the pressure and velocity with a mixed finite element

method and then solve for the saturation solutions with a mass conservative finite volume in a

backward Euler discretization method. In a cell Ωi, the nonlinear equation for the evolution of

saturation, si is given by

sn+1
i = sni +

∆t

|Ωi|
(q+ −

∑
j

Fij(s
n+1)uij + fw(sn+1

i)q−). (3.4)

39

where the superscript n + 1 denotes the time tn+1 and the superscripts + and − stand for the

positive and negative part respectively. Fij is the numerical approximation of flux over the edge of

cells Ωi and Ωj , γij . To be precise,

Fj ≈
∫
γij

(fij(s)uij) · nijdv (3.5)

where nij is the normal vector pointing out of Ωi associated to γij .

In what follows, we will apply POD to the pressure, velocity and saturation equations to reduce

the computational cost associate with their evaluations, and DEIM to the flux function, to reduce

the complexity of evaluating the non-linear function.

3.1.1 POD-DEIM

In this section, we give a brief summary on the global model reduction methods of Proper

Orthogonal Decomposition (POD) and Discrete Empirical Interpolation Method (DEIM).

3.1.1.1 Proper Orthogonal Decomposition

POD starts from a snapshot matrix of state solutions,

Y = [y1,y2, . . . ,yNs] ∈ RN×Ns (3.6)

where N is the number of grid blocks and Ns is the number of snapshots. The goal is to find an

orthonormal basis {φi}ri=1 ⊂ RN such that

argmin
{φi}ri=1

Ns∑
j=1

‖yj −
n∑
i=1

(yTj φi)φi‖2
2. (3.7)

The above minimization problem can be solve by applying singular value decomposition (SVD)

to the snapshot matrix,

y = VΛWT . (3.8)

Here, V = [v1, . . . ,vm] and W = [w1, . . . ,wm] are the left and right singular matrix consisting

40

of singular vectors (vi and wi) of y respectively, where m = dim(S). Λ = diag(σ1, . . . , σm) is a

diagonal matrix containing the singular values of y with σ1 ≥ σ2 ≥ . . . ≥ σm > 0. The number of

basis, r is determined by the captured fractional energy,

E =

∑r
i=1 σi∑Ns

i=1 σi
. (3.9)

Normally, r is selected such that 0.9 < E < 1. The basis {φi}ri=1 is then determined by v1, . . . ,vr.

If the singular values decay fast, only a small number of POD basis will be needed. DEIM further

improves the efficiency of model reduction by avoiding the extensive computations of the nonlinear

functions as briefly explained below.

3.1.1.2 Discrete Empirical Interpolation Method

Given a nonlinear function f(τ) ∈ RN , where τ is time t or other control parameter µ. We

first collect the snapshots of f . Then, by singular value decomposition, a projection matrix U =

[u1, . . . ,um] ∈ RN×M is obtained. f can then be approximated by

f(τ) ≈ Uc(τ). (3.10)

To determine the coefficient vector c(τ), we first apply greedy strategy to select M distinct

interpolation points {p1, . . . , pM}. Next, we assemble the selection matrix

P = [ep1 , . . . , epM] ∈ RN×M (3.11)

where ei is the i-th canonical unit vector. Assuming PTU is nonsingular, we have

f(τ) ≈ Uc(τ) = U(PTU)−1PTf(τ). (3.12)

41

3.1.2 Nodal basis functions

In this section, we briefly present the idea of constructing nodal basis functions. This enables

us to use coefficients that represent the solution values at selected locations in the mesh such that

the coefficients will have physical meaning.

Given a set of nodes {xk}mk=1 corresponds to particular physical spot in the spatial domain,

we construct nodal basis functions as a linear combination of our obtained POD basis functions

{vk}mk=1 by seeking coefficients αij such that

m∑
k=1

αijvjk = δik. (3.13)

Here, vjk represents the value of vj at xk. The nodal basis is then constructed as follows.

ψi =
m∑
k=1

αikvk. (3.14)

Some examples of the nodal basis functions are illustrated in Figure 3.1.

Figure 3.1: Illustrations of nodal basis functions.

42

3.2 Deep global model reduction learning

3.2.1 Main idea

The idea is to combine deep learning concepts with our reduced-order model to provide a

numerical model efficient in modeling flow profile. We apply the POD-DEIM method to a two-

phase flow (oil-water) reservoir model under the water flooding recovery process. Givenm samples

of training set, we use POD-DEIM to obtain coarse grid solution coefficients of one unique set of

basis at all time steps. Since we are using nodal basis functions, the coefficients we obtain represent

values of solutions on selected locations. We try, by training these coefficients, to establish a

forward map between saturation solutions of time step n and time step n+ 1. That is

sn+1 = N (sn, In+1) (3.15)

Here, N is the multi-layer neural network to be trained and In can be permeability fields or in-

jection and production rates and so on. An illustration of a deep neural network in our work is

depicted in Figure 3.2.

...

...

...
...

...

sn

In+1

sn+1

Input layer Hidden layers Output layers

Figure 3.2: An illustration of deep neural network.

43

We also consider available observed data, sno , apart from simulation data, snc . With observed

data, there are three different types of networks to be considered.

1. Pure simulation network: Use only simulation data as output,

sn+1
c = Ns(snc , In+1) (3.16)

2. Pure observation network: Use only observation data as output,

sn+1
o = No(sno , In+1) (3.17)

3. Mixed network: Use a mixture of simulation and observation data as output,

sn+1
m = Nm(snm, I

n+1) (3.18)

The pure simulation network describes only simulation model and can be used as a fast simu-

lator. The pure observation network, on the other hand, corresponds to the situation when observa-

tion data is sufficient. The mixed network take both simulation and observation data into training

process and leads to a data-driven model.

3.2.2 Network structure

In this section, we briefly summarize the architecture of the networks Nα, where α = s, o,m

as defined in (3.16), (3.17) and (3.18).

For each neural network, we take x = (sn, θ, qn) as the input vector, which contains both

coefficients of coarse scale solution, permeability parameter and source term of a particular time

step. The output data will be y = sn+1, containing coefficients of coarse scale solutions in the next

time step. Mathematically, the neural network can be written as

Nα(x; η) = σ(WLσ(· · · σ(W1x + b1) + · · ·) + bL). (3.19)

44

Here, L is the number of layers of the neural network, of which layers 1 to L− 1 are hidden layers

and the Lst layer is the output layer. In our work, L varies from 2 to 11 and in each hidden layer,

the number of neurons varies from 12 to 300 in different experiments. For the convenience of our

work, we choose to use Leaky ReLU [65] instead of ReLU [66] as the activation function σ, to

avoid slow convergence.

In (3.19), Wi and bi are the weight matrices and bias vectors of layer i respectively. We define

η = {W1, . . . ,WL, b1, . . . , bL} as a set of parameters to be optimized. To be precise, given data

pairs (xi,yi), the deep neural network aims at finding the parameter η∗ such that

η∗ = argmin
η

1

m

m∑
j=1

‖yi −N (xi; η)‖2
2, (3.20)

where m is the number of training samples and L(η) = 1
m

∑m
j=1 ‖yi − N (xi; η)‖2

2 is the cost

function or loss function. We use AdaMax [67] as optimizer to minimize the loss function of our

high-dimensional parameters. Python deep learning API Keras [68, 69] is used for the training and

testing of all the neural networks.

3.3 Numerical results

In our first two numerical examples, we use the basic model from the SPE10 benchmark data

set. We have an injector in the center of the reservoir and four producers in the corners. The

permeability models are based on first few layers of SPE10 data. To this end, we set the same

permeability fields for all examples. To be precise, as our permeability setting, we first take two

initial permeability fields, κ1 and κ2. The uncertainties in the permeability fields are parametrized

by a convex combination

κ(θ) = (1− θ)κ1 + θκ2, (3.21)

for 0 ≤ θ ≤ 0.1. Examples of κ(θ) are demonstrated in Figure 3.3.

For each source term and permeability parameter given, we run POD-DEIM simulation on the

reservoir for 300 days and collected the coefficients of saturation solutions every 30 days. This

45

Figure 3.3: Figures of permeability fields. Left: plot of logarithm of κ(0). Middle: plot of log-
arithm of κ(0.1). Right: difference of κ(0) and κ(0.1). Republished with permission of Society
of Petroleum Engineers (SPE), from ”Deep Model Reduction-Model Learning for Reservoir Sim-
ulation”, by Jingyan Zhang, Siu Wun Cheung, Yalchin Efendiev, Eduardo Gildin, and Eric T.
Chung, 2019. SPE Reservoir Simulation Conference, Copyright [2019] by Society of Petroleum
Engineers; permission conveyed through Copyright Clearance Center, Inc.

serves as simulation data in our work. The observation data are generated from fine grid solver.

Data-driven models will be investigated and, therefore, observation data will be supplemented as

needed, by randomly mixing different realizations from simulation and observation data. We split

the the output response in two equal data sets in which half of the data is simulation data and half

is observation data.

The neural network models are trained to map particular time step solutions onto the next time

step. All data are divided into training and testing data accordingly so that only unseen samples

will be used to perform prediction. To evaluate the efficiency of our models, we will feed them

with testing samples to perform two types of data prediction as follows.

