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ABSTRACT

With the advancing of data collection technologies, high-dimensional and large-scale data sets

become available in many areas of science, specifically in biomedicine. One of important questions

when mining such “big” data is to identify critical factors that may be predictive of the outcomes

of interest, for example for disease diagnosis and prognosis. In this thesis, we introduce several

models with solution algorithms that exploit sparse dependency structures to discover the variables

playing important roles in survival and longitudinal data.

First, we focus on penalized Cox’s models to deal with the high-dimensional survival data with

group predictors. Most of the existing penalized methods for Cox’s model are the group lasso meth-

ods that show deficiencies, including the over-shrinkage problem. In addition, the contemporary

algorithms either exhibit the loss of efficiency or require the group-wise orthonormality assump-

tion. In Chapter 3, we investigate and comprehensively evaluate three group penalized methods

for Cox’s models: the group lasso and two nonconvex penalization methods—group SCAD and

group MCP—that have several advantages over the group lasso. We develop the fast and stable

algorithms and a new R package grpCox to fit these models without the initial orthonormalization

step. These methods perform group selection in both non-overlapping and overlapping cases.

Second, we study the multi-state models to analyze longitudinal data, in which the change of

status over time is of interest. Due to the lack of an efficient and practical variable selection tool

to practitioners, we develop the L1-regularized multi-state model framework for simultaneous pa-

rameter estimation and variable selection in Chapter 4. We use a local quadratic approximation

of the log-partial likelihood and devise the one-step coordinate descent algorithm to solve the cor-

responding optimization problem, which can offer significant improvement on the computational

efficiency. The proposed method is implemented in our R package L1mstate.

Finally, we investigate multivariate joint models to study the relationship between multiple

time-varying measurements and the survival outcome, considering the potential correlation be-

tween these time-varying measurements. We address the problems of identifying the time-varying
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measurements that have strong associations with the time-to-event outcome, and simultaneously

selecting predictive baseline covariates for both the longitudinal measurements and survival out-

come of interest, which has no available tools so far to the best of our knowledge. In Chapter

5, we develop a variable selection framework for the multivariate joint models. Specifically, we

propose novel penalized joint models for different association structures between the longitudinal

and the survival submodels using different types of sparsity-inducing penalties. To tackle high-

dimensional challenge that arises in the case of multiple longitudinal measurements, many covari-

ates, and random effects, we develop an estimation procedure based on Laplace approximation of

the joint likelihood.
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1. INTRODUCTION

Thanks to our advancing data collection and storage capability, demand for sorting through

massive data to pare down to their essential information or knowledge is higher than ever before.

Sparse statistical models are increasingly popular in modern statistics and machine learning. Gen-

erally speaking, sparse statistical models are the ones in which only a relatively small number

of covariates (predictors)1 have strong effects upon the outcomes under study. These models are

more interpretable, computationally cheaper, less sensitive to overfitting, allow for parameter esti-

mations and variable selection simultaneously. Often they can be formulated as the optimization

problems having the following general form:

min
θ∈Rp

L(θ) + λP (θ), (1.1)

where L(θ) is a general loss function that quantifies the goodness-of-fit of the model given the

data, and P (θ) is the penalty term that induces sparsity to constrain the model space and prevent

overfitting. Here, λ > 0 is the regularization parameter that controls the degree of penalization.

In this dissertation, we focus on the problems of identifying the predictors that play impor-

tant roles in survival and longitudinal data for many biomedical applications. Due to the various

challenges arising when addressing corresponding questions in these applications, we consider

a variety of models, given different loss functions and sparsity-inducing penalties, within this

optimization framework. More specifically, for the loss function, we have negative log-partial-

likelihood (Cox’s model, multistate model), joint likelihood (multivariate joint model), and for

different penalties such as l1−norm, group lasso, and so on. This dissertation is organized into

three main parts that are described more details as follows:

• Penalized Cox’s model with grouped predictors [1]: In Chapter 3, we focus on the high-

dimensional survival data with group predictors problems. More specifically, we investigate

1Throughout the thesis, we use the terms covariate, predictor, variable interchangeably.
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and comprehensively evaluate the group lasso, the group SCAD, and the group MCP penal-

ized Cox’s models. We develop and evaluate the group-wise descent algorithms combining

with the majorization-minimization (MM) approach to solve the optimization problems of

the general design matrices without the group-wise orthonormal condition. Our methods

perform group selection for both non-overlapping and overlapping group. Since the sparse

group lasso that can yield both individual and group sparsity is a special case of overlap-

ping group lasso, our methods can effectively select important groups as well as identify

the important covariates within the selected groups. Several computational tricks, includ-

ing the screening, active set, and warm-start approaches, have been implemented in our R

package grpCox. Experimental results on both synthetic and real-world data demonstrate

the state-of-the-art performance in term of speed and variable selection.

• L1-regularized multi-state models [2]: In Chapter 4, we investigate multi-state model (MSM)

to analyze longitudinal data, in which the change of status over time is of interest. More

specifically, we develop the L1-regularized multi-state model framework for simultaneous

parameter estimation and variable selection. We use a local quadratic approximation of

the log-partial likelihood and devise the one-step coordinate descent algorithm to solve the

corresponding optimization problem, which can offer significant improvement on the com-

putational efficiency. The proposed method is implemented in the open-access R package

L1mstate. Our proposed method demonstrates the state-of-the-art performance in terms of

identifying the significant risk factors comparing with the existing regularized multi-state

models in simulation studies. It also performs better at doing variable selection and pre-

dicting the transition probabilities in cases with small sample sizes comparing with the un-

regularized approach in simulation and real-world cases.

• Penalized joint models of time-to-event and multivariate longitudinal outcomes: In Chap-

ter 5, we investigate the multivariate joint model to study the relationship between multiple

longitudinal outcomes and survival outcome, and the relationship between correlated lon-

2



gitudinal outcomes. We focus on the problems of identifying the longitudinal outcomes

that have strong associations with the time-to-event outcome, and simultaneously selecting

relevant covariates for both longitudinal and survival outcomes of interest, which has no

available tools, to the best of our knowledge, to use. More specifically, we propose novel

penalized joint models for different association structures between the longitudinal and the

survival submodels using different types of penalties. To tackle high-dimensional challenge

that arises in the case of many longitudinal outcomes, covariates, and random effects, we

develop an estimation procedure based on Laplace approximation of a joint likelihood. Sim-

ulation studies and real-world data application demonstrate the excellent selection property

of the proposed methods.
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2. BACKGROUNDS

In this chapter, we first introduce the important concepts and fundamental models that will be

essential for the development of this thesis, including survival analysis, sparsity-inducing penalties,

approximation approaches, and existing optimization methods for sparse models.

2.1 Survival analysis

In this section, we present some basic concepts of survival analysis where the time until an

event occurs is of interest. Let T be the random variable associated with the survival time. The

distribution of T is defined as

F (t) = P (T < t) =

∫ t

0

f(u)du, (2.1)

where f(t) is the probability density function of T . The survival function, S(t), is the probability

that the survival time is greater than or equal to t

S(t) = P(T > t) = 1− F (t), (2.2)

The hazard function that represents the the instantaneous rate of an event occurring at time t is

given by

h(t) = lim
dt→0+

P(t ≤ T < t+ dt|T ≥ t)

dt
= − d

dt
logS(t), (2.3)

The cumulative hazard function expresses the cumulative risk of an event occurring at time t

H(t) =

∫ t

0

h(u)du, (2.4)

The Cox’s proportional hazards model [3] is commonly used to study the relationship between

survival time and a set of covariates in high-dimensional space as potential predictors for survival

4



time.

hi(t) = h0(t) exp
(
X(i)(t)θ

)
,

where h0(t) is the baseline hazard function and X(i)(t) is a p−dimensional covariates vector of ith

subject. In what follows, we introduce two distributions of T used in this thesis.

2.1.1 The exponential distribution

f(t) = λ exp(−λt), (2.5)

where λ > 0. Then the survival function, S(t), and the hazard function, h(t), are given by

S(t) = exp(−λt), (2.6)

h(t) = λ, (2.7)

It means that the hazard is constant over time.

2.1.2 The Gompertz distribution

f(t) = λ exp
(
αt+

λ

α
(1− eαt)

)
, (2.8)

where λ > 0 is scale parameter, and α is shape parameter. Then the survival function, S(t), and

the hazard function, h(t), are given by

S(t) = exp(
λ

α
(1− eαt)), (2.9)

h(t) = λeαt, (2.10)

If α = 0, it becomes the exponential distribution: the hazard function is constant and equal to λ.

For many applications with time-dependent hazard function, the Gompertz distribution with α 6= 0

is a reasonable choice.
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2.2 Sparsity-inducing penalties

In this section, we describe some sparsity-inducing penalties and their main sparsity-inducing

effects used in this thesis.

2.2.1 l1−norm

P (θ) =
∑p

j=1 |θj| is known to shrink a portion of the values of coefficients θ to exactly zero.

Thus, it induces sparsity or variable selection procedure.

2.2.2 SCAD and MCP

The smoothly clipped absolute deviation (SCAD) penalty was proposed by [4]: λP (θ) =∑
j Sλ,γ

(
|θj|
)

with

Sλ,γ
(
|θj|
)

=


λj|θj|, if |θj| ≤ λj,

γλj |θj |−0.5(|θj |2+λ2j )

γ−1
, if λj < |θj| ≤ γλj,

λ2j (γ+1)

2
, if |θj| > γλj.

(2.11)

It applies the same rate of penalization as l1−norm at the beginning, but continues relaxes, then

drops to 0 when |θj| > γλj .

Another type of penalty, the minimax concave penalty (MCP), proposed by [5]: λP (θ) =∑
j Mλ,γ

(
|θj|
)

with

Mλ,γ

(
|θj|
)

=


λj|θj| −

θ2j
2γ
, if |θj| ≤ γλj,

γλ2j
2
, if |θj| > γλj.

(2.12)

It behaves similarly with SCAD penalty. Both penalties demonstrate the oracle property [4, 5], i.e.,

the estimations having the same limiting distribution as the true model. Their extension to group

structures are presented in [6, 7].
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2.2.3 Group lasso

The group lasso is l1/l2−norm: P (θ) =
∑

g∈G wg||θg||2 where G is a partition of p covariates

and (wg)g∈G are positive weights. It induces variable selection in the group-wise fashion: all the

variables in the same group are either selected or not selected simultaneously.

2.2.4 Overlapping group lasso

[8], [9] proposed the overlapping group lasso via latent variable formulation. In particular, it

adapts unions of groups approach: the shared covariates are selected in the final model.

P (θ) =
∑
g∈G

wg||vg||2, s.t.


∑

g∈G vg = θ,

∀g ∈ G, vg,j = 0, if j 6∈ g.
(2.13)

where vg are latent parameter vectors that correspond to group g and represent θ linearly. In this

latent (expanded and non-overlapping) space, the penalty formulation of v has the same structure

as the group lasso formulation discussed above. It means that some vectors vg are shrunk to zero,

which leads to select overlapping groups of covariates.

2.3 Approximation approaches

2.3.1 Quadratic approximation

Given a function f(θ) that is twice differentiable.

1. Local quadratic approximation: The formula for quadratic approximation at θ0 is given by

f(θ) ≈ f(θ0) +
∂f

∂θ
(θ0)(θ − θ0) +

1

2
(θ − θ0)T

∂2f

∂θ∂θT
(θ0)(θ − θ0), (2.14)

This works for values of θ close to θ0.

2. Quadratic upper bound: It is used to constructs majorizing functions of objective functions

in chapter 2. More specifically, a function f(θ) has bounded curvature, i.e., if there exists a
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positive definite matrix M such that M − O2f(θ) is nonnegative definite for all θ. Then,

f(θ) ≤ f(θ0) + Of(θ0)T (θ − θ0) +
1

2
(θ − θ0)TM(θ − θ0), (2.15)

It means that to minimize the function f(θ), we minimize a quadratic upper bound.

2.3.2 Laplace approximation

It is used to approximate an integral of the following form:

∫ b

a

g(x)dx, (2.16)

where x is a p−dimensional vector. Let g(x) = exp(h(x)) then

∫ b

a

g(x)dx =

∫ b

a

exp(h(x))dx, (2.17)

We perform a multivariate Taylor series expansion and get a multivariate Gaussian integral.

∫ b

a

exp(h(x))dx ≈ exp(h(x̃))(2π)p/2det
(
Σ
)−1/2

, (2.18)

where x̃ = argmax
x

h(x) and Σ is the Hessian of h(x) evaluated at x̃.

2.4 Optimization methods

2.4.1 Majorization-minimization (MM)

We briefly introduce MM algorithm [10, 11]. Let f(θ) be a real-valued function, θ(m) be a

fixed value of parameter θ and g(θ|θ(m)) denote a real-valued function of θ whose form depends

on θ(m). The function g(θ|θ(m)) is said to majorize f(θ) at the point θ(m)

g(θ|θ(m)) ≥ f(θ) for all θ, (2.19)

g(θ(m)|θ(m)) = f(θ(m)), (2.20)

8



To minimize the function f(θ), we iteratively minimize minimizing a sequence of majorizing func-

tions (or surrogate functions) g(θ|θ(m)). This procedure posses the “descent property”, which guar-

antees the numerical stability of MM algorithms. Specifically, denote θ(m+1) be the minimizer of

g(θ|θ(m)) then

f(θ(m+1)) = f(θ(m+1))+g(θ(m+1)|θ(m))−g(θ(m+1)|θ(m)) = g(θ(m+1)|θ(m))+f(θ(m+1))−g(θ(m+1)|θ(m)),

Proof : From the above definition

g(θ(m+1)|θ(m)) ≥ f(θ(m+1))⇒ f(θ(m+1))− g(θ(m+1)|θ(m)) ≤ 0

and g(θ(m+1)|θ(m)) ≤ g(θ(m)|θ(m))

Therefore,

f(θ(m+1)) = g(θ(m+1)|θ(m)) + f(θ(m+1))− g(θ(m+1)|θ(m)) ≤ g(θ(m)|θ(m)) + 0 = f(θ(m))

2.4.2 Coordinate descent

It is commonly used to solve the l1−regularized optimization problems. In general, it iteratively

optimizes the objective function with respect to one variable at a time while all others are kept fixed.

To illustrate, we consider the simple case of univariate l1−regularized problem given observations

{(xi, yi)}ni=1

min
θ∈R

1

2n

n∑
i=1

(yi − xiθ)2 + λ|θ| (2.21)

The minimizer θ̂ is given by

θ̂ =



1
n
xTy − λ, if 1

n
xTy > λ,

0, if 1
n
|xTy| ≤ λ,

1
n
xTy + λ, if 1

n
xTy < −λ,

= S(
1

n
xTy, λ), (2.22)
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where S(., .) is the soft-thresholding operator defined as

S(t, λ) = sign(t)(|t| − λ)+, (2.23)

with the operator (t)+ equals to 0 if t > 0, and equals to 0 otherwise.

2.4.3 Alternating direction method of multipliers (ADMM)

We briefly introduce the standard ADMM algorithm that mostly based on [12]. ADMM solves

convex optimization problems by splitting them into smaller pieces, each of which are then easier

to handle. These problems typically have the form as follow

min
x,z

f(x) + g(z) (2.24)

s.t. Ax+Bz = c, (2.25)

where f : Rx → (R ∪ {∞}) and g : Rz → (R ∪ {∞}) are convex, A ∈ Rm×x and B ∈ Rm×z.

2.4.3.1 Augmented Lagrangian

Augmented Lagrangian function of (2.25) is given by

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖2

2, (2.26)

where y ∈ Rm is the Lagrange multiplier and ρ > 0 is penalty parameter.

2.4.3.2 Optimality conditions

• Primal feasibility: Ax+Bz − c = 0

• Dual feasibility: Of(x) + ATy = 0 and Og(z) +BTy = 0

2.4.3.3 ADMM procedure

ADMM is an alternating minimization scheme for computing a saddle point of the augmented

Lagrangian. It consists of three steps. First, Lρ is minimized with respect to x, then with respect

10



to z, and finally maximized with respect to y. It is shown in Algorithm 1.

Algorithm 1 ADMM algorithm
Initialize z(0) ∈ Rz, y(0) ∈ Rm, ρ ∈ R+, k = 0
repeat

x(k+1) = argmin
x

Lρ(x, z
(k), y(k))

z(k+1) = argmin
z

Lρ(x
(k+1), z, y(k))

y(k+1) = y(k) + ρ(Ax(k+1) +Bz(k+1) − c)
k = k + 1

until satisfies stopping criteria;
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3. PENALIZED COX’S MODEL WITH GROUPED PREDICTORS 1

The rapid development of next-generation sequencing technologies has made it possible to

measure the expression profiles of thousands of genes simultaneously. Often, there exist group

structures among genes manifesting biological pathways and functional relationships. Analyzing

such high-dimensional and structural datasets can be computationally expensive and results in the

complicated models that are hard to interpret. To address this, variable selection such as penalized

methods are often taken. Here, we focus on the Cox’s proportional hazards model to deal with cen-

soring data. Most of the existing penalized methods for Cox’s model are the group lasso methods

that show deficiencies, including the over-shrinkage problem. In addition, the contemporary algo-

rithms either exhibit the loss of efficiency or require the group-wise orthonormality assumption.

Hence, efficient algorithms for general design matrices are needed to enable practical applications.

In this chapter, we investigate and comprehensively evaluate three group penalized methods for

Cox’s model: the group lasso and two nonconvex penalization methods—group SCAD and group

MCP—that have several advantages over the group lasso. These methods are able to perform group

selection in both non-overlapping and overlapping cases. We have developed the fast and stable

algorithms and a new package grpCox to fit these models without the initial orthonormalization

step. The runtime of grpCox is improved significantly over the existing packages, such as grpsurv

(for the non-overlapping case), grpregOverlap (overlapping), and SGL. In addition, grpCox is

better than grpsurv and comparable with SGL in terms of variable selection performances. Com-

prehensive studies on both simulation and real-world cancer datasets demonstrate the statistical

properties of our grpCox implementations with the group lasso, SCAD, and MCP regularization

terms.
1Reprinted with permission from X. Dang, S. Huang, X. Qian, “Penalized Cox’s Proportional Hazards Model for

High-Dimensional Survival Data with Grouped Predictors", Statistics and Computing, vol. 31, no. 6, pp. 1-27, 2021.
Copyright 2021 by Springer Nature.
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3.1 Introduction

The Cox’s proportional hazards model [3] is commonly used to study the relationship between

survival time and a set of covariates in high-dimensional space as potential predictors for survival

time. To tackle the curse of dimensionality and construct robust and interpretable models that

generalize well, variable selection approaches, including penalization-based methods, are often

taken.

Variable selection for the Cox’s proportional hazards model has been extensively studied, in-

cluding implementations based on lasso [13, 14, 15], adaptive lasso [5, 16], the smoothly clipped

absolute deviation (SCAD) [17], to name a few. These methods can automatically select the impor-

tant covariates by shrinking the coefficients of unimportant covariates to be exactly zero. However,

these methods fail to produce good results when there exist group structures in covariates. A com-

mon group structure example is where each categorical covariate is expressed through a set of

dummy variables. Group structures can also be introduced by integration of prior knowledge that

is scientifically meaningful. For example, in gene expression analysis, genes belonging to the same

biological pathway have similar functions and act together in regulating a biological system. These

genes can be considered as a group.

Group selection in various statistical modeling problems has been considered in literature. [18]

introduced the group lasso for linear regression with the l2−norm of the coefficients for a group

of covariates in the penalty function. [19] extended it to logistic regression. [20] used a general

composite absolute penalty, which treats the group lasso as a special case. [6] introduced group

SCAD to linear regression. The group minimax concave penalty (MCP) was presented in [7]. [21]

introduced nonconvex penalties for linear and logistic regression. These works require the group-

wise orthonormal condition to implement their algorithms. The solutions of the group lasso with

non-orthonormal matrices for linear regression, logistic regression and SVM classifiers have been

developed in literature [22, 23, 24].

There are, however, few extensions to the Cox’s model. [25] applied the supervised group lasso

to select both significant gene clusters and significant genes within these clusters for both logistic
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binary classification and Cox’s survival model, for which the lasso and group lasso methods were

implemented separately. In the first step, it identified important genes within each group based

on the lasso formulation. In the second step, it selected important groups using the group lasso

formulation. [23] introduced the sparse group lasso method combining the lasso with group lasso

formulations to yield sparsity at both the group and individual levels for the Cox’s proportional

hazards model. [26] introduced the doubly regularized Cox regression that can deal with a mixture

of individual sparsity and group sparsity with the extension to an overlapping case. Very recently,

[27] presented a statistical approach that can handle sparse group lasso cases with superior variable

selection performance.

In these existing penalized Cox’s model with group structures, only the group lasso formula-

tion has been considered because the group lasso penalty is convex for relatively straightforward

optimization solutions. However, the group lasso penalty has deficiencies. Namely, large penal-

ties are imposed on large coefficients, which leads to over-shrinking of large coefficients. As a

result, the estimates of model coefficients are biased. To avoid over-shrinkage, the group lasso

implementations often tend to reduce the penalty levels, which in turn results in selecting many

variables. With the “oracle” property in SCAD and MCP penalty, the estimations having the same

limiting distribution as the true model, both the group SCAD and group MCP formulations have

been studied [28, 7, 21]. However, to the best of our knowledge, there is no effort to apply either

the group SCAD or group MCP formulation in the Cox’s model.

In this chapter, we investigate and comprehensively evaluate the group lasso, the group SCAD,

and the group MCP penalized Cox’s models. More critically, these three group penalty formula-

tions with different mathematical structures, we would like to derive scalable and efficient opti-

mization algorithms and open-access packages for more general group penalized Cox’s models.

The existing group lasso based Cox’s model implementations have used different algorithms to

solve the corresponding optimization problem. [25] used a blockwise coordinate descent algorithm

[29] to solve the group lasso problem. [26] used the cyclic coordinate descent algorithm and [23]

used Nesterov’s method. More recently, a group-wise descent algorithm was implemented in the R
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package grpreg, whose grpsurv function for the group penalized Cox’s model as an extension of

the methods presented in [21]. We will focus on developing and evaluating the group-wise descent

algorithm for three group penalized Cox’s models for its simplicity, speed, and stability. We have

tried the cyclic coordinate descent algorithm, and found it inferior in both timing and accuracy to

the group-wise descent algorithm. Specifically, while the group-wise algorithm can produce exact

solutions for a single group in one step, the cyclic coordinate descent algorithm requires multiple

iterations to converge to the same solution that leads to a loss of efficiency. Although Nesterov’s

method is a more general optimization method than the group-wise descent algorithm, it appears to

be empirically slower than the group-wise descent algorithm for the specific problem of optimizing

the group penalized Cox’s models as shown in our running time comparison. The existing group-

wise descent algorithm implemented in grpreg requires the group-wise orthonormal condition.

Specifically, it needs to do an initial orthonormalization step, which leads to a different problem

that is not equivalent to the original group lasso formulation [30, 7]. In particular, the new problem

is to apply the l2−penalty on the linear predictors instead of the original coefficients. Moreover,

even though we can do orthonormalization for each group to make the observed data satisfy the

group-wise orthonormal condition, the group-wise orthonormal condition can be easily violated

when removing a fraction of the data or perturbing the dataset in bootstrap or sub-sampling as

pointed out in [24]. Therefore, it is more favorable to solve the design matrices without the group-

wise orthonormal condition. Our aim is to use the group-wise descent algorithm to handle the

general design matrices of the three group penalized Cox’s models. To achieve it, we adopt the

majorization-minimization approach [10, 11] to derive the majorizing (surrogate) function of the

objective function with closed-form expressions for a single group in gradient computation. We

demonstrate that this algorithm is fast and efficient, and provide an open-access R package grp-

Cox. Both simulation studies and real-world case studies provide comprehensive evaluation of our

developed optimization algorithm for the three group penalized Cox’s models.

The remainder of the chapter is organized as follows. Section 2 formulates the non-overlapping

group penalized Cox’s proportional hazards model. We introduce the majorization-minimization
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approach and group-wise descent algorithm for solving the group penalized Cox’s model. Section

3 presents the extension with overlapping group penalty. Simulation results are reported in Section

4. The illustrations of our methods with real-world survival datasets are presented in Section 5.

Section 6 concludes with discussion.

3.2 Non-overlapping groups

In this section, we present the Cox’s model with non-overlapping groups of covariates as po-

tential survival predictors, i.e. each potential predictor belongs to one and only one group. We

first describe the general framework for group selection via the penalized partial likelihood of the

Cox’s model. We then derive the group-wise descent algorithms combining with the majorization-

minimization approach for model inference.

3.2.1 Model formulation

Consider the standard survival data set ofN subjects represented by the triplets {(Yi, X(i), δi)}Ni=1,

where Yi denotes the survival time,X(i) a P−dimensional covariate vector, and δi the censoring in-

dicator. With Ti and Ci denoting the survival time and the censoring time for subject i, the survival

time Yi is defined by Yi = min{Ti, Ci} and the censoring indicator is defined as δi = ITi≤Ci
. Sup-

pose that P covariates belong to J non-overlapping groups Ij’s such that {1, 2, . . . , P} = ∪Jj=1Ij

where the number of covariates in group Ij is pj and Ij ∩ Ij′ = ∅ for j 6= j′. The P−dimensonal

covariate vector for subjet i is X(i) = (X
(i)
1 , . . . , X

(i)
J ), where X(i)

j is a pj−dimensional covariate

vector of the jth group for subject i. The corresponding coefficients of the covariates in the jth

group are βj . The standard Cox’s proportional hazards model of the hazard for patient i at time t

can be written as [3]:

h(t|X(i)) = h0(t) exp
(
X(i)β

)
= h0(t) exp

( J∑
j=1

X
(i)
j βj

)
, (3.1)

where h0(t) is the baseline hazard function.

