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ABSTRACT

In this dissertation, we propose novel Bayesian machine learning models to solve various

graph analytics problems, including graph representation learning, graph generative modeling,

structured semi-supervised learning, and relational learning. Our proposed methods model different

components of a graph including nodes, node attributes, and the graph structure, as distributions.

More specifically, our proposed methods are Bayesian generative models with robust variational

inference and hence are equipped with natural uncertainty estimates.

First, we propose Semi-Implicit Graph Variational Autoencoders (SIG-VAE) (Chapter 3) for

probabilistic representation learning in graph-structured data. SIG-VAE employs a hierarchical

variational framework to enable neighboring node distribution sharing for better generative modeling

of graph dependency structure, together with a Bernoulli-Poisson link decoder. SIG-VAE integrates

a carefully designed generative model, well suited to model real-world sparse graphs, and a

sophisticated semi-implicit variational inference network, which propagates the graph structural

information and distribution uncertainty to capture complex posteriors which may exhibit heavy

tails, multiple modes, and skewness. SIG-VAE provides highly interpretable latent representations

and significantly outperforms state-of-the-art methods on several different graph analytic tasks.

In addition, we propose Bayesian Graph Neural Networks with Graph DropConnect (Chapter

4) by introducing a unified framework for adaptive connection sampling in graph neural networks

(GNNs), called Graph DropConnect (GDC), that generalizes existing stochastic regularization

methods for training GNNs. The proposed framework not only alleviates over-smoothing and over-

fitting tendencies of deep GNNs, but also enables learning with uncertainty in graph analytic tasks

with GNNs. Instead of using fixed sampling rates or hand-tuning them as model hyperparameters

as in existing stochastic regularization methods, our GDC can be trained jointly with GNN model

parameters. GNN training with GDC is shown to be mathematically equivalent to an efficient

approximation of training Bayesian GNNs.
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Finally, we propose MoReL: Multi-modal Relational Learning (Chapter 5) to infer hidden

relations among features in heterogeneous views using a fused Gromov-Wasserstein (FGW) reg-

ularization between latent representations of corresponding views. Such an optimal transport

regularization in the deep Bayesian generative model not only allows incorporating view-specific

side information, either with graph-structured or unstructured data in different views, but it also in-

creases model flexibility with the distribution-based regularization. We apply MoReL to integrative

analysis in multi-omics data inferring molecular interactions.
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1. INTRODUCTION

Real-world data often exhibits structure that can be formalized as a graph with complex inter-

actions and relationships between objects. Images, transportation networks, social networks, and

gene co-expression networks are a few example datasets that can be modeled as graphs, where

each node represents an agent (e.g., pixel, road intersection, user, and gene) and the edges manifest

the interactions between the agents [28, 45, 76]. Analyzing graph data is an important machine

learning task with a wide variety of applications. For example, rumor source detection in social

networks could be formulated as semi-supervised node classification problem on graphs, while drug

repurposing can be cast as link prediction problem in a bipartite graph.

A key problem in machine learning is- how can we incorporate structure of data into models? A

common way, specifically in deep learning, is introducing architectural inductive bias into a deep

neural network. These biases structure the computations in a deep neural network to faithfully

capture the underlying structure in data. For example, convolutional neural networks (CNNs) take

advantage of the grid structure in data and learn localized features using shared kernels. Graph

neural networks (GNNs) [28, 56, 60] follow the same principle to extract local features through

localized computations, usually in the form of message passing between nodes. Due to high

expressive power and scalable computations, GNN-based approaches enjoyed immense success

in graph analytic tasks. Link prediction [55, 117], representation learning [110, 13, 43], and node

classification [99, 111, 61] are some of the graph analytic tasks that have been addressed with such

models.

Despite their empirical success over traditional graph analytic methods, the vast majority of

GNN-based models can be viewed as deterministic functions. These models produce point es-

timates of parameters and predictions, and do not produce uncertainty information nor possess

interpretability of Bayesian probabilistic models. Model uncertainty and Bayesian interpretability

are indispensable in many graph applications usually involving decision making. For example, test-

ing link prediction results in drug-disease graphs requires expensive and prolonged pharmaceutical
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tests. Knowing the confidence level of prediction in such scenarios is invaluable.

The main goal of this dissertation to develop Bayesian probabilistic models for high-dimensional

graph-structured data, addressing a variety of important graph analytic tasks. Our proposed models

offer interpertability of probabilistic models while enjoying the scalability of deep models. Our

contributions are guided by the following research questions:

• Research Question 1: Can we develop a scalable unsupervised Bayesian graph representa-

tion model than infers complex implicit posteriors?

In Chapter 3, we introduce a novel unsupervised graph representation learning model called

semi-implicit graph variational autoencoder (SIG-VAE). Combining the advantages of

semi-implicit hierarchical variational distribution and variational graph autoencoder with a

Bernoulli-Poisson link decoder, SIG-VAE enriches the representation power of the posterior

distribution of node embedding given graphs so that both the graph structural and node at-

tribute information can be best captured in the latent space. By providing a surrogate evidence

lower bound that is asymptotically exact, the SIG-VAE model inference is amenable via

stochastic gradient descent, without compromising the flexbility of its variational distribution.

Our experiments with different graph datasets shows the promising capability of SIG-VAE

in a range of graph analysis applications with interpretable latent representations, thanks to

the hierarchical construction that diffuses the distributions of neighborhood nodes in given

graphs.

• Research Question 2: How can we determine model uncertainty in graph neural networks?

Can we address over-smoothing and over-fitting at the same time?

In Chapter 4, we propose a unified framework for adaptive connection sampling in GNNs that

generalizes existing stochastic regularization techniques for training GNNs. Our proposed

method, Graph DropConnect (GDC), not only alleviates over-smoothing and over-fitting

tendencies of deep GNNs, but also enables learning with uncertainty in graph analytic tasks

with GNNs. Instead of using fixed sampling rates, our GDC technique parameters can be
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trained jointly with GNN model parameters. We further show that training a GNN with GDC

is equivalent to an approximation of a Bayesian GNN. We demonstrate significant advantages

of GDC both in semi-supervised node classification and uncertainty quantification.

• Research Question 3: Can we develop a generative model to learn hidden relations among

features in heterogeneous views of data without any pre-known relations across views?

In Chapter 5, we have introduce multi-modal relational learning (MoReL), a novel Bayesian

deep generative model that efficiently infers hidden relations across heterogeneous views of

data. By using a fused Gromov-Wasserstein (FGW) based decoder, MoReL is more flexible

compared to the existing relational learning models and can integrate both structured and

unstructured views of data while accounting for arbitrarily permutation and/or transformation

caused by processing features with different deep functions across the views. Our experi-

ments on real-world biological datasets demonstrates substantial improvement in inferring

meaningful relations as well as improving prediction sensitivity compared to the competing

methods.
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2. BACKGROUND

In this chapter, we will provide a brief introduction to a few topics that are extensively used in

the dissertation.

2.1 Graph neural networks

Graph neural networks are a class deep models designed to process data defined over nodes of a

graph1. Given the graph structure and node features, a GNN layer computes the new set of features

based on the input features and graph structure. GNNs could be divided into two main categories:

1) spectral GNNs which are defined in the graph frequency domain, and 2) message-passing-based

GNNs that are defined in the graph domain. While spectral GNNs offer more interpertable functions,

message-passing-based GNNs show better scalability and are more suitable for large-scale graphs.

Figure 2.1 depicts the computational graph of a two layer message-passing-based GNN. In this

dissertation, we focus on message-passing-based GNNs and refer to them as GNNs.

Assume that A ∈ Rn×n is the adjacency matrix of an undirected graph with n nodes, D ∈ Rn×n

is the diagonal degree matrix, and H(l) = [h
(l)
1 ,h

(l)
2 , . . . ,h

(l)
n ] are nodes’ attributes at layer l with

H(0) ∈ Rn×k0 being the input features. Then, a general GNN layer, without skip connections, is

defined as:

h
(l+1)
i = σ

f
h

(l)
i ,

∑
j∈N (i)

αi,j h
(l)
j

 (2.1)

whereN (i) is the first-hop neighborhood of node i, αi,j is the non-learnable or learnable (depending

on the GNN architecture) weighting factor that is a function of graph structure, f is the aggregation

function, and σ is the activation function. The main difference between GNN architectures is the

aggregation function. The most commonly used aggregation function is mean followed by a linear

mapping which leads to a architecture known as graph convolutional neural networks (GCN) [56].

1There are several GNN architectures that could incorporate edge features. We do not include them here, as they are
out of scope of this dissertation.
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Figure 2.1: Illustration of the computational graph of a two layer message-passing-based GNN. x
denotes the node attributes, and f denotes the aggregation function.

More precisely, a GCN layer is defined as follows [43]:

h
(l+1)
i = σ

(
W(l) ·MEAN

(
{h(l)

i } ∪ {h
(l)
j }j∈N (i)

))
, (2.2)

where W is learnable weight matrix. With a few simple mathematical calculations, we can re-

formulate a GCN layer as follows [56]:

H(l+1) = σ
(
D̃−

1
2 Ã D̃

1
2 H(l) W(l)

)
, (2.3)

where Ã = A + In, and D̃ is a diagonal matrix with D̃i,i =
∑

j Ai,j .

While any GNN architecture could be used in our proposed models, we will mostly use GCN in

our experiments. Further details will be discussed in each chapter.

2.2 Bayesian models and variational inference

In machine learning, we are interested in learning probabilistic models that faithfully describes

the data. The main assumption in probabilistic models is uncertainty over values of the variables.

This probabilistic view requires learning probability distributions of variables as opposed to point

estimates in deterministic models. A methodical approach to incorporate a priori knowledge about

variables in the model, is through a Bayesian framework. In Bayesian models, we choose a prior

distribution over the latent variable. This prior distribution summarizes our knowledge about
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variables. In the learning process, we update the prior distribution to posterior distribution using the

observed data. In Bayesian framework, the distribution of data is governed by the latent variables.

Therefore, learning the posterior distribution of latent variables and conditional distribution of data,

completely describes the marginal distribution of data. More specifically, assume x is the observed

data and z is the latent (hidden) variable. The marginal distribution of data, also known as evidence,

is defined as follows:

p(x) =

∫
p(x | z) p(z) dz. (2.4)

Inference in Bayesian models develop into computing the posterior of latent variables p(z | x).

There are two main inference methods for Bayesian models: 1) Monte-Carlo methods, and 2)

Variational Inference (VI). Monte-Carlo methods estimate the posterior from the samples obtained

from a Markov chain with the posterior as the stationary distribution. Although Monte-Carlo

methods are exact, they are computationally expensive and generally cannot be deployed in high-

dimensional problems. Variational inference approximates the posterior by solving an optimization

problem. Specifically, VI infers the optimized member of a family of distributionsH by solving the

following optimization:

arg min
q(z)∈H

KL (q(z) || p(z | x)), (2.5)

where KL is Kullback-Leibler divergence. Although the above objective is intuitive, it is intractable.

Therefore, an alternative objective, which is commonly knwon as Evidence Lower Bound (ELBO),

is used to infer the approximate posterior. ELBO is defined as follows:

ELBO(q) = Eq(z)[logp(x | z)]−KL[q(z) || p(z)], (2.6)

where Eq(z) is expectation with respect to q(z).

In order to use VI, we have to parametrize conditional data distribution p(x | z), and approximate
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posterior q(z). In classical VI approximate posterior distributions are optimized for each sample,

hence the number of parameters linearly grows with the number of observations. A common

solution, known as amortized VI or autoencoding variational Bayes, for circumventing this problem

is learning efficient mapping from samples to parameters of the approximate posterior distributions.

This mapping is usually parametrized by a deep neural network.

We will use Bayesian modeling and VI in all of our proposed methods. We will further discuss

this topic in each chapter.
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3. SEMI-IMPLICIT GRAPH VARIATIONAL AUTO-ENCODERS*

3.1 Introduction

The main challenge for analyzing graph datasets for link prediction, clustering, or node classifi-

cation, is how to deploy graph structural information in the model. Graph representation learning

aims to summarize the graph structural information by a feature vector in a low-dimensional latent

space, which can be used in downstream analytic tasks.

While the vast majority of existing methods assume that each node is embedded to a deterministic

point in the latent space [7, 2, 81, 92, 38, 43, 17], modeling uncertainty is of crucial importance in

many applications, including physics and biology. For example, when link prediction in Knowledge

Graphs is used for driving expensive pharmaceutical experiments, it would be beneficial to know

what is the confidence level of a model in its prediction. To address this, variational graph auto-

encoder (VGAE) [55] embeds each node to a random variable in the latent space. Despite its

popularity, 1) the Gaussian assumption imposed on the variational distribution restricts its variational

inference flexibility when the true posterior distribution given a graph clearly violates the Gaussian

assumption; 2) the adopted inner-product decoder restricts its generative model flexibility. While

recent study tries to address the first problem by changing the prior distribution but does not show

much practical success [27], the latter one is not well-studied yet to the best of our knowledge.

Inspired by recently developed semi-implicit variational inference (SIVI) [113] and normalizing

flow (NF) [85, 54, 78], which offer the interesting combination of flexible posterior distribution and

effective optimization, we propose a hierarchical variational graph framework for node embedding

of graph structured data, notably increasing the expressiveness of the posterior distribution for

each node in the latent space. SIVI enriches mean-field variational inference with a flexible

(implicit) mixing distribution. NF transforms a simple Gaussian random variable through a sequence

of invertible differentiable functions with tractable Jacobians. While NF restricts the mixing

*Reprinted with permission from “Semi-Implicit Graph Variational Auto-Encoders” by A. Hasanzadeh, E. Haji-
ramezanali, K. Narayanan, N. Duffield, M. Zhou, and X. Qian. In Advances in Neural Information Processing Systems,
2019. Copyright 2019 by authors.
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distribution in the hierarchy to have an explicit probability density function, SIVI does not impose

such a constraint. Both SIVI and NF can model complex posterior distributions, which will help

when the underlying true embedded node distribution exhibits heavy tails and/or multiple modes.

We further argue that the graph structure cannot be fully exploited by the posterior distribution

from the trivial combination of SIVI and/or NF with VGAE, if not integrating graph neighborhood

information. On the other hand, it does not address the flexibility of the generative model as stated

as the second VGAE problem.

To address the aforementioned issues, instead of explicitly choosing the posterior distribution

family in previous works [55, 27], our hierarchical variational framework adopts a stochastic

generative node embedding model that can learn implicit posteriors while maintaining simple

optimization. Specifically, we innovate a semi-implicit hierarchical construction to model the

posterior distribution to best fit both the graph topology and node attributes given graphs. With

SIVI, even if the posterior is not tractable, its density can be evaluated with Monte Carlo estimation,

enabling efficient model inference on top of highly enhanced model flexibility/expressive power.

Our semi-implicit graph variational auto-encoder (SIG-VAE) can well model heavy tails, skewness,

multimodality, and other characteristics that are exhibited by the posterior but failed to be captured

by existing VGAEs. Furthermore, a Bernoulli-Poisson link function [119] is adopted in the decoder

of SIG-VAE to increase the flexibility of the generative model and better capture graph properties

of real-world networks that are often sparse. SIG-VAE facilitates end-to-end learning for various

graph analytic tasks evaluated in our experiments. For link prediction, SIG-VAE consistently

outperforms state-of-the-art methods by a large margin. It is also comparable with state-of-the-arts

when modified to perform two additional tasks, node classification and graph clustering, even though

node classification is more suitable to be solved by supervised learning methods. We further show

that the new decoder is able to generate sparse random graphs whose statistics closely resemble

those of real-world graph data. These results clearly demonstrate the great practical values of

SIG-VAE.
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3.2 Related works

Variational graph auto-encoders (VGAE), proposed by Kipf and Welling [55], embed each node

to a random variable in the latent space. VGAE, by extending the use of VAEs to graph structured

data, is shown to be capable of learning interpretable latent representations for undirected graphs and

getting competitive results in the link prediction task. However, the Gaussian assumption imposed

on the variational distribution restricts the model flexibility when the true posterior distribution

given a graph clearly violates the assumption. It also suffers from underestimating the variance of

the posterior, which is a well-known issue of vanilla VAEs.

To better model graph data using variational distributions in VGAEs, Davidson et al. [27]

proposes the hyperspherical VGAE (S-VGAE), in which, instead of the Gaussian assumption

for the posterior, the von Mises-Fisher distribution has been deployed. This assumption is not

well-suited for all classes of graphs. For example, it has been proven that graphs with hierarchical

tree-like structure have hyperbolic latent structures [75] which clearly cannot be represented well

in a hyperspherical space. While S-VGAE outperforms vanilla VGAE in some graphs including

Cora and Citeseer in terms of link prediction accuracy, its performance will be degraded for more

complex graphs such as Pubmed. On the other hand, changing the prior is not going to change the

flexibility and optimal solution of the generative model, but will affect the tightness of the ELBO

and hence how well the generative model parameters can be inferred. This shows the necessity

to develop a variational graph auto-encoders that not only is capable of inferring more flexible

posteriors to represent a broader range of graphs, but also is able to have more flexible decoder

especially for the real-world sparse graphs.

3.3 Background

3.3.1 Variational graph auto-encoder (VGAE).

Many node embedding methods derive deterministic latent representations [38, 43, 17]. By

expanding the variational auto-encoder (VAE) notion to graphs, [55] propose to solve the following

problem by embedding the nodes to Gaussian random vectors in the latent space.
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Problem 1. Given a graph G = (V , E) with the adjacency matrix A and M -dimensional

node attributes X ∈ RN×M , find the probability distribution of the latent representation of nodes

Z ∈ RN×L , i.e., p(Z |X,A).

