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ABSTRACT

This dissertation concerns the relation between the response of materials in an indentation

test and their inelastic mechanical properties. The connection between indentation responses and

inelastic properties is not straightforward and may not be unique. A Bayesian-type statistical ap-

proach is developed to overcome this difficulty. In this approach, a finite subset of the possible

parameter space is considered since the range of physically possible parameter values is known.

Finite element indentation calculations are carried out for a relatively coarse grid of discrete prop-

erty values. Interpolation of indentation responses is used to obtain predictions for material prop-

erty values between grid points. A uniform initial probability is assigned to each prediction. This

overcomes the disadvantage typically associated with using Bayesian statistics of a large number

of calculated responses being needed for what is in principle an infinite parameter space. Various

elastic-plastic constitutive descriptions have been considered including rate-independent isotropi-

cally hardening plastic materials, plastically compressible materials and power-law creep materi-

als. In all cases computed, synthetic “experimental” indentation responses are used for the param-

eter identification. In order to overcome the non-uniqueness associated with identification based

on using only the indentation force versus indentation depth response, the surface profile after un-

loading is taken to be an additional “measured” quantity. Both noise-free and noise-contaminated

data is considered.

We start by considering conical indentation of a rate-independent isotropically hardening solid

with power-law strain hardening. It is known that materials with very different uniaxial responses

can give indistinguishable indentation force versus indentation depth responses. Three sets of

values of flow strength and strain hardening exponent are considered that give indistinguishable

indentation force versus indentation depth responses. The proposed Bayesian-type statistical ap-

proach, by additionally taking account of residual surface profiles, provides a good estimate of

the uniaxial stress-strain response for all three materials, both in the absence of fluctuations and
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in the presence of sufficiently small fluctuations. It is found that the sensitivity of the representa-

tion of the predicted uniaxial stress-strain response to fluctuations increases with increasing strain

hardening.

Subsequently, motivated by the fact that the form of strain hardening relation that gives the best

fit for a material is usually not known a priori, we study the influence of assumed strain hardening

relations on plastic stress-strain response identification. We consider four power-law expressions

as characterizations of the plastic uniaxial stress-strain response. Each expression is characterized

by two material parameters, an initial flow strength and a strain hardening exponent. We found that

each expression can provide a good representation of the same uniaxial stress-strain response but

with different parameter values. The results obtained show that the identification of the hardening

relation parameters and the associated uniaxial stress-strain response is not very sensitive to the

form of the power-law strain hardening relation chosen even with data that has significant noise.

We then consider plastically compressible materials that are characterized by three material

parameters. The “experimental” spherical indentation responses are obtained using two sets of

parameter values that characterize the uniaxial responses of two real materials. We assume the

materials can be characterized by a Deshpende-Fleck constitutive relation. The uniaxial stress-

strain responses obtained by the Bayesian-type statistical approach provide good approximations

of those of the “experimental” input materials, but the quality of the approximation decreases

with increasing noise amplitude. The indentation force versus indentation depth responses with

very different uniaxial stress-strain curves is found to be indistinguishable if the indentation depth

is sufficiently small but are distinguishable if the indentation depth is sufficiently large. Plastic

compressibility is found to have a relatively small effect on the correction factor in the Oliver-

Pharr relation between the unloading slope and the effective (or reduced) elastic modulus. It is

also found that the indentation response of these plastically compressible materials can be well-

represented by a nearly incompressible plastic constitutive relation but that the inferred uniaxial

stress-strain response is a poor representation of the “experimental” material uniaxial stress-strain

response.
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For materials that exhibit strong time and rate dependence, i.e. creep, the indentation depth

versus time response is measured rather than the indentation force versus indentation depth. We

consider power-law creep materials where the inelastic response is apparently characterized by two

parameters, a creep exponent and a pre-exponential factor. However, the dimensions of the pre-

exponential factor depend on the value of the creep exponent and comparing responses of different

power-law creep materials requires consideration of three parameters, the creep exponent, a repre-

sentative stress and a representative strain rate. Constant load and hold indentation creep tests are

simulated for parameter values representative of three real materials. Uniaxial creep and uniaxial

stress relaxation responses using the identified creep parameters from the Bayesian-type statistical

approach were found to provide a very good approximation to the “experimental” responses for

a sufficiently small values of creep exponent but a less good agreement for the largest value of

creep exponent considered. The sensitivity to noise also increases with increasing stress exponent.

The uniaxial creep response is found to be more sensitive to the accuracy of the predictions than

the uniaxial stress relaxation response. As for time independent materials, the sensitivity to noise

also increases with increasing stress exponent. The uniaxial creep response is found to be more

sensitive to the accuracy of the predictions than the uniaxial stress relaxation response. A good

agreement with the indentation response does not guarantee good agreement with the uniaxial re-

sponses. Comparison of the Bayesian-type statistical predictions for parameter values with the

analytical models is carried out.

The Bayesian statistics formulation here used to relate indentation measurements to mate-

rial properties has heuristic aspects. In order to provide a framework for relating that approach

to a more rigorous Bayesian formulation for material property identification from experimental

measurements, a Bayesian formulation with a normal likelihood quantifying noise and an inverse

gamma prior expressing uncertainty about noise variance is derived. Using both analyses and nu-

merical simulations, we show that the Bayesian-type statistical approach used in the studies of

this thesis is a limiting form of the more rigorous formulation, with recommended prior parameter

values of the rigorous Bayesian formulation. The results also show that the posterior probabilities
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are insensitive to the choice of prior mode when the prior’s shape parameter is taken to be small.

With consideration of bias in measured signals especially when multiple signal types are analyzed

simultaneously, a method using a weighted average of posterior distributions from different signal

types is proposed. This method is compared with a classical Bayesian approach that uses a joint

likelihood.
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1. INTRODUCTION

“In science, progress is possible. In fact, if one believes in

Bayes’ theorem, scientific progress is inevitable as predictions

are made and as beliefs are tested and refined.”

– Nate Silver

1.1 The meandering story of Bayes’ theorem

The story began with Thomas Bayes, a Presbyterian minister lived outside of London in the

early 1700s. Bayes tried to mathematically deal with the issue of cause and effect. He proposed a

simple theorem that we could modify our initial guess (belief) with objective new information and

get an updated belief. The theorem was filed away in a manuscript but did not get published by

Bayes. After Bayes died, his friend Richard Price edited Bayes’ notes containing Bayes’ theorem.

The resulting paper was published in the Philosophical Transactions of the Royal Society in 1763

[5].

In 1774, Pierre-Simon Laplace discovered the Bayes’ theorem independently [6] (an English

translation was published in 1986 [7]). Laplace used Bayesian in some of his later publications

and it was his influential work that led to progress on the use of Bayes’ theorem in probability

and statistics [8, 9]. On the other hand, Lapalce also advocated for frequency based classical

probability analyses and did significant contributions [8], for example, Lapalce helped establish

the central limit theorem [10]. More discussion of the objective and subjective probability theory

in mid-nineteenth century Britain was given by [11].

While Bayes’ theorem dealt with belief, frequency based probability seemed to provide a more

objective assessment. In the decades after Laplace’s death the frequency approach to probability

became dominant, the Bayesian approach was regarded as non-objective and fell out of fashion

well into the 20th century. An eminent statistician and geneticist who was an opponent of the
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Bayesian approach, Ronald Fisher, stated “The theory of inverse probability is founded upon an

error, and must be wholly rejected” [12]. Indeed, “many statisticians were hostile to the Bayesian

approach in statistical inference and ‘Bayes’ was a word to avoid for decades into the 20th cen-

tury” according to S. B. McGrayne [13]. Luckily, there were a few defenders, one of them was

Harold Jeffreys, who was a colleague and (surprisingly) a friend of Fisher at Cambridge Univer-

sity. Jeffreys kept Bayes’ theorem alive and his book Theory of Probability, published right before

the World War II, was the only book on systematic application of Bayes’ theorem to scientific

problems at that time [14].

Then World War II began and shed light on the modern revival of Bayesian statistics. One ap-

plication was the use by Alan Turing and his coworkers on “deciphering the Enigma word scram-

bling machines used by German army, air force, navy, paramilitary and high command” [13]. One

example was the team of U-boats, which could cut the food and strategical supplies of Allies of

World War II. The story of Bayes’ theorem at Bletchley Park on coding and decryption, especially

on the main Japanese naval cipher JN 25, was described by Edward Simpson [15]. After Germany

surrendered, astonishing but expectable, “Winston Churchill ordered to destroy all the materials on

decryption, the relevant studies, e.g., sequential statistics, empirical Bayes, Markov chains, deci-

sion theory and electronic computers, were all ultraclassified” according to S. B. McGrayne [13].

Thus the contribution of Bayes’ theorem to ending the World War II was unknown to the public.

In the middle of 1900s, one application of Bayes’ theorem was by Arthur Bailey on calculation

of the premium rate in insurance industry [16]. In academia, statisticians Leonard Jimmie Savage

and Dennis Lindley advocated Bayes’ theorem in United State and Britain, respectively [17, 18,

19, 20, 21]. Meanwhile, Bayes’ theorem was used to provide statistical relation between possible

causing factors and lung cancer and provide proof in medicine [22, 23, 24, 25].

In recent years the use of Bayesian methodology has grown explosively, mainly because com-

puting challenges in its application have been overcome with the advent of Markov Chain Monte

Carlo (MCMC) [26]. One of the most common MCMC methods is the Metropolis-Hastings al-

gorithm primarily developed by Metropolis et al. in 1953 [27] and Hastings in 1970 [28], which
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made numerical approximation of the probability distribution with high dimensions possible. Sub-

sequently, Bayesian statistics has been applied in a wide range of areas, for example, analysis of

image [29, 30, 31], exploration of gating mechanisms [32], Quantification of semiconductor com-

position [33], analysis of epidemics [34, 35], exploration of the reason that gene patterns differ in

nuclear and mitochondrion for insects [36], assessment of radiation dose absorbed by an individual

[37], control of material damage [38], applications in nuclear physics [39, 40], estimation of fa-

tigue life [41], early warning and post analysis of earthquake [42, 43, 44], identification of elastic

or plastic properties [45, 2, 46] and control of autonomous vehicles system [47].

1.2 Characterization of material properties

A material property is a parameter that quantifies how a material responds to a variety of ini-

tial/boundary conditions. The properties can be chemical, magnetic, electrical, thermal, mechan-

ical or optical. Here we focus on mechanical properties, which are quantities associated with a

constitutive theory that purports to represent its mechanical behavior in some range of circum-

stances. However, it is important to recognize that a property is not a characteristic of a material

but is a parameter entering a constitutive description.

Mechanical tests are carried out to measure material properties. One use of such measured

properties is to use the constitutive theory, with the measured properties, to predict the mechanical

response of the material under loading conditions that differ from those in the tests. Another use is

to order materials regarding their suitability for a particular application.

Characterization of material properties has been performed on a variety of materials and in

significantly wide fields, for example, on human red blood cell to investigate connection between

single cell mechanics and malaria [48], on ovine mitral valve anterior for development of biopros-

thetic values [49], on gray and white matter brain tissue to understand the mechanical environment

in neurodevelopment and neurological disorders [50], on violently-collapsing cavitation bubbles to

expand the applicability and robustness of Inertial Microcavitation Rheometry in properties char-

acterization [51], on lead-free solders to prevent failure behavior during isotherrmal aging [52],

on heat-damaged concrete to evaluate the safety of nuclear reactors [53], on cancer cells to study
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the time evolution of cells’ mechanical behavior [54, 55], and on healing bones to monitor and

evaluate the fracture healing process [56].

Bayesian statistics has been used in characterization of material properties. For example, elec-

tromechanical properties in piezoelectric energy harvesters [57], physical properties of yeast chro-

matin [58], optical properties of nearshore estuarine water [59], spatial distribution of elastic prop-

erties [45], elastic parameters of micro-swimmers [60], plastic properties of plastically compress-

ible solids [46] and creep parameters [4].

1.3 Instrumented indentation

Instrumented indentation has been used to quantify indentation hardness of materials since the

middle of 1900s [61, 62, 63]. Theoretical analyses have been carried out on fundamental issues, for

example, analytical solutions of elastic contact and recovery [64, 65], slip-line field of rigid perfect

plastic solids [66], application of expanding cavity model to indented material [67], theoretical

study of the Brinell hardness test [68], and analytical solution of deformation fields in creeping

solids [69].

Significant progress has been made on indentation techniques, for example, estimation of

Young’s modulus from load and depth sensing indentation [70], early development of nanoin-

dentation [71, 72, 73], development of Oliver-Pharr method for determination of hardness and

elastic modulus [74, 75], influence of pile-up and sink-in [76, 77, 78], measurement of residual

stress [79], and introduction of the concept of effective indenter shape [80]. Relevant reviews are

available on specific topics, for example, on the techniques for nanoindentation testing [81], and

on the indentation size effect [82].

The basic idea of instrumented indentation is simple, i.e. use an indenter of known material to

punch a specimen of unknown material and leave an impression. Most indentation instruments are

force controlled, indeed the strain rate of loading can be set for an indentation test, but the strain

rate is actually calculated by feedback control of the indentation load. According to the magnitude

of indentation load, indentation tests can be specified as macro-indentation, micro-indentation and

nanoindentation.
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A variety of indenter shapes have been developed for extraction of different mechanical prop-

erties from diverse materials. According to the variation of the ratio between contact distance and

indentation depth, indenters can be divided into two types: indenters with a self-similar geometry

such as pyramid, cone, Berkovich, Vickers, and indenters that do not have a geometrical similar-

ity, such as sphere. However, a spherical indenter can generate self-similar results with a varying

radius.

Figure 1.1: Illustration of a triangular pyramid indenter with an indenter angle ψ and the corre-
sponding equivalent conical indenter with an indenter angle θ based on the equivalence of projected
contact area. (after [1]).

Conical indenter is often used as an effective indenter for other complicated shapes due to its

axisymmetry, especially in analytical analysis and numerical simulation. For example, a triangular

indenter with an indenter angle ψ can be treated as a conical indenter with an equivalent indenter

angle θ in Fig. 1.1. The projected contact area Apy at penetration depth h is 3
√

3h2tan2ψ for the

triangular indenter. While for the conical indenter, the projected contact area Acone is πh2tan2θ.

We require them to have the same projected contact area at any penetration depth h, this gives

θ = tan−1

√
3
√

3

π
tan2ψ. (1.1)

For a Berkovich indenter with ψ = 65.3◦, it gives θ ≈ 70.3◦.

Among all the experimental techniques, indentation, due to its nondestructive, small scale, con-

5



venience and simplicity, has attracted remarkable attention on the development of characterization

methods. In recent decades, many studies have been carried out using various approaches in the

attempt to extract plastic material properties from indentation force versus indentation depth data.

Examples include using a representative strain, e.g. [83, 84]; using dimensional analysis together

with finite element calculations, e.g. [85]; and using neural networks, e.g. [86, 87, 88, 89, 90].

For completeness, the classical plasticity theory, mainly for metals, is briefly summarized in

the Appendix A. Besides the software ABAQUS, an in-house finite element code has been used

in simulation. For completeness, the finite element formulations for finite plastic deformations in

convected coordinates are briefly summarized in the Appendix B.

1.4 Outline of this dissertation

This dissertation proposes a Bayesian formulation for inference of material properties using

various types of signals. In Chapter 2, a Bayesian-type statistical approach is proposed to identify

plastic properties and distinguish different materials with essentially the same indentation force

versus depth responses by additionally taking account of their corresponding residual surface pro-

files from conical indentation. In Chapter 3, influence of assumed strain hardening relation on plas-

tic stress-strain response identification from indentation is studied and the uncertainty in identified

stress-strain responses caused by various noise levels is quantified. In Chapter 4, characterization

of plastically compressible materials from spherical indentation is studied by the Bayesian-type

statistical approach. In Chapter 5, creep properties (both the exponent and pre-exponential factor

in a power law strain rate hardening relation) are identified for three representative materials with

various characteristic time scales and length scales from indentation using the Bayesian-type sta-

tistical approach. In Chapter 6, a rigorous Bayesian formulation is derived for inference of material

properties using various signal types. The relation between the rigorous Bayesian formulation and

the Bayesian-type statistical approach is discussed, and effective choices of prior parameters are

recommended. Finally in Chapter 7, conclusions are drawn.
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2. A BAYESIAN-TYPE STATISTICAL APPROACH FOR IDENTIFICATION OF PLASTIC

PROPERTIES FROM CONICAL INDENTATION †

“As you will find in multivariable calculus, there is

often a number of solutions for any given problem.”

– John Forbes Nash Jr.

2.1 Introduction

A mechanical property of a material is a quantity associated with a constitutive theory that

purports to represent its mechanical behavior, in some range of circumstances. Mechanical tests

are carried out to measure material properties. One use of such measured properties is to use the

constitutive theory, with the measured properties, to predict the mechanical response of the material

under loading conditions that differ from those in the tests. Another use is to order materials

regarding their suitability for a particular application.

Typically, such mechanical tests measure a structural response, not directly a material property,

in the sense that the measured response depends on the geometry of the test specimen and the

applied load. When the specimen deformation is heterogeneous as in a tension test after necking,

in a micro-pillar test with extensive deformation localization and in indentation, relating measured

response quantities to material properties is complex and may not even be unique.

In indentation, the indentation force can be measured as a function of indentation depth. For

materials that can, at least approximately, be characterized by rate independent, isotropic harden-

ing plasticity with power law strain hardening, one aim of carrying out an indentation test is to

determine the flow strength and the strain hardening exponent. For a conical indenter that relation

is non-unique, i.e. there is more than one combination of flow strength and strain hardening expo-

†Reprinted with permission from “Identification of plastic properties from conical indentation using a Bayesian-
type statistical approach” by Yupeng Zhang, Jeffrey D. Hart and Alan Needleman, 2019, Journal of Applied Mechan-
ics, 86, 011002. Copyright c© 2019 by American Society of Mechanical Engineers.
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nent that will give essentially the same indentation force versus indentation depth response, see for

example [91, 92, 93].

Many studies have been carried out using various approaches in the attempt to extract plastic

material properties from only indentation force versus indentation depth data. Examples include

using a representative strain, e.g. [83, 84]; using dimensional analysis together with finite element

calculations, e.g. [85]; and using neural networks, e.g. [86, 87, 88, 89, 90].

More recently, using displacement information from indentation tests in addition to or instead

of indentation force versus indentation depth data has been explored. For example, Wang et al.

[94] used both the indentation load-displacement curve and maximum pile-up point with finite

element analyses to obtain plastic properties of an anisotropic solid. Wang et al. [95] used only the

residual imprint of spherical indentation in conjunction with an optimization algorithm based on

the difference between measured surface profiles and those obtained from finite element analyses

to identify elastic-plastic properties. Mostafavi et al.[96, 97] suggested using vertical components

of the displacement field under the indenter together with numerical simulations to quantify plastic

properties.

Bayesian statistical approaches are now being used in a wide variety of areas of mechanics of

materials, for example in metal fatigue, [98, 99], in constitutive identification [100, 101, 102, 103],

in damage mechanics [104, 105], in identification of the spatial distribution of elastic material prop-

erties [45] and in identification of plastic properties from spherical indentation [106]. In particular,

Fernandez-Zelaia et al. [106] used finite element modeling, construction of a surrogate model and

together with a Bayesian framework and Markov Chain Monte Carlo sampling to extract properties

associated with an elastic-plastic material model from spherical indentation data.

Here, we consider conical indentation and use both the indentation force versus indentation

depth curve and the surface profile after unloading in a simplified Bayesian statistical approach to

extract plastic material properties. We begin by solving the indentation problem for three sets of

material properties that have essentially identical indentation force versus indentation depth curves

and add fluctuations (“noise”) to model experimental errors/uncertainties. We then consider this
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data set as the “experimental” data from which we attempt to extract material properties. The main

focus of our paper is the extent to which the simplified Bayesian statistical approach can identify

the uniaxial stress-strain response of these three input materials.

2.2 Indentation problem formulation and numerical method

Indentation of a conical indenter into a half-space is modeled as sketched in Fig. 2.1. In the

calculations, indentation into a finite region is analyzed but it is presumed that the size of the

region is large enough to model a half-space. The deformations are presumed to be axisymmetric.

The indentation depth h is the only length scale. As a consequence, the response is self-similar

and independent of h when all length quantities are scaled with h. The nominal contact radius is

rnom = h/ tan β and the true contact radius rcont is the radial coordinate of the point in contact

with the rigid indenter that is furthest from r = 0. The indentation force F is the total z−direction

force acting on the contact area.

β

rcont

y1=r

y2=z
R0

Z0

Figure 2.1: Sketch of the indentation configuration analyzed.

The formulation of the indentation problem, except for the constitutive relation, follows that in

[107]. A Lagrangian formulation of the field equations is used with attention confined to quasi-
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static deformations and body forces neglected. The rate form of the principle of virtual work is

written as

∆t

∫
V

ṡ · ·δF dV = ∆t

∫
S

Ṫ · δu dS

−
[ ∫

V

s · ·δF dV −
∫
S

T · δu dS
] (2.1)

Here,

u = x−X , F =
∂x

∂X
(2.2)

where x is the position of a point in the current configuration that was at X in the reference config-

uration. The traction vector T is given by

T = n · s , s = F−1 · τ (2.3)

where n is the surface normal, τ = Jσ is the Kirchhoff stress, σ is the Cauchy stress and J =

det(F). The rate boundary conditions are

u̇r = 0 u̇z = ḣ on Scontact (2.4a)

u̇r = 0 Ṫz = 0 on r = 0 (2.4b)

u̇z = 0 Ṫr = 0 on z = Z0 (2.4c)

and Ṫ = 0 on the remaining external surface. Eq. (2.4a) corresponds to perfect sticking of the

material to the indenter, Scontact denotes the portion of the material surface in contact with the

indenter and a superposed dot, (˙) denotes the time derivative.