1. One-step prediction

sn+1 = N (sn, θ, qn+1; η∗) (3.22)

2. Multi-step (final time) prediction

s10 = N (. . .N (s0, θ, q1; η∗), . . . , θ, q10; η∗) (3.23)

Given time step n, observation percentage errors will be used for comparing reference solution

46

snref and our predicted solution snpred. To be precise, we compute

enpred =
‖snref − snpred‖L2(Ω)

‖snref‖L2(Ω)

. (3.24)

0 10 20 30

0

2

4

6

8

10

test rates

Prod1
Prod2
Prod3
Prod4

0 10 20 30

0

2

4

6

8

10

training rates

Prod1
Prod2
Prod3
Prod4

0 10 20 30
-1

0

1

2

3

4

5

6

7
test rates

Prod1
Prod2
Prod3
Prod4

0 10 20 30
-1

0

1

2

3

4

5

6

7
training rates

Prod1
Prod2
Prod3
Prod4

Figure 3.4: Illustrations of production rates for training and testing. Left: Experiment 1. Right:
Experiment 2. Republished with permission of Society of Petroleum Engineers (SPE), from ”Deep
Model Reduction-Model Learning for Reservoir Simulation”, by Jingyan Zhang, Siu Wun Cheung,
Yalchin Efendiev, Eduardo Gildin, and Eric T. Chung, 2019. SPE Reservoir Simulation Confer-
ence, Copyright [2019] by Society of Petroleum Engineers; permission conveyed through Copy-
right Clearance Center, Inc.

3.3.1 Experiment 1

In this example, for each permeability parameter, we use q = 5(1 + sin(βt)) as production rate

and q = −5(1 + sin(βt)) as injection rate, where 0.15 < β < 0.5. Only one producer and one

injector is used. An example of training and testing production rate schedules is given in Figure

3.4. Every simulation realization is unique in terms of well rates combined with permeability field.

In all, we have 3520 samples. 3170 of these samples are used for training and 350 for testing. We

perform model training and predictions based on two sets of basis. The number of basis is 25 or 5.

The observation points corresponds to the basis are demonstrated in Figure 3.5.

47

Figure 3.5: Figures of observation points in experiment 1. Left: 25 nodal basis case. Right: 5
nodal basis case. Republished with permission of Society of Petroleum Engineers (SPE), from
”Deep Model Reduction-Model Learning for Reservoir Simulation”, by Jingyan Zhang, Siu Wun
Cheung, Yalchin Efendiev, Eduardo Gildin, and Eric T. Chung, 2019. SPE Reservoir Simulation
Conference, Copyright [2019] by Society of Petroleum Engineers; permission conveyed through
Copyright Clearance Center, Inc.

Basically, under the same number of neurons, all models of the same type perform about the

same in terms of one-step prediction. The pure-observation networks (No) indicate a decline in

error with the rise of the number of layers. The results also demonstrated that when observation

data is available, the performance of our networks can be improved. On the other hand, the return

of increasing number of layers is eventually marginal, but shallow networks are not able to fully

interpret all the intrinsic data.

3.3.1.1 25 nodal basis case

In this experiment, we use 25 nodal POD basis based on the assumption that we have available

data from 25 observation spots. The observational locations are demonstrated in Figure 3.5. We

train two set of neural networks in this experiment, both with different numbers of hidden layers.

One set of neural network is with 300 neurons and with 300 neurons in each hidden layer, the other

set is with 64 neurons in each hidden layer. The results are listed in Table 3.1 and Table 3.2.

48

1-step Final time
Hidden layer # Ns Nm No Ns Nm No

1 11.94% 7.71% 3.37% 16.43% 7.25% 8.14%
3 11.66% 7.30% 2.50% 15.53% 12.89% 4.01%
5 11.55% 7.40% 2.20% 14.61% 10.60% 3.25%
10 11.59% 6.80% 2.15% 14.98% 8.93% 6.38%

Table 3.1: Mean of observation percentage error with different training data in 64 neuron net-
work, Experiment 1. Republished with permission of Society of Petroleum Engineers (SPE), from
”Deep Model Reduction-Model Learning for Reservoir Simulation”, by Jingyan Zhang, Siu Wun
Cheung, Yalchin Efendiev, Eduardo Gildin, and Eric T. Chung, 2019. SPE Reservoir Simulation
Conference, Copyright [2019] by Society of Petroleum Engineers; permission conveyed through
Copyright Clearance Center, Inc.

1-step Final time
Layer Simulation Mixed Observation Simulation Mixed Observation

1 1.15% 2.25% 1.77% 18.98% 11.49% 2.77%
3 0.59% 1.51% 1.33% 14.97% 8.14% 1.65%
5 0.78% 1.33% 1.05% 15.00% 8.07% 1.06%

10 0.80% 1.26% 1.52% 14.80% 8.13% 1.66%

Table 3.2: Mean of observation percentage error with different training data in 300 neuron network,
Experiment 1. Reprinted with permission from ”Deep Global Model Reduction Learning in Porous
Media Flow Simulation” by Siu Wun Cheung, Eric T. Chung, Yalchin Efendiev, Eduardo Gildin,
Yating Wang and Jingyan Zhang, 2020. Computational Geosciences, Volume 24, Pages 261–274,
Copyright [2020] by Springer.

3.3.1.2 5 nodal basis case

In this experiment, we use 5 nodal POD basis based on the assumption that we have available

data from 5 observation spots. The observational locations are demonstrated in Figure 3.5. We

remark that the observational locations are all near the injector and producers. We have two sets of

models for this experiment, one has 120 neurons in each hidden layer, the other is with 12 neurons

in each hidden layer. We also tried 300-neuron models but the results are almost the same as the

120-neuron ones. The errors of predictions are listed in Table 3.3.

49

1-step Final time
Neuron Hidden layer # Ns Nm No Ns Nm No

120

1 25.04% 13.90% 1.29% 21.07% 13.01% 6.28%
3 25.21% 13.68% 1.25% 21.89% 14.23% 8.81%
5 25.16% 13.90% 0.96% 22.09% 12.84% 1.49%

10 25.08% 13.56% 1.02% 22.08% 13.00% 2.12%

12

1 24.95% 14.65% 2.38% 23.81% 14.09% 5.44%
3 25.27% 13.95% 2.41% 23.64% 9.20% 8.11%
5 25.25% 13.90% 1.87% 22.66% 11.79% 3.67%

10 25.21% 13.94% 1.80% 22.01% 13.03% 8.19%

Table 3.3: Mean of observation percentage error with different training data in 5 nodal basis case
in Experiment 1. Republished with permission of Society of Petroleum Engineers (SPE), from
”Deep Model Reduction-Model Learning for Reservoir Simulation”, by Jingyan Zhang, Siu Wun
Cheung, Yalchin Efendiev, Eduardo Gildin, and Eric T. Chung, 2019. SPE Reservoir Simulation
Conference, Copyright [2019] by Society of Petroleum Engineers; permission conveyed through
Copyright Clearance Center, Inc.

3.3.2 Experiment 2

In this experiment, we use all four producers in the corners and, naturally, the injector in the

center. All well rates are random step functions restricted by a scale ranging from 1 to 4. For each

permeability field and under each scale, we generate 20 random rate schedules. An example of

training and testing production rate schedule is given in Figure 3.4. In all, we have 15400 samples,

among which we take 13860 for training and 1540 for testing. The data are based on both 5 and

25 nodal POD basis. The observation locations are demonstrated in Figure 3.6.

3.3.2.1 25 nodal basis case

Same as the previous experiments, we assume there are 25 observational locations available.

Two sets of neural network models are trained in this case, one with 300 neurons in each hidden

layer and one with 64 neurons in each hidden layer. The results are summarized in Table 3.4.

3.3.2.2 5 nodal basis case

In this experiment, we use 5 nodal POD basis based on the assumption that we have available

data from 5 near-well observation spots. Same as the previous example, we have two sets of model

50

Figure 3.6: Figures of observation points for Experiment 2. Left: 25 nodal basis case. Right: 5
nodal basis case. Republished with permission of Society of Petroleum Engineers (SPE), from
”Deep Model Reduction-Model Learning for Reservoir Simulation”, by Jingyan Zhang, Siu Wun
Cheung, Yalchin Efendiev, Eduardo Gildin, and Eric T. Chung, 2019. SPE Reservoir Simulation
Conference, Copyright [2019] by Society of Petroleum Engineers; permission conveyed through
Copyright Clearance Center, Inc.

