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ABSTRACT 

Unconventional oil and gas reservoirs have low recovery rates and to increase 

productivity, hydraulic fracturing is used. Hydraulic fracturing allows increased flow of 

oil and gas to the well. The extended production from these reservoirs and the economic 

value of the well is controlled by certain qualities of the reservoir and the hydraulic 

fractures. A sensitivity analysis allows us to understand how various petrophysical and 

completion factors affect cumulative production from these fractures. By understanding 

which factors affect production, we can optimize completions to enhance productivity 

further. The simulation model used for this study is a single fracture well. A compositional 

equation of state (multi-component multi-phase) fluid transport reservoir simulator is 

used. The reservoir model considers the matrix consisting of organic and inorganic 

components, the fracture is imbedded into this matrix as a discreet feature describing a 

discontinuity. The matrix porosity is made of organic nanopores and inorganic stress-

dependent cracks. The experimentation on the sensitivity is split into two phases, where 

phase 1 is a 15 variable fractional factorial design of experiment model with a resolution 

4 and phase 2 is a refined experiment using the top 10 variables from the 1st phase based 

on Central Composite Design of experiment. The cumulative production was noted after 

1 and 3 years of production. From the results, it was found that the maximum confining 

stress needed to close the inorganic microcracks completely, the parameter indicating the 

resistance of microcracks to close, and the fracture geometry (more precisely the fracture 

half-length) were the most influential. These effects amplify over time during the 
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production.   Operationally, the bottom hole pressure is identified the most important 

wellbore condition with potential to affect the cumulative production.  
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DOE Design of Experiments 
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1. INTRODUCTION  

 

1.1. The World of Shale 

The United States of America became independent in 1776, however, the country’s 

energy independence came only in the early 2010’s. This revolution was led by a rock 

known as shale. Shale rocks have been around forever but were always looked at as being 

the source rock for conventional reservoirs without any economic value as a resource. This 

changed with advances in technology and the oil industry never looked back. The source 

rock had become the reservoir using a new technique called hydraulic fracturing (Hughes 

2013). According to the USGS, “Hydraulic fracturing is the process of injecting water, 

sand, and chemicals under high pressure into a low permeability bedrock formation”. This 

well development process single handedly changed how people perceived the oil and gas 

industry and ushered in a new era of prosperity for millions of Americans. 

Hydraulic fracturing helps create a complex network of fractures in an otherwise 

low permeability formation (Holditch 2007). These fractures are interconnected with the 

well and facilitate the flow of hydrocarbons and increase production. Even still, the 

recovery factor from these shale oil and gas wells is very low. The average recovery factor 

for a shale oil well ranges from %10 to %20 (Gherabati, Hammes et al. 2018). This has 

been a cause of concern for the petroleum engineers since it is much lower than that of the 

conventional reservoirs. To understand the recovery from unconventional resources one 

needs to study production as a function of various hydraulic fracture and reservoir matrix 

parameters and consider their impact on the short and long-term production trends.  
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To understand why shale wells, have such low recovery factors, we need to dig 

deeper and discuss the mechanisms of fluid storage and transport within the shale rock 

matrix. 

1.2. Shale Matrix Structure 

The shale rock matrix has been characterized by a few different researchers. They 

have come up with the idea that the matrix is comprised of three different continua namely 

the inorganic component of the matrix, the organic component of the matrix, and the 

fractures embedded into the matrix. The inorganic material makes up most of the matrix 

body, consists of materials such as quartz, feldspars, carbonate, dolomite, clays, pyrite. 

While the organic matrix, consisting of the kerogen appears as the dispersed solid phase 

within the inorganic matrix. In certain source rock, in addition to kerogen, the matrix may 

include bitumen either in the solid or liquid form. Kerogen and solid bitumen maintain 

their own network of pores, which are typically small (< 1micrometer scale). The natural 

fractures and micro-cracks improve accessibility to these small pores. 

An example showing the organic pores including the network of small pores and 

capillaries can be seen in the figure 1 below obtained using a focused ion beam scanning 

electron microscope (SEM) for a Barnett shale sample (Ambrose, Hartman et al. 2012). 
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Figure 1: Dispersion of organic matter within the matrix 
 

1.3. Gas Storage in Shales 

In shale gas reservoirs, the gas can be stored in a variety of different forms 

ranging from free gas within the matrix, or as adsorbed gas found on the surfaces of the 

matrix pore network (Guo, Hu et al. 2017). The free gas storage in shales depends on the 

pore volume, while the adsorbed gas storage is dependent on the surface area of the 

pores in the shale (Tang, Jiang et al. 2016). 

1.4. Stress-Dependent Permeability 

The permeability of the shale matrix generally varies with the effective stress. This 

phenomenon was addressed by experimental tests, which indicated that the shale matrix 

permeability is stress sensitive (Akkutlu and Fathi 2012). There are several models 

developed for stress-dependent permeability in shale, however for my research I used the 

model introduced by Gangi as it considers micro-cracks as the major flow path of the 
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unconventional rocks (Gangi 1978). This is important as shales tend to be brittle and 

inherently rich in micro-cracks. 

The “bed of nails” concept introduced by Gangi assumes the distribution of shape-

height is a power law function, essentially meaning that the various shapes of the crack 

including conical, hemispherical, etc. could be treated alike (Gangi 1978).  