The material is characterized as an isotropically hardening elastic-viscoplastic solid. Elastic

strains are assumed to be small and are given by

de = L−1 : τ̂ =
1 + ν

E
τ̂ − ν

E
tr(τ̂ )I (2.5)
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Table 2.1: Material parameters for three input materials used in the indentation calculations.

m1 m2 m3

E (GPa) 200 200 200
ν 0.3 0.3 0.3
m 0.005 0.005 0.005
Y (MPa) 650 490 330
N 0.10 0.20 0.31
Y/E 0.00325 0.00245 0.00165

where L is the fourth order tensor of elastic moduli, E is Young’s modulus, ν is Poisson’s ratio,

tr(·) denotes the trace, I is the identity tensor and τ̂ is the Jaumann rate of Kirchhoff stress.

The plastic part of the rate of deformation tensor is taken as

dp =
3

2

ε̇p
σe

p , p = τ − 1

3
tr(τ )I (2.6)

with

ε̇p = ε̇0

(
σe

g

)1/m

. (2.7)

Here, ε̇0 is a reference strain rate, m is the rate sensitivity exponent, εe is the von Mises effective

stress. The function g(εp) in Eq. (4.7) is taken to be a power law relation of the form

g (εp) = Y

[
1 +

εp
ε0

]N
(2.8)

where Y is a reference flow strength and ε0 = Y/E.

For conical indentation into a half-space, the only characteristic length is the indentation depth

h. In order to provide a dimensionless length measure, all lengths are normalized by a reference

length href which is taken to be the maximum indentation depth in the calculations. Also, the

time scale is set by the parameter ε̇0 in Eq. (4.7) and the indentation loading rate is taken to be

ḣ/(href ε̇0) = 0.5 for loading and ḣ/(href ε̇0) = −0.125 for unloading. The indenter cone angle β is

fixed at 19◦ (see Fig. 2.1).
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Figure 2.2: Normalized indentation force F/(Eh2
ref) versus normalized indentation depth h/href

during loading and unloading for three input materials. The symbols are the points used as the
“experimental” values in the statistical calculations (f input). � : m1, ∆ : m2, ∇ : m3. The
parameters for the three input materials are given in Table 2.1.
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Figure 2.3: Uniaxial stress-strain curves for three input materials. The parameters for the three
input materials are available in Table 2.1.

To illustrate the non-uniqueness of the force versus indentation depth response as shown by

Cheng and Cheng [91], calculations are carried out for the three sets of material parameters shown
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Figure 2.4: Normalized surface profiles near the indenter after unloading for the three input mate-
rials. The symbols are the points used as the “experimental” values in the statistical calculations
(sinput). � : m1, ∆ : m2, ∇ : m3. The parameters for the three input materials are given in
Table 2.1.

in Table 2.1. The elastic properties and strain rate sensitivity exponent m are fixed, with a small

value of m used to give nearly rate independent response. As Fig. 2.2 shows the indentation force

F versus indentation depth h responses are indistinguishable although the uniaxial stress-strain

responses are very different as shown in Fig. 2.3. In Fig. 2.3 and subsequently, uniaxial stress-

strain responses are shown for ε̇p/ε̇0 = 1 when σe ≥ Y and ε̇p = 0 for σe ≤ Y .

Fig. 2.4 shows the computed surface profiles near the indenter after unloading of these three

materials. The points shown in Figs. 2.2 and 2.4 are interpolated from the calculated curves so

that the independent variables, h/href in Fig. 2.2, and r/href in Fig. 2.4 are identical for all three

materials. It is these points that are used as the “experimental” data points in the statistical analyses

in Section 2.3.

The finite element calculations are carried out for a finite block with dimensions given by

R0/href = 37.5 and Z0/href = 37.5. The finite element mesh consists of 65 × 58 rectangular

elements, with each rectangle consisting of four “crossed” linear displacement triangular elements.

A uniform 45 × 40 rectangular element mesh is used in a 3.75href × 3.125href fine mesh region
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near the indenter tip. The deformation history is calculated from Eq. (4.1) in a linear incremental

manner.

In the calculations, the contact force F varies in discrete steps when a new nodal point comes in

contact with or detaches from the indenter. In order to provide a clearer picture of the indentation

response, the “raw” output curves from the computer code are smoothed by plotting the midpoint

of the steps for force F versus indentation depth h relation. Such smoothed curves are shown in

Fig. 2.2.

Some calculations were repeated with a finer 128 × 128 finite element mesh to check con-

vergence. The surface profiles obtained using the two meshes essentially coincide except for the

maximum extent of the pile-up for material m1, where as seen in Fig. 2.4 there is a relatively sharp

gradient near the indenter surface. The maximum value of z/href obtained using the fine mesh

is 0.068 while with coarse mesh the corresponding value is 0.069. For materials m2 and m3 the

maximum values of z/href in Fig. 2.4 differ by about 1%. The curves of normalized indentation

force versus normalized indentation depth using the two meshes are within ≈ 1.5% for all three

materials. All results to be presented subsequently were obtained using the coarse mesh.

In the following, we use a Bayesian statistical approach with the aim of identifying the three

uniaxial stress-strain responses of materials m1, m2 and m3 from the indentation force versus

indentation depth responses and the surface profiles in Figs. 2.2 and 2.4.

2.3 Bayesian statistical approach

Bayes’ theorem can be stated as

p(θ|Y ,M) =
p(Y |θ,M)p(θ|M)

Z
(2.9)

whereM is the assumed model, θ is the vector of unknown parameters associated withM and

Y are the observed data. The prior probability distribution, p(θ|M), provides the investigator’s

probability that θ is the true set of parameter values before data Y are observed. The likelihood

p(Y |θ,M) is the probability of obtaining the data Y whenM is the true model and the parameters
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are θ. The posterior probability p(θ|Y ,M) is the updated probability (in light of the data) of the

parameter values θ. The denominator in Eq. (3.3) is a normalizing constant given by the integral

over the entire parameter space as

Z =

∫
Θ

p(Y |t,M)p(t|M) dt (2.10)

The modelM consists of the quasi-static indentation initial/boundary value problem described

in Section 2.2 and the idealization of the material as a rate independent isotropic and isotropi-

cally hardening solid (even though the calculations are carried out using a viscoplastic constitutive

relation). Hence, the plastic material response is characterized by the function g(εp) in Eq. (2.8).

Assuming that the values of the elastic constantsE and ν are known, the aim is, given data Y corre-

sponding to the data in Figs. 2.2 and 2.4, to determine values of the initial flow strength normalized

by the elastic modulus, Y/E, and strain hardening exponent N that provide a good representation

of the stress-strain responses for materials m1, m2 and m3 in Fig. 2.3. What is meant by “data cor-

responding to” is that we consider the responses shown in Figs. 2.2 and 2.4 as the ”experimental”

data and we also consider variations from those values due to fluctuations arising from experimen-

tal noise, including contributions from thermal drift, instrument compliance, imperfect indenter

geometry, unknown friction between contact surfaces with certain roughness, measurement errors

and calibration variations, etc.

We begin by creating a database of possible responses for various values of Y/E and N . The

database consists of a normalized surface displacement, z/href versus r/href curve, and a normal-

ized indentation force, F/(Eh2
ref), versus normalized indentation depth, h/href , curve for each

value of Y/E and N . For a pair of values (Y/E)i and N i, the normalized displacement response,

z/href , is denoted by si and the normalized force-normalized displacement response, F/(Eh2
ref),

is denoted by f i with i = 1, ..., Ktotal, where Ktotal is the total number of pairs of values (Y/E)i

and N i in the database. The “experimental” data Y in Eq. (3.3) is denoted by two data vectors

(sm,fm). The components of the vector sm
k , k = 1, ..., Ks are values, zk/href at radial coordinate
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rk/href , while the components of the vector fm
k , k = 1, ..., Kf are values of the indentation force

Fk/(Eh
2
ref) at indentation depth hk/href . Each database vector si consists of Ks points evaluated

at rk/href and each database vector f i consists of Kf points evaluated at hk/href . Subsequently,

M is no longer included in any expression since the model is fixed.

p(si,f i|sm,fm) =
p(si|sm)p(f i|fm)

Zsf

(2.11)

where there is no sum on i in Eqs. (5.8) to (5.9) and

p(si|sm) =
p(sm|si)p(si)

Zs

(2.12)

p(f i|fm) =
p(fm|f i)p(f i)

Zf

(2.13)

The normalizing constants Zs, Zf and Zsf are given by

Zs =

Ktotal∑
i=1

p(sm|si)p(si) , Zf =

Ktotal∑
i=1

p(fm|f i)p(f i) (2.14)

Zsf =

Ktotal∑
i=1

p(si|sm)p(f i|fm) (2.15)

We also assume that the differences between the “experimental” data and predicted responses

in the database are independent and identically distributed as a mean zero normal distribution. The

likelihood functions are given by

p(sm|si) =
Ks∏
k=1

1

σ̂is
√

2π
exp

[
− 1

2(σ̂is)
2

(
sm
k − sik

)2
]

(2.16)

p(fm|f i) =

Kf∏
k=1

1

σ̂if
√

2π
exp

[
− 1

2(σ̂if)
2

(
fm
k − f ik

)2
]
. (2.17)

In Eqs. (2.16) and (2.17), Ks and Kf are the number of data points on the surface profile curve and

the number of data points on the indentation force versus indentation depth curve, respectively.
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The variances (σ̂is)
2 and (σ̂if)

2 are given by maximum likelihood estimation as

(σ̂is)
2 =

1

Ks

Ks∑
k=1

(sm
k − sik)2 , (σ̂if)

2 =
1

Kf

Kf∑
k=1

(fm
k − f ik)2, (2.18)

where the subscript k denotes the kth data point in its corresponding vector.

Using Eq. (A-14) in Eqs. (2.16) and (2.17) gives the following expressions for the likelihood

values

p(sm|si) =
( 1

σ̂is
√

2π

)Ks
exp

(
− Ks

2

)
(2.19)

p(fm|f i) =
( 1

σ̂if
√

2π

)Kf
exp

(
− Kf

2

)
. (2.20)

If the value of a standard deviation, σ̂is or σ̂if , is very small the corresponding likelihood value in

Eq. (3.9) and/or Eq. (3.10) becomes very large. However, due to the normalizations in Eqs. (3.5)

and (5.9), the value of the posterior probability remains between 0 and 1. If a standard devaition is

exactly zero, the corresponding likelihood is infinite and the posterior probability is set to one.

In the calculations a uniform prior is used:

p(si) = p(f i) =
1

Ktotal

(2.21)

thus expressing our ignorance of the correct values of Y/E and N .

Expression (5.10) depends on a sum (rather than an integral as in Eq. (2.10) because of the

discreteness of our parameter space for (si,f i). Also, in a formal Bayesian procedure the variances

in Eqs. (2.16) and (2.17) would be treated as unknown parameters having a prior distribution. The

variances would then be integrated out of the resulting posterior distribution, leading to a marginal

posterior for (si,f i). However, it can be shown, see e.g. [108], that our use of the maximum

likelihood estimates (σ̂is)
2 and (σ̂if)

2 leads to posterior probabilities that are very close to those of a

proper Bayesian procedure when Ks and Kf become large.

We consider both noise-free and noise-contaminated data. With the computed responses in
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Figs. 2.2 and 2.4 denoted by f input and sinput, the noise-contaminated data are given by

sm = sinput + snoise , fm = f input + fnoise. (2.22)

Each component snoise
k and fnoise

k is calculated using the MATLAB function normrnd [109]. This

distribution has zero mean value and the values of the standard deviations σs and σf are taken to

be related to the maximum residual depth max(sm
k ) and the maximum indentation force max(fm

k ),

respectively, by

σs = ηsmax(sm
k ) , σf = ηfmax(fm

k ) (2.23)

with 0 ≤ ηs < 1 and 0 ≤ ηf < 1.

Given the combinations of (Y/E)i, N i chosen for the database, the deformation responses

(si,f i) are calculated as outlined in Section 2.2. Then using Eq. (A-4) and the likelihood relations

Eqs. (3.9) and (3.10), the posterior probability p(si,f i|sm,fm) associated with (Y/E)i, N i is

obtained using Eq. (5.8).

2.4 Inference of the stress-strain response using a Bayesian statistical approach

The initial database is constructed for 20 uniformly spaced values of Y/E varying between

1.0×10−3 and 2.0×10−2 (so that the step size is 1.0×10−3). The values of N vary between 0 and

1.0 with a step size of 0.02 (51 points), so that there are Ktotal = 1020 combinations of (Y/E)i, N i

in this database, which is denoted by G0. For database G0, one finite element calculation was

carried out for each set (Y/E)i, N i in the database.

Another database denoted byG1 is obtained by interpolations between data of nearby points on

database grid G0. G1 has a step size 2.5 × 10−4 in Y/E and 0.01 in N giving Ktotal = 7777. For

these interpolated points, no finite element calculations were carried out. Rather, the components

of the vectors si and f i are obtained by linear interpolations of the corresponding vectors of nearby

points.

We also explored using a modified database grid in the vicinity of the combination of Y/E and

N with the largest posterior probability. The database denoted by G2 has a locally refined step size
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Table 2.2: Predicted values of Y/E, N and values of corresponding highest posterior probability
p1 using database grids G0 and G2.

(Y/E)G0 NG0 p1G0 (Y/E)G2 NG2 p1G2

m1 0.003 0.12 1.00 0.00325 0.10 1.00
m2 0.003 0.14 1.00 0.00270 0.19 0.56
m3 0.002 0.26 1.00 0.00175 0.31 0.85

in Y/E of 5.0 × 10−5 between nearest neighbors. An automatic refinement approach was used to

create the database grid Gf . For database grid Gf the database grid was refined locally with a step

size, in both Y/E and N , that is one half of the current step until the value of step size decreases to

6.25×10−6 in Y/E and 1.25×10−3 in N . Refinements of 3×3 or 5×5 database grids around the

highest posterior probability point were used in each iteration. The interpolation procedures for

database grids G2 and Gf were conducted in the same way as for database grid G1. We emphasize

that finite element calculations were only carried out for the initial, coarsest database grid G0.

The choice of the initial database grid can be important. If the initial database grid is too coarse,

local refinement will not help, since the values of Y/E andN with highest posterior probability ob-

tained from the coarse grid may differ significantly from the actual values. If a good initial choice

of the database grid is made (and what is a good choice can be problem and parameter dependent)

then local refinement can improve the prediction with relatively little increase in computational

cost.

For all databases, the number of points for each surface profile vector si isKs = 72, distributed

nonuniformly with an increased density of points near the indenter where pile-up or sink-in occurs,

see Fig. 2.4. Each indentation force versus indentation depth vector, f i, has Kf = 67 points also

distributed nonunformly as marked in Fig. 2.2.

2.4.1 Inference based on noise-free data

The inferences for materials mi (i = 1, 2, 3) presuming noise-free data using database grids

G0 and G2 are illustrated. Applying Bayes’ theorem, the posterior probability distributions for

(Y/E,N) based on both force data and surface data can be obtained. The predicted combinations
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Figure 2.5: Uniaxial stress-strain curves showing the effect of the choice of database: G0 (dashed
lines);G2 (dash dot lines); andGf (dash dot dot lines). The stress-strain curves are for the predicted
combinations of Y/E andN with the highest posterior probability for each database grid. The solid
lines show the uniaxial stress-strain curves for the three input materials in Table 2.1. For material
m1 only the dash line does not overlap with the solid line. For material m2 dash dot line and dash
dot dot line overlap.

of Y/E and N with corresponding value of highest posterior probability, denoted by p1, are shown

in Table. 2.2.

The values of Y/E and N with the highest posterior probability are shown in Table. 2.2 for

database grids G0 and G2, while the stress versus strain responses obtained from the highest pos-

terior probability values of Y/E and N based on G0, G2 and Gf are shown in Fig. 2.5.

The predicted stress-strain responses for combinations of Y/E and N with highest posterior

probability values using the database grid G0 (dashed lines) differ significantly from the input

materials stress-strain curves (solid lines). This discrepancy is largest for the material m3. On the

other hand, the difference between the stress-strain responses obtained from G2 (dash dot lines)

and Gf (dash dot dot lines) is not large and the results obtained from local refinement do not give

a significant improvement compared with the ones using database grid G2. For material m3, the

stress-strain curve predicted from database grid G2 is even slightly better than the one from Gf .

One possible reason is that when database grid becomes very fine, the inference becomes sensitive
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Figure 2.6: Uniaxial stress-strain curves comparing the predictions using only indentation force
versus indentation depth data (dash dot lines) and both indentation force versus indentation depth
and surface profile data (dashed lines). The stress-strain curves are for the predicted combinations
of Y/E and N with the highest posterior probability using database grid G2. The solid lines show
the uniaxial stress-strain curves for the three input materials in Table 2.1. For material m1 the solid
line and the dashed line overlap.
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Figure 2.7: Posterior probability distribution p for various combinations of Y/E and N for the
material m1 using database grids (a) G2 and (b) Gf .

21



to numerical errors arising from the interpolations of the force data and surface data.

The predicted values (to the third significant figure) of Y/E and N for the stress-strain curves

using database grid Gf in Fig. 2.5 are: Y/E = 0.328 × 10−2 and N = 0.0963 for material m1;

Y/E = 0.267 × 10−2 and N = 0.191 for material m2; and Y/E = 0.177 × 10−2 and N = 0.306

for material m3 with their corresponding highest posterior probability values 0.29, 0.14 and 0.20,

respectively.

The predicted values of Y/E and N using only the indentation force versus indentation depth

curves and the database grid G2 are Y/E = 0.300× 10−2 and N = 0.13 for material m1; Y/E =

0.275× 10−2 and N = 0.16 for material m2; and Y/E = 0.195× 10−2 and N = 0.27 for material

m3 with the corresponding highest posterior probability values 1.00, 0.55 and 1.00, respectively.

With the supplementation of surface profiles, based on both force data and surface data, these

values change to Y/E = 0.325 × 10−2 and N = 0.10 for material m1; Y/E = 0.270 × 10−2 and

N = 0.19 for material m2; and Y/E = 0.175 × 10−2 and N = 0.31 for material m3 with their

corresponding highest posterior probability values 1.00, 0.56 and 0.85, respectively.

Fig. 2.6 shows stress-strain curves for the predicted values of Y/E andN with highest posterior

probability values using both the indentation force versus indentation depth data and the surface

profile data (dashed lines) compared with the corresponding curves using only indentation force

versus indentation depth data (dash dot lines). Clearly, there is a significant increase in the accuracy

of representing the input materials stress-strain curves (solid lines) by using the residual surface

profiles in addition to the indentation force versus indentation depth data.

Stress-strain curves using only surface data are very close to those computed using both inden-

tation force versus indentation depth data and surface profile data shown in Fig. 2.6. In a sense this

is not surprising as the indentation force versus indentation depth response for the three materials

is nearly identical, Fig. 2.2, but the surface profiles differ significantly, Fig. 2.4. We note that in

some calculations, not shown here, materials with differing values of Y/E and N had nearly iden-

tical surface profiles but indentation force versus indentation depth responses that differ. Hence,

it is expected that in general both the indentation force versus indentation depth response and the

22



surface profile would be needed to identify the plastic material parameters.

Fig. 2.7 shows the distributions of posterior probability in neighborhood of the predicted point

with the corresponding highest posterior probability for material m1 using database grids G2,

Fig. 2.7(a), and Gf , Fig. 2.7(b). For the coarser database grid G2 there is a rather sharp peak

at the point with the highest posterior probability. On the other hand, for the refined database grid

Gf , where the step size is 6.25×10−6 for Y/E and 1.25×10−3 for N , the peak posterior probabil-

ity is more diffuse and lower. This is because the small differences in Y/E and N in the vicinity

of the peak give nearly indistinguishable responses.

2.4.2 Inference based on noise-contaminated data

For each noise measure defined by the set of values ηs, ηf in Eq. (A-30), calculations of posterior

probability are carried out for 100 realizations of snoise and fnoise in Eq. (5.24). Of course, in a

particular experiment one realization of these possible fluctuations will be obtained. The analyses

in this section indicate that fitting one realization of the fluctuations (the “‘noise”) can lead to a

misleading identification of the values of Y/E and N . What is needed is consideration of many

possible fluctuation realizations with a given amplitude.

For each realization of snoise and fnoise having the same values ηs, ηf , the values of Y/E and N

with highest posterior probability were obtained. These values of Y/E and N could span a large

range, the extent of which depends on the amplitude of the noise. Both the arithmetic average

of the values of Y/E and N having the highest posterior probability and the weighted average of

Y/E andN with corresponding posterior probability (Bayesian model averaging) were calculated.

The two types of average for Y/E and N are very close with the same first two significant figures,

and the standard deviations from Bayesian model averaging are slightly smaller than the ones from

arithmetic average when data contains noise with ηs = ηf = 0.01. Here the arithmetic average of

predictions with the highest posterior probability values were identified as the predicted material

parameters for those values of ηs, ηf .