Finding the true posterior, p(Z |X,A), is often difficult and intractable. In [55], it is approx-

imated by a Gaussian distribution, q(Z |ψ) =
∏N

i=1 qi(zi |ψi) and qi(zi |ψi) = N (zi |ψi) with

ψi = {µi, diag(σ2
i )}. Here, µi and σi are l-dimensional mean and standard deviation vectors

corresponding to node i, respectively. The parameters of q(Z |ψ), i.e., ψ = {ψi}Ni=1, are modeled

and learned using two graph convolutional neural networks (GCNs) [56]. More precisely, µ =

GCNµ(X,A), log σ = GCNσ(X,A) andµ and σ are matrices ofµi’s and σi’s, respectively. Given

Z, the decoder in VGAE is a simple inner-product decoder as p(Ai,j = 1 | zi, zj) = sigmoid(zi zTj ).

The parameters of the model are found by optimizing the well known evidence lower bound

(ELBO) [49, 11, 12, 102]: L = Eq(Z |ψ)[p(A |Z)] − KL[q(Z |ψ) || p(Z)]. Note that q(Z |ψ) here

is equivalent to q(Z |X,A). Despite promising results shown by VGAE, a well-known issue in

variational inference is underestimating the variance of the posterior. The reason behind this is the

mismatch between the representation power of the variational family to which q is restricted and the

complexity of the true posterior, in addition to the use of KL divergence, which is asymmetric, to

measure how different q is from the true posterior.

3.3.2 Semi-implicit variational inference (SIVI).

To well characterize the posterior while maintaining simple optimization, semi-implicit vari-

ational inference (SIVI) has been proposed by [113], which is also related to the hierarchical

variational inference [84] and auxiliary deep generative models [65]; see [113] for more details

about their connections and differences. It has been shown that SIVI can capture complex posterior

distributions like multimodal or skewed distributions, which can not be captured by a vanilla VI due

to its restricted exponential family assumption over both the prior and posterior in the latent space.

SIVI assumes that ψ, the parameters of the posterior, are drawn from an implicit distribution rather

than being analytic. This hierarchical construction enables flexible mixture modeling and allows to

have more complex posteriors while maintaining simple optimization for model inference. More
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specifically, Z ∼ q(Z |ψ) and ψ ∼ qφ(ψ) with φ denoting the distribution parameters to be inferred.

Marginalizing ψ out leads to the random variables Z drawn from a distribution family H indexed

by variational parameters φ, expressed as

H =

{
hφ(Z) : hφ(Z) =

∫
ψ

q(Z |ψ)qφ(ψ) dψ

}
. (3.1)

The importance of semi-implicit formulation is that while the original posterior q(Z |ψ) is

explicit and analytic, the marginal distribution, hφ(Z) is often implicit. Note that, if qφ equals a

delta function, then hφ is an explicit distribution. Unlike regular variational inference that assumes

independent latent dimensions, semi-implicit does not impose such a constraint. This enables the

semi-implicit variational distributions to model very complex multivariate distributions.

Since the marginal probability density function hφ(Z) is often intractable, SIVI derives a lower

bound for ELBO, as follows, to optimize the variational parameters.

L = EZ∼hφ(Z)

[
log

p(Y,Z)

hφ(Z)

]
= −KL(Eψ∼qφ(ψ)[q(Z |ψ)] || p(Z |Y)) + log p(Y)

≥ −Eψ∼qφ(ψ)KL(q(Z |ψ) || p(Z |Y)) + log p(Y)

= Eψ∼qφ(ψ)

[
EZ∼q(Z |ψ)

[
log

(
p(Y,Z)

q(Z |ψ)

)]]
= L(q(Z |ψ), qφ(ψ)),

(3.2)

where Y is the observations. The inequality EψKL(q(Z |ψ)||p(Z)) ≥ KL(Eψ[q(Z|ψ)]||p(Z)) has

been used to derive L. Optimizing this lower bound, however, could drive the mixing distribution

qφ(ψ) towards a point mass density. To address the degeneracy issue, SIVI adds a nonnegative

regularization term, leading to a surrogate ELBO that is asymptotically exact [113]. We will further

discuss this in the Appendix A.

3.3.3 Normalizing flow (NF).

NF [78] also enriches the posterior distribution families. Compared to SIVI, NF imposes explicit

density functions for the mixing distributions in the hierarchy while SIVI only requires qφ to be
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reparameterizable. This makes SIVI more flexible, especially when using it for graph analytics as

explained in the next section, since the SIVI posterior can be generated by transforming random

noise using any flexible function, for example a neural network.

3.4 Baselines: variational inference with VGAE

Before presenting our semi-implicit graph variational auto-encoder (SIG-VAE), we first intro-

duce two baseline methods that directly combines SIVI and NF with VGAE.

3.4.1 SIVI-VGAE

To address Problem 1 while well characterizing the posterior with modeling flexibility in the

VGAE framework, the naive solution is to take the semi-implicit variational distribution in SIVI for

modeling latent variables in VGAE, following the hierarchical formulation

Z ∼ q(Z |ψ), ψ ∼ qφ(ψ |X,A), (3.3)

by introducing the implicit prior distribution parametrized by ψ, which can be sampled from the

reparametrizable qφ(ψ |X,A). Such a hierarchical semi-implicit construct not only leads to flexible

mixture modeling of the posterior but also enables efficient model inference, for example, with φ

being parameterized by deep neural networks. In this framework, the features from multiple layers

of GNNs can be aggregated and then transformed via multiple fully connected layers after being

concatenated by random noise to derive the posterior distribution for each node separately. More

specifically, SIVI-VGAE injects random noise at C different stochastic fully connected layers for

each node independently:

hu = GNNu(A,CONCAT(X,hu−1)), for u = 1, . . . , L, h0 = 0

`
(i)
t = Tt(`

(i)
t−1, εt,h

(i)
L ), where εt ∼ qt(ε) for t = 1, . . . , C, `

(i)
0 = 0

µi(A,X) = gµ(`
(i)
C ,h

(i)
L ), Σi(A,X) = gΣ(`

(i)
C ,h

(i)
L ),

q(Z |A,X,µ,Σ) =
∏N

i=1q(zi |A,X,µi,Σi), q(zi |A,X,µi,Σi) = N (µi(A,X),Σi(A,X)),
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where Tt, gµ, and gσ are all deterministic neural networks, i is the node index, L is the number

of GNN layers, and εt is random noise drawn from the distribution qt. Note that in the equations

above, GNN is any type of existing graph neural networks, such as graph convolutional neural

network (GCN) [56], GCN with Chebyshev filters [28], GraphSAGE [43], jumping knowledge

(JK) networks [110], and graph isomorphism network (GIN) [111]. Given the GNNL output hL,

µi(A,X) and Σi(A,X) are now random variables rather than following vanilla VAE to assume

deterministic values.

In this way, however, the constructed implicit distributions may not capture the dependency

between neighboring nodes completely. Note that we consider SIVI-VGAE as a naive version of our

proposed SIG-VAE (and call it as naive SIG-VAE in the rest of the dissertation), which is specifically

designed with neighborhood sharing to capture complex dependency structures in networks, as

detailed in the next section. Please also note that the first layer of SIVI can be integrated with NF

rather than simple Gaussian. We leave that for future study.

3.4.2 NF-VGAE

It is also possible to enable VGAE model flexibility by other existing variational inference

methods, for example using NF. However, NF requires deterministic transform functions whose

Jacobians shall be easy to compute, which limits the flexibility when considering complex depen-

dency structures in graph analytic tasks. We indeed have constructed a non-Gaussian VGAE, i.e.

NF-based variational graph auto-encoder (NF-VGAE) as follows

hu = GNNu(A,CONCAT(X,hu−1)), for u = 1, . . . , L, h0 = 0 (3.4)

µ(A,X) = GNNµ(A,CONCAT(X,hL)), Σ(A,X) = GNNΣ(A,CONCAT(X,hL)),

q0(Z(0) |A,X) =
∏N

i=1q0(z(0)
i |A,X), with q0(z(0)

i |A,X) = N (µi, diag(σ2
i )),

qK(Z(K) |A,X) =
∏N

i=1q0(z(K)
i |A,X), ln(qK(z(K)

i | −)) = ln(q0(z(0)
i ))−

∑
k

ln|det
∂fk

∂z(k)
i

|,

where the posterior distribution qK(Z(K)|A,X) is obtained by successively transforming a Gaussian

random variable Z(0) with distribution q0 through a chain of K invertible differentiable transfor-
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mations fk : Rd → Rd. We will further discuss this in the Appendix A. NF-VGAE is a two-step

inference method that 1) starts with Gaussian random variables and then 2) transforms them through

a series of invertible mappings. We emphasize again that in NF-VGAE, the GNN output layers are

deterministic without neighborhood distribution sharing due to the deterministic nature of the initial

density parameters in q0.

3.5 Semi-implicit graph variational auto-encoder (SIG-VAE)

While the above two models are able to approximate more flexible and complex posterior, such

trivial combinations may fail to fully exploit graph dependency structure because they are not

capable of propagating uncertainty between neighboring nodes. To enable effective uncertainty

propagation, which is the essential factor to capture complex posteriors with graph data, we develop

a carefully designed generative model, SIG-VAE, to better integrate variational inference and VGAE

with a natural neighborhood sharing scheme.

To have tractable posterior inference, we construct SIG-VAE using a hierarchy of multiple

stochastic layers. Specifically, the first stochastic layer q(Z |X,A) is reparameterizable and has an

analytic probability density function. The layers added after are reparameterizable and computation-

ally efficient to sample from. More specifically, we adopt a hierarchical encoder in SIG-VAE that

injects random noise at L different stochastic layers:

hu = GNNu(A,CONCAT(X, εu,hu−1)), where εu ∼ qu(ε) for u = 1, . . . , L, h0 = 0 (3.5)

µ(A,X) = GNNµ(A,CONCAT(X,hL)), Σ(A,X) = GNNΣ(A,CONCAT(X,hL)), (3.6)

q(Z |A,X,µ,Σ) =
∏N

i=1q(zi |A,X,µi,Σi), q(zi |A,X,µi,Σi) = N (µi(A,X),Σi(A,X)).

Note that in the equations aboveµ and Σ are random variables and thus q(Z |X,A) is not necessarily

Gaussian after marginalization; εu is N -dimensional random noise drawn from a distribution qu;

and qu is chosen such that the samples drawn from it are the same type as X, for example if X is

categorical, Bernoulli is a good choice for qu. By concatenating the random noise and node attributes,

the output of GNNs are random variables rather than deterministic vectors. Their expressive power
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Figure 3.1: SIG-VAE diffuses the neighboring nodes’ distributions, which is more informative than
sharing deterministic features, to infer each node’s latent distribution.

is inherited in SIG-VAE to go beyond Gaussian, exponential family, or von Mises-Fisher [27]

posterior distributions for the derived latent representations.

In SIG-VAE, when inferring each node’s latent posterior, we incorporate the distributions of the

neighboring nodes, better capturing graph dependency structure than sharing deterministic features

from GNNs. More specifically, the input to our model at stochastic layer u is CONCAT(X, εu)

so that the outputs of the subsequent stochastic layers give mixing distributions by integrating

information from neighboring nodes (Figure 3.1). The flexibility of SIG-VAE directly working

on the stochastic distribution parameters in (5-6) allows neighborhood sharing to achieve better

performance in graph analytic tasks. We argue that the uncertainty propagation in our carefully

designed SIG-VAE, which is the an outcome of using GNNs and adding noise in the input in

equations (5-6), is the key factor in capturing more faithful and complex posteriors. Note that (5)

is different from the NF-VAE construction (3), where the GNN output layers are deterministic.

Through experiments, we show that this uncertainty neighborhood sharing is key for SIG-VAE to

achieve superior graph analysis performance.

We further argue that increasing the flexibility of variational inference is not enough to better

model real-world graph data as the optimal solution of the generative model does not change.

In SIG-VAE, the Bernoulli-Poisson link [119] is adopted for the decoder to further increase the

expressiveness of the generative model. Potential extensions with other decoders can be integrated

with SIG-VAE if needed. Let Ai,j = δ(mij > 0), mij ∼ Poisson
(

exp(
∑l

k=1 rkzik zjk)
)
, and
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hence

p(A |Z,R) =
N∏
i=1

N∏
j=1

p(Ai,j | zi, zj,R), p(Ai,j = 1 | zi, zj,R) = 1− e− exp (
∑L
k=1 rkzik zjk), (3.7)

where R ∈ RL×L
+ is a diagonal matrix with diagonal elements rk.

3.5.1 Inference

To derive the ELBO for model inference in SIG-VAE, we must take into account the fact that ψ

has to be drawn from a distribution. Hence, the ELBO moves beyond the simple VGAE as

L = −KL(Eψ∼qφ(ψ |X,A)[q(Z |ψ)] || p(Z)) + Eψ∼qφ(ψ |X,A)[EZ∼q(Z |ψ)[log p(A |Z)]]

= EZ∼hφ(Z |X,A)

[
log

p(A |Z)p(Z)

hφ(Z |X,A)

]
.

(3.8)

Direct optimization of the ELBO in SIVI is not tractable [113], so the Monte Carlo estimation

of the ELBO, L, is prohibited. To address this issue, SIVI derives a lower bound for the ELBO

and optimizes this lower bound instead of optimizing the ELBO itself, which is tractable and

asymptotically equals to the ELBO. SIG-VAE requires q(Z |ψ) to be explicit, and also requires it to

either be reparameterizable or the ELBO under q(Z |ψ) to be analytic, while qφ(ψ |X,A) is required

to be reparameterizable but not necessarily explicit. This captures the idea that combining an explicit

q(Z |ψ) with an implicit qφ(ψ |X,A) is as powerful as needed, but makes the computation tractable.

Following Yin and Zhou [113], we can derive a lower bound for the ELBO as follows

L = Eψ∼qφ(ψ |X,A)

[
EZ∼q(Z |ψ)

[
log

(
p(A|Z)p(Z)

q(Z |ψ)

)]]
= −Eψ∼qφ(ψ |X,A)[KL(q(Z |ψ) || p(Z))] + Eψ∼qφ(ψ |X,A)

[
EZ∼q(Z |ψ)[log p(A |Z)]

]
≤ L.

This can be proved based on the first theorem in Yin and Zhou [113], which shows

KL(Eψ∼qφ(ψ |X,A)[q(Z |ψ)] || p(Z)) ≤ Eψ∼qφ(ψ |X,A)[KL(q(Z |ψ) || p(Z))].
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Figure 3.2: Swiss roll graph (Left) and its latent representation using SIG-VAE (Middle) and
VGAE (Right). The latent representations (middle and right) are heat maps in R3. We expect that
the embedding of the Swiss roll graph with inner-product decoder to be a curved plane in R3, which
is clearly captured better by SIG-VAE.

Unlike L, a Monte Carlo estimation of L only requires qφ(Z |ψ) to have an analytic density

functions and qφ(ψ |X,A) to be convenient to sample from.

Directly optimizing L without early stopping could lead to a point mass density as qφ(ψ |X,A).

This degenerates SIG-VAE to the vanilla VGAE. To avoid degeneracy, a regularization term can be

added to L. Assume that K samples are drawn from qφ(ψ |X,A) denoted by {ψ(i)}Ki=1. We define

a regularized lower bound as LK = L+BK where

BK = Eψ,ψ(1),...,ψ(K)∼qφ(ψ |X,A)[KL(q(A |ψ) || h̃K(Z))],

and

h̃K(Z)) =
qφ(ψ |X,A) +

∑K
k=1 qφ(ψ(k) |X,A)

K + 1
.

It has been proved by Molchanov et al. [69] that LK is a monotonic lower bound of the ELBO,

satisfying LK ≤ LK+1 ≤ L. Therefore, setting K to zero means that L0 = L, and as K goes to

infinity L converges to the exact ELBO, i.e., limK→∞ LK = L.
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Figure 3.3: Latent representation distributions of five example nodes from the Swiss roll graph using
SIG-VAE (Blue) and VGAE (Red). SIG-VAE clearly infers more complex distributions that can be
multi-modal, skewed, and with sharp and steep changes. This helps SIG-VAE to better represent
the nodes in the latent space.

3.6 Experiments

We test the performances of SIG-VAE on different graph analytic tasks: 1) interpretability of

SIG-VAE compared to VGAE, 2) link prediction in various real-world graph datasets including

graphs with node attributes and without node attributes, 3) graph generation, 4) node classification

in the citation graphs with labels. In all of the experiments, GCN [56] is adopted for all the GNN

modules in SIG-VAE, Naive SIG-VAE, and NF-VGAE, implemented in Tensorflow [1]. The PyGSP

package [29] is used to generate synthetic graphs. Implementation details for all the experiments,

together with graph data statistics, can be found in the Appendix A.

3.6.1 Interpretable latent representations

We first demonstrate the expressiveness of SIG-VAE by illustrating the approximated variational

distributions of node latent representations. We show that SIG-VAE captures the graph structure

better and has a more interpretable embedding than VGAE on a generated Swiss roll graph with

200 nodes and 1244 edges (Figure 3.2). In order to provide a fair comparison, both models share

an identical implementation with the inner-product decoder and same number of parameters. We

simply consider the identity matrix IN as node attributes and choose the latent space dimension

to be three in this experiment. This graph has a simple plane like structure. As the inner-product

decoder assumes that the information is embedded in the angle between latent vectors, we expect

that the node embedding to map nodes of the Swiss roll graph into a curve in the latent space. As
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Figure 3.4: The nodes with multi-modal posteriors (red nodes) reside between different communities
in Swiss Roll graph.

we can see in Figure 3.2, SIG-VAE derives a clearly more interpretable planar latent structure than

VGAE.