The model equation is shown below: 

�� = �� �� − �
������ − ���

��
 �

�

�

�

 

Here, �� is the permeability of the inorganic matrix and �� is the maximum stress 

when the crack closes completely. The value of m is dependent on the shape of the crack 

and the numerator defines the effective stress. This phenomenon has been described in the 

figure 2 below. 
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Figure 2: Gangi's Bed of Nails for modeling permeability of fractures. This model is 

applied as permeability model for brittle shale samples. 

 

1.5. Shale Gas Transport Mechanism 

In shales with lower formation permeability as in the order of 1 nD, it was found 

that molecular diffusion has a significant effect on gas transport (Akkutlu and Fathi 2012). 

A mathematical model was introduced governing multiscale transport in organic-rich 

shale which takes into consideration the dual-porosity continua of organic and inorganic 

matrices and including the molecular and surface diffusion effects (Akkutlu and Fathi 

2012). During experimentation, flow regimes changed from a parabolic velocity profile to 

one of uniform velocity for gas flow in organic capillaries with sizes below 100 nm 

(Akkutlu and Fathi 2012). 
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A new permeability model describing shale gas transport with adsorption and 

diffusion in the organic round pores and diffusion and convection in the micro cracks was 

introduced (Wasaki and Akkutlu 2015). Shown below is the equation based on the 

convective-diffusive-adsorptive mass flux for apparent permeability representing the 

overall gas transport: 

���� = �� + ����� + ��
�����������

���

��

(� + ��)�
� � 

Here, ��  is the stress-dependent permeability of the shale, �����  is the free gas 

pore diffusion term and the last term is the adsorbed phase transport in the organic pores. 

��� considers the organic volume over the total volume, while ��� ��� �� are the 

Langmuir parameter for the adsorbed gas. The diffusion coefficients �  (free gas) and �� 

(adsorbed gas) are related to the composition making up the gas mixture in the kerogen 

nanopores. 

For binary mixtures, the Maxwell-Stefan diffusion model is one which is used 

commonly. The advective-diffusive transport in organic-rich shales with multiple HC 

components was studied with consideration of its pressure-dependence (Olorode, Akkutlu 

et al. 2017). For a chemical species such as methane, the Maxwell-Stefan diffusion model 

equation is introduced below in terms of diffusive flux, J. 

� = −� � ������ 

Here, c is the concentration, � is the drag matrix, � is the thermodynamic factor 

and �� is the mole fraction of the gas. 
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It has been studied that the fluid composition in the reservoir conditions at initial 

conditions is not the same as the fluid produced at the surface due to adsorption and Nano-

confinement effects (Akkutlu, Baek et al. 2017, Bui and Akkutlu 2017). It was further 

studied that with a decreasing pore size, the apparent molecular weight of the hydrocarbon 

mixture gets heavier due to nano-confinement effects (Bui and Akkutlu 2017). 

To evaluate hydrocarbon volumes in place more accurately, a new concept of fluid 

redistribution based on molecular simulation of fluids under confinement was introduced 

(Bui and Akkutlu 2017). This concept investigated the distribution of hydrocarbon 

mixtures in organic nanopores. From the study, it was concluded that pore size, pressure 

and temperature affect the composition of these hydrocarbon mixtures (Bui and Akkutlu 

2017). This concept helps in providing us with a better idea of the composition of the 

hydrocarbon fluids initially in place based on measured pore size distribution in the 

formation. 

 

Figure 3: Nanoconfinement Effect 
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The redistribution partitions the hydrocarbon mixtures into 3 main categories. The 

smallest organic nanopores, which are just a few nanometers in diameter, contain trapped 

hydrocarbons, the larger organic nanopores contain the producible hydrocarbons and the 

bulk hydrocarbons are stored in the large organic or inorganic pores. In this concept, two 

pore-size cut-off sizes are introduced. The first being the large pore threshold, ε, above 

which the hydrocarbon fluid acts as a bulk phase with its own bulk phase composition and 

the second being the trapped hydrocarbon cut-off, below which hydrocarbons recovery is 

significantly more difficult due to nano-scale confinement effect (Bui and Akkutlu 2017). 

This has been shown in the figure 4 below: 

 

Figure 4: Hydrocarbon distribution partition (Akkutlu, Baek et al. 2017) 
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1.6. The problem 

The dynamics of production from shale oil/gas reservoirs are the least understood 

ones and most difficult to predict. These reservoirs have a relatively low recovery factor. 

It is highly practical and economically important that we understand what factors affect 

the oil and gas production from shale wells. Therefore, I have conducted my studies using 

a method called design of experiments. This method has helped me perform a sensitivity 

analysis to find out what are the most important factors for oil production. This study will 

help us to optimize the well completion parameters and hopefully increase oil production 

by giving us fresh insight. The analysis takes into consideration the geo-mechanical 

deformation of the matrix and the hydraulic fractures, using an in-house compositional 

reservoir simulator that couples geomechanics: NaSh. The screening for the variables will 

be based on the estimated weighting factor for each variable and their interactions with 

one another. I will be measuring the changes in the variable sensitivities after 1 and 3 years 

of cumulative gas production and understand the relationship of the weighting factors over 

time. I will apply two methods and compare: (1) fractional factorial design method, and 

(2) central composite design method. 