Assume there is no ties in the observed times, and the censoring is non-informative. Let t1 <

t2 < · · · < tD be the distinct observed times where D is the number of unique observed failures.
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Ri is the set of indices of the subjects who are at risk at time ti. The partial likelihood function is

given by

L(β) =
D∏
i=1

exp
(∑J

j=1 X
(i)
j βj

)∑
l∈Ri

exp
(∑J

j=1X
(l)
j βj

) , (3.2)

Penalization is one of the important variable selection methods, which can be applied to the

Cox’s model for better understanding survival predictors when P is large by minimizing the pe-

nalized partial likelihood function

L(β) = − 1

N
log
(
L(β)

)
+ Pλ,γ(β) = `(β) + Pλ,γ(β), (3.3)

where

`(β) = − 1

N

D∑
i=1

[( J∑
j=1

X
(i)
j βj

)
− log

(∑
l∈Ri

exp
( J∑
j=1

X
(l)
j βj

))]
,

and the penalty term Pλ,γ(β) can take different forms.

• Group lasso [18]: Pλ(β) = λ
∑

j

√
pj

‖βj‖ =
∑

j λj‖βj‖, where λj = λ
√
pj , j = 1, . . . , J .

• Group smoothly clipped absolute deviation (SCAD) [6]: Pλ,γ(β) =
∑

j Sλ,γ
(
‖βj‖

)
with

Sλ,γ
(
‖βj‖

)
=


λj‖βj‖, if ‖βj‖ ≤ λj,

γλj‖βj‖−0.5(‖βj‖2+λ2j )

γ−1
, if λj < ‖βj‖ ≤ γλj,

λ2j (γ2−1)

2(γ−1)
, if ‖βj‖ > γλj.

(3.4)

• Group minimax concave penalty (MCP) [7]: Pλ,γ(β) =
∑

j Mλ,γ

(
‖βj‖

)
with

Mλ,γ

(
‖βj‖

)
=


λj‖βj‖ − ‖βj‖

2

2γ
if ‖βj‖ ≤ γλj,

1
2
γλ2

j if ‖βj‖ > γλj.

(3.5)

Here ‖ · ‖ denotes the Euclidean vector norm. We scale by a factor of 1
N

for convenience.
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Given the survival data, the Cox’s model inference is to learn β that minimizes the penalized

partial likelihood function. Specifically,

βopt = argmin
β

[
`(β) + Pλ,γ(β)

]
= argmin

β

L(β). (3.6)

3.2.2 Majorization-minimization (MM) approach

The negative log partial likelihood `(β) is convex and twice continuously differentiable. We

adopt the majorization-minimization (MM) approach [10], [11] that involves majorizing the neg-

ative log partial likelihood `(β). We derive the upper bound of `(β) as the majorizing/surrogate

objective function through its Hessian matrix.

Denote η = Xβ, then η is a N−dimensional vector whose ith element is ηi = X(i)β. We have

`(η) = − 1

N

D∑
i=1

[
ηi − log

(∑
l∈Ri

exp(ηl)

)]
,

We can calculate the first- and second-order derivatives of `(β); in particular, via the chain rule:

`
′
(β) = X`

′
(η) and `′′(β) = XT `

′′
(η)X . Let U = `

′
(η) and H = `

′′
(η) denote the corresponding

gradient vector and Hessian matrix, respectively. We can write

Ud =
∂`

∂ηd
= − 1

N

[
Id −

∑
i∈Cd

exp(ηd)∑
l∈Ri

exp(ηl)

]
,

where Cd is the set of subjects i’s with td ≥ ti.

For the Hessian matrix H:

• If d 6= k, then

Hd,k = − 1

N

[∑
i∈Cd

exp(ηd)∑
l∈Ri

exp(ηl)

][∑
i∈Ck

exp(ηk)∑
l∈Ri

exp(ηl)

]
,

where Ck is the set of subjects i’s with tk ≥ ti.
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• If d = k, e.g. the diagonal element,

Hd,d =
1

N

∑
i∈Cd

[
exp(ηd)∑
l∈Ri

exp(ηl)
−

exp(ηd)
∑

i∈Cd
exp(ηd)(∑

l∈Ri
exp(ηl)

)2

]
,

Let wd = 1√
N

[∑
i∈Cd

exp(ηd)∑
l∈Ri

exp(ηl)

]
, then −Hd,k = wdwk, and Hd,d = 1√

N
wd − w2

d.

Let z∗ = (z∗1 , z
∗
2 , . . . , z

∗
P ) be a P−dimensional vector, and B be a P × P matrix defined by

B = sXTX where s = max
d

(
1√
N
wd
)
. We have

(z∗)T (B − `′′(β))z∗ = (Xz∗)T (sIN − `
′′
(η))(Xz∗),

where IN is aN×N identity matrix. LetXz∗ = z = (z1, z2, . . . , zN) be aN−dimensional vector,

then

(z∗)T (B − `′′(β))z∗ = zT (sIN − `
′′
(η))z =

N∑
d=1

zd

(
zd
(
s−Hd,d

)
+

N∑
k 6=d

zk
(
−Hd,k

))

=
N∑
d=1

(
s−Hd,d

)
z2
d +

N∑
d=1

zd

N∑
k 6=d

zk
(
−Hd,k

)
=

N∑
d=1

(
s−Hd,d

)
z2
d +

N∑
d=1

zd

N∑
k 6=d

zk
(
wdwk

)
=

N∑
d=1

(
s−Hd,d

)
z2
d +

N∑
d=1

(wdzd)
N∑
k 6=d

(wkzk) =
N∑
d=1

(
s−Hd,d − w2

d

)
z2
d +

( N∑
d=1

wdzd
)2

≥
N∑
d=1

(
s−Hd,d − w2

d

)
z2
d ≥

N∑
d=1

(
s− 1√

N
wd
)
z2
d ≥ 0

Therefore, (B − `′′(β)) is nonnegative definite. It is worth nothing that without loss of generality,

we may standardize the covariates first, as the estimated coefficients of the covariates can always

be transformed back to the original scales for the sake of interpretation. We have B = sXTX ≈

s
(
s
′
NIP

)
= τIP , where τ = s

′
Nmax

d

(
1√
N
wd
)

and IP is a P × P identity matrix. Here s′ = N
P

, if

N ≥ P , and P
N

, if N < P .

Let β∗ be the current solution of β, we can define the majorizing (surrogate) function of the
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negative log partial likelihood `(β) as

M(β|β∗) = `(β∗) + `
′
(β∗)T (β − β∗) +

τ

2
(β − β∗)T (β − β∗),

We further write the majorizing function of the objective function for the group penalized Cox’s

model in (5.3) as

Q(β|β∗) = `(β∗) + `
′
(β∗)T (β − β∗) +

τ

2
(β − β∗)T (β − β∗) + Pλ,γ(β). (3.7)

3.2.3 Group-wise descent algorithm

Now the estimator based on the majorizing function is defined as

β̂ = argmin
β

Q
(
β|β∗

)
. (3.8)

The asymptotic properties of this estimator have been investigated with the corresponding theorem

and proofs given in Appendix 1. Here we focus on the optimization algorithm. To solve the

minimization problem, we use the group-wise descent algorithm. This algorithm is essentially the

same as the algorithm in [18] though we solve for general design matrices of the Cox’s model. The

idea behind it is that the algorithm optimizes the objective function with respect to a single group

at a time, iteratively cycling through all groups until convergence conditions are satisfied. The

overall structure of the group-wise descent algorithm is shown in Algorithm 2. In this algorithm,

β∗ refers to the current value of the Cox’s model coefficients while β̂j, β̂ are the updated values.

This algorithm is suitable for fitting group lasso, group SCAD, and group MCP models since all

three have closed-form expressions for a single-group update β̂j . These three group models have

different mathematical formulations, so the closed-form expressions of a single-group updates for

three models are different. The following parts present the derivations of β̂j for three models. We

prove that the algorithm possesses the descent property. Furthermore, we employ techniques to

speed up the implementations of the corresponding algorithms considerably. Let us begin with the
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group lasso.

Algorithm 2 Group-wise descent algorithm for the group penalized Cox’s model.
Initialize β∗

repeat
for j = 1, 2, . . . , J do

Update β̂j according to (3.10) for group lasso, (3.11) for group SCAD, or (3.12) for group
MCP

end
Update β∗ = β̂

until Convergence of β∗;

3.2.3.1 Group lasso

The majorizing function (5.5) for the group lasso Cox’s model can be written as

Q(β|β∗) = `(β∗) + `
′
(β∗)T (β − β∗) +

τ

2
(β − β∗)T (β − β∗) +

∑
j

λj‖βj‖,

Let Q′j(β) be the partial derivative of Q(β) with respect to the group j. We have

Q′j(β) = `
′

j(β
∗) + τ(βj − β∗j ) +


λj

βj
‖βj‖ , if βj 6= 0

λj‖v‖, if βj = 0.
(3.9)

where v is any vector satisfying ‖v‖ ≤ 1. Denote β̂j is the solution to (5.2). It has the following

closed-form expression

β̂j =

(
1− λj

τ‖r‖

)
+

r, (3.10)

where r = β∗j −
`
′
j(β∗)

τ
and (x)+ = max{x, 0}.
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3.2.3.2 Group SCAD

The majorizing function (5.5) for the group SCAD Cox’s model can be written as

Q(β) = `(β∗) + `
′
(β∗)T (β − β∗) +

τ

2
(β − β∗)T (β − β∗) +

∑
j

Sλ,β
(
‖βj‖

)
,

The optimal solution is characterized by the partial derivative equation.

• If ‖βj‖ ≤ λj , then


`
′
j(β
∗) + τ(βj − β∗j ) + λj

βj
‖βj‖ = 0, if βj 6= 0

`
′
j(β
∗)− τβ∗j + λj‖v‖ = 0, if βj = 0.

• If λj < ‖βj‖ ≤ γλj , then

`
′

j(β
∗) + τ(βj − β∗j ) +

γλj
βj
‖βj‖ − βj
γ − 1

= 0

• If ‖βj‖ > γλj , then

`
′

j(β
∗) + τ(βj − β∗j ) = 0

where v is any vector satisfying ‖v‖ ≤ 1. By solving these equations, we find the final solutions

β̂j =



(
1− λj

τ‖r‖

)
+

r, if ‖r‖ ≤
(
λj +

λj
τ

)
,

τ(γ−1)
τ(γ−1)−1

(
1− γλj

τ(γ−1)‖r‖

)
r, if


τ(γ − 1)− 1 > 0,(
λj +

λj
τ

)
< ‖r‖ ≤ γλj,

r, if ‖r‖ > γλj.

(3.11)

where r = β∗j −
`
′
j(β∗)

τ
and (x)+ = max{x, 0}.
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3.2.3.3 Group MCP

The majorizing function (5.5) for the group MCP Cox’s model can be written as

Q(β) = `(β∗) + `
′
(β∗)T (β − β∗) +

τ

2
(β − β∗)T (β − β∗) +

∑
j

Mλ,β

(
‖βj‖

)
,

The optimal solution is characterized by the partial derivative equation.

• If ‖βj‖ ≤ γλj , then


`
′
j(β
∗) + τ(βj − β∗j ) + λj

βj
‖βj‖ −

1
γ
βj = 0, if βj 6= 0

`
′
j(β
∗)− τβ∗j + λj‖v‖ = 0, if βj = 0.

• If ‖βj‖ > γλj , then

`
′

j(β
∗) + τ(βj − β∗j ) = 0.

where v is any vector satisfying ‖v‖ ≤ 1. By solving these equations, we find the final solutions

β̂j =


τγ
τγ−1

(
1− λj

τ‖r‖

)
+

r, if ‖r‖ ≤ γλj , τγ − 1 > 0

r, if ‖r‖ > γλj.

(3.12)

where r = β∗j −
`
′
j(β∗)

τ
and (x)+ = max{x, 0}.

3.2.4 The descent property of group-wise descent algorithm

The surrogate function Q have two properties

Q(β∗j |β∗) = L(β∗j ),

Q(βj|β∗) ≥ L(βj) for all βj.
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From that we can prove the descent property of the group-wise descent algorithm. The descent

property is stated as follows. At every iteration of the proposed group-wise descent algorithms, let

β∗ and β̂ denote the current value and the updated value of the coefficient estimator, respectively.

Then the value of the objective function L(β) decreases, i.e., L(β̂) ≤ L(β∗).

Proof: From the second property of the surrogate function Q we have L(β̂j) ≤ Q(β̂j). In

addition, according to (5.4) we have Q(β̂j) ≤ Q(β∗j ). Therefore, L(β̂j) ≤ Q(β∗j ) = L(β∗j ), which

justifies the descent property of the group-wise descent algorithm. In other words, the objective

function decreases after updating all groups in a cycle.

Lemma 1 The objective function Q(βj) is strictly convex with respect to βj for the group lasso

with τ > 0, for the group SCAD with τ(γ − 1) > 1, and for the group MCP with τγ > 1.

Proof: Although Q(βj) is not differentiable, it does possess twice directional derivatives every-

where. Let O2
dQ(βj) be the second order directional derivatives along the direction d, and denote

ε∗ = min
βj ,d
O2
dQ(βj). Then, we have

• ε∗ = τ for group lasso

• ε∗ = τ − 1
γ−1

for group SCAD

• ε∗ = τ − 1
γ

for group MCP.

These are positive under the conditions specified in the lemma. In other words, O2
dQ(βj) for all βj

and d, which means that the function Q(βj) is strictly convex.

Remark: The objective function for the group lasso penalty is convex, thus the descent property of

the algorithm implies the unique solution. However, the objective functions for the group SCAD

and group MCP penalty are sums of convex and nonconvex components, thus it is possible that the

algorithms converge to a local minimum.

3.2.5 Active set updates

To improve the computational speed, we have constructed an active set A = {β̂j 6= 0} that

takes advantage of the sparsity of β. As shown in Algorithm 2, we only need to update the nonzero
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coefficients β̂j in A after a complete cycle has run through all the groups, i.e., when β∗ = 0, β̂j

will stay zero if ‖ − `
′
j(0)

τ
‖ ≤ λj

τ
or ‖`′j(0)‖ ≤ λj; otherwise, β̂j will be updated and stored in the

active set if ‖`′j(0)‖ > λj . Therefore, the number of updates is reduced significantly and the rate

of convergence of the algorithm is improved. The algorithm will stop if another complete cycle

does not change this set. Note that the active set A can only become larger after each update, so

the algorithm will always stop after a finite number of updates. More details of its convergence

property can be found in [19].

3.2.6 Pathwise solution

The above procedure is just for one fixed value of λ. However, in general, it is of interest to

be able to compute the optimal solution for a range of λ values. Thus, we aim to compute the

regularization path (denoted as β̂(λ)) where λ ∈ [0,∞]. It can be shown that β̂(λ) turns out to be

a piecewise linear, continuous function of λ [31]. In other words, we only need to compute the

solutions on the change points in this path, denoted λmax ≥ λ1 ≥ · · · ≥ λmin ≥ 0. We can start

with λmax that is any value sufficiently large for which the entire coefficients β∗ = 0. Notice that

when β∗ = 0, β̂j will stay zero if ‖ − `′j(0)‖ ≤ λj = λ
√
pj . Hence, we can set

λmax = max
j

(‖ − `′j(0)‖
√
pj

)
.

Following the suggestions made by [32], we can ignore solutions that are close to 0 and set λmin =

ελmax, then, compute the solutions over m + 1 values defined as λi = λmax
(
λmin

λmax

) i
m , for i =

0, 1, . . . ,m. We set ε = 0.05, if N < P , and 0.001, if N ≥ P . In doing this, the algorithm

usually converges well because we could use the preceding solution (i.e., for λi) as the initial

values to obtain the solution for λi−1. It is worth noting that when N < P and λ is small, the log

likelihood estimates can be∞. Therefore, when implementing our grpCox package, we terminates

the regularization path if it occurs.
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3.2.7 Selection of the tuning hyperparameters

With a path of solutions, we need to select an optimal one. The natural choice is by cross valida-

tion. However, the partial likelihood of the Cox’s model is not as well defined as the Gaussian log

likelihood or any exponential family on the left out samples using the traditional cross-validation,

which leads to poor results. To tackle it, we have used the cross-validation method as described in

[33] proposed for the Cox’s model, in which data are split into k parts, use k − 1 parts to train the

model, and then, validate the learned model on the whole data set. The cross-validated log-partial

likelihood for a given part i and λ is ĈVi(λ) = L
(
β̂−i
)
− L−i

(
β̂−i
)
, which can be used as the

goodness-of-fit estimate of the solution. Here, β̂−i and L−i are the optimal coefficients and its

corresponding log-partial likelihood for data excluding part i. The total goodness-of-fit, ĈV(λ), is

the sum of all ĈVi(λ). We find the optimal λ̂cvl that maximizes ĈV(λ).

This method alone produces high true positive rates (TPR) but often also with high false pos-

itive rates (FPR) for group lasso. We have implemented another approach proposed in [34] to

reduce FPR without significant reduction of TPR. Let pλ be the number of non-zero coefficients in

the model for a given λ, the optimal λ maximizes

ĈV(λ)− ĈV(λ̂cvl)− ĈV(λmax)

pλ̂cvl
∗ pλ, for λ ∈

[
λ̂cvl, λmax

]
.

Intuitively, it reduces the sparsity of the model pλ without decreasing much the goodness-of-fit of

the model ĈV(.). The simulation studies for the second approach are presented in Appendix 2.

3.3 Overlapping groups

We have considered the non-overlapping group structure in the previous sections. In practice,

however, a predictor can belong to several groups. For example, one gene can be shared by many

different pathways. In this section, we extend the proposed methods for problems with overlapping

groups. Note that the sparse group selection, which yields group-wise and within-group sparsity,

can be considered as a special case of an overlapping group. Specifically, in this case, many groups

would be of size 1.
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Let us modify the notations and rewrite the penalty functions. Let G = {g1, . . . , g|G|} denote

a set of groups as a partition of {1, . . . , P}, βg ∈ R|g| a subvector of β, and pg the number of

covariates in each group g. The objective function becomes

L(β) = − 1

N
log
(
L(β)

)
+ Ωλ,γ(β), (3.13)

where

• Overlapping group lasso: Ωλ(β) = λ
∑

g∈G
√
pg‖βg‖ =

∑
g∈G λg‖βg‖ with λg = λ

√
pg.

• Overlapping group smoothly clipped absolute deviation (SCAD): Ωλ,γ(β) =
∑

g∈G Sλ,γ
(
‖βg‖

)
with

Sλ,γ
(
‖βg‖

)
=


λg‖βg‖, if ‖βg‖ ≤ λg,

γλg‖βg‖−0.5(‖βg‖2+λ2g)

γ−1
, if λg < ‖βg‖ ≤ γλg,

λ2g(γ2−1)

2(γ−1)
, if ‖βg‖ > γλg.

• Overlapping group minimax concave penalty (MCP): Ωλ,γ(β) =
∑

g∈G Mλ,γ

(
‖βg‖

)
with

Mλ,γ

(
‖βg‖

)
=


λg‖βg‖ − ‖βg‖

2

2γ
if ‖βg‖ ≤ γλg,

1
2
γλ2

g if ‖βg‖ > γλg.

where ‖ · ‖ is the Euclidean vector norm.

Also, it is worth clarifying about how the overlapping group works. For example, consider

P = 3 and G = 2, two groups sharing one covariate, and only the first group affecting the

survival outcome. When the second group is not selected, all of its coefficients are shrunk to

zeros. On the other hand, as the first group is selected, all of its coefficients are nonzeros. One

approach, presented in [8], [9], considered unions of groups: the shared covariates are selected

in the final model. Another approach, presented in [35], considered intersections of groups: the

shared covariates are not selected. In this chapter, we consider the union approach.
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The main difficulty in solving (4.8) is from the non-separable {βg}g∈G in the non-smooth

penalty Ωλ,γ(β). The overlapping character makes the computation of the subgradient with re-

spect to βg in the group-wise descent algorithm challenging. To tackle this problem, we have

adopted the latent group approach [8], [9] that replicates a variable in whatever group it appears;

then fits the non-overlapping group models. Note that “latent” here does not imply the case that

the group structure is unobservable - we consider the cases where the group structure is known

in advance, which is called predefined group structure. Rather, “latent” implies the set of latent

variables, which are formed as linear combinations of predefined groups. Next, we discuss with

more details.

Let νg ∈ RP be a vector that is zero everywhere except in those positions corresponding to

the elements of group g, and let Vg ⊆ RP be the subspace of these possible vectors νg. Hence,

β =
∑|G|

g=1 νg. Figure 3.1 illustrates the idea how to transform Xβ = X̃ν, where ν is the latent

variable, and X̃ is the replicated variable matrix.

Xβ = X ∗ +X ∗ +X ∗ =

(
Xg1 , Xg2 , Xg3

)
∗ , X̃ν

Figure 3.1: The coefficient decomposition of overlapping groups.

We can reformulate the objective function (4.8) in the latent variable space as

L(ν) = − 1

N
log
(
L(ν)

)
+ Ωλ,γ(ν), (3.14)

Three penalty formulations can be similarly defined:

• Overlapping group lasso: Ωλ(ν) = λ
∑

g∈G
√
pg‖νg‖ =

∑
g∈G λg‖νg‖ with λg = λ

√
pg.
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• Overlapping group smoothly clipped absolute deviation (SCAD): Ωλ,γ(ν) =
∑

g∈G Sλ,γ
(
‖νg‖

)
with

Sλ,γ
(
‖νg‖

)
=


λg‖νg‖, if ‖νg‖ ≤ λg,

γλg‖νg‖−0.5(‖νg‖2+λ2g)

γ−1
, if λg < ‖νg‖ ≤ γλg,

λ2g(γ2−1)

2(γ−1)
, if ‖νg‖ > γλg.

• Overlapping group minimax concave penalty (MCP): Ωλ,γ(ν) =
∑

g∈G Mλ,γ

(
‖νg‖

)
with

Mλ,γ

(
‖νg‖

)
=


λg‖νg‖ − ‖νg‖

2

2γ
if ‖νg‖ ≤ γλg,

1
2
γλ2

g if ‖νg‖ > γλg.

where ‖ · ‖ is the Euclidean vector norm.

Here, L(ν) is analogous to L(β), but it is worth noting that L(β) is computed in the original β

space using the design matrix X while L(ν) is computed in the latent ν space using the replicated

variable matrix X̃ . In the latent (expanded and non-overlapping) space of dimension
∑

g∈G |g|,

the formulation has the same structure as the non-overlapping group formulations discussed previ-

ously. This allows us to apply the same solution procedure presented in the previous sections.

3.4 Simulation studies

In this section, we first show the efficiency of our proposed algorithms and package grp-

Cox [36] by comparing the running time to fit the entire path of solutions with other publicly

available R packages. We also compare these packages in term of variable selection. Then, we

illustrate the similarities and differences between three group regularization methods: group lasso,

group SCAD, and group MCP in both the non-overlapping group and overlapping group settings.

Finally, we compare the performance of three methods in terms of variable selection and model

accuracy in both the non-overlapping group and overlapping group cases.
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3.4.1 Setup

We generate data with N observations and P covariates from the following model:

Y true = exp
(
Xβ
)
,

where Y true is the true survival time. The censoring time C is generated from a exponential

distribution with the mean Uexp
(
Xβ
)
, where U is randomly generated from a uniform distribution

U(0, c). The recorded survival time is Y = min{Y true, C}. The observation is censored if C <

Y true. We choose different c to achieve different censoring rates. The original covariates X are

generated from a multivariate normal distribution with a zero mean vector and the correlation

matrix C as an autoregressive matrix where Cij = ρ|i−j| and 0 ≤ ρ ≤ 1. The reason to use an

autoregressive correlation matrix is that we could flexibly tune the correlation between covariates

by setting ρ values: ρ = 0 means no correlation between covariates, while ρ = 1 means that the

covariates are perfectly correlated as duplicates of each other. In all the simulations, we fix γ = 3.7

for the group SCAD formulation as suggested in [4], and γ = 3 for the group MCP formulation as

suggested in [37].

We evaluate the variable selection performance of these methods by presenting the model sizes,

true positive rate (TPR), and false positive rate (FPR). These measures are defined as

TPR =
TP

TP + FN
and FPR =

FP
FP + TN

,

where TP, FP, FN, TN are the number of true positives, false positives, false negatives and false

negatives, respectively. For all simulations, we create a path of 50 λ values, apply 10-fold cross-

validation described above to select the optimal λ for variable selection.

We evaluate model accuracy by root mean square error (RMSE) that is given by

RMSE =

√√√√ 1

P

P∑
p=1

(βp − β̂p)2.
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Recall that P is the number of covariates.

3.4.2 Time and quality comparison with other packages

In this section, we compare the running time of the grpCox package, in which we implement

our methods, with other publicly available R packages for fitting models. We also compare them

in term of variable selection using TPR and FPR measurement.

Package Method {N = 50, P = 1000} {N = 100, P = 3000} {N = 150, P = 4500}
time TPR FPR time TPR FPR time TPR FPR

grpCox
Group lasso 0.05 0.50 0.10 0.15 0.97 0.15 0.26 1 0.15
Group SCAD 0.30 0.54 0.10 0.33 0.99 0.06 0.52 1 0.13
Group MCP 0.28 0.47 0.08 0.31 0.99 0.04 0.50 1 0.12

grpsurv
Group lasso 0.08 0.10 0.05 0.28 0.59 0.06 0.52 0.98 0.08
Group SCAD 0.18 0.09 0.03 0.72 0.46 0.04 1.31 0.86 0.04
Group MCP 0.14 0.01 0.01 0.48 0.16 0.01 0.85 0.56 0.02

SGL Group lasso 7.55 0.33 0.06 38.73 1 0.10 87.84 1 0.10

Table 3.1: Comparison of grpCox with publicly available packages in the non-overlapping set-
tings. The mean time, average TPRs, and average FPRs, over 100 independent data sets and a 50
λ values path, are reported. The time is in seconds.

3.4.2.1 Non-overlapping groups

We consider two other R packages SGL [23] and grpsurv, which is a part of the grpreg

package [21]. Note that SGL package is not for the overlapping group case.

We consider three high-dimensional settings (N,P ) = {(50, 1000), (100, 3000), (150, 4500)}.

In this set of experiments, β is sparse including 100 nonzero elements and (P−100) zero elements.