Uniaxial stress-strain curves for these average values of Y/E and N are compared with the

input uniaxial stress-strain curves of materials m1, m2 and m3 in Fig. 2.8. The curves shown are
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Figure 2.8: Uniaxial stress-strain curves showing the effect of the values of the noise measures
ηs, ηf in Eq. (A-30): ηs = ηf = 0.001 (dashed lines); ηs = 0.001 and ηf = 0.01 (dash dot dot
lines); ηs = ηf = 0.01 (dash dot lines). The stress-strain curves are for the predicted combinations
of Y/E and N with the highest posterior probability using database grid G2. The solid lines show
uniaxial stress-strain curves for the three input materials in Table 2.1. For material m1 only the
dash dot line does not overlap with the solid line. For materials m2 and m3 the dashed line and the
dash dot dot line overlap.

calculated using database grid G2, while similar trends with the same relations between curves

hold for calculations using database grid G1. As for the noise free calculations in Fig. 2.6, the

corresponding uniaxial stress-strain curves based on surface profile data alone differ little from

those based on both indentation force versus indentation depth data and surface profile data.

The average values of Y/E and N used for the curves in Fig. 2.8 with ηs = ηf = 0.001

are Y/E = 0.325 × 10−2, N = 0.10 for m1; Y/E = 0.260 × 10−2, N = 0.19 for m2; and

Y/E = 0.175 × 10−2, N = 0.30 for m3. With ηs = ηf = 0.01 in Fig. 2.8 the corresponding

average values of Y/E and N are Y/E = 0.315× 10−2, N = 0.11 for m1; Y/E = 0.270× 10−2,

N = 0.17 for m2; and Y/E = 0.195× 10−2, N = 0.27 for m3. The average values of Y/E and N

with ηs = 0.001, ηf = 0.01 were found to be the same as those with ηs = ηf = 0.001.

For material m1, the stress-strain curve with ηs = ηf = 0.001 (red dashed line) coincides with

the uniaxial stress-strain curve for the input material (red solid line). For all three materials, the
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Figure 2.9: One realization of posterior probability distribution p for various combinations of Y/E
and N with values of the noise measures ηs = ηf = 0.001 using database grid G2. (a) For material
m1. (b) For material m2.
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Figure 2.10: One realization of posterior probability distribution p for various combinations of
Y/E and N with values of the noise measures ηs = ηf = 0.01 using database grid G2. (a) For
material m1. (b) For material m2.
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stress-strain curves with ηs = 0.001, ηf = 0.01 (dash dot dot lines) coincide with the curves with

ηs = ηf = 0.001 and are closer to the curves for the input materials than those with ηs = 0.01,

ηf = 0.01. In the circumstances analyzed here, the accuracy of the predicted uniaxial stress-strain

response is more sensitive to noise in the surface profile data than to noise in the indentation force

versus indentation depth curves.

The predicted stress-strain curve for m1 is less sensitive to the values of the noise measures.

The main reason for this is that it is a relatively low strain hardening material (small N ). Fig. 2.8

shows that the stress-strain curves with noise for materials m2 and m3 increasingly deviate from

those for the corresponding input materials with increasing strain. Hence, the agreement at larger

strain values is sensitive to the predicted value of N .

One realization of the posterior probability distributions of Y/E and N with noise measure

values ηs = ηf = 0.001 for materials m1 and m2 are shown in Fig. 2.9. The corresponding results

obtained for ηs = ηf = 0.01 are shown in Fig. 2.10. Similar distributions were obtained for material

m3 but are not shown here. The posterior probability distributions with ηs = ηf = 0.001 are

concentrated around a few points, while the posterior probability distributions with ηs = ηf = 0.01

are more spread out. As expected, Figs. 2.9 and 2.10 show that a higher value of the posterior

probability is obtained for relatively noise-free data than when the data has significant noise.

In order to illustrate the variation of predicted stress-strain response with the value of the pos-

terior probability, Fig. 2.11 shows the stress strain curves corresponding to the values of Y/E and

N with the first, third and forth highest posterior probability values associated with one particu-

lar realization of noise with ηs = ηf = 0.01. The values of the third and forth highest posterior

probability for materials m1, m2 and m3 are 0.059, 0.053; 0.050, 0.050 and 0.0022, 0.00064, re-

spectively. These compare with the highest values of posterior probability of 0.65 for material m1,

0.052 for material m2 and 0.93 for material m3. The quality of the fit to the input material uniaxial

stress-strain curve decreases with increasing strain hardening. The results in Fig. 2.11 show that a

high posterior probability associated with one realization of the noise does not necessarily provide

a good fit to the input material stress-strain response.
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Figure 2.11: Uniaxial stress-strain curves obtained using the predicted values of Y/E, N that
correspond to: the highest posterior probability value (dashed lines); the third highest posterior
probability value (dash dot lines) and the fourth highest posterior probability value (dash dot dot
lines). For materials m1 and m2 the third highest and fourth highest posterior probability values
are marked by an x in Fig. 2.10 where ηs = ηf = 0.01. Database grid G2 was used. The solid lines
show the stress-strain curves for the three input materials in Table 2.1. For material m1 the dash
dot dot line overlaps with the solid line. For material m2 the dash line and dash dot line overlap.

Fig.2.12 shows that the highest posterior probability value decreases as the noise measure in-

creases (solid lines), while the second highest posterior probability value (dashed lines) varies in

the opposite way. The values of ηs are those for which the average of the highest posterior proba-

blility for the indentation force versus indentation depth data, Eq. (5.9), has the same value as the

highest posterior probablility for the surface profile data, Eq. (3.5). The results for each database

grid are terminated at the value of ηs at which the average of the highest posterior probability for

the surface profile data in Eq. (3.5) reaches 0.3. When the noise amplitude is sufficiently small,

a very strong posterior probability dominates the inference. With increasing noise amplitude, the

posterior probability distribution becomes less concentrated with a decreasing maximum posterior

probability value and with other posterior probability values increasing.

As noted by Vigliotti et al. [45], a finer database grid does not necessarily perform better than a

coarser database grid in the presence of noise because the additional resolution goes into resolving

27



S

p
o

s
te

ri
o

r 
p

ro
b

a
b

ili
ty

0 0.002 0.004 0.006 0.008 0.01
0

0.2

0.4

0.6

0.8

1
__

_ _

G
1

G
2

Figure 2.12: The variation of the average of predicted posterior probability with the value of surface
data noise measure ηs for material m3 using: database grid G1 (red lines); database grid G2 (blue
lines). The solid lines show the average of the highest posterior probability and the dashed lines
show the average of the second highest posterior probability. The bars show the corresponding
standard deviations.

the noise rather than improving the fit to the underlying data. The posterior probability values

based on the database grid G2 (blue lines) are more sensitive to noise than the ones from database

grid G1 (red lines) as seen in Fig.2.12. Also, for a finer database grid there are more potential

sites to compete for the highest probability value than for a coarser database grid, e.g. compare the

posterior probability distributions in database grids G2 and Gf in Fig. 2.7.

It is worth noting that the average value of the highest joint posterior probability obtained from

using both indentation force-indentation depth data and surface profile data can be either greater

than or less than the average of the highest posterior probability value using only surface data

or the highest posterior probability value using only indentation force-indentation depth data. In

many cases, the average of the highest posterior probability value associated with the individual

data sources occur at values of Y/E and N that are at nearby grid points. However, particularly

if a very fine grid is used, the highest posterior probability values associated with the indentation

force-indentation depth data and the surface profile data can be at grid points that are not near each

other. In such a case, the highest joint posterior probability obtained from using both indentation
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force-indentation depth data and surface profile data can be less than each of these individually.

2.5 Summary and conclusions

We have presented a Bayesian-type statistical approach for extracting plastic uniaxial stress-

strain response from conical indentation data for three input set of material parameters that give

rise to essentially the same indentation force-indentation depth response. We have used both force

versus indentation depth data and surface profile data. Our initial database grid was constructed

based on 1020 finite element calculations. More refined database grids were obtained by interpo-

lation. Once the initial database is constructed, the computations for the interpolation and for the

statistical analysis are very light and can be quickly carried out on a personal computer.

1. The main result is that the Bayesian-type statistical approach using both force versus indenta-

tion depth data and surface profile data can distinguish the uniaxial stress-strain responses for

materials that have essentially identical indentation force versus indentation depth curves.

2. For the three materials considered here, the uniaxial stress-strain responses obtained using only

surface profile data differ little from those using both force versus indentation depth data and

surface profile data for noise-free data and for data with superposed Gaussian noise.

3. For data with noise, the predicted values of the plastic material properties vary significantly for

realizations having the same noise amplitude. Material properties obtained by averaging the

highest posterior probability obtained for each of the 100 realizations gave plastic properties

leading to a good fit to the uniaxial stress-strain response.

4. Refining the interpolated database grids gives improved predictions up to a point. Without

noise an over refined database grid can lead to a somewhat less accurate prediction due to

numerical errors associated with interpolation. With noise and with increasing database grid

refinement there is a rather wide range of predicted values of the plastic properties with

similar values of the posterior probability. Basically, as noted by Vigliotti et al. [45], over

refinement can lead to an increasing range of predicted responses due to the refinement fitting
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the noise and not only the underlying data.

5. The predicted uniaxial stress-strain response for a low strain hardening material is less sensitive

to noise than for higher strain hardening materials.
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3. INFLUENCE OF ASSUMED STRAIN HARDENING RELATION ON PLASTIC

STRESS-STRAIN RESPONSE IDENTIFICATION FROM CONICAL INDENTATION †

“Since all models are wrong the scientist must be alert to

what is importantly wrong. It is inappropriate to be

concerned about mice when there are tigers abroad.”

– George E. P. Box

3.1 Introduction

Indentation tests are relatively easy to carry out and can non-destructively assess the defor-

mation resistance of materials using relatively small samples. However, obtaining a quantitative

characterization of the material’s deformation resistance is a challenge. The deformation and stress

state in the vicinity of the indenter is complex and, in addition, materials with different uniaxial

stress-strain curves can give indistinguishable indentation force versus indentation depth responses,

as shown in Refs. [91, 110, 93].

Here, we focus on a relatively simple situation: conical indentation of a material that can be

characterized as length scale independent, as elastically isotropic and as a rate independent isotrop-

ically hardening solid. A variety of approaches have been proposed to identify material parameters

characterizing the plastic response of such materials based on indentation force versus indentation

depth data using sharp and/or spherical indenters, including, for example, a representative strain

approach [83, 111, 112, 84], dimensional analysis [85], optimization approaches [113, 114, 115],

and neural networks [86].

Several approaches have been suggested for resolving the issue of the non-uniqueness of the

relation between the indentation force versus indentation depth response and the uniaxial stress-

strain curve. For example, Luo et al. [114] and Kang et al. [115] suggested using the indentation
†Reprinted with permission from “Influence of assumed strain hardening relation on plastic stress-strain response

identification from conical indentation” by Yupeng Zhang and Alan Needleman, 2020, Journal of Engineering Mate-
rials and Technology, 142, 031002. Copyright c© 2020 by American Society of Mechanical Engineers.
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force versus indentation depth responses from more than one indenter shape while Also, in some

studies, surface profiles have been used in addition to or instead of indentation force versus inden-

tation depth data in the identification of material properties from sharp or spherical indentation,

[96, 116, 97, 95, 2, 117].

Zhang et al. [2] were able to identify the uniaxial stress-strain response of materials having

essentially the same indentation force versus indentation depth response using a Bayesian-type

statistical analysis together with both indentation force versus indentation depth data and residual

surface profile data even when the measurements were noisy. In Ref. [2], synthetic “experimental”

data based on finite element analyses was used. The database needed for the Bayesian analysis

was constructed using the same elastic-viscoplastic constitutive relation as was used to generate

the “experimental” data. Also, all calculations were carried out with an in-house finite element

code.

Even though structural metals exhibit some rate dependence, it is often convenient to idealize

the response as being rate independent and, in practice, to use a generally available commercial

or public domain general purpose finite element code. Also, of course, the form of the uniaxial

stress-strain relation is not known a priori. Here, we explore the use of various characterization of

the material’s stress-strain response in the commercial finite element code ABAQUS [118] on the

ability of the Bayesian-type approach of Zhang et al. [2] to identify the stress-strain response from

conical indentation data.

3.2 Background

3.2.1 “Experimental” indentation response

In Zhang et al. [2], finite element, finite deformation, quasi-static analyses of conical inden-

tation, as sketched in Fig. 3.1 were carried out. The calculations use a polar coordinate system

(r, z, θ) and axisymmetric deformations are assumed so all field quantities are independent of θ.

The indenter is taken to be rigid and the indenter angle β is taken to be 19◦ (this approximates

a Berkovich indenter whose equivalent conical indenter angle is 19.7◦). Also, perfect sticking

32



β y1=r

R0

Z0

y2=z

Figure 3.1: Sketch of the indentation configuration analyzed.

between the material and the indenter was assumed in Ref. [2].

Indentation results were obtained for rate dependent and isotropically hardening materials hav-

ing the uniaxial stress-strain responses shown in Fig. 3.2 (the materials are also taken to be elasti-

cally isotropic) with strain hardening rule

g(εp)

Y
=

(
1 +

εp
ε0

)N
(3.1)

and strain rate hardening rule

ε̇p = ε̇0

(
σe

g

)1/m

(3.2)

where g(εp) is flow strength, εp is effective plastic strain, σe is von Mises effective stress,N is strain

hardening exponent and m is rate sensitivity exponent. Y is a reference stress gives ε0 = Y/E

with E being Young’s modulus. ε̇p and ε̇0 are effective plastic strain rate and reference strain rate,

respectively.

An advantage of conical indentation in this context is that because the indentation depth h is

the only length scale in the problem, the solution is self-similar. The normalized indentation force,
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F/(Ehref) (E is Young’s modulus and href is a reference length), versus normalized indentation

depth, h/href , responses of these three materials are indistinguishable, as shown in Fig. 3.3 even

though the stress-strain responses are very different.
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Figure 3.2: Uniaxial stress-strain curves for the three materials considered in Ref. [2] with plastic
responses characterized by Eq. (3.1).

Zhang et al. [2] regarded the indentation force magnitude versus indentation depth magnitude

responses in Fig. 3.3 and the residual surface profiles shown in Fig. 3.4 as “experimental” data and

used a Bayesian-type statistical analysis to infer the stress-strain responses. The “experimental”

data and the data sets used in the statistical analyses were all obtained using the same locally

developed finite element code for rate dependent plasticity, with the material rate dependence set

to a small value representative of metal plasticity at room temperature.

The Bayesian-type statistical analysis gave a very good representation of the input (“experi-

mental”) stress-strain responses even in the presence of noisy measurements, provided the noise

was not extremely large, [2].

Various functional forms can be used to represent uniaxial stress-strain curves, and room tem-

perature metal plasticity is often modeled as being rate independent. As in [2], we assume that the
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Figure 3.3: Normalized indentation force magnitude F/(Eh2
ref) versus normalized indentation

depth magnitude h/href during loading and unloading for the three “experimental” materials. From
[2].
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Figure 3.4: Normalized surface profiles in the vicinity of the indenter after unloading for three
“experimental” materials. From [2].

material is known to be elastically and plastically isotropic, and that the elastic constants, Young’s

modulus E and Poisson’s ratio ν are known. The plastic response is presumed to be characterized

by two parameters: one characterizing initial yield and the other characterizing the strain harden-
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ing. The issue addressed here is the sensitivity of predictions of the stress-strain response obtained

from indentation to the assumed strain hardening rule.

3.2.2 Bayesian-type statistical approach

Bayes’ theorem can be written as

p(θ|Y ,M) =
p(Y |θ,M)p(θ|M)

Z
(3.3)

whereM is an assumed model, θ is the vector of unknown parameters associated withM and Y

is observed data. The prior probability distribution, p(θ|M), is the presumed initial probability

that θ is the set of parameter values that can represent the data Y . The likelihood p(Y |θ,M)

is the probability that the model M with parameters θ can represent the data Y . The posterior

probability p(θ|Y ,M) gives the posterior probability that the parameter values θ can represent

the data Y . The denominator Z is a normalizing constant that results in the updated probability

having a value between 0 and 1.

In the Bayesian-type statistical approach of Zhang et al [2] the data Y is, for a given indentation,

the curve of indentation force versus indentation depth, i.e. one of the curves in Fig. 3.3, and the

residual (after the load has been removed) surface profile, i.e. one of the curves in Fig. 3.4. Hence,

the data Y consists of two vectors: (sm and fm). The components of vector sm
k , k = 1, ..., Ks

are values of the surface coordinate, zk/href at radial coordinate rk/href , while the components

of vector fm
k , k = 1, ..., Kf are values of the indentation force Fk/(Eh2

ref) at indentation depth

hk/href .

For a specified strain hardening rule, a database of responses is constructed from finite ele-

ment solutions. The database consists of a normalized surface displacement, z/href versus r/href

curve, denoted by si, and a normalized indentation force, F/(Eh2
ref), versus normalized indenta-

tion depth, h/href , curve, denoted by f i. The index i ranges from 1 to Ktotal, where Ktotal is the

total number of cases in the database. Each database vector si consists of Ks points evaluated at

rk/href and each database vector f i consists of Kf points evaluated at hk/href .

36



Assuming the indentation force versus indentation depth data and the surface profile data can be

treated as independent so that the posterior probability p(si,f i|sm,fm) associated with (sm,fm)

can be expressed as

p(si,f i|sm,fm) =
p(si|sm)p(f i|fm)

Zsf

(3.4)

where

p(si|sm) =
p(sm|si)p(si)

Zs

(3.5)

p(f i|fm) =
p(fm|f i)p(f i)

Zf

(3.6)

There is no sum on i in Eqs. (5.8) to (5.9).

The normalizing constants Zs, Zf and Zsf are given by

Zs =

Ktotal∑
i=1

p(sm|si)p(si) , Zf =

Ktotal∑
i=1

p(fm|f i)p(f i) (3.7)

Zsf =

Ktotal∑
i=1

p(si|sm)p(f i|fm) (3.8)

We also assume that the differences between the “experimental” data and calculated responses

in the database are independent and identically distributed as a mean zero normal distribution.

With the variances (ξ̂is)
2 and (ξ̂if )

2 given by maximum likelihood estimation, the likelihood values

become (see Ref. [2])

p(sm|si) =
( 1

ξ̂is
√

2π

)Ks

exp
(
− Ks

2

)
(3.9)

p(fm|f i) =
( 1

ξ̂if
√

2π

)Kf

exp
(
− Kf

2

)
. (3.10)

where Ks and Kf are the number of data points on the surface profile curve and the number of data

points on the indentation force versus indentation depth curve, respectively. If a standard deviation

turns out to be exactly zero, the corresponding likelihood is infinite and the posterior probability is

set to one.

A uniform prior is used for both p(si) and p(f i) in the database and the values of p(si) and

37



p(f i) are set to 0 outside that range.

Both noise-free and noise-contaminated data are considered. With the noise-free responses

denoted by f input and sinput, the noise-contaminated data are given by

sm = sinput + snoise , fm = f input + fnoise. (3.11)

Each component snoise
k and fnoise

k is a random number from a normal distribution, calculated using

the MATLAB function normrnd [109]. This distribution has zero mean value and the values of the

standard deviations ξs and ξf are taken to be related to the pile-up height sm
pileup and the maximum

indentation force max(fm
k ), respectively, by

ξs = ηss
m
pileup , ξf = ηfmax(fm

k ) (3.12)

with ηs ≥ 0 and ηf ≥ 0, where ηs and ηf are referred to as the noise amplitudes. One difference

from the analyses in [2] is that here ξs is defined in terms of the maximum residual pile-up height

rather than the maximum residual indentation depth.

The Bayesian statistics calculation for one realization of a pair of “experimental” measurements

(noise-free, sinput and f input, or noise-contaminated, sm and fm) using a fixed database (without

database refinement during Bayesian calculations) includes three steps:

Step 1: assign uniform (or other form of) prior probability distributions to p(si) and p(f i);

Step 2: calculate posterior probability distributions based on only residual surface profiles data,

Eq. (3.5), and based on only indentation force versus indentation depth data, Eq. (5.9). Where the

likelihood functions are given in Eq. (3.9) and Eq. (3.10), and normalizing constants are given in

Eq. (4.24a);

Step 3: calculate posterior probability distributions based on both residual surface profiles data

and indentation force versus indentation depth data, Eq. (5.8). Where the normalizing constant is

given in Eq. (5.10).

Note that a subjective prior probability distribution may affect the posterior probability distri-
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bution. However, when the size of observed data (Ks or Kf) is large enough, the impact of prior

probability distribution on posterior probability distribution can be ignored.

3.3 Numerical Implementation

3.3.1 Finite element calculations

The calculations to create the databases were carried out using ABAQUS [118]. The quasi-

static boundary problem formulation is as described in Zhang et al. [2] except for the contact mod-

eling and that here the response is independent of the imposed indentation rate ḣ. The ABAQUS

“hard” contact option is specified along the direction normal to the indenter and the “penalty” op-

tion is used for the tangential direction. The friction coefficient is taken to be 0.4, which gives a

response close to perfect sticking. This friction coefficient is selected to represent a full adhesion

condition, which generates almost the same residual surface profile and indentation force versus in-

dentation depth curve as the ones calculated from the setting of tangential contact with the “rough”

option.

Geometric nonlinearity is taken into account by setting the Nlgeom option to be on; the error

tolerance is set to 10−6; the number of increments is 103 during loading and is 200 during unload-

ing. The aim is to model indentation into a half-space but of course in the calculations a finite

block is analyzed. Here, we use a block size of R0/href = 37.5 × Z0/href = 37.5 to approximate

the half-space. The magnitude of the maximum indentation depth is set to href/Z0 ≈ 0.027 where

Z0 is shown in Fig. 3.1.

As in [2], the indentation force directly obtained from the finite element calculations varies in

discrete steps when a new nodal point comes in contact with or detaches from the indenter. In

order to provide a clearer picture of the “experimental” indentation response obtained from the

in-house finite element code, the raw output curves from the computer were smoothed by code

by plotting the midpoint of the steps of the indentation force versus indentation depth relation.