1.7. Target Goal 

The main aim of this research is to find the reservoir (fracture + matrix) parameters 

which have the greatest effect on cumulative gas production during for an unconventional 

well. This will help us understand which parameters are needed to be optimized to 

optimize the production system and achieve the highest recovery from shale oil wells.  
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1.8. Literature Survey 

Design of experiments has been used for a variety of applications in the oil and gas 

industry. More recently it has been implemented for designing simulation runs to 

understand and characterize the behavior of various systems (Gurav, Dandekar et al. 

2019). The applications seen range from optimizing well pattern to that of evaluating 

petrophysical properties. These applications have generally been utilized in response to a 

cost measure or oil production over time. 

In 1993, a hydraulic fracture design was optimized using a three-dimensional 

hydraulic fracturing model in conjunction with a fractured reservoir production model 

(Hareland, Rampersad et al. 1993). The NPV was the response for fracture length and 

fracturing fluid pump rate. The method was accurately able to predict the net revenue and 

a relation between the NPV and fracture size was seen. However, increased fracture sizes 

led to higher costs as well (Hareland, Rampersad et al. 1993). 

In 1999, high permeability fracture modelling was able to give an insight into the 

optimum width for each fracture length by optimizing the expected well performance 

(Aggour and Economides 1999). The paper suggests that the degree of damage is 

secondary if the fracturing fluid invasion is minimized. Concluding that severe 

permeability impairments can be tolerated if leak-off penetration is small (Aggour and 

Economides 1999). 

In 2008, design of experiments was used for history matching of field production 

data to compute estimated reserves while minimizing the simulation effort (Gupta, 

Collinson et al. 2008). The authors have presented a four-stage process for history 
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matching using the design of experiments framework, starting with identifying the 

uncertain parameters and the history matching parameters. This was followed by design 

generation. The third step specified models and the response surface was calculated. 

Finally, the history matching parameters were predicted and goodness of each model was 

measured. This methodology presented quantifies the probability for each scenario based 

on history matching parameters and is fast and efficient from trial and error (Gupta, 

Collinson et al. 2008). 

In 2014, design of experiments was used to evaluate the economics for an 

unconventional resource play. A D-optimal design table has been used to evaluate the 

impact of various parameters to the project economic measures (Chidi, Xie et al. 2014). 

An interesting result showed that early production metrics might be affected by drilling 

and completion times however other factors have a greater impact on net present value 

(Chidi, Xie et al. 2014). 

In 2019, design of experiments was utilized to design simulation runs using 

parameters such as well type, horizontal well length, well pattern geometry to calculate 

oil recovery and estimating a well cost for each simulation case (Gurav, Dandekar et al. 

2019). The mathematical model used maximized oil recovery and minimized well cost 

based on Response Surface Methodology. This helped in achieving the optimum 

combinations of variables in turn to ensure optimum oil recovery and provide insights into 

developing fields more efficiently (Gurav, Dandekar et al. 2019). 

In 2020, design of experiment was used to estimate the oil initially in place (OIIP) 

by understanding the effects of the petrophysical factors on OIIP (Essien and Akpabio 
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2020). Monte Carlo simulations were run, and design of experiments was applied using 

MS Excel and Minitab software and presented in the form of sensitivity indices and 

tornado plots. Using design of experiments, the authors concluded that porosity has the 

highest effect on OIIP, followed by oil saturation and pay thickness (Essien and Akpabio 

2020). 

In 2020, design of experiments was performed for the basis of analyzing hydraulic 

fracturing of gas wells. The study looked into the influence of hydraulic fracturing 

parameters on well productivity optimizing well production while minimizing cost 

(Baioco, Jacob et al. 2020). Various properties such as proppant properties, fracture fluid 

properties, formation properties, well properties and cost properties have been taken into 

consideration. The sampling for the data has been performed using a Latin hypercube 

followed by application of design of Experiments (Baioco, Jacob et al. 2020).  
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2. DESIGN OF EXPERIMENTS 

 

2.1. What is Design of Experiment? 

According to the American Society for Quality, design of experiment (DOE) is a 

branch of applied statistics that deals with planning, conducting, analyzing, and 

interpreting controlled tests to evaluate the factors that control the value of a parameter.  

The aim of DOE is to identify the set of process factors being most relevant to the 

process performance and to determine the optimal factor levels to maximize performance 

providing a powerful and cost-effective method for understanding and optimizing 

processes (Freiesleben, Keim et al. 2020)  

DOE has originated from the work of R. A. Fisher in the early 20th Century. Mr. 

Fisher was able to demonstrate that before trying an experiment, it was important to 

consider the design and execution of the experiment. He came up with 3 important 

principles for conducting experiments (Fisher 1936):  

 Replication 

In real life, experiments should be repeated with different experimental units to 

estimate the experimental error. The experimental unit is the physical entity 

assigned at random to a treatment. 

 Randomization 

The order in which the responses are measured should be randomized to generate 

an unwanted systematic effect. 
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 Blocking 

To eliminate unwanted, block to block variation, the experiments are arranged in 

blocks grouped of homogenous experimental units. A block is a combination of 

experimental treatments such that any effects on the experimental results due to a 

known change in operators, machines, etc. become concentrated. 

As more experiments are performed, more data is generated, which helps us to 

characterize the system better. However, running these experiments becomes expensive 

over time. 