Each group includes 10 covariates, and the corresponding numbers of groups J are set to 100, 300,

450. No censoring, and ρ = 0.5. We set α = 0 for the group lasso penalty when implementing

the SGL package. We compute the 50 λ value solution paths of the group penalized Cox models

for 100 independent data sets, and report the average running time. The 10-fold cross-validation is

used for model selection. The results are shown in Table 3.1.
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The running time results show that grpCox is faster than grpsurv, and both of them run much

faster than SGL. Among different methods, group lasso is the fastest that followed by the group

SCAD and group MCP. It can be explained that the upper bound for group lasso is sufficiently tight

and convex, which leads to faster convergence.

From Table 3.1, it can be seen that the TPR values of grpCox are much higher than grpsurv

while the FPR values of grpCox are a bit higher than grpsurv. In other words, grpCox gives

better results than grpsurv in term of variable selection. In addition, grpCox is comparable with

SGL in term of variable selection. It can be explained that both grpCox and SGL can handle

general design matrices while grpsurv does an initial orthonormalization step, which can be easily

violated when applying cross-validation to select models. Even worse, it may cause the significant

differences in TPR and FPR for group SCAD and group MCP from group lasso in grpsurv results.

In addition, we would like to show how these methods scale withN and P . We run simulations

with ρ = 0, 20% censoring rate fixed and different setups for the number of subjects N and the

number of covariates P . For each (N,P ) pair, we solve for a path of 50 λ values. Figure 3.2 shows

the corresponding runtime for fixed P as N changes, and for fixed N as P changes. We can see

that all three methods are scalable to both N and P and handle large N and large P well. The

presented setups are with the maximum N at 50000 and the maximum P at 450000.

3.4.2.2 Overlapping groups

We consider one available R package grpregOverlap [38]. Here, we show the running time of

three high-dimensional overlapping settings with N = 50 samples for each. 20% censoring, and

ρ = 0.5. Firstly, the equal group case includes P = 802 covariates with 100 groups of 10 covariates

with two of them overlapping between two successive groups, and there are 81 nonzero covariates.

Secondly, the unequal group case includes P = 835 covariates with 30 groups of 8 covariates with

two of them overlapping between two successive groups, 30 groups of 11 covariates with three of

them overlapping between two successive groups, and 40 groups of 15 covariates with five of them

overlapping between two successive groups. There are 98 nonzero covariates. Lastly, the sparse

case includes P = 1000 covariates with 100 groups of 10 covariates. There are 10 sparse groups.
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Figure 3.2:
Plots of
average
runtime
over 100
trials for
50 λ-value
paths. The
runtime is
in seconds.

We also include the running time of the SGL package with α = 0.5 for the sparse group case.

Note that grpregOverlap does not include the model selection for Cox’s model, so we choose not

to report the TPRs and FPRs for all packages. The running time results are summarized in Table

3.2. It can be seen that for group lasso, grpCox is faster than grpregOverlap that followed by

SGL. For group SCAD and group MCP, grpCox is faster than grpregOverlap in the sparse group

setting, but a bit slower in the equal and unequal settings.

3.4.2.3 N ≥ P problems

We show that grpCox also can deal with large datasets by considering the running time re-

sults for three combinations of (N,P ) = {(100, 50), (300, 100), (6000, 1000)}. The correspond-

ing numbers of equal groups J are set to 10, 10, 100. In this set of experiments, β is sparse with

P/10 elements are nonzero. We set α = 0 for the group lasso penalty when implementing the

SGL package. We compute the 50 λ value solution paths of the group penalized Cox models for

100 independent data sets, and report the average running time. However, we could run the SGL

package with reasonable running time on small data sets only. The results are shown in Table 3.2.

The results are consistent with high-dimensional cases: grpCox is faster than grpsurv, and both of
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them run much faster than SGL. However, group SCAD and group MCP are a bit faster than group

lasso especially in the (N,P ) = (6000, 1000) case of grpsurv implementation that are presumably

because their solution paths tend to be more sparse [21].

Note: Group SCAD and MCP models depend on an additional parameter γ. In particular, small

changes of γ can lead the implementations terminate at different λ values along the regularization

path, which results in big running time changes. Here we used the fix γ values suggested in [4]

for group SCAD and [37] for group MCP that gave good results in term of variable selection and

model accuracy (more details presented the following parts.) How to determine the optimal γ

value, however, definitely needs further investigation.

3.4.3 Comparison of three group penalized Cox’s models

In this section, we illustrate the similarities and differences between three group regularization

methods: group lasso, group SCAD, and group MCP in both the non-overlapping and overlapping

group settings using simulated data.

3.4.3.1 Non-overlapping groups

We consider a simple example with five primary covariates that are generated from a multivari-

ate normal distribution with the zero mean vector and the correlation matrix C with Cij = ρ|i−j|

and ρ = 0.5. The true survival time is generated as follows:

Y true = exp(X1 +X2
1 +X3

1 − 0.7X5 − 0.95X2
5 − 0.8X3

5 ).

In other words, this model includes nine covariates that can be divided into three groups: the

first group is {X1, X
2
1 , X

3
1}, the second group {X2, X3, X4}, and the third group {X5, X

2
5 , X

3
5}.

Note that the first and third groups have nonzero coefficients while the second group has zero

coefficients. The sample size N is 50, and the censoring rate is 20%. We create a path of 50 values

of λ. The resulting solution paths are shown in Figure 4.1.

It is easy to see that the group selection selects a group of covariates in an “all-in-or-all-out”

fashion. In other words, once one covariate of a group is selected, the whole group will be selected.

35



Figure 3.3: Solution paths for the group lasso, group SCAD, and group MCP models. The solid
lines are for signal variables while the dashed lines are for noise variables.

In addition, the group SCAD and group MCP methods eliminate some of the bias towards zero

among the true nonzero groups. In particular, when log(λ) is between -1.17 and -1.88, they produce

the estimated model including only the nonzero covariates (the “oracle” model).

3.4.3.2 Overlapping groups

We also consider a simple example with six covariates that are generated from a multivariate

normal distribution with the zero mean vector and the correlation matrix C with Cij = ρ|i−j| and

ρ = 0.5. There are five groups defined as g1 = {X1, X2, X3}, g2 = {X1, X4}, g3 = {X2, X4, X5},

g4 = {X3, X5}, g5 = {X6}. The true survival time is generated as follows:

Y true = exp(0.8X1 +X2 + 2X3 +X5).
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The sample size N is 100, and the censoring rate is 20%. We create a path of 50 λ values. The

resulting solution paths are shown in Figure 4.1. The results are consistent with the results of the

non-overlapping group cases. The group SCAD and group MCP methods again reduce the bias

towards zero among the true nonzero groups. In particular, when log(λ) is between -1.5 and -2.76,

they produce the estimated model including only the nonzero covariates.

3.4.4 Comparison of three group penalized Cox’s models with non-overlapping groups

In this section, we compare the performance of three group regularization methods in terms

of variable selection and model accuracy using simulated data. In here, the model size is given in

terms of the number of groups. Clearly, the true model size is the number of nonzero groups. The

group size is the number of covariates of each group.

3.4.4.1 Effect of the coefficient magnitude

We focus on high dimensional cases, therefore, we generate N = 100 observations with P =

400 covariates that include 100 groups, each with 4 elements. There are five nonzero groups whose

coefficient magnitudes are ±β where β is a scalar, and ninety-five other groups are zero groups.

We vary |β| between 0.25 and 1.5. We also investigate the effects of the censoring setting by

considering two scenarios: no censoring and right censoring with 20% censoring rate.

The results in terms of estimation accuracy and model sizes are shown in Figure 3.4. The

results show that when the coefficient values are small, all three methods have the same RMSE

values. However, group SCAD and group MCP methods perform better with decreasing RMSE

values, while the group lasso method performs increasingly poorly. Moreover, group SCAD and

group MCP methods always select smaller models and approach the true model size while the

group lasso method often selects too many covariates. Comparing group SCAD and group MCP,

the two are nearly identical in terms of estimation accuracy. However, the group MCP method

selects smaller models than the group SCAD method does.

The TPR and FPR results are summarized in Table 3.3. They illustrate that when the coef-

ficients are small, group lasso does variable selection better than group SCAD and group MCP.
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Figure 3.4: The impact of the coefficient magnitude and censoring rate on group regularization
methods when the group size is 4. The black line is the true model size (5).

However, group MCP begins doing better variable selection than group SCAD that produces better

variable selection than group lasso.

3.4.4.2 Effect of the group size

We use the same setting as it was described previously, but the group sizes are different. We

consider two different cases. In the first case, the group size is 10, and the number of groups is 40.

The first two groups are nonzero groups; other groups are zero groups. These results are shown in

Figure 3.5 and Table 3.4. In the second case, the group size is 20, and the number of groups is 20.

Only the first group was nonzero group; other groups were zero groups. The results are shown in

Figure 3.5 and Table 3.4.

Figure 3.5 shows the same pattern as in Figure 3.4. However, when the group size increases,

the RMSE values decrease. Comparing Tables 3.3 and 3.4, it can be seen that when the group

size increases, group lasso performs worse with much higher FPR values. The group SCAD gives

higher TPR values, but a little bit higher FPR values when the coefficient magnitude increases.

The group MCP gives better performance when the group size increases.
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Group lasso Group SCAD Group MCP
|β| TPR FPR TPR FPR TPR FPR

No censoring

0.25 0.95 0.09 0.73 0.02 0.71 0.00
0.50 1 0.12 0.91 0.04 1 0.01
0.75 1 0.15 1 0.02 1 0.01
1.00 1 0.21 1 0.01 1 0.01
1.25 1 0.24 1 0.03 1 0.01
1.50 1 0.27 1 0.04 1 0.03

20% censoring

0.25 0.54 0.09 0.50 0.04 0.50 0.01
0.50 1 0.13 0.84 0.04 1 0.05
0.75 1 0.17 1 0.07 1 0.03
1.00 1 0.22 1 0.05 1 0.01
1.25 1 0.23 1 0.03 1 0.02
1.50 1 0.22 1 0.04 1 0.02

50% censoring

0.25 0.75 0.12 0.65 0.04 0.33 0.01
0.50 1 0.19 0.91 0.04 0.33 0.00
0.75 1 0.19 0.93 0.07 0.66 0.00
1.00 1 0.19 1 0.05 0.92 0.02
1.25 1 0.23 1 0.04 0.98 0.02
1.50 1 0.24 0.96 0.04 0.97 0.04

Table 3.3: Average true positive rate (TPR) and false positive rate (FPR) values of three group reg-
ularization methods over 100 replications for different coefficient magnitude values and different
censoring scenarios when the group size is 4.

3.4.4.3 Effect of censoring

We investigate the performance of three methods with respect to the censoring rate. We use

the same setting, in which the group size is 4 with the higher censoring rate 50%. The results are

summarized in Figure 3.4 and Table 3.3. From Figure 3.4 and Table 3.3, on one hand, it can be

seen that there is no big difference in terms of RMSE, model size, and variable selection (TPR and

FPR) between no censoring and 20% censoring. On the other hand, 50% censoring affects slightly

on group lasso and group SCAD, but strongly on group MCP especially when the coefficients are

small. It may be explained by the fact that the presence of censoring reduces the available sample

size, which leads to inconsistent estimation.
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Figure 3.5: The impact of increasing coefficient magnitude on group regularization methods when
the group size is 10 (first row) and 20 (second row). The black line on the right is the true model
size.

3.4.4.4 Effect of covariate correlation

In all the above simulations, we set the population correlation ρ = 0. In other words, covariates

are generated independently from the standard normal distribution. In this section, we still set the

group size to be 4, no censoring, but the values of ρ at 0.2, 0.5 and 0.9. The results are shown in

Figure 3.6 and Table 3.5. It can be seen that when the population correlation is mild, e.g. not larger

than 0.5, all the three models work fine. In particular, the group MCP formulation performs the

best while the group lasso performs the worst in terms of TPR and FPR values. The model with

the group MCP penalty also leads to smaller models that approach the true model sizes compared

to much bigger models from the group lasso model. When the population correlation is high at 0.9,

all three models have bigger RMSE and smaller TPR values. The group MCP and group SCAD

formulations still derive models with similar size as in the mild population correlation cases. The

group lasso formulation becomes more conservative, which leads to smaller selected models whose

sizes are close to the true size.
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Group lasso Group SCAD Group MCP
Group size |β| TPR FPR TPR FPR TPR FPR

10

No censoring

0.25 1 0.15 0.78 0.08 0.51 0.03
0.50 1 0.21 1 0.06 1 0.00
0.75 1 0.30 1 0.01 1 0.00
1.00 1 0.33 1 0.01 1 0.01
1.25 1 0.37 1 0.04 1 0.00
1.50 1 0.38 1 0.06 1 0.01

20% censoring

0.25 1 0.16 1 0.10 0.97 0.03
0.50 1 0.19 1 0.03 1 0.00
0.75 1 0.20 1 0.03 1 0.00
1.00 1 0.24 1 0.03 1 0.01
1.25 1 0.28 1 0.06 1 0.03
1.50 1 0.32 1 0.05 1 0.01

20

No censoring

0.25 1 0.10 1 0.00 1 0.00
0.50 1 0.10 1 0.00 1 0.00
0.75 1 0.31 1 0.00 1 0.00
1.00 1 0.39 1 0.00 1 0.01
1.25 1 0.45 1 0.06 1 0.02
1.50 1 0.50 1 0.08 1 0.02

20% censoring

0.25 1 0.21 1 0.16 1 0.07
0.50 1 0.24 1 0.01 1 0.00
0.75 1 0.37 1 0.02 1 0.00
1.00 1 0.45 1 0.04 1 0.01
1.25 1 0.52 1 0.11 1 0.01
1.50 1 0.52 1 0.12 1 0.01

Table 3.4: Average true positive rate (TPR), and false positive rate (FPR) values of three group reg-
ularization methods over 100 replications for different coefficient magnitude values and different
censoring scenarios.

3.4.5 Comparison of three group penalized Cox’s models with overlapping groups

In this section, we compare the performance of three group regularization methods in terms of

variable selection and model accuracy using simulated data. In here, the model size is the number

of nonzero covariates.

3.4.5.1 Equal group size

We generate N = 50 observations with P = 162 covariates X1, . . . , X162. There are 20 groups

of 10 covariates with two of them overlapping between two successive groups:
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Figure 3.6: The impact of increasing the coefficient magnitude and the population correlation on
group regularization methods when the size is 4. The black line is the true model size (5).

{1, . . . , 9, 10}, {9, . . . , 17, 18}, . . . , {153, . . . , 162}. The nonzero covariates areX25, X26, . . . , X42.

3.4.5.2 Effect of the number of overlapping covariates among groups

We continue considering the setting with the equal group size but set the varying number of

overlapping covariates between two successive groups to 3, 4, 5, 6, 7, and 8. The results are shown

in Table 3.6. It shows clearly that group SCAD and group MCP select smaller models with smaller

RMSE values than group lasso does. In terms of variable selection performances, group SCAD

and group MCP produce better results than group lasso. Overall the change of overlap covariates

among groups does not affect performances by group SCAD and group MCP. On the other hand,

it has strong effect upon group lasso.

3.4.5.3 Unequal group size

We generateN = 50 observations with P = 185 covariatesX1, . . . , X185. There are 11 groups:

5 groups with 8 covariates per group, 10 groups with 11 covariates per group, and 6 groups with 15

covariates per group. There are two covariates overlapping between two successive groups. The

42



Group lasso Group SCAD Group MCP
ρ |β| TPR FPR TPR FPR TPR FPR

0

0.25 1 0.10 1 0.00 1 0.00
0.50 1 0.10 1 0.00 1 0.00
0.75 1 0.31 1 0.00 1 0.00
1.00 1 0.39 1 0.00 1 0.01
1.25 1 0.45 1 0.06 1 0.02
1.50 1 0.50 1 0.08 1 0.02

0.2

0.25 0.07 0.01 0.04 0.01 0.02 0.01
0.50 1 0.01 0.99 0.11 0.99 0.02
0.75 1 0.14 1 0.05 1 0.02
1.00 1 0.15 1 0.04 1 0.01
1.25 1 0.14 1 0.06 1 0.02
1.50 1 0.16 1 0.06 1 0.02

0.5

0.47 1 0.09 0.52 0.07 0.47 0.04
0.50 0.97 0.10 0.80 0.09 0.78 0.05
0.75 1 0.13 1 0.08 1 0.06
1.00 1 0.16 1 0.08 1 0.03
1.25 1 0.16 1 0.09 1 0.02
1.50 1 0.20 1 0.06 1 0.02

0.9

0.25 0.25 0.05 0.25 0.05 0.26 0.06
0.50 0.50 0.03 0.49 0.07 0.27 0.04
0.75 0.51 0.04 0.50 0.12 0.44 0.09
1.00 0.53 0.07 0.50 0.13 0.38 0.08
1.25 0.53 0.07 0.50 0.09 0.38 0.06
1.50 0.51 0.08 0.51 0.11 0.27 0.06

Table 3.5: Average true positive rate (TPR), and false positive rate (FPR) values over 100 repli-
cations for three group regularization models with different coefficient magnitude and population
correlation values when the group size is 4.

nonzero covariates are X1, X2, . . . , X14.

3.4.5.4 Sparse group example

As we mentioned above, the sparse group selection is a special case of the overlapping group.

Here, we provide one example. We generate N = 50 observations with P = 60 covariates

X1, . . . , X60. Each covariate is treated as a group whose size is 1. In addition, there are 15 groups

whose size was 4. The nonzero covariates include X1, X2, X9, X10, X11, X12, X21. In other words,

out of fifteen 4-covariate groups, there are two groups that have sparse group effects.
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No. of overlapping covariates TPR FPR Model size RMSE
truth 18

2 Group lasso 1 0.36 70.58 0.42
Group SCAD 1 0 18 0.36
Group MCP 1 0 18 0.36
truth 17

3 Group lasso 1 0.53 83.47 0.43
Group SCAD 1 0 17 0.30
Group MCP 1 0 17 0.30
truth 16

4 Group lasso 1 0.50 70.68 0.47
Group SCAD 1 0 16 0.29
Group MCP 1 0.07 23.22 0.31
truth 15

5 Group lasso 1 0.62 71.35 0.46
Group SCAD 1 0.36 47.4 0.23
Group MCP 1 0.03 17.9 0.20
truth 14

6 Group lasso 1 0.63 59.36 0.58
Group SCAD 1 0.06 19.2 0.26
Group MCP 1 0.03 16.2 0.23
truth 13

7 Group lasso 0.96 0.86 58.76 0.58
Group SCAD 0.96 0.10 18.24 0.46
Group MCP 0.90 0.08 15.98 0.40
truth 12

8 Group lasso 1 0.81 41.24 0.61
Group SCAD 1 0.35 24.80 0.35
Group MCP 1 0.30 21.72 0.29

Table 3.6: Results for overlapping group settings with different overlapping covariates between
two successive groups over 100 replications.
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TPR FPR Model size RMSE
Equal group truth 18

Group lasso 1 0.36 70.58 0.42
Group SCAD 1 0 18 0.36
Group MCP 1 0 18 0.36

Unequal group truth 14
Group lasso 1 0.43 87.52 0.37
Group SCAD 1 0.01 16.05 0.25
Group MCP 1 0 14.55 0.25

Sparse group truth 7
Group lasso 1 0.27 21.61 0.29
Group SCAD 1 0.05 9.56 0.24
Group MCP 1 0.02 7.83 0.24

Table 3.7: Results for overlapping group settings over 100 replications.

3.4.5.5 Results

For all three settings above, we consider the population correlation ρ = 0.5 with 20% right

censoring. We create a path of 50 λ values and use 10-fold cross-validation to select the final

model. The results of 100 replications are summarized in Table 3.7. The results in terms of

TPR, FPR, model size, and RMSE values are consistent with the results of the non-overlapping

group cases presented above: group SCAD and group MCP give better results in term of variable

selection and model accuracy.

3.4.6 Misspecification of group structures

As described above, our methods need pre-defined group structures. We would like to inves-

tigate the effects of erroneous specification of groups. We consider an example with N = 100,

P = 80, and the “correct” underlying group structure:

1, . . . , 10︸ ︷︷ ︸
group1

11, . . . , 20︸ ︷︷ ︸
group2

21, . . . , 26︸ ︷︷ ︸
group3

25, . . . , 30︸ ︷︷ ︸
group4

31, . . . , 40︸ ︷︷ ︸
group5

41, . . . , 50︸ ︷︷ ︸
group6

51, . . . , 57︸ ︷︷ ︸
group7

55, . . . , 60︸ ︷︷ ︸
group8

61, . . . , 70︸ ︷︷ ︸
group9

71, . . . , 80︸ ︷︷ ︸
group10

,
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in which there are non-overlapping groups and overlapping groups. Notice that groups 3 and 4

have two overlapped covariates, and groups 7 and 8 have three overlapped covariates. We set the

population correlation ρ = 0.5 with 50% censoring rate. The corresponding coefficients are

0, . . . , 0︸ ︷︷ ︸
group1−2

1.5, 0, 1.5, 0,−2, 0︸ ︷︷ ︸
group3

−2, 0, 0,−2,−1,−2︸ ︷︷ ︸
group4

0, . . . , 0︸ ︷︷ ︸
group5−6

1.4, 0, 1, 0, 1.8, 0, 0︸ ︷︷ ︸
group7

0, 1.8, 0, 0, 1, 1.6, 1.2︸ ︷︷ ︸
group8

0, . . . , 0︸ ︷︷ ︸
group9−10

.

Then we consider two examples with the misspecified groups for inference. In the first example,

the number of groups are incorrect because the overlapping groups are collapsed:

1, . . . , 10︸ ︷︷ ︸
group1

11, . . . , 20︸ ︷︷ ︸
group2

21, . . . , 30︸ ︷︷ ︸
group3

31, . . . , 40︸ ︷︷ ︸
group4

41, . . . , 50︸ ︷︷ ︸
group5

51, . . . , 60︸ ︷︷ ︸
group6

61, . . . , 70︸ ︷︷ ︸
group7

71, . . . , 80︸ ︷︷ ︸
group8

.

In the second example, there are no overlapping covariates because the overlapping covariates are

put into one group.

1, . . . , 10︸ ︷︷ ︸
group1

11, . . . , 20︸ ︷︷ ︸
group2

21, . . . , 26︸ ︷︷ ︸
group3

27, . . . , 30︸ ︷︷ ︸
group4

31, . . . , 40︸ ︷︷ ︸
group5

41, . . . , 50︸ ︷︷ ︸
group6

51, . . . , 57︸ ︷︷ ︸
group7

58, . . . , 60︸ ︷︷ ︸
group8

61, . . . , 70︸ ︷︷ ︸
group9

71, . . . , 80︸ ︷︷ ︸
group10

.

The results are shown in Table 3.8. It can be seen that our methods are quite robust and not affected

by the group structure misspecification.

We consider additional settings with a large number of overlapping covariates and the number

of zero groups being more than the number of non-zero groups in Appendix A.3.
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TPR FPR Model size RMSE
truth 12

Correct Group lasso 1 0.70 59.8 0.45
specification Group SCAD 1 0.34 35.5 0.18

Group MCP 1 0.17 24.1 0.16
truth 12

First Group lasso 1 0.70 59.8 0.45
misspecification Group SCAD 1 0.28 31.3 0.17

Group MCP 1 0.13 21.4 0.15
truth 12

Second Group lasso 1 0.71 61.8 0.46
misspecification Group SCAD 1 0.30 32.8 0.18

Group MCP 1 0.17 24.2 0.16

Table 3.8: Results for overlapping group settings over 100 replications.

3.5 Real-world case studies

An important motivation for developing our methods is to perform gene selection for biomarker

discovery from gene expression data using the prior knowledge about group structures. We apply

our methods to analyze both ovarian cancer and breast cancer data as detailed below. The grouping

of genes into predefined gene sets is based on the curated database, MSigDB [39].

3.5.1 Data

The ovarian cancer data are downloaded from The Cancer Genome Atlas (TCGA, http:

//cancergenome.nih.gov). It includes gene expression data for 12,043 genes in 593 sam-

ples. We first map gene probes to gene symbols and remove the duplicated genes. We use the

15 KEGG subsets of canonical pathways suggested in [40]. The subsets include apoptosis, cell

adhesion molecules, cell cycle, base excision repair, nucleotide excision repair, mismatch repair,

non-homologous end joining, Hedgehog signaling pathway, mTOR signaling pathway, Jak-STAT

signaling pathway, Notch signaling pathway, Phosphatidylinositol signaling system, MAPK sig-

naling pathway, TGF-beta signaling pathway, and Wnt signaling pathway. These gene sets include

1,347 genes in total. After removing the samples without survival information, 580 samples re-

main.
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We use the breast cancer dataset compiled by [41], which includes gene expression data for

21,463 genes in 295 breast cancer samples. Out of 295 samples there are 216 censoring samples.

We first map gene probes to gene symbols and remove the duplicated genes, with the final expres-

sion data consisting of 9,950 genes. We use the gene sets from [42] containing 427 gene sets. We

restrict the analysis to the 2,663 genes that are in at least one gene set.

3.5.2 Methods

We apply our methods (group lasso, group SCAD, and group MCP) with 5-fold cross valida-

tion.

In addition, we run univariate test to select genes and pathways for evaluation. For gene-

level analysis, where each gene is tested one at a time, we use the RegParallel function of the

RegParallel package [43] with the embedded coxph function of the survival package [44] to

compute the adjusted p-values for multiple comparisons with multiple FDR and FWER methods

(7 methods in total [45, 46, 47, 48, 49]). For pathway-level analysis, where each pathway is tested

one at a time, we first convert the gene-level expression data matrix into pathway-level variables

using the GSVA package [50], then apply the coxph function and compute the adjusted p-values.

The significance threshold 0.05 is used to select the genes or pathways.

3.5.3 Results and discussion

Analysis of ovarian cancer data: In univariate test, there is no gene or pathway selected using

the significance level 0.05, which shows that it is often subjective relying on (adjusted) p-values

for biomarker identification depending on univariate tests. This again motivates why we would

like to develop our penalized survival model with different group regularization terms to consider

candidate covariates together. For comparison purpose, we consider 54 genes selected based on the

raw p-values at the significance 0.05 and top four pathways with the smallest p-values. Its results

and the results using our methods (group lasso, group SCAD, and group MCP) are summarized in

Table 3.9.