However, the indentation force versus indentation depth curves f i used to construct all databases

were taken to be the raw from ABAQUS output. The data directly obtained from ABAQUS were
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more convenient to use directly and only the relative difference between the data in database and

the experimental data matters.

The finite element mesh consists of 7921 4−node bilinear axisymmetric quadrilateral elements,

corresponding to 8100 nodes. A uniform mesh with element size 0.05 × 0.05 is used in the

3.75href × 3.75href fine mesh region near the indenter tip. Outside the uniform zone, the element

size is gradually increased. Reduced integration with hourglass control is used.

The convergence of the calculations was investigated using a refined mesh with 19600 quadri-

lateral elements and 19881 nodes. The maximum difference in the surface profile values was

≈ 4.5% and the maximum difference for the indentation force versus indentation depth values was

≈ 2.5%. These maximum values occurred for materials modeling ideal plasticity. More generally,

the maximum difference in the surface profile values for the two meshes were within 1.5% and the

maximum difference in the indentation force versus indentation depth values were within 0.6%.

3.3.2 Strain hardening rules

In the calculations here, the elastic strains remain small and the materials are plastically in-

compressible so that the plastic flow rule for an isotropically hardening Mises solid can be written

as

dp =
3

2

ε̇p
σe

σ′ (3.13)

for plastic loading, where dp is the plastic part of the rate of deformation tensor, σ is the Cauchy

stress, and

σ2
e =

3

2
σ′ : σ′ (3.14)

with

σ′ = σ − 1

3
tr(σ)I (3.15)

where tr(σ) = σ11 + σ22 + σ33 and I is the identity tensor.
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The effective plastic strain rate, ε̇p, in Eq. (3.13) is given by

ε̇p =
( 1

Et
− 1

E

)
σ̇e (3.16)

while the effective strain rate, ε̇e, is

ε̇e =
1

Et
σ̇e (3.17)

whereEt is the slope of the σe versus εe relation (which also is the slope of the uniaxial stress-strain

curve).

Four strain hardening rules are considered and are denoted by Fi(i = 0, 1, 2, 3). These are

given by

F0 :
σe

Y
=

(
1 +

εp
ε0

)N
(3.18)

F1 :
σe

Y
=

(
εe
ε0

)N
(3.19)

F2 :
σe

Y
=

[(
εe
ε0
− 1 +N

)
1

N

]N
(3.20)

F3 :
σe

Y
= 1 +

(
εp
ε0

)N
(3.21)

where Y is the initial yield strength, N is the strain hardening exponent, εp =
∫
ε̇pdt, εe =

∫
ε̇edt

and σe(εp) in Eq. (A-6) is the same as g(εp) in Eq. (3.1) and is shown in Fig. 3.2.

Plastic loading takes place when σe is equal to the maximum of Y and the maximum of σe over

the deformation history together with σ̇e > 0.

Rules F0 and F3, are functions of the effective plastic strain εp, while rules F1 and F2 are

functions of the effective strain εe. For strain hardening rule F2 , Et is continuous at the yield point

[119]. We note that the rule F3 is a specialization of the Johnson-Cook hardening model [120] to

isothermal and rate independent material response.

The stress-strain curves for the three materials in Figs. 3.3 and 3.4 were generated in [2] using

the following values of Y and N : material m1, Y = 650MPa, N = 0.10; material m2, Y =
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Figure 3.5: Normalized uniaxial stress-strain curves for the strain hardening rules: F0 (dashed
lines); F1 (dash dot lines); F2 (dash dot dot lines) and F3 (long dash lines). For convenience, the
reference stress Yref for each material is taken to be the value of Y specified for the “experimental”
materials in Ref. [2]: 650MPa for m1; 490MPa for m2; and 330MPa for m3. Also, the values of N
for each material are those used in Ref. [2] and are specified in the text.

490MPa, N = 0.20; material m3, Y = 330MPa, N = 0.31. In all cases, E = 200GPa and ν =

0.30. So that Y/E for materials m1, m2 and m3 are 0.00325, 0.00245 and 0.00165, respectively.

Fig. 3.5 shows the stress-strain relations obtained from each of the rules Fi using these values of Y

and N . As can be seen in Fig. 3.5, the plastic parameter values used in Ref. [2] can generate very

different stress-strain responses when used in Eqs. (A-6) to (3.21).

3.4 Construction of the Databases

Four databases were constructed with four strain hardening rules F0, F1, F2 and F3. The range

of parameters is the same for all databases as 1.0× 10−3 ≤ Y/E ≤ 2.0× 10−2 and 0 ≤ N ≤ 0.5.

Various database grids are available for the inference. The initial database grid, named as G0,

consists of 20 and 26 uniformly spaced values of Y/E andN , respectively, in the range. Thus there

are Ktotal = 520 combinations of deformation responses (si,f i) corresponding to (Y/E)i, N i in

the database with grid G0. It has step size 1.0 × 10−3 in Y/E and 0.02 in N . For database with

grid G0, one finite element calculation was carried out for each set (Y/E)i, N i in the database.
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Figure 3.6: (a) Normalized indentation force magnitude F/(Eh2
ref) versus normalized indentation

depth magnitude h/href during loading-unloading. (b) Normalized surface profiles near the inden-
ter after unloading. The curves are the corresponding indentation responses to the predicted values
of Y/E and N based on noise-free data from databases with strain hardening rules: F0 (dashed
lines); F1 (dash dot lines); F2 (dash dot dot lines) and F3 (long dash lines) in Table. 3.1. The
solid lines show the indentation force versus indentation depth curves for the three “experimental”
materials in Figs. 3.3 and 3.4.

Another database denoted byG1 is obtained by interpolations between data of nearby points on

database grid G0. G1 has a step size 2.5 × 10−4 in Y/E and 0.01 in N giving Ktotal = 3927. For

these interpolated points, no finite element calculations were carried out. Rather, the components

of the vectors si and f i were obtained by linear interpolations of the corresponding vectors of

nearby points.

We also explored using a modified database grid in the vicinity of the combination of Y/E and

N with the largest posterior probability. The database denoted by G2 has a locally refined step

size in Y/E of 5.0 × 10−5 between nearest neighbors and an unrefined step size 0.01 in N . The

interpolation procedures for database grids G2 was conducted in the same way as for database grid

G1. We emphasize that finite element calculations were only carried out for the initial, coarsest

database grid G0.

For all databases, the number of points for each surface profile vector si isKs = 72, distributed
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nonuniformly with an increased density of points near the indenter where pile-up or sink-in occurs.

Each indentation force versus indentation depth vector, f i, hasKf = 67 data points (25 for loading

and 42 for unloading data) also distributed nonuniformly.

3.5 Results

3.5.1 Stress-strain curves obtained from noise-free data

The stress-strain curves based on noise-free measurements for materials m1, m2 and m3 are

calculated for each of the strain hardening rules F0, F1, F2 and F3. The predicted values of Y/E

and N with the highest posterior probability values compared with the values of Y/E and N used

to generate the “experimental” data are shown in Table. 3.1. Note that the predicted values of

Y/E and N can depend on the hardening rule and that the values can differ from those used in

Ref. [2] to generate the “experimental” stress-strain curves. For example, for material m1, YF2/E

is 0.00275, YF3/E is 0.00165 and Yinp/E is 0.00325 while NF2 is 0.0800, NF3 is 0.140 and Ninp is

0.100. For material m3, YF2/E is 0.00100, YF3/E is 0.000950 and Yinp/E is 0.00165 while NF2 is

0.300, NF3 is 0.340 and Ninp is 0.310.

Table 3.1: Predicted values of Y/E and N with the highest posterior probability based on noise-
free data from the four databases with the strain hardening rules F0, F1, F2 and F3 compared with
the Y/E and N used to generate “experimental” data.

m1 m2 m3

Yinp/E 0.00325 0.00245 0.00165
Ninp 0.100 0.200 0.310
YF0/E 0.00315 0.00240 0.00170
NF0 0.100 0.200 0.300
YF1/E 0.00315 0.00235 0.00155
NF1 0.100 0.200 0.310
YF2/E 0.00275 0.00195 0.00100
NF2 0.0800 0.160 0.300
YF3/E 0.00165 0.00125 0.000950
NF3 0.140 0.260 0.340
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Figure 3.7: Normalized uniaxial stress-strain curves showing the effect of the choice of strain
hardening rules: F0 (dashed lines); F1 (dash dot lines); F2 (dash dot dot lines) and F3 (long dash
lines). The stress-strain curves are for the predicted combinations of Y/E and N with the highest
posterior probability from noise-free data using database gridG2. The solid lines show the uniaxial
stress-strain curves for the three “experimental” materials in Figs. 3.3 and 3.4. For convenience, the
reference stress Yref for each material is taken to be the value of Y specified for the “experimental”
materials in Ref. [2]: 650MPa for m1; 490MPa for m2; and 330MPa for m3.

Because Y/E = 10−3 is the lower boundary of the parameter range and for material m3 the

optimal values of Y/E were near the database boundary for strain hardening rules for F2 and F3.

Therefore, three values of Y/E were added to the database grid G1, namely Y/E = 2.5 × 10−4,

5.0× 10−4 and 7.5× 10−4. This augmented database grid is denoted by G1exp and it has Ktotal =

4080.

For the databases for F0 and F1, the database with database grid G2 is interpolated from G1,

while for the databases for F2 and F3, the database with grid G2 is interpolated from G1exp. All the

predicted values in Table 3.1 were calculated using the locally refined database grid G2.

The corresponding normalized indentation force versus normalized indentation depth curves

and the normalized residual surface profiles near the indenter of the predicted values of Y/E and

N from the databases using various strain hardening rules in Table. 3.1 are shown in Fig. 3.6. All

of the four strain hardening rules provide a good fit to the normalized indentation force versus
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Figure 3.8: Uniaxial stress-strain curves comparing the predictions using only indentation force
versus indentation depth data (dash dot lines) and both indentation force versus indentation depth
and surface profile data (dashed lines) from the databases with strain hardening rules: (a)F0, (b)F1,
(c)F2 and (d)F3. The stress-strain curves are for the predicted combinations of Y/E and N with
the highest posterior probability based on noise-free data. For convenience, the reference stress
Yref for each material is taken to be the value of Y specified for the three “experimental” materials
in Ref. [2]: 650MPa for m1; 490MPa for m2; and 330MPa for m3. The solid lines show the
uniaxial stress-strain curves for the three “experimental” materials in Figs. 3.3 and 3.4. In (c), for
material 3, the stress-strain curve based on both indentation force versus indentation depth and
surface profile data (blue dashed line) coincides with that based on only indentation force versus
indentation depth data (blue dash dot line).
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indentation depth curves but the hardening rules F2 (black dash dot dot line) and F3 (blue long

dash line) for materials m2 and m3 do not provide such a good fit to the the normalized residual

surface profiles.

In Fig. 3.6(b), the surface profiles obtained based on strain hardening rules F2 and F3 do not

provide a good agreement with the “experimental” profiles surface profiles, this indicates that in

these cases the indentation force versus indentation depth data played a dominant role in determin-

ing the optimum values of Y/E and N .

The normalized uniaxial stress-strain curves for the predicted combinations of Y/E and N

in Table. 3.1 and the three “experimental” materials are shown in Fig. 3.7. For material m1, all

uniaxial stress-strain curves for all four hardening rules are very close to that for the corresponding

“experimental” material (the solid lines). For material m2, strain hardening rule F3 (the long dash

line), F0 (the dashed line) and F1 (the dash dot line) overlap with the curve for the “experimental”

material (the solid line). For material m3, F0 (the dashed line), F1 (the dash dot line) and F2 (the

dash dot dot line) overlap. As in [2], the difference between the predicted stress-strain curves

and the stress-strain curves of the “experimental” materials is found to be larger for higher strain

hardening materials. Hence, at least for noise-free data, all four strain hardening rules are capable

of providing a good fit to the uniaxial stress-strain response.

Fig. 3.8 shows the stress-strain curves for the predicted values of Y/E and N with highest

posterior probability values from the databases with strain hardening rules F0, F1, F2 and F3

using both the indentation force versus indentation depth data and the residual surface profile

data (dashed lines) compared with the corresponding curves using only indentation force versus

indentation depth data (dash dot lines). The predictions using two types of data generally provide

good fits to the “experimental” material’s uniaxial stress-strain responses (solid lines) and provide

better representations of the uniaxial stress-strain response than obtained using only indentation

force versus indentation depth data. However, for materialm3, the predicted stress-strain responses

from the databases with rules F2 and F3 using two types of data and using only indentation force

versus indentation depth data nearly coincide. This shows that there are circumstances where there
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is no significant improvement in the predicted uniaxial stress-strain response from using the surface

profile data. Note that the indentation force versus indentation depth data played a dominant role

in the Fig. 3.8.

3.5.2 Stress-strain curves obtained from noise-contaminated data
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Figure 3.9: One realization of the normalized noise-contaminated surface profiles near the indenter
with the noise amplitude (a) ηs = 0.01 and (b) ηs = 0.05 after unloading for the three “experimen-
tal” materials given in the text.

Fig. 3.9 shows “experimental” residual surface profiles near the indenter with a low value of the

noise amplitude (ηs = 0.01), Fig. 3.9(a), and with a high value of the noise amplitude (ηs = 0.05),

Fig. 3.9(b). Similarly, Fig. 3.10 shows “experimental” indentation force versus indentation depth

curves with a low value of the noise amplitude (ηf = 0.01), Fig. 3.10(a), and with a high value of

the noise amplitude (ηf = 0.05), Fig. 3.10(b).

As shown in Ref.[2], using one realization of noise-contaminated data with a given noise am-

plitude to identify the uniaxial plastic response can give a misleading prediction since the fitting

procedure attempts to fit the given data and cannot distinguish between the underlying “actual”
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Figure 3.10: One realization of the normalized noise-contaminated indentation force versus in-
dentation depth curves with the noise amplitude (a) ηf = 0.01 and (b) ηf = 0.05 for the three
“experimental” materials given in the text.

data and the noise. Hence, obtaining an accurate identification requires considering a variety of re-

alizations of a given amplitude of noise fluctuations. Here, for each pair of noise amplitude values

ηf = ηs = 0.01 and ηf = ηs = 0.05, 100 realizations of snoise and fnoise in Eq. (5.24) are used to

identify the values of Y/E and N for each strain hardening rule. As in Ref. [2], for each of the

100 realizations, the values of Y/E and N associated with the highest posterior probability was

obtained and the the arithmetic average of these 100 values of Y/E and N was then calculated. In

addition, the values of the standard deviations for Y/E and N , denoted by ξY/E and ξN , over the

100 realizations were also calculated.

We note that the calculation of the posterior probability for each realization is a quick calcu-

lation carried out using a MATLAB [109] code on a personal computer. The calculation time

includes 5 parts:

Part 1: load two types of data, indentation force versus indentation depth data (f i) and residual

surface profile data (si) for i runs from 1 toKtotal, Ktotal = 520 materials. And load one pair of “ex-

perimental” data, either noise-free, f inp and sinp, or noise-contaminated, fm and sm. The number

49



/Y
re

f

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6 m
1

m
2

m
3

(a)

/Y
re

f

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6 m
1

m
2

m
3

(b)

/Y
re

f

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6 m
1

m
2

m
3

(c)

/Y
re

f

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6 m
1

m
2

m
3

(d)

Figure 3.11: Uniaxial stress-strain curves of the averaged predicted Y/E and N , (Yave/E,Nave) in
dashed lines from the databases with strain hardening rules (a) F0 (b) F1 (c) F2 and (d) F3 with
the noise amplitudes ηs = ηf = 0.01. The error bars denote the stress-strain curves for the com-
binations of average values with their corresponding standard deviations over the 100 realizations,
(Yave/E + ξY/E, Nave + ξN) and (Yave/E − ξY/E, Nave− ξN). For convenience, the reference stress
Yref for each material is taken to be the value of Y specified for the “experimental” materials in
Ref. [2]: 650MPa for m1; 490MPa for m2; and 330MPa for m3. The solid lines show the uniaxial
stress-strain curves for the three “experimental” materials in Figs. 3.3 and 3.4.

of data points in these “raw” data is 103 during loading and 200 during unloading in indentation

force versus indentation depth data, and is 90 in residual surface profile data;
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Part 2: construct a database by interpolating data points in f i, si, fm and sm (or f inp and sinp)

to Kf and Ks data points at specific positions for indentation force versus indentation depth data

and residual surface profile data, respectively. Name the obtained vectors the same name, f i, si,

fm and sm (or f inp and sinp) but with only Kf and Ks number of data points in the indentation

force versus indentation depth data and residual surface profile data, respectively. The database is

named as the database with database grid G0;

Part 3: refine the database by interpolation between data of nearby points on database grid

G0 to get database with database grid G1 (before Bayesian statistics calculation) and G2 (during

Bayesian statistics calculation);

Part 4: perform Bayesian statistics calculations using Eqs. (5.8)-(3.10) for one realization

(noise-free case) or 100 realizations (noise-contaminated case);

Part 5: print summarized results on screen or generate output files.

The calculation time is 15 to 26 seconds for one realization of a pair of noise-free data, and is

80 to 105 seconds for 100 realizations of a pair of noise-contaminated data. The reported calcula-

tion time is corresponding to the parameter settings with, such as Ks = 72, Kf = 67, Ktotal = 520

for database grid G0, Ktotal = 3927 for database grid G1, and Ktotal = 121 for database grid G2.

The number of data points is 1200 in “raw” indentation force versus indentation depth data, and

is 90 in “raw” residual surface profile data. Variation of these parameters’ values would affect

the calculation time. Note that the Bayesian statistics calculation (part 4) is very quick once the

database is constructed or refined.

Figs. 3.11 and 3.12 show the uniaxial stress-strain curves using the average values, Yave/E and

Nave over the 100 realizations from the databases for the four strain hardening rules F0, F1, F2

and F3 with various noise amplitudes. The error bars shown in Figs. 3.11 and 3.12 correspond to

(Yave/E + ξY/E, Nave + ξN) and (Yave/E − ξY/E, Nave − ξN) since these give the largest variation

and show the variation of predicted stress-strain responses that can occur for different realizations

with the same noise amplitude.

For both a relatively small noise amplitude ηs = ηf = 0.01 and a relatively large noise ηs =
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Figure 3.12: Uniaxial stress-strain curves of the averaged predicted Y/E and N , (Yave/E,Nave) in
dashed lines from the databases with strain hardening rules (a) F0 (b) F1 (c) F2 and (d) F3 with
the noise amplitudes ηs = ηf = 0.05. The error bars denote the stress-strain curves for the com-
binations of average values with their corresponding standard deviations over the 100 realizations,
(Yave/E + ξY/E, Nave + ξN) and (Yave/E − ξY/E, Nave− ξN). For convenience, the reference stress
Yref for each material is taken to be the value of Y specified for the “experimental” materials in
Ref. [2]: 650MPa for m1; 490MPa for m2; and 330MPa for m3. The solid lines show the uniaxial
stress-strain curves for the three “experimental” materials in Figs. 3.3 and 3.4.

ηf = 0.05, the stress-strain responses of the averaged predicted parameters from all four databases

with hardening rules F0, F1, F2 and F3 provide reasonably good fits to the stress-strain curves of
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Table 3.2: Average of the predicted values of Y/E and N over 100 realizations based on noise-
contaminated data with noise amplitudes ηs = ηf = 0.01 from the four databases with strain
hardening rules F0, F1, F2 and F3.

m1 m2 m3

YF0/E 0.00314 0.00240 0.00170
NF0 0.103 0.200 0.300
YF1/E 0.00310 0.00236 0.00157
NF1 0.106 0.200 0.308
YF2/E 0.00270 0.00195 0.00100
NF2 0.0836 0.160 0.300
YF3/E 0.00165 0.00125 0.000946
NF3 0.140 0.259 0.342

Table 3.3: Average of the predicted values of Y/E and N over 100 realizations based on noise-
contaminated data with noise amplitudes ηs = ηf = 0.05 from the four databases with strain
hardening rules F0, F1, F2 and F3.

m1 m2 m3

YF0/E 0.00313 0.00240 0.00162
NF0 0.105 0.200 0.307
YF1/E 0.00311 0.00235 0.00154
NF1 0.105 0.203 0.312
YF2/E 0.00265 0.00185 0.00101
NF2 0.0874 0.175 0.295
YF3/E 0.00165 0.00127 0.000901
NF3 0.139 0.253 0.352

the three “experimental” materials. When ηs = ηf = 0.01, The variation of the predicted stress-

strain curves is small except for the prediction for material m3 from database with rule F3. When

ηs = ηf = 0.05, the stress-strain curves of averaged predicted parameters generally provide as

good fits as the ones based on data with a low noise level, but with larger variations (larger values

of the standard deviations). This indicates that what is important to know regarding experimental

measurements is the expected noise amplitude and that various statistical realizations with that

amplitude should be considered in extracting the uniaxial stress-strain response.

It is worth noting that although the standard deviations in the values of Y/E andN for material
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m3 with noise amplitudes ηs = ηf = 0.05 and with strain hardening rules F1, F2 and F3 are all

smaller than the corresponding the standard deviations for m2, the error bars in Figs. 3.11 and 3.12

associated with material m3 are larger than those associated with material m2 because the uniaxial

stress-strain response of a higher strain hardening material is more sensitive to variations in the

values of these parameters.

The prediction for material m3 from the database with hardening rule F3 is unusual in that the

standard deviations for ηs = ηf = 0.01 (ξYF3η=0.01/E = 0.0019 × 10−2 and ξNF3η=0.01
= 0.0069)

are larger than those for ηs = ηf = 0.05 (ξYF3η=0.05/E = 0.0017 × 10−2 and ξNF3η=0.05
= 0.0038).