We also show the posterior distributions of five randomly selected nodes from the graph in

Figure 3.3. As we can see, SIG-VAE is capable of inferring complex distributions. The inferred

distributions can be multi-modal, skewed, non-symmetric, and with sharp and steep changes. These

complex distributions help the model to get a more realistic embedding capturing the intrinsic graph

structure. To explain why multi-modality may arise, we used Asynchronous Fluid [79] to visualize

the Swiss Roll graph by highlighting detected communities with different colors in Figure 3.4. Note

that we used a different layout from the one in Figure 3.2(a) to better visualize the communities in

the graph. The three red (two orange) nodes are the nodes with multi-modal (skewed) distributions

in Figure 3.3. These nodes with multi-modal posteriors reside between different communities;

hence, with a probability, they could be assigned to multiple communities. The Appendix A contains

additional results and discussions with a torus graph, with similar observations.

3.6.2 Accurate link prediction

We further conduct extensive experiments for link prediction with various real-world graph

datasets. Our results show that SIG-VAE significantly outperforms well-known baselines and
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Table 3.1: Link prediction performance in networks with node attributes.

Method Cora Citeseer Pubmed
AUC AP AUC AP AUC AP

SC [93] 84.6±0.01 88.5±0.00 80.5±0.01 85.0±0.01 84.2±0.02 87.8±0.01
DW [81] 83.1±0.01 85.0±0.00 80.5±0.02 83.6±0.01 84.4±0.00 84.1±0.00
GAE [55] 91.0±0.02 92.0±0.03 89.5±0.04 89.9±0.05 96.4±0.00 96.5±0.00
VGAE [55] 91.4±0.01 92.6±0.01 90.8±0.02 92.0±0.02 94.4±0.02 94.7±0.02
S-VGAE [27] 94.10±0.1 94.10±0.3 94.70±0.2 95.20±0.2 96.00±0.1 96.00±0.1
SEAL [117] 90.09±0.1 83.01±0.3 83.56±0.2 77.58±0.2 96.71±0.1 90.10±0.1
G2G [13] 92.10±0.9 92.58±0.8 95.32±0.7 95.57±0.7 94.28±0.3 93.38±0.5

NF-VGAE 92.42±0.6 93.08±0.5 91.76±0.3 93.04±0.8 96.59±0.3 96.68±0.4
Naive SIG-VAE 93.97±0.5 93.29±0.4 94.25±0.8 93.60±0.9 96.53±0.7 96.01±0.5
SIG-VAE (IP) 94.37±0.1 94.41±0.1 95.90±0.1 95.46±0.1 96.73±0.1 96.67±0.1
SIG-VAE 96.04±0.04 95.82±0.06 96.43±0.02 96.32±0.02 97.01±0.07 97.15±0.04

state-of-the-art methods in all benchmark datasets. We consider two types of datasets, i.e., datasets

with node attributes and datasets without attributes. We preprocess and split the datasets as done

in [55] with validation and test sets containing 5% and 10% of network links, respectively. We

learn the model parameters for 3500 epochs with the learning rate 0.0005 and the validation set

used for early stopping. The latent space dimension is set to 16. The hyperparameters of SIG-VAE,

Naive SIG-VAE, and NF-VGAE are the same for all the datasets. For fair comparison, all methods

have the similar number of parameters as the default VGAE. The Appendix A contains further

implementation details. We measure the performance by average precision (AP) and area under the

ROC curve (AUC) based on 10 runs on a test set of previously removed links in these graphs.

With node attributes. We consider three graph datasets with node attribbutes—Citeseer, Cora,

and Pubmed [88]. The number of node attributes for these dataset are 3703, 1433, and 500

respectively. Other statistics of the datasets are summarized in the Table A.1. We compare the

results of SIG-VAE, Naive SIG-VAE, and NF-VGAE with six state-of-the-art methods, including

spectral clustering (SC), DeepWalk (DW) [81] , GAE [55], VGAE [55], S-VGAE [27], and SEAL

[117]. The inner-product decoder is also adopted in SIG-VAE to clearly demonstrate the advantages

of the semi-implicit hierarchical variational distribution for the encoder.
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Table 3.2: AUC and AP of link prediction in networks without node attributes. * indicates that the
numbers are reported from [117]. The Appendix A contains the complete result tables with standard
deviation values.

Metrics Data MF∗ SBM∗ N2V∗ LINE∗ SC∗ GAE VGAE∗ SEAL∗ G2G NF-VGAE N-SIG-VAE SIG-VAE(IP) SIG-VAE
USAir 94.08 94.85 91.44 81.47 74.22 93.09 89.28 97.09 92.17 95.74 94.22 97.56 94.52
NS 74.55 92.30 91.52 80.63 89.94 93.14 94.04 97.71 98.18 98.38 98.00 98.75 99.17

AUC Yeast 90.28 91.41 93.67 87.45 93.25 93.74 93.88 97.20 97.34 97.86 93.36 98.11 98.32
Power 50.63 66.57 76.22 55.637 91.78 72.21 71.20 84.18 91.35 94.61 93.67 95.04 96.23
Router 78.03 85.65 65.46 67.15 68.79 55.73 61.51 95.68 85.98 93.56 92.66 95.94 96.13
USAir 94.36 95.08 89.71 79.70 78.07 95.14 89.27 95.70 90.22 96.27 94.48 97.50 94.95
NS 78.41 92.13 94.28 85.17 90.83 95.26 95.83 98.12 97.43 98.52 97.83 98.53 99.24

AP Yeast 92.01 92.73 94.90 90.55 94.63 95.34 95.19 97.95 97.83 98.18 94.24 97.97 98.41
Power 53.50 65.48 81.49 56.66 91.00 77.13 75.91 86.69 92.29 95.76 93.80 96.50 97.28
Router 82.59 84.67 68.66 71.92 73.53 67.50 70.36 95.66 86.28 95.88 92.80 94.94 96.86

We use the same hyperparameters for the competing methods as stated in [117, 55, 27]. As

we can see in Table 3.1, SIG-VAE shows significant improvement in terms of both AUC and AP

over state-of-the-art methods. Note the standard deviation of SIG-VAE is also smaller compared

to other methods, indicating stable semi-implicit variational inference. Compared to the baseline

VGAE, more flexible posterior in three proposed methods SIGVAE (with both inner-product and

Bernoulli-Poisson link decoders), Naive SIG-VAE, and NF-VGAE can clearly improve the link

prediction accuracy. This suggests that the Gaussian assumption does not hold for these graph

structured data. The performance improvement of SIG-VAE with inner-product decoder (IP) over

Naive SIG-VAE and NF-VGAE clearly demonstrates the advantages of neighboring node sharing,

especially in the smaller graphs. Even for the large graph Pubmed, on which VGAE performs

similar to S-VGAE, our SIG-VAE still achieves the highest link prediction accuracy, showing the

importance of all modeling components in the proposed method including non-Gaussian posterior,

using neighborhood distribution, and the sparse Bernoulli-Poisson link decoder.

Without node attributes. We further consider five graph datasets without node attributes—

USAir, NS [74], Router [90], Power [103] and Yeast [100]. The data statistics are summarized in

the Table A.1. We compare the performance of our models with seven competing state-of-the-art

methods including matrix factorization (MF), stochastic block model (SBM) [3], node2vec (N2V)

[38], LINE [92], spectral clustering (SC), VGAE [55], S-VGAE [27], and SEAL [117].

For baseline methods, we use the same hyperparameters as stated in Zhang et al. [117].

22



Table 3.3: Graph generation performance. The closest results to the original graph is highlighted in
boldface.

Detasets Orignial Graph VGAE SIG-VAE (IP) SIG-VAE
Dens. Clus. Dens. Clus. Dens. Clus. Dens. Clus.

Cora 0.00143 0.24 0.1178 0.49 0.1178 0.49 0.00147 0.25
Citeseer 0.0008 0.14 0.09 0.45 0.26 0.42 0.0008 0.16
USAir 0.038 0.62 0.18 0.40 0.21 0.56 0.043 0.45
NS 0.002 0.63 0.36 0.47 0.26 0.42 0.02 0.49
Router 0.0004 0.01 0.16 0.49 0.16 0.49 0.0010 0.09

For datasets without node attributes, we use a two-stage learning process for SIG-VAE. First,

the embedding of each node is learned in the 128-dimensional latent space while injecting 5-

dimensional Bernoulli noise to the system. Then the learned embedding is taken as node features

for the second stage to learn 16 dimensional embedding while injecting 64-dimensional noise to

SIG-VAE. Through empirical experiments, we found that this two-stage learning converges faster

than end-to-end learning. We follow the same procedure for Naive SIG-VAE and NF-VGAE.

As we can see in Table 3.2, SIG-VAE again shows the consistent superior performance compared

to the competing methods, especially over the baseline VGAE, in both AUC and AP. It is interesting

to note that, while the proposed Berhoulli-Poisson decoder works well for sparser graphs, especially

NS and Router datasets, SIG-VAE with inner-product decoder shows superior performance for the

USAir graph which is much denser. Compared to the baseline VGAE, both Naive SIG-VAE and

NF-VGAE improve the results with a large margin in both AUC and AP, showing the benefits of

more flexible posterior. Comparing SIG-VAE with two other flexible inference methods shows not

only SIG-VAE is not restricted to the Gaussian assumption, which is not a good fit for link prediction

with the inner-product decoder [27], but also it is able to model flexible posterior considering graph

topology. The results for the link prediction of the Power graph clearly magnifies this fact as

SIG-VAE improves the accuracy by 34% compared to VGAE. The Appendix A contains the results

with standard deviation values over different runs, showing the stability again.

Ablation studies have also been run to evaluate SIG-VAE with inner-product decoder in link
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Table 3.4: Summary of results in terms of classification accuracy (in %).

Method Cora Citeseer Pubmed

ManiReg [8] 59.5 60.1 70.7
SemiEmb [104] 59.0 59.6 71.1
LP [121] 68.0 45.3 63.0
DeepWalk [81] 67.2 43.2 65.3
ICA [62] 75.1 69.1 73.9
Planetoid [112] 75.7 64.7 77.2
GCN [56] 81.5 70.3 79.0

SIG-VAE 79.7 70.4 79.3

prediction for citation graphs without using node attributes. The [AUC, AP] are [91.14, 90.99]

for Cora and [88.72, 88.24] for Citeseer, lower than the values from SIG-VAE with attributes in

Table 3.1 but are still competitive against existing methods (even with node attributes), showing

the ability of SIG-VAE of utilizing graph structure. While some of the methods, like SEAL, work

well for graphs without node attributes and some of others, like VGAE, get good performance for

graphs with node attributes, SIG-VAE consistently achieves superior performance in both types of

datasets. This is due to the fact that SIG-VAE can learn implicit distributions for nodes, which are

very powerful in capturing graph structure even without any node attributes.

3.6.3 Graph generation

To further demonstrate the flexibility of SIG-VAE as a generative model, we have used the

inferred embedding representations of different graph datasets with and without node attributes to

generate new graphs. Results are summarized in Table 3.3. The SIG-VAE results are much closer to

the real-world graph in terms of both graph density and average clustering for very sparse graphs.

For example, SIG-VAE infers network parameters for Cora whose density and average clustering

coefficients are 0.00143 and 0.24, respectively. Using the inferred posterior and learned decoder, a

new graph is generated with corresponding rk to see if its graph statistics are close to the original

ones. Please note that we have shrunk inferred rk’s smaller than 0.01 to 0. The density and average

clustering coefficients of this generated graph based on SIG-VAE are 0.00147 and 0.25, respectively,
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Table 3.5: Graph clustering performance in citation networks with label.

Method Cora Citeseer
NMI ACC NMI ACC

VGAE 0.43 59.2 0.20 51.5
SIG-VAE 0.58 68.8 0.34 57.4

which are very close to the original graph. We also generate new graphs based on SIG-VAE with the

inner-product decoder and VGAE. The density and average clustering coefficients of the generated

graphs based on SIG-VAE (IP) and VGAE are same, i.e. 0.1178 and 0.49, respectively, showing the

inner-product decoder may not be a good choice for sparse graphs.

For the USAir dataset, which is much dense compare to othe graphs, the average clustering

coefficient of SIG-VAE with inner-product decoder is closer to the read-world graph. This can be

describe the better link prediction results of SIG-VAE (IP) for USAir dataset. On the other hand,

the generated graph by SIG-VAE with the Bernoulli-Poisson link decoder is much sparser as its

density is very closer to the read-world graph. This shows the benefit of the proposed decoder to

improve the flexibility of the generative model.

3.6.4 Node classification and graph clustering

We also have applied SIG-VAE for node classification on citation graphs with labels by modi-

fying the loss function to include graph reconstruction and semi-supervised classification terms.

Results are summarized in Table 3.4. Our model exhibits strong generalization properties, high-

lighted by its competitive performance compared to the state-of-the-art methods, despite not being

trained specifically for this task. To show the robustness of SIG-VAE to missing edges, we randomly

removed 10, 20, 50 and 70 (%) edges while keeping node attributes. The mean accuracy of 10 run

for Cora (2 layers [32,16]) are 79.5, 78.7, 75.3 and 60.6, respectively.

SIG-VAE can be applied in the other application including graph clustering. We first tried SIG-

VAE for getting low-dimential feature space and then apply Gaussian mixture clustering (GMM)

on citation graphs with labels including Cora and Citeseer and compare its results with VGAE.
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We consider same number of parameters and GCN layer for both model. Results are summarized

in Table 3.5. We report the normalized mutual information (NMI) and unsupervised clustering

accuracy (ACC) of 10 runs. The decoders for both methods are inner-product decoder.

SIG-VAE has demonstrated state-of-the-art performances in link prediction and comparable

results on other tasks, clearly showing the potential of SIG-VAE on different graph analytic tasks.
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4. BAYESIAN GRAPH NEURAL NETWORKS*

4.1 Introduction

Graph neural networks (GNNs), and its numerous variants, have shown to be successful in

graph representation learning by extracting high-level features for nodes from their topological

neighborhoods. GNNs have boosted the state-of-the-art performance in a variety of graph analytic

tasks, such as semi-supervised node classification and link prediction [56, 55, 46, 40]. Despite their

successes, GNNs have two major limitations: 1) they cannot go very deep due to over-smoothing

and over-fitting phenomena [61, 56]; 2) the current implementations of GNNs do not provide

uncertainty quantification (UQ) of output predictions.

There exist a variety of methods to address these problems. For example, DropOut [91] is a

popular regularisation technique with deep neural networks (DNNs) to avoid over-fitting, where

network units are randomly masked during training. In GNNs, DropOut is realized by randomly

removing the node features during training [87]. Often, the procedure is independent of the graph

topology. However, empirical results have shown that, due to the nature of Laplacian smoothing in

GNNs, graph convolutions have the over-smoothing tendency of mixing representations of adjacent

nodes so that, when increasing the number of GNN layers, all nodes’ representations will converge

to a stationary point, making them unrelated to node features [61]. While it has been shown

in Kipf and Welling [56] that DropOut alone is ineffectual in preventing over-fitting, partially due

to over-smoothing, the combination of DropEdge, in which a set of edges are randomly removed

from the graph, with DropOut has recently shown potential to alleviate these problems [87].

On the other hand, with the development of efficient posterior computation algorithms, there

have been successes in learning with uncertainty by Bayesian extensions of traditional deep network

architectures, including convolutional neural networks (CNNs). However, for GNNs, deriving their

Bayesian extensions is more challenging due to their irregular neighborhood connection structures.

*Reprinted with permission from “Bayesian graph neural networks with adaptive connection sampling” by A.
Hasanzadeh, E. Hajiramezanali, S. Boluki, M. Zhou, N. Duffield, K. Narayanan, and X. Qian. In International
conference on machine learning, pp. 4094-4104. PMLR, 2020. Copyright 2020 by the authors.
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In order to account for uncertainty in GNNs, Zhang et al. [118] present a Bayesian framework

where the observed graph is viewed as a realization from a parametric family of random graphs.

This allows joint inference of the graph and the GNN weights, leading to resilience to noise or

adversarial attacks. Besides its prohibitive computational cost, the choice of the random graph

model is important and can be inconsistent for different problems and datasets. Furthermore, the

posterior inference in the current implementation only depends on the graph topology, but cannot

consider node features.

In this work, we introduce a general stochastic regularization technique for GNNs by adaptive

connection sampling—Graph DropConnect (GDC). We show that existing GNN regularization

techniques such as DropOut [91], DropEdge [87], and node sampling [20] are special cases of GDC.

GDC regularizes neighborhood aggregation in GNNs at each channel, separately. This prevents

connected nodes in graph from having the same learned representations in GNN layers; hence better

improvement without serious over-smoothing can be achieved. Furthermore, adaptively learning the

connection sampling or drop rate in GDC enables better stochastic regularization given graph data

for target graph analytic tasks. In fact, our ablation studies show that only learning the DropEdge

rate, without any DropOut, already substantially improves the performance in semi-supervised node

classification with GNNs. By probabilistic modeling of the connection drop rate, we propose a

hierarchical beta-Bernoulli construction for Bayesian learnable GDC, and derive the solution with

both continuous relaxation and direct optimization with Augment-REINFORCE-Merge (ARM)

gradient estimates. With the naturally enabled UQ and regularization capability, our learnable

GDC can help address both over-smoothing and UQ challenges to further push the frontier of GNN

research.

We further prove that adaptive connection sampling of GDC at each channel can be considered

as random aggregation and diffusion in GNNs, with a similar Bayesian approximation interpretation

as in Bayesian DropOut for CNNs [32]. Specifically, Monte Carlo estimation of GNN outputs can

be used to evaluate the predictive posterior uncertainty. An important corollary of this formulation

is that any GNN with neighborhood sampling, such as GraphSAGE [43], could be considered as its
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corresponding Bayesian approximation.

4.2 Background

4.2.1 Bayesian neural networks

Bayesian neural networks (BNNs) aim to capture model uncertainty of DNNs by placing prior

distributions over the model parameters to enable posterior updates during DNN training. It has

been shown that these Bayesian extensions of traditional DNNs can be robust to over-fitting and

provide appropriate prediction uncertainty estimation [33, 14]. Often, the standard Gaussian prior

distribution is placed over the weights. With random weights {W(l)}Ll=1, the output prediction given

an input x can be denoted by f̂
(
x, {W(l)}Ll=1

)
, which is now a random variable in BNNs, enabling

uncertainty quantification (UQ).