First, comparing different models using grpCox, the results are consistent with the simulation
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results when group lasso selects a relatively larger model than group SCAD and group MCP do.

Second, we compare the results of univariate tests and our grpCox package using the group

lasso penalty since the results selected by group lasso include all the selections using group SCAD

and MCP. At gene-level, among 15 overlapping selected genes, there are 6 genes have been re-

ported in the literature as ovarian cancer biomarkers. Among non-overlapping genes identified by

our grpCox, there are 38 genes showing biologically meaning. In contrast, among 54 genes by

univariate tests, there are only additional 6 genes showing biological relevance.

At pathway-level, all selected pathways using our methods are biologically meaningful. The

identified pathways appear to be biologically meaningful in ovarian cancer. Non homologous end

joining (NHEJ) pathway is known to repair double strand breaks. Defective NHEJ has been found

in up to 50% of ovarian cancers [51, 52]. Overexpression or pathway activation by gene mutations

among genes of the Hedgehog signaling in ovarian tumorigenesis play the crucial role in the devel-

opment and progression of ovarian cancer [53, 54]. Wnt signaling pathway is well-known to play

a role in tumorigenesis. [55] demonstrated the difference in Wnt signaling pathway between nor-

mal ovarian and cancer cell lines. They also pointed out that those differences implicate that Wnt

signaling leads to ovarian cancer development despite the fact that gene mutations are uncommon.

TGF-β signaling pathway behaves as both a tumor suppressor in ovarian physiology as well as

acting as a tumor promoter that controls proliferation in ovarian cancer [56, 57]. Two other path-

ways selected by univariate test are also biologically meaningful. It is clear again that considering

genes together can help understand underlying cellular processes. However, the results in Table

3.9 show that when univariate test selects pathway, it selects all genes in this pathway, which is

less flexible compared to the group penalized survival models. In fact, grpCox naturally takes care

of the gene-pathway relationships in the model formulations and results in simultaneous selection

of relevant genes and pathways. In other words, grpCox jointly considers potential effects, which

may lead to better biomarker identification results.

Analysis of breast cancer data: Similarly, in univariate test results, very few genes, either

one or five genes depending on the adopted multiple testing adjustment method, are selected. Five
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genes are selected with the significance level 0.05 based on the FDR and Benjamini-Hochberg

correction. There are 293 pathways out of 427 pathways are selected. Its results and the results

using our methods (group lasso, group SCAD, and group MCP) are summarized in Table 3.10.

More details about genes and pathways selected by univariate tests and our methods are provided

in Tables 6, 7, 8, 9 in the Supporting Information.

Similarly, the results of different models using grpCox are consistent with the simulation re-

sults when group lasso selects a relatively larger model than group SCAD and group MCP do.

Next, we compare the results of univariate tests and grpCox package. At gene-level, among

three overlapping selected genes, TBCB gene has been reported as breast cancer biomarker. Among

non-overlapping genes using grpCox, there are 33 genes showing biological relevance. Among

non-overlapping genes by univariate test, the other selected genes have not been reported to be

relevant to breast cancer specifically.

At pathway-level, there are three overlapping pathways in which GCM_ATM and GCM_PPP1CC

pathways all being biologically relevant. For example, the gene ATM in the GCM_ATM path-

way associated with increased breast cancer risk [58, 59]. In addition, the gene CDH11 in the

GNF2_CDH11 pathway has been found to be overexpressed in breast cancer [60, 61, 62]. The

collagen genes COL1A2, COL3A1, COL6A1 are correlated significantly during breast cancer de-

velopment and progression [63, 64, 65, 66, 67, 68].

All non-overlapping pathways using grpCox are biologically meaningful. Among 290 non-

overlapping pathways using univariate test, consider top 6 pathways with smallest adjusted p-

values, there are five among them showing biological relevance. However, univariate test at

pathway-level again shows less flexible when selecting relevant genes than grpCox.

Validation of results: The results that are selected by our methods are further analyzed.

For the ovarian cancer data, we use the independent dataset described in [69] as a test set.

This dataset contains 285 samples and 53,433 genes. After removing the samples without survival

information, there are 276 samples in total. We first compute the estimated coefficients β̂, and

the risk scores Xβ̂. Their median value is used as the threshold for the high and low risk groups.
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The samples are assigned into the high and low risk groups by comparing with the threshold. The

survival curves of these two groups are shown in Figure 3.7. These two curves of all methods are

well separated with a p−value of the log-rank test is smaller than 0.0001.

For the breast cancer data, we use the independent dataset described in [70] as a test set. This

dataset contains 251 samples and 24,712 genes. After removing the samples without survival in-

formation and selecting genes appearing in the selected genes in Table 3.10, there are 236 samples

with 181 censoring samples. We first compute the estimated coefficients β̂, and the risk scores

Xβ̂. Their median value is used as the threshold for the high and low risk groups. The samples are

assigned into the high and low risk groups by comparing with the threshold. The survival curves

of these two groups are shown in Figure 3.7. It shows that the p−values of the log-rank tests for

three models are much smaller than 0.01: the p−value of the group lasso is the smallest, followed

by the group SCAD and the group MCP. In other words, the selected genes sets of group SCAD

and group MCP are much smaller than the selected genes set of group lasso, and still classify the

patients in independent breast cancer dataset into high risk and low risk groups well.
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Figure 3.7: Survival curves for the high and low risk groups of the independent testing samples of
ovarian cancer (first row) and breast cancer (second row).
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4. L1-REGULARIZED MULTI-STATE MODELS 1

Multi-state model (MSM) is a useful tool to analyze longitudinal data for modeling disease

progression at multiple time points. While the regularization approaches to variable selection have

been widely used, extending them to MSM remains largely unexplored. In this chapter, we have

developed the L1-regularized multi-state model (L1MSTATE) framework that enables parame-

ter estimation and variable selection simultaneously. The regularized optimization problem was

solved by deriving a one-step coordinate descent algorithm with great computational efficiency.

The L1MSTATE approach was evaluated using extensive simulation studies, and it showed that

L1MSTATE outperformed existing regularized multi-state models in terms of the accurate identi-

fication of risk factors. It also outperformed the un-regularized multi-state models (MSTATE) in

terms of identifying the important risk factors in situations with small sample sizes. The power of

L1MSTATE in predicting the transition probabilities comparing with MSTATE was demonstrated

using the Europe Blood and Marrow Transplantation (EBMT) dataset. The L1MSTATE was im-

plemented in the open-access R package L1mstate.

4.1 Introduction

Multi-state model (MSM) has been one of effective methods for disease modeling, and it has

been applied to studying liver cancer [71], breast cancer [72][73][74], abdominal aortic aneurysms

[75], heart transplantation [76][77], HIV infection and AIDS [78][79], Alzheimer disease [80],

diabetic complication [81][82], cervical cancer [83], and liver cirrhosis [84], just to name a few. It

can model patient's disease development trajectory across a series of transitions between various

stages or states, under influence of some risk factors. First, it allows researchers to make an assess-

ment about how the risk factors exert different effects on different stages of the process and how

the risk factors influence on different transitions of the process. Second, it enables researchers to

1Reprinted with permission from X. Dang, S. Huang, X. Qian, “Risk Factor Identification in Heterogeneous
Disease Progression with L1-Regularized Multi-State Models", Journal of Healthcare Informatics Research, vol. 5,
no. 1, pp. 20–53, 2021. Copyright 2021 by Springer Nature.
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obtain more accurate predictions of transition probabilities.

In this chapter, we adopted the MSM framework by specifying the transition-specific hazard

models. Our main objective is to identify the risk factors associated with the transition hazard

rates of disease progression. Although non-parametric transition hazard models do not impose any

constraint and may be more flexible, it is used more often to estimate the cumulative transition

hazard rates than the transition hazard rates [85]. Semi-parametric transition hazard models that

do not require to specify the transition-specific baseline hazard functions are more suitable for our

purpose. Specifically, the Cox’s proportional hazards model was used for the transition-specific

hazard rates to incorporate risk factors into multi-state models. The multi-state model parameters

were estimated by maximizing the likelihood function that was formulated using the counting pro-

cess [86]. The transition-specific baseline hazards were assumed to be the same for all individuals

but vary over time, allowing us to construct the partial likelihood function that reduces computa-

tion burden but still makes good estimations of parameters [87]. Regarding the censored data, we

focused on two types of censoring data: right-censored and left-truncation data.

Currently, the multistate models lack an efficient and practical variable selection method to

identify the risk factors associated with the transition hazard rates. Let us consider a MSM with

the number of the risk factors is P and the number of transitions between the stages is Q. Then,

there are 2PQ possible models to consider if using stepwise forward selection [81] method. Hence,

such kinds of variable selection methods are suitable when the number of risk factors and the num-

ber of transitions are relatively small. However, in modern applications, both P and Q increase

dramatically with our increasing data collection capacity. They result in complicated optimization

problems which are challenging to compute, and they can lead unstable estimates of parameters. In

addition, in many studies, especially in medical research, there is a limited number of observations

given the number of parameters in complex multi-state models. In this chapter, the regularization

approaches have been used to address these challenges. Intuitively, these approaches incorporate

the prior knowledge about sparse structures of multi-state models using the sparse-inducing penal-

ties, which results in better parameter estimations and allows variable selection simultaneously.
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Even though the regularization methods are increasingly popular in statistics and machine

learning, very little has extended to MSMs. The current literature on this subject shows there

are two works that have been published in this direction. The first one by Huang et al. 2018 [88]

presented a regularized continuous-time Markov model with the elastic net penalty. The transition

hazard rates were specified as constant over time. In addition, their method relied on a method

developed by [89]: it estimated the transition rates from the transition probabilities of the discrete-

time Markov chain embedded in the Markov process (embedded Markov chain). It does not derive

the transition rates from event (state) counts and transitions since the transition times are not ob-

served. In other words, it does not follow the counting process perspective. Therefore, their work

is different from ours in scope and methodology.

The second one from Reulen et al. 2016 [90] did variable selection by imposing the fused-lasso

penalties including L1-penalties of transition-specific risk factor coefficients and their differences

between transitions. In this chapter, we propose the L1-penalties of transition-specific risk factor

coefficients that are similar to the fused-lasso approach in [90], in which cross-transition effects

are explicitly modeled by introducing the fused penalties. The difference of our implementation

from [90] is, instead of adopting the penalized iteratively re-weighted least squares (PIRLS) algo-

rithm presented in Oelker et al. 2017 [91] for model inference, we have derived a cyclical one-step

coordinate descent algorithm to solve the optimization problem with exact L1-penalties. In addi-

tion to potential problems of not having exact zero model coefficients due to the approximation of

L1-penalties, PIRLS is a second-order optimization algorithm that has high computation cost and

potential convergence problems [91]. Our optimization algorithm in this chapter solves for exactly

L1-penalties resulting in fewer nonzero coefficients for variable selection, with high efficiency in

computation and significant reduction in memory usage.

Another common problem in many studies is that multi-state models include some rare tran-

sitions that have relatively small number of observations. In such cases, the traditional (un-

regularized) multi-state model approach tends to produce the inaccurate predictions of the prob-

abilities of rare transitions. In this chapter, we demonstrated that the L1-regularized multi-state
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models can be used to alleviate this problem, and thus produce better predictions of the transition

probabilities.

The rest of this chapter is organized as follows. In Section 2, we reviewed critical details of

the multi-state models, including its formulation and the partial likelihood function of the multi-

state models. In Section 3, we introduced our formulation of the L1-regularized partial likelihood

function of the multi-state models and the algorithms to solve the corresponding optimization

problems. We presented the main formulae to predict the transition probabilities. In Section 4, we

compared the performance of our method via simulation studies. We demonstrated the prediction

power of our method using a real data. Discussion was presented in Section 6. Lastly, we ended

with conclusions and future works in Section 7.

4.2 Review of Multi-State Models (MSMs)

4.3 Formulations of the multi-state models

Multi-state models compose of multiple states and transitions between the states under influ-

ence of risk factors. Figure 4.1 depicts some examples of the multi-state models in characterizing

a variety of situations with different number of states and transition structures between the states.

For example, in Figure 4.1.c, there are three states. The arrows illustrate the clinically eligible

transitions between the states. The state to which the individual is going to move, and the time

of this change, is impacted by the transition intensities (so-called hazard rates) that represent the

instantaneous risk of moving from one state to another. These hazard rates may also depend on

individual-specific risk factors. In this chapter, we assume that the risk factors are constant over

time. The states and structure of the transitions are usually pre-defined based on domain knowl-

edge of the disease. The main statistical task is to estimate the transition intensities between states

and their relationships with the risk factors.

We formulate these hazard rates and the transition probabilities using the basic concepts in

Andersen et al. 2002 [92]. The multi-state model is a multi-state process S(t) - a stochastic

process S(t), t ∈ T with a finite state space χ = {1, 2, . . . , s} and with right-continuous sample
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(a) Two-state model (b) Three-state model

(c) Three-state model (d) Four-state model

Figure 4.1: Some multi-state models. Note: Arrows show the clinically eligible transitions for each
multi-state model.

path S(t+) = S(t) where t+ is the limit from the right to t, i.e., the time point immediately after

t. The transition probabilities may be defined by

Phj(t, t+ ∆t) = Pr(S(t+ ∆t) = j|S(t) = h, St−),

where h, j ∈ χ, t ∈ T,∆t ≥ 0, and St− is the history generated by the multi-state process S(t).

The Markov assumption is commonly used to define the transition intensities

αhj(t) = lim
∆t→0

Phj(t, t+ ∆t)

∆t
,

We specify the transition-specific hazard rates αhj(t) using Cox proportional hazards model [3]

with the transition-specific baseline hazard rates α(0)
hj (t) and time-fixed risk factors X:

αhj(t) = α
(0)
hj (t)exp(βThjX). (4.1)
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where X = (x1, x2, · · · , xP )T is an P−dimensional vector of time-fixed risk factors and βThj is an

P−dimensional vector of time-fixed coefficients.

4.3.1 Likelihood function of the multi-state models

Then, we can derive the likelihood formulation of the multi-state model. Consider M indi-

viduals, Si(t) is the observed multi-state model for the ith individual over interval [0, τi], where

τi is a fixed time of termination of observation for individual i. Denote N i
hj(t) be the number of

allowed transitions h → j of the ith individual during [0, t], and αihj(t) be transition intensities or

transition-specific hazard rates of the ith individual. The transition times T ikhj can be described as

0 < T i1hj < · · · < T
iN i

hj(τi)

hj ≤ τi, where k ∈ {1, . . . , N i
hj(τi)}. The full likelihood function could

be derived as

L =
M∏
i=1

∏
j 6=h

N i
hj(τi)∏
k=1

[
αihj(T

ik
hj)exp

(
−

T ik
hj∫

0

αihj(t)dt

)]
,

Assume that individual-specific risk factors are constant over time, the transition-specific hazard

rates αihj(t) for each individual i can be written as Eq. (4.1). The full likelihood function becomes

L(β) =
M∏
i=1

∏
j 6=h

N i
hj(τi)∏
k=1

[
α
i(0)
hj (t)exp(βThjX

i)exp

(
−

T ik
hj∫

0

α
i(0)
hj (t)exp(βThjX

i)dt

)]
. (4.2)

where X i = (xi1, x
i
2, · · · , xiP )T is an P−dimensional vector of time-constant risk factors for the

ith individual.

4.3.2 Partial likelihood function for multi-state model

Instead of using the above full likelihood function, we used the partial likelihood function.

More details can be found in Andersen et al. 1993 [86]. It only keeps the terms that contain all

the information about β and gets rid of the terms that contain the information about the baseline

hazard. This achieves computational efficiency and still makes good inference for β.

Let Y ik
hj (t) = 1{t≤T ik

hj}
, i.e., in this definition Y ik

hj (T ikhj) indicates that the ith individual at risk in

transition from state h to state j at time T ikhj . Assume that the transition-specific baseline hazards
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are the same for all individuals but can vary freely with time, i.e., αi(0)
hj (t) = α

(0)
hj . The partial

likelihood function of the multi-state model that will be used in this chapter

Lp(β) =
∏
j 6=h

M∏
i=1

N i
hj(τi)∏
k=1

exp(βThjX
i)∑M

i=1

∑N i
hj(τi)

k=1 exp(βThjX
i)Y ik

hj (t)
,

Its negative log-partial likelihood function is derived as

l(β) = −log(Lp(β)) = −
∑
j 6=h

M∑
i=1

N i
hj(τi)∑
k=1

[
(βThjX

i)− log

(
M∑
i=1

N i
hj(τi)∑
k=1

exp(βThjX
i)Y ik

hj (t)

)]
.

(4.3)

4.3.3 Data structure for parameter estimation by partial likelihood maximization

We follow the data structure described in [93]. One example as shown in Table 4.1 was col-

lected in [94]. In this format, each individual has many rows. Each row shows one transition of

each individual that is composed by statefrom and stateto. The corresponding times for statefrom

and stateto are timestart and timestop. The difference between timestart and timestop measures the

transition times that represent the duration for which individual is at risk. The censoring infor-

mation is captured by a transition-specific censoring indicator δstatus. For example, patient 1 con-

tributes two lines of data for the period: start at t = 0 and stop at t = 151. She/he started at

state 2 and was at risk to transfer to state 1 and state 3. The recorded status of transition 2 → 1

was 0, which indicates that the event (transition) time was censored, while the recorded status of

transition 2→ 3 was 1, which indicates that the event time was observed.

Following this data structure, suppose that there are in total Q observable transition types.

Assume that the dataset has N rows, and denote Nq be the number of rows for transition q, it is

easy to see that N =
∑

qNq. With a slight abuse of notation, Xq is the Nq × P risk factors matrix

corresponding to q−transition; X i
q is the P−dimensional column-vector where q = 1, 2, . . . , Q

and i = 1, 2, . . . , Nq. The formulation of the negative log-partial likelihood function in Eq. (4.3)
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Table 4.1: Example of long-format data

Patient id statefrom stateto transition timestart timestop δstatus treatment
1 2 1 3 0 151 0 Placebo

2 1 2 3 4 0 151 1 Placebo
3 2 2 1 3 0 251 1 Placebo
4 2 2 3 4 0 251 0 Placebo
5 2 1 2 1 251 434 1 Placebo
6 2 1 3 2 251 434 0 Placebo
7 2 2 1 3 434 729 1 Placebo
8 2 2 3 4 434 729 0 Placebo
9 2 1 2 1 729 1735 1 Placebo

10 2 1 3 2 729 1735 0 Placebo
11 2 2 1 3 1735 2088 1 Placebo
12 2 2 3 4 1735 2088 0 Placebo
13 2 1 2 1 2088 2467 0 Placebo
14 2 1 3 2 2088 2467 1 Placebo

could be rewritten as

l(β) =
∑
q

lq(βq), (4.4)

where

lq(βq) = −
Dq∑
i=1

[
(βTq X

i
q)−log

( Nq∑
n=1

exp(βTq X
i
q)Y

n
q (ti)

)]
= −

Dq∑
i=1

[
(βTq X

i
q)−log

(∑
r∈Ri

q

exp(βTq X
r
q )
)]
.

(4.5)

where Dq is the set of indices of the exact transition times for the transition type q, Y n
q (ti) =

1{tnq≥ti} indicates whether the nth individual is at risk to transition q just before time ti, and Ri
q =∑

n Y
n
q (ti) =

∑
n 1{tnq≥ti} is a set of indices r that comprised of all individuals observed to be at

risk to transition q with times ≥ ti.

Remark: As shown in above, we use only information about the observed states at a set of

times when we assume that the distribution of transition times provides no information about the

distribution of censorship times and vice versa. It is so-called the independent censoring [86].

We also assume that the observation time is the exact transition time and there is no transitions

between the observation times for each individual. With the formulation of the negative log-partial-

62



likelihood function in Eq. (5.2), two kinds of incomplete observations are particularly tractable

[92]: right-censoring and left-truncation. Note that if the individual is observed from the beginning

(i.e., the first state, such as healthy) to the end (i.e., the final state, such as death), then the whole

trajectory of the process has been observed and it is called complete observation. Otherwise, right-

censoring means that the individual is observed from the beginning to a certain time that has not

reached the final state. Left-truncation means that the process has not been observed from the

beginning, rather, the observation happens in the middle of the trajectory of the transitions.

4.4 L1-Regularized Multi-State Model (L1MSTATE)

4.4.1 Partial likelihood formulation for L1MSTATE

By minimizing the negative log-partial likelihood formulated in Eq. (5.2), we can estimate the

parameters of a multi-state model, i.e., the coefficients β. As existing methods could not scale up

to high-dimensional applications when there are a large number of risk factors and a large number

of transitions, in this chapter, we propose a L1-regularized partial likelihood formulation for MSM

following the framework as the least absolute shrinkage and selection operator (LASSO) [13]. This

leads to the following formulation:

min
β

l(β)

subject to
∑
q

∑
p

|βpq | ≤ C,
(4.6)

where q = 1, 2, . . . , Q; p = 1, 2, . . . , P ; C > 0. Recall that, Q is the number of observable transi-

tions, and P is the number of risk factors. This minimization problem is equivalent to minimizing

the problem given by the Lagrangian formulation:

∑
q

1

Nq

lq(βq) + λ
(∑

q

∑
p

|βpq |
)
,

with respect to β. Different weights are assigned to transitions using factors 1
Nq

, where q =

1, 2, . . . , Q. It is similar to assign different shrinkage parameters per transition. Intuitively, the
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rare transitions are shrunk more than for common transitions. Our formulation in Eq. (5.4) could

be reformulated as

β̂ = argmin
β

[∑
q

1

Nq

lq(βq) + λ
(∑

q

∑
p

|βpq |
)]
. (4.7)

4.4.2 Computational algorithm for solving Eq. (5.5)

The transition-specific negative log-partial-likelihood function lq(βq) is smooth with respect to

βq so that its first two partial derivatives are continuous. Thus, lq(βq) can be locally approximated

by

lq(βq) ≈ lq(β̃q) + (βq − β̃q)T l
′

q(β̃q) +
1

2
(βq − β̃q)T l

′′

q (β̃q)(βq − β̃q), (4.8)

where

l
′

q(β̃q) =
∂lq
∂βq

(β̃q) and l
′′

q (β̃q) =
∂2lq

∂βq∂βTq
(β̃q),

The transition-specific linear predictor, ηq = Xqβq, includes Dq elements ηiq = βTq X
i
q, where

i = 1, . . . , Dq. Plugging them in Eq. (5.3) and Eq. (4.8), we have the transition-specific negative

log-partial likelihood function

lq(ηq) = −
Dq∑
i=1

[
ηiq − log

(∑
r∈Ri

q

exp(ηrq)
)]
,

Its approximated form is

lq(ηq) ≈
1

2

(
ηq − z(η̃q)

)T
l
′′

q (η̃q)
(
ηq − z(η̃q)

)
,

with

z(η̃q) = η̃q −
(
l
′′

q (η̃q)
)−1

l
′

q(η̃q); l
′

q(η̃q) =
∂lq
∂ηq

(η̃q); l
′′

q (η̃q) =
∂2lq

∂ηq∂ηTq
(η̃q),

Hastie and Tibshirani (1990, Chapter 8) [95] suggested to replace l′′q (η̃q) by a diagonal matrix D

with the diagonal elements of l′′q (η̃q), because the optimal βq will not change when the off-diagonal
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elements of l′′q (η̃q) are smaller than the diagonal elements. This will greatly alleviate our analytic

efforts since we only need to compute the first order derivative l′q(η̃q) and the diagonal entry of the

second order derivative l′′q (η̃q). l′q(η̃q) is a vector with elements
(
l
′
q(η̃q)d

)
that could be derived as

l
′

q(η̃q)d =
∂lq(ηq)

∂ηdq
= −δd+

Dq∑
i=1

∑
d∈Ri

q
exp(ηdq )∑

r∈Ri
q

exp(ηrq)
= −δd+

Dq∑
i=1

∑
d∈Ri

q

exp(ηdq )∑
r∈Ri

q
exp(ηrq)

= −δd+
∑
i∈Cd

q

exp(ηdq )∑
r∈Ri

q
exp(ηrq)

,

(4.9)

where d = 1, 2, . . . , Nq, and Cd
q is the q-transition set of i with td ≥ ti. The diagonal entry of

l
′′
q (ηq) could be derived as

l
′′

q (η̃q)d,d =
∂

∂ηdq

(∂lq(ηq)
∂ηdq

)
=
∑
i∈Cd

q

[
exp(ηdq )∑
r∈Ri

q
exp(ηrq)

−
(exp(ηdq ))

2(∑
r∈Ri

q
exp(ηrq)

)2

]
, (4.10)

Let

M(βq) =
1

2Nq

(
ηq − z(η̃q)

)T
l
′′

q (η̃q)
(
ηq − z(η̃q)

)
+ λ
(∑

p

|βpq |
)
,

The training algorithm for L1MSTATE is shown in the pseudo code below:

Algorithm 3 Pseudocode for L1-penalized multi-state model.

Result: β̂
Data: Long-format data described in Section 4.3.3
while (q > 0 and q ≤ Q) do

Compute η̃q = Xqβ̃q; l
′
q(η̃q) l

′′
q (η̃q) z(η̃q) = η̃q − l

′′
q (η̃q)

−1
l
′
q(η̃q)

Find β̂q = argmin
βq

M(βq) Update β̃q = β̂q

end

The remaining task is to solve the optimization problem in Eq. (4.11):

β̂q = argmin
βq

M(βq), (4.11)
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Let wq be the Nq−dimensional vector of diagonal entries of matrix D. We rewrite M(βq) as

M(βq) =
1

2Nq

Nq∑
i=1

[
wiq

(
z(η̃q)i −

∑
p 6=g

X i
q,pβ

p
q −X i

q,gβ
g
q

)2]
+ λ
(∑

p

|βpq |
)
,

Hence, Eq. (4.11) becomes

β̂q = argmin
βq

1

2Nq

Nq∑
i=1

[
wiq

(
z(η̃q)i −

∑
p 6=g

X i
q,pβ

p
q −X i

q,gβ
g
q

)2]
+ λ
(∑

p

|βpq |
)
, (4.12)

The coordinate descent algorithm is used to solve Eq. (4.12). In particular, we derive the one-step

coordinate descent algorithm that updates one element at each iteration with all the other elements

fixed to the latest value. Specifically, for instance, while the current step focuses on βgq with given

estimates for βpq for all p 6= g, we compute the first order derivative of M(βq) as follows

∂M(βq)

∂βgq
=

1

Nq

Nq∑
i=1

[
wiq

(
z(η̃q)i −X i

qβq

)
(−X i

q,g)
]

+ λsgn(βgq ), (4.13)

where with g = 1, 2, . . . , P

sgn(βgq ) =


1, if βgq > 0

−1, if βgq < 0

[−1, 1] , otherwise.