1-step Final time
Neuron Hidden layer # Ns Nm No Ns Nm No

300

1 15.83% 8.91% 1.33% 18.81% 21.10% 4.13%
3 15.91% 8.51% 1.22% 17.63% 9.13% 1.93%
5 15.85% 8.59% 1.10% 18.13% 9.46% 1.53%
10 15.79% 8.64% 1.05% 17.45% 10.19% 1.67%

64

1 16.02% 10.12% 4.10% 25.75% 22.93% 12.68%
3 15.82% 9.76% 2.90% 21.12% 17.50% 7.81%
5 15.64% 9.74% 2.41% 19.77% 16.38% 7.58%
10 15.84% 9.48% 2.11% 18.06% 13.84% 5.65%

Table 3.4: Mean of observation percentage error with different training data in 25 nodal basis case
in Experiment 2. Republished with permission of Society of Petroleum Engineers (SPE), from
”Deep Model Reduction-Model Learning for Reservoir Simulation”, by Jingyan Zhang, Siu Wun
Cheung, Yalchin Efendiev, Eduardo Gildin, and Eric T. Chung, 2019. SPE Reservoir Simulation
Conference, Copyright [2019] by Society of Petroleum Engineers; permission conveyed through
Copyright Clearance Center, Inc.

for this experiment, one has 120 neurons in each hidden layer, the other has 12 neurons in each

hidden layer. The errors of prediction are summarized in Table 3.5.

51

1-step Final time
Neuron Hidden layer # Ns Nm No Ns Nm No

120

1 25.91% 11.34% 0.57% 33.93% 16.95% 6.17%
3 25.73% 11.22% 0.33% 30.38% 12.79% 0.94%
5 26.05% 11.13% 0.25% 31.74% 13.54% 0.55%

10 25.73% 11.27% 0.29% 29.65% 13.85% 0.71%

12

1 26.17% 11.98% 1.67% 33.29% 16.63% 2.80%
3 26.17% 11.63% 1.35% 55.96% 11.50% 3.03%
5 26.77% 11.59% 1.26% 30.46% 14.59% 2.26%

10 26.42% 12.13% 1.17% 20.34% 19.94% 2.31%

Table 3.5: Mean of observation percentage error with different training data in 5 nodal basis case
in Experiment 2. Republished with permission of Society of Petroleum Engineers (SPE), from
”Deep Model Reduction-Model Learning for Reservoir Simulation”, by Jingyan Zhang, Siu Wun
Cheung, Yalchin Efendiev, Eduardo Gildin, and Eric T. Chung, 2019. SPE Reservoir Simulation
Conference, Copyright [2019] by Society of Petroleum Engineers; permission conveyed through
Copyright Clearance Center, Inc.

Both experiments demonstrate the efficiency of the neural networks. One-step prediction is not

much affected by the architecture of the neural networks while, with a relatively larger number of

layers of neurons, final time predictions will show a higher and good accuracy, even when the error

of pure-simulation networks (Ns) are nearly dominated by the simulation-observation error. This

experiment also indicates that the available observation data provides improvement to the quality

of prediction of final-time dynamics.

3.3.3 Experiment 3

Apart from using deep learning algorithm for modeling nonlinear forward dynamics, one can

also use neural network for downscaling to reconstruct information. In this experiment, we briefly

investigate this possibility.

From the fine-scale solutions using the same permeability and well rate settings as in Experi-

ment 1, 991 samples are randomly chosen. We split these data into 891 training samples and 99

testing samples respectively. We build two neural networks for this downscaling procedure. The

first neural network has 5 and 25 nodes as inputs and outputs respectively. The second neural

network has 25 and 50 as inputs and outputs respectively. The 5 and 25 observation points are

52

demonstrated in Figure 3.5. The 50 observation points are selected using orthogonal-triangular

decomposition and is shown in Figure 3.7. We depict an illustration of our first neural network in

Figure 3.8.

Figure 3.7: An illustration of 50 observation points for the second neural network used in Experi-
ment 3.

Figure 3.8: An illustration of neural network used in Experiment 3.

53

Since this procedure does not involve approximating temporal evolution of fluid dynamics, we

can construct a relatively simple neural network to tackle the task. To be more precise, neural

networks with only 2 hidden layers are used. Different from previous experiments, the number of

neurons differs in the two hidden layers. For the neural network predicting 25 degrees of freedom,

we use 64 neurons in the first hidden layer and 100 neurons in the second hidden layer. For the

neural network predicting 50 nodal values, we use 64 and 200 neurons in the first and second

hidden layers respectively. Leaky ReLU is still used as activation functions for faster convergence.

Given available nodal basis functions, we are able to reconstruct fine-scale solutions from the

inputs and outputs and compare them with the original fine-scale solution. The errors of predictions

are listed in Table 3.6. A demonstration of data reconstruction and noise deduction is shown in

Figure 3.9.

Output dimension eL1 eL2 eL∞

25 4.02 2.78 2.73
50 1.69 1.05 1.03

Table 3.6: Mean of different percentage errors in Experiment 3.
.

Figure 3.9: Figures of reconstructed and reference fine-scale solutions in Experiment 3. Left:
fine-scale solution reconstructed from 5 nodal parameter input. Middle: fine-scale solution recon-
structed from 25 nodal parameter output. Right: reference solution.

54

By applying neural networks to downscaling problems, we can breakdown the flow approxi-

mation into a two-step procedure. One can first forward approximate fluid dynamics with a small

neural network and reconstruct information by downscaling neural networks. This can further

decrease the training cost of the main dynamic model while maintaining accuracy.

55

4. IMAGE-BASED PHYSICS-CONSTRAINT WORKFLOW FOR MULTI-PHASE FLOW

SIMULATION IN HETEROGENEOUS MEDIA

Physics-based simulations for multi-phase flow usually suffer from expensive computational

costs induced by its nonlinearity and The trade-offs between efficiency and accuracy always attract

attention from researchers. The development of deep learning techniques also shed lights on the

possibility of maintaining fidelity in fluid dynamics with lower computational costs. In this chapter,

we explore this possibility for nonlinear multi-phase fluid.

By breaking down the coupled system into pressure and saturation equations, we describe a

hybrid workflow in predicting the evolution of pressure and simulating saturation. As opposed to

an expensive implicit pressure solver, we construct deep neural networks for predicting pressure

fields, leveraging the advantages of different image-based neural networks in capturing spatial and

temporal patterns. The model takes inputs including permeability and production information,

along with initial fluid status and predict images of pressure of different time steps. To maintain

spatial connectivity of output pressure, physics-based loss penalties are used during the training

process. The predicted pressure fields are fed into explicit numerical solvers for saturation simula-

tion. This way, the accuracy of the workflow is good while the high computational cost is reduced.

Performance and effectiveness of the aforementioned workflow is also discussed.

The chapter is organized as follows. In Section 4.1 we present the physics of two-phase flow

and summarize the background methodology of the numerical simulation method. In Section 4.2,

the idea of image-based neural networks are introduced and the construction of our proposed model

is presented. Numerical experiments are explored in Section 4.3 to check the performance of our

model. We will also include discussions of model performance in this section.

4.1 Preliminaries

As a benchmark ground truth reference for our to-be-developed neural networks, we carry out

a sequential IMplicit Pressure Explicit Saturation (IMPES) [70, 71] formulation of the two-phase

56

flow system as follows.

4.1.1 Governing equation

Let Ω be the reservoir domain with two phases, water (denoted by subscript w) and oil (denoted

by subscript o). Similar to Chapter 3, we assume that the flow is immiscible and the displacement

is dominated by viscous effects, which enables us to disregard gravitational acceleration, capillary

forces and compressibility effects. The Darcy’s law yields the following initial-boundary value

problem, i.e. the pressure-saturation equations:

−∇ · (λ(s)κ∇p) = q in Ω,

φ
∂s

∂t
+∇ · (fw(s)u) =

qw
pw

in Ω,

u · n = 0 on ∂Ω,

s = 0 at t = 0.

(4.1)

Here, κ is permeability; p is pressure; φ is the porosity; u is total velocity; qw and qo are vol-

umetric source term for water-phase and oil-phase respectively. By injecting water and producing

mixture of water and oil, the source term for the saturation equation is simplified as

qw
ρw

= max(q, 0) + f(s) min(q, 0). (4.2)

λ is the total mobility analytically defined as

λ(s) = λw(s) + λo(s),

λw(s) =
(s∗)2

µw
, λo(s) =

(1− s∗)2

µo
, s∗ =

s− swc
1− sor − swc

.
(4.3)

Here sor is the irreducible oil saturation and swc is the connate water saturation.

57

4.1.2 IMPES

In this section, we briefly present the numerical simulator for IMPES formulation on the

aforementioned equations. We first solve the pressure equation in (4.1) by the two-point flux-

approximation (TPFA) finite-volume scheme. As the name suggests, this method uses the averages

of two points to approximate the interface flux

vij = −
∫
γij

(λ(s)κ∇p) · ndν, (4.4)

where γij denotes the edge of two adjacent cells Ωi and Ωj . For convenience and simplicity, we

use an alternative notation Λ := λ(s)κ and define transmissibilities by:

tij = 2|γij|
(

∆xi
Λi,ij

+
∆xj
Λj,ij

)−1

. (4.5)

Here, ∆xi and ∆xj denotes the cell dimensions in the x-coordinate direction and Λi,ij = nij ·Λinij

with nij as the unit vector pointing out of Ωi associated to γij . The pressure can therefore be solved

by

Ap = Q, (4.6)

where the element-wise values of matrix A = [aik] and Q = [Qi] can be calculated by what

follows.

aik =

∑

j tij if k = i,

−tik if k 6= i,

Qi =

∫
Ωi

qdΩ, ∀Ωi ⊂ Ω. (4.7)

On the discretization of saturation, the IMPES uses an explicit finite-volume scheme by

Sn+1 = Sn + δtx(Bf(Sn) +Q+), (4.8)

where (δtx)i = ∆t/|Ωi| and B is a matrix implementing [f(s)Q− −∇ · (f(s)v)] on a cell-by-cell

basis with v as the interface flux derived from TPFA scheme. The explicit saturation solver is only

58

stable provided the following CFL condition

∆t ≤ |Ωi|
vin
i max0≤s≤1 f ′(s)

. (4.9)

Here vin
i is the flux flows into cell Ωi.