The key difficulty in using BNNs is that Bayesian inference is computationally intractable.

There exist various methods that approximate BNN inference, such as Laplace approximation [66],

sampling-based and stochastic variational inference [77, 86, 42, 25], Markov chain Monte Carlo

(MCMC) [73], and stochastic gradient MCMC [64]. However, their computational cost is still

much higher than the non-Bayesian methods, due to the increased model complexity and slow

convergence [33].

4.2.2 DropOut as Bayesian approximation

Dropout is commonly used in training many deep learning models as a way to avoid over-fitting.

Using dropout at test time enables UQ with Bayesian interpretation of the network outputs as Monte

Carlo samples of its predictive distribution [33]. Various dropout methods have been proposed

to multiply the output of each neuron by a random mask drawn from a desired distribution, such

as Bernoulli [47, 91] and Gaussian [53, 91]. Bernoulli dropout and its extensions are the most

commonly used in practice due to their ease of implementation and computational efficiency in

existing deep architectures.
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4.2.3 Over-smoothing and over-fitting in GNNs

It has been shown that graph convolution in graph convolutional neural networks (GCNs) [56]

is simply a special form of Laplacian smoothing, which mixes the features of a node and its nearby

neighbors. Such diffusion operations lead to similar learned representations when the corresponding

nodes are close topologically with similar features, thus greatly improving node classification

performance. However, it also brings potential concerns of over-smoothing [61]. If a GCN is deep

with many convolutional layers, the learned representations may be over-smoothed and nodes with

different topological and feature characteristics may become indistinguishable. More specifically,

by repeatedly applying Laplacian smoothing many times, the node representations within each

connected component of the graph will converge to the same values.

Moreover, GCNs, like other deep models, may suffer from over-fitting when we utilize an

over-parameterized model to fit a distribution with limited training data, where the model we learn

fits the training data very well but generalizes poorly to the testing data.

4.2.4 Stochastic regularization and reduction for GNNs

Quickly increasing model complexity and possible over-fitting and over-smoothing when mod-

eling large graphs, as empirically observed in the GNN literature, have been conjectured for the

main reason of limited performance from deep GNNs [56, 87]. Several stochastic regularization

and reduction methods in GNNs have been proposed to improve the deep GNN performance. For

example, stochastic regularization techniques, such as DropOut [91] and DropEdge [87], have been

used to prevent over-fitting and over-smoothing in GNNs. Sampling-based stochastic reduction by

random walk neighborhood sampling [43] and node sampling [20] has been deployed in GNNs

to reduce the size of input data and thereafter model complexity. Next, we review each of these

methods and show that they can be formulated in our proposed adaptive connection sampling

framework.

Denote the output of the lth hidden layer in GNNs by H(l) = [h
(l)
0 , . . . ,h

(l)
n ]T ∈ Rn×fl with n

being the number of nodes and fl being the number of output features at the lth layer. Assume
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H(0) = X ∈ Rn×f0 is the input matrix of node attributes, where f0 is the number of nodes features.

Also, assume that W(l) ∈ Rfl×fl+1 and σ( · ) are the GNN parameters at the lth layer and the

corresponding activation function, respectively. Moreover, N (v) denotes the neighborhood of node

v; N̂ (v) = N (v) ∪ {v}; and N(.) is the normalizing operator, i.e., N(A) = IN + D−1/2 A D−1/2.

Finally, � represents the Hadamard product.

4.2.4.1 DropOut

In a GNN layer, DropOut [91] randomly removes output elements of its previous hidden layer

H(l) based on independent Bernoulli random draws with a constant success rate at each training

iteration. This can be formulated as follows:

H(l+1) = σ
(
N(A)(Z(l) �H(l)) W(l)

)
, (4.1)

where Z(l) is a random binary matrix, with the same dimensions as H(l), whose elements are samples

of Bernoulli(π). Despite its success in fully connected and convolutional neural networks, DropOut

has shown to be ineffectual in GNNs for preventing over-fitting and over-smoothing.

4.2.4.2 DropEdge

DropEdge [87] randomly removes edges from the graph by drawing independent Bernoulli

random variables (with a constant rate) at each iteration. More specifically, a GNN layer with

DropEdge can be written as follows:

H(l+1) = σ
(
N(A� Z(l)) H(l) W(l)

)
, (4.2)

Note that here, the random binary mask, i.e. Z(l), has the same dimensions as A. Its elements are

random samples of Bernoulli(π) where their corresponding elements in A are non-zero and zero

everywhere else. It has been shown that the combination of DropOut and DropEdge reaches the

best performance in terms of mitigating overfitting in GNNs.
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4.2.4.3 Node sampling

To reduce expensive computation in batch training of GNNs, due to the recursive expansion

of neighborhoods across layers, Chen et al. [20] propose to relax the requirement of simultaneous

availability of test data. Considering graph convolutions as integral transforms of embedding

functions under probability measures allows for the use of Monte Carlo approaches to consistently

estimate the integrals. This leads to an optimal node sampling strategy, FastGCN, which can be

formulated as

H(l+1) = σ
(
N(A) diag(z(l))H(l) W(l)

)
, (4.3)

where z(l) is a random vector whose elements are drawn from Bernoulli(π). This, indeed, is a

special case of DropOut, as all of the output features for a node are either completely kept or

dropped while DropOut randomly removes some of these related output elements associated with

the node.

4.3 Graph DropConnect

We propose a general stochastic regularization technique for GNNs—Graph DropConnect

(GDC)—by adaptive connection sampling, which can be interpreted as an approximation of

Bayesian GNNs.

In GDC, we allow GNNs to draw different random masks for each channel and edge inde-

pendently. More specifically, the operation of a GNN layer with GDC is defined as follows:

H
(l+1)
:,j = σ

(
fl∑
i=1

N(A� Z(l,i,j)) H
(l)
:,i W

(l)
i,j

)
, for j = 1, . . . , fl+1 (4.4)

where fl and fl+1 are the number of features at layers l and l+ 1, respectively, and Z(l,i,j) is a sparse

random matrix (with the same sparsity as A) whose non-zero elements are randomly drawn from

Bernoulli(πl). Note that πl can be different for each layer for GDC instead of assuming the same

constant drop rate for all layers in previous methods.
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As shown in (4.1), (4.2), and (4.3), DropOut [91], DropEdge [87], and Node Sampling [20]

have different sampling assumptions on channels, edges, or nodes, yet there is no clear evidence to

favor one over the other in terms of consequent graph analytic performance. In the proposed GDC

approach, there is a free parameter {Z(l,i,j) ∈ {0, 1}n×n}fli=1 to adjust the binary mask for the edges,

nodes and channels. Thus the proposed GDC model has one extra degree of freedom to incorporate

flexible connection sampling.

The previous stochastic regularization techniques can be considered as special cases of GDC.

To illustrate that, we assume Z(l,i,j) are the same for all j ∈ {1, 2, . . . , fl+1}, thus we can omit the

indices of the output elements at layer l + 1 and rewrite (4.4) as

H(l+1) = σ

(
fl∑
i=1

N(A� Z(l,i)) H
(l)
:,i W

(l)
i,:

)
(4.5)

Define Jn as a n × n all-one matrix. Let Z(l,DO) ∈ {0, 1}n×fl , Z(l,DE) ∈ {0, 1}n×n, and

diag(z(l,NS)) ∈ {0, 1}n×n be the random binary matrices corresponding to the ones adopted in

DropOut [91], DropEdge [87], and Node Sampling [20], respectively. The random mask {Z(l,i) ∈

{0, 1}n×n}fli=1 in GDC become the same as those of the DropOut when Z(l,i) = Jn diag(Z
(l,DO)
:,i ),

the same as those of DropEdge when {Z(l,i)}fli=1 = Z(l,DE), and the same as those of node sampling

when {Z(l,i)}fli=1 = Jndiag(z(l,NS)).

4.3.1 GDC as Bayesian approximation

In GDC, random masking is applied to the adjacency matrix of the graph to regularize the ag-

gregation steps at each layer of GNNs. In existing Bayesian neural networks, the model parameters,

i.e. W(l), are considered random to enable Bayesian inference based on predictive posterior given

training data [34, 14]. Here, we show that connection sampling in GDC can be transformed from

the output feature space to the parameter space so that it can be considered as appropriate Bayesian

extensions of GNNs.

First, we rewrite equation 4.5 to have a node-wise view of a GNN layer with GDC. More

specifically,
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h(l+1)
v = σ

 1

cv

( ∑
u∈N̂ (v)

z(l,v,u) � h(l)
u

)
W(l)

 , (4.6)

where cv is a constant derived from the degree of node v, and z(l,v,u) ∈ {0, 1}1×fl is the mask row

vector corresponding to connection between nodes v and u in three dimensional tensor Z(l) =

[Z
(l)
1 , . . . ,Z

(l)
fl

]. For brevity and without loss of generality, we ignore the constant cv in the rest of

this section. We can rewrite and reorganize equation 4.6 to transform the randomness from sampling

to the parameter space as

h(l+1)
v = σ

( ∑
u∈N̂ (v)

h(l)
u diag(z(l,v,u))

)
W(l)


= σ

 ∑
u∈N̂ (v)

h(l)
u

(
diag(z(l,v,u)) W(l)

) .

(4.7)

Define W(l,v,u) := z(l,v,u) W(l). We have:

h(l+1)
v = σ

 ∑
u∈N̂ (v)

h(l)
u W(l,v,u)

 . (4.8)

W(l,v,u), which pairs the corresponding weight parameter with the edge in the given graph. The

operation with GDC in equation 4.8 can be interpreted as learning different weights for each of the

message passing along edges e = (u, v) ∈ E where E is the union of edge set of the input graph

and self-loops for all nodes.

Following the variational interpretation in Gal et al. [34], GDC can be seen as an approximating

distribution qθ(ω) for the posterior p(ω |A,X) when considering a set of random weight matrices

ω = {ωe}|E|e=1 in the Bayesian framework, where ωe = {W(l)
e }Ll=1 is the set of random weights for

the eth edge, |E| is the number of edges in the input graph, and θ is the set of variational parameters.

The Kullback–Leibler (KL) divergence KL(qθ(ω)||p(ω)) is considered in training as a regularisation

term, which ensures that the approximating qθ(ω) does not deviate too far from the prior distribution.

To be able to evaluate the KL term analytically, the discrete quantised Gaussian can be adopted as the
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prior distribution as in Gal et al. [34]. Further with the factorization qθ(ω) overL layers and |E| edges

such that qθ(ω) =
∏

l

∏
e qθl(W

(l)
e ) and letting qθl(W

(l)
e ) = πl δ(W

(l)
e −0)+(1−πl) δ(W(l)

e −M(l)),

where θl = {M(l), πl}, the KL term can be written as
∑L

l=1

∑|E|
e=1 KL(qθl(W

(l)
e ) || p(W(l)

e )) and

approximately

KL(qθl(W
(l)
e ) || p(W(l)

e )) ∝ (1− πl)
2

||M(l)||2 −H(πl),

whereH(πl) is the entropy of a Bernoulli random variable with the success rate πl.

Since the entropy term does not depend on network weight parameters M(l), it can be omitted

when πl is not optimized. But we learn πl in GDC, thus the entropy term is important. Minimizing

the KL divergence with respect to the drop rate πl is equivalent to maximizing the entropy of a

Bernoulli random variable with probability 1− πl. This pushes the drop rate towards 0.5, which

may not be desired in some cases where higher/lower drop rate probabilities are more appreciated.

4.3.2 Variational inference for GDC

Let’s denote Z(l) = {z(l)
e }|E|e=1 and ω(l) = {W(l)

e }|E|e=1. For inference of this approximating model

with GDC, we assume a factorized variational distribution q(ω(l),Z(l)) = q(ω(l) |Z(l)) q(Z(l)). Let

the prior distribution p(W(l)
e | z(l)

e = 1) be a discrete quantised Gaussian, p(W(l)
e | z(l)

e = 0) be

δ(W
(l)
e − 0), and p(ω(l) |Z(l)) =

∏E
e=1 p(W

(l)
e | z(l)

e ). Therefore, the KL term can be written as∑L
l=1 KL(q(ω(l),Z(l)) || p(ω(l),Z(l))), with

KL
(
q(ω(l),Z(l)) || p(ω(l),Z(l))

)
∝ |E|(1− πl)

2
||M(l)||2 +

|E|∑
e=1

KL
(
q(z(l)

e ) || p(z(l)
e )
)
.

The KL term consists of the common weight decay in the non-Bayesian GNNs with the additional

KL term
∑|E|

e=1 KL(q(z
(l)
e ) || p(z(l)

e )) acting as a regularization term for z
(l)
e . In this GDC framework,

the variational inference loss, for node classification for example, can be written as

L({M(l), πl}Ll=1) = Eq({ω(l),Z(l)}Ll=1)[logP (Yo|X, {ω(l),Z(l)}Ll=1)]

−
L∑
l=1

KL(q(ω(l),Z(l)) || p(ω(l),Z(l))),
(4.9)

35



where Yo denotes the collection of the available labels for the observed nodes. The optimization of

equation 4.9 with respect to the weight matrices can be done by a Monte Carlo sample, i.e. sampling

a random GDC mask and calculating the gradients with respect to {M(l)}Ll=1 with stochastic gradient

descent. It is easy to see that if {πl}Ll=1 are fixed, implementing our GDC is as simple as using

common regularization terms on the neural network weights.

We aim to optimize the drop rates {πl}Ll=1 jointly with the weight matrices. This clearly provides

more flexibility as all the parameters of the approximating posterior will be learned from the data

instead of being fixed a priori or treated as hyper-parameters, often difficult to tune. However, the

optimization of equation 4.9 with respect to the drop rates is challenging. Although the KL term is

not a function of the random masks, the commonly adopted reparameterization techniques [86, 52]

are not directly applicable here for computing the expectation in the first term since the drop masks

are binary. Moreover, score-function gradient estimators, such as REINFORCE [105, 31], possess

high variance. One potential solution is continuous relaxation of the drop masks. This approach has

lower variance at the expense of introducing bias. Another solution is the direct optimization with

respect to the discrete variables by the recently developed Augment-REINFORCE-Merge (ARM)

method [114, 115], which has been used in BNNs [14] and information retrieval [26, 25]. In the next

section, we will discuss in detail about our GDC formulation with more flexible beta-Bernoulli prior

construction for adaptive connection sampling and how we solve the joint optimization problem for

training GNNs with adaptive connection sampling.

4.4 Variational beta-Bernoulli GDC

The sampling or drop rate in GDC can be set as a constant hyperparameter as commonly done

in other stochastic regularization techniques. In this work, we further enrich GDC with an adaptive

sampling mechanism, where the drop rate is directly learned together with GNN parameters given

graph data. In fact, in the Bayesian framework, such a hierarchical construct may increase the

model expressiveness to further improve prediction and uncertainty estimation performance, as we

will show empirically in Section 4.7.

Note that in this section, for brevity and simplicity we do the derivations for one feature
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dimension only, i.e. fl = 1. Extending to multi-dimensional features is straightforward as we

assume the drop masks are independent across features. Therefore, we drop the feature index in our

notations. Inspired by the beta-Bernoulli process [94], whose marginal representation is also known

as the Indian Buffet Process (IBP) [35], we impose a beta-Bernoulli prior to the binary random

masks as

a(l)
e = z(l)

e ae, z(l)
e ∼ Bernoulli(πl),

πl ∼ Beta(c/L, c(L− 1)/L), (4.10)

where ae denotes an element of the adjacency matrix A corresponding to an edge e, and â(l)
e an

element of the matrix Â(l) = A � Z(l). Such a formulation is known to be capable of enforcing

sparsity in random masks [120, 39], which has been shown to be necessary for regularizing deep

GNNs as discussed in DropEdge [87].

With this hierarchical beta-Bernoulli GDC formulation, inference based on Gibbs sampling can

be computationally demanding for large datasets, including graph data [46]. In the following, we

derive efficient variational inference algorithm(s) for learnable GDC.

To perform variational inference for GDC random masks and the corresponding drop rate

at each GNN layer together with weight parameters, we define the variational distribution as

q(Z(l), πl) = q(Z(l) | πl) q(πl). We define q(πl) to be Kumaraswamy distribution [58]; as an

alternative to the beta prior factorized over lth layer

q(πl; al, bl) = alblπ
al−1
l (1− πall )bl−1, (4.11)

where al and bl are greater than zero. Knowing πl the edges are independent, thus we can rewrite

q(Z(l) |πl) =
∏|E|

e=1 q(z
(l)
e | πl). We further put a Bernoulli distribution with parameter πl over
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q(z
(l)
e |πl). The KL divergence term can be written as

KL
(
q(Z(l), πl) || p(Z(l), πl)

)
=

|E|∑
e=1

KL
(
q(z(l)

e |πl) || p(z(l)
e | πl)

)
+ KL (q(πl) || p(πl)) .

While the first term is zero due to the identical distributions, the second term can be computed in

closed-form as

KL (q(πl) || p(πl)) =
al − c/L

al

(
−γ −Ψ(bl)−

1

bl

)
+ log

albl
c/L
− bl − 1

bl
, (4.12)

where γ is the Euler-Mascheroni constant and Ψ(·) is the digamma function.

The gradient of the KL term in equation 4.9 can easily be calculated with respect to the drop

parameters. However, as mentioned in the previous section, due to the discrete nature of the random

masks, we cannot directly apply reparameterization technique to calculate the gradient of the first

term in equation 4.9 with respect to the drop rates (parameters). One way to address this issue is to

replace the discrete variables with a continuous approximation. We impose a concrete distribution

relaxation [48, 34] for the Bernoulli random variable z(l)
e , leading to an efficient optimization by

sampling from simple sigmoid distribution which has a convenient parametrization

z̃(l)
e = sigmoid

(
1

t

(
log
( πl

1− πl
)

+ log
( u

1− u
)))

, (4.13)

where u ∼ Unif[0, 1] and t is temperature parameter of relaxation. We can then use stochastic

gradient variational Bayes to optimize the variational parameters al and bl.