Solving Eq. (4.13) yields the soft-thresholding rule that is

β̂gq =

f

(
1
Nq

∑Nq

i=1

[
wiqX

i
q,g

(
z(η̃q)i −

∑
p 6=gX

i
q,pβ

p
q

)]
, λ

)
1
Nq

∑Nq

i=1wq(η̃q)i(X
i
q,g)

2
, (4.14)
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where

f(x, λ) = sgn(x)(|x| − λ) =


x− λ, if x > 0 and |x| > λ

x+ λ, if x < 0 and |x| > λ

0, if |x| ≤ λ.

Note that the first term in the numerator can be derived by using Eqs. (4.9) and (4.10):

wiqX
i
q,g

(
z(η̃q)i −

∑
p 6=g

X i
q,pβ

p
q

)
= β̃gqwq(Xq,g)

2 − l′q(η̃q)Xq,g,

So, we have a simple form of estimated coefficient as follows

β̂gq =

f

(
1
Nq

[
β̃gqwq(Xq,g)

2 − l′q(η̃q)Xq,g

]
, λ

)
1
Nq
wq(Xq,g)2

. (4.15)

It is worthy of mentioning that the solution for LASSO depends on the scales of risk factors [96]. A

frequently used method to solve this problem is to standardize the risk factors first. The estimated

coefficients of the risk factors can always be transformed back to the original scales for the sake of

interpretation. The one-step coordinate descent is summarized in Algorithm 4.

Algorithm 4 One step coordinate descent algorithm for L1-penalized multi-state model.

Result: β̂
Data: Input: Long-format data described in Section 4.3.3
while (q > 0 and q ≤ Q) do

Compute η̃q = Xqβ̃q; l
′
q(η̃q); l′′q (η̃q); z(η̃q) = η̃q − l

′′
q (η̃q)

−1
l
′
q(η̃q)

repeat
For g = 1, 2, . . . , P : Update β̃gq = β̂gq using (4.15)

until Convergence of β̂q;
Update β̃q = β̂q

end
Update β̃ = β̂
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4.4.3 Active set updates

To improve the computational speed of the L1mstate package, we have constructed an active

set A = {β̂gq 6= 0} that takes advantage of the sparsity of β. As shown in the Algorithm 4, we

only need to update the non-zero coefficients β̂gq in A after a complete cycle has run through all

the risk factors , i.e., when β̃ = 0, β̂gq will stay zero if
∣∣∣− 1

Nq
l
′
q(~0)Xq,g

∣∣∣ < λ; otherwise, β̂gq will be

updated and stored in the active set if
∣∣∣ − 1

Nq
l
′
q(~0)Xq,g

∣∣∣ > λ. Therefore, the number of updates is

reduced significantly and the convergence of the algorithm is increased. The algorithm will stop if

another complete cycle does not change this set. Note that the active set A can only become larger

after each update, so the algorithm will always stop after a finite number of updates (See Meier et

al. 2007 [97] for more details of the convergence property.)

4.4.4 Pathwise solution

The above procedure is just for one fixed value of λ. However, in general, it is of interest to

be able to compute the optimal solution for a range of values of λ. Thus, we aim to compute the

regularization path (denoted as β̂(λ)) where λ ∈ [0,∞]. It can be shown that β̂(λ) turns out to be

a piecewise linear, continuous function of λ [31]. In other words, we only need to compute the

solutions on the change points in this path, denoted λmax ≥ λ1 ≥ · · · ≥ λmin ≥ 0. We can start

with λmax that is any value sufficiently large for which the entire coefficients β̂ = 0. From Eq.

(4.15), notice that when β̃ = 0, β̂gq will stay zero if
∣∣∣− 1

Nq
l
′
q(~0)Xq,g

∣∣∣ < λ. Hence, we can set

λmax = max
∣∣− 1

Nq

l
′

q(~0)Xq,g

∣∣, for q = 1, 2, . . . , Q; g = 1, 2, . . . , P.

Following the suggestions made in Simon et al. 2011 [30], we can ignore solutions for that are

close to 0 and set λmin = ελmax, then, compute the solutions over m + 1 values defined as λi =

λmax
(
λmin

λmax

) i
m , for i = 0, 1, . . . ,m and ε =


0.01, if N < P

0.0001, if N ≥ P

. In doing this, the algorithm

usually converges well because we could use the preceding solution (i.e., for λi) as the initial

values to obtain the solution for λi−1.
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4.4.5 Selection of the tuning hyperparameters

With a path of solutions, we need to select an optimal one. The natural choice is cross-

validation. However, the partial likelihood of multi-state model is not as well defined as the Gaus-

sian log likelihood on the left out sample using the traditional cross-validation, which leads to poor

results. To tackle it, we used the cross-validation method as described in Verweij et al. 1993 [33],

proposed for Cox regression model, in which data are split into k parts, use (k − 1) parts to train

the model, and then, validate the learned model on the whole data. The cross-validated log-partial

likelihood for a given part i and λ is

ĈVi(λ) = l
(
β̂−i
)
− li−1

(
β̂−i
)
,

which can be used as the goodness-of-fit estimate of the solution. Here, β̂−i and l−i are the op-

timal coefficients and its corresponding log-partial likelihood for data excluding part i. The total

goodness-of-fit, ĈV(λ), is the sum of all ĈVi(λ). We find the optimal λ

λ̂cvl = argmax
λ

ĈV(λ)

However, this method alone sometimes produces high true positive rates (TPR) and high false

positive rates (FPR). To reduce FPR without large reduction of TPR, we use the penalized method

proposed in Ternes et al. 2016 [34]. Let pλ be the number of non-zero coefficients in the model

for a given λ, we can find the optimal λ that maximizes

ĈV(λ)− ĈV(λ̂cvl)− ĈV(λmax)

pλ̂cvl
∗ pλ, for all λ ∈

[
λ̂cvl, λmax

]
.

Intuitively, it reduces the sparsity of the model pλ without decreasing much the goodness-of-fit of

the model ĈV(.).

69



4.4.6 Estimation of the cumulative hazard rates and the transition probabilities

In the previous section, we have modeled and estimated the effects of the risk factors upon the

transition intensities. To further assess the effects of the risk factors on disease progression; in par-

ticular, the effects of the risk factors on the cumulative hazard rates and the transition probabilities,

we will present how to estimate the transition-specific hazard rates and the transition probabilities

in the following.

Given the estimated regression coefficients, the baseline hazards of transition q, denoted by

αq0(t, βq), can be obtained as the Breslow estimators [98]

α̂q0(t, β̂q) =
dNq(t)

S
(0)
q (t, β̂q)

,

where dNq(t) is the number of events of transition q up to and including time t, and

S(0)
q (t, β̂q) =

Nq∑
n=1

exp
(
β̂Tq X

n
q

)
Y n
q (t),

Recall that, Y n
q (t) indicates that the nth individual at risk in transition q at time t. Let the risk score

for each subject of transition q be r̂nq = exp
(
β̂Tq X

n
q

)
, then

α̂q0(t, β̂q) =
dNq(t)∑Nq

n=1 r̂
n
q Y

n
q (t)

,

The corresponding estimators of the cumulative baseline hazard Λ̂q0(t, β̂q) =
∫ t

0
α̂q0(u, β̂q)du, is

computed as

Λ̂q0(t, β̂q) =
∑
u≤t

dNq(u)∑Nq

n=1 r̂
n
q Y

n
q (u)

,

The cumulative hazard rates of transition q, denoted by Λ̂q(t, β̂) which is also known as the Nelson-

Aalen estimators, is

Λ̂q(t, β̂) = Λ̂q0(t, β̂q)exp
(
β̂Tq Xq

)
,
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Given the cumulative transition hazards, using the basic tool − a product integral allows us to

estimate the transition probability matrix P(s, t) =
(
Phj(s, t)

)
as

P(s, t) =
∏
u∈(s,t]

(
I + ∆Λ̂(u)

)
.

where
∏

is a product-integral and (s, t] denotes the time interval. It is the Aalen-Johansen estima-

tor [99].

4.4.7 Computational complexity analysis

We now discuss the complexity of the algorithms when using different frameworks (L1MSTATE,

L1Cox, L1-StratifiedCox) for variable selection. They all solve the optimization problems by the

coordinate descent algorithms to optimize the objective function with respect to one variable at

a time while all the others are fixed. In other words, they process the same procedure: precom-

pute the first-order derivatives and the diagonal entries of the second-order derivatives of a design

matrix; at each iteration update Pa-the number of nonzero elements in the active set. The compu-

tational complexity depends on the number of subjects N , the number of risk factors P and the

number of transitions Q. More specifically, consider L1MSTATE and L1Cox, for each transition,

they need O(N2
q ) operations to compute the derivatives where Nq is the number of subjects for

transition q (recall that N =
∑Q

q=1Nq and each update needs O(P ) operations. Therefore, their

complexity is O(
∑Q

q=1(N2
q + P a

q P )) where P a
q denotes the number of nonzero elements of tran-

sition q. For L1-StratifiedCox, it needs to create transition-specific risk factors from the baseline

risk factors as described in [13]: each risk factor X is split into as many risk factors Xq as there are

transitions in the model, for transition q Xq = X;while for all other transitions Xq = 0. It means

that the number of risk factors now is PQ. In addition, it needs O(N2) operations to compute the

derivatives. Therefore, its complexity is O(N2 + PQ
∑Q

q=1 P
a
q ). Of course, the required runtime

for the entire solution path also depends on the number of iterations, which in turn depends on the

data and λ values. In general, the dominant factor influencing the number of iterations is the num-

ber of nonzero elements at the specific λ value since the nonactive elements that remain fixed at
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zero need no iteration. In the next section, we compare their computational complexity empirically

in Table 9 with the runtime of three L1-regularized models using the same maximum number of

iterations 105 for all models.

4.5 Simulation studies

In this section, we will numerically compare the performance of the L1-regularized multi-state

model (L1MSTATE) with existing regularized multi-state models including the L1-regularized

cause-specific Cox proportional hazards model (L1Cox) that applied the L1-regularized Cox pro-

portional hazards model for each transition, and the L1-regularized stratified Cox proportional

hazards model (L1-StratifiedCox) in term of variable selection using simulated data. The L1-

regularized estimation of the fused-lasso multi-state model approach [90] was not included in our

comparison due to very huge computation cost (see Discussion section for more details.) We also

include the un-regularized multi-state model (MSTATE) to investigate the pros and cons of the

un-regularized methods comparing with the regularized methods.

4.5.1 Setup

Following the data structure outlined in Section 4.3.3, we generate trajectories ofN individuals

that include their transitions among states, the times of the transitions, and the values of risk factors.

First, the values of the risk factors of each individual are generated by randomly sampling from

a P -dimensional multivariate normal distribution with mean vector as zero and the correlation

matrix C as an autoregressive matrix where Cij = ρ|i−j| and 0 ≤ ρ ≤ 1. The reason to use an

autoregressive correlation matrix is that we could flexibly tune the correlations of the variables by

setting the value of ρ, i.e., ρ = 0 means no correlation among the variables, while ρ = 1 means that

the risk factors are perfectly correlated as duplicates of each other. Second, the transitions among

states and their timing are generated as follows. Recall that we have assumed that the transition

intensities between two states follow the proportional hazards Cox model Eq. (4.1). By setting up

values for β we can obtain the transition intensity distribution from Eq. (4.1) to randomly sample

the transition intensity values. After that, the observed times of the transition events between
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two states are generated using the exponential distribution with its rate parameter set to be the

transition intensity between these two states. In here, we consider the illness-death model that

includes three states: healthy, illness, and death. Its transition structure is depicted in Figure 4.2.

Assume that all individuals start at the healthy state in the beginning of the observation period. The

censoring status values are generated as follows. Since the observation time is the exact transition

time, there is no illness censoring time or the censoring indicator of transition to illness state is 1

for all N individuals. The death censoring times are generated from the exponential distribution,

the censoring indicator of transitions to death state is 0 if the death time is larger than the death

censoring time, and 1 otherwise.

Figure 4.2: The illness-death model.

The strength of effect of risk factor is based on the real absolute value of its corresponding

coefficient. Set the number of risk factors P = 9, we consider four scenarios: the first three

scenarios include the effects of risk factors belong the same type (large, medium, or small), and

the last scenario includes all three types of the effects of risk factors.

• First scenario: small effects

β =


0.15 0.15 0.15 0 0 0.15 0.15 0 0

0.15 0.15 0 0 0 0 0.15 0 0

0 0.15 0.15 0 0 0.15 0.15 0 0.15
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• Second scenario: medium effects

β =


−0.35 −0.35 −0.35 0 0 −0.35 −0.35 0 0

−0.35 −0.35 0 0 0 0 −0.35 0 0

0 −0.35 −0.35 0 0 −0.35 −0.35 0 −0.35


• Third scenario: large effects

β =


−0.65 −0.65 −0.65 0 0 −0.65 −0.65 0 0

−0.65 −0.65 0 0 0 0 −0.65 0 0

0 −0.65 −0.65 0 0 −0.65 −0.65 0 −0.65


• Fourth scenario: mixed effects

β =


0.15 −0.35 −0.35 0 0 −0.35 −0.35 0 0

0 0.15 −0.65 0 0 0 −0.65 0 0

0 −0.65 −0.65 0 0 −0.35 −0.65 0 0.15


We evaluate different levels of correlation between the risk factors by setting ρ = 0, 0.2, 0.5. The

censoring percentage is 30%.

4.5.2 Results

To compare the performance of the four models in terms of identification of the significant

risk factors, we calculated three performance metrics, including the true positive rate (TPR), false

positive rate (FPR), and area under the ROC curve (AUC).

To compute TPRs and FPRs for the disease progression from the healthy state to the death state

for our L1MSTATE, we created a path of 100 values of λ, applied 10-fold for two different cross-

validation methods described above in Section 4.4.5 to select the optimal λ for variable selection.

We can view the estimated coefficients from our L1MSTATE model fit, and the cross-validation

log-partial likelihood against the log of λ values, and also how to use two different cross-validation
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(a) Transition 1→ 2 (b) Transition 1→ 3

(c) Transition 2→ 3 (d) The cross-validation curve (red dotted line), and its
standard deviation

Figure 4.3: Plots of the coefficients paths for three transitions of our L1MSTATE model fit and the
cross-validation log-partial likelihood against the log of λ values along our path.

methods to select λ. Figure 4.3 shows the results of the large effects setting in whichN = 250, and

ρ = 0.5. For L1Cox and L1-StratifiedCox, we used ‘glmnet’ package [30] with its default setting

to fit Cox proportional hazards models: 100 values of λ and 10-fold cross-validation, which is

the same as the first cross-validation method used in our model, to select the optimal solution.

More specifically, for L1Cox, we applied for each transition using transition-specific datasets,

then used the results of three transitions to compute the TPRs and FPRs; for L1-StratifiedCox,

we applied using the long-format data. For MSTATE, we used R package ‘mstate’ [100] to fit
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Table 4.2: Model selection results of Example I for the small effects scenario.

N ρ
MSTATE pL1MSTATE L1MSTATE L1Cox L1-StratifiedCox

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

50
0 0.14 0.11 0.05 0.03 0.07 0.05 0.19 0.17 0.09 0.08

0.2 0.14 0.06 0.07 0.04 0.09 0.05 0.21 0.16 0.12 0.07
0.5 0.13 0.09 0.09 0.04 0.12 0.06 0.23 0.18 0.16 0.10

250
0 0.32 0.07 0.30 0.08 0.51 0.27 0.61 0.38 0.54 0.30

0.2 0.28 0.06 0.42 0.12 0.62 0.30 0.67 0.44 0.62 0.33
0.5 0.22 0.06 0.45 0.13 0.70 0.33 0.73 0.45 0.70 0.39

450
0 0.47 0.08 0.52 0.11 0.84 0.45 0.83 0.56 0.83 0.49

0.2 0.47 0.08 0.56 0.10 0.85 0.42 0.85 0.53 0.86 0.47
0.5 0.37 0.06 0.59 0.13 0.86 0.43 0.87 0.50 0.83 0.44

pL1MSTATE, L1-regularized multi-state model using the penalized cross-validation method;
L1MSTATE, L1-regularized multi-state model using the first cross-validation method; MSTATE,
multi-state model; L1Cox, L1-regularized cause-specific Cox model using the first cross-validation
method; L1-StratifiedCox, L1-regularized stratified Cox model using the first cross-validation
method; TPR, true positive rate; FPR, false positive rate.

model and the statistical hypothesis test (p-value) with the 0.05 significance level to evaluate the

significance of candidate risk factors for variable selection. We used different values of sample

size, i.e., N ∈ {50, 250, 450}. The results across 100 replications for these models in different

scenarios are summarized in Tables 4.2, 4.3, 4.4, and 4.5.

The results from Tables 4.2, 4.3, 4.4, and 4.5 show that TPR and FPR values of pL1MSTATE

are always lower than L1MSTATE. It means that the penalized cross-validation method is more

conservative than the first cross-validation method. On the one hand, comparing L1MSTATE and

MSTATE results, except in small effects setting when N = 50 L1MSTATE gives lower both TPRs

and FPRs than MSTATE, MSTATE always gives lower TPRs and FPRs than L1MSTATE. In other

words, applying the statistical hypothesis test with the 0.05 significance level to MSTATE produces

more sparse models than applying the first cross-validation method to L1MSTATE. On the other

hand, comparing pL1MSTATE and MSTATE results shows that when N = 50 pL1MSTATE often

gives lower both TPRs and FPRs than MSTATE, but it becomes to give better results (higher

TPRs and lower FPRs) than MSTATE when the effects increase and the correlation among the
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Table 4.3: Model selection results of Example I for the medium effects scenario.

N ρ
MSTATE pL1MSTATE L1MSTATE L1Cox L1-StratifiedCox

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

50
0 0.29 0.11 0.18 0.06 0.24 0.09 0.39 0.22 0.29 0.15

0.2 0.28 0.11 0.31 0.09 0.41 0.16 0.51 0.29 0.41 0.18
0.5 0.22 0.10 0.35 0.09 0.51 0.21 0.59 0.33 0.54 0.24

250
0 0.84 0.10 0.81 0.15 0.98 0.60 0.98 0.65 0.98 0.64

0.2 0.83 0.08 0.82 0.13 0.98 0.58 0.99 0.63 0.98 0.59
0.5 0.70 0.07 0.77 0.13 0.97 0.52 0.97 0.60 0.97 0.53

450
0 0.96 0.14 0.88 0.13 1.00 0.69 1.00 0.70 1.00 0.69

0.2 0.97 0.12 0.91 0.13 1.00 0.65 1.00 0.68 1.00 0.66
0.5 0.88 0.10 0.87 0.14 1.00 0.59 1.00 0.62 0.99 0.61

Table 4.4: Model selection results of Example I for the large effects scenario.

N ρ
MSTATE pL1MSTATE L1MSTATE L1Cox L1-StratifiedCox

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

50
0 0.52 0.12 0.45 0.13 0.65 0.28 0.70 0.41 0.63 0.30

0.2 0.50 0.12 0.57 0.16 0.76 0.31 0.78 0.41 0.73 0.34
0.5 0.38 0.11 0.57 0.14 0.82 0.36 0.86 0.47 0.82 0.39

250
0 0.99 0.16 0.92 0.14 1.00 0.70 1.00 0.70 1.00 0.70

0.2 0.98 0.13 0.94 0.15 1.00 0.66 1.00 0.68 1.00 0.66
0.5 0.96 0.11 0.93 0.18 1.00 0.59 1.00 0.61 1.00 0.62

450
0 1.00 0.19 0.97 0.15 1.00 0.73 1.00 0.73 1.00 0.73

0.2 1.00 0.19 0.97 0.12 1.00 0.70 1.00 0.70 1.00 0.70
0.5 0.99 0.15 0.96 0.18 1.00 0.65 1.00 0.65 1.00 0.66

pL1MSTATE, L1-regularized multi-state model using the penalized cross-validation method;
L1MSTATE, L1-regularized multi-state model using the first cross-validation method; MSTATE,
multi-state model; L1Cox, L1-regularized cause-specific Cox model using the first cross-validation
method; L1-StratifiedCox, L1-regularized stratified Cox model using the first cross-validation
method; TPR, true positive rate; FPR, false positive rate.
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Table 4.5: Model selection results of Example I for the mixed effects scenario.

N ρ
MSTATE pL1MSTATE L1MSTATE L1Cox L1-StratifiedCox

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

50
0 0.30 0.10 0.24 0.07 0.36 0.15 0.46 0.24 0.34 0.16

0.2 0.30 0.09 0.23 0.06 0.39 0.16 0.50 0.26 0.39 0.18
0.5 0.24 0.10 0.31 0.09 0.44 0.19 0.55 0.28 0.44 0.23

250
0 0.68 0.08 0.56 0.06 0.89 0.51 0.90 0.55 0.88 0.56

0.2 0.67 0.09 0.53 0.05 0.88 0.50 0.88 0.58 0.86 0.51
0.5 0.59 0.07 0.56 0.11 0.86 0.49 0.87 0.53 0.84 0.51

450
0 0.77 0.10 0.62 0.04 0.95 0.61 0.97 0.64 0.95 0.63

0.2 0.75 0.10 0.60 0.04 0.96 0.61 0.96 0.66 0.95 0.63
0.5 0.71 0.08 0.58 0.07 0.92 0.56 0.91 0.58 0.89 0.56

pL1MSTATE, L1-regularized multi-state model using the penalized cross-validation method;
L1MSTATE, L1-regularized multi-state model using the first cross-validation method; MSTATE,
multi-state model; L1Cox, L1-regularized cause-specific Cox model using the first cross-validation
method; L1-StratifiedCox, L1-regularized stratified Cox model using the first cross-validation
method; TPR, true positive rate; FPR, false positive rate.

risk factors ρ increases. When N = 250 and N = 450 in small setting, pL1MSTATE gives better

results than MSTATE; in other settings, pL1MSTATE starts giving lower both TPRs and FPRs than

MSTATE, and MSTATE gives better results in large effects setting. Note that when ρ increases

- risk factors become highly correlated, MSTATE results become worse while L1MSTATE and

pL1MSTATE results often become better. Consider three regularized models L1MSTATE, L1Cox,

and L1-StratifiedCox using the same cross-validation method, from Tables 4.2, 4.3, 4.4 and 4.5,

it can be seen that when N = 50, L1MSTATE is the most conservative model since it gives both

the smallest TPRs and FPRs values; when N increases, L1MSTATE gives the best results with the

highest TPRs and the lowest FPRs.

The TPRs and FPRs shown in these above tables depend on the selected methods including the

cross-validation methods, and the significance level of p−value. We want to evaluate further the

variable selection performance of these models using the area under a curve (AUC) values that are

also variable selection metrics and do not depend on the selected methods. We use the same settings

as above with different values of sample size, i.e., N ∈ {50, 75, . . . , 500}. We first calculate the
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Figure 4.4: AUC values of Example I for different sample sizes in different settings over 100
replications.
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TPRs and FPRs, then compute the AUC values by using the method described in Fawcett et al.

2006 [101]. Intuitively, the TPR and FPR pairs were calculated to construct ROC curves, then

the area under a ROC curve (AUC) was computed. More specifically, in three regularized models

L1MSTATE, L1Cox, and L1-StratifiedCox, it is straightforward to calculate 100 pairs of TPRs

and FPRs corresponding to 100 λ values along the path. In MSTATE, the threshold path was

constructed, and it included only the corresponding p−values of estimated coefficients. Then, for

each threshold, the risk factors that have smaller p−values than the threshold were selected, and

the corresponding TPR and FPR pairs were computed. The results of AUC values of these models

in twelve settings for different datasets over 100 replications are shown in Figure 4.4.

First, we compare the performances of L1MSTATE and MSTATE. From Figure 4.4, in small

effects setting, L1MSTATE gives comparable performance with MSTATE when there is no cor-

relation among risk factors (ρ = 0), and better performance than MSTATE when the correlation

ρ becomes higher. Other settings show the same pattern: when sample size is small, MSTATE

performs worse than L1MSTATE; when sample size increases, MSTATE’s performance gradu-

ally catches up, and even becomes better than L1MSTATE’s performance. Notice that when the

correlation among risk factors ρ increases, MSTATE needs more samples to be able to catch up

L1MSTATE’s performance, and when the effects become stronger, MSTATE needs less samples

to perform comparably with L1MSTATE.

Second, we compare the performance of three regularized models L1MSTATE, L1Cox, and

L1-StratifiedCox. In the first three settings L1MSTATE always gives the best performance. In

the last setting L1MSTATE gives slightly worse performance than L1Cox when ρ = 0, and com-

parable when ρ increases; L1MSTATE also gives better performance than L1-StratifiedCox. Two

models L1Cox and L1-StratifiedCox perform differently: they perform comparably in small effects

setting; L1-StratifiedCox performs better L1Cox in medium and large effects settings; L1Cox per-

forms better L1-StratifiedCox in mixed effects setting. L1MSTATE performs better than L1Cox

can most likely be explained by the benefit of incorporating the prior knowledge about the dis-

ease progression model: in L1MSTATE, we incorporated information about multi-state model
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of disease progression into data process when converting the original data to long-format data;

L1Cox, by contrast, applied L1-regularized Cox proportional hazards model for each transition-

specific dataset separately. L1MSTATE performs better than L1-StratifiedCox even though both

L1MSTATE and L1-StratifiedCox models use long-format data. The reason is that L1MSTATE as-

signed different weights to each transition while L1-StratifiedCox did not. Intuitively, L1MSTATE

put higher penalties on rare transitions than common transitions.