4.2 Methodology

The first part of our proposed workflow is to build physics-guided surrogate models to pre-

dict pressure or interface flux fields using image-based neural networks. Generally speaking, the

features of constructed neural networks are image-based and may include information on

• Fluid states at certain time instant:

– saturation s,

– pressure p,

– flux fields vx and vy;

• Permeability fields κ;

• Time dependent information: well rates q, time instant indicator t.

All initial state features are fine-grid images of the state of interest. The feature using well rate

information is images reflecting both locations of injection and production wells and well rates.

The time instant indicators are added as part of input features to avoid errors caused by recursive

prediction. To fit with the image-based neural network, the time instant indicators are transformed

as homogeneous images with the value of specific time instants. The output of neural networks are

images of the fluid state at certain time instant of interest. The predicted pressure or interface flux

is used to simulate saturation information using the explicit numerical solver.

4.2.1 Image-based neural networks

Image-based neural networks have drawn much attention in solving fluid dynamics on account

of their capability in capturing spatial features. Compared to traditional fully connected neural

59

networks, image-based neural networks usually have sparser connectivity, which benefits training

efficiency, especially under circumstances with large dimensional data. On the other hand, image-

based neural networks are usually similar to a typical DNN in that it still consists of an input layer,

some hidden layers and an output layer.

In a typical feed-forward convolutional neural network (CNN), which is a common type of

image-based neural network, input images evolve through some hidden layers by convolution op-

eration. Given an image I of dimension (nH , nW , nC) and a filter K of dimension (w,w,nC), the

forward mapping of a convolution operation can be formulated as

conv(I,K)x,y =

nH∑
i=1

nW∑
j=1

nC∑
k=1

Ki,j,kIx+i−1,y+j−1,k. (4.10)

Here, subscripts H, W, C denote the height, width and channel of an image respectively. w denotes

the width of a filter. If we consider (4.10) as a particular form of matrix multiplication, a hidden

convolutional layer can be analytically written as

Il+1 = σ(Wl ◦ Il + bl), (4.11)

where l denotes the l-th layer, Wl ◦ Il = conv(Il, Kl), σ and bl are the activation function and bias

respectively.

In this chapter, we mainly construct surrogate models using two specific types of image-based

neural networks as what follows.

4.2.1.1 U-Net

The first type of image-based neural network we choose is the U-net [57], which has achieved

great performance in various problems involving image and video recognition, medical image seg-

mentation and regression. U-net is a non-fully-connected convolutional neural network consisting

of a contracting path and an expansive path.

The general architecture of the U-nets constructed in this chapter is depicted in Figure 4.1. At

60

nin 16 16

32 32

64 64

128

128 64

64 32

32 16 16 nout

Input
image
tiles

32×32

16×16

8×8

4×4

Output
image tiles

Conv 3×3, BatchNorm2D, Leaky ReLU Average pooling 2×2

DeConv 2×2, BatchNorm 2D, Leaky ReLU Conv 1×1, ReLU(tanh)

Copy and concatenate

Figure 4.1: An illustration of U-net architecture used in this work. Boxes represents multi-channel
features in the forward feeding network. Blank filled boxes represents output features before each
average pooling phase in the extracting path. The image sizes of each level are labeled on the left of
the graph. The number of filters, which is also the number of output properties of each extracting
or expansive step is labeled above each box. nin and nout are the numbers of channels of the input
and output images respectively.

each extracting step, features are downsampled through two convolution operations followed by an

average pooling layer. Each time after the pooling operation, the height and width of the features

are halved while the number of filters or channels are doubled. At the beginning of each expansive

path, features first regain height and width through an up-convolution operation. A stack of features

of same resolution from the extracting path will be attached to the expanded output, which will be

followed by two consecutive convolutional layers. The number of filters or channels are halved

with the doubling in height and width. The number of channels will be force to the number of

output features by the output layer.

In this architecture, the specific Leaky ReLU activation function is defined in (4.12) with α =

61

0.1.

LeakyReLU(x) =

x, if x ≥ 0

αx, if x < 0.

(4.12)

Compared to the original design of U-net, both the numbers of filters and the depth of the extract-

ing/expansive paths are reduced such that less parameters will be needed for training. In this way,

the efficiency of network training can be improved.

We also remark that there are some slight differences between the networks when predicting

different fluid states of interest. For predicting pressure fields, the number of input channels nin

is set to be 4; the output channel number nout is set to be 1 and the last activation function before

output is ReLU, which can be considered as a particular case of Leaky ReLU with α = 0 in (4.12).

On the other end, when the state of interest is the interface fluxes, the image will consist of 2

channels. Thus, nin is set to 5; nout will be 2 and the last activation function will be the hyperbolic

tangent function (simplified as Tanh) defined in (4.13), to best match positive and negative signs

of the output.

Tanh(x) =
ex − e−x
ex + e−x

. (4.13)

The training and testing of all the U-nets are undertaken by the Python deep learning API Keras.

4.2.1.2 Fourier Neural Operator

A second type of image-based neural network of interest is Fourier neural operator (FNO)

[72]. This architecture formulates a new neural operator in Fourier space to operate directly on the

images of input features and has good capacity in approximating PDEs with high non-linearity.

Given an input feature X as a stack of images. FNO first projects the X into a desired higher

dimensional space X0 by a linear transform layer ("Fully Connected" layer). What follows are

named as Fourier layers containing integral operators defined in Fourier space. Mathematically,

for each layer l, we have

Xl = σ(W(Xl−1) +K(Xl−1)). (4.14)

In the above formulation, σ is the nonlinear activation function, W is a local linear transform

62

operator and K is the neural operator defined in Fourier space as

K(Xl−1) = F−1(RF(Xl−1)). (4.15)

In this operation, K first apply Fourier transform F to Xl−1. A linear transform R is then applied

to filter out higher Fourier modes. As a final step, an inverse Fourier transform F−1 is applied.

The output of the last Fourier layer will eventually be transformed to the desired output by some

fully connected layers.

An illustration of the basic architecture used in this chapter is shown in Figure 4.2. As demon-

Figure 4.2: Figure of the Fourier neural operator. The network consists of 3 fully connected layers
and 4 Fourier layers. The feature information is labeled on the top of each layer in the format of
nC@(nH , nW).

strated, we use 5 features as input and predict 1 fluid state of interest, which is the pressure field.

No activation functions are used after FC-1 or FC-3 in Figure 4.2. Between Fourier layers, Leaky

ReLU (4.12) is used with α = 0.01. ReLU is taken as the activation function after FC-3. In this

whole procedure, the height and width of features stay unchanged. All training and testing of FNO

are run using the Python library Pytorch [73].

63

4.2.2 Loss function

First of all, we recap two common types of loss functions which are commonly used in neural

network training.

Consider a neural network N modeling the evolution of pressure. The ground truth of certain

case is denoted as pi and the predicted label is denoted as pipred. The first common type is the Mean

Squared Error (MSE) loss Lmse. Mathemtically, (Lmse)i is defined as

(Lmse)i = ‖pipred − piref‖2
L2 . (4.16)

Therefore, given M training data samples, Lmse is defined as the mean of the all errors for each

data point as follows.

Lmse =
1

M

M∑
i=1

(Lmse)i. (4.17)

A second commonly used loss function is the Root Mean Squared Error (RMSE), which is

similar in performance to MSE. The advantage of RMSE lies in that it is directly interpretable in

terms of the distance under the input measurement and thus can be a better measure as to the good-

ness of model fitting. The definition of RMSE is clearly suggested by its name. Mathematically,

one can write

Lrmse =
√
Lmse. (4.18)

In this chapter, we will utilize both MSE and RMSE in model training, depending on the network

structure chosen.