Although this approach is simple, the relaxation introduces bias. Our other approach is to directly

optimize the variational parameters using the original Bernoulli distribution in the formulation

as in Boluki et al. [14]. We can calculate the gradient of the variational loss with respect to

α = {logit(1 − πl)}Ll=1 using ARM estimator , which is unbiased and has low variance, by

performing two forward passes as
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∇uL(α) = E
u∼

∏L
l=1

∏|E|
e=1 Unif[0,1](u

(l)
e )

[(
L({M(l)}Ll=11[u>σ(−α)])

− L({M(l)}Ll=1, 1[u<σ(α)])
)(
u− 1

2

)]
,

where L({M(l)}Ll=1, 1[u<σ(α)]) denotes the loss obtained by setting Z(l) = 1[u(l)<σ(αl)]
:=(

1
[u

(l)
1 <σ(αl)]

, . . . , 1
[u

(l)
|E|<σ(αl)]

)
for l = 1, . . . , L. The gradient with respect to {al, bl}Ll=1 can then be

calculated by using the chain rule and the reparameterization for πl = (1− u
1
bl )

1
al , u ∼ Unif[0, 1].

It is worth noting that although the beta-Bernoulli DropConnect with ARM is expected to

provide better performance due to the more accurate gradient estimates, it has slightly higher

computational complexity as it requires two forward passes.

4.5 Connection to random walk sampling

Various types of random walk have been used in graph representation learning literature to

reduce the size of input graphs. In GNNs, specifically in GraphSAGE [43], random walk sampling

has been deployed to reduce the model complexity for very large graphs. One can formulate a GNN

layer with random walk sampling as follows:

h(l+1)
v = σ

(
∑

u∈N̂ (v)

(z(l)
vu |Z(l−1)) h(l)

u ) W(l)

 . (4.14)

Here, Z(l) is the same as the one in DropEdge except that it is dependent on the masks from the

previous layer. This is due to the fact that random walk samples for each node are connected

subgraphs.

In this setup, we can decompose the variational distribution of the GDC formulation in an

autoregressive way. Specifically, here we have q(z(l)
vu|Z(l−1)) = Bernoulli(πl)1∑

u∈N̂ (v) z
(l−1)
vu >0

.

With fixed Bernoulli parameters, we can calculate the gradients for the weight matrices with Monte

Carlo integration. Learning Bernoulli parameters is challenging and does not allow direct application

of ARM due to the autoregressive structure of the variational posterior. We leave sequential ARM

for future study.

Corollary 1. Any graph neural network with random walk sampling, such as GraphSAGE, is an
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approximation of a Bayesian graph neural network as long as outputs are calculated using Monte

Carlo sampling.

4.6 Sampling complexity

The number of random samples needed for variational inference in GDC, equation 4.4, at each

layer of a GNN is |E| × fl × fl+1. This number would reduce to |E| × fl in the constrained version

of GDC as shown in equation 4.5. These numbers, potentially, could be very high specially if the

size of the graph or the number of filters are large, which could increase the space complexity and

computation time. To circumvent this issue, we propose to draw a single sample for a block of

features as oppose to drawing a new sample for every single feature. This would reduce the number

of required samples to |E| × nb with nb being the number of blocks. In our experiments, we have

one block in the first layer and two blocks in layers after that. In our experiments, we keep the

order of features the same as the original input files, and divide them into nb groups with the equal

number of features.

While in our GDC formulation, as shown in equation 4.4 and equation 4.5, the normalization

N(·) is applied after masking, one can multiply the randomly drawn mask with the pre-computed

normalized adjacency matrix. This relaxation reduces the computation time and has negligible

effect on the performance based on our experiments. An extension to the GDC sampling strategy

is asymmetric sampling where the mask matrix Z could be asymmetric. This would increase the

number of samples by a factor of two; however it increases the model flexibility. In our experiments,

we have used asymmetric masks and multiplied the mask with the normalized adjacency matrix.

4.7 Numerical results

We test the performance of our adaptive connection sampling framework, learnable GDC, on

semi-supervised node classification using real-world citation graphs. In addition, we compare the

uncertainty estimates of predictions by Monte Carlo beta-Bernoulli GDC and Monte Carlo Dropout.

We also show the performance of GDC compared to existing methods in alleviating the issue of

over-smoothing in GNNs. Furthermore, we investigate the effect of the number of blocks on the
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Table 4.1: Semi-supervised node classification accuracy of GCNs with our adaptive connection
sampling and baseline methods.

Method Cora Citeseer Cora-ML
2 layers 4 layers 2 layers 4 layers 2 layers 4 layers

GCN-DO 80.98±0.48 78.24±2.40 70.44±0.39 64.38±0.90 83.45±0.73 81.51±1.01
GCN-DE 78.36±0.92 73.40±2.07 70.52±0.75 57.14±0.90 83.30±1.37 68.89±3.37
GCN-DO-DE 80.58±1.19 79.20±1.07 70.74±1.23 64.84±0.98 83.61±0.83 81.21±1.53

GCN-BBDE 81.58±0.49 80.42±0.25 71.46±0.55 68.58±0.88 84.62±1.70 84.73±0.52
GCN-BBGDC 81.80±0.99 82.20±0.92 71.72±0.48 70.00±0.36 85.43±0.70 85.52±0.83

performance of GDC. We have also investigated learning separate drop rates for every edge in the

network, i.e. local GDC, which is included in the supplementary materials.

4.7.1 Semi-supervised node classification

4.7.1.1 Datasets and implementation details

We conducted extensive experiments for semi-supervised node classification with real-world

citation datasets. We consider Cora, Citeseer and Cora-ML datasets, and preprocess and split them

same as Kipf and Welling [56] and Bojchevski and Gunnemann [13]. We train beta-Bernoulli GDC

(BBGDC) models for 2000 epochs with a learning rate of 0.005 and a validation set used for early

stopping. All of the hidden layers in our implemented GCNs have 128 dimensional output features.

We use 5 × 10−3, 10−2, and 10−3 as L2 regularization factor for Cora, Citeseer, and Cora-ML,

respectively. For the GCNs with more than 2 layers, we use warm-up during the first 50 training

epochs to gradually impose the beta-Bernoulli KL term in the objective function. The temperature

in the concrete distribution is set to 0.67. For a fair comparison, the number of hidden units are the

same in the baselines and their hyper-parameters are hand-tuned to achieve their best performance.

Performance is reported by the average accuracy with standard deviation based on 5 runs on the test

set. The dataset statistics as well as more implementation details are included in the supplementary

materials.
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Table 4.2: Accuracy of ARM optimization-based variants of our proposed method in semi-
supervised node classification.

Method Cora (4 layers) Citeseer (4 layers)

GCN-BDE-ARM 79.95±0.79 67.90±0.15
GCN-BBDE-ARM 81.74±0.75 69.82±0.58
GCN-BBGDC-ARM 82.46±0.26 70.52±0.44

4.7.1.2 Discussion

Table 4.1 shows that BBGDC outperforms the state-of-the-art stochastic regularization tech-

niques in terms of accuracy in all benchmark datasets. DO and DE in the table stand for DropOut

and DropEdge, respectively. Comparing GCN-DO and GCN-DE, we can see that DropEdge alone is

less effective than DropOut in overcoming over-smoothing and over-fitting in GCNs. The difference

between accuracy of GCN-DO and GCN-DE is more substantial in deeper networks (5% in Cora,

7% in Citeseer, and 13% in Cora-ML), which further proves the limitations of DE. Among the

baselines, combination of DO and DE shows the best performance allowing to have deeper models.

However, this is not always true. For example in Citeseer, 4-layer GCN shows significant decrease

in performance compared to 2-layer GCN.

To show the advantages of learning the drop rates as well as the effect of hierarchical beta-

Bernoulli construction, we have also evaluated beta-Bernoulli DropEdge (BBDE) with the concrete

approximation, in which the edge drop rate at each layer is learned using the same beta-Bernoulli

hierarchical construction as GDC. We see that GCN with BBDE, without any DropOut, performs

better than both GCNs with DE and DO-DE. By comparing GCN with BBDE and GCN with

BBGDC, it is clear that the improvement is not only due to learnable sampling rate but also the

increased flexibility of GDC compared to DropEdge. We note that GCN-BBGDC is the only method

for which the accuracy improves by increasing the number of layers except in Citeseer.
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Figure 4.1: Comparison of uncertainty estimates in PAvPU by a 4-layer GCN-BBGDC with
128-dimensional hidden layers and a 4-layer GCN-DO 128-dimensional hidden layers on Cora.

4.7.1.3 Concrete relaxation versus ARM

To investigate the effect of direct optimization of the variational loss with respect to the drop

parameters with ARM vs relaxation of the discrete random variables with concrete, we construct

three ARM optimization-based variants of our method: Learnable Bernoulli DropEdge with ARM

gradient estimator (BDE-ARM) where the edge drop rate of the Bernoulli mask at each layer

is directly optimized; beta-Bernoulli DropEdge with ARM (BBDE-ARM); and beta-Bernoulli

GDC with ARM (BBGDC-ARM). We evaluate these methods on the 4-layer GCN setups where

significant performance improvement compared with the baselines has been achieved by BBDE and

GDC with concrete relaxation. Comparing the performance of BBDE-ARM and BBGDC-ARM in

Table 4.2 with the corresponding models with concrete relaxation, suggests further improvement

when the drop parameters are directly optimized. Moreover, BDE-ARM, which optimizes the

parameters of the Bernoulli drop rates, performs better than DO, DE, and DO-DE.

4.7.2 Uncertainty quantification

To evaluate the quality of uncertainty estimates obtained by our model, we use the Patch Accu-

racy vs Patch Uncertainty (PAvPU) metric introduced in [72]. PAvPU combines p(accurate|certain),

i.e. the probability that the model is accurate on its output given that it is confident on the same,

p(certain|inaccurate), i.e. the probability that the model is uncertain about its output given that
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Figure 4.2: From left to right: a) Total variation of the hidden layer outputs during training in a
4-layer GCN-BBGDC with 128-dimensional hidden layers and a 4-layer GCN-DO 128-dimensional
hidden layers on Cora; b) Comparison of node classification accuracy for GCNs with a different
number of hidden layers using different stochastic regularization methods. All of the hidden layers
are 128 dimensional.

it has made a mistake in its prediction, into a single metric. More specifically, it is defined as

PAvPU = (nac + niu)/(nac + nau + nic + niu), where nac is the number of accurate and certain

predictions, nau is the number of accurate and uncertain predictions, nic is the number of inaccurate

and certain predictions, and niu is the number of inaccurate and uncertain predictions. Higher

PAvPU means that certain predictions are accurate and inaccurate predictions are uncertain.

We here demonstrate the results for uncertainty estimates for a 4-layer GCN-DO and a 4-layer

GCN-BBGDC with random initialization for semi-supervised node classification on Cora. We have

evaluated PAvPU using 20 Monte Carlo samples for the test set where we use predictive entropy

as the uncertainty metric. The results are shown in Figure 4.1. It can be seen that our proposed

model consistently outperforms GCN-DO on every uncertainty threshold ranging from 0.5 to 1 of

the maximum predictive uncertainty. While Figure 4.1 depicts the results based on one random

initialization, other initializations show the same trend.

4.7.3 Over-smoothing and over-fitting

To check how GDC helps alleviate over-smoothing in GCNs, we have tracked the total variation

(TV) of the outputs of hidden layers during training. TV is a metric used in the graph signal

processing literature to measure the smoothness of a signal defined over nodes of a graph [22]. More
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Table 4.3: Accuracy of 128-dimensional 4-layer GCN-BBGDC with different number of blocks on
Cora in semi-supervised node classification.

Method 2 blocks 16 blocks 32 blocks

GCN-BBGDC 82.2 83.0 83.3

specifically, given a graph with the adjacency matrix A and a signal x defined over its nodes, TV is

defined as TV(x) = ‖x− (1/|λmax|)A x‖2
2, where λmax denotes the eigenvalue of A with largest

magnitude. Lower TV shows that the signal on adjacent nodes are closer to each other, indicating

possible over-smoothing.

We have compared the TV trajectories of the hidden layer outputs in a 4-layer GCN-BBGDC

and a 4-layer GCN-DO normalized by their Frobenius norm, depicted in Figure 4.2(a). It can be

seen that, in GCN-DO, while the TV of the first layer is slightly increasing at each training epoch,

the TV of the second hidden layer decreases during training. This, indeed, contributed to the poor

performance of GCN-DO. On the contrary, the TVs of both first and second layers in GCN-BBGDC

is increasing during training. Not only this robustness is due to the dropping connections in GDC

framework, but also is related to its learnable drop rates.

With such promising results showing less over-smoothing with BBGDC, we further investigate

how our proposed method works in deeper networks. We have checked the accuracy of GCN-

BBGDC with a various number of 128-dimensional hidden layers ranging from 2 to 16. The results

are shown in Figure 4.2(b). The performance improves up to the GCN with 4 hidden layers and

decreases after that. It is important to note that even though the performance drops by adding the

5-th layer, the degree to which it decreases is far less than competing methods. For example, the

node classification accuracy with GCN-DO quickly drops to 69.50% and 64.5% with 8 and 16

layers. In addition, we should mention that the performance of GCN-DO only improves from two to

three layers. This, indeed, proves GDC is a better stochastic regularization framework for GNNs in

alleviating over-fitting and over-smoothing, enabling possible directions to develop deeper GNNs.
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4.7.4 Effect of number of blocks

In GDC for every pair of input and output features, a separate mask for the adjacency matrix

should be drawn. However, as we discussed in Section 4.6, this demands large memory space. We

circumvented this problem by drawing a single mask for a block of features. While we used only two

blocks in our experiments presented so far, we here investigate the effect of the number of blocks

on the node classification accuracy. The performance of 128-dimensional 4-layer GCN-BBGDC

with 2, 16, and 32 blocks are shown in Table 4.3. As can be seen, the accuracy improves as the

number of blocks increases. This is due to the fact that increasing the number of blocks increases

the flexibility of GDC. The choice of the number of blocks is a factor to consider for the trade off

between the performance and memory usage as well as computational complexity.
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5. BAYESIAN MULTI-MODAL RELATIONAL

5.1 Introduction

Multi-modal learning tries to fully leverage the information from multiple sources (i.e. different

types of omics data in molecular biology) and represents them in a shared embedding space, which

is beneficial for many downstream tasks with a limited number of training samples. In biomedical

applications, the shared embedding space also enables better understanding of the underlying

biological mechanisms by discovering interactions between different types of molecules, which is

our focus in this chapter.

Existing multi-omics data integration methods are limited in their applicability. First, most of

them attempt to derive low-dimensional embeddings of the input samples and are not designed

to infer a multi-partite graph that encodes the interactions across views. In unsupervised setting,

matrix factorization based methods, such as Bayesian Canonical Correlation Analysis (BCCA) [57]

and Multi-Omics Factor Analysis (MOFA) [5] can achieve the similar goal of cross-view relational

learning but often through two-step procedures, in which the factor loading parameters are used

for downstream interaction analyses across views. Second, a very recent relational inference for

multi-view data integration, BayRel [41], is built on three strict assumptions, which may limit its

practical application, including in multi-omics data integration: 1) A graph of dependency between

features of each view is available; 2) The input dataset is complete on all views with no missing

samples; 3) The samples in different views are well-paired. While the first limitation might be

solved by learning a graph using an ad-hoc technique, the last two issues are common in many

multi-omics data integration problems. Integrated samples commonly have one or more view with

various missing patterns. This is mostly due to limitations of experimental designs or compositions

from different data platforms. In addition, data might be collected in different laboratories or

the sample IDs may not be available due to patient identification or security concerns, leading to

unpaired datasets. Apart from these, we might not have access to a priori graph structure data in
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some view(s) as the nature of data might not be structured, or we only have incomplete or very noisy

prior knowledge. For such multi-omics data, leaving out such a view may lose some complementary

information while enforcing graph structures may cause degraded performance.

In this work, we propose a new Multi-modal Relational Learning method, MoReL, based

on fused Gromov-Wasserstein (FGW) regularization, mitigating the dependency of multi-view

learning on the two aforementioned assumptions. The proposed method contains four major

contributions: 1) MoReL provides a new Bayesian multi-omics relational learning framework

with efficient variational inference and is able to exploit non-linear transformations of data by

leveraging deep learning models for either unstructured or graph-structured data; 2) MoReL learns

a multi-partite graph across different features from multiple views using a FGW-based decoder,

facilitating meaningful biological knowledge discovery from integrative multi-omics data analysis

while accounting for arbitrarily permutation and/or transformation caused by processing features

with different deep functions across the views; 3) MoReL can flexibly integrate both structured and

unstructured heterogeneous views in one framework, in which only confident constraints need to

be imposed to improve the model performance; 4) MoReL is able to integrate multiple views with

unpaired samples and/or arbitrary sample-missing patterns.

5.2 Related works

Optimal transport. There have been extensive efforts to utilize Gromov-Wasserstein (GW)

discrepancy to solve the alignment problems in shape and object matching [67, 68]. A similar

attempt has been made recently to investigate its potential for more diverse applications, such

as aligning vocabulary sets between different languages [4], and graph matching [23, 95, 108].

Peyré et al. [82] have proposed a fast Sinkhorn projection-based algorithm [24] to compute the

entropy-regularized GW distance. Following this direction, Xu et al. [108] have replaced the entropy

regularizer with a Bregman proximal term. To further reduce the computational complexity, the

recursive GW distance [107] and the sliced GW distance [98] have been proposed. In Bunne et al.