2.2. Why the Design of Experiments? 

There are multiple methods for initiating experiments and applying sensitivity 

analysis such as Machine Learning and OFAT. 

OFAT stands for One Factor at a Time, commonly used in Engineering. OFAT is 

applied to find an optimum setting of a variable by continuous change. However, the 

advantage of DOE over OFAT is that one can characterize not only the main effects but 

also the interaction effects between the variables (Wahid and Nadir 2013). 

Machine Learning is a methodological approach to solve complicated 

optimizations problems based on abundant data. Both DOE and Machine Learning are 

concerned with data analysis and application of statistics. DOE is decidedly a human-

centered methodology where the engineer applies his knowledge to select the factors to 

be examined, sets the level values for the factors, and conducts the experiments. However, 
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Machine Learning is nonhuman and automatically detects patterns in data (Freiesleben, 

Keim et al. 2020) 

2.3. Main Effects 

These are the effects caused by the variables individually on the response variable 

and are generally the more important than the interaction effects. Any changes in the 

values of the variables are called main effects to the experiment (Fisher 1936). 

2.4. Interaction Effects 

Many important phenomena depend on the interaction effects of various variables, 

not only on the operation of one. An interaction effect is the simultaneous effect of two or 

more independent variables on at least one dependent variable in which their joint effect 

is significantly greater (or significantly less) than the sum of the parts (Hicks 1964). 

2.5. Factorial Design 

A factorial design refers to exploring all possible combination of the factors and 

their levels. The advantage of using a factorial design is that they can estimate the 

interaction effects while not missing the optimal setting. Different classes of problems 

such as Nominal-The-Better (NTB), Larger-The-Better (LTB) and Smaller-The-Better 

(STB) have different procedures to obtain optimize results using factorial design. Through 

our experimentation, our aim has been to maximize the shale well gas production, 

therefore modelling a Larger-The-Better problem.  

The procedure for an LTB problem is: 

 Select the levels of factors to maximize the target variable 
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 Select the levels of the factors that are not used in the 1st step to minimize 

the target variable. 

Let us take an example of a 2-level, 2-factor full factorial design. Here, we are 

going to represent the low factor value with a ‘-’ and the high factor value with a ‘+’. The 

low factor value is a minimum value at which we would like to evaluate the relationship 

of the factor to the response, while the high factor value is the maximum. Coding the 

variable according to the factors, we attain a level ‘-1’ and ‘+1’. So, to calculate the 

mileage of a car, we need to know the amount of gas it uses, and we need to know the time 

we drove it for. We have taken 4 points, which can be seen in Figure 6, with a different 

level combination at each point. 

In Figure 5, the low factor value for gas is 1 Gallon and high factor value is 5 

Gallons. The low factor value for time is 30 minutes, while the high factor value is 1 hour. 

Our response variable is the mileage. The inference we are trying to draw from this 

experiment is that we want to observe if the amount of gas in the car affects the mileage 

of the car. Maybe, having less fuel in the tank might help getting us a better mileage. This 

is an example of how the design of experiments might help us answering some questions 

in our day-to-day life. 
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Figure 5: Design Table 
 

 

 

Figure 6: Experimental Design 
 

2.6. Understanding and Calculating Factorial Effects 

The effect of a factor is the change in the level of the factor causing a change in 

the response variable. The effect caused by a factor itself is called a main effect. While the 

effect caused by an interaction is called an interaction effect.  
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Through the viewpoint of my thesis, I have used Least Squares Estimation to 

understand the factorial effects for a linear regression model. For example, using the car 

mileage experiment from before, the linear regression model would look like this: 

� = �� + ���� + ���� + �������+ ∈ 

where, i is the weighting factor for a variable to the response variable. The last 

term (12) signifies the interaction effect caused by the variables 1 and 2. 

2.7. Fractional Factorial Effects 

This is a common method used when the number of variables to study is large. For 

example, for an experiment with a 2-level design and 20 variables, the effects would 

number up to more than a million. A dilemma most experimental investigators face is the 

need to examine all combination of design factors when there are not enough resources to 

do so (Gunst and Mason 2009). Therefore, fractional factorial designs are of immense 

value. These designs make use of known properties to selectively reduce the size of an 

experiment while limiting the trade-off of critical information (Gunst and Mason 2009). 

This helps us make an economic use of our resources, identify the critical factors of our 

experiment, and manage the knowledge gains from our learnings.  

2.7.1. Aliasing of Effects 

This is one of the major drawbacks of the fractional design. When multiple 

columns of a design matrix correspond to each other, the effects are known to be 

‘aliased’ with each other (Fisher 1937). This leads to problem where the magnitude 

of one effect cannot be differentiated from the other effect. These are called  
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Figure 7: Fractional Factorial Design Table 
 

confounded effects, and in such a situation no unique solution is present to 

estimate all the effects.  

Therefore, we can assume to neglect these other effects to understand the effects 

we require to study. 

As we see in Figure 7, for a 3-factor design, we are accounting for three main 

effects and four interaction effects. However, since we do not have a full factorial design, 

there is aliasing of the effects. As we see from the columns, that A = BC, B = AC and C 

= AB. Therefore, the effects of the main effect A are confounded with the interaction effect 

BC. 

2.7.2. Effects to Neglect? 

So, how do we decide which effects to neglect? And what is the rationale 

behind them? This is understood by three additional principles: 
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 Hierarchical Ordering, the lower order effects are more likely to be 

important than higher order ones, and effects on the same order are 

likely equally important. 