Apart from the basic loss functions listed above, which can provide primary value match be-

tween ground truth and prediction, we introduce a physics-guided loss function to improve the

training efficiency and to maintain the physical features of the output fluid states. While we can

rely on the advantage of image-based neural networks in maintaining spatial and temporal pattern,

the combination of neural networks and explicit numerical saturation solver requires good consis-

tency of predicted fluid states so that smoother saturation solutions can be acquired. The priority

64

gives to the target on the maintaining of cell-wise mass balance property:

vin
i = max(qi, 0)−

∑
j

min(vij, 0) = −min(qi, 0) +
∑
j

max(vij, 0) = vout
i , (4.19)

To do so, in a U-net designed to predict pressure fields, we add penalty terms to promote the

match of the gradient between pipred and piref. This will help the consistency in both flow direction

and velocity and benefit the simulation of saturation. Thus, we continue on introducing second

parts into the loss function Lflux. Recall from equations (4.4) and (4.5), one calculate both "pre-

dicted" and reference interface flux based on saturation, pressure and permeability. The flux loss

(Lflux)i for the ith data sample and the overall flux loss for all training samples defined as

(Lflux)i = ‖Fflux(∇pipred, s
i
in, κ)− Fflux(∇piref, s

i
in, κ)‖2

L2 ,

Lflux =
1

M

M∑
i=1

(Lflux)i.
(4.20)

Here, sini is the saturation at the same time instant with the desired pressure field. We remark

that this saturation information is only used in constructing the flux loss to regularize the training

procedure and will not participate in the prediction of pressure fields. In all, the first type of

physics-constraint loss function is defined as

L1(η) = Lmse + γ1Lflux, (4.21)

where η is the set of all trainable parameters in the neural network, γ1 is the weight parameter.

In FNO, we consider a different approach. To begin with, instead of MSE-type error, we use

RMSE-type error so that hyperparameter tuning can be more efficient. Next, we design loss terms

to promote the match of both the gradient and the second partial derivatives between ppred and pref.

This will stimulate the consistency in both flow direction and velocity and benefit the simulation

of saturation. Thus, we introduce loss functions Lgrad and LH . For the i-th data sample, (Lgrad)i

65

and (LH)i are defined by

(Lgrad)i =
∥∥∇pipred −∇piref

∥∥2

L2 ,

(LH)i =
∥∥∆pipred −∆piref

∥∥2

L2 .

(4.22)

Similar to MSE, we define Lgrad and LH by

Lgrad =
1

M

M∑
i=1

(Lgrad)i,

LH =
1

M

M∑
i=1

(LH)i.

(4.23)

The loss function is hereby defined as follows,

L2(η) = Lrmse + γ2,1

√
Lgrad + γ2,2

√
LH . (4.24)

Here, η is the still set of all trainable parameters in the neural network; γ2,1 and γ2,2 are weight

parameters.

Same as Chapter 3, the training of all proposed method is to find the parameter η∗ such that for

all training samples, and for the particular type of loss function Li we choose, we have

η∗ = argmin
η
Li. (4.25)

4.3 Numerical results

In this section, we present two experiments utilizing different types of image-based neural

networks discussed in Section 4.2. We use simulation results from IMPES simulator as a reference

solution.

In all experiments, we take the spatial domain as Ω = (0, 1)2, with a fine mesh size of h =

1/32. We run fine-scale numerical simulation using 8 different realizations of permeability fields.

Illustrations of all permeability fields used is depicted in Figure 4.3.

66

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

300

400

500

600

700

800

900

Figure 4.3: Realizations of permeability fields used in all experiments.

As for well rate, we use a five-spot setting with four injectors on four corners and one producer

in the center. We randomly generate 4 different dimensionless pore volume well rate for the four

injectors and the well rate for the producer in the center will be the sum of the injection rates.

Overall, 5 different settings of well rates are generated. An example of well rate is given in Figure

4.4

5 10 15 20 25 30

5

10

15

20

25

30
-0.15

-0.1

-0.05

0

0.05

Figure 4.4: An example of pore volume rate randomly generated for the two experiments.

67

For each source term and permeability field, we run IMPES simulation on the reservoir for 760

time steps and collected images of states including pressure, interface flux and saturation every

19 steps. Every realization of this simulation process is unique in terms of well rates combined

with permeability field. For each realization, we will group the 40 data points into 4 groups of

10 data points of consecutive time steps. The last fluid states of the previous group or the initial

condition of the corresponding realization will be considered as initial fluid states in the input

feature. In all, we have 1600 data samples available, among which we take 5% as testing cases and

the rest as training cases. This gives 1520 training samples and 80 testing samples. We remark that

the testing samples are complete realizations from particular permeability and well rate combined

settings. This way, we are able to observe the performance of our workflow on both one step and

recursive simulation for saturation.

To evaluate the effectiveness of our workflow, we will compute errors of both the predicted state

of interest and recursively simulated saturation. Taking the prediction of pressure as an example,

given initial fluid states p0, s0 and κ, for each time instant n, n = 1, 2, . . . , 10, we can predict the

pressures by

pnpred = N (p0, s0, κ, qn, tn; η∗). (4.26)

Denoting the numerical saturation solver as U , we can solve for snpred by the following scheme

snpred = U(. . .U(s0, p1
pred, q

1), . . . , pnpred, q
n). (4.27)

Therefore, we can compute the errors by

enp =

∥∥pnref − pnpred

∥∥
L2(Ω)

‖pnref‖L2(Ω)

, ens =

∥∥snref − snpred

∥∥
L2(Ω)

‖snref‖L2(Ω)

. (4.28)

In what follows, we will present two experiments on two set of designs on the hybrid workflow

for predicting and simulating the dynamics of two-phase flow. The performances of the neural

network architectures and overall workflow will be tested. The efficiency of each workflow and

68

cross comparison will be briefly discussed in section 4.3.3.

4.3.1 Experiment 1

In this experiment, we evaluate the performance of proposed hybrid workflow based on U-net.

Two neural network architectures are constructed in this experiment.

1. A network that predicts pressure field at time instant n, N UNet
p .

pnpred = N UNet
p (p0, κ, qn, tn; η∗p), (4.29)

2. A network that predicts the change of interface velocity fields at time instant n, N UNet
v .

[vx
n
pred, vy

n
pred] = [v0

x, v
0
y] +N UNet

v (v0
x, v

0
y, κ, q

n, tn; η∗v). (4.30)

During the training of N UNet
p , L1 defined in (4.21) is used as loss function while for the training

of N UNet
v , we utilize a variation of MSE loss. Unless otherwise specified, all the networks in this

experiment are trained using a training scheme of 20 batch size and 200 epochs, with an early

stopping criterion of 20 epochs.

We first present the performance of pressure prediction using U-Net. For this experiment, all

images are scaled to the range of [0, 1]. The plots of errors of different realizations in test cases are

depicted in Figure 4.5. As suggested in Figure 4.5, both loss function schemes can perform evenly

matched on predicting the pressure field. It can be observed that the prediction of model trained by

plain MSE performs slightly better on the testing cases. Situation is overturned when we proceed

to the second phase of numerically simulating saturation. As depicted in Figure 4.6, the saturation

results based on plain MSE model performs far more worse than the ones with L1.

However, neither network can yield satisfactory prediction enough for the simulation of satu-

ration. This pushes towards the construction of a second neural network N UNet
v . As described in

(4.30), we construct a U-net based neural network that predicts the difference between the inter-

face flux at the time instant of interest and the initial state. The data are properly scaled such that

69

1 2 3 4 5 6 7 8 9 10

Time steps

1

1.2

1.4

1.6

1.8

2

2.2

P
e

rc
e

n
ta

g
e

 r
e

la
ti
v
e

 L
2
 e

rr
o
r

(%
)

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

1 2 3 4 5 6 7 8 9 10

Time steps

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

P
e

rc
e

n
ta

g
e

 r
e

la
ti
v
e

 L
2
 e

rr
o
r

(%
)

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

Figure 4.5: Plots of percentage relative L2 errors in predicting pressure fields with U-net using
different loss function schemes. Left: Lmse, average of enp is 1.47%, average of e10

p is 1.71%. Right:
L1, average ofenp is 1.70%, average of e10

p is 2.02%.

1 2 3 4 5 6 7 8 9 10

Time steps

6

8

10

12

14

16

18

20

22

24

26

P
e

rc
e
n
ta

g
e

 r
e
la

ti
v
e
 L

2
 e

rr
o
r

(%
)

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

1 2 3 4 5 6 7 8 9 10

Time steps

0

2

4

6

8

10

12

P
e

rc
e
n
ta

g
e

 r
e
la

ti
v
e
 L

2
 e

rr
o
r

(%
)

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

Figure 4.6: Plots of percentage relative L2 errors in recursively simulating saturation fields with U-
net-predicted pressure using different loss function schemes. Left: Lmse, average of enp is 18.73%,
average of e10

p is 24.03%. Right: L1, average of enp is 6.58%, average of e10
p is 9.71%.

the maximum and minimum of the flux difference lie in the range of [−1, 1]. We also make sure

the interface flux matrix are properly padded to be equal in height and width before putting into

the U-net as an input feature. Considering the fact that interface flux is of the same order as the

gradient of pressure, we only use plain MSE loss function to monitor the training of the neural

network. The errors of the predicted interface flux and simulated saturation are demonstrated in

Figure 4.7. An example of comparison on final time fluid states is depicted in Figure 4.8.

70

1 2 3 4 5 6 7 8 9 10

Time steps

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
e

rc
e

n
ta

g
e

 r
e

la
ti
v
e

 L
2
 e

rr
o
r

(%
)

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

1 2 3 4 5 6 7 8 9 10

Time steps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
e

rc
e

n
ta

g
e

 r
e

la
ti
v
e

 L
2
 e

rr
o
r

(%
)

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

Figure 4.7: Plots of percentage relative L2 errors of predicted interface flux and recursively simu-
lated saturation fields with in experiment 1. Left: interface flux prediction errors, average error for
all vnpred is 0.89%; for v10

pred is 1.34%. Right: saturation simulation errors, average error for all cases
is 0.30%; for time step 10 is 0.53%.

To summarize, in this experiment, we designed two U-net based neural network N UNet
p and

N UNet
v to predict pressure and interface flux respectively. Thanks to the features of U-net and

the introduce of physics-related loss function, both networks can provide approximation on the

targeted output feature with good accuracy and certain dependency on time. On the other hand,

as an intermediate surrogate model serving for the simulation of saturation, N UNet
v achieves better

performance in dynamics consistency.

4.3.2 Experiment 2

In this experiment, we construct a second workflow based on FNO,N FNO
p . Mathematically, for

a pressure field at time instant n of interest, we have

pnpred = N FNO
p (p0, s0, κ, qn, tn; η∗) (4.31)

We take the loss function L2 defined in (4.24) for model training. All the images are scaled to a

range of [1, 10]. All the neural networks are trained with a scheme of batch size 20 and 100 epochs.

Max stagnant epochs to stop training is 20. To evaluate the effectiveness of the physics-based

loss function designed, we train the neural networks with different setting of weight parameters

71

5 10 15 20 25 30

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30

5

10

15

20

25

30

0

0.05

0.1

0.15

0.2

0.25

5 10 15 20 25 30

5

10

15

20

25

30

0

0.005

0.01

0.015

0.02

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.6

2.65

2.7

2.75

2.8

2.85

2.9

Figure 4.8: Figures of final time saturation and streamline for test realization case 8 in Experiment
1. Top row: saturation. Second row: error of saturation. Bottom row: streamline. Left: U-net
pressure model with L1. Middle: interface flux model. Right: fine-scale reference.

(γ2,1, γ2,2) in (4.24). The performance of different weight settings is summarized in Table 4.1. As

can be observed from the table, although the reason of the blow up for the second setting is to be

discovered, penalizing loss function by both Lgrad and LH undoubtedly improves both efficiency

in training and accuracy in predicting of the neural network structure.

We also briefly compare the impact of one of the most important content in FNO, i.e. the

number of filters in each Fourier layer, under the same L2 loss function. The results is summarized

in Table 4.2.

Similar to the situation in Experiment 1, we can observe a slight trade-off between the average

prediction errors for pressure and average simulation errors for saturation. Figure 4.9 gives an

72

(γ2,1, γ2,2) enp e10
p ens e10

s

(0, 0) 0.26% 0.32% 4.69% 6.76%
(2, 0) blow up
(0, 4) 0.26% 0.32% 4.69% 6.76%
(2, 4) 0.18% 0.19% 2.09% 3.02%

Table 4.1: Average percentage prediction and simulation errors for all test cases and final time
cases given different setting of loss weight parameter in Experiment 2.

Filter # enp e10
p ens e10

s

12 0.18% 0.19% 2.09% 3.02%
16 0.18% 0.19% 2.08% 2.93%
20 0.18% 0.21% 2.05% 2.87%

Table 4.2: Average percentage prediction and simulation errors for all test cases and final time
cases given different number of filters in Experiment 2.

illustration on the extent of accuracy on FNOs of 12 and 20 filters inside each Fourier layer.

5 10 15 20 25 30

5

10

15

20

25

30

0.5

1

1.5

2

2.5

3

3.5

4

10
-4

5 10 15 20 25 30

5

10

15

20

25

30

0.5

1

1.5

2

2.5

3

3.5

4

10
-4

5 10 15 20 25 30

5

10

15

20

25

30

0.5

1

1.5

2

2.5

3

3.5

4

10
-4

5 10 15 20 25 30

5

10

15

20

25

30

2

4

6

8

10

12

14

10
-7

5 10 15 20 25 30

5

10

15

20

25

30

2

4

6

8

10

12

14

10
-7

Figure 4.9: Figures of pressure and errors of p10
pred in the test realization 4 in Experiment 2. Top:

pressure. Bottom: absolute difference of pressure compared to reference. First column: FNO with
12 filters. Second column: FNO with 20 filters. Right: fine-scale pressure p10

ref.

73

The temporal stability trend of different number of filters is depicted in Figure 4.10. As shown

in the Figure, although the FNO using 12 filters in the Fourier layers gains better stability in time,

the FNO with 20 filters in each Fourier layer tends to be more stable in later phase of saturation

simulation. On the other end, in general, all the FNO trained can yield an acceptable output for the

simulation. The only fly in the ointment is that even by introducing second order derivatives into

loss function, a neural network can still have "peak" errors at particular areas as shown in Figure

4.9, which will likely result in some discontinuity on saturation fields on near well locations as

shown in Figure 4.11. Nevertheless, the predicted pressure fields, even ones predicted by FNO

consisting of only 12 filters can maintain clear water front when simulating for saturation.

4.3.3 Discussion

In the above two experiments, the usefulness of U-net and FNO in our proposed workflow has

been validated. Both workflow can meet primary requirement on the prediction of intermediate

fluid states such as pressure or flux velocity. By specifying physics-guided loss function, the

second hybrid methodology utilizing FNO can serve as a surrogate model in the IMPES approach

for simulation of saturation.

In this section, we give a brief discussion on the complexity and efficiency of different work-

flows developed compared with the benchmark simulator used (IMPES). For all neural networks

constructed in this chapter, the training and testing process are undertaken by the same CPU (Intel

Core i7-5700HQ CPU @ 2.7GHz). In Table 4.3, we list related CPU costs regarding different

modules in the proposed workflows. For the convenience of comparison, we also summarize the

predicting and successive simulation metrics in Table 4.4.

Even thoughN FNO
p is the neural network with the largest number of parameters, it has superior

performance in both training efficiency over N UNet
p and N UNet

v . For mild fidelity of the two-phase

flow dynamics, the workflow combining FNO and explicit solver will be an attractive choice,

balancing accuracy and efficiency.

74

1 2 3 4 5 6 7 8 9 10

Time steps

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

P
e

rc
e
n

ta
g
e

 r
e

la
ti
v
e

 L
2
 e

rr
o

r
(%

)

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

1 2 3 4 5 6 7 8 9 10

Time steps

0.5

1

1.5

2

2.5

3

3.5

P
e

rc
e
n

ta
g
e

 r
e

la
ti
v
e

 L
2
 e

rr
o

r
(%

)

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

1 2 3 4 5 6 7 8 9 10

Time steps

0.14

0.16

0.18

0.2

0.22

0.24

0.26

P
e
rc

e
n
ta

g
e
 r

e
la

ti
v
e
 L

2
 e

rr
o
r

(%
)

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

1 2 3 4 5 6 7 8 9 10

Time steps

0.5

1

1.5

2

2.5

3

3.5

P
e
rc

e
n
ta

g
e
 r

e
la

ti
v
e
 L

2
 e

rr
o
r

(%
)

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

1 2 3 4 5 6 7 8 9 10

Time steps

0.15

0.2

0.25

0.3

0.35

0.4

P
e
rc

e
n
ta

g
e
 r

e
la

ti
v
e
 L

2
 e

rr
o
r

(%
)

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

1 2 3 4 5 6 7 8 9 10

Time steps

0.5

1

1.5

2

2.5

3

3.5

4

P
e
rc

e
n
ta

g
e
 r

e
la

ti
v
e
 L

2
 e

rr
o
r

(%
)

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

Figure 4.10: Figures of temporal FNO prediction and simulation error for different test realizations
in Experiment 2. Left: pressure prediction error. Right: saturation simulation error. First row: 12
filters. Second row: 16 filters. Third row:20 filters.

75

5 10 15 20 25 30

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30

5

10

15

20

25

30

0

0.05

0.1

0.15

5 10 15 20 25 30

5

10

15

20

25

30

0

0.05

0.1

0.15

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.6

2.65

2.7

2.75

2.8

2.85

2.9

Figure 4.11: Figures of final time saturation and streamline for test realization case 4 in Experiment
2. Top row: saturation. Second row: error of saturation. Bottom row: streamline. First column:
FNO with 12 filters. Second column: FNO with 20 filters. Third column: fine-scale reference.

Module Trainable Training Prediction time (s)
name parameter # time (s) p v
N UNet
p 483,585 6088.76 0.26 —
N UNet
v 485,154 4622.84 — 0.27
N FNO
p 1,188,417 3984.79 0.78 —

Table 4.3: CPU time cost related to different modules in proposed workflow. Prediction time is
based on a scale of 80 test cases. The time costs involving numerical simulator is calculated by an
average of 10 simulation on realizations.

76

Model Mean prediction errors(%) Mean simulation errors(%)
enp or env e10

p or e10
v ens e10

s

N UNet
p 1.47 1.71 6.58 9.71
N UNet
v 0.89 1.34 0.30 0.53
N FNO
p 0.18 0.19 2.05 2.87

Table 4.4: Summary of the best prediction and simulation metrics of different neural network
modules.

77

5. SUMMARY AND CONCLUSIONS

Hereinafter, we conclude this dissertation with a brief summary.

In Chapter 2, we investigated the non-local multicontinuum (NLMC) upscaling method for a

dual continuum model in fractured porous media. Localized multiscale basis functions that sepa-

rate each continuum are constructed. To find the basis, we solve local problems subject to energy

minimization constraints in oversampling coarse regions. It is showed that the basis functions

equip the method with coarse mesh convergence. Some numerical examples are presented to sup-

port the theory. The numerical examples also indicate that the proposed method provides accurate

and efficient coarse-grid approximation.

In Chapter 3, we explore the connections between POD-based model reduction and Deep

Learning methodologies for reservoir simulation. In our novel approach, the construction of the

POD modes leads to degrees of freedom having physical meanings (e.g., represent the solution

values at selected locations). This is an important step as this provides a natural framework for

applying deep learning techniques in the context of reservoir simulation. Especially, nodal ba-

sis functions make the interpolation between data-rich and data-deficient models possible, which

is also tested. Our results show that multi-layer network provides an accurate approximation for

the solution of the two-phase flow problem. Moreover, by taking in available observation data

combined with computational data, the reduce-order model is modified.

In Chapter 4, we propose hybrid workflow utilizing both deep learning techniques and tra-

ditional numerical simulating methodology to improve the efficiency of reservoir simulation for

multi-phase flow. The coupled nonlinear system is decomposed into pressure/flux and saturation

solvers. The efficiency of explicit saturation simulator is preserved. On constructing a surrogate

model for predicting pressure/flux, the advantage of image-based neural networks in maintaining

spatial and temporal patterns is utilized. The output of the neural networks are fed into an explicit

numerical solvers for saturation simulation. Physics-constraint is introduced as loss penalty to im-

pose the match of network output with embedded physics in fluid dynamics. Our results show that,

78

by training image-based neural networks with physics-based loss functions, the evolution of fluid

dynamics can be predicted accurately and with certain temporal stability maintained. The results

also suggest that the proposed hybrid deep learning numerical workflow is capable of providing

accurate approximation for solutions in nonlinear multi-phase flow problems with considerable

efficiency.

79

REFERENCES

[1] G. Voneiff, S. Sadeghi, P. Bastian, B. Wolters, J. Jochen, B. Chow, K. Chow, M. Gatens, et al.,

“Probabilistic forecasting of horizontal well performance in unconventional reservoirs using

publicly-available completion data,” in SPE Unconventional Resources Conference, Society

of Petroleum Engineers, 2014.

[2] M. Karimi-Fard and A. Firoozabadi, “Numerical simulation of water injection in 2d fractured

media using discrete-fracture model,” SPE-71615-MS, 2001.

[3] M. Karimi-Fard, L. Durlofsky, and K. Aziz, “An efficient discrete-fracture model applicable

for general-purpose reservoir simulators,” SPE-88812-PA, 2004.

[4] T. Garipov, M. Karimi-Fard, and H. Tchelepi, “Discrete fracture model for coupled flow and

geomechanics,” Computational Geosciences, vol. 20, no. 1, pp. 149–160, 2016.

[5] E. Gildin, T. Lopez, et al., “Closed-loop reservoir management: Do we need complex mod-

els?,” in SPE Digital Energy Conference and Exhibition, Society of Petroleum Engineers,

2011.

[6] Z. M. Alghareeb and J. Williams, “Optimum decision-making in reservoir management using

reduced-order models,” SPE, 2013.

[7] L. Durlofsky, “Numerical calculation of equivalent grid block permeability tensors for het-

erogeneous porous media,” Water Resour. Res., vol. 27, pp. 699–708, 1991.

[8] X. Wu, Y. Efendiev, and T. Hou, “Analysis of upscaling absolute permeability,” Discrete and

Continuous Dynamical Systems, Series B., vol. 2, pp. 158–204, 2002.

[9] T. Arbogast, J. Douglas, Jr, and U. Hornung, “Derivation of the double porosity model of sin-

gle phase flow via homogenization theory,” SIAM Journal on Mathematical Analysis, vol. 21,

no. 4, pp. 823–836, 1990.

80

[10] G. Barenblatt, I. P. Zheltov, and I. Kochina, “Basic concepts in the theory of seepage of ho-

mogeneous liquids in fissured rocks [strata],” Journal of applied mathematics and mechanics,

vol. 24, no. 5, pp. 1286–1303, 1960.

[11] H. Kazemi, L. Merrill Jr, K. Porterfield, P. Zeman, et al., “Numerical simulation of water-

oil flow in naturally fractured reservoirs,” Society of Petroleum Engineers Journal, vol. 16,

no. 06, pp. 317–326, 1976.

[12] K. Pruess and T. Narasimhan, “On fluid reserves and the production of superheated steam

from fractured, vapor-dominated geothermal reservoirs,” Journal of Geophysical Research:

Solid Earth, vol. 87, no. B11, pp. 9329–9339, 1982.

[13] J. Warren, P. J. Root, et al., “The behavior of naturally fractured reservoirs,” Society of

Petroleum Engineers Journal, vol. 3, no. 03, pp. 245–255, 1963.

[14] Y.-S. Wu, K. Pruess, et al., “A multiple-porosity method for simulation of naturally fractured

petroleum reservoirs,” SPE Reservoir Engineering, vol. 3, no. 01, pp. 327–336, 1988.

[15] W. E and B. Engquist, “Heterogeneous multiscale methods,” Comm. Math. Sci., vol. 1, no. 1,

pp. 87–132, 2003.

[16] A. Abdulle, “On a priori error analysis of fully discrete heterogeneous multiscale fem,” SIAM

J. Multiscale Modeling and Simulation, vol. 4, no. 2, pp. 447–459, 2005.

[17] W. E, P. Ming, and P. Zhang, “Analysis of the heterogeneous multiscale method for elliptic

homogenization problems,” J. Amer. Math. Soc., vol. 18, no. 1, pp. 121–156, 2005.

[18] T. Hughes, G. Feijóo, L. Mazzei, and J.-B. Quincy, “The variational multiscale method -

a paradigm for computational mechanics,” Comput. Methods Appl. Mech Engrg., vol. 127,

pp. 3–24, 1998.

[19] T. Hughes and G. Sangalli, “Variational multiscale analysis: the fine-scale Green’s function,

projection, optimization, localization, and stabilized methods,” SIAM Journal on Numerical

Analysis, vol. 45, no. 2, pp. 539–557, 2007.

81

[20] O. Iliev, R. Lazarov, and J. Willems, “Variational multiscale finite element method for flows

in highly porous media,” Multiscale Model. Simul., vol. 9, no. 4, pp. 1350–1372, 2011.

[21] V. Calo, Y. Efendiev, and J. Galvis, “A note on variational multiscale methods for high-

contrast heterogeneous porous media flows with rough source terms,” Advances in water

resources, vol. 34, no. 9, pp. 1177–1185, 2011.

[22] T. Hou and X. Wu, “A multiscale finite element method for elliptic problems in composite

materials and porous media,” J. Comput. Phys., vol. 134, pp. 169–189, 1997.

[23] Y. Efendiev, T. Hou, and X. Wu, “Convergence of a nonconforming multiscale finite element

method,” SIAM J. Numer. Anal., vol. 37, pp. 888–910, 2000.

[24] Y. Efendiev, J. Galvis, and X. Wu, “Multiscale finite element methods for high-contrast

problems using local spectral basis functions,” Journal of Computational Physics, vol. 230,

pp. 937–955, 2011.

[25] Y. Efendiev, J. Galvis, and T. Hou, “Generalized multiscale finite element methods,” Journal

of Computational Physics, vol. 251, pp. 116–135, 2013.

[26] E. Chung, Y. Efendiev, and G. Li, “An adaptive GMsFEM for high-contrast flow problems,”

Journal of Computational Physics, vol. 273, pp. 54–76, 2014.

[27] E. Chung, Y. Efendiev, and T. Y. Hou, “Adaptive multiscale model reduction with generalized

multiscale finite element methods,” Journal of Computational Physics, vol. 320, pp. 69–95,

2016.

[28] Y. Efendiev, E. Gildin, and Y. Yang, “Online adaptive local-global model reduction for flows

in heterogeneous porous media,” Computation, vol. 4, no. 2, p. 22, 2016.

[29] E. T. Chung, Y. Efendiev, T. Leung, and M. Vasilyeva, “Coupling of multiscale and multi-

continuum approaches,” GEM-International Journal on Geomathematics, vol. 8, no. 1, pp. 9–

41, 2017.

82

[30] M. Wang, S. W. Cheung, E. T. Chung, M. Vasilyeva, and Y. Wang, “Generalized multiscale

multicontinuum model for fractured vuggy carbonate reservoirs,” Journal of Computational

and Applied Mathematics, vol. 366, p. 112370, 2020.

[31] S. W. Cheung, E. T. Chung, Y. Efendiev, W. T. Leung, and M. Vasilyeva, “Constraint en-

ergy minimizing generalized multiscale finite element method for dual continuum model,”

Communications in Mathematical Sciences, vol. 18, pp. 663–685, 2020.

[32] J. S. R. Park, S. W. Cheung, T. Mai, and V. H. Hoang, “Multiscale simulations for up-

scaled multi-continuum flows,” Journal of Computational & Applied Mathematics, vol. 374,

p. 112782, 2020.

[33] J. S. R. Park, S. W. Cheung, and T. Mai, “Multiscale simulations for multi-continuum richards

equations,” arXiv preprint, arXiv:2010.09181, 2020.

[34] E. T. Chung, Y. Efendiev, and W. T. Leung, “Constraint energy minimizing generalized mul-

tiscale finite element method,” Computer Methods in Applied Mechanics and Engineering,

vol. 339, pp. 298–319, 2018.

[35] E. Chung, Y. Efendiev, and W. T. Leung, “Constraint energy minimizing generalized multi-

scale finite element method in the mixed formulation,” Computational Geosciences, vol. 22,

no. 3, pp. 677–693, 2018.

[36] S. W. Cheung, E. T. Chung, and W. T. Leung, “Constraint energy minimizing generalized

multiscale discontinuous galerkin method,” Journal of Computational & Applied Mathemat-

ics, vol. 380, p. 112960, 2020.

[37] S. W. Cheung, E. T. Chung, Y. Efendiev, and W. T. Leung, “Explicit and energy-conserving

constraint energy minimizing generalized multiscale discontinuous galerkin method for wave

propagation in heterogeneous media,” arXiv preprint, arXiv:2009.00991, 2020.

[38] C. Xiao, O. Leeuwenburgh, and H. e. a. Lin, “Non-intrusive subdomain pod-tpwl for reservoir

history matching,” Computational Geosciences, 2018.

83

[39] J. Jansen and L. Durlofsky, “Use of reduced-order models in well control optimization,” J.

Optim Eng (2017) 18: 105., vol. 18, no. 105, 2017.

[40] L. J. D. Rui Jiang, “Implementation and detailed assessment of a gnat reduced-order model

for subsurface flow simulation„” Journal of Computational Physics, vol. 379, pp. 192–213,

2019.

[41] X. Tan, E. Gildin, and H. e. a. Florez, “Trajectory-based deim (tdeim) model reduction ap-

plied to reservoir simulation,” Comput Geosci, 2018.

[42] T. S, C. KT, and D. LJ., “Error modeling for surrogates of dynamical systems using machine

learning.,” Int J Numer Meth Engng., vol. 112, pp. 1801–1827., 2017.

[43] J. N. Kani and A. Elsheikh, “Reduced-order modeling of subsurface multi-phase flow models

using deep residual recurrent neural networks,” Transp Porous Media, 2018.

[44] M. Ghasemi and E. Gildin, “Model order reduction in porous media flow simulation using

quadratic bilinear formulation,” Computational Geosciences, vol. 20, no. 3, pp. 723–735,

2016.

[45] Trehan, Sumeet, and L. J. Durlofsky, “Trajectory piecewise quadratic reduced-order model

for subsurface flow, with application to pde-constrained optimization,” Journal of Computa-

tional Physics, vol. 326, pp. 446–473., 2016.

[46] G. Cybenko, “Approximations by superpositions of a sigmoidal function,” Mathematics of

Control, Signals and Systems, vol. 2, pp. 183–192, 1989.

[47] K. Hornik, “Approximation capabilities of multilayer feedforward networks,” Neural net-

works, vol. 4, no. 2, pp. 251–257, 1991.

[48] B. C. Csáji, “Approximation with artificial neural networks,” Faculty of Sciences, Etvs Lornd

University, Hungary, vol. 24, p. 48, 2001.

[49] M. Telgarsky, “Benefits of depth in neural networks,” arXiv preprint arXiv:1602.04485, 2016.

84

[50] H. Mhaskar, Q. Liao, and T. Poggio, “Learning functions: when is deep better than shallow,”

arXiv preprint arXiv:1603.00988, 2016.

[51] B. Hanin, “Universal function approximation by deep neural nets with bounded width and

relu activations,” arXiv preprint arXiv:1708.02691, 2017.

[52] E. Weinan and B. Yu, “The deep ritz method: A deep learning-based numerical algorithm for

solving variational problems,” Communications in Mathematics and Statistics, vol. 6, no. 1,

pp. 1–12, 2018.

[53] Z. Li and Z. Shi, “Deep residual learning and pdes on manifold,” arXiv preprint

arXiv:1708.05115, 2017.

[54] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep

learning framework for solving forward and inverse problems involving nonlinear partial

differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 2019.

[55] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel,

“Backpropagation applied to handwritten zip code recognition,” Neural computation, vol. 1,

no. 4, pp. 541–551, 1989.

[56] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” arXiv preprint arXiv:1409.1556, 2014.

[57] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical im-

age segmentation,” in International Conference on Medical image computing and computer-

assisted intervention, pp. 234–241, Springer, 2015.

[58] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,

P. Nguyen, T. N. Sainath, et al., “Deep neural networks for acoustic modeling in speech

recognition: The shared views of four research groups,” IEEE Signal processing magazine,

vol. 29, no. 6, pp. 82–97, 2012.

85

[59] Z. Zhong, A. Y. Sun, and H. Jeong, “Predicting co2 plume migration in heterogeneous forma-

tions using conditional deep convolutional generative adversarial network,” Water Resources

Research, vol. 55, no. 7, pp. 5830–5851, 2019.

[60] S. Mo, Y. Zhu, N. Zabaras, X. Shi, and J. Wu, “Deep convolutional encoder-decoder networks

for uncertainty quantification of dynamic multiphase flow in heterogeneous media,” Water

Resources Research, vol. 55, no. 1, pp. 703–728, 2019.

[61] H. Klie and H. Florez, “Data-driven prediction of unconventional shale-reservoir dynamics,”

SPE Journal, vol. 25, no. 05, pp. 2564–2581, 2020.

[62] Y. Zhu and N. Zabaras, “Bayesian deep convolutional encoder–decoder networks for surro-

gate modeling and uncertainty quantification,” Journal of Computational Physics, vol. 366,

pp. 415–447, 2018.

[63] M. Tang, Y. Liu, and L. J. Durlofsky, “A deep-learning-based surrogate model for data assim-

ilation in dynamic subsurface flow problems,” Journal of Computational Physics, vol. 413,

p. 109456, 2020.

[64] J. Douglas Jr and T. Arbogast, “Dual porosity models for flow in naturally fractured reser-

voirs,” Dynamics of Fluids in Hierarchical Porous Media, pp. 177–221, 1990.

[65] A. L. Maas, A. Y. Hannun, A. Y. Ng, et al., “Rectifier nonlinearities improve neural network

acoustic models,” in Proc. icml, vol. 30.

[66] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in Proceedings

of the fourteenth international conference on artificial intelligence and statistics, pp. 315–

323, 2011.

[67] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[68] F. Chollet et al., “Keras.” https://keras.io, 2015.

[69] F. Chollet et al., Deep Learning with Python - 1st Edition. Manning Publications, 2017.

86

https://keras.io

[70] J. Sheldon, W. Cardwell Jr, et al., “One-dimensional, incompressible, noncapillary, two-

phase fluid flow in a porous medium,” Transactions of the AIME, vol. 216, no. 01, pp. 290–

296, 1959.

[71] H. Stone, A. Garder Jr, et al., “Analysis of gas-cap or dissolved-gas drive reservoirs,” Society

of Petroleum Engineers Journal, vol. 1, no. 02, pp. 92–104, 1961.

[72] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-

kumar, “Neural operator: Graph kernel network for partial differential equations,” 2020.

[73] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-performance deep

learning library,” Advances in neural information processing systems, vol. 32, pp. 8026–8037,

2019.

87

	ABSTRACT
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Literature
	Organization of this dissertation

	 ANALYSIS OF NON-LOCAL MULTICONTINUUM UPSCALING FOR DUAL CONTINUUM MODEL
	Dual continuum model
	Method description
	Convergence analysis
	Numerical results
	Experiment 1
	Experiment 2

	DEEP MODEL REDUCTION-MODEL LEARNING FOR RESERVOIR SIMULATION Republished with permission of Society of Petroleum Engineers (SPE), from ''Deep Model Reduction-Model Learning for Reservoir Simulation'', by Jingyan Zhang, Siu Wun Cheung, Yalchin Efendiev, Eduardo Gildin, and Eric T. Chung, 2019. SPE Reservoir Simulation Conference, Copyright [2019] by Society of Petroleum Engineers; permission conveyed through Copyright Clearance Center, Inc.
	Preliminaries
	POD-DEIM
	Proper Orthogonal Decomposition
	Discrete Empirical Interpolation Method

	Nodal basis functions

	Deep global model reduction learning
	Main idea
	Network structure

	Numerical results
	Experiment 1
	25 nodal basis case
	5 nodal basis case

	Experiment 2
	25 nodal basis case
	5 nodal basis case

	Experiment 3

	IMAGE-BASED PHYSICS-CONSTRAINT WORKFLOW FOR MULTI-PHASE FLOW SIMULATION IN HETEROGENEOUS MEDIA
	Preliminaries
	Governing equation
	IMPES

	Methodology
	Image-based neural networks
	U-Net
	Fourier Neural Operator

	Loss function

	Numerical results
	Experiment 1
	Experiment 2
	Discussion

	SUMMARY AND CONCLUSIONS
	REFERENCES