[16], a pair of generative models are learned for incomparable spaces by defining an adversarial

objective function based on the GW discrepancy. In addition, it imposes an orthogonal assumption
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on the transformation between the sample and its latent space. However, it can not incorporate the

graph structured data. Similar to our model in this work, Vayer et al. [97] and Xu et al. [109] have

proposed to impose the fused GW regularization in their objective functions by combining GW and

Wasserstein discrepancies.

Graph CCA (gCCA). In order to utilize a priori known information about geometry of the

samples, gCCA methods [19, 18] have been proposed to construct a dependency graph between

samples and directly impose it into a regularizer. Similar to classical CCA, gCCA learns an

unstructured shared latent representation. Unlike our MoReL, though, they can neither take

advantage of the dependency graph between features, nor explicitly model relational dependency

between features across views. Therefore, they rely on ad-hoc post-processing procedures as a

second step to infer inter-relations.

Graph representation learning. Graph neural network architectures have been shown to be

effective for link prediction [43, 55, 46] as well as matrix completion for recommender systems [10,

70, 50, 63]. The first group of models is dealing with a single graph and is not able to deal with

heterogeneous graphs, with multiple types of nodes and edges, and node attributes [116]. The second

group utilizes the known item-item and user-user relationships and their attributes to complete the

user-item rating matrix. However, they rely on two strict assumptions: 1) The inter-relation matrix is

partially observed; and 2) Both views have structured information. The proposed MoReL achieves

robust multi-view learning without these assumptions, making it more practical in multi-omics data

integration.

5.3 Preliminaries

5.3.1 Wasserstein distance

Wasserstein distance (WD) quantifies the geometric discrepancy between two probability

distributions by measuring the minimal amount of “work” needed to move all the mass contained in

one distribution onto the other [89]. More specifically, given two probability measures Λ ∈ P(X)

and ∆ ∈ P(Y), and a transportation cost c : X × Y → R+, WD is the solution to the following
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optimization problem:

inf
π∈Π(X×Y)

E(x,y)∼π[c(x, y)] = inf
π∈Π(X×Y)

∫
c(x, y) dπ(x, y),

where π is the transport map and Π(X×Y) := {π ∈ P(X×Y) |
∫
π(x,y) dy = Λ(x),

∫
π(x,y) dx

= ∆(y)} is the set of all admissible couplings. Assuming that the probability distributions are

discrete, with probability mass functions
∑n

i=1 aiδxi and
∑m

j=1 bjδyj , WD optimization could be

simplified as follows:

DW(Λ,∆) = min
T∈Π(a, b)

n∑
i=1

m∑
j=1

Ti,j c(xi,yj),

where Ti,j is an element of the transport matrix T whose row-wise and column-wise sums equal to

[ai]
n
i=1 and [bj]

m
j=1, respectively.

5.3.2 Gromov-Wasserstein distance

Gromov-Wasserstein distance (GWD) has been proposed as a natural extension of WD when a

meaningful transportation cost between the distributions cannot be defined. For example, when two

distributions are defined in Euclidean spaces with different dimensions or more generally when X

and Y are unaligned, i.e. when their features are not in correspondence [98]. Instead of measuring

inter-domain distances, GWD measures the distance between pairs of samples in one domain

and compares it to those in the other domain. More specifically, given two probability measures

Λ ∈ P(X) and ∆ ∈ P(Y), as well as two domain-specific transportation costs c(X) : X× X→ R+

and c(Y) : Y× Y→ R+, GWD is the solution to the following optimization problem:

inf
π∈Π(X×Y)

E(x,y)∼π,(x′,y′)∼π[L(x,x′,y,y′)] = inf
π∈Π(X×Y)

∫ ∫
L(x,x′,y,y′) dπ(x, y) dπ(x′, y′),

where L(x, x′, y, y′) =‖ c(X)(x, x′)−c(Y)(y, y′) ‖, π is the transport map, and Π(X×Y) := {π ∈

P(X × Y) |
∫
π(x,y) dy = Λ(x),

∫
π(x,y) dx = ∆(y)} is the set of all admissible couplings.

Likewise, this can be derived for discrete distributions with probability mass functions
∑n

i=1 aiδxi
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Figure 5.1: Graphical illustration of MoReL’s generative flow with structured and unstructured
views. DEC stand for decoder. The rest of variables and abbreviations are defined in the manuscript.

and
∑m

j=1 bjδyj , as follows:

DGW(Λ,∆) = min
T∈Π(a, b)

n∑
i,i′=1

m∑
j,j′=1

Ti,j Ti′,j′ L(xi,xi′ ,yj,yj′), (5.1)

where Ti,j is an element of transport matrix T whose row-wise and column-wise sums equal to

[ai]
n
i=1 and [bj]

m
j=1, respectively.

5.4 Method

5.4.1 Problem formulation and notations

We propose a novel hierarchical generative model for multi-omics data integration that incorpo-

rates view-specific structure information when it is available. Given observations from structured

and unstructured views, our model, Multi-modal Relational Learning (MoReL), aims to infer the

inter-relations among entities, i.e. features, across all views. More specifically, assume that multiple

views, V , of data are given. Without loss of generality, we assume that the structure information,

provided as a graph, is available for some of the views Vs ⊂ V , and the remaining views Vu = V \Vs

are unstructured. We note that every structure could be represented as a graph. For example, image

and sequential data could be represented over grid and directed path graphs, respectively.

We represent the set of graphs for structured views by Gs = {G(v)}v∈Vs and their adjacency

matrices by As = {A(v)}v∈Vs . We also define Xs = {X(v)}v∈Vs as the set of node attributes
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for structured views, and Xu = {X(v)}v∈Vu as the set of data for unstructured views. Moreover,

Nv denotes the number of nodes in structured views and number of features for unstructured

views. MoReL infers the interactions among the nodes in Gs and features in Xu. We represent

these inter-relations by a multi-partite graph with
∑

v∈V Nv nodes and a multi-adjacency tensor

A = {A(vv′)}v,v′∈V,v 6=v′ , where A(vv′) is the Nv ×Nv′ bi-adjacency matrix between views v and v′.

5.4.2 MoReL generative model

We define a hierarchical Bayesian model for MoReL with three sets of latent variables: 1)

H = Hs ∪Hu = {H(v)}v∈Vs∪Vu , which captures the (hidden) structural information; 2) A, which

encodes the interaction among features across views; and 3) Z = Zs ∪ Zu = {Z(v)}v∈Vs∪Vu ,

which summarizes the feature/attribute specific information. In our model, the joint probability of

observations and latent variables factorizes as follows:

pθ(Xu, Xs, As, H, A, Z) =

pθx(Xu | Zu) pθx(Xs | Zs) pθg(As |Hs) pθz(Z |H, A) pθa(A |H) p(H).

(5.2)

Figure 5.1 depicts the generative model of MoReL with structured and unstructured views. In the

following subsections, we define different parts of the generative and inference model.

5.4.2.1 Optimal transport for multi-partite graph decoder

In this subsection, we define the generative distribution of the multi-adjacency tensor, A. We

note that inferring A is the main goal of our model. Given the structural latent variables H, we

introduce a fused Gromov-Wasserstein (FGW) distance based mapping to generate A. FGW refers

to distance metrics defined by combining WD and GWD, which has been proposed to compare

structured distributions [95, 21]. Considering graphs with node attributes as structured distributions,

WD compares node distributions in two graphs (i.e, node similarity), GWD measures the distance

between pairs of nodes in one graph and compares it to those in the other (i.e., edge/path similarity).

FGW distance. Given two structured probability distributions, Λ ∈ P(X) and ∆ ∈ P(Y),
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FGW is defined as follows:

DFGW(Λ, ∆) =αDW(Λ, ∆) + βDGW(Λ, ∆)

=α inf
πw∈Π(X×Y)

E(x,y)∼πw [c(XY)(x, y)]

+ β inf
πgw∈Π(X×Y)

E(x,y),(x′,y′)∼πgw [‖ c(X)(x, x′)− c(Y)(y, y′) ‖],

(5.3)

where α, β ∈ [0, 1] are scalar hyper-parameters, Π(X × Y) is the set of all admissible couplings

between Λ and ∆, and c(XY), c(X), and c(Y) are corresponding transportation cost functions. DFGW

can be further simplified by choosing πw to be equal to πgw [21].

Relational learning via FGW. We are interested in aligning the nodes/features in every pair of

views, i.e. (v, v′). Hence, we will have a FGW distance based decoder for every pair of views, in

which each view independently belongs to either structured or unstructured views, i.e. (v, v′) ∈ V .

To that end, we first define the transportation cost functions c(vv′) and c(v), and then approximate

DFGW. We define the (inter-)cost function for the first term of FGW, i.e. DW, as follows:

c(vv′)(H
(v)
i,: , H

(v′)
j,: ) = 1− σ

(
H

(v)
i,: (H

(v′)
j,: )T

)
; v, v′ ∈ V , (5.4)

where σ denotes the sigmoid function, and H
(v)
i,: represents the structural latent variable of

node/feature i in view v. To calculate the DGW, we define two different transportation costs

based on the nature of the inputs. For the structured views, we define the cost function as a combi-

nation of the shortest path distance from graph and the distance between structural latent variables.

More specifically, given the normalized shortest path distance matrix between every pair of nodes

in the input graph D(v):

c(v)(H
(v)
i,: , H

(v)
j,: ) = D(v) �

(
1− σ

(
H

(v)
i,: (H

(v)
j,: )T

))
; for v ∈ Vs,

where � denotes the Hadamard product. This construction ensures both graph and attributes

information are incorporated in the distance function. For unstructured views, we define the cost
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function between two features as follows:

c(v)(H
(v)
i,: , H

(v)
j,: ) = 1− σ

(
H

(v)
i,: (H

(v)
j,: )T

)
; for v ∈ Vu.

Noting the definitions of WD and GWD in Section 5.3, we rewrite DFGW between two views of

data with shared transport matrix as follows:

DFGW

(
p(H(v)), p(H(v′))

)
=

Nv∑
i=1

Nv′∑
j=1

min
T

(vv′)
gw ∈Π

∑
H

(v)
i,: ,H

(v′)
j,: ,H

(v)′
i,: ,H

(v′)′
j,:

[
α c(vv′)(H

(v)
i,: , H

(v′)
j,: ) +

β ‖ c(v)(H
(v)
i,: , H

(v)′
i,: )− c(v′)(H

(v′)
j,: ,H

(v′)′
j,: ) ‖

]
.

(5.5)

To approximate the FGW distance, we first deploy GW algorithm in equation (5.1) to obtain

T
(vv′)
gw and DGW, and then utilize T

(vv′)
gw along with the defined transportation cost c(vv′) to calculate

Wasserstein distance term in DFGW [21]. The pseudo-code in Algorithm 1 provides the details of

the FGW distance calculation procedure. ρ in Algorithm 1 is a hyper-parameter. Please note that

we use the same Sinkhorn solver as in [21] and [4].

We further can generate A for every pair of views based on T
(vv′)
gw as follows:

p(A |H) =
∏
v,v′∈V
v 6=v′

p(A(vv′) |H(v),H(v′)) =
∏
v,v′∈V
v 6=v′

Ber
(

A(vv′) | γT(vv′)
gw /max(T(vv′)

gw )
)
, (5.6)

where γ ∈ [0, 1] is a normalizing hyper-parameter, and Ber is short for Bernoulli. We note that the

sum of the elements in each of the transport matrices T
(vv′)
gw equals to one. Hence each of its elements

has a small value. Therefore, we normalize the transport matrices (as γT
(vv′)
gw /max(T

(vv′)
gw )) to

avoid very sparse and trivial solutions. To use the reparametrization trick during training, we sample

from concrete relaxation of Bernoulli [34]. We emphasize that our proposed FGW-based decoder

is the key in aligning features/nodes across structured and unstructured views via accurate and

efficient distribution matching scheme.
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Algorithm 1: Computing fused Gromov-Wasserstein distance.

1 Input: C
(v)
n×n, C(v′)

m×m, C(vv′)
n×m, ρ

2 Definitions: � = Hadamard product, 〈·, ·〉 = Frobenius dot-product

3 // Cross-view similarity:
4 Ĉ(vv′) = (C(v))21n1m

> + 1n1m
>((C(v′))2)>

5 // Initializing variables:

6 T = 1n1m
>, σ = 1

m1m, Bi,j = exp(Ĉ
(vv′)
i,j )/ρ

7 for t1 = 1, 2, . . . do
8 L = Ĉ(vv′) − 2C(v)T (C(v′))>

9 for t2 = 1, 2, . . . do
10 M = B � T
11 for t3 = 1, 2, . . . do
12 δ = 1

nMσ , σ = 1
nM>δ

13 T = diag(δ)M diag(σ)

14 DW = 〈(C(vv′))>,T 〉
15 DGW = 〈L>,T 〉

16 Return T , DW , DGW

5.4.2.2 Prior construction and likelihoods

Prior. We impose independent zero-mean unit-variance Gaussian priors on elements ofH. The

prior for Z is a multivariate Gaussian distribution whose mean and diagonal covariance matrix

are constructed from the inferred multi-partite graph and the structural latent variableH. We use

two graph neural networks (GNNs) g(µ)
pz and g(σ)

pz to map H and A to the parameters of pθz(Z).

Specifically,

pθz(Z |H,A) =
∏
v∈Vs

Nv∏
i=1

pθz(Z(v)
i,: |H,A); pθz(Z(v)

i,: |H,A) = N (µ(v,i)
pz ,σ(v,i)

pz ),

with [µ(v,i)
pz ]v,i = g(µ)

pz (H,A), [σ(v,i)
pz ]v,i = g(σ)

pz (H,A).

We note that in this setting,H is considered as node attributes of the multi-partite interaction graph.

Likelihood of observations. To reconstruct the input graphs in the structured views, we assume

that the views and edges are conditionally independent. More specifically, we employ an inner-
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product decoder as follows:

pθg(As |Hs) =
∏
v∈Vs

Nv∏
i,j=1

pθg

(
A(v)
i,j |H

(v)
i,: , H

(v)
j,:

)
;

pθg

(
A(v)i, j |H(v)

i,: ,H
(v)
j,:

)
= Ber

(
σ(H

(v)
i,: (H

(v)
j,: )T )

)
.

To generate the features in unstructured views and node attributes in structured views, we assume

that views are conditionally independent. Hence, we can expand the feature reconstruction terms in

the the equation (5.2) as follows:

pθx(Xu | Zu) =
∏
v∈Vu

pθx(X(v) |Z(v)), pθx(Xs | Zs) =
∏
v∈Vs

pθx(X(v) |Z(v)).

We note that pθx could also be view specific depending on whether the node attributes/features in

a view are discrete or continuous. In our experiments, we have deployed the Gaussian likelihood

with unit variance. The mapping from Z to the parameters of pθx(X ), in our case, the mean of the

Gaussian distribution, can be any highly expressive function such as neural networks. We denote

these functions by f (v,s)
px and f (v,u)

px .

5.4.3 Inference network and learning

Posterior. We model the posterior of the structural latent variables as a Gaussian distribution

and infer its parameters independently for each view. More specifically,

qφh(Hu | Xu) =
∏
v∈Vu

qφh(H(v) |X(v)), qφh(Hs | Xs, As) =
∏
v∈Vs

qφh(H(v) |X(v), A(v)).

We use two GNNs for each structured view, {g(µ,v)
qh (X(v),A(v)), g

(σ,v)
qh (X(v),A(v))}v∈Vs , and two

fully connected neural networks per unstructured view, {f (µ,v)
qh (X(v)), f

(σ,v)
qh (X(v))}v∈Vu , to map

inputs to the mean and variance of the posteriors. We consider the variational distribution of Z to
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be a multivariate Gaussian distribution, and it is factorized as follows:

qφz(Zu | Xu) =
∏
v∈Vu

qφz(Z(v) |X(v)), qφz(Zs | Xs, As) =
∏
v∈Vs

qφz(Z(v) |X(v), A(v)).

We use two GNNs per structured view, {g(µ,v)
qz (X(v), A(v)), g

(σ,v)
qz (X(v),A(v))}v∈Vs , and two fully

connected neural networks for each unstructured view, {f (µ,v)
qz (X(v)), f

(σ,v)
qz (X(v))}v∈Vu , in the same

fashion as qφh to infer parameters of qφz .

Objective function. Having defined the prior and posterior distributions as well as the likeli-

hood, we write the overall loss function as the sum of the negative variational ELBO and FGW

regularization terms. Specifically,

L =− ELBO + LFGW

= Eqφz (Zu | Xu)log pθx(Xu | Zu) + Eqφz (Zs | Xs,As)log pθx(Xs | Zs) + Eqφh (Hs | Xs,As) log pθg(As |Hs)

+ Eqφz (Zu,Hu | Xu) log pθ(Zu | A,H) + Eqφz (Zs,Hs | Xs,As) log pθ(Zs | A,H)

− Eqφz (Zu | Xu) log qφz(Zu | Xu)− Eqφz (Zs | Xs,As) log qφz(Zs | Xs, As)

− Eqφh (Hu | Xu) log qφh(Hu | Xu)− Eqφh (Hs | Xs,As) log qφh(Hs | Xu, As))

+ Eqφh (Hu | Xu) log p(Hu) + Eqφh (Hs | Xs,As) log p(Hs)

+
∑
v∈V

∑
v′∈V
v′ 6=v

DFGW

(
p(H(v)), p(H(v′))

)
.

(5.7)

While, as mentioned previously, we use the Sinkhorn algorithm to calculate the DFGW, the overall

loss is optimized using stochastic gradient descent based optimization algorithms such as Adam

[51].
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5.5 Experiments

5.5.1 Datasets and evaluation metrics

Datasets. We use the same datasets as BayReL in [41], i.e. microbiome-metabolite interactions

in cystic fibrosis (CF) and gene-drug interactions in precision medicine. Dataset description and

graph construction procedure are detailed in the Appendix. We want to emphasize that although

these datasets have structured views, have no missing samples and their samples are completely

paired, in many real-world cases these assumptions are not satisfied. These datasets were chosen

merely to get a better understanding of the advantages of MoReL specially compared to BayReL.