In this case, values of N in the range 0.33 to 0.36 provide good fit to the stress-strain response

with ηs = ηf = 0.01 while with ηs = ηf = 0.05 the values of N for the 100 realizations only

vary between 0.35 and 0.36. Consistent with this, the standard deviation ξNF3η=0.01
is about twice

ξNF3η=0.05
, while the standard deviations ξYF3η=0.01/E and ξYF3η=0.05/E have values that are very close.

In most cases, as seen in Figs. 3.11 and 3.12, the extent of the error bars with ηs = ηf = 0.05 are

larger than those with ηs = ηf = 0.01.

Table 3.2 shows the averaged predicted values of Y/E and N for the four strain hardening

rules over 100 realizations with ηf = ηs = 0.01. Similarly, Table 3.3 shows the averaged predicted

values of Y/E and N for the four strain hardening rules over 100 realizations with ηf = ηs = 0.05.

The values of Y/E and N in Tables 3.2 and 3.3 are shown to three significant figures and are

very close to the values in Table 3.1 showing that the Bayesian type approach used gives predicted

plastic properties that are rather insensitive to noise in the data. For example, for strain hardening

rule F1, with no noise the predicted values of Y/E and N are 0.00315, 0.100 for material m1;

0.00235, 0.200 for material m2; and 0.00155, 0.310 for material m3. With ηf = ηs = 0.05 in Table

3.3, the corresponding values are 0.00310, 0.106 for material m1; 0.00236, 0.200 for material m2;

and 0.00157, 0.308 for material m3.

The highest posterior probability values of the three materials with strain hardening rules F0,

F1, F2 and F3 corresponding to Tables 3.1 (noise-free) and 3.2 (noise amplitudes ηs = ηf = 0.01)

are similar. The highest posterior probability values correspond to Table 3.3 (noise amplitudes
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ηs = ηf = 0.05) are noticeably smaller than the ones corresponding to Tables 3.1 and 3.2. For

example, for material m1 with strain hardening rule F3, the highest posterior probability values

are 0.89, 0.81 and 0.40 based on data with no noise, noise amplitudes ηs = ηf = 0.01 and noise

amplitudes ηs = ηf = 0.05, respectively. For material m3 with strain hardening rule F2, the

corresponding highest posterior probability values are 0.95, 0.87 and 0.59. Note that only the

relative magnitude of the posterior probability value within its distribution is meaningful.

The calculations here show that even with a relatively large noise amplitude, the Bayesian-type

statistical approach of Ref. [2], together with appropriate averaging over a number of realizations,

can identify plastic parameters associated with a variety of power law strain hardening rules from

conical indentation data that give a good representation of the uniaxial stress-strain behavior of the

“experimental” material.

3.6 Conclusions

1. The ability of the predicted stress-strain response to represent the “experimental” stress-strain

response is not sensitive to the choice of strain hardening rule, at least for the range of rules

considered.

2. The specific form of strain hardening rule does not affect the sensitivity of the predicted stress-

strain response to the noise amplitude in the data.

3. When the noise amplitude of the data is relatively small (ηs = ηf = 0.01), the influence of noise

on the predicted uniaxial stress-strain response is small and the predicted uniaxial stress-

strain curves are in good agreement with the predictions based on noise-free data. When

noise in the measurements is relatively large (ηs = ηf = 0.05), the predicted uniaxial stress-

strain curves can vary significantly with the particular realization. However, using plastic

parameters obtained from an average of 100 realizations can provide a good representation

of the uniaxial stress-strain response. The parameters obtained from this averaging are in

good agreement with those obtained from noise-free data.

4. The uniaxial stress-strain curve for a high strain hardening material is more sensitive to dif-

55



ferences in the parameter values of the strain hardening rule than is a lower strain hardening

material. Accordingly, the predicted uniaxial stress-strain response for a high strain hard-

ening material can be more sensitive to noise than is the predicted uniaxial stress-strain

response for a low strain hardening material.
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4. CHARACTERIZATION OF PLASTICALLY COMPRESSIBLE SOLIDS VIA

SPHERICAL INDENTATION †

“One of the principal objects of theoretical research

is to find the point of view from which the subject

appears in the greatest simplicity.”

– Josiah Willard Gibbs

4.1 Introduction

A variety of tests are carried out with the aim of characterizing the mechanical response of a

material so that a quantitative assessment can be made of its performance in other circumstances

of interest, for example in an engineering component or structure. The results of such tests are

expressed in terms of “properties.” However, it is important to recognize that a property is not a

characteristic of a material but is a parameter entering a constitutive description. Indeed, a theory

is needed to relate the response of a material in such a test to a property. For example, in a simple

uniaxial tensile test, the more or less directly measured quantities are the change in length of

the specimen and the force. Continuum mechanics theory states that the characterization of the

mechanical response is in terms of the stress, the force divided by the cross section area, and the

strain, the change in length divided by the length. The assumed constitutive relation provides a

means of characterizing the stress versus strain response in terms of one or more properties that

may be parameters, functions and/or functionals.

In other circumstances the connection between more or less directly measured quantities and

a material property is not so straightforward. In particular, in instrumented indentation, the in-

dentation depth and the indentation force are measured. Relating these measured quantities to the

properties of some constitutive relation requires full field solutions of an initial/boundary value
†Reprinted with permission from “Characterization of plastically compressible solids via spherical indentation” by

Yupeng Zhang and Alan Needleman, 2021, Journal of the Mechanics and Physics of Solids, 148, 104283. Copyright
c© 2020 by Elsevier Ltd.
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problem with an assumed constitutive relation. A variety of approaches have been proposed to

identify plastic constitutive relation properties from the indentation response including optimiza-

tion, e.g., [113, 114, 115, 117], neural networks and machine learning, e.g., [86, 116, 121] and

Bayesian statistics, e.g., [106, 2, 122, 123].

However, for a given constitutive framework, the relation between the indentation force versus

indentation depth response and the uniaxial stress-strain response is not necessarily unique, [91, 2,

124], in the sense that two sets of plastic constitutive parameters with very different uniaxial stress-

strain responses can give indistinguishable indentation force versus indentation depth responses.

One approach considered to resolving the non-uniqueness is to use a surface profile associated

with the indent instead of or in addition to the indentation force versus indentation depth response,

[116, 125, 126, 95, 117, 2]. For conical indentation and presuming an isotropic hardening elastic-

plastic constitutive relation with plastic incompressibility, [2] showed that including the residual

surface profile in their Bayesian statistics formulation can render the relation unique.

Here, we consider a broader class of materials, namely materials that exhibit plastic compress-

ibility, and explore the identification of plastic properties for such materials from spherical inden-

tation. Plastically compressible materials, such as metallic foams, architected lattice materials and

nano-porous solids, have a wide range of applications and potential applications, for example as

impact-energy absorbers and as components in industrial machines where their light weight re-

duces inertia. A variety of studies of the indentation response of foams have been carried out to

understand and characterize their mechanical behavior, including [127, 128, 129, 130, 131, 132,

133, 134, 135, 136, 137].

Here, we presume that the materials under consideration are appropriately characterized by a

rate dependent Deshpande-Fleck type constitutive relation, [138, 107], but with very small rate

sensitivity so that the response can be idealized as nearly rate independent. The plastic response is

then characterized by three parameters, a strain hardening exponent, an initial flow strength and a

scalar parameter characterizing the plastic compressibility.

Previous analyses of indentation of materials characterized by a Deshpande-Fleck type consti-
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tutive relation include conical indentation into a bulk material, [107, 136], spherical and wedge

indentation of low-density polymeric foams, [134], indentation of a thin film on a substrate by a

cylindrical indenter, [139] and estimation of the plastic volume change parameter, assuming the

other two plastic constitutive parameters are known, from the maximum indentation force versus

maximum indentation depth relation in spherical indentation, [131, 132]. Here, a Bayesian-type

statistical analysis is used to identify all three plastic material parameters from a single spheri-

cal indentation for two synthetic “experimental” plastically compressible materials with presumed

known elastic properties. One material is representative of the uniaxial response (over a strain

range of interest) of an open cell foam and the other of a closed cell foam. A database is con-

structed for each material for a range of values of the three constitutive parameters. A disadvantage

of a Bayesian-type approach for parameter identification is that the number of full field solutions

required can be large. To overcome this, as in [2, 140], a rather coarse database of full field so-

lutions is constructed and then the more refined dataset of constitutive parameters that is used for

material identification is obtained by interpolation. In identifying the plastic material parameters

for the two materials, both noise-free and noise-contaminated data are considered.

In addition to identifying the material parameters for the two “experimental” materials, several

questions are considered:

1. Are the identified plastic properties obtained using the spherical indentation force versus in-

dentation depth response unique?

(i) If not, can the property identification be rendered unique by considering the residual

surface profile?

2. How does the plastic compressibility affect the correction factor β in the [81] method for

determining the effective (or reduced) elastic modulus from the indentation force unloading

response?

3. How does plastic compressibility affect the identification of plastic properties from indentation

data?
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4. What are the consequences of using an inappropriate plastic constitutive framework?

5. How sensitive is the identification of the plastic material properties to the specification of the

elastic properties?

6. How do the responses in conical and spherical indentation compare?

We begin by specifying the spherical indentation initial/boundary value problem formulation,

the numerical method and the porous plastic constitutive relation used

citesinica2015. We show the correspondence between the material parameters in that formulation

and those of the [138] constitutive relation. For completeness, the formulas used for the Bayesian-

type statistical calculations are presented. The finite element formulation is briefly described and

some typical results for plastically compressible solids are shown. The construction of the needed

database is described. Results for the identification of the material properties of the two “exper-

imental” materials are presented. Parameter studies are then carried out to begin to address the

questions listed above.

4.2 Problem formulation

4.2.1 Initial/boundary value problem

Although the initial/boundary value problem formulation is identical to that in [107] and [2],

except for the indenter shape, for completeness, the problem formulation is briefly specified. Fur-

ther details and additional references are given in [107].

A Lagrangian formulation of the field equations is used, with the position of a material point

in the unstressed initial configuration, which serves as the reference configuration, denoted by X.

The displacement vector is u = x −X and the deformation gradient is F = ∂x/∂X, where x is

the position in the current configuration of the material point at X in the initial configuration. The

rate form of the principle of virtual work is written as

∫
V

ṡ · ·δF dV =

∫
S

Ṫ · δu dS − 1

∆t

[ ∫
V

s · ·δF dV −
∫
S

T · δu dS
]

(4.1)
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The second term on the right hand side of Eq. (4.1) is used to reduce the drift from the equilibrium

path due to the time step procedure. Also, V and S are the volume and surface, respectively, of the

body in the reference configuration, t is time, (˙) = ∂()/∂t at fixed X, double inner dot product

A · ·B = AijBji and v ·w = viwi, and

T = n · s , s = F−1 · τ , τ = Jσ (4.2)

where n is the surface normal, τ is the Kirchhoff stress and σ is the Cauchy stress (J = det(F)).

r

L0

Z0

h

R0

rnom
rtrue

z

Figure 4.1: Sketch of the spherical indentation configuration analyzed.

We confine attention to axisymmetric deformations and a reference cylindrical coordinate sys-

tem, (r, θ, z), is used with all field quantities independent of θ. The calculations are carried out

for a rigid spherical indenter of radius R0 pushed into a cylindrical block occupying 0 ≤ r ≤ L0,

0 ≤ z ≤ Z0 as sketched in Fig. 5.1.

Perfect sticking is assumed as soon as the block comes into contact with the indenter, so that
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the rate boundary conditions are

u̇r = 0 u̇z = ḣ on Scontact (4.3)

where Scontact denotes the portion of the material surface in contact with the indenter.

With the origin of the coordinate system as shown in Fig. 5.1, the other boundary conditions

are u̇r = 0, Ṫz = 0 on r = 0, u̇z = 0, Ṫr = 0 on z = Z0 and Ṫ = 0 on the remaining external

surface.

The deformations induced by spherical indenter are not self-similar and radius of the spherical

indenter, R0, serves as a characteristic length. Subsequently, length quantities are normalized by

R0.

For indentation into a foam, the indenter radius R0 and the indentation depth h are presumed

to be much larger than a length, such as a cell size, characterizing the foam microstructure so that

the foam can be idealized as a homogeneous material.

4.2.2 Constitutive relation

The constitutive relation is the same as the one in [107] which, in turn, is a specialization to

plastic normality of that introduced in [141]. The rate of deformation tensor, d = sym(Ḟ · F−1),

is taken to be the sum of elastic, de, and plastic, dp, parts. The elastic strains, assumed small, are

given by

de =
1 + νe

E
τ̂ − νe

E
tr(τ̂ )I (4.4)

where E is Young’s modulus, νe is elastic Poisson’s ratio, tr(·) denotes the trace, I is the identity

tensor and τ̂ is the Jaumann rate of Kirchhoff stress. As noted in [107], although Eq. (4.4) is a

hypoelastic relation, there is an elastic potential for the volumetric part.

The plastic part of the rate of deformation tensor can be written as

dp = Λ̇p
∂Φ

∂τ
=

3

2

(
ε̇p
τe

)
p (4.5)
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with

Φ = τe − τ̄(εp, ε̇p) = 0 , p = τ − α tr(τ )I (4.6a)

τ 2
e =

3

2
τ : p =

3

2

[
τ : τ − α (tr(τ ))2

]
(4.6b)

and

ε̇p = ε̇0

(
τ̄

g

)1/m

, g (εp) = τ̄0

[
1 +

εp
ε0

]N
(4.7)

Here, ε̇0 is a reference strain rate, m is the rate sensitivity exponent, τ̄0 is a reference stress and ε0

is a reference strain.

The effective stress, τe in Eq. (4.6b), can also be written as

τ 2
e = τ 2

M +
9

2
(1− 3α) τ 2

h (4.8)

where

τ 2
M =

3

2
τ ′ : τ ′ , τ ′ = τ − 1

3
tr(τ )I , τh =

1

3
tr(τ ) (4.9)

It is also worth noting that the plastic Poisson’s ratio, νp, is given by, [107],

νp =
α

1− α
(4.10)

For α = 1/3, the plastic flow rule reduces to that of a plastically incompressible Mises solid with

νp = 1/2.

4.2.3 Relation to the Deshpande-Fleck formulation

The plastic flow rule in Section 4.2.2 differs from the relation of [138] in three significant

respects: (i) it is a rate dependent flow rule whereas that in [138] is rate independent; (ii) it is based

on Kirchhoff stress whereas that in [138] is based on Cauchy stress; and (iii) the form of the flow

potential in [138] differs slightly from that in Section 4.2.2. Nevertheless, the two relations can

be made to coincide once the Deshpande-Fleck relation is generalized to rate dependent material

response.
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The Deshpande-Fleck flow potential surface is written as

ΦDF = σ̂ − σ̄(Ep, Ėp) = 0 (4.11)

where σ̂ is defined by

σ̂2 =
1

1 + (αDF/3)2

[
σ2

M + α2
DFσ

2
h

]
(4.12)

with σM and σh given by expressions of the form of Eq. (4.9) but with the Cauchy stress tensor

replacing the Kirchhoff stress tensor.

The plastic flow rule takes the form

dp =
3

2

(
Ėp

σ̂

)
p̂ (4.13)

where

p̂ =
1

1 + (αDF/3)2

[
σ′ +

2

9
α2

DFσhI

]
(4.14)

and

Ėp = Ė0

(
σ̄

ĝ

)1/m

, ĝ(Ep) = σ̄0

[
1 +

Ep

E0

]N
(4.15)

With, as in [107], the identification

α2
DF =

9

2
(1− 3α) (4.16)

from Eqs. (4.8) and (4.12)

σ̂ =
1

J
√

1 + (αDF/3)2
τe (4.17)

The relations between σ̄ and τ̄ , and between ĝ and g are also of the form of Eq. (4.17).

Since p in Eq. (4.6a), can be written as

p = τ ′ + (1− 3α)τhI = J

[
σ′ +

2

9
α2

DFσhI

]
(4.18)
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we have

p̂ =
1

J [1 + (αDF/3)2]
p ,

p̂

σ̂
=

1√
1 + (αDF/3)2

p

τe

(4.19)

Therefore, with

Ėp =
[√

1 + (αDF/3)2
]
ε̇p =

[√
1 + (1− 3α)/2

]
ε̇p (4.20)

the plastic flow rules, Eqs. (4.5) and (4.13), coincide. Note also that the relation between Ep and

εp of the same form as Eq. (4.20) since the factor relating Ėp and ε̇p is a constant independent of

plastic strain and stress state.

Next, the values of the material parameters in Eqs. (4.7) and those in Eqs. (4.15) need to be

related. The values of ε̇0 and Ė0, and those of ε0 and E0 are related via Eq.(4.20). The values of τ̄0

and σ̄0 are related by noting that at ε̇p/ε̇0 = Ėp/Ė0 = 1 and εp = Ep = 0, τe = τ̄0 and σ̂ = σ̄0.

Then, for a uniaxial state of stress σ, σ̂ = σ̄0 = |σ| while τe = τ̄0 = J0

√
1 + (1− 3α)/2|σ|.

Hence, we set

τ̄0 = J0

[√
1 + (1− 3α)/2

]
σ̄0 (4.21)

where J0 is the value of the Jacobian when Ep = εp = 0 and is presumed to be ≈ 1. With these

identifications, the values of m and N are the same in both formulations.

To estimate the range of values of the term in brackets, consider values of νp in Eq. (4.10)

between 0 and 1/2. For νp = 1/2, α = 1/3 and the factor in brackets is 1. For νp = 0, α = 0 and

the value of the factor in brackets is 1.22. For an intermediate value, νp = 0.176, α = 0.15 and the

value of the factor in brackets is 1.13.

4.3 Bayesian-type statistical approach

The equations used to calculate the posterior probabilities in the Bayesian-type statistical ap-

proach are presented here. Background, a more complete description of the methodology and

references are given in [2, 140].

The experimental data consists of two vectors: sm and fm. The components of vector sm
k , k =

1, ..., Ks are values of height of the surface coordinate, zk at specified values of radial coordinate
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rk, while the components of vector fm
k , k = 1, ..., Kf are values of the indentation force Fk at some

specified indentation depth hk.

A database of indentation responses is constructed from finite element solutions consisting of a

residual surface profile, denoted by si, and an indentation force versus indentation depth response,

denoted by f i. The index i ranges from 1 to Ktotal, where Ktotal is the total number of cases in the

database.

The indentation force versus indentation depth data and the surface profile data are treated

as independent so that the posterior probability p(si,f i|sm,fm) associated with (sm,fm) can be

expressed as

p(si,f i|sm,fm) =
p(si|sm)p(f i|fm)

Zsf

(4.22)

where

p(si|sm) =
p(sm|si)p(si)

Zs

, p(f i|fm) =
p(fm|f i)p(f i)

Zf

(4.23)

There is no sum on i in Eqs. (5.8) to (5.9). It is worth noting that, due to the multiplication of

posterior probabilities, the parameter values obtained using the largest posterior probability value

from Eq. (5.8) are not guaranteed to provide a better approximation to the input material uniaxial

responses than those obtained from either of the posterior probabilities in Eq. (5.9).

The normalizing constants Zs, Zf and Zsf are given by

Zs =

Ktotal∑
i=1

p(sm|si)p(si) , Zf =

Ktotal∑
i=1

p(fm|f i)p(f i) (4.24a)

Zsf =

Ktotal∑
i=1

p(si|sm)p(f i|fm) (4.24b)

It is also assumed that the differences between the input data and the calculated responses in

the database are distributed as a mean zero normal distribution. With the variances (ξ̂is)
2 and (ξ̂if )

2,
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the likelihood values are, [2],

p(sm|si) =
( 1

ξ̂is
√

2π

)Ks

exp
(
− Ks

2

)
, p(fm|f i) =

( 1

ξ̂if
√

2π

)Kf

exp
(
− Kf

2

)
(4.25)

where Ks and Kf are the number of data points on the residual surface profile and the number of

data points on the indentation force versus indentation depth response, respectively. If a standard

deviation turns out to be exactly zero, the corresponding likelihood is infinite and the posterior

probability is set to one.

A uniform prior is used for both p(si) and p(f i) in the database and the values of p(si) and

p(f i) are set to 0 outside that range.

Both noise-free and noise-contaminated data are considered. With the noise-free responses

denoted by sinput and f input, the noise-contaminated data are given by

sm = sinput + snoise , fm = f input + fnoise (4.26)

Each component snoise
k and fnoise

k is a random number from a normal distribution, calculated using

the [109] function normrnd which has zero mean value. The values of the standard deviations ξs

and ξf are taken to be normalized by a reference length sref and by the maximum indentation force,

respectively, so that

ξs = ηssref , ξf = ηfmax(fm
k ) (4.27)

with ηs ≥ 0 and ηf ≥ 0, and ηs and ηf are referred to subsequently as the noise amplitudes. The

reference length sref is taken to be the indentation depth of the residual surface profile.

4.4 Plastic parameters identification from spherical indentation

The results of spherical indentation computations with specified material properties are taken

as “experimental” input values. Two sets of input plastic material properties for plastically com-

pressible materials characterized by a [138] type constitutive relation are specified. One set (termed
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A-input) is taken to be representative of Alporas R©∗, a closed cell foam, and the other (termed D-

input) is representative of Duocel R©†, an open-cell foam. The Deshpande-Fleck material parameters

are based on data in [142] and [138].

Both noise-free and noise-contaminated data are considered. Since the response in spherical

indentation is not self-similar, the depth of indentation, h, relative to the spherical indenter radius,

R0, matters. Here, the indentation calculations are carried out to an indentation depth of h/R0 =

0.3.