In summary, the L1-regularized multi-state model (L1MSTATE) is the best one among the

regularized models in terms of variable selection. L1MSTATE performs better at variable selection

than the un-regularized multi-state model (MSTATE) when sample sizes are small or the effects are

small, and MSTATE performs better than L1MSTATE when sample sizes are large or the effects

are strong.

4.5.3 Large-scale datasets

In this setting, we only compare the performances of three L1-regularized models without

including the un-regularized multi-state model (MSTATE). We set the number of risk factors P =

300 and the number of nonzero ones to be 100 per each transition. Different sample sizes, i.e.,

N ∈ {3000, 6000, 9000}, are simulated. The results of three L1-regularized models are shown in

Tables 4.6, 4.7, and 4.8. They are consistent with the results of small datasets, which suggests that

L1MSTATE is better than L1Cox and L1-StratifiedCox in terms of accurate variable selection.

4.5.4 Empirical runtime comparison

We further compare the runtime of three L1-regularized multi-state models on all the simulated

datasets. As shown in Table 4.9, our L1MSTATE is the most computationally efficient as we

expected based on our previous computational complexity analysis.

4.6 Europe Blood and Marrow Transplantation (EBMT) data

In this section, we will compare the performance of L1-regularized multi-state model (L1MSTATE)

with un-regularized multi-state model (MSTATE) in terms of the predictions of the transition prob-

abilities, and demonstrate how to use our L1mstate package to further assess the effects of risk fac-
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Table 4.6: Model selection results of large P settings for the small effects scenario.

N ρ
L1MSTATE L1Cox L1-StratifiedCox

TPR FPR AUC TPR FPR AUC TPR FPR AUC

3000
0.5 0.75 0.38 0.76 0.78 0.43 0.74 0.73 0.39 0.72
0.2 0.76 0.42 0.75 0.73 0.51 0.74 0.78 0.45 0.72
0 0.74 0.43 0.73 0.72 0.52 0.73 0.78 0.48 0.71

6000
0.5 0.87 0.51 0.81 0.88 0.55 0.79 0.86 0.50 0.77
0.2 0.94 0.64 0.81 0.96 0.68 0.80 0.94 0.63 0.80
0 0.95 0.69 0.80 0.96 0.73 0.78 0.95 0.69 0.79

9000
0.5 0.92 0.57 0.83 0.92 0.62 0.81 0.92 0.52 0.80
0.2 0.98 0.72 0.84 0.98 0.74 0.82 0.98 0.67 0.83
0 0.99 0.76 0.82 0.99 0.78 0.81 0.99 0.73 0.82

Table 4.7: Model selection results of large P settings for the medium effects scenario.

N ρ
L1MSTATE L1Cox L1-StratifiedCox

TPR FPR AUC TPR FPR AUC TPR FPR AUC

3000
0.5 0.89 0.69 0.78 0.81 0.51 0.77 0.77 0.39 0.73
0.2 0.91 0.64 0.79 0.49 0.60 0.78 0.88 0.53 0.77
0 0.88 0.58 0.78 0.91 0.64 0.78 0.92 0.60 0.76

6000
0.5 0.95 0.77 0.82 0.89 0.66 0.81 0.90 0.50 0.78
0.2 0.98 0.67 0.84 0.97 0.77 0.83 0.98 0.67 0.82
0 0.99 0.74 0.83 0.99 0.81 0.82 0.99 0.73 0.82

9000
0.5 0.96 0.60 0.86 0.96 0.72 0.84 0.96 0.55 0.82
0.2 0.99 0.72 0.86 0.99 0.82 0.85 0.99 0.70 0.84
0 1 0.75 0.85 1 0.85 0.84 1 0.76 0.84

Table 4.8: Model selection results of large P settings for the large effects scenario.

N ρ
L1MSTATE L1Cox L1-StratifiedCox

TPR FPR AUC TPR FPR AUC TPR FPR AUC

3000
0.5 0.83 0.47 0.77 0.82 0.57 0.77 0.78 0.41 0.73
0.2 0.96 0.77 0.80 0.89 0.66 0.79 0.90 0.54 0.78
0 0.99 0.86 0.80 0.93 0.71 0.79 0.94 0.62 0.77

6000
0.5 0.94 0.54 0.84 0.90 0.72 0.81 0.90 0.50 0.80
0.2 0.98 0.66 0.84 0.97 0.82 0.83 0.98 0.66 0.82
0 1 0.76 0.85 1 0.86 0.84 1 0.73 0.83

9000
0.5 0.96 0.48 0.83 0.96 0.79 0.84 0.95 0.55 0.82
0.2 0.99 0.67 0.87 0.99 0.87 0.85 0.99 0.69 0.84
0 1 0.74 0.87 1 0.90 0.85 1 0.75 0.84

L1MSTATE, L1-regularized multi-state model using the first cross-validation method; L1Cox, L1-
regularized cause-specific Cox model using the first cross-validation method; L1-StratifiedCox,
L1-regularized stratified Cox model using the first cross-validation method; TPR, true positive
rate; FPR, false positive rate; AUC, area under the curve.
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Table 4.9: Running time of three L1-regularized models. The mean time over different datasets
(100 for small datasets and 10 for big datasets) required to fit the entire solution path over a grid
of 100 λ values is reported in seconds.

N ρ
L1MSTATE L1Cox L1-StratifiedCox

Small Medium Large Small Medium Large Small Medium Large

100
0 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.03

0.2 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.04
0.5 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.04 0.04

250
0 0.02 0.02 0.02 0.03 0.03 0.03 0.04 0.05 0.05

0.2 0.02 0.02 0.02 0.03 0.03 0.04 0.04 0.05 0.05
0.5 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.05 0.06

450
0 0.03 0.03 0.03 0.04 0.05 0.05 0.07 0.07 0.08

0.2 0.03 0.03 0.03 0.04 0.05 0.06 0.07 0.07 0.08
0.5 0.03 0.03 0.04 0.05 0.05 0.07 0.07 0.09 0.10

3000
0 2.47 3.29 5.12 3.93 4.72 6.49 11.43 11.79 12.51

0.2 2.53 4.20 4.27 3.94 5.14 6.43 11.34 11.92 11.53
0.5 2.96 4.42 3.30 4.46 5.97 8.06 12.13 12.49 12.65

6000
0 4.78 7.93 6.71 7.24 9.15 10.27 21.07 25.07 21.18

0.2 6.22 7.97 5.56 7.90 9.57 10.56 24.87 24.71 20.64
0.5 5.28 9.95 5.32 8.19 11.31 13.58 22.93 26.84 22.92

9000
0 8.48 12.34 12.71 10.91 13.15 17.09 33.16 37.65 38.77

0.2 8.28 11.48 10.82 11.13 13.97 17.23 33.63 33.86 37.37
0.5 9.06 9.10 9.39 12.15 15.64 21.01 35.72 35.83 37.62

L1MSTATE, L1-regularized multi-state model using the first cross-validation method; L1Cox, L1-
regularized cause-specific Cox model using the first cross-validation method; L1-StratifiedCox,
L1-regularized stratified Cox model using the first cross-validation method.
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Figure 4.5: The EBMT model.

tors upon the disease progression using a the Europe Blood and Marrow Transplantation (EBMT)

dataset that has been described and analyzed in deWreede et al. 2011 [100].

The model for the leukemia patients after bone marrow transplantation (so-called EBMT model)

is shown in Figure 4.5. The EBMT model includes six states and twelve possible transitions. These

states are transplant (Tx) state, recovery (Rec) state, adverse event (AE) state, combination of ad-

verse event and recovery state (Rec+AE), relapse (Rel) state, and death, respectively. The numberic

coding 1, 2,. . . , 12 represent twelve possible transitions. This dataset includes 2279 patients and

the observed transitions are summarized in Table 4.10.

Table 4.10: The frequencies and proportions of the number of observed transitions of study popu-
lation. The numbers in parentheses are proportions.

Tx Rec AE Rec+AE Rel Death No event Total
Tx 0 (0) 785 (0.34) 907 (0.40) 0 (0) 95 (0.04) 160 (0.07) 332 (0.15) 2279
Rec 0 (0) 0 (0) 0 (0) 227 (0.29) 112 (0.14) 39 (0.05) 407 (0.52) 785
AE 0 (0) 0 (0) 0 (0) 433 (0.48) 56 (0.06) 197 (0.22) 221 (0.24) 907

Rec+AE 0 (0) 0 (0) 0 (0) 0 (0) 107 (0.16) 137 (0.21) 416 (0.63) 660

The six risk factors are donor-recipient match, prophylaxis, year of transplant, and age of
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transplant in years. All of them are categorical risk factors. As in this chapter we focus on numeric

risk factors, we convert them to numeric by using dummy coding as follow

• donor-recipient match (1 refers to yes and 0 refers to no)

• prophylaxis (1 refers to yes and 0 refers to no)

• year of transplant (1 refers to 1990-1994 and 0 refers to 1985-1989 or 1995-1998)

• year of transplant (1 refers to 1995-1998 and 0 refers to 1985-1989 or 1990-1994)

• age of transplant (1 refers to 20-40 and 0 refers to < 20 or > 40)

• age of transplant (1 refers to > 40 and 0 refers to < 20 or 20-40)

There are 12 allowable transitions in the model and six time-fixed risk factors for all transitions,

resulting in the total number of coefficients as large as 72. For L1MSTATE, we used the regulariza-

tion path of 100 values of λ, and applied 10-fold for both the first cross-validation method and the

penalized cross-validation method to tune the penalty parameter λ. For MSTATE model, we used

p-values to select the significant risk factors (highlighted as bold in Table 4.11). The results from

two models are shown in Table 4.11. Table 4.11 shows consistent results with those in simulation

studies: the penalized cross-validation method is more conservative than the first cross-validation

method since it chooses more sparse multi-state models.

4.6.1 Comparison of the models

We compared the performance of L1MSTATE and MSTATE in terms of the predictions of the

transition probabilities. As discussed in the introduction, our aim is to study how L1MSTATE

and MSTATE predict the rare transitions that have relatively small number of observations and

the common transitions that have relatively large number of observations. To do it, the transitions

from the transplant state were considered, and three example patients A, B, and C (see Table 4.12)

were chosen. The observed transitions from the transplant state of three patients are summarized in

Table 4.13. The summary shows that the transitions from the transplant state to the recovery state
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Table 4.12: Risk factors information of patient A, B, C and D.

Risk factors Patient A Patient B Patient C Patient D
x1 0 0 1 0
x2 0 0 0 0
x3 1 0 1 0
x4 0 1 0 1
x5 1 0 0 1
x6 0 1 0 0

Table 4.13: The frequencies and proportions of the number of observed transitions from the trans-
plant state of three patients. The numbers in parentheses are proportions.

Tx Rec AE Rec+AE Rel Death No event Total
Patient A Tx 0 (0) 99 (0.34) 133 (0.46) 0 (0) 9 (0.03) 13 (0.05) 33 (0.11) 287
Patient B Tx 0 (0) 56 (0.38) 60 (0.41) 0 (0) 5 (0.03) 9 (0.06) 17 (0.12) 147
Patient C Tx 0 (0) 22 (0.44) 16 (0.32) 0 (0) 3 (0.06) 4 (0.08) 5 (0.10) 50

and adverse event state have relatively large number of observations while the transition from the

transplant state to the relapse state and the death state have relatively small number of observations.

In other words, the transitions from the transplant state to the recovery state and adverse event state

are the common transitions and the transition from the transplant state to the relapse state and the

death state are rare transitions. In addition, patient A has the largest number of observations (287)

that represents the large sample size case and patient C has the smallest number of observations

(50) that represents the small sample size case. The same Aalen-Johansen method to predict the

transition probabilities were used in both L1MSTATE and MSTATE. The results are shown in

Figures 4.6: the probabilities of transitions from the transplant state at the starting computation

times 0 to the ending computation times are estimated and stacked together where the distance

between two adjacent curves shows the probability of the state whose name is labeled.

From Figure 4.6, it can be seen that the predicted probabilities from the transplant state at the

starting time 0 of patient A using MSTATE, pL1MSTATE and L1MSTATE are almost similar but

MSTATE and L1MSTATE slightly underestimates the probability of the relapse (Rel) state, and
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pL1MSTATE slightly underestimates the probability of the adverse event (AE) state comparing

with the observed probability. In other words, pL1MSTATE slightly underestimates the probabil-

ity of the common event while MSTATE and L1MSTATE slightly underestimates the probability

of the rare event. The results of patient B clearly shows that MSTATE overestimates the probability

of the common event - the recovery (Rec) state, and underestimates the probability of the rare event

- the relapse (Rel) state. L1MSTATE also overestimates the probability of the recovery (Rec) state.

pL1MSTATE gives the best overall performance. The results of patient C show the same pattern:

MSTATE underestimates the probability of the rare event - the death state, and inaccurate predic-

tion of the probability of the relapse state. By contrast, pL1MSTATE and L1MSTATE produces

better predictions of these two rare events. The figure also indicates that MSTATE, pL1MSTATE

and L1MSTATE overestimate the probability of the common event - the adverse event (AE) state.

In short, the un-regularized multi-state model (MSTATE) tends to underestimate the proba-

bilities of the rare transitions, and overestimate the probabilities of the common transitions. Its

performance becomes worse when the sample size decreases. In these cases, our L1-regularized

multi-state models produce better predictions.

4.6.2 Further assessment of the effects of risk factors upon the disease progression

We illustrate how to use the functions of our L1mstate package to estimate the cumulative

hazard rates and the transition probabilities. For illustrative purposes, we continued using patient

A example, and chose another patient D (in Table 4.12) that differs from patient A only in terms

of year of transplant since our aim is to assess the effect of year of transplant. The penalized

cross-validation method was implemented to select the optimal tuning parameters.

Figure 4.7 shows the results of the Nelson-Aalen estimates of the four transitions starting from

the transplant state for two patients A and D. There is a significant difference of the cumulative

hazard rates of the first transition (from transplant state to recovery state) between the two patients.

In other words, the year of transplant has significant effect upon the cumulative hazard function

of the first transition: if patient did the transplant in 1995-1998, their cumulative hazard rate to

recovery state is higher if they did in 1990-1994. The results of the predicted transition proba-
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Figure 4.7: Estimated cumulative hazard rates for patient A and patient D.

bilities starting from the transplant state at starting computation time 0 of two patients in Figure

4.8 also show the strong effects of the year of transplant on the first transition probability. Note

that it also shows the ability of risk factors (year of transplant) in discriminating patients who will

have higher transferring risk (higher cumulative hazard and transition probability) by certain time

(starting study time) from certain state (transplant).

Figure 4.8: Estimates of stacked prediction transition probabilities from t = 0 for patients A and
D.

Although all the transition probabilities presented above are predicted at starting times 0, our
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Table 4.14: The frequencies and proportions of the number of observed transitions from the trans-
plant state of patient D after 0 and 100 days. The numbers in parentheses are proportions.

Days since
transplant Tx Rec AE Rec+AE Rel Death No event Total
t = 0 Tx 0 (0) 94 (0.40) 85 (0.36) 0 (0) 4 (0.02) 15 (0.06) 5 (0.15) 233
t = 100 Tx 0 (0) 2 (0.04) 0 (0) 0 (0) 3 (0.07) 5 (0.11) 35 (0.78) 45

Figure 4.9: Estimates of stacked prediction transition probabilities of patient D from t = 0 and
t = 100 days since transplant.

L1mstate package also allows to compute the predicted transition probabilities at different starting

computation times. For example, we can choose the starting computation times are 100 days since

transplant to compute the predicted transition probabilities of patient D. Results in Figure 4.9

show the considerable changes of the distributions of the state probabilities: the probability of

the transplant state increases substantially, and the probabilities of the relapse and death states

also increase. In other words, if patient D can survive through the transplant state during the

first 100 days, the chance that they may stay at the current state increases. Since the risk factors

are assumed time-constant, this phenomenon may imply the effects of the risk factors upon the

transition probabilities change over time or the sojourn time that patient D spent in the transplant

state also affects upon the predicted transition probabilities.
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5. PENALIZED JOINT MODELS OF TIME-TO-EVENT AND MULTIVARIATE

LONGITUDINAL OUTCOMES

Joint modelling of longitudinal and survival data has attracted increasing attention in the method-

ological literature over the past decade as more of such data become available in clinical studies.

However, there are only a limited number of available methods for variable selection to identify

critical time-varying risk factors as most of the existing works have been typically developed for the

joint models with one single longitudinal outcome and one single survival outcome. In this chapter,

we present a variable selection framework that can analyze multiple longitudinal outcomes. We

focus on the problems of identifying the longitudinal outcomes that play important roles in the sur-

vival submodel and simultaneously selecting relevant covariates for both longitudinal and survival

outcomes of interest, for which there is no available tool so far to the best of our knowledge. We

propose novel penalized joint models for different association structures between the longitudinal

and the survival submodels using different penalty terms. To tackle high-dimensional challenges

that arise when considering many longitudinal outcomes, covariates and random effects, we de-

velop an estimation procedure based on Laplace approximation of a joint likelihood. Simulation

studies demonstrate the excellent variable selection performances of the proposed methods, which

are further validated on a real-world dataset from patients with primary biliary cirrhosis.

5.1 Introduction

Subjects are followed up repeatedly in longitudinal studies. Different types of measurements

are collected, namely the covariates varying with time such as biomarkers, in addition to the out-

comes of main interest, such as the time to an event, including infection, death, or dropout from

the study. In cancer studies, for example, the longitudinal measurements of antibody levels or of

other biomarkers at each follow-up clinic appointment for patients and the event time such as time

of death or metastasis are recorded. The covariates are usually measured intermittently with error,

often at different times and with a different number for each individual. The time to an event is
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often censored. One of statistical models to understand the underlying dynamics, for example dis-

ease progression in biomedicine, is to model these processes using a linear mixed effects model

for the time-varying covariates (longitudinal outcome) [102], and a survival model such as Cox

regression model [3] for the event time. Another category of so-called two-stage models first fits

the longitudinal process separately to obtain the maximum likelihood estimation (MLE) and best

linear unbiased predictors (BLUPs) of the random effects, then fits the survival data using the lon-

gitudinal fitted values as covariates in a second stage. However, in many settings, these approaches

can be inefficient and lead to biased effect size estimates [103], [104], [105]. The joint model

framework provides a solution by using the survival model for the time-to-event outcome, which

depends on the true underlying value of the longitudinal outcomes that are modeled using the lin-

ear mixed effects models, and using the joint distribution from both outcomes to derive estimation.

The literature on joint models is extensive, with excellent reviews [106], [107], [108], [109] [110].

The basic joint model describes the association between a single time-to-event outcome and

a single longitudinal outcome. In many studies, however, it cannot capture the complicated dy-

namic processes of complex diseases whose collected data can be complex and include multiple

longitudinal measurements and possibly multiple, recurrent or competing event times. An exam-

ple showing the advantages of incorporating multiple longitudinal outcomes in the joint model is

presented in [111]. It described a study on 407 patients with chronic kidney disease who under-

went a renal transplantation. Three biomarkers including glomerular filtration rate (GFR), blood

haematocrit level, and proteinuria are measured repeatedly with the clinical interest being the time

to graft failure. The authors in [109] provided an overview about recent works of joint models for

time-to-event and multiple longitudinal outcomes.

This joint model is suitable to investigate the relationship between multiple longitudinal out-

comes and time-to-event outcome, and the relationship between correlated longitudinal outcomes.

Our interest is to develop a framework that can simultaneously identify the important longitudinal

risk factors and time-constant risk factors with strong effect upon the time-to-event outcome, and

the important (possibly) time-varying risk factors with strong effect upon each longitudinal out-
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come. In the joint model settings, some traditional methods perform variable selection by using

information-based criteria such as the Akaike and Bayesian information criteria (AIC and BIC).

Such kinds of variable selection methods are suitable when the number of candidate models is

relatively small. However, the joint model for multiple longitudinal outcomes and time-to-event

outcome often results in the complicated estimation problems with a considerable number of can-

didate models which leads to unstable estimates. In this chapter, the regularization approaches

based on sparse penalties have been used to address these challenges.

Although the sparse models have gained popularity in statistics and machine learning, very

little has been explored in the joint models. The authors of [112] and [113] proposed variable

selection methods in joint models for a single longitudinal outcome and a single time-to-event

outcome. Their works are different from ours that considers the joint model for multiple longitu-

dinal outcomes and time-to-event outcome. One recent paper on using the regularization approach

in the joint model for multiple longitudinal outcomes and the time-to-event outcome by [114].

They considered the time-independent association structure for joint models of time-to-event and

multivariate longitudinal outcomes that includes only the random effects—random intercepts and

slopes of the longitudinal submodel. They selected the important features among these random

effects using the L1-norm penalties. It is different from our main objective that is to identify the

important longitudinal outcomes have strong association with the survival outcome, and to simul-

taneously identify the important (possibly time-varying) risk factors with strong effect upon each

longitudinal outcome. In this chapter, we study variable selection in multivariate joint models

considering two different association structures between the longitudinal submodel and the time-

to-event submodel: time-independent association (Model I) including only the random effects and

time-dependent association (Model II) presented in [115]. In Model I, since the random effects

represent the deviation of trajectories of longitudinal processes, we select the longitudinal pro-

cesses by incorporating the group structures of the random effects, i.e., the random effects of each

longitudinal outcome can be considered as a group via group LASSO penalties [18]. In Model II,

we identify the important longitudinal outcomes using L1 penalties. In addition, in both models,
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our framework allows simultaneous selection of fixed effects in both longitudinal submodel and

survival submodel using L1 penalties.

The most commonly used methods to estimate the joint model parameters are the expectation-

maximization (EM) algorithm in frequentist settings and Markov chain Monte Carlo (MCMC) or

Hamiltonian Monte Carlo (HMC) algorithms in Bayesian settings. However, they are computa-

tionally intensive. Considering the complicated joint models for multiple longitudinal outcomes

and survival time when the number of random effects is large, the EM algorithm needs to compute

the integral with respect to the number of random effects in the E-step which is challenging and

sometimes impossible. In this chapter, we apply Laplace approximation of the joint likelihood

discussed in [116] and [117] to tackle this challenge. Then, we develop several algorithms to solve

the optimization problem.

The rest of the chapter is organized as follows. Section 2 describes the model and notation.

Section 3 describes the estimation procedure. In Section 4, we present some simulation studies.

We apply this framework to a real-world dataset in Section 5. Lastly, we end with discussions and

conclusions in Section 6.

5.2 Models and Notations

For each individual i = 1, . . . , n, we observe survival time and longitudinal outcomes. Denote

T ∗i be the true survival time and assume that the survival time is subject to right censoring, we

observe Ti = min{T ∗i , Ci} where Ci corresponds to a potential censoring time, and the censoring

indicator δi, which = 1 if the failure is observed (T ∗i ≤ Ci) and = 0 otherwise. We assume that

censoring is independent of other survival and longitudinal outcomes information.

The longitudinal outcome of individual i is a vector yi = (yTi1, . . . , y
T
iJ) where each yij is a

Kij−dimensional vector of observed longitudinal measurements for the jth longitudinal outcome:

yij = (yij1(tij1), . . . , yijKij
(tijKij

))T . Each observed value yijk(tijk) is measured at time tijk,

where i = 1, . . . , n, j = 1, . . . , J , and k = 1, . . . , Kij . Here, Kij can different between individual

and longitudinal outcome.

We use the joint model that comprises of two submodels: a multivariate longitudinal data
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submodel, and a time-to-event data submodel.

5.2.1 Longitudinal submodel

The jth longitudinal submodel is given by

yijk(tijk) = β0j +XT
i (tijk)βj + ZT

i (tijk)bij + εijk, (5.1)

where XT
i (tijk) is a Pj−dimensional vector of (possibly) time-varying covariates of ith individual

with corresponding fixed effects βj; β0j is an intercept; ZT
i (tijk) is a Rj−dimensional vector of

(possibly) time-varying covariates with corresponding random effects bij; εijk are random errors.

We assume that εijk
iid∼ N (0, σ2

j ), and εijk and bij are uncorrelated. The random effects bij present

the within-subject correlation between longitudinal measurements of jth longitudinal outcome.

Here, we assume bij follows a zero-mean multivariate normal distribution with (Rj×Rj)-variance-

covariance matrix Djj . To account for the association between different longitudinal outcomes, we

let cov(bil, bim) = Dlm for l 6= m.

Furthermore, for each individual i, let Xi =
⊕J

j=1Xij and Zi =
⊕J

j=1 Zij be block-diagonal

matrices, where Xij =
(
1, Xi(tij1), . . . , 1, Xi(tijKij

)
)

is an Kij × (1 + Pj) matrix and Zij =(
Zi(tij1), . . . , Zi(tijKij

)
)

is an Kij × Rj matrix;
⊕

denotes the direct matrix sum. Similarly,

denote Σi =
⊕J

j=1 σ
2
j IKij

and β = (β0j, βj)
J
j=1. Then, yi|bi; θ ∼ N (Xiβ + Zibi,Σi).

5.2.2 Survival submodel

For the time-to-event outcome, we use the Cox’s proportional hazard model. The survival

submodel includes the subject-specific deviation from the population trajectories of longitudinal

outcomes. More critically, each model has different form of survival submodel as follows:

• Model I:

hi(t) = h0(t)exp
(
V T
i γ0 +

J∑
j=1

bTijγ
I
j

)
= h0(t)exp

(
V T
i γ0 + bTi γ

I
)
; (5.2)
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• Model II:

hi(t) = h0(t)exp
(
V T
i γ0 +

J∑
j=1

(ZT
ijbij)γ

II
j

)
= h0(t)exp

(
V T
i γ0 + (Zibi)

TγII
)
, (5.3)

where h0(t) is an unspecified baseline hazard function, Vi is P−dimensional vector that rep-

resents P baseline covariates for subject i with corresponding fixed effects γ0. Moreover, γI

is
∑J

j=1 Rj−dimensional vector of corresponding coefficients of random effects bi, and γII is

J−dimensional vector of corresponding association parameters.