 Effect Sparsity, number of relatively important effects is small. 

 Effect Heredity, if a parent factor is significant, then it is possible 

for an interaction effect to be significant. 

2.8. Design Generation 

Generally, while generating a fractional factorial design, it is advisable that the 

main effects and the 2-factor interactions be estimated, while any higher order interactions 

neglected. An equation based on which the design is generated is called the Generator or 

the Defining Relationship of the design (Shah, Kulkarni et al. 2000). This equation is 

derived from the highest order interaction term and used to segregate the design. For 

example, for a 3-factor design, the equation can be I = ABC. In this equation, ABC is the 

Defining Word of the design. 

2.9. Design Resolution 

To understand the resolution of a design, we make use of the Defining Word 

Length. The Defining Word Length is the number of letters in the Defining Word 

introduced in the previous subpoint (Shah, Kulkarni et al. 2000). 

From this defining word length, The Design Resolution is the smallest word length 

of the defining words associated with this design. The resolution benchmarks the 

capability in estimating the factorial effects. 
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For example, a resolution 3 design, has the smallest word length (I = ABC) as 3. 

While for a resolution 5 design, the word length (I = ABCDE) is 5. A higher resolution 

design leads to a clearer and better design. Shown in figure 8, is a design resolution 

evaluation table. It defines the resolution for a 2-level design for several factors and the 

required simulations respectively. 

It is recommended to generally use a design with a resolution of more than 5, since 

the main effects and the 2-factor interactions are cleared from each other and are only 

aliased with 3-factor or higher order interactions. 
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Figure 8: Design Resolution Table 
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Figure 8 has been obtained using a software called Minitab which is a command 

and menu driven statistical analysis package. Minitab helps analyzing results and examine 

data to make predictions from a variety of methods (Minitab 2013). 

2.9.1. Clear Effects 

A main effect or 2-factor interaction is cleared if none of its aliases are 

confounded with a main effect or a 2-factor interaction. 

2.9.2. Strongly Clear Effects 

A main effect or 2-factor interaction is strongly cleared if none of its aliases 

are confounded with a main effect, 2-factor interaction, or a 3-factor interaction. 

2.10. Central Composite Design (CCD) 

CCD is the most common technique to estimate a full second order model. It uses 

the 2-level factorial design and combines it with center points and twice the amount of 

factor star points. A second order model here is defined as a linear model with interactions 

summed with the quadratic terms. The star points help in the estimation of the curvature 

and signify the extreme values for a factor (Asghar, Abdul Raman et al. 2014). The 

distance of these star points from the center points is given by α (alpha), which is generally 

greater than 1. The value of alpha is generally calculated to be the root value of the number 

of factors (k). 

The center points on the other hand are dependent on the required properties from 

the experiment. As though for a simulation, where they will provide the same values, 1 

center point will suffice. The figure 9 below describes how the CCD experiment is setup, 

one can see the star points referred before at distance of root 2 from the center. 
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Figure 9: Central Composite Design example with the star points 
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3. METHODOLOGY 

 

3.1. Least Squares Estimation 

For linear regression models of the form: 

� = �� +  ���� + ���� + ⋯+ ���� 

We are generally provided the y and x values. Our aim is to find out further about 

the weight component β. To understand β, we use the method of least square estimation, 

where the squared error of the prediction is minimized. For all N observations, we get: 

� = �� 

The difference between the observed values with the predicted values is the 

prediction error and the least squares tries to minimize the sum of these errors. 

For � being the matrix containing the values of � and � being the matrix 

containing all the values of �, the β can be obtained by: 

� = (���)����� 

3.2. Least Squares Estimation for Effect Estimation 

For cases of design of experiments, to utilize the LSE for effect estimation, we 

make use of switching variables. These variables only take the value of 1 or 0, indicating 

whether the variable is active or not. Therefore, the total number of switching variables 

available should be the sum of the level values of the factors included in an experiment. 
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3.3. Factorial Effects and Plots 

A factorial effect is defined as the change in the response produced by a change in 

the level on that the factor or interaction, averaged over the levels of the other factors. 

Main effect is the effect of a factor itself; it is given by: 

��(�)= ��(� = +)− ��(� = −) 

In the equation above, Z is the value of the response variable, and ��(� = +) is the 

average of the response variable when main effect A is switched on, and vice versa. 

Similarly, the interaction effect is given by: 

���(��)= ��(�� = +)− ��(�� = −) 

3.4. LSE Estimate for Factorial Effects 

To compute the factorial effects using LSE, we assume a regression model to use. 

For a 2-factor experiment, where we would like to estimate the main and interaction 

effects, we would use the following model: 

� = �� +  ���� + ���� + �������  

Where, the second and third term on the right are the main effects, while the last 

term is the interaction effect. We use a vector-matrix format to solve the equations: 

 

Figure 10: Example Design Matrix 
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Here we have the design matrix, and will write this in a matrix form: 

 

Figure 11: Design Matrix in Matrix Form 
 

3.5. Response Surface Methodology 

For the 2-level designs, only the linear effect can be studied from the response 

surface. In the figure below, one can see that by only having 2 levels for a variable, only 

a linear response can be obtained. 