4.4.1 Finite element calculations

Solutions to the indentation problem specified in Section 4.2.1 were obtained using an in-house

axisymmetric finite element code based on the one used in [107]. Indentation into a half-space is

approximated by indenting a finite block with dimension L0/R0 = 37.5 and Z0/R0 = 37.5.

The reference finite element mesh used consists of 200 × 100 quadrilateral elements, with each

rectangle consisting of four “crossed” linear displacement triangular elements. Within a region

R0 × 0.75R0 under the indenter, a fine mesh was used with 160 × 50 quadrilateral elements that

gradually increased in size. Outside this fine meshed region where the gradient of the deformation

field is small, a much coarser mesh was used. The deformation history was calculated in a linear

incremental manner. The contours of normalized hydrostatic Kirchhoff stress τh/τ̄0 and effective

plastic strain εp of the A-input and D-input materials at an indentation depth h/R0 = 0.3 are

shown in Fig. 4.2. The normalized indentation force versus normalized indentation depth responses

and the normalized surface profiles near the indenter after unloading for the A-input and D-input

materials are shown in Fig. 4.3. The indentation responses in Fig. 4.3 clearly differ although the

distributions of plastic strain and hydrostatic stress in Fig. 4.2 are similar. The A-input and D-input

constitutive parameters are given subsequently in Table 4.1.

In the calculations, the indentation force F varies in discrete steps when a new nodal point

comes in contact with or detaches from the indenter. In order to provide a clearer picture of the

∗Shinko Wire Company, Amagasaki, Japan
†ERG Aerospace Corporation, Oakland, USA
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Figure 4.2: Field distributions in the vicinity of the indenter for the two “experimental” plastically
compressible materials considered subsequently, termed the A-input material and the D-input ma-
terial at an indentation depth h/R0 = 0.3. The A-input and D-input constitutive parameters are
given in Table 4.1. (a) Distribution of hydrostatic stress for A-input. (b) Distribution of hydrostatic
stress for D-input. (c) Distribution of effective plastic strain εp for A-input. (d) Distribution of
effective plastic strain εp for D-input.

indentation response, the loading part of the raw output results from the code are smoothed by

plotting the midpoint of the steps of the indentation force F versus indentation depth h relation.

Convergence was investigated using a fine, mildly graduated 320 × 100 quadrilateral element
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Figure 4.3: Indentation responses for the A-input and D-input materials. The material parameter
values are given in Table 4.1. (a) Normalized indentation force magnitude F/(ER2

0) versus nor-
malized indentation depth h/R0. (b) Normalized surface profiles near the indenter after unloading.
The symbols denote the data points used in the Bayesian inference.

mesh in a R0× 0.75R0 region under the indenter. Outside the fine mesh region, where the gradient

of the deformation field is small, a much coarser quadrilateral element mesh was used, giving a

total of 380× 180 quadrilateral elements. For both the A-input material and the D-input material,

the indentation force versus indentation depth responses and residual surface profiles essentially

coincided with the peak values of the normalized indentation force differing by less than 0.2%

at the same value of indentation depth. The values of indentation depth at zero force for both

materials also agreed to three significant figures. The normalized residual surface profiles obtained

using the two meshes closely coincided, with the difference in values of z/R0 generally being

within 1.6% for 0.7 < r/R0 < 0.9. All results to be presented subsequently were obtained using

the reference finite element mesh.

4.4.2 Construction of the databases

The focus here is on identifying the three plastic parameters, τ̄0/E,N and α, that characterize

the plastic response of a material described by a [138] type constitutive relation.
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The “experimentally” measured indentation response is presumed to consist of the indentation

force versus indentation depth response fm and the residual surface profile sm. In order to apply

the Bayesian-type statistical approach described in Section 5.3, two databases are constructed,

denoted by D0
A for the material A-input, and D0

D for the material D-input. The databases only

differ in the values of Young’s modulus E and elastic Poisson’s ratio νe. In the database D0
A,

EA = 1.000GPa and νeA = 0.37; In the database D0
D, ED = 0.634GPa and νeD = 0.25.

There areK0
total combinations of indentation responses si and f i corresponding to the parameter

combinations (τ̄0/E)i, N i and αi, with i ranging from 1 to K0
total. Each vector, si and f i consists

of a set of discrete points. The number of points in each surface profile vector, si, is Ks = 74,

distributed non-uniformly with an increased density of points near the indenter where sink-in or

pile-up occurs. Each indentation force versus indentation depth vector, f i, consists of Kf = 55

data points (25 for loading and 30 for unloading data) also distributed non-uniformly.

In both databases, τ̄0/E ∈ [0.001, 0.005] with step size 0.001 (5 points); N ∈ [0.00, 0.15]

with step size 0.05 (4 points); and α ∈ [0.00, 0.30] with step size 0.05 (7 points). Thus there are

K0
total = 140 combinations of parameters in each of these databases, which will be referred to as the

coarse databases. For each of these 140 combinations of parameters, a finite element indentation

calculation is carried out.

A disadvantage of a Bayesian approach is the computational effort needed to construct the re-

quired database of potential responses. Once the initial database is constructed, the computations

for the Bayesian statistical analysis can be quickly carried out on a personal computer. In order to

limit the number of needed computations, a more refined database is constructed for each input ma-

terial by linear interpolation of the corresponding vectors of nearby points in the coarse databases

with no additional finite element calculations being carried out. The interpolated database has step

size 0.0002 in τ̄0/E, 0.01 inN and 0.01 in α givingKtotal = 10416. These databases for the A-input

and D-input materials are denoted by DA and DD, respectively, and are referred to as interpolated

databases. The predictions of material parameters are obtained using the interpolated databases.

The accuracy of the predictions depends on the ability of the interpolated indentation responses
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to represent the responses that would have been obtained using those constitutive parameters in a

finite element calculation.

4.4.3 Material parameters representative of Alporas R© and Duocel R©

Considerable variation exists in the stress-strain response of metallic foams with the response

being sensitive to the relative density of the foam, the density of the foam divided by the density

of cell wall, [142, 138]. The mechanical properties selected for the A-input and D-input materials

in Table 4.1 are taken to represent the uniaxial stress-strain response up to strains of ≈ 0.7, the

high hardening that such foams can exhibit at larger strains is not represented, [142, 138]. We note

that with a maximum indentation depth h = 0.3R0, the maximum plastic strain is less than 0.7

as seen in Figs. 4.2 (c) and (d). The values of Young’s modulus E and reference strength σ̄0 are

taken from Table 4 of [142] (ERG was used to denote the foam with trade name Duocel R©) and the

elastic Poisson’s ratio νe is taken as the mean measured values under compression given by [142].

The reference strength values are taken to be the same in tension and compression as suggested by

[143]. In addition to the values given in Table 4.1, for both materials the reference strain rate is

taken to be ε̇0 = 0.01s−1 and the strain rate sensitivity exponent is set tom = 0.005 to approximate

rate independent plastic deformations. The value of the strain hardening exponent N is chosen to

qualitatively represent the observed hardening behavior under uniaxial compression.

The values taken for αDF are the values given by [138] based on a simplified version of the

self-similar model and α is calculated from Eq. (4.16). The value of the plastic Poisson’s ratio νp

is calculated from Eq. (4.10), so that νp = 0.013 for the A-input material and νp = 0.174 for the

D-input material. The reference strength τ̄0 in Eq. (4.7) is calculated from Eq. (4.21) with J0 ≈ 1

and
√

(1 + (1− 3α)/2)=1.2168 and 1.1302 for A-input and D-input, respectively. The reference

strain, ε0, is taken as τ̄0/E.

Fig. 4.4 shows uniaxial responses for materials A-input and D-input calculated using the spec-

ified material parameters in a one quadrilateral element finite element calculation so the stress and

deformation distributions are homogeneous. In Figs. 4.4 (a) and (b) the stress, σ, is the uniaxial

force divided by the current cross-sectional area, and the strain, ε, is ln(`/`ref), where `ref is the
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Figure 4.4: Uniaxial responses for the A-input and D-input materials. (a) Cauchy stress, σ, versus
logarithmic strain ε in uniaxial compression. (b) Cauchy stress, σ, versus logarithmic strain ε
in uniaxial tension. (c) Relative volume change, V/Vref , versus ε in uniaxial compression. (d)
Relative volume change, V/Vref , versus ε in uniaxial tension.

Table 4.1: Constitutive parameters for the A-input and D-input materials.

E(GPa) νe α αDF N τ̄0(MPa) τ̄0/E σ̄0(MPa) σ̄0/E
A-input 1.000 0.37 0.0129 2.08 0.04 2.24 0.00224 1.84 0.00184
D-input 0.634 0.25 0.1484 1.58 0.02 2.45 0.00386 2.17 0.00342
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length in the reference configuration and ` is its current value. The plastic flow potential is ex-

pressed in terms of Kirchhoff stress, τ = Jσ, so that the difference between using the Kirchhoff

and Cauchy stress measures is greatest for small values of α, as for the A-input and D-input ma-

terials considered, and vanishes as α → 1/3. As a consequence of basing the flow potential on

τ , the true stress versus logarithmic strain responses show hardening in compression, Fig. 4.4(a),

and softening in tension, Fig. 4.4(b). Figs. 4.4 (c) and (d) show the ratio of current volume V to

reference volume Vref computed as
V

Vref

=
`a2

`refa2
ref

(4.28)

where a and aref are the element radii in the current and reference configurations, respectively.

4.4.4 Identification of plastic properties for the A-input and D-input materials

The values of Young’s modulus, E, and the elastic Poisson’s ratio, νe are assumed known and

the aim is to identify the values of τ̄0/E, N and α from the indentation response.

4.4.4.1 Noise-free data

The “experimental” data consists of the vectors sm and fm. Each entry in the databases,

DA and DD, consists of vectors si and f i, where i = 1, ..., Ktotal with Ktotal = 10416. The

posterior probabilities are calculated using Eqs. (5.8) to (5.11) for each database entry. The set of

values of τ̄0/E, N and α that have the largest posterior probability value is identified as the set

characterizing the plastic response of the material under consideration. For each database entry,

three posterior probability values are computed: (i) the posterior probability, p(f i|fm), using only

indentation force versus indentation depth values (denoted by F); (ii) the posterior probability,

p(si|sm), using only residual surface profile data (denoted by S); and (iii) the posterior probability,

p(si,f i|sm,fm), using both indentation force versus indentation depth values and residual surface

profile data (denoted by FS).

The predicted parameters and the associated posterior probability values for the A-input ma-

terial are given in Table 4.2. The predicted parameters using only residual surface profile (S) are

rather close to the input values in Table 4.1, while the predicted values using only indentation force
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versus indentation depth data (F) and the one using both indentation force versus indentation depth

and residual surface profile (FS) are noticeably different from the input values. In particular, the

value α = 0.13 in Table 4.2, is much larger than the value for the A-input material in Table 4.1.
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Figure 4.5: Uniaxial responses obtained from noise-free indentation data for the A-input material
using the predicted plastic properties in Table 4.2. (a) σ versus ε in compression; (b) σ versus ε in
tension; (c) V/Vref versus ε in compression; (d) V/Vref versus ε in tension. F: using only indentation
force versus indentation depth data (dashed lines); S: using only residual surface profile data (dash
dot lines); FS: using both indentation force versus indentation depth and residual surface profile
data (dash dot dot lines). The solid lines show the responses for the A-input material values in
Table 4.1. The dashed lines (F) coincide with the dash dot dot lines (FS).
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Nevertheless, all the probability values in Table 4.2 are very close to 1. It is important to note that

these probability values relate to the probability of representing the indentation response not the

uniaxial stress-strain response.

Fig. 4.5 shows a comparison between the uniaxial compression and tension response obtained

using the parameter values in Table 4.2 with the corresponding “experimental” responses for the

A-input material. In Figs. 4.5(a) and (b), the prediction using only the residual surface profile

data (S) gives the best representation of the uniaxial stress-strain behavior of the A-input material.

The uniaxial responses predicted using only indentation force versus indentation depth data (F)

and using both the indentation force versus indentation depth data and residual surface profile data

(FS) show a significant difference from those of the A-input material in Figs. 4.5(a) and (b).

The evolution of the volume ratio, V/Vref , versus axial strain, ε, both in uniaxial compression,

Fig. 4.5(c), and in uniaxial tension, Fig. 4.5(d), also shows that the (S) prediction gives a much
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Figure 4.6: The indentation responses calculated using the predicted values of τ̄0/EA, N and α for
the A-input material in Table 4.2 based on noise-free data compared with the indentation responses
obtained using the input values of A-input in Table 4.1 (solid lines). (a) Normalized indentation
force magnitude F/(EAR

2
0) versus normalized indentation depth h/R0. (b) Normalized surface

profiles near the indenter after unloading. The dashed lines (F) coincide with the dash dot dot lines
(FS).
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better fit to the “experimental” responses than the predictions using (F) data and (FS) data.

Fig. 4.6 shows a comparison between the normalized indentation force, F/(EAR2
0), versus

normalized indentation depth, h/R0, and the near indenter residual surface profiles, the values of
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Figure 4.7: Uniaxial responses obtained from noise-free indentation data for the D-input material
using the predicted plastic properties in Table 4.3. (a) σ versus ε in compression; (b) σ versus ε in
tension; (c) V/Vref versus ε in compression; (d) V/Vref versus ε in tension. The solid lines show
the uniaxial responses for the input values of D-input in Table 4.1. See the caption of Fig. 4.5 for
the meanings of the notations F, S, and FS. The dashed lines (F) coincide with the dash dot dot
lines (FS).
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Table 4.2: Predicted values of τ̄0/EA, N , α and the value of the associated largest posterior prob-
ability p1 for the A-input material based on noise-free data. The notations F, S, and FS are defined
in the text and in the caption of Fig. 4.5.

α N τ̄0(GPa) τ̄0/EA p1

F 0.13 0.05 0.002000 0.0020 1.00
S 0.05 0.04 0.002200 0.0022 0.99
FS 0.13 0.05 0.002000 0.0020 1.00

z/R0, in the vicinity of the indenter obtained for the “experimental” material A-input with those

based on the parameter values in Table 4.2. All the sets of parameter values in Table 4.2 give a

very good representation of the indentation responses, although it is only the set of plastic material

parameters based on the residual surface profile data (S) that gives a good representation of the

uniaxial response of the A-input material, Fig. 4.5. These results illustrate that plastic material

parameters that give essentially indistinguishable indentation responses (at least to h/R0 = 0.3)

can have different uniaxial responses.

It is worth noting that the likelihood function used in the Bayesian-type statistical calculations,

Eq. (5.11), is a normal distribution with a very sharp peak at the center, which tends to give large

posterior probability value for the best fit. Generally, when both indentation force versus inden-

tation depth data and residual surface profile data (FS) are included, there are more parameter

combinations that can approximate the “experimental” indentation response than the number of

parameter combinations when only (F) or only (S) data is used. This can give a better fit to the

indentation data but does not necessarily improve the representation of the uniaxial stress-strain

response of the “experimental” material.

Table 4.3 shows the predicted parameters and associated posterior probability values for the

D-input material based on noise-free data using database DD. For the D-input material, similarly,

the predicted parameter values based on only the residual surface profile (S) are very close to

the input values of D-input than the predicted parameter values using only the indentation force

versus indentation depth data (F), and using both the indentation force versus indentation depth

data and the residual surface profile data (FS). As for the A-input material, the prediction based
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Figure 4.8: The indentation responses calculated using the predicted values of τ̄0/ED, N and α for
the D-input material in Table 4.3 based on noise-free data compared with the indentation responses
obtained using the input values of D-input in Table 4.1 (solid lines). (a) Normalized indentation
force magnitude F/(EDR

2
0) versus normalized indentation depth h/R0. (b) Normalized surface

profiles near the indenter after unloading. See the caption of Fig. 4.5 for the meanings of the
notations F, S, and FS. The dashed lines (F) coincide with the dash dot dot lines (FS).

on the residual surface profile (S) provides a better representation of the uniaxial responses of the

“experimental” D-input material in Fig. 4.7 than both the (F) and the (FS) based predictions.

Fig. 4.8 shows that the indentation responses of the “experimental” material D-input and the

indentation responses for all three sets of predicted plastic material parameters in Table 4.3 give

indistinguishable indentation responses. The plastic parameter values for the prediction based on

the residual surface profile data (S) in Table 4.3 are very close to the values of the “experimental”

Table 4.3: Predicted values of τ̄0/ED, N , α and the value of the associated largest posterior prob-
ability p1 for the D-input material based on noise-free data. See the caption of Fig. 4.5 for the
meanings of the notations F, S, and FS.

α N τ̄0(GPa) τ̄0/ED p1

F 0.23 0.05 0.001902 0.0030 1.00
S 0.16 0.02 0.002409 0.0038 1.00
FS 0.23 0.05 0.001902 0.0030 1.00
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D-input material in Table 4.1. However, the values of τ̄0/ED, N and α for the (F) and the (FS)

predictions in Table 4.3 differ significantly from the values for the D-input material in Table 4.1.

Hence, also here, there are plastically compressible materials that have different plastic properties

but have indistinguishable spherical indentation responses (at least to h/R0 = 0.3).

For both the A-input material and the D-input material, the uniaxial responses predicted based

on the residual surface profile data (S) provide a better representation of those of the “experimental”

material than do those including indentation force versus indentation depth data, (F) and (FS).

Indeed, [95] have shown the advantages of using the residual surface profile for extracting plastic

material properties of plastically incompressible materials from spherical indentation tests.

4.4.4.2 Noise-contaminated data

The consideration of noise-contaminated data in material property identification from indenta-

tion responses was pioneered by [144]. Here, we use the approach of [2] to extract plastic material

parameters from noisy indentation data. Fig. 4.9 shows realizations of noise-contaminated inden-

tation force versus indentation depth data and residual surface profile data. Fig. 4.9(a) shows a

realization of indentation force versus indentation depth data with a noise amplitude ηf = 0.01

and Fig. 4.9(b) shows a realization of a residual surface profile with ηs = 0.01, where the noise

amplitudes ηf and ηs are defined in Eq. (A-30). The values of the noise amplitudes ηf = 0.01 and

ηs = 0.01 are of the order that could occur in indentation measurements and are referred to as a

low noise level. In order to explore the effect of a very large noise level, Figs. 4.9(c) and (d) show

data with ηf = 0.10 and ηs = 0.10, respectively.

For a particular realization with noise amplitudes ηf and ηs, the “experimental” data consists of

the noise-free response plus the superposed noise as shown in Fig. 4.9. This noisy “experimental”

data is used in Eqs. (5.8) to (5.11) and the values of the plastic material properties, τ̄0/E, N and

α, with the largest posterior probability using both indentation force versus indentation depth data

and residual surface profile data (FS) are identified. As found by [2], plastic parameter values

obtained from single realization of noise with a specified amplitude can give rise to a predicted

uniaxial stress-strain response that differs significantly from that of the input material. However,
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Figure 4.9: Illustration of noise-contaminated data for one realization of noisy data with a specified
noise amplitude for the A-input material indentation response. (a) F/(EAR

2
0) versus h/R0 with

ηf = 0.01. (b) z/R0 versus r/R0 near the indenter with ηs = 0.01. (c) F/(EAR
2
0) versus h/R0

with ηf = 0.10. (d) z/R0 versus r/R0 near the indenter with ηs = 0.10.

averaging over a sufficiently large number of realizations does give a good representation. Here,

as in [2], calculations of the posterior probability distribution are carried out for 100 realizations

with the same noise amplitude values. The arithmetic average of the 100 predicted plastic material

property values having the largest posterior probability value for each realization is identified as the

predicted material parameter values associated with the noise amplitudes ηf and ηs. We emphasize
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Figure 4.10: Normalized posterior probability distributions p/p1 for the A-input material using
only surface profile data of two plastic parameters when the third plastic parameter is fixed at the
value corresponding to the largest posterior probability p1. (a) N versus τ̄0 at α = 0.05 for noise-
free surface. (b) α versus N at τ̄0 = 2.2MPa for noise-free surface. (c) N versus τ̄0 at α = 0.00 for
one realization with ηs = 0.10. (d) α versus N at τ̄0 = 1.0MPa for one realization with ηs = 0.10.

that no additional finite element indentation calculations are carried out.

The predicted values, averaged over 100 realizations, of τ̄0/EA, N and α for the A-input mate-

rial are shown in Table 4.4. Also, shown is the largest value of posterior probability, p1, averaged

over the 100 realizations. With ηs = ηf = 0.01, the predicted values are close to those of the
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Table 4.4: Predicted values of τ̄0/EA, N and α for the A-input material obtained from averaging
the predicted values over 100 realizations with ηs = ηf = 0.01 and with ηs = ηf = 0.10 using
both indentation force versus indentation depth data and residual surface profile data, and with
ηs = 0.10 using only surface profile data. Also, shown is the value of corresponding averaged
largest posterior probability p1.

α N τ̄0(GPa) τ̄0/EA p1

ηs = ηf = 0.01 0.11 0.05 0.0020 0.0020 0.57
ηs = ηf = 0.10 0.21 0.07 0.0016 0.0016 0.01
ηs = 0.10 0.15 0.07 0.0020 0.0020 0.23× 10−3

noise-free FS data in Table 4.2. With the larger noise amplitudes ηs = ηf = 0.10, the plastic

material property values differ significantly from those of the corresponding noise-free data. The

average values of the posterior probability are p1 = 0.01 with ηs = ηf = 0.10 and p1 = 0.57 with

ηs = ηf = 0.01. For comparison, p1 = 1.00 with noise-free data. The value p1 = 0.23× 10−3 with

only surface profile data and ηs = 0.10 indicates that even with averaging over 100 realizations the

posterior probability maximum is very shallow and spread out for this case.