5.2.3 The joint likelihood

The observed data for each individual can be denoted as (Ti, δi, yi). We do not get to observe the

random effects bi. Let θ be the collection of all unknown parameters in the joint model including

{β0, β, γ0, γ, (σ
2
1, . . . , σ

2
J)} and elements in D. The observed data likelihood is given by

L(θ|Dn) =
n∏
i=1

∫
P (Ti, δi|bi; θ)P (yi|bi; θ)P (bi; θ) dbi =

n∏
i=1

∫
Q(bi)dbi,

where

P (yi|bi; θ) =
J∏
j=1

Kij∏
k=1

1√
2πσj

exp

[
− 1

2σ2
j

(
yijk − (β0j +XT

i (tijk)βj + ZT
i (tijk)bij)

)2
]

=
1√

det(2πΣi)
exp

[
− 1

2

(
yi −Xiβ − Zibi

)T
Σ−1
i

(
yi −Xiβ − Zibi

)]
;

P (bi; θ) =
1√

det(2πD)
exp

[
− 1

2

(
bTi D−1bi

)]
;

Q(bi)dbi = P (Ti, δi|bi; θ)P (yi|bi; θ)P (bi; θ);

and

97



• Model I:

P (Ti, δi|bi; θ) =

[
h0(Ti) exp

(
V T
i γ0 + bTi γ

I
)]δi

exp

[
−
∫ Ti

0

h0(u) exp
(
V T
i γ0 + bTi γ

I
)
du

]
;

• Model II:

P (Ti, δi|bi; θ) =

[
h0(Ti) exp

(
V T
i γ0+(Zibi)

TγII
)]δi

exp

[
−
∫ Ti

0

h0(u) exp
(
V T
i γ0+(Zibi)

TγII
)
du

]
.

5.3 Parameter estimation

5.3.1 Laplace approximation of the joint likelihood

The log-likelihood function is given by

l(θ|Dn) = logL(θ|Dn) =
n∑
i=1

log
∫
Q(bi)dbi.

Let K(bi) = logQ(bi); clearly,

K(bi) = log
{
P (Ti, δi|bi; θ)

}
+ log

{
P (yi|bi; θ)

}
+ log

{
P (bi; θ)

}
.

Applying the Laplace approximation we yield the approximation

K(bi) ≈ K(b̃i) +
1

2
(bi − b̃i)TH(b̃i)(bi − b̃i),

where b̃i = argmax
bi

K(bi) and H(b̃i) is the Hessian matrix of K(bi) at b̃i. Therefore, the Laplace

approximation of the log-likelihood function is

l(θ|Dn) ≈
n∑
i=1

[
K(b̃i)−

1

2
log
(
det
(
−H(b̃i)

))
+ J log(2π)

]
. (5.4)
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We have

log
{
P (yi|bi; θ)

}
= −

J∑
j=1

log(
√

2πσj)Kij −
J∑
j=1

1

2σ2
j

Kij∑
k=1

[(
yijk − (β0j +XT

i (tijk)βj + ZT
i (tijk)bij)

)2
]

;

= −log
(√

det(2πΣi)
)
− 1

2

(
yi −Xiβ − Zibi

)T
Σ−1
i

(
yi −Xiβ − Zibi

)
log
{
P (bi; θ)

}
= −log(

√
det(2πD))− 1

2

(
bTi D−1bi

)
.

Let H0(Ti) =
∫ Ti

0
h0(u)du be the cumulative baseline hazard of duration (0, Ti), then

• Model I:

P (Ti, δi|bi; θ) =
[
h0(Ti) exp

(
V T
i γ0 + bTi γ

I
)]δi

exp
[
−H0(Ti) exp

(
V T
i γ0 + bTi γ

I
)]
,

log
{
P (Ti, δi|bi; θ)

}
= δi

[
log h0(Ti) +

(
V T
i γ0 + bTi γ

I
)]
− exp

(
V T
i γ0 + bTi γ

I
)
H0(Ti);

• Model II:

P (Ti, δi|bi; θ) =
[
h0(Ti) exp

(
V T
i γ0 + (Zibi)

TγII
)]δi

exp
[
−H0(Ti) exp

(
V T
i γ0 + (Zibi)

TγII
)]
,

log
{
P (Ti, δi|bi; θ)

}
= δi

[
log h0(Ti) +

(
V T
i γ0 + (Zibi)

TγII
)]
− exp

(
V T
i γ0 + (Zibi)

TγII
)
H0(Ti).

5.3.1.1 The first-order derivative of K(bi) respect to bi

• Model I:

∂K(bi)

∂bi
=
∂
[
log
{
P (Ti, δi|bi; θ)

}
+ log

{
P (yi|bi; θ)

}
+ log

{
P (bi; θ)

}]
∂bi

= δiγ
I − γI exp

(
V T
i γ0 + bTi γ

I
)
H0(Ti) + Σ−1

i

(
yi −Xiβ − Zibi

)
ZT
i − D−1bi,
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• Model II:

∂K(bi)

∂bi
=
∂
[
log
{
P (Ti, δi|bi; θ)

}
+ log

{
P (yi|bi; θ)

}
+ log

{
P (bi; θ)

}]
∂bi

= δiZ
T
i γ

II − ZT
i γ

II exp
(
V T
i γ0 + (Zibi)

TγII
)
H0(Ti) + Σ−1

i

(
yi −Xiβ − Zibi

)
ZT
i − D−1bi.

5.3.1.2 The second-order derivative of K(bi) respect to bi

• Model I:

H(bi) =
∂2K(bi)

∂bi∂bTi
=
∂2
[
log
{
P (Ti, δi|bi; θ)

}
+ log

{
P (yi|bi; θ)

}
+ log

{
P (bi; θ)

}]
∂bi∂bTi

= −γI(γI)T exp
(
V T
i γ0 + bTi γ

I
)
H0(Ti)−Σ−1

i ZT
i Zi − D−1;

• Model II:

H(bi) =
∂2K(bi)

∂bi∂bTi
=
∂2
[
log
{
P (Ti, δi|bi; θ)

}
+ log

{
P (yi|bi; θ)

}
+ log

{
P (bi; θ)

}]
∂bi∂bTi

= −ZT
i γ

II(γII)TZi exp
(
V T
i γ0 + bTi ZT

i γ
II
)
H0(Ti)−Σ−1

i ZT
i Zi − D−1.

5.3.2 Variable selection based on penalized likelihood

To simultaneously identify the important longitudinal risk factors and time-constant risk factors

that have strong effect upon the time-to-event outcome, and the important time-varying risk factors

that have strong effect upon each longitudinal outcome, we propose a penalized likelihood:

pl(θ|Dn) = − 1

n
l(θ|Dn) + p1(γ) + p2(γ0) + p3(β) + p4(D). (5.5)

More specifically, the penalty p1(γ) is defined as
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• Model I:

p1(γ) = λ
′

1

J∑
j=1

√
Rj||γj||,

where ||.|| is Euclidean norm and Rj is the number of elements of γIj . It captures the group

structure of bi. Specifically, bi can be divided into J nonoverlapping groups that correspond

to J longitudinal outcomes. For example, (bi11, . . . , bi1R1) is one group that corresponds

to the first longitudinal outcome. Therefore, it controls which longitudinal outcomes are

selected. We assume that Rj are the same for ∀j, we can rewrite the penalty as

p1(γ) = λ1

J∑
j=1

||γIj ||,

where λ1 = λ
′
1

√
Rj .

• Model II:

p1(γ) = λ1

J∑
j=1

|γIIj |

that controls which one among J longitudinal outcomes are selected.

The penalty p2(γ0) is

p2(γ0) = λ2

P∑
p=1

|γ0p|

that controls the sparsity of the γ0 so that the baseline covariates are selected.

The penalty p3(β) is

p3(β) = λ3

J∑
j=1

Pj∑
h=1

|βjh|

that controls the sparsity of the β so that the time-varying covariates are selected.

The last penalty p4(D) is

p4(D) = λ4

∑
l 6=m

|dlm|,

where dlm is the lmth element of D. It controls the sparsity of the variance-covariance matrix D

to avoid the nonidentifiability problem of the joint model. λ1, λ2, λ3, λ4 are tuning parameters that
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control the degree of penalties.

The approximation of the penalized likelihood function is

• Model I:

pl(θ|Dn) ≈ − 1

n

n∑
i=1

[
K(b̃i)−

1

2
log
(
det
(
−H(b̃i)

))
+ J log(2π)

]
+ λ1

J∑
j=1

||γIj ||+ λ2

P∑
p=1

|γ0p|

+ λ3

J∑
j=1

Pj∑
h=1

|βjh|+ λ4

∑
l 6=m

|dlm|;

• Model II:

pl(θ|Dn) ≈ − 1

n

n∑
i=1

[
K(b̃i)−

1

2
log
(
det
(
−H(b̃i)

))
+ J log(2π)

]
+ λ1

J∑
j=1

|γIIj |+ λ2

P∑
p=1

|γ0p|

+ λ3

J∑
j=1

Pj∑
h=1

|βjh|+ λ4

∑
l 6=m

|dlm|.

5.3.3 Algorithm for optimization of the penalized likelihood

To maximize the penalized likelihood function (5.5), we use the gradient descent and Newton-

Raphson approaches. We first obtain the initial values β̂(0)
0 , β̂(0), D̂

(0)
, and σ̂j2(0) for j = 1, . . . , J

by fitting the multivariate linear mixed effects model on the longitudinal outcomes. The random

effect values are then generated using the multivariate zero-mean Gaussian distribution with the

variance-covariance matrix D. Then, these estimates and values are included as time-varying and

fixed covariates in the Cox’s model to estimate γ̂(0)
0 and γ̂(0).

At each iteration, we first solve b̃i = argmax
bi

K(bi) using the Newton-Raphson method:

b̃it+1
i = b̃iti −

(
∂2K(bi)

∂bi∂bTi

(
b̃iti
))−1

∂K(bi)

∂bi

(
b̃iti
)
,

where it is the iteration index. Then, compute the Laplace approximation of penalized log-

likelihood using (5.5). Finally, each parameter is updated using Newton-Raphson method or gra-
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dient descent approaches or closed-form solution if the closed form exists. Updating steps for the

parameters are iterated until convergence.

Algorithm 5 Coordinate descent algorithm
Input: Input Dn

Output: Model parameters θ = {β0, β, γ0, γ(γI or γII), (σ2
1, . . . , σ

2
J),D}

Initialize parameter vector θ(0)

repeat
Obtain b̃i which maximizes K(bi) with current estimates θ(it)

Estimate θ(it+1) = argmin
θ

pl(θ|Dn, θ(it), b̃i)

it→ it+ 1

until Convergence;

5.3.3.1 Initial values

We used lme() function from nlme R package [118] and coxph() function from survival R

package [44]. More specifically, we fitted each longitudinal model separately using lme(), then

fitted a Cox’s model including these results as time-varying covariates along with other covariates

using survival(). Note that in the case the data are not balanced, i.e. when tijk 6= tik for ∀j, we set

γ̂(0) = 0.

5.3.3.2 Estimates of parameters without penalties: β0 and (σ2
1, . . . , σ

2
J)

• β0 a J−dimensional vector. The closed-form solution of jth element β0j is given by

β̂0j =
1∑n

i=1Kij

n∑
i=1

Kij∑
k=1

[
yijk −

(
XT
i (tijk)βj + ZT

i (tijk)b̃ij

)]
.
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• (σ2
1, . . . , σ

2
J). The gradient respect to the jth element, σ2

j , is given by

∂pl(θ|Dn)

∂σj
= − 1

n

n∑
i=1

[
− Kij

σj
+

1

σ3
j

Kij∑
k=1

(
yijk − (β0j +XT

i (tijk)βj + ZT
i (tijk)b̃ij)

)2

− 1

2
tr
((
−H(b̃i)

)−1
[∂(−H(b̃i)

)
∂σj

])]
,

where

∂
(
−H(b̃i)

)
∂σj

= − 2

σ3
j

dH = − 2

σ3
j



0 0 . . . 0

0 0 . . . 0

. . . . . . dHj . . .

0 0 . . . 0

0 0 . . . 0


with

dHj =

Kij∑
k=1

Zi(tijk)Z
T
i (tijk), for j = 1, . . . , J.

5.3.3.3 Estimates of parameters with penalties: β, γ0 and γ

• β is a J × Pj matrix. The first- and second-derivatives respect to the jhth element, βjh, are

∂pl(θ|Dn)

∂βjh
= − 1

n

n∑
i=1

Kij∑
k=1

[
1

σ2
j

(
yijk − (β0j +XT

i (tijk)βj + ZT
i (tijk)b̃ij)

)
Xih(tijk)

]
+ λ3 sgn(βjh),

∂2pl(θ|Dn)

∂βjh∂βjq
= − 1

n

n∑
i=1

Kij∑
k=1

[
1

σ2
j

(
−Xih(tijk)Xiq(tijk)

)]
,

where j = 1, . . . , J and h, q = 1, . . . , Pj .

• γ0 is a P−dimensional vector. The gradient respect to the pth element, γ0p, is given by
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– Model I:

∂pl(θ|Dn)

∂γ0p

=− 1

n

n∑
i=1

[[
δi − exp

(
V T
i γ0 + b̃Ti γ

I
)
H0(Ti)

]
Vip

− 1

2
tr
((
−H(b̃i)

)−1
[
γI(γI)T exp

(
V T
i γ0 + b̃Ti γ

I
)
H0(Ti)

]
Vip

)]
+ λ2 sgn(γ0p);

– Model II:

∂pl(θ|Dn)

∂γ0p

=− 1

n

n∑
i=1

[[
δi − exp

(
V T
i γ0 + b̃Ti ZT

i γ
II
)
H0(Ti)

]
Vip

− 1

2
tr
((
−H(b̃i)

)−1
[
ZT
i γ

II(γII)TZi exp
(
V T
i γ0 + b̃Ti ZT

i γ
II
)
H0(Ti)

]
Vip

)]

+ λ2 sgn(γ0p),

where p = 1, . . . , P .

• γ

– Model I: γI is a
∑J

j=1 Rj−dimensional vector whose jth element is γIj = (γIjq) where

j = 1, . . . , J ; q = 1, . . . , Rj . The gradient respect to γIjq is

If γIj 6= 0 :
∂pl(θ|Dn)

∂γIjq
= − 1

n

n∑
i=1

[(
δi − exp

(
V T
i γ0 + b̃Ti γ

I
)
H0(Ti)

)
b̃ijq

− 1

2
tr
(

exp
(
V T
i γ0 + b̃Ti γ

I
)
H0(Ti)

(
−H(b̃i)

)−1(
ejq(γ

I)T + γIeTjq + b̃ijqγ
I(γI)T

))]

+ λ1

γIjq
||γIj ||

,

If γIj = 0 :
∂pl(θ|Dn)

∂γIjq
= − 1

n

n∑
i=1

[(
δi − exp

(
V T
i γ0 + b̃Ti γ

I
)
H0(Ti)

)
b̃ijq

− 1

2
tr
(

exp
(
V T
i γ0 + b̃Ti γ

I
)
H0(Ti)

(
−H(b̃i)

)−1(
ejq(γ

I)T + γIeTjq + b̃ijqγ
I(γI)T

))]

+ λ1||v||,
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where ejq is a
∑J

j=1Rj−dimensional vector whose only element Rj(j − 1) + q is 1

and remaining elements are 0’s and v is any vector satisfying ||v|| ≤ 1.

– Model II: γ is a J−dimensional vector whose jth element is γj . The gradient respect

to γIIj is

∂pl(θ|Dn)

∂γIIj
= − 1

n

n∑
i=1

[(
δi − exp

(
V T
i γ0 + b̃Ti ZT

i γ
II
)
H0(Ti)

)
Zib̃iej

− 1

2
tr
(

exp
(
V T
i γ0 + b̃Ti ZT

i γ
II
)
H0(Ti)

(
−H(b̃i)

)−1(
ZiZ

T
i 2γIIej + (ZT

i γ
II(γII)TZi)(Zib̃i)ej

))]

+ λ1sgn|γIIj |,

where ej is a J−dimensional vector whose only element j is 1 and remaining elements

are 0’s.

5.3.3.4 Estimate of a symmetric and positive definite matrix D

To derive the solution of D:

D = argmin
D�0

pl(θ|Dn) = argmin
D�0

(
G(D) + λ4

∑
l 6=m

|dlm|
)

= argmin
D�0

(
G(D) + λ4||D||1,off

)
,

we deploy an algorithm presented in [119] that uses the proximal gradient descent and alternating

direction method of multipliers (ADMM) as shown in Algorithm 6.
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Algorithm 6 ADMM algorithm
Input: Input Dn

Output: Parameter D

Initialize parameter D(0)

repeat
Estimate

D(k+1) = argmin
Z

1

2τk+1

||Z− (D(k) − τk+1OG(D(k)))||22 + λ4||Z||1,off

Use the proximal gradient descent to obtain

D(k+1) = proxτk+1

(
D(k) − τk+1OG(D(k))

)
, k = 0, 1, 2, . . .

Check if the minimum eigenvalue of D(k+1) is below 0, then perform the optimization using

the alternating direction method of multipliers (ADMM):

• Decompose τ
1+τρ

[
OG(D(k))− Y(k) + ρZ(k)

]
= UΛUT

• Update D(k+1) = UΛ0UT where Λ0 = diag{max(Λii, 0)}

• Update Z(k+1) where z(k+1)
lm = soft

(
1
ρ
Y(k)
lm + D(k+1)

lm , λ4
ρ

)
• Update Y(k+1) = Y(k) + ρ(D(k+1) − Z(k+1))

until Convergence;

Here,

OG(D) =
∂G(D)

∂D
= − 1

n

n∑
i=1

1

2

[(
− D−1 + D−1bib

T
i D−1 +

(
−H(b̃i)

)−1D−1D−1
)

+
(
− D−1 + D−1bib

T
i D−1

+
(
−H(b̃i)

)−1D−1D−1
)T
−
(
− D−1 + D−1bib

T
i D−1 +

(
−H(b̃i)

)−1D−1D−1
)
◦ I
]
.

107



5.3.3.5 Convergence conditions

Two main conditions used to check the convergence of Algorithm 5 are the absolute and rela-

tive differences in the likelihood, given by

max
{∣∣pl(θ̂(it+1))− pl(θ̂(it))

∣∣} < ε0,

max
{∣∣pl(θ̂(it+1))− pl(θ̂(it))

∣∣∣∣pl(θ̂(it))
∣∣

}
< ε1.

Other conditions, the absolute and relative differences in the model parameters, are also used. They

are defined as

max
{∣∣θ̂(it+1) − θ̂(it)

∣∣} < ε2,

max
{∣∣θ̂(it+1) − θ̂(it)

∣∣∣∣θ̂(it)
∣∣+ ε3

}
< ε4,

where ε0, ε1, ε2, ε3, ε4 are specified constants.

5.3.4 Hyperparameter tuning

To determine the tuning hyperparameters, we used the BIC-type criterion proposed by [120].

This criterion is used in [112], [114] and [113], which shows that it works well for the joint model.

The BIC-type criterion is defined as

BICλ = −2l(θ̂) + log(N)× dfλ, (5.6)

where θ̂ is the estimator vectors of model parameters for given λ = {λ1, λ2, λ3, λ4}, N is the total

number of observations, and dfλ is the total number of non-zero estimates of θ̂ as the degree of

freedom.

We use the grid search strategy to select a set λ of tuning hyperparameters (λ1, λ2, λ3, λ4).

More specifically, it is done by taking all sets constructed by candidate vectors λ1, λ2, λ3, λ4, then

choosing a set λ that minimized the BIC criterion.
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5.4 Simulation studies

In this section, we perform simulation studies to investigate the finite sample performance of

the proposed model estimators. We consider four scenarios for each model.

We generate data from the longitudinal sub-model that is given as

yijk(tijk) = Xi0βi0j +Xi1βi1j + β0j + bij1 + (β1j + bij2)tijk + εijk, (5.7)

where εijk
iid∼ N (0, σ2

j ) and bi = (bij)
J
j=1 = (bij1, bij2)Jj=1 ∼ N (0,D) for i = 1, 2, . . . , n,

j = 1, 2, . . . , J , and k = 1, 2, . . . , Kij . The survival sub-models as follows

• Model I:

hi(t) = h0(t) exp
(
Xi0γ00 +Xi1γ01 +

J∑
j=1

(bij1γ
I
j1 + bij2γ

I
j2)
)

(5.8)

• Model II:

hi(t) = h0(t) exp
(
Xi0γ00 +Xi1γ01 +

J∑
j=1

(bij1 + bij2tijk)γ
II
j

)
(5.9)

We consider n individuals and J = 3 longitudinal outcomes. For each ith individual, we con-

sider two baseline covariates: a continuous covariate Xi0
iid∼ N (0, 1) and a binary covariate Xi1

iid∼

Bin(1, 0.5). Their corresponding coefficients are (βi01, βi11, βi02, βi12, βi03, βi13) = (1.5, 2, 0, 1, 1, 0)

in longitudinal submodels, and (γ00, γ01) = (1, 0) in survival submodels. The values of intercept

and slope are (β01, β11, β02, β12, β03, β13) = (1, 0,−1.5, 1.2, 1,−1.3). The variance-covariance

matrix D is specified as follows: Dij = 0.5 if i = j and Dij = 0.2 if |i − j| = 1. We set

σ2
1 = 1, σ2

2 = 1, σ2
3 = 1.5. In addition, the coefficient γI1 = (0, 0), γI2 = (1.2, 1.5), γI3 = (−2, 1)

and γII1 = 0, γII2 = 1.2, γII3 = 1.

Longitudinal observations, generated from Eq. (5.7), are collected according to a follow-up

schedule of Kij time points (at times tijk = k where k = 0, 1, . . . , Kij) until death or censoring

time. The average number of observations is 5. The baseline hazard function h0(t) = exp(α0+α1t)

with α0 = 1 and α1 = −3.5 is used. The event times are simulated from a Gompertz distribution
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following the methodology described by [121] using Eq. (5.8). Independent censoring times were

drawn from an exponential distribution Ci
iid∼ exp(r) with rate r.

5.4.1 Model I

We consider four scenarios:

• Scenario I: n = 200, r = 0.01

• Scenario II: n = 200, r = 0.05

• Scenario III: n = 500, r = 0.01

• Scenario IV: n = 500, r = 0.05

The average censoring percentage are around 5%, 15%, 5%, 15%, respectively. We run each

scenario over 100 replications. The tuning parameter λ = {λ1, λ2, λ3, λ4} for each dataset deter-

mined by searching from all sets constructed by candidate vectors λ1 = (0.01, . . . , 0.20), λ2 =

(0.05, . . . , 0.20), λ3 = (0.1, . . . , 2.5), λ4 = (0.01, 0.05, . . . , 4.5) to select the minimizer of the BIC

criterion defined in Eq. (5.6).

The results are summarized in Tables 5.1, 5.2, 5.3. Table 5.1 shows the selection frequencies

of fixed effects in longitudinal and survival submodels. The average selection frequencies of non-

zero elements are more than 98% under all scenarios. The average selection frequencies of zero

elements are around 5.6%. More specifically, when the sample size increases and the censoring

rate decreases, the selection frequencies of nonzero elements increase and the selection frequencies

of zero elements decreases. Table 5.2 presents the selection frequency of random effects in survival

submodels. The average rates of correct selection are approximately 96% for non-zero effects and

98% for zero effects. The selection frequencies of elements improve when the sample size increase

and the censoring rate decreases. Furthermore, the results of the selection frequency of elements

of variance-covariance matrix presented in Table 5.3 show that the average true positive is 95.9%

and the average true negative is around 99.7%. Overall, our proposed methods perform well under

those scenarios.
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Longitudinal submodel Survival submodel
Xi0 Xi1 Xi0 Xi1 Xi0 Xi1 t t t Xi0 Xi1

βi01 βi11 βi02 βi12 βi03 βi13 β11 β12 β13 γ00 γ01

Truth 1.5 2 0 1 1 0 0 1.2 -1.3 1 0
Scenario I 100 100 0 98 100 8 20 100 100 100 0
Scenario II 100 100 1 98 100 12 20 100 100 100 0
Scenario III 100 100 0 99 100 2 4 100 100 100 0
Scenario IV 100 100 5 100 100 5 12 100 100 100 0

Table 5.1: Selection frequency of fixed effects in longitudinal and survival submodels of Model I.

γI1 γI2 γI3
γI11 γI12 γI21 γI22 γI31 γI32

Truth 0 0 1.2 1.5 -2 1
Scenario I 1 96 92
Scenario II 5 90 90
Scenario III 0 100 100
Scenario IV 2 98 99

Table 5.2: Selection frequency of random effects in survival submodels of Model I.

True positive True negative
Scenario I 97.5 99.8
Scenario II 90.4 99
Scenario III 100 99.8
Scenario IV 95.8 100

Table 5.3: Selection frequency of variance-covariance matrix of Model I.
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5.4.2 Model II

We consider four scenarios:

• Scenario I: n = 200, r = 0.01

• Scenario II: n = 200, r = 0.05

• Scenario III: n = 300, r = 0.01

• Scenario IV: n = 300, r = 0.05

The average censoring percentage are around 20%, 30%, 20%, 30%, respectively. We run each

scenario over 100 simulations. The tuning parameter λ = {λ1, λ2, λ3, λ4} for each dataset de-

termined by searching from all sets constructed by candidate vectors λ1 = (0.1, . . . , 0.5), λ2 =

(0.02, . . . , 0.1), λ3 = (0.25, . . . , 0.75), λ4 = (0.1, . . . , 10) to select the minimizer of the BIC crite-

rion defined in Eq. (5.6).