 

Figure 12: Level Estimation 
 

Therefore, to check for curvature we need to have a few quadratic terms in the 

model and maybe have more than 2 levels. 

Response surface methodology is a sequential strategy to use a simple model to 

represent the response surface and investigate the entire surface. RSM is used for 

complicated problems as it is difficult to use a second order model alone to represent a  
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Figure 13: Response Surface 
 

response in the entire design.  

RSM consists of a group of mathematical and statistical techniques used in the 

development of an adequate functional relationship between the response of interest and 

a number of associated control variables (Khuri and Mukhopadhyay 2010). In figure 13 

above, this technique has been shown very elegantly and presents how multiple iterations 

work to find the optimal point. 

3.6. Compositional Reservoir Flow Simulation 

The simulator used for this study is a multi-component multi-phase fluid transport 

reservoir simulator. The simulator considers the organic matrix in the continuum and 

hydraulic fractures as discontinuous. It is assumed that the organic matrix is surrounded 

by the inorganic matrix and for the hydrocarbons to be transported through the matrix, 

they need to move through the inorganic matrix. The simulator predicts the pressure and 

composition dependence based on the Maxwell-Stefan diffusion theory. The partial 
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differential equations are discretized using the control volume finite element method in 

space and the temporal discretization is make done using a fully implicit backward Euler 

scheme. 

A multi-component heavy gas mixture has been used for our experimentation 

consisting of methane, ethane, propane, butane, and pentane representing a higher specific 

gravity. 

 

Model fluid ��� ���� ���� ����� ����� 

��������� �������� 0.54 0.166 0.128 0.107 0.059 

 
Table 1: Reservoir Fluid Composition 

 

3.7. Reservoir Model 

This study has been conducted in two phases and the model considers a single 

hydraulic fracture, vertical to the well. For our case we have gone for the most common 

case seen in the field, one with high fracture conductivity and low matrix permeability. 

Fracture conductivity gives us an idea of how easily fluids can be transmitted through 

propped hydraulic fractures (Warpinski, Mayerhofer et al. 2009). It is directly proportional 

to the fracture permeability and the fracture width providing us the with the more 

commonly used term for dimensionless fracture conductivity: 

��� =
����

����
 

Here, �� is the fracture permeability and �� is the fracture width 
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The 1st phase considers 15 parameters that range from rock and fluid properties, 

hydraulic fracture properties, and wellbore conditions.  

The reservoir model has been simulated in NaSh, which indicates the flow through 

the fracture. NaSh can indicate the flow by calculating the pressure around the fracture. It 

uses a variable mesh system where the grid sizes are much smaller closer to the fracture 

tips to account for rapidly changing pressures. 

Using the pressure profile, NaSh calculates the cumulative production over a given 

period. As shown in figure 14, the cumulative gas production has been calculated over a 

period of 5 years for example. 
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Figure 14: Example simulation from NaSh, with the resulting Cumulative 
Production graph 
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The values for the parameters are based upon those from the Barnett Shale 

formation. For phase 1, a resolution 4, 15 variable-2 level fractional factorial design has 

been selected for testing. This design required 32 runs. In table 2 below, one can find the 

summary of the 15 parameters used for the initial experimentation. 

The parameters related to propped hydraulic fracturing are: 

 Fracture Permeability 

 Fracture Width 

 Fracture Young’s Modulus 

 Fracture Half Length 

 Fracture Poisson’s Ratio 

 Fracture Porosity 

Other variables taken into consideration include the maximum confining stress, 

which affects the matrix permeability and the m exponent value. Both are introduced in 

our consideration as part of Gangi’s permeability model. Geo-mechanically we have taken 

into consideration properties such as Young’s Modulus and Poisson’s Ratio as they are 

related to proppant distribution and contacts between the grains and the wall. 
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Table 2: Parameter Experimental Values for Phase 1 
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Figure 15: Experimental Design for Phase 1 
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The second phase considers the 10 most important parameters seen from the study 

in the first phase experimentation which can be found in table 3 below. The second phase 

is a more complicated Central Composite Design experiment to further understand the 

importance of these 10 variables and how they affect the response variable. The CCD 

Experiment helps us look for a more complex relationship with the response variable. 
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Table 3: Parameter values for Phase 2 experimentation 
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4. EXPERIMENTAL RESULTS 

 

4.1. Phase 1: 15 Variable Fractional-Factorial Design 

The sensitivity analysis was done by changing ± ��% for the variable level ± �. 

Since we were using a resolution 4 design, the simulation results for all the 32 runs were 

observed after 1 and 3 years of production. Using a linear regression model, I calculated 

the beta weighting factor using least square estimation for each variable, which represents 

how sensitive the response variable is to that parameter. A higher beta value represents a 

higher sensitivity to the response variable. In the graph below, the cumulative oil 

production is shown with every simulation and different parameter values. 

 

 

Figure 16: Cumulative Gas Production for Phase 1 
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Figure 17: Weighting factors for the parameters in Phase 1 
 

 

Figure 18: Absolute weighting factors for the parameters in Phase 1 
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Using the cumulative oil production as the response variable, I achieved my goal 

of finding the beta weighting factors for each of the parameters. 

In the graphs above, we can see the weighting factors after 1 and 3 years 

respectively. 