Fig. 4.10 shows cross sections of distributions of normalized posterior probability, p/p1, for

the A-input material using only surface profile data. The cross sections are for two of the three

plastic parameters, τ̄0, N, α with the third parameter fixed at the value corresponding to the largest

posterior probability value p1 for the corresponding calculation. Figs. 4.10(a) and 4.10(b) are for

noise-free data and show a sharply defined peak value with strong confidence. Figs. 4.10(c) and

4.10(d) are for one realization of noisy surface profile data with ηs = 0.10. With ηs = 0.10, distri-

butions of p/p1 are more spread out with similar values of p1 for a range of parameter values. An

increasingly spread out distribution of p/p1 together with a shallow peak with increasing noise is

typical of the cases considered although details of the distribution vary as can be seen by compar-

ing Figs. 4.10(c) and 4.10(d) here with Fig. 10 of [2]. In some cases with large noise amplitudes,

multiple local minima are found and the Bayesian statistical procedure can give parameter values

associated with a local minimum rather than the global minimum.

Fig. 4.11 shows the uniaxial responses using the parameter values in Table 4.4. Here, and

subsequently, only the compressive responses are shown. For the lower noise level, ηs = ηf =
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Figure 4.11: Uniaxial responses in compression using the averaged predicted values of τ̄0/EA, N
and α for A-input over 100 realizations given in Table 4.4. The solid lines show the responses for
the property values of the A-input material in Table 4.1; the dashed lines show the responses based
on data with the noise amplitudes ηs = ηf = 0.01; the dash dot lines show the responses based on
data with ηs = ηf = 0.10; the dash dot dot lines show the responses based on surface data with
ηs = 0.10. (a) σ versus ε. (b) V/Vref versus ε.

0.01, the fit to the “experimental” stress-strain response is similar to the one based on noise-free

data in Fig. 4.5. With ηs = ηf = 0.10, the predicted magnitude of the compressive stress at

ε = −0.7 is about 70% of that for the A-input material. The prediction of the values V/Vref with

ηs = ηf = 0.01, are closer to those of the A-input material than those with ηs = ηf = 0.10. The

predictions based solely on surface data denoted by ηs = 0.10 (averaged over 100 realizations) are

very close to those with ηs = ηf = 0.01 indicating that the indentation force versus indentation

depth response based predictions are more sensitive to noise than the surface profile predictions.

This also illustrates that averaging noisy data over a large number of realizations can enable a

reasonably good approximation of the uniaxial response to be obtained, even from very noisy

indentation data when surface profile data is included.

On the other hand, the predicted indentation responses in Fig. 4.12 for both sets of noise am-

plitude values, ηs = ηf = 0.01 and ηs = ηf = 0.10, are very close to those of the A-input material.
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Figure 4.12: Indentation responses calculated using the predicted values of τ̄0/EA, N and α aver-
aged over 100 realizations and given in Table 4.4 for the A-input material. The solid lines show
the indentation responses computed using the input values for the A-input material in Table 4.1.
(a) Normalized indentation force magnitude F/(EAR

2
0) versus normalized indentation depth h/R0

during loading and unloading. (b) Normalized surface profiles near the indenter after unloading.
See the caption of Fig. 4.11 for the meanings of the notations ηs = ηf = 0.01, ηs = ηf = 0.10, and
ηs = 0.10.

There is some dependence of the maximum indentation force on the noise amplitude in Fig. 4.12

(a), but the residual surface profiles predicted based on the two types of noise-contaminated data

are indistinguishable from that of the A-input material, Fig. 4.12(b). Figs. 4.11 and 4.12 illustrate

that a very good fit to the indentation response does not guarantee an equally good fit to the uniax-

ial response and that predictions based on only surface profile data are quite robust with respect to

the noise level (when averaged over many realizations with a given amplitude).

Table 4.5 shows the predicted values of plastic material parameters τ̄0/ED, N , α and the as-

sociated posterior probability averaged over 100 realizations for the D-input material with noise

amplitudes ηs = ηf = 0.01 and ηs = ηf = 0.10. As for the A-input material, the values of plastic

material parameters with ηs = ηf = 0.01 are closer to those for noise-free data in Table 4.3 than

are those with ηs = ηf = 0.10. Also, the posterior probability with ηs = ηf = 0.10 is 0.01.

The compressive stress-strain response in Fig. 4.13(a) for the predicted parameters in Table 4.5
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Table 4.5: Predicted values of τ̄0/ED, N and α for the D-input material obtained from averaging
the predicted values over 100 realizations with ηs = ηf = 0.01 and with ηs = ηf = 0.10 using
both indentation force versus indentation depth data and residual surface profile data, and with
ηs = 0.10 using only surface profile data. Also, shown is the value of corresponding averaged
largest posterior probability p1.

α N τ̄0(GPa) τ̄0/ED p1

ηs = ηf = 0.01 0.21 0.04 0.0021 0.0033 0.57
ηs = ηf = 0.10 0.19 0.07 0.0017 0.0027 0.01
ηs = 0.10 0.18 0.08 0.0015 0.0024 0.23× 10−3
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Figure 4.13: Uniaxial responses in compression using the predicted values of τ̄0/ED, N and α
averaged over 100 realizations for the D-input material and given in Table 4.5. The solid lines
show the responses for the property values of the D-input material in Table 4.1. (a) σ versus ε. (b)
V/Vref versus ε. See the caption of Fig. 4.11 for the meanings of the notations ηs = ηf = 0.01,
ηs = ηf = 0.10, and ηs = 0.10.

with a low noise level ηs = ηf = 0.01 is closer to that of the D-input material than the predicted

response with a high noise level ηs = ηf = 0.10. The stress-strain curves with ηs = ηf = 0.01

and with ηs = ηf = 0.10 overlap at ε ≈ −0.7. As for the A-input material, with only surface

profile data and ηs = 0.10 the small value of the posterior probability maximum in Table 4.5 for

the D-input material indicates a very shallow and spread out maximum. The evolution of V/Vref
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Figure 4.14: Indentation responses calculated using the averaged predicted values of τ̄0/ED, N
and α over 100 realizations given in Table 4.5 for the D-input material. The solid lines show the
indentation responses computed using the input values for the D-input material in Table 4.1. (a)
Normalized indentation force magnitude F/(EDR

2
0) versus normalized indentation depth h/R0

during loading and unloading. (b) Normalized surface profiles near the indenter after unloading.
See the caption of Fig. 4.11 for the meanings of the notations ηs = ηf = 0.01, ηs = ηf = 0.10, and
ηs = 0.10.

of the D-input material in Fig. 4.13(b) is reasonably well-predicted for all noise levels considered,

and perhaps surprisingly the case with ηs = ηf = 0.10 provides a somewhat better fit than the

response predicted with ηs = ηf = 0.01.

In Fig. 4.14(a), the normalized indentation force versus indentation depth responses show a

clear dependence of the maximum indentation force on the noise amplitude. Both the normalized

indentation force versus indentation depth responses and residual surface profiles of the average

of predicted parameters using data with noise amplitudes ηs = ηf = 0.01 represent the D-input

material indentation responses better than the ones with ηs = ηf = 0.10. Although the predicted

indentation responses based solely on surface profile data with ηs = 0.10 do not provide a good

representation of the indentation responses in Fig. 4.14, a fairly good approximation of the uniaxial

compression response is predicted in Fig. 4.13. However, the results do indicate that to obtain an

accurate prediction of the uniaxial stress-strain response from noisy indentation data, the noise
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level needs to be below a material dependent maximum noise amplitude.

4.4.4.3 Identification of the elastic stiffness via the Oliver-Pharr Method

In Sections 4.4.4.1 and 4.4.4.2, it was assumed that the elastic properties were known a priori.

Here, we explore using the method of [74, 145, 81] to calculate the elastic stiffness from indenta-

tion measurements. Although mainly used for sharp indenters, the Oliver-Pharr relation has been

used for spherical indentation, for example, [145, 146, 131, 132]. In particular, for the constitutive

relation of [138], [131, 132] found that plasticity-related parameters do not affect the initial un-

loading slope and that the Young’s modulus of metallic foams could be obtained from the spherical

indentation unloading response. An effective modulus, Eeff , is calculated from the initial slope of

the unloading indentation force versus indentation depth response, S = dF/dh via

S = β
2√
π
Eeff

√
A (4.29)

where A is the contact area and for a rigid indenter, the effective (or reduced) modulus Eeff is

defined by

Eeff =
E

1− ν2
e

(4.30)

with β a dimensionless correction factor and νe the elastic Poisson’s ratio, [81]. The value of β

depends on the material properties and the indenter shape, [85, 147, 81], but with values typically

around β ≈ 1.1.

If the value of β and the elastic constants are known, Eq. (4.29), can be used to calculate the

contact area. If the contact area is known, Eq. (4.29) can be used to determine Eeff . However, this

does not provide a way to separately identify E and νe.

The values of S are calculated from the “experimental” unloading indentation force versus

indentation depth response of the A-input and D-input materials. Two values of β were calculated.

One based on the true contact area Atrue = πr2
true, where rtrue is the maximum r value of points in

contact with the indenter. The other is based on the nominal contact area, Anom = πr2
nom, where

rnom is what the contact radius would be if there were no pile-up or sink-in (see Fig. 5.1), and is
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given by

rnom =
√
h(2R0 − h) (4.31)

For both the A-input and D-input materials, the values of rtrue and rnom differ little and the variation

in β depending on this choice is within 1%.

A least squares fit to the first M data points, starting at the peak force is used, where M is

chosen to be between 40 and 70. For the A-input material the fit value of β is β = 1.08 using

rnom and β = 1.09 using rtrue. The same value is obtained to three significant figures using either

40 points (F/Fmax = 0.747) or 70 points (F/Fmax = 0.537). The corresponding values of β for

the D-input material are between 1.17 and 1.18 using either 40 points (F/Fmax = 0.851) or 70

(F/Fmax = 0.725) points, and using either rnom or rtrue. Thus, the value of β varies somewhat

with the elastic and plastic material properties. However, the range of values found here is similar

to that found for plastically incompressible materials, [85, 147, 81].

4.5 Sensitivity to the constitutive characterization

4.5.1 Sensitivity to the value of the plastic compressibility parameter α

We consider the sensitivity of the identification of plastic material properties to the value of

the plastic compressibility α. Fig. 4.15 shows the uniaxial compression stress-strain responses

obtained using the D-input material properties and noise-free data with α = 0.20, 0.25, 0.28 and

0.30. The values α = 0.20, 0.25, 0.30 are values of α for which finite element calculations were

carried out to populate the database. The indentation responses with α = 0.28 are obtained by

interpolation. For α = 0.25 and 0.30, the Bayesian predictions essentially coincide with the D-

input stress-strain response. For α = 0.20, some deviation is seen, particularly for prediction based

solely on the indentation force versus indentation depth data (F). The largest deviation between the

D-input stress-strain response and the Bayesian based predictions occurs for α = 0.28. This is

most likely due to α = 0.28 not being a value that is directly calculated but for which the Bayesian

predictions are based on interpolation. Nevertheless, uniaxial compression stress-strain response

based on surface profile data (S) and both indentation force versus indentation depth data and sur-
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Figure 4.15: Uniaxial compression stress-strain responses of the predicted parameter values ob-
tained using noise-free indentation data compared with the uniaxial compression stress-strain re-
sponse of the D-input material when α is set to various values. (a) α = 0.20; (b) α = 0.25; (c)
α = 0.28; (d) α = 0.30. See the caption of Fig. 4.5 for the meanings of the notations F, S, and FS.
In (a) and (c), the S and FS lines coincide. In (b) and (d), the F, S and FS lines coincide.

face profile data (FS) well-approximate the D-input material response. The responses in Fig. 4.15

illustrate: (i) a deviation from the input material response with decreasing α particularly for pre-

dictions bases solely on indentation force versus indentation depth data; and (ii) a deviation from

the input material response due to interpolation again particularly for predictions bases solely on

90



indentation force versus indentation depth data. Nevertheless, in all cases considered the uniaxial

compression response is reasonably well-approximated, particularly if surface profile data is used.

4.5.2 Sensitivity to the characterization of plasticity

The identification of plastic material properties in Section 4.4 was made presuming that the

mechanical behavior of the materials under consideration could be characterized appropriately by

a Deshpande-Fleck constitutive relation. Of course, in a real indentation experiment, the appro-

priate constitutive framework is not known a priori. One possibility is to assume that the material

response can be characterized as a plastically incompressible isotropic hardening Mises solid. This

corresponds to α = 1/3 giving νp = 1/2. However, our database is restricted to α ≤ 0.30 but the

implications of adopting the assumption of an isotropic hardening Mises solid can be illustrated by

confining the Bayesian fit to α = 0.30 which corresponds to νp = 0.429. Attention is restricted to

noise-free data.
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Figure 4.16: Uniaxial compression stress-strain responses using the predicted values of τ̄0/E,
N obtained for α = 0.30 compared with the uniaxial compression stress-strain response of the
corresponding “experimental” material. (a) A-input material. (b) D-input material. See the caption
of Fig. 4.5 for the meanings of the notations F, S, and FS. In (a), the F and FS lines coincide. In
(b), the S and FS lines coincide.
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Figure 4.17: Normalized indentation force F/(ER2
0) versus normalized indentation depth h/R0

responses using the predicted values of τ̄0/E, N obtained for α = 0.30 compared with the inden-
tation responses of the corresponding “experimental” material. (a) A-input material. (b) D-input
material. See the caption of Fig. 4.5 for the meanings of the notations F, S, and FS.

For the A-input material, the fit using only the indentation force versus indentation depth re-

sponse (F) and the fit using both the indentation force versus indentation depth response and the

residual surface profile data (FS) both give N = 0.10 and τ̄0/EA = 0.0010 with a probability of

one. For the D-input material, the fit (F) gives N = 0.07, τ̄0/ED = 0.0020 with probability 0.97,

while the fit (FS) gives N = 0.00, τ̄0/ED = 0.0028 with probability p = 0.86.

Fig. 4.16 shows a comparison of the uniaxial compression response of the “experimental”

input materials with the predicted uniaxial compression responses for the best fit values of N and

τ̄0 obtained with α = 0.30. In Fig. 4.17(a) the indentation force versus indentation depth response

using the values of τ̄0/EA and N obtained with α = 0.30 is indistinguishable from that for the

A-input material. Also for the D-input material the indentation force versus indentation depth

responses computed with τ̄0/ED and N obtained with α restricted to 0.30 are indistinguishable for

that of the corresponding “experimental” material, Fig. 4.17(b).

As seen in Fig. 4.17, a very good fit to the indentation force versus indentation depth response
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can be obtained with an “inappropriate” constitutive description. This shows that obtaining a very

good fit to an indentation force versus indentation depth response by whatever means, Bayesian

statistics, machine learning, etc. does not necessarily mean that the associated constitutive descrip-

tion is an accurate representation of the material’s mechanical response. Furthermore, including

the representation of the surface profile does not resolve this issue. The constitutive framework

must be broad enough to represent key features of the material’s mechanical response. For the

materials considered here, plastic compressibility is a key feature.

On the other hand, [140] showed that different power law representations of the uniaxial stress-

strain relation lead to different predicted values of the strain hardening exponent and reference

strength but the best fit plastic properties for all the representations considered gave a good fit to

the uniaxial stress-strain response of the “experimental” material.

4.5.3 Sensitivity to the characterization of elasticity

If the elastic constants are not known a priori, the effective (or reduced) modulus can be ob-

tained from the unloading indentation force versus indentation depth response using the relation

Eq. (4.29), [74, 145, 81]. However, this requires knowing the factor β in Eq. (4.29) that can vary

with plastic properties.

Here, we explore the sensitivity of the predicted plastic uniaxial stress-strain response to the

value of the elastic constants by fitting the A-input material response using the database for the

D-input material DD and fitting the D-input material response using the database for the A-input

material DA (the two databases differ only in the elastic constants used to create them). The A-

input material and D-input material values of the effective modulus differ by a factor of ≈ 0.6

which is much larger than the expected variation in β but gives an indication of the trend.

For the A-input material using the database DD, the predicted plastic properties are:

(F): N = 0.04, τ̄0/ED = 0.0020 (Note: normalized by ED), α = 0.30 with probability p1 = 0.20.

(S) and (FS): N = 0.04, τ̄0/ED = 0.0022 (Note: normalized by ED), α = 0.03 with probability

p1 = 0.92 (S) and p1 = 0.94 (FS).
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Because the database DD is used to identify the plastic properties of the A-input material, the

Young’s modulus ED is used to normalize τ̄0 for the A-input material.

For the D-input material using the database DA, the predicted plastic properties are:

(F): N = 0.14, τ̄0/EA = 0.0016 (Note: normalized by EA), α = 0.03 with probability p1 = 0.07.

(S) and (FS): N = 0.02, τ̄0/EA = 0.0038 (Note: normalized by EA), α = 0.17 with probability

p1 = 1.00 for both (S) and (FS).

Fig. 4.18 shows comparisons between the predicted responses for the A-input material using

the database DD to obtain the plastic material parameters and the corresponding A-input material

responses. Also, the predicted stress-strain responses in Fig. 4.18 (a) were calculated using the

D-input material elastic properties. Neither the uniaxial compression stress-strain response nor the

indentation force versus indentation depth response are well represented, Figs. 4.18(a) and 4.18(b).

However, the residual surface profiles using the (S) and (FS) fits are indistinguishable from those

of the A-input material. Calculating the uniaxial compression stress-strain response in Fig. 4.18(a)

using the elastic constants of the A-input material and the (S) predicted plastic parameters (not

shown) gives a good representation of the “experimental” A-input material response. This shows:

(i) that the residual surface profile is not very sensitive to the choice of elastic constants; (ii)

that plastic property identification based on the residual surface profile data (S) does not require

accurate knowledge of the (isotropic) elastic constants; and (iii) that if the residual surface profile

is used for a Bayesian-type statistical plastic parameter identification, the database does need to

have accurate values of the (isotropic) elastic constants. Similar results (not shown) have been

obtained for the D-input material using the A-input material database DA.

At least for the materials considered here, as seen in Fig. 4.18, basing predictions on incorrect

values of elastic constants does not permit both the residual surface profile and the indentation

force versus indentation depth response to be well-represented. This may serve as an indication

that the presumed values of elastic constants do not provide a good representation of the elastic

response of the material.
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Figure 4.18: Predicted responses for the A-input material using the database DD with the elastic
constants for the D-input material compared with the corresponding “experimental” A-input mate-
rial response. (a) Uniaxial compression stress-strain responses. (b) Normalized indentation force
F/(EDR

2
0) versus normalized indentation depth h/R0. (c) Normalized surface profiles near the

indenter after unloading.

4.6 Variation of indention response with indenter shape for plastically compressible and

incompressible materials

As shown in the pioneering work of [91], in conical indentation, materials with very different

uniaxial stress-strain curves can give indistinguishable indentation force versus indentation depth

95



responses. In [2], conical indentation calculations were carried out for three plastically incom-

pressible materials that had very different uniaxial stress-strain responses but indistinguishable

indentation force versus indentation depth responses. The materials were termed m1, m2 and m3

and their constitutive behavior characterized by a constitutive relation of the form in Section 4.2.2,

with α = 1/3.

The elastic properties of the three materials were the same with E = 200 GPa and νe = 0.3.

The initial reference strength, σ̄0 and strain hardening exponent, N , for the three materials are

σ̄0 = 650 MPa, N = 0.10 for material m1, σ̄0 = 490 MPa, N = 0.20 for material m2 and

σ̄0 = 330 MPa, N = 0.31 for material m3. The reference strain rate is set to ε̇0 = 0.01s−1

and strain rate sensitivity exponent is set to m = 0.005 to approximate rate independent plastic

deformations. Two sets of materials are considered: the plastically incompressible materials m1,

m2 and m3 with α = 1/3, and the plastically compressible materials m1, m2 and m3 with α = 0.
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Figure 4.19: Comparison of the calculated indentation responses in conical indentation for plas-
tically compressible materials (α = 0; solid lines) with the responses calculated for a plastically
incompressible materials (α = 1/3; dashed lines). The flow strength and strain hardening values
are those of materialsm1,m2 andm3 of [2], also given in the text. (a) Normalized indentation force
F/(Eh2

ref) versus normalized indentation depth h/href . (b) Normalized surface profiles near the
indenter after unloading. Length quantities are normalized by a conveniently chosen indentation
depth href .
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A comparison between the indentation responses for materials m1, m2 and m3 with α = 1/3

(dashed lines) with the materials m1, m2 and m3 with α = 0 (solid lines) in conical indentation is

shown in Fig. 4.19. In the conical indentation analyses, quantities with the dimension of length are

normalized by a conveniently chosen indentation depth href . In Fig. 4.19(a), the indentation force

versus indentation depth responses of the three plastically incompressible materials (dashed lines)

are indistinguishable but the corresponding residual surface profiles (dashed lines) in Fig. 4.19(b)

differ significantly. By considering both responses, it was possible to extract the “experimental”

material properties in [2] using the Bayesian-type statistical approach described in Section 5.3. In

contrast, both the indentation force versus indentation depth responses and residual surface profiles

of the three plastically compressible materials (solid lines) in Fig. 4.19 can be distinguished. The

indentation force magnitude and residual surface pile-up height for the plastically compressible

materials are both smaller than those for the plastically incompressible materials for the same

indentation conditions. The indentation response of plastically compressible materials is “softer”

than for plastically incompressible materials because of the reduction in hydrostatic stress below

the indenter as seen in [107].