The results using our proposed model - Model II and the un-penalized models in R package

joineRML are summarized in Tables 5.4, 5.5, 5.6. For joineRML model, we use p-values to select

the significant risk factors at the 0.05 significance level. Table 5.4 shows the selection frequencies

of fixed effects in longitudinal and survival submodels. The average selection frequencies of non-

zero elements are 99.5% for Model II while 98.5% for joineRML model. The average selection

frequency of zero elements of Model II is 2.8% while joineRML model is 2.5%. Table 5.5 presents

the selection frequency of random effects in survival submodels. Under all scenarios, Model II

selects correctly more than 99% for non-zero effects and 98% for zero effects while joineRML

model selects correctly more than 98% for non-zero effects and 96% for zero effects. Furthermore,

the results of the selection frequency of elements of variance-covariance matrix presented in Table

5.6 show that the average true positive of joineRML model is a bit better than Model II, but the

average true negative of joineRML model is much worse than Model II. Overall, our proposed

methods perform better than the un-penalized model in term of variable selection.
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Longitudinal submodel Survival submodel
Xi0 Xi1 Xi0 Xi1 Xi0 Xi1 t t t Xi0 Xi1

βi01 βi11 βi02 βi12 βi03 βi13 β11 β12 β13 γ00 γ01

Models Truth 1.5 2 0 1 1 0 0 1.2 -1.3 1 0

Model II

Scenario I 98 98 2 100 100 0 2 100 100 100 0
Scenario II 100 99 5 100 98 7 8 100 100 100 0
Scenario III 100 100 4 98 100 1 3 99 100 100 0
Scenario IV 100 100 4 96 100 5 4 100 100 100 0

joineRML

Scenario I 99 99 2 99 99 5 1 99 99 99 4
Scenario II 98 98 2 98 98 4 1 98 98 98 4
Scenario III 99 99 1 99 99 5 0 99 99 99 4
Scenario IV 98 98 1 98 98 3 1 98 98 98 3

Table 5.4: Selection frequency of fixed effects in longitudinal and survival submodels of Model II.

γII1 γII2 γII3

Models Truth 0 1.2 1

Model II

Scenario I 0 100 100
Scenario II 2 99 99
Scenario III 1 100 100
Scenario IV 1 100 99

joineRML

Scenario I 4 99 99
Scenario II 4 98 98
Scenario III 2 99 99
Scenario IV 2 98 98

Table 5.5: Selection frequency of random effects in survival submodels of Model II.

Models True positive True negative

Model II

Scenario I 92.8 99
Scenario II 88.4 99.6
Scenario III 94.3 99.8
Scenario IV 91.2 99

joineRML

Scenario I 99.7 9.6
Scenario II 99.6 10.2
Scenario III 100 11.7
Scenario IV 100 11.8

Table 5.6: Selection frequency of variance-covariance matrix of Model II.
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Figure 5.1: Histogram and Q-Q plot of serum bilirubin

5.5 Real-world case studies

We illustrate the use of the proposed methods by applying to the primary biliary cirrhosis

(PBC) dataset of 312 patients who were enrolled between January 1974 and May 1984 in Mayo

Clinic. The details of this dataset can be found in [122]. It is available in the R package joineRML

[115]. In short, PBC is a chronic liver disease in which the bile ducts in the liver are damaged,

which leads to cirrhosis and even mortality. Of 312 patients, n = 158 were randomized to receive

D-penicillamine and n = 154 were assigned a placebo. We analyze 304 patients after excluding

eight observations with missing values.

We investigate the relationship between longitudinal outcomes and survival time, and identify

important covariates that have significant effects upon longitudinal outcomes and survival time.

The survival time is the number of years between registration and the earlier of death, transplan-

tation, or study analysis time. We consider three longitudinal outcomes: serum bilirunbin, serum

albumin, and platelets.

Because the histogram of serum bilirubin is right skewed, log(serum bilirubin) is used before

integrating into the joint models. Moreover, the Q-Q plot for residuals using lme() function in

Figure 5.1 confirms that the log-transformation is reasonable. We model these three longitudi-
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Figure 5.2: Longitudinal trajectory plots

nal processes using a linear model with random intercept and slope. We include one continuous

variable - age (year) and one baseline binary variable - sex (1=male, 0=female).

Figure 5.2 displays all patients’ longitudinal trajectories against time (years) across died and

censoring status. They show the distinct differences between the general trends of these two co-

horts. For example, the general decreasing trend of platelets is much sharper in patients who died

than alive patients. This indicates the negative association between albumin and survival time in

which the lower level of albumin associates with survival time. Therefore, we include these three

longitudinal outcomes as potential risk factors. Therefore, we consider the joint models with the

following longitudinal and survival sub-models:

log(serBilir) = βi01agei + βi11sexi + (β01 + bi11) + (β11 + bi12)year + εi1k,

albumin = βi02agei + βi12sexi + (β02 + bi21) + (β12 + bi22)year + εi2k,

platelet = βi03agei + βi13sexi + (β03 + bi31) + (β13 + bi32)year + εi3k,

bi ∼ N6(0,D) and εijk ∼ N (0, ε2j) for j = 1, 2, 3

and
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• Model I:

hi(t) = h0(t)exp(γ00agei + γ01sexi + SR), where

SR = (γI11bi11 + γI12bi12) + (γI21bi21 + γI22bi22) + (γI31bi31 + γI31bi32)

• Model II:

hi(t) = h0(t)exp(γ00agei + γ01sexi + SR(t)), where t is year

SR(t) = γII1 (bi11 + bi12year) + γII2 (bi21 + bi22year) + γII3 (bi31 + bi32year)

The tuning parameters λ = {λ1, λ2, λ3, λ4} are determined by searching from all sets con-

structed by candidate vectors λ1 = (0.3, 0.35, 0.4), λ2 = (0.1, 0.15, 0.2), λ3 = (1.5, 2), λ4 =

(6.5, 7.5) to select the combination with the minimum BIC value. The results of the fitted model

for Model I at λ = {0.35, 0.1, 1.5, 7.5} are presented in Table 5.7 and those of Model II at

λ = {0.4, 0.2, 1.5, 7.5} are presented in Table 5.8. The fitted model results using joineRML is

also included in Table 5.8.

The results in Tables 5.7 and 5.8 show that all the models indeed give similar results. More

specifically, sex has no effect upon all longitudinal outcomes and the survival hazard rate in the

joineRML model, but it has positive association with the log serum bilirubin in our Model I and

Model II; clearly, the serum bilirubin is higher for female than male. In contrast, age has no effect

upon all longitudinal outcomes in Model I and Model II while it has negative association with the

trajectory of albumin in the joineRML model. In the survival submodel of all these three mod-

els, age has positive association with the survival hazard rate. In addition, the subject-specific

random deviation from the population trajectory of serum bilirubin has positive association with

the survival hazard rate of all models; clearly, the subject-specific increase from the general tra-

jectory of serum bilirubin has significant effect on the survival hazard rate. Moreover, Model II

and joineRML both select one more longitudinal outcome - albumin. The subject-specific ran-
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Parameter Estimate
βi01 0
βi11 0.704± 0.105
β01 0.824± 0.110
β11 0.051± 0.010
βi02 0
βi12 0
β02 3.910± 0.118
β12 −0.019± 0.001
βi03 0
βi13 0
β03 0.435± 0.081
β13 −0.072± 0.005
γ00 0.048± 0.002
γ01 0
γI1 (0.015, 0.009)± (0.002, 0.000)
γI2 0
γI3 0

Table 5.7: Results of the PBC data analysis of Model I.

Models Model II joineRML
Parameter Estimate Estimate p−value
βi01 0 −0.001± 0.006 0.919
βi11 0.704± 0.105 −0.171± 0.260 0.512
β01 0.824± 0.110 0.698± 0.418 0.095
β11 0.051± 0.010 0.153± 0.012 < 0.0001
βi02 0 −0.008± 0.002 0.001
βi12 0 −0.141± 0.081 0.082
β02 3.911± 0.120 4.027± 0.150 < 0.0001
β12 −0.019± 0.001 −0.096± 0.005 < 0.0001
βi03 0 −0.010± 0.006 0.079
βi13 0 0.294± 0.226 0.193
β03 0.435± 0.081 0.557± 0.394 0.157
β13 −0.072± 0.005 −0.130± 0.013 < 0.0001
γ00 0.046± 0.003 0.064± 0.016 < 0.0001
γ01 0 −0.268± 0.545 0.623
γII1 0.057± 0.005 0.799± 0.185 < 0.0001
γII2 −0.033± 0.001 −2.757± 0.629 < 0.0001
γII3 0 −0.299± 0.182 0.101

Table 5.8: Results of the PBC data analysis of Model II and joineRML.
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dom deviation from the population trajectory of albumin has negative association with the survival

hazard rate. Advanced age, high serum bilirubin level, and low serum albumin have been found

as prognostic factors in PBC in the literature and they were included in different mathematical

prognostic models of survival analysis on the PBC dataset [123, 124, 125, 122, 126, 127, 128, 129,

130, 131, 132]. Here, we have analyzed the PBC data with the reasonable sample size, 304 patients

with 1113 observations, and have considered only three longitudinal outcomes. Model II and join-

eRML, as we expected, give the same variable selection results. Moreover, their results are better

than Model I since three longitudinal trajectory functions simply include random intercepts and

slopes. When the longitudinal trajectory functions are more complex, models with time-dependent

association (Model II and joineRML) would be better choices at the cost of more intensive and

challenging computation.

In addition, regarding computational performance, we would like to mention that we use the

same tolerance values for joineRML and Model II. More specifically, for joineRML, we use its de-

fault setting except the number of burn-in iteration 400K with the number of longitudinal outcomes

K = 3 while for Model II, the search grid is set as described previously. The computation time of

running joineRML one time for the case study is about 20 minutes, whereas the computation time

of training our Model II is about 1.5 minutes on average for one set of lambdas and 54 minutes for

the whole search grid. However, in the studies where the number of training samples, the number

of longitudinal outcomes, or the number of longitudinal observations increases, the computational

burden of joineRML is much heavier than our penalized joint models, including Model II.
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6. CONCLUSIONS & FUTURE RESEARCH

High-dimensional, large-scale datasets are increasingly collected thanks to the advanced data

collection and storage capacities. To mine useful information from this flood of data requires novel

statistical models and computation methods. This thesis has introduced several models and tools

for estimation, identification and prediction in the context of penalized methods that have attracted

great attention in recent years.

In Chapter 3, the high-dimensional problems for survival data, in which P exceeds N , are

addressed. Introducing the additional structures into these problems especially group structures,

is natural for incorporating prior knowledge to achieve robust and interpretable survival models.

This chapter has presented three group selection methods for high-dimensional data with censor-

ing in the framework of the Cox’s proportional hazards model. The proposed methods have been

demonstrated in solving problems of both non-overlapping group and overlapping group cases.

The group-wise descent algorithms combining with the MM approach have been developed to

solve the corresponding optimization problems. Thanks to the MM approach, the proposed algo-

rithms have a proven descent property. Several computational tricks have been implemented to

speed up the group-wise descent algorithms, including the screening, active set, and warm-start

approaches. An open-access implementation can be found in our R package grpCox. The simula-

tion studies indicate that these methods perform well in term of variable selection. Moreover, the

group lasso enjoys its convexity but it tends to select a model that is more complicated than the un-

derlying model. It leads to relatively high false positive group selection rates. On the other hand,

the nonconvex penalties, including group SCAD and group MCP, show the promising grouped

variable selection results with oracle properties. We have analyzed the TCGA ovarian cancer data

and breast cancer data using available pathway information to construct gene groups. The selected

genes have been tested on independent ovarian cancer and breast cancer datasets. The results show

that the high and low risk groups are well separated. In other words, group SCAD and group MCP

methods are powerful alternatives to the group lasso Cox’s model for grouped variable selection.
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In Chapter 4, we propose the L1-regularized multi-state model framework for simultaneous

parameter estimation and variable selection using the L1-regularized partial likelihood approach.

We devise the one-step coordinate descent algorithm and use a local quadratic approximation of the

log-partial likelihood to solve the corresponding optimization problem, which can offer significant

improvement on the computational efficiency. Our proposed method demonstrates the state-of-

the-art performance in terms of identifying the significant risk factors comparing with the existing

regularized multi-state models in simulation studies. It also performs better at doing variable

selection and predicting the transition probabilities in cases with small sample sizes comparing

with the un-regularized approach in simulation and real-world cases.

Despite an increasing attention to the joint model of multivariate longitudinal and survival

data, there exists no variable selection tools to practitioners. In Chapter 5, we focus on developing

the penalized multivariate joint model framework to identify the important longitudinal outcomes

that have strong associations with the time-to-event outcome, and simultaneously select the rel-

evant covariates for both longitudinal and time-to-event outcomes of interest. In particular, we

propose penalized joint models that consist of different types of penalties for different association

structures. The estimation procedures based on Laplace approximation are used to tackle the high-

dimensional problem. From the simulations, we find that our proposed models perform well in

term of variable selection. The effectiveness of the proposed framework was also demonstrated for

the application of data of patients with a chronic liver disease.

Our works presented in this dissertation can be extended in many ways. Three group penalties

presented in Chapter 3 can be extended for more complicated time-varying models for both lon-

gitudinal and survival data analyses. In addition, we used a Cox model for each transition when

specifying the current multi-state models in Chapter 4, which can be extended to other types of

dynamic models for each transition. In Chapter 5, we have covered two different association struc-

tures between the longitudinal submodel and the time-to-event submodel; however, the association

structures might take different forms [109], or combination of multiple structures in which separate

longitudinal outcomes may have different forms [133]. The linear trajectories of the longitudinal
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outcomes can be extended to more general parametrized models, for example with different basis

function expansions, including splines, which often comes with additional requirements on both

computation and training sample size. Moreover, generalizing the longitudinal outcomes to the

generalized linear mixed effects framework to accommodate categorical and count data outcomes

is also desirable. Finally, our current models include only a single time-to-event time, it might be

of interest to extend to incorporate multi-state models that would provide more flexible multivari-

ate joint model framework. Last but not least, model selection often needs to be tied to the key

questions for the corresponding biomedical applications. The developed methods in this disserta-

tion may have addressed some of the challenges when analyzing longitudinal and survival data.

The aforementioned extensions have to be studied carefully based on different applications with

real-world considerations, in particular considering potential data quality and model uncertainty

issues.
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APPENDIX A

CHAPTER 3

A.1 Appendix 1

We have studied the statistical properties of the estimators: consistency and convergence rate

as follows.

The partial likelihood

`n(β) = − 1

n

D∑
i=1

[( J∑
j=1

X
(i)
j βj

)
− log

(∑
l∈Ri

exp
( J∑
j=1

X
(l)
j βj

))]
,

where the penalty term Pλ,γ(β) can be denoted as Pλn(β) since γ for group SCAD and group MCP

are fixed. Here, `n(β), λn denote the partial likelihood and tuning parameter changing with the

sample size n, respectively.

Let the true parameter be β0 =
(
βT01, β

T
02

)T where β01 consists of all nonzero groups and β02

consists of all remaining zero groups. The objective function is

Qn(β, λn) = `n(β0) + `
′

n(β0)T (β − β0) +
τ

2
(β − β0)T (β − β0) + Pλn(β).

Correspondingly, the minimizer of Qn(β, λn) is βn =
(
βTn1, β

T
n2

)T where βn = argmin
β

Qn(β, λn).

Define an = max{P ′λn(‖βj0‖) : ‖βj0‖ 6= 0} and bn = max{P ”
λn

(‖βj0‖) : ‖βj0‖ 6= 0}.

Theorem 1: (Consistency and convergence rate) If Pλn(‖β‖) simultaneously satisfies two con-

ditions: an = Op(n
−1/2) and bn → 0, then βn is a root-n consistent estimator for β0 with rate n−1/2,

i.e. ‖βn − β0‖ = Op(n
−1/2).
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Proof: According to Theorem 3.2 in [134] two results hold

−`′(β0)
p→ n−1/2N (0,Σ)

`”(β∗)
p→ nΣ for any random β∗

p→ β0

Then, `”(β∗) = n(Σ +Op(1)),

where Σ is the positive definite Fisher information matrix.

Consider a constant ball, B(C) = {β0 + αnu : ‖u‖ ≤ C} and its boundary ∂B(C) where C > 0

and αn = n−1/2 + an. Therefore, Op(αn) = Op(an) = Op(n
−1/2). To prove ‖βn − β0‖ =

Op(n
−1/2), it is sufficient to prove that for any ε > 0, there exists a large constant C such that

P
(

sup
β∈∂B(C)

Qn(β, λn) < Q(β0, λn)

)
≥ 1− ε. (A.1)

This implies that with probability at least 1 − ε (or goes to 1), Qn(β, λn) has a local minimum in

the ball B(C) for a given λn.

Denote Dn(u) = Qn(β, λn)−Q(β0, λn), we have

Dn(u) = `
′
(β0)T (β − β0) +

τ

2
(β − β0)T (β − β0) + Pλn(β)− Pλn(β0) = D1 +D2.

Consider that

D1 = `
′
(β0)T (β − β0) +

τ

2
(β − β0)T (β − β0)

= Op(n
−1/2)αnu +

τ

2
α2
nuTu

= Op(Cα
2
n) +Op(C

2α2
n).
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Consider D2 using Taylor expansion, we have

D2 = Pλn(β)− Pλn(β0)

=
∑
j

P
′

λn(‖βj0‖)(‖βj0 + αnuj‖ − ‖βj0‖) +
1

2
(‖βj0+

αnuj‖ − ‖βj0‖)T
(
P ”
λn(‖βj0‖)(‖βj0 + αnuj‖ − ‖βj0‖)

≤
∑
j

anαn‖uj‖+ bnα
2
n‖uj‖2

≤
∑
j

α2
nC + bnα

2
nC

2 = J(α2
nC + bnα

2
nC

2).

Because bn → 0, D2 → Op(Cα
2
n). By choosing a sufficiently large C, D1 dominates D2. Thus,

inequality (A.1) holds �.

A.2 Appendix 2

We present the simulation studies of the second cross-validation approach described in Section

2.7 to select the tuning parameters λ and evaluate its variable selection performance.

In Figure A.1, each dot represents the logarithm of the λ values along the solution path, and the

error bars provide the confidence intervals for the cross-validation log-partial-likelihood. The left

vertical bar indicates the maximum cross-validation partial-log-likelihood using the first method

[33] while the right one shows the maximum cross-validation log-partial-likelihood using the sec-

ond method [34].

We continue considering N = 100 observations and P = 400 covariates with 40 groups, each

with 10 elements. There are two non-zero groups. The coefficient magnitude |β| = 0.5, the values

of the population correlation ρ are 0, 0.2 and 0.5, the censoring rates are 0% and 20%. The results

are summarized in Tables A.1, A.2, and A.3. It can be seen that using the second cross-validation

method always results in smaller models than using the first cross-validation method. For group

lasso, it produces better variable selection results with much smaller FPR values. For group SCAD

and MCP, it often gives better results, but sometimes suppresses too much, e.g., in group MCP

case with 20% censoring, ρ = 0.5. Therefore, the second cross-validation method should be used
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Figure A.1: Plot of the cross-validation log-partial likelihood against the log of λ values along the
regularization path.
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with caution.

Censoring rate ρ First CV method Second CV method
Model size TPR FPR Model size TPR FPR

No censoring
0 95.8 1 0.19 30 1 0.02

0.2 79.5 1 0.15 20 1 0
0.5 119.6 1 0.26 30 1 0.02

20% censoring
0 102 1 0.21 33.2 1 0.03

0.2 94.1 1 0.19 25.1 1 0.01
0.5 122.6 1 0.27 32.2 1 0.03

Table A.1: Results for group lasso using different cross-validation methods to select hyperparam-
eters over 100 replications.

Censoring rate ρ First CV method Second CV method
Model size TPR FPR Model size TPR FPR

No censoring
0 20 1 0 20 1 0

0.2 40 1 0.05 39 1 0.04
0.5 58.1 1 0.10 23.1 1 0.01

20% censoring
0 80 1 0.15 30.9 1 0.02

0.2 40.4 1 0.05 29.7 1 0.02
0.5 83.7 1 0.17 27.6 0.91 0.02

Table A.2: Results for group SCAD using different cross-validation methods to select hyperpa-
rameters over 100 replications.

A.3 Appendix 3

We present additional settings: settings with a large number of overlapping covariates and the

number of zero groups being more than the number of non-zero groups. More specifically, we have

performed an additional experiment using the simulated data with N = 100, P = 55, in which

there are 10 groups of size 10 and 50% covariates overlap between two successive groups. The

140



Censoring rate ρ First CV method Second CV method
Model size TPR FPR Model size TPR FPR

No censoring
0 20 1 0 20 1 0

0.2 20 1 0 20 1 0
0.5 20.4 1 0.00 19.5 0.98 0

20% censoring
0 29.5 1 0.02 20 1 0

0.2 32 1 0.03 20 1 0
0.5 36.9 1 0.04 16.2 0.65 0.01

Table A.3: Results for group MCP using different cross-validation methods to select hyperparam-
eters over 100 replications.

“correct” underlying group structure is given by

1, . . . , 10︸ ︷︷ ︸
group1

6, . . . , 15︸ ︷︷ ︸
group2

11, . . . , 20︸ ︷︷ ︸
group3

16, . . . , 25︸ ︷︷ ︸
group4

21, . . . , 30︸ ︷︷ ︸
group5

26, . . . , 35︸ ︷︷ ︸
group6

31, . . . , 40︸ ︷︷ ︸
group7

36, . . . , 45︸ ︷︷ ︸
group8

41, . . . , 50︸ ︷︷ ︸
group9

46, . . . , 55︸ ︷︷ ︸
group10

.

We set the population correlation ρ = 0.5 with 30% censoring rate. The corresponding coefficients

are

0, . . . , 0︸ ︷︷ ︸
group1−2

0, 0, 0, 0, 0, 1.5, 0, 0,−2, 0︸ ︷︷ ︸
group3

1.5, 0, 0,−2, 0, 0, 0, 0, 0, 0︸ ︷︷ ︸
group4

0, . . . , 0︸ ︷︷ ︸
group5−6

0, 0, 0, 0, 0, 1.4, 0, 0, 0, 1.8︸ ︷︷ ︸
group7

1.4, 0, 0, 0, 1.8, 0, 0, 0, 0, 0︸ ︷︷ ︸
group8

0, . . . , 0︸ ︷︷ ︸
group9−10

.

Then we consider four setups with the misspecified group structures for inference. In the first

setup, the number of groups are incorrect because the overlapping groups are collapsed as follows:

1, . . . , 10︸ ︷︷ ︸
group1

6, . . . , 15︸ ︷︷ ︸
group2

11, . . . , 25︸ ︷︷ ︸
group3

21, . . . , 30︸ ︷︷ ︸
group4

26, . . . , 35︸ ︷︷ ︸
group5

31, . . . , 45︸ ︷︷ ︸
group6

41, . . . , 50︸ ︷︷ ︸
group7

46, . . . , 55︸ ︷︷ ︸
group8

.
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In the second setup, the misspecified group structure deviates from the ground truth more signifi-

cantly will all the overlapping covariates put into one group:

1, 3, 5, 7, 9, 11, 13, 15︸ ︷︷ ︸
group1

2, 4, . . . , 12, 14, 16, 17, 18, 19, 20, 21, 22︸ ︷︷ ︸
group2

16, . . . , 25︸ ︷︷ ︸
group3

21, . . . , 30︸ ︷︷ ︸
group4

26, . . . , 35︸ ︷︷ ︸
group5

31, . . . , 45︸ ︷︷ ︸
group6

41, . . . , 50︸ ︷︷ ︸
group7

46, . . . , 55︸ ︷︷ ︸
group8

.

Similar as the first setup, the third and fourth setups are defined as follows:

1, . . . , 20︸ ︷︷ ︸
group1

16, . . . , 25︸ ︷︷ ︸
group2

21, . . . , 30︸ ︷︷ ︸
group3

26, . . . , 35︸ ︷︷ ︸
group4

31, . . . , 45︸ ︷︷ ︸
group5

41, . . . , 50︸ ︷︷ ︸
group6

46, . . . , 55︸ ︷︷ ︸
group7

and

1, . . . , 10︸ ︷︷ ︸
group1

6, . . . , 20︸ ︷︷ ︸
group2

16, . . . , 25︸ ︷︷ ︸
group3

21, . . . , 30︸ ︷︷ ︸
group4

26, . . . , 40︸ ︷︷ ︸
group5

36, . . . , 45︸ ︷︷ ︸
group6

41, . . . , 50︸ ︷︷ ︸
group7

46, . . . , 55︸ ︷︷ ︸
group8

The results shown in Table A.4 confirm our expectation: the setup with the collapsed groups

including several non-zero (active) groups produces worse results than the cases with the collapsed

groups with none or only one non-zero group. More clearly, the first setup in the table including

two collapsed groups (group3 and group5), where each of them consists of two non-zero groups,

has the worst variable selection performance. Both the second and third misspecification setups

including only one group (group5) that is collapsed from two non-zero groups have almost the same

performance, better than the first misspecification setup. The fourth mispecification setup with no

misspecified group collapsed from two non-zero groups has the best performance. We hypothesize

that the probability of variables being incorrectly selected increases due to the ignorance of the

overlapping property of active elements in the collapsed groups and the larger group sizes of these

collapsed groups. In other words, FPR increases and then corresponding RMSE increases.
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TPR FPR Model size RMSE
truth 4

Correct Group lasso 1 0.70 40 0.24
specification Group SCAD 1 0.52 31 0.14

Group MCP 1 0.35 22.2 0.12
truth 4

First Group lasso 1 0.71 40.5 0.26
misspecification Group SCAD 1 0.53 31.2 0.14

Group MCP 1 0.50 29.3 0.15
truth 4

Second Group lasso 1 0.71 40.3 0.26
misspecification Group SCAD 1 0.50 29 0.13

Group MCP 1 0.40 25 0.13
truth 4

Third Group lasso 1 0.70 40.2 0.26
misspecification Group SCAD 1 0.50 29.5 0.13

Group MCP 1 0.41 25.6 0.13
truth 4

Fourth Group lasso 1 0.75 42.2 0.25
misspecification Group SCAD 1 0.42 26 0.12

Group MCP 1 0.35 21.9 0.12

Table A.4: Results for misspecified group structures over 100 replications.
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