After 1 year of oil production, we observed that oil production has the highest 

sensitivity to the maximum confining stress from hydraulic fracturing, while the m 

exponent is a close second behind. Both of which are related to the stress-dependent 

permeability indicating that the biggest contributor for shale gas transport is the stress-

sensitive matrix permeability. Increasing the values of these parameters would imply the 

need for higher resistance to shut-off the pores. Fracture half-length comes in at 3rd place 

as a higher half-length would mean an increase in surface area of the fracture leading to 

increased flow of fluids. Bottom hole pressure is 4th as it controls the flow of gas from the 

well and matrix permeability comes after and closes out the top five most sensitive 

variables. The matrix permeability controls how easily the gas flows through the matrix 

from the organic matter into the fractures. 

Looking to 3 years after oil production, we observe an increasing dominance of 

the maximum confining stress and the m exponent. This is relative to the fact that as gas 

production increases the cracks dominated pore space starts to close out and the 

dependence on the stress-sensitive permeability increases and becomes more sensitive. 

We can see that over time the dominance of fracture half-length has increased, this is in 

reason for the fact the higher the fracture half length, the longer it will take for the fracture 

to shut-off. 
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Looking at the results obtained from above, we can see that the five least sensitive 

parameters are: 

 Fracture Young’s Modulus 

 Fracture Poisson’s Ratio 

 Matrix Poisson’s Ratio 

 Fracture Viscoelastic Shear Coefficient 

 Large Pore/ Nanopore Threshold in the matrix 

Poisson’s ratio was removed as it measures the deformation in the direction 

perpendicular to the direction of the applied force, which is dependent on the quality of 

the material and is something we cannot control and measure at each fracture, as it would 

change. Similarly, the hydraulic fracture’s Poisson’s ratio should also be removed. 

The Fracture’s Young modulus was also removed from the list as it is dependent 

on the quality of the material. It indicates elasticity of the propped hydraulic fracture, 

which should not be of concern as once we have fractured it, it will not remain elastic. 

The fracture viscoelastic shear coefficient has been removed because its once the 

fracture has formed the material has been deformed and will not affect gas production. 

These variables were not as sensitive to the response variables, therefore have been 

discarded from changes in Phase 2 of the experimentation (They are still taken into 

consideration for the rest of the experiment but are not changed with each simulation). 

The values of these variables have been fixed to the base values as mentioned before. 
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4.2. Phase 2: 10 Variable-Central Composite Design 

The sensitivity analysis was done by changing ± ��% for the variable level ± � 

and the simulation results for all the 160 runs compared were observed after 1 and 3 years 

of production. For the central composite design, to look for any curvature in relation to 

the response variable, the sensitivity analysis considers changing the variable to ± √� 

level to the deemed star points. These star point values help us gain better insight into the 

most important variables which affect gas production from fractures and how they change 

over time. The simulations were run in NaSh, and the results have been processed in a 

software called Minitab provided by the TAMU College of Engineering. 

In the graph below, the cumulative oil production is presented for each of the 160 

simulations. The simulations were running in a randomized order. 
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Figure 19: Cumulative Production for Phase 2 of the Study 
 

Using the cumulative production data, we have put the data into Minitab and 

applied a design of experiment analysis. This gives us our most important variables for 

gas production after one year, which can be seen on the pareto chart in Figure 20. 

Maximum confining stress and m exponent still take the top spots followed by fracture 

half length, bottom hole pressure and matrix permeability after gas production for one 

year.  

One of the most surprising finds is that the hydraulic fracture porosity and young’s 

modulus are not nearly as important as most of the other 2-factor interactions. Also, if we 

look closely, fracture permeability is one of the weaker variables, however, the 2-factor 

interaction of fracture permeability and maximum confining stress is much higher than the 

other two-factor interactions. 
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Figure 20: Pareto chart showcasing the weights of different effects after 1 year of 
production 

 

Similarly, looking at the results for gas production after three years, we get the 

pareto chart in Figure 21 below. The maximum confining stress and m exponent have 

increasingly become sensitive to the response variable over time and dominant. Fracture 

half-length, bottom hole pressure and matrix permeability close out the top five again.  

However, on observation we can see that the matrix porosity has become stronger 

than fracture permeability and fracture width. This is possible that over time as fractures 

start to shut-off, the matrix porosity becomes more important for shale gas transport. Most 

of the results we have seen are pretty much in line with what we saw in the fractional 

factorial design experiment. 



 

44 

 

 

Figure 21: Pareto chart showcasing the weights of different effects after 3 years of 
production 

 

Now, we will be looking into why we are using the central composite design 

process. CCD helps us understand the relationship of the variables with the response 

variable. In fractional factorial we could only see a linear relationship, however on 

completing our central composite design experiment, the relationships have turned out not 

to be linear and in fact there is a curvature. In figure 21 and 22, we can see the main effects 

plot for cumulative gas production after 1 and 3 years, respectively. Except for Young’s 

modulus and fracture porosity, the variables have a non-linear relationship with the gas 

production, changing over time as well. The non-linear model indicates that the linear 

model is actually an approximation for a higher order model. In figure 22, we can see that 
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for the factors other than Youngs’ Modulus, Fracture Porosity and Bottomhole Pressure, 

we see a positive relationship with the gas production over time. The graphs are initially 

showing a linear behavior and then start to flatten out. For the case of Bottomhole pressure, 

we see a negative relationship with the gas production, while for Youngs’ Modulus and 

Fracture Porosity, we see the graph totally flat implying there is no relationship. 
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Figure 22: The relationship of the main effects with the cumulative gas production 
after 1 year of production from the well 
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Figure 23: Describes the relationship of the main effects with cumulative gas 
production after 3 years 
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One interesting observation from the above results is that there is an apex for the 

curve of the hydraulic fracture permeability and the fracture width. Implying that 

increased fracture permeability and fracture width will not change oil production after a 

threshold point (near +2) and therefore, there is an optimum value for these two 

parameters.  