For spherical indentation of the materials m1, m2 and m3, the indentation force versus inden-

tation depth responses of Fig. 4.20(a) are indistinguishable up to h/R0 ≈ 0.07 for the plastically

incompressible materials (dashed lines), and up to h/R0 ≈ 0.008 for plastically compressible

materials (solid lines). For larger values of h/R0, the indentation force versus indentation depth

responses are well separated. Also, as for conical indentation, the residual surface profiles in

Fig. 4.20(b) for spherical indentation do not overlap. Thus, for spherical indentation, there is a

value of indentation depth below which the indentation force versus indentation depth responses

are indistinguishable, as also seen by [93]. In addition, the corresponding residual surface pro-

files can also be indistinguishable. For example, the indentation force versus indentation depth

responses and residual surface profiles are indistinguishable in Figs. 4.6 and 4.8, while their corre-

sponding uniaxial responses in Figs. 4.5 and 4.7 are different. However, the response in spherical

indentation is not self-similar and for a sufficiently large indentation depth, the indentation force
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Figure 4.20: Comparison of the indentation responses in spherical indentation calculated for plas-
tically compressible materials (α = 0; solid lines) with the indentation responses using plastically
incompressible materials (α = 1/3; dashed lines). The flow strength and strain hardening values
are those of materials m1, m2 and m3 of [2], also given in the text. (a) Normalized indentation
force F/(ER2

0) versus normalized indentation depth h/R0. (b) Normalized surface profiles near
the indenter after unloading.

versus indentation depth responses separate. This indentation depth value is expected to depend

on the specific sets of material parameters.

4.7 Conclusions

We have assumed that the elastic material properties are known and used the Bayesian-type

statistical approach of [2] to identify the plastic properties, τ̄0/E, N and α, of a [138] type con-

stitutive description from the indentation force versus indentation depth response and the residual

surface profile of two plastically compressible “experimental” materials, termed A-input and D-

input. Databases obtained via Ktotal = 140 full field finite element solutions were constructed

for each material. Linear interpolation between the finite element solution data was used to create

the finer databases used for property identification. In this Bayesian identification process there

is a trade-off between the number of finite element computations to be carried out to populate the

database and the accuracy of the material identification. The correction factor β in the method of
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[74, 145, 81] for determining the effective (or reduced) elastic modulus was evaluated from the

unloading response of the “experimental” materials. Parameter studies were carried out exploring

the effects of the choice of plastic constitutive relation and isotropic elastic constants on the pre-

dicted uniaxial responses. The indentation responses of plastically compressible and plastically

incompressible materials in spherical and conical indentation were compared.

1. The uniaxial stress-strain responses calculated using the plastic properties identified from the

spherical indentation indentation force versus indentation depth response and/or the residual

surface profile on unloading can approximate those of the “experimental” input materials.

The quality of the approximation decreases with increasing noise but can still provide at

least a good qualitative representation for a moderate value of noise amplitude.

(i) In the circumstances analyzed, the values of plastic material properties inferred solely

from the residual surface profiles using noise-free data give the best representation of

the uniaxial responses of the “experimental” materials.

(ii) The indentation force versus indentation depth responses calculated using the identified

plastic properties can be indistinguishable from that of the corresponding input “exper-

imental” material even if the values of the identified plastic material properties differ

from the input “experimental” values.

(iii) A good fit to indentation data does not guarantee a good fit to the uniaxial stress-strain

response of a material.

2. For the plastically compressible materials considered, the calculated correction factor β in

the [81] method of identifying the effective (or reduced) elastic modulus from the indentation

force unloading response depends on the plastic material parameters but is in a similar range

to that found for plastically incompressible solids.

3. The accuracy of the identification of the material uniaxial stress-strain response improves

with increasing values of the plastic compressibility parameter α (α = 1/3 corresponds to

plastic incompressibility), particularly for predictions including surface profile data.
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4. Materials with a nearly plastically incompressible response can give indentation force ver-

sus indentation depth responses indistinguishable from that of the “experimental” plastically

compressible input materials. The uniaxial stress-strain curves based on this fit do not quan-

titatively or qualitatively represent the uniaxial stress-strain responses of the “experimental”

input materials. Thus, an “experimental” spherical indentation force versus indentation depth

response does not uniquely identify an appropriate constitutive framework.

5. At least in the cases analyzed, the predicted indentation force versus indentation depth re-

sponse is sensitive to the values of elastic properties but the residual surface profile is not.

The plastic material properties obtained from this residual surface profile can provide a good

representation of those of the “experimental” material indicating that a Bayesian statistics

database used to identify plastic properties from the residual surface profile does not need to

be based on accurate values of the elastic constants.

6. For plastically incompressible materials with indentation force versus indentation depth re-

sponses that are indistinguishable in conical indentation, the indentation force versus inden-

tation depth responses can be distinguishable in spherical indentation if the indentation depth

is sufficiently large. For both plastically incompressible and plastically compressible mate-

rials a material dependent indentation depth is found below which the spherical indentation

force versus indentation depth responses are indistinguishable.
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5. ON THE IDENTIFICATION OF POWER-LAW CREEP PARAMETERS FROM CONICAL

INDENTATION†

“One way to explain the complexity and unpredictability of historical

systems, despite their ultimate determinacy, is to note that long

chains of causation may separate final effects from ultimate causes

lying outside the domain of that field of science.”

– Jared Diamond

5.1 Introduction

The serviceability and reliability of a variety of engineering components, as for example in

turbines used for electricity generation and in vehicle and airplane engines, are limited by contin-

uing deformation at relatively low stress levels, i.e. creep. Instrumented indentation is attractive

for identifying creep properties as it is non-destructive, requires a relatively small specimen, and

has been used for the identification of mechanical properties of a broad range of materials. How-

ever, indentation involves a complex deformation field, and extracting material properties from

experimentally measured indentation quantities can be complex and non-unique.

The creep deformation of polycrystalline structural metals often can be characterized appropri-

ately by an isotropic power-law creep constitutive relation and there is a large literature on model-

ing the indentation response of power-law creeping materials using analytical methods, numerical

methods or a combination of these, e.g., Refs. [148, 69, 149, 150, 151]. In particular, studies

have been carried out using such analyses to extract power-law creep parameters from indentation

responses, including, for example, Refs. [152, 153, 154, 3, 155, 156, 157, 158]. Specifically, in

Refs. [3, 155, 151, 156] experimental creep indentation data was related to uniaxial power-law

†Reprinted with permission from “On the identification of power-law creep parameters from conical indentation”
by Yupeng Zhang and Alan Needleman, 2021, Proceedings of the Royal Society A, 477, 20210233. Copyright c©
2021 by the authors.
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creep properties using analytical results from Bower et al. [69] and from the expanding cavity

model of Ginder et al. [151].

Here, the Bayesian statistics based approach of Zhang et al. [2] is used to extract power-law

creep parameters from the indentation depth versus time response and the residual surface pro-

file. Finite element solutions for three materials with very different power-law creep properties

are considered to be the “experimental” responses. The power-law creep parameters identified

via indentation, using noise-free as well as noise-contaminated data, are compared with the corre-

sponding uniaxial creep and stress relaxation responses of the input “experimental” materials.

The questions addressed include:

1. Can very different power-law creep parameters give nearly the same responses in load and

hold indentation creep? There are sets of rate independent plastic material parameters that

have indistinguishable force versus depth responses in conical indentation but very different

uniaxial responses, [91, 93, 2].

2. Does using the residual surface profile in addition to or instead of the indentation depth

versus time data improve the quality of the prediction?

3. How sensitive is the predicted creep response to noise in the “experimental” indentation

data?

4. How do the power-law creep properties obtained using the analytical steady state creep re-

sults of Bower et al. [69] and Ginder et al. [151] compare with those predicted from the

Bayesian-type statistical approach?

5.2 Problem formulation

Indentation into an isotropic elastic power-law creep solid by a conical indenter is modeled

as sketched in Fig. 5.1. Quasi-static loading conditions are presumed. The dimensions of the

region analyzed are taken to be large enough to approximate indentation into a half-space and the

deformations are restricted to be axisymmetric.
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Calculations are carried out for an indenter angle γ = 70.3◦, which is the equivalent conical

indenter angle to a Berkovich indenter assuming the same projected area on contact at a given

indentation depth [159]. The indentation force in the z-direction is a prescribed function of time,

the nominal indentation depth magnitude is denoted by h and the corresponding nominal contact

radius is rnom = h tan γ (see Fig. 5.1).

γ

L0

Z0

rcontz

r

h

Figure 5.1: Sketch of the indentation configuration analyzed with h the indentation depth magni-
tude, rcont the actual contact radius and rnom the nominal contact radius.

The calculations are carried out using a quasi-static Lagrangian implementation in the commer-

cial finite element program ABAQUS [118] standard. Elastic deformations are presumed small but

finite creep strains are accounted for.

5.2.1 Initial/boundary value problem

The magnitude of the indentation force in the z−direction, Pz, is a prescribed function of time,

f(t), so that

Pz =

∫
Scontact

Tzds = f(t) (5.1)
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where Tz is z−component of the traction vector, T, on the contact surface Scontact.

As described in the ABAQUS [118] manual, the remaining conditions imposed on Scontact are

Tt = µTn and min
[ ∫

Scontact

(∆u̇n)2ds
]

(5.2)

Here, Tt and Tn are the components of T in the directions tangent and normal, respectively, to the

indenter, and ∆u̇n is the difference in displacement rate components normal to the indenter, with

( ˙ ) denoting the time derivative.

The coefficient of friction is taken to be µ = 0.4, leading to very little slip along the contact

surface and the contact boundary conditions in normal direction of Eq. (5.2) are termed “hard

contact” in the ABAQUS [118] standard manual.

With r and z denoting the positions of material points in the initial configuration, the remaining

boundary conditions are

Tr = Tz = 0 on r = L0 and z = 0, S 6= Scontact (5.3a)

u̇r = 0, Tz = 0 on r = 0 (5.3b)

u̇z = 0, Tr = 0 on z = Z0 (5.3c)

5.2.2 Constitutive relation

The elastic-creep constitutive relation of ABAQUS [118] standard is used so that the (small)

elastic strain-stress relation has the form

εe =
(1 + ν)

E
τ − ν

E
tr(τ )I (5.4)

where τ = Jσ is the Kirchhoff stress (σ is the Cauchy stress and J is current volume/reference

volume), εe is the elastic strain (based on the logarithmic strain), E is Young’s modulus and ν is

Poisson’s ratio. Also, tr( ) denotes the trace and I denotes the identity tensor.
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The creep part of the rate of deformation tensor, D = sym(Ḟ · F−1), is

Dc =
3

2
ε̇c
τ ′

σe

=
3

2
ασn−1

e τ ′ (5.5)

with

ε̇c = ε̇0

(
σe

σ0

)n
= ασe

n (5.6)

and

τ ′ = τ − 1

3
tr(τ )I , σe =

√
3

2
τ ′ : τ ′ (5.7)

where n is the creep exponent, ε̇0 is a reference strain rate, σ0 is a reference stress and α = ε̇0/σ
n
0

is the power law creep pre-exponential factor. Also, the effective creep strain εc is given by εc =∫ t
0
ε̇cdt and t is time.

5.3 Bayesian-type statistical approach

The equations of the Bayesian-type statistical approach used to infer the creep parameters n,

σ0 and ε̇0 from an indentation depth versus time response, from a residual surface profile or from

a combination of these are presented here. A more complete presentation, background on the

methodology and references are given in Ref. [2].

The “experimental” indentation data consists of: (i) a vector characterizing the residual surface

profile, sm; and (ii) a vector characterizing the indentation depth versus time response, hm. The

components of the vector sm
k , k = 1, ..., Ks are values of the normalized surface coordinate, zk/href

(href is a conveniently chosen reference length) at specified values of normalized radial coordinate

rk/href . The components of the vector hm
k , k = 1, ..., Kh are values of the normalized indentation

depth hk/href at specified values of normalized time tk/tref .

Finite element solutions for a normalized residual surface profile, denoted by si, and for a

normalized indentation depth versus time response, denoted by hi, are used to construct a coarse

database of indentation responses, with i = 1, 2, ..., Ktotal and Ktotal is the total number of inden-

tation response pairs (si,hi) in the database. In practice, it is expected that there will be a delay
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between unloading and measuring the surface profile. The measured surface profile will, at least

to some extent, depend on this delay which, if specified, can be incorporated into the formulation.

However, for simplicity and because a standard delay time remains to be established, the database

here is constructed using the surface profile immediately after unloading.

Treating the indentation depth versus time data and the surface profile data as being indepen-

dent, the posterior probability p(si,hi|sm,hm) associated with the “experimental” data (sm,hm)

is given by

p(si,hi|sm,hm) =
p(si|sm)p(hi|hm)

Zsh

(5.8)

where

p(si|sm) =
p(sm|si)p(si)

Zs

, p(hi|hm) =
p(hm|hi)p(hi)

Zh

(5.9)

In Eqs. (5.8) to (5.9) there is no sum on i.

The constants Zs, Zh and Zsh, which assure that the posterior probability values lie in the range

0 to 1, are given by

Zs =

Ktotal∑
i=1

p(sm|si)p(si) , Zh =

Ktotal∑
i=1

p(hm|hi)p(hi) , Zsh =

Ktotal∑
i=1

p(si|sm)p(hi|hm) (5.10)

The likelihood functions, which measure the difference between the “experimental” data and

the predicted responses in the database, are (see Zhang et al. [2]),

p(sm|si) =
( 1

ξ̂is
√

2π

)Ks

exp
(
− Ks

2

)
, p(hm|hi) =

( 1

ξ̂ih
√

2π

)Kh

exp
(
− Kh

2

)
(5.11)

where Ks is the number of data points on the residual surface profile curve, Kh is the number of

data points on the indentation depth versus time curve and the variances (ξ̂is)
2 and (ξ̂ih)2 are given

by the maximum likelihood estimates

(ξ̂is)
2 =

1

Ks

Ks∑
k=1

(sm
k − sik)2 , (ξ̂ih)2 =

1

Kh

Kh∑
k=1

(hm
k − hik)2 (5.12)
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where the subscript k denotes the kth component of each vector. If one of the variances in Eq. (A-

14) is equal to 0, its corresponding likelihood in Eq. (5.11) is infinite and the corresponding poste-

rior probability is set to 1.

For all sets of creep parameters in the database, a uniform prior is used for both p(si) and

p(hi) in Eq. (5.9). Outside the range of values in the database, p(si) = 0 and p(hi) = 0. The

posterior probabilities are evaluated by substituting the prior values and the likelihood values from

Eq. (5.11) into Eq. (5.9).

5.4 Material parameters

The “experimental” materials considered are : (i) amorphous selenium (Se) at 35◦C; (ii) solid

acid CsHSO4 at 145◦C; and (iii) tin (Sn) at 129◦C. The values of the material parameters charac-

terizing these materials are given in Table 5.1.

Table 5.1: Constitutive parameters characterizing the three input “experimental” materials.

E(GPa) ν n σ0(MPa) ε̇0(s−1) α(Pa−ns−1)
Se (35◦C) 9.2 0.33 1.15 8.740 1.0×10−4 1.04×10−12

CsHSO4 (145◦C) 1.2 0.33 3.59 0.01512 1.0 9.89×10−16

Sn (129◦C) 45 0.33 6.60 9.330 1.0 9.97×10−47

For Se, the values of E, n and α are taken from [3], and the value of Poisson’s ratio ν is from

[160]. For CsHSO4, the values of n and α are taken from Table 1 of [161]. The value of E is

obtained by a linear fit to the uniaxial data at a strain rate of 10−2s−1 up to a stress of 6.0 MPa in

Fig. 1(a) of [161]. For Sn, the value of n is taken from [162] and the value of α is obtained by a fit

to data in Fig. 2(b) of [162]. The value of E is taken to be 45GPa [163] and the value of ν is taken

from [164].
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5.5 Indentation responses

5.5.1 Constant load and hold indentation creep

The imposed loading history models a constant load and hold indentation creep test, with the

magnitude of the applied force on the indenter, f(t) in Eq. (5.1), prescribed to be

f(t) =


ζh2

refσ0t/t1, 0 ≤ t ≤ t1

ζh2
refσ0, t1 < t ≤ t2

ζh2
refσ0(t3 − t)/(t3 − t2), t2 < t ≤ t3

(5.13)

where the rise time is t1ε̇0 = 10−4, the hold time is t2ε̇0 = 1.0, the load release time, t3 − t2, is

given by t3ε̇0 = t2ε̇0 + 10−4 and the normalizing length is taken to be href = 3.43× 10−4L0 in all

calculations. The value of σ0 used in Eq. (5.13) for each material is given in Table 5.1. The value

of non-dimensional factor ζ is selected, so that the indentation depth h is large compared with

the finite element size near the indenter but with the large strain gradients confined to the region

with the finest finite element resolution. The values of ζ used in the calculations are given in the

Appendix C.

For power-law creep with elastic strains neglected, Eq. (5.6), Bower at al. [69] derived a relation

for normalized indentation depth rate

ε̇crp =
1

hcrp

dhcrp

dt
= βpn (5.14)

with

p =
f(t)

πh2
crp tan2 γ

(5.15)

where ε̇crp is indentation strain rate, p is the contact pressure (contact force/contact area) (see

Fig. 5.1), and β is an indentation creep parameter.
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For f(t) ≡ fconst, integration of Eq. (5.14) with respect to t gives

hcrp = (2nβ)
1
2n

(
fconst

π tan2 γ

)1/2

t
1
2n (5.16)

Note that since the force magnitude is prescribed constant both the indentation pressure, p, and the

indentation strain rate, ε̇crp, vary with time.

For an elastic solid, the relation between indentation depth h and indentation force fconst in the

axisymmetric Boussinesq problem is given by Sneddon [165]

hela =

(
πfconst

2E∗ tan γ

)1/2

(5.17)

with E∗ = E/(1− ν2).

As exploited by Su et al. [3], the indentation depths induced by a constant load for a power-law

creeping solid, Eq. (5.16), and for an elastic solid, Eq. (5.17), are each proportional to
√
fconst so

that in the power-law creep regime

hcrp

hela

= (2nβ)
1
2n

(
2E∗

π2 tan γ

)1/2

t
1
2n (5.18)

hence, the ratio h/hela is independent of fconst both at the beginning of indentation when hela

dominates and at steady state creep when hcrp dominates. Thus, hela provides a natural choice

of reference length [3]. Attention here is confined to scaling relations associated with load and

hold indentation, but we note that scaling relations for other loading histories have been given in

Refs. [150, 3].

The values of hela are hela,Se = 7.88×10−4L0 for Se, hela,CsHSO4 = 3.43×10−4L0 for CsHSO4

and hela,Sn = 1.18× 10−3L0 for Sn. If we take fconst = 100 mN, then hela is 2.33µm, 6.46µm and

1.06µm for Se, CsHSO4 and Sn, respectively. For each of the three materials its value of hela is

used as the reference length.

In their experiments Su et al. [3] found that the h/hela versus t response for amorphous sele-
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nium at 35◦C under various applied indentation forces collapsed onto a single curve even in the

transient regime. Here, calculations with indentation forces of 1/3 and 2 times of the f(t) value

in Eq. (5.13) were carried out for Se (n = 1.15), CsHSO4 (n = 3.59) and Sn (n = 6.60), and the

calculated curves of h/hela versus t collapsed onto a single curve.

5.5.2 Finite element implementation

The reference finite element mesh for the configuration in Fig. 5.1 consists of 8100 nodes,

corresponding to 7921 4−node bilinear axisymmetric quadrilateral elements. In a 0.1L0 × 0.1L0

fine mesh region near the indenter tip, 60 × 60 elements are used with a uniform square element

size (1.7× 10−3)L0 × (1.7× 10−3)L0. Thus, the element size in the fine mesh region is 2.2hela,Se

for Se, 5.0hela,CsHSO4 for CsHSO4 and 1.4hela,Sn for Sn. The element size is gradually increased

outside the uniform meshed region. Reduced integration with hourglass control is used. Also, the

error tolerance in ABAQUS [118] standard is set to 10−3. More details on the ABAQUS [118]

indentation implementation used are given in Ref. [140].

Convergence was investigated using a refined mesh with 1/4 the element sizes of the refer-

ence mesh, giving 31684 quadrilateral elements and 32041 nodes. For all three materials, the

indentation depth versus time responses calculated with the two meshes essentially coincided. The

differences between indentation depths when tε̇0 > 10−4 were less than 2.7%, 0.2% and 0.1% for

Se, CsHSO4 and Sn, respectively. The residual surface profile for Se involved sink-in with a max-

imum profile difference of 0.4%, while the surface profiles for CsHSO4 and Sn involved pile-up

with a maximum pile-up height difference of 1.8% between the two meshes. Also, the maximum

indentation depths at non-dimensional time tε̇0 = 1.0 differed by less than 0.1%. All results to be

presented subsequently were obtained using the reference finite element mesh.

5.5.3 “Experimental” indentation responses

Fig. 5.2(a) shows the computed normalized indentation depth, h/hela,Se, versus time, t, re-

sponse obtained using material parameters for Se in Table 5.1. The points are experimentally mea-

sured data from Fig. 6(b) of Su et al. [3] and show that the experimental and computed responses
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Figure 5.2: The indentation responses of the three “experimental” materials, Se, CsHSO4 and
Sn, in constant load and hold indentation, see Eq. (5.13). The material parameters are given in
Table 5.1. (a) Normalized indentation depth h/hela,Se versus time t for Se. The points are data taken
from Su et al. [3]. (b) h/hela versus t/tref . (c) log10(h/hela) versus log10(t/tref). (d) Normalized
surface profiles near the indenter after unloading. The values of hela and tref = 1/ε̇0 in (b), (c) and
(d) are specific to each material.

are in very good agreement.

Fig. 5.2(b) shows h/hela versus t/tref responses for three sets of material parameters in Ta-

ble 5.1, Se, CsHSO4 and Sn, when tref = 1/