We evaluate MoReL in different settings. More specifically, we demonstrate the performance of

MoReL when: 1) one or both views are unstructured, 2) there are missing samples, and 3) samples

are not paired. Furthermore, we have a comprehensive comparison with BayReL when both views

are structured.

Evaluation metrics. To quantify the performance of the methods, we use the same evaluation

metrics as the ones introduced in BayReL [41]. Since in these datasets, the true negatives, i.e.

non-interactions, are not known; and there are only a small subset of true positives, i.e. true

interactions, well-known classification metrics cannot be used for evaluation. Therefore, positive

accuracy and negative accuracy have been defined to evaluate microbiome-metabolite experiments.

Positive accuracy refers to the accuracy of identifying validated interactions with P. aeruginosa.

Negative accuracy exploits the fact that there should not be any common metabolite targets between

known anaerobic microbes (Veillonella, Fusobacterium, Prevotella, and Streptococcus) and notable

pathogen P. aeruginosa. Let B denote the set of all microbes and A1 and A2 represent two disjoint

sets of metabolites. Negative accuracy is defined as 1−
∑
i∈A1

∑
j∈A2

∑
l∈B 1(i and j are connected to l)

|A1|×|A2|×|B| , where

1(·) is the indicator function. Having both higher positive and negative accuracy is desired.

For precision medicine, we compare the prediction sensitivity of identifying known interactions

in the test sets while tracking the average density of the overall constructed graphs. We note that

inferring very dense graphs would lead to high prediction sensitivity as it will includes most of the
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possible interactions. Therefore, tracking the sparsity of the inferred graphs is the key to properly

evaluate the models’ capability in predicting meaningful interactions.

5.5.2 Baselines and experimental setups

Baselines. We compare MoReL with three baselines including Spearman’s Rank Correlation

Analysis (SRCA), BCCA [57], and BayReL [41]. While SRCA applies to raw data, BCCA

first finds low-dimensional latent representations of views via matrix factorization and then the

interactions are discovered based on the correlation between representations. While BCCA and

SRCA could not incorporate the structure of data and need a two-step procedure to infer the

interaction between features across the views, BayReL is able to use the structure of data and infer

the relations without any ad-hoc post-processing procedure. However, BayReL suffers from three

strict assumptions: 1) All views of data are structured; 2) There are no missing samples in any

views; and 3) Samples are paired, i.e. the ID of samples are known. We emphasize that MoReL is

the very first model that not only can infer interactions across structured and unstructured views

but also is able to handle missing and unpaired samples in different domains, making it more

applicable in real-world multi-omics data integration. A widely used method for multi-omics data

integration is MOFA [5]. The mathematical modeling of MOFA is the same as BCCA except for

the data likelihood part. While BCCA only supports continuous data, MOFA can have likelihoods

for discrete random variables (e.g. Poisson). Since our datasets do not have discrete features, we

are only reporting BCCA results.

Hyper-parameters. In all of our experiments, to have a fair comparison, architectural hyper-

parameters (i.e. number of layers and number of neurons) were set to be the same as in BayReL.

Other hyper-parameters that are unique to MoReL were tuned using the validation set. More specifi-

cally, the number of hidden layers as well as their dimensions are the same for the corresponding

functions in both structured and unstructured views. We use graph convolutional layers [56] for

structured views and fully connected layers for unstructured views except for reconstructing X from

Z , for which we use fully connected layers in all of the views. The mapping from inputs to the

mean and variance parameters ofH are two 2-layer neural networks (16 and 8 dimensional layers)

59



Table 5.1: Comparison of positive accuracy (in %) on CF dataset at negative accuracy of > 97%.

SRCA BCCA MoReL uu MoReL us

Positive accuracy 26.41 28.30±3.21 56.16±1.85 63.77±1.11

with a shared first layer for each view. We use two 2-layer neural networks (16 and 8 dimensional

layers) with a shared first layer for each view for the mapping from H to the mean and variance

of Z . We use a 3-layer fully connected neural network (8 and 16 dimensional hidden layers) for

each view as the reconstruction function mapping Z to X . The temperature for relaxed Bernoulli

distribution is set to 0.3. The normalizing parameter γ in equation 5.6 is 0.9 while α and β in DFGW

are set to 1 and 0.5, respectively. We used the exponential decaying learning rate with the decay

rate of 0.01 and initial learning rate of 0.01. All of our results are averaged over multiple runs with

different random seeds. We have implemented MoReL and all the competing methods in Tensorflow

[1]. All the experiments are performed on a workstation with a single NVIDIA P100 GPU.

5.5.3 Discussion, datasets with unstructured views

Table 5.1 shows the performance of three variants of MoReL and competing methods for

microbiome-metabolite data integration with the CF data. In these experiments, we assume that

the samples are paired and all are available in both views. In MoReL uu, we report the results when

both views are unstructured. In MoReL us, we have the graph of interactions between microbiomes

while the metabolite view is assumed to be unstructured. Comparing MoReL uu and baselines that

do not incorporate any graph-structured data as input, we observe an almost 30% improvement in

positive accuracy while maintaining higher than 97% negative accuracy. This demonstrates that

our proposed MoReL, even without any structural information, is effective in inferring meaningful

interactions. Further incorporating the network between microbiomes (i.e. MoReL us) leads to a

37% and 7% improvement compared to the baselines and MoReL uu, respectively. This shows not

only the importance of incorporating view-specific side information, but also the effectiveness of

FGW-based decoder in aligning structured and unstructured views. Further results on interpretability
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Table 5.2: Comparison of prediction sensitivity (in %) in the precision medicine experiment.

Avg. degree 0.10 0.15 0.20 0.25 0.30 0.40 0.50

SRCA 8.03 12.00 17.15 20.70 26.85 34.93 45.79
BCCA 9.65±0.75 14.34±0.06 18.96±0.42 23.29±0.52 28.22±0.66 38.02±2.15 46.88±1.88

MoReL uu 11.29±0.16 15.74±0.62 21.21±0.81 26.20±1.10 30.47±1.07 39.05±0.75 50.19±0.19
MoReL us 12.79±0.39 17.51±2.21 22.82±1.01 29.58±1.08 35.05±1.27 45.74±1.75 53.16±0.96

and robustness of MoReL on CF dataset is provided in Appendix C.

The results for prediction sensitivity of two variants of MoReL and competing methods in the

precision medicine experiments are shown in Table 5.2. We observe that both MoReL uu, where

both views are unstructured, and MoReL us, where the graph structure between genes is given,

consistently outperform the baselines by a significant margin using graphs of different densities.

This, once again, proves that MoReL is able to learn meaningful relations both in sparse and dense

graphs. Comparing the results for MoReL us and BCCA, the difference between their performance

increases as the the density of the bipartite graph increases. This confirms that MoReL us can identify

potential gene-drug interactions more robustly.

5.5.4 Comparison with BayReL

While the primary goal of experiments so far was showing the effectiveness of MoReL in

integrating unstructured and structured views, here we investigate the advantages of MoReL over

BayReL.

All structured. As mentioned earlier in the manuscript, BayReL assumes that all of the views

are structured. To show the expressive power of MoReL, we train it in the same setting as BayReL

where all of the views are structured. Particularly, we assume that for CF dataset both metabolites

Table 5.3: Comparison of positive accuracy (in %) on CF dataset with structured views.

BayReL MoReL ss

Positive accuracy 82.70±4.70 89.50±3.29
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Table 5.4: Comparison of prediction sensitivity (in %) in the precision medicine experiment with
structured views.

Avg. degree BayReL MoReL ss

0.4 47.90±0.43 49.24±1.64
0.5 56.76±0.50 58.92±0.40

network and microbiome network are observed in the microbiome-metabolite experiment. Also,

in precision medicine experiment both drug network and gene regulatory network are known a

priori. For fair comparison, we set the number of layers as well as hidden dimensions to be the

same in both models. We train MoReL with the exponential decaying learning rate with the initial

rate of 0.01 and decay rate of 0.001 for 120 training epochs. For BayReL, we use the setting

reported in Hajiramezanali et al. [41]. The results for CF and precision medicine are summarized

in Tables 5.3 and 5.4. We see that MoReL outperforms BayReL on CF dataset by a margin of 7%

which indicates that knowing the metabolic pathways can greatly improve interaction learning. In

precision medicine experiment, we observe a consistent 2% improvement by MoReL compared to

BayReL.

We emphasize that the declined performance of MoReL uu and MoReL us (shown in Tables 5.1

and 5.2) compared to BayReL is expected, as they uses less information than BayReL. Incorporating

this extra information in MoReL enhances its performance substantially. Note that BayReL is bound

to use the same set of functions for all views to account for arbitrarily rotations and transformations,

which limits its expressive power. However, the FGW based decoder in MoReL allows to have

different processing functions for each view. We argue that this increases the expressive power and

plays the key role in enhancing the performance.

Paired vs. unpaired. To show that MoReL can handle unpaired input samples, we perform an

ablation study on CF dataset. We reverse the order of samples in metabolite view while keeping

the order of samples in microbiome. We report the performance of BayReL and MoReL us where

we don’t use the structure of metabolite view. The results are shown in Table 5.5. While MoReL
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Table 5.5: Comparison of positive accuracy (in %) and negative accuracy (in %) on CF dataset with
unpaired samples.

BayReL MoReL us

Positive accuracy 31.56 63.24±2.13
Negative accuracy 72 97

performed virtually the same as a completely paired scenario (shown in Table 5.1), BayReL’s

performance drastically declined. We note that the reported negative accuracy is the best one

achieved by BayReL.

Missing samples. We should again point out that in a setting where all views are structured but

the number of node attributes are not the same in different views, BayReL cannot be deployed (as it

uses the same processing functions for all views). To see how MoReL us performs in such a scenario,

we randomly remove 10% of samples in metabolite view of CF dataset. MoReL achieves positive

accuracy (in %) of 61.36±3.74 with negative accuracy of 97%. This again shows the robustness of

FGW-based decoder in aligning nodes with different number of samples.

Computational complexity. We have also benchmarked computational complexity of MoReL

and BayReL by tracking their runtime on CF dataset on the same hardware. While BayReL takes

0.6 seconds per training epoch, MoReL takes 2.7 seconds per training epoch. This is due to the

computational overhead caused by deploying FGW regularization. Considering the model flexibility

and significant prediction performance improvement, such computational overhead is acceptable.
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6. CONCLUSIONS

In this dissertation, we have developed multiple novel Bayesian models to address challenges in

graph analytics problems. Our proposed methods model different components of a graph including

nodes, node attributes, and the graph structure, as distributions, hence they are equipped with natural

uncertainty estimates.

First, we have developed a Bayesian graph representation learning method that infers implicit

posterior as node embeddings. Combining the advantages of semi-implicit hierarchical variational

distribution and VGAE with a Bernoulli-Poisson link decoder, SIG-VAE has been shown to capture

both the graph structural and node attribute information in the latent space. By providing a

surrogate evidence lower bound that is asymptotically exact, the optimization problem for SIG-

VAE model inference is amenable via stochastic gradient descent, without compromising the

flexbility of its variational distribution. Our experiments with different graph datasets have shown

the promising capability of SIG-VAE in a range of graph analysis applications with interpretable

latent representations, thanks to the hierarchical construction that diffuses the distributions of

neighborhood nodes in given graphs.

Next, we have developed a unified framework for connection sampling in GNNs that generalizes

existing stochastic regularization techniques for training GNNs. Our proposed method, Graph

DropConnect (GDC), not only alleviates over-smoothing and over-fitting tendencies of deep GNNs,

but also enables learning with uncertainty in graph analytic tasks with GNNs. To that end, we have

shown that training a GNN with our learnable GDC is equivalent to an approximation of training

Bayesian GNNs. Instead of using fixed sampling rates, our GDC technique parameters can be

trained jointly with GNN model parameters. Our experimental results shows that GDC boosts the

performance of GNNs in semi-supervised classification task by alleviating over-smoothing and

over-fitting. We further show that the quality of uncertainty derived by GDC is better than DropOut

in GNNs.

Finally, we have proposed MoReL, a novel Bayesian deep generative model that efficiently

64



infers hidden molecular relations across heterogeneous views of data. By using a fused Gromov-

Wasserstein (FGW) based decoder, MoReL addresses several main shortcomings of the state-of-

the-art omics data integration model. Specifically, MoReL can 1) integrate both structured and

unstructured omics datasets while accounting for arbitrarily permutation and/or transformation

caused by processing features with different deep functions across the views; 2) handle unpaired

samples across the views of data; 3) combine multiple views from different data sources with

any number of missing samples. Our experiments on two real-world datasets have demonstrated

substantial improvement in inferring meaningful relations as well as improving prediction sensitivity

compared to the competing methods. MoReL has shown the promising potential for multi-view

learning, in particular multi-omics data integration for biological knowledge discovery, when facing

heterogeneous data from different views.
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APPENDIX A

ADDITIONAL DISCUSSION AND RESULTS FOR SIG-VAE

In this chapter, we first provide the detailed review of the related literature as well as the

connection to our proposed work. Dataset statistics, network setups, and implementation details of

performance evaluation experiments for different graph analytic tasks are then presented with richer

experimental results in addition to the ones discussed in the main text.

A.1 Node embedding

Node embedding is to represent each node in a graph by a low-dimensional vector in a latent

space. The geometric relations of vectors in the latent space reflect the probability of two correspond-

ing nodes interacting with each other in the graph [44]. A good node embedding preserves node

connectivity in graph as well as local neighborhood structures. More formally, node embedding can

be formulated as follows.

Node embedding. Given a graph G = (V , E) where V is the set of nodes and E the set of edges,

with the adjacency matrix A, X ∈ RN×M denoting M -dimensional node attributes for N = |V|

nodes, and a function sG : V × V → R measuring node similarity, find an encoder function,

ENC : RN×N+ ×RN×M → Rl, a decoder function, DEC : Rl×Rl → R+, and a latent representation

of nodes Z ∈ RN×l such that

Z = ENC(A,X),

ŝi,j , DEC(zi, zj),

where zi corresponds to the embedding representation of node vi ∈ V . Optimal parameters of ENC
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and DEC functions can be derived by finding the solutions to the following optimization problem

min
ENC,DEC

N∑
i=1

loss(ŝi,j, sG(vi, vj)),

where loss is a user-specified loss function based on the ultimate objective of network analysis.

Different node embedding methods vary in the choice of the loss function, sG, ENC, DEC and

the optimization algorithm. For example, in graph factorization (GF) method [2], sG is defined

based on the adjacency matrix, i.e., sG(vi, vj) = Ai,j; loss is the mean squared error; and the

inner-product decoder is adopted, i.e., DEC(zi, zj) = zTi zj .

A.2 Variational inference with normalizing flows

To increase the expressive power of a probabilistic model, a simple but powerful idea is

to transform the corresponding random variables with complex deterministic and/or stochastic

mappings. To construct flexible, arbitrarily complex and scalable approximate posterior distributions,

normalizing flow (NF) transforms a simple random variable through a sequence of invertible

differentiable functions with tractable Jacobians. More specifically, NF uses an invertible, smooth

mapping f : Rd → Rd to transform a random variable z with distribution q(z) to the resulting

random variable z′ = f(z) with the distribution:

q(z′) = q(z)

∣∣∣∣det
∂f−1

∂z′

∣∣∣∣ = q(z)

∣∣∣∣det
∂f

∂z

∣∣∣∣−1

. (A.1)

One may apply a chain of K transformations fk to obtain the density qK(z) from a random variable

z0 with distribution q0 as:

lnqK(zK) = lnq0(z0)−
∑
k

ln
∣∣∣∣det

∂fk
∂zk

∣∣∣∣ . (A.2)

While normalizing flow helps to improve the model flexibility of the corresponding variational

posterior, it requires the mapping to be deterministic and invertible, and the mixing distribution in

the hierarchy to have an explicit density function. Removing these restrictions, there have been
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several recent attempts to define highly flexible variational posterior with implicit models. While an

implicit variational distribution can be made highly flexible, it becomes necessary in each iteration

to address the problem of density ratio estimation, which is often transformed into a problem related

to learning generative adversarial networks [36]. SIVI addresses this issue by using an analytic

conditional variational distribution which is not required to be reparameterizable.

A.3 Graph dataset details

Table A.1 provides the detailed statistics of the graph datasets used in our experiments.

A.4 Experimental setups and hyperparameter tuning

Interpretable latent representations experiments. In these experiments, the code provided by

Kipf and Welling [55] is used to derive the embedding for VGAE. The size of the first hidden layer

of VGAE is 256 and the size of the output layer is 3. For SIG-VAE, two stochastic layers with sizes

equal to [32, 32] and an additional GCN layer of size 16 are used to model the µ. The dimension of

injected standard Gaussian noises [ε1, ε2] are [32, 32]. Covariance matrix Σ is deterministic and is

inferred through two layers of GCNs with sizes equal to [32, 16]. To remove the effect of decoder,

we consider the inner-product decoder for this set of experiments.

Link prediction with node attributes For SIG-VAE, we use a stochastic layer with size equal

to 32 and an additional GCN layer of size 16 is used to model µ. The dimension of injected

Table A.1: Graph dataset statistics for SIG-VAE experiments.

Dataset Type Nodes Edges

Cora Citation 2,708 5,429
Citeseer Citation 3,327 4,732
Pubmed Citation 19,717 44,338
USAir Transportation 332 2,126
NS Collaboration 1,589 2,742
Router Internet 5,022 6,258
Power Energy 4,941 6,594
Yeast Protein 2,375 11,693
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Bernoulli noise ε for the stochastic layer is 64. For SIVI-VGAE, we use two GCN layers with

sizes equal to [32, 16] followed by a fully connected layers with size 16 to infer µ. We inject

64-dimensional Bernoulli noise to the fully connected layer. We implement NF-VGAE by extending

VGAE (two GCN layers with sizes equal to [32, 16]) with invertible linear-time transformations

of length 4 to keep its number of parameters close to the competing methods. We learn the model

parameters for 3500 epochs with the learning rate 0.0005 and the validation set used for early

stopping.