A possible explanation for the apex seen in the fracture width and the fracture 

permeability relations could be that as the hydraulic fracture’s conductivity is increased 

significantly at one point the fracture reaches an infinite-conductivity flow condition, 

when the fracture becomes insensitive to the permeability and width. 

The behavior of the other variables is what we expected intuitively. The maximum 

confining stress and the m factor have a strongly dominating effect on the oil production, 

increasing with higher values, as well as fracture half length, matrix porosity and matrix 

permeability. 

Minitab was also able to run an ANOVA (Analysis of Variance) on the dataset and 

provided us with the following values. Looking at the ANOVA table, we can distinctly 

see the P-Values for the Youngs’ Modulus and Fracture Porosity to be very high. The P-

Values are generally very high for variables which do not affect the response variable in 

the model and values can range from 0 to 1. Such a high P-Value indicates that both the 

variables should not be used for characterizing the model. 
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Table 4: Dataset ANOVA table 
 

Figure 24 and 25 below show how the interaction effects affect the mean gas 

production after 3 years. To explain more clearly, taking the example of the fracture half-

length interaction with the matrix permeability (shown in the red rectangle in figure 24), 

the x-axis has the values for the matrix permeability, while the y axis has the values for 

the mean cumulative gas production. This sub-plot has 3 distinct lines, which are at the 

defined levels for matrix permeability (shown in the green rectangle in figure 24). Looking 

at the green and red line which are at the high level and center point for matrix permeability 

respectively when compared to the blue line which is at the lower level seem to be much 

closer to each other, while the blue line is further away. This indicates that the factors 

when increased are beneficial to increasing the mean gas production, but if reduced are 

more detrimental to the mean gas production. 
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Figure 24: Interaction Effects Plot 1 
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Figure 25: Interaction Effects Plot 2 
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Looking at the results, we can see that the cumulative gas production in shale 

reservoirs is a slave to the stress-dependent matrix permeability. Thus, it is important to 

find reservoirs with favorable reservoir conditions. We can see this from the dominance 

of the maximum confining stress and the m exponent on the model. Fracture half-length 

is the most important well completion factor under our control, and it is important to have 

the length as much as possible. The fractures need to be ensured they are open for as long 

as possible, as over time as they close out, the production becomes more dependent on the 

stress-dependent matrix permeability.  



53 

 

5. CONCLUSIONS 

 

This sensitivity analysis experimentation was done to help us understand how 

various completions and petrophysical factors affect the gas production from 

unconventional reservoirs. The cumulative gas production has been measured after 1 and 

3 years to understand the effects of the various parameters. The experimentation was done 

in 2 phases, the 1st phase considers 15 parameters that range from rock and fluid properties, 

hydraulic fracture properties, and wellbore conditions. While the 2nd phase considers the 

10 most important parameters seen from the study in the 1st phase experimentation. 

Based on the results, we conclude that: 

 During the first phase experimentation, out of the 15 factors we used, the top five 

parameters were the maximum confining stress, the m exponent, the fracture half 

length, the bottomhole pressure and the matrix permeability.  

 The maximum confining stress and m exponent are related to the stress-dependent 

matrix permeability, meaning that increasing them would lead to a higher 

resistance from the pores closing. 

 The fracture half-length leads to an increase in the surface area of the fracture for 

increased flow of gas. 

 The bottomhole pressure controls the flow of gas, while the matrix permeability 

controls how easily gas can flow into the fractures 
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 Out of these 15 factors, the bottom five were entirely non-effective being the 

fracture’s Youngs modulus, Poisson’s ratio, the matrix Poisson’s ratio, the fracture 

visco-elastic shear coefficient and the matrix large pore/nanopore threshold. 

 For the second phase experimentation, the ten most important factors were selected 

from the first phase, being the fracture permeability, the fracture width, the 

maximum confining stress, the fracture half length, m factor, the matrix young’s 

modulus, the matrix permeability, the matrix porosity, the bottomhole pressure and 

the fracture porosity. 

  For the second phase, we got similar results to that of the phase 1, with the top 

five parameters being the maximum confining stress, the m exponent, fracture half 

length, bottomhole pressure and the matrix permeability. 

 The second phase helped us understand the relationship of the variables in much 

more depth with the response variable as we were able to figure a non-linear 

relationship. The non-linear model helps us realize that the relationship of the 

variables with the response is kind of linear initially and slowly turns and flattens 

out, while also allowing us to understand if the variable is positively or negatively 

related to the response. 

 The maximum confining stress and m exponents become more dominating as the 

well produces for longer. As the well produces for longer, the fractures start to 

close out and the gas production becomes more dependent on stress-dependent 

matrix permeability. 
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 The fracture permeability and the fracture width achieve an optimum point where 

the fracture maintains an infinite conductivity and hence the production can be 

maximized. 
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