Link prediction without node attributes. For SIG-VAE, we use a stochastic layer with size

equal to 32 and an additional GCN layer of size 16 is used to model µ. The dimensions of injected

Bernoulli noise ε is 32. For SIVI-VGAE, we use two GCN layers with sizes equal to [32, 16]

followed by a fully connected layer with sizes 16 to infer µ. We inject 32-dimensional Bernoulli

noise to the fully connected layers. We learn the all model parameters for 2500 epochs with the

learning rate 0.0005 and use the validation set for the early stopping. We use a two-stage learning

process for SIG-VAE, SIVI-VGAE, and NF-VGAE. First, the embedding of each node is learned in

the 128-dimensional latent space while injecting 5-dimensional Bernoulli noise to the system in the

case of SIG-VAE and Naive SIG-VGAE. Then we use the learned embedding as node features for

the second stage to learn 16 dimensional embedding while injecting more noise to SIG-VAE. We

follow the same procedure for SIVI-VGAE too.

Graph generation. We have not specifically tuned the model but directly adopt the implemen-

tation setups for link prediction with and without node attributes.

Node classification and graph clustering. We use two GCN layers with sizes equal to [32, 16]

followed by a fully connected layer with sizes 16 to infer µ. We inject 64-dimensional Bernoulli

noise to the GCN layers. Learning rate is set to be 0.0005.

Analysis of the complexity. For the analysis of the real-world graph dataset Cora on a single

GeForce GTX 1080 GPU node, it took 24.5, 11.7 , and 9.5 seconds for SIG-VAE, NF-VGAE, and

VGAE methods with 100 epochs, respectively. For the analysis of the small real-world graph dataset

NS on a same GPU node, it took 7.23, 7.84, and 7.09 seconds for SIG-VAE, NF-VGAE, and VGAE
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Figure A.1: Torus graph (Left) and its latent representation using SIG-VAE (Middle) and VGAE
(Right). The latent representations (middle and right) are heat maps in R3. We expect that the
embedding of the torus graph with the inner-product decoder to be multiple lines coming out of the
center in R3, which is clearly better captured by SIG-VAE.

methods with 100 epochs, respectively.

A.5 Additional experimental results

A.5.1 Interpretable latent representations

In addition to the results of the Swiss roll graph in the manuscript, we also compare the latent

representations of SIG-VAE and VGAE for a torus graph with 256 nodes connected by 512 edges as

illustrated in Figure A.1. We consider the coordinates of each node in R3 as node attributes for both

methods in this experiment. We expect that the embedding of nodes to be symmetric since the graph

itself is symmetric. We know that the inner-product decoder tries to embed a ring graph to a circle

in space. Also, connected nodes should be in the same angle. Thus, the embedding of connected

circles as in torus in R3 should be some lines coming out of center while their altitude is changing

periodically. As we can see in Figure A.1, SIG-VAE demonstrates a better latent representation

than VGAE. To gain more insights about the posterior distributions, we show the distributions

inferred by SIG-VAE and VGAE for three nodes in Figure A.2. The inferred distributions are

indeed skewed and multi-modal, very different from Gaussian. Being able to capture complex

non-Gaussian distributions helps the model to represent the graph structure in a more meaningful

way.
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Figure A.2: Latent representation distributions of three nodes in the torus graph using SIG-VAE
(Blue) and VGAE (Red). SIG-VAE clearly infers more complex distributions that are multi-modal
or skewed. This helps SIG-VAE to better represent the nodes in the latent space.

A.5.2 Link prediction

More complete link prediction results with the standard deviation values from different runs

are presented here. As we can see in Tables A.2 and A.3, SIG-VAE shows the consistent superior

performance compared to the competing methods, especially over the baseline VGAE, in terms of

both AUC and AP. It is interesting to note that, while the proposed sparse decoder works well for the

sparser graphs, especially NS and Router sparse datasets, SIG-VAE with the inner-product decoder

shows superior performance for the USAir graph which is much denser. Compared to the baseline

VGAE, both SIVI-VGAE and NF-VGAE improve the results with a large margin in terms of both

Table A.2: AUC of link prediction in networks without node attributes. * indicates that the numbers
are reported from Zhang and Chen [117].

Data MF∗ SBM∗ N2V∗ LINE∗ SC∗ VGAE∗ SEAL∗ G2G NF-VGAE SIVI-VGAE SIG-VAE(IP) SIG-VAE

USAir 94.08 94.85 91.44 81.47 74.22 89.28 97.09 92.17 95.74 94.22 97.56 94.52
±0.80 ±1.14 ±1.78 ±10.71 ±3.11 ±1.99 ±0.70 ±1.65 ± 1.74 ±0.43 ±0.23 ±0.28

NS 74.55 92.30 91.52 80.63 89.94 94.04 97.71 98.18 98.38 98.00 98.75 99.17
±4.34 ±2.26 ±1.28 ±1.90 ±2.39 ±1.64 ±0.93 ±0.51 ±0.46 ±0.34 ±0.12 ±0.45

Yeast 90.28 91.41 93.67 87.45 93.25 93.88 97.20 97.34 97.86 93.36 98.11 98.32
±0.69 ±0.60 ±0.46 ±3.33 ±0.40 ±0.21 ±0.64 ±0.32 ±0.44 ±0.63 ±0.18 ±0.26

Power 50.63 66.57 76.22 55.63 91.78 71.20 84.18 91.35 94.61 93.67 95.045 96.23
±1.10 ±2.05 ±0.92 ±1.47 ±0.61 ±1.65 ±1.82 ±0.41 ±0.65 ±0.78 ±0.15 ±0.12

Router 78.03 85.65 65.46 67.15 68.79 61.51 95.68 85.98 93.56 92.66 95.94 96.13
±1.63 ±1.93 ±0.86 ±2.10 ±2.42 ±1.22 ±1.22 ±1.25 ±0.79 ±0.25 ±0.23 ±0.26
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Table A.3: AP of link prediction in networks without node attributes. * indicates that the numbers
are reported from Zhang and Chen [117].

Data MF∗ SBM∗ N2V∗ LINE∗ SC∗ VGAE∗ SEAL∗ G2G NF-VGAE SIVI-VGAE SIG-VAE(IP) SIG-VAE

USAir 94.36 95.08 89.71 79.70 78.07 89.27 95.70 90.22 96.27 94.48 97.50 94.95
±0.79 ±1.10 ±2.97 ±11.76 ±2.92 ±1.29 ±0.21 ±2.61 ± 1.51 ±0.80 ±0.14 ±0.28

NS 78.41 92.13 94.28 85.17 90.83 95.83 98.12 97.43 98.52 97.83 98.53 99.24
±3.85 ±2.36 ±0.91 ±1.65 ±2.16 ±1.04 ±0.77 ±2.34 ±0.29 ±0.40 ±0.09 ±0.40

Yeast 92.01 92.73 94.90 90.55 94.63 95.19 97.95 97.83 98.18 94.24 97.97 98.41
±0.47 ±0.44 ±0.38 ±2.39 ±0.56 ±0.36 ±0.35 ±0.28 ±0.22 ±0.46 ±0.14 ±0.13

Power 53.50 65.48 81.49 56.66 91.00 75.91 86.69 92.29 95.76 93.80 96.50 97.28
±1.22 ±1.85 ±0.86 ±1.43 ±0.58 ±1.56 ±1.50 ±0.37 ±0.55 ±0.83 ±0.17 ±0.30

Router 82.59 84.67 68.66 71.92 73.53 70.36 95.66 86.28 95.88 92.80 94.94 96.86
±1.38 ±1.89 ±1.49 ±1.53 ±1.47 ±0.85 ±1.23 ±1.32 ±0.34 ±0.18 ±0.13 ±0.27

AUC and AP, showing the benefits of more flexible variational posterior. Comparing SIG-VAE with

two other flexible inference methods shows that not only SIG-VAE is not restricted to the Gaussian

assumption, which is not a good fit for link prediction with the inner-product decoder [27], but also

it is able to model flexible posterior considering graph topology. The results for the link prediction

of the Power graph clearly magnifies this fact as SIG-VAE improves the accuracy by 34% compared

to VGAE.

A.5.3 Drug-drug interaction network

Here, we also include the results on a drug-drug interaction network [106] capturing drug effect

change due to the action of another drug. When several drugs are administered together, there

might be adverse drug reactions due to drug-drug interactions. It is thus crucial to identify them

during drug development. With a similar setup as in the manuscript, SIG-VAE achieves AUC and

AP at 92.51 and 92.81, respectively. For comparison, VGAE gets 90.22 (AUC) and 90.29 (AP),

respectively, and GAE gets 90.73 (AUC) and 91.15 (AP). Hyperparameters are inherited from the

original paper of each method.
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APPENDIX B

ADDITIONAL DISCUSSION AND RESULTS FOR GDC

In this chapter, we first provide an ablation study on local GDC. Dataset statistics, and further

implementation details are also presented. Finally, schematics of different stochastic regularization

techniques for GCNs are provided.

B.1 Ablation study: global versus local

We further investigate our learnable GDC, in which for each edge at each layer a different

connection sampling distribution is learned. We refer to this scenario as the local learnable

GDC. This, indeed, is a more general case than learning a single distribution for all edges in a

layer. Expanding the variational beta-Bernoulli GDC to local learnable GDC is straightforward.

Note that the KL term in the loss function can be derived in the same manner as in the global

learnable GDC – as described in Section 4 of the paper – except that it will include the sum of

num_layers× num_edges terms as opposed to the num_layers terms in the global GDC.

By training the aforementioned model on the citation datasets, we find that the accuracy degrades

and the KL divergence reduces to zero for every choice of prior. This phenomenon, which is known

as posterior collapse or KL vanishing, is a common problem in variational auto-encoders for

language modeling [15, 37, 30]. It is often due to over-parametrization in the model, which is

indeed the case in the local learnable GDC. A solution to this issue could be making the parameters

of the distribution dependent on the graph topology and/or node attributes. We leave this for future

studies.

B.2 Datasets and implementation details

All of the models are implemented in PyTorch [80]. All of the simulations are conducted on a

single NVIDIA GeForce RTX 2080 GPU node. We evaluate our proposed methods, GCN-BBDE

and GCN-BBGDC, and baselines on three standard citation network benchmark datasets. We
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Table B.1: Graph dataset statistics for GDC experiments.

Dataset # Classes # Nodes # Edges # Features

Cora 7 2,708 5,429 1,433
Citeseer 3 3,327 4,732 3,703
Cora-ML 7 2,995 8,416 2,879

preprocess and split the dataset as done in [56] and [13]. For Cora and Cora-ML, we use 140 nodes

for training, 500 nodes for validation and 1000 nodes for testing. For Citeseer, we use 120 nodes

for training and the same number of nodes as Cora for validation and testing. Table B.1 provides

the detailed statistics of the graph datasets used in our experiments. The warm-up factor used in

GCN-BBGDC with more than 2 layers for Cora and Cora-ML is min({1, epoch/20}), and for

Citeseer is min({1, epoch/40}). We have deployed Adam optimizer [51] in all of our experiments.

B.3 GDC versus other stochastic regularization techniques

To further clarify the differences of our proposed GDC from existing stochastic regularization

techniques, we draw the schematics of a GCN layer to which DropOut, DropEdge, Node Sampling,

and our GDC are applied; shown in figures below. The input graph topology for the GCN layer is

depicted in B.1. The number of input and output features are both two in this toy example.
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Figure B.1: Top: Schematic of a GCN layer on a graph with 4 nodes. Number of both input and
output features are two. The connections are localized as explicitly depicted for node 2. Bottom:
The same GCN layer shown in a more conventional way, i.e. each layer is a vector of neurons or
features. Each circle is a feature and each square represents a node. The connections are sparse
and the sparsity is based on the input graph topology. The connections for node 2 in layer l + 1 are
highlighted.
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Figure B.2: Schematic of our proposed GDC. Each circle is a feature and each square represents
a node. GDC drops connections independently across layers. The dashed lines show dropped
connections and the gray ones show the kept connections.
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Figure B.3: Schematic of DropOut [91]. Each circle is a feature and each square represents a node.
DropOut drops features at each layer. The faded circles represent dropped features while the other
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Figure B.4: Schematic of DropEdge [87]. Each circle is a feature and each square represents a node.
DropEdge drops edges between nodes hence all of the connections between their corresponding
channels are dropped. Note that the mask in DropEdge is symmetric. In this example, the edge
between nodes 1 and 2 as well as the edge between nodes 1 and 4 are dropped. The dashed lines
show dropped connections and the gray ones show the kept ones.
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Figure B.5: Schematic of the node sampling strategy in FastGCN [20]. Each circle is a feature
and each square represents a node. FastGCN drops nodes hence all of the connections to that
node are dropped. The faded nodes represents the dropped nodes. The dashed lines show dropped
connections and the gray ones show the kept ones.
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APPENDIX C

ADDITIONAL DISCUSSION AND RESULTS FOR MOREL

In this chapter, we first provide detailed description of datasets used in the experiments. More-

over, we provide additional results for MoReL on CF dataset.

C.1 Data description

Microbiome-metabolome interactions. The goal studying this dataset is to detect the microbe-

metabolite interactions in patients with Cystic Fibrosis (CF). This dataset includes the 16S ribosomal

RNA (rRNA) sequencing and metabolomics for 172 patients diagnosed with CF. We follow the

same preprocessing steps as in Morton et al. [71], Hajiramezanali et al. [41], and filter out microbes

that appear in less than ten samples, which results in 138 unique microbial taxa and 462 metabolite

features. To construct the microbiome network, we perform a taxonomic enrichment analysis using

Fisher’s test and calculating p-values for each pairs of microbes as in Hajiramezanali et al. [41].

More specifically, the Benjamini-Hochberg procedure [9] is adopted for multiple test correction and

an edge is added between two microbes if the adjusted p-value is lower than 0.01, The microbiome

graph has 984 edges with the graph density of 0.102. For the metabolomics network, there are 1185

edges in total, with each edge representing a connection between metabolites via a same chemical

construction [71]. The graph density of the metabolite network is 0.011. We use 80% of the reported

target molecules of P. aeruginosain studies in Quinn et al. [83] and Morton et al. [71] as a test set to

evaluate the predicted microbiome-metabolome interactions. The remaining 20% of the reported

molecules are considered as a validation set and are only used for the early stopping purpose.

Precision medicine. Here we aim to identify genetic markers of cancer drug responses. This is

a very challenging task due to the very limited number of observations with respect to the system

complexity and huge number of biological and experimental confounders, which often leads to

significant false positive associations [6]. We consider a dataset from 30 acute myeloid leukemia

(AML) patients that contains gene expression and drug sensitivity data of 160 chemotherapy drugs
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Figure C.1: A sub-network of the relational graph consisting of P. aeruginosa microbes, their
validated targets, and anaerobic microbes, inferred using MoReLss (Left) and MoReLus (Right)
with sub-network negative accuracy of 100%.

and targeted inhibitors [59]. For gene expression, we preprocessed the RNA-Seq data resulting in

9073 genes [59]. Following Hajiramezanali et al. [41], we construct the gene regulatory network

based on the publicly available expression data of the 14 AML cell lines from the Cancer Cell

Line Encyclopedia1 (CCLE) using R package GENIE3 [96]. Moreover, We construct drug-drug

interaction networks based on their action mechanisms. Specifically, the selected 53 drugs are

categorized into 20 broad pharmacodynamics classes [59]; 14 classes contain more than one drugs.

Only 16 out of the 53 drugs are shared across two classes. We consider that two drugs interact if

they belong to the same class. We use the area under the drug response curve reported in the CCLE

dataset to indicate drug sensitivity across a range of drug concentrations [6, 59]. Following [59],

we only consider the drugs that have less than 50% cell viability in at least half of the samples,

resulting in 53 drugs. We use 797 reported drug-gene interactions in The Drug–Gene Interaction

Database (DGIdb) [101] in order to evaluate different models. We note that our test and validation

sets only include the interactions for 43 of the 53 drugs in the dataset. We use 20% of the evaluation

set as the validation set. Please note that the validation set has been only used for early stopping.
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Figure C.2: Positive accuracy vs negative accuracy of various models in CF data.

C.2 Additional results for CF dataset

In this section, we provide additional results for CF dataset demonstrating interpretability and

robustness of MoReL.

Figure C.1 shows two sub-networks of the inferred bipartite relational graphs by MoReLss and

MoReLus, consisting P. aeruginosa, anaerobic microbes, and validated target nodes of P. aeruginosa

and all of the inferred interactions between them. Based on the biology knowledge, the expected

interactions in these sub-networks should be that the four highlighted nodes in the bottom row

are connected to all of the nodes in the top row, and any other nodes in the bottom row are not

connected to any of the top nodes. At the sub-network negative accuracy of 100% (i.e. any nodes

in the bottom row other than the four highlighted ones are not connected to any of the top nodes),

while MoReLus identifies 70% of the validated edges of P. aeruginosa, MoReLss identifies 86.8%

of the edges. We note that BayReL identifies 78% of the validated interactions [41]. This clearly

shows the effectiveness of our proposed FGW-based decoder and interpretability of MoReL to

identify inter-relations.
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In the main manuscript, we only reported the results for one specific threshold value of negative

accuracy (97%). Here we provide additional results with other threshold values, which show similar

improvements over competing methods and similar trends by MoReL ss and MoReL us, as clearly

observed in Figure C.2. We note that there is a trade-off between positive and negative accuracy,

and the optimal point can be chosen depending on the application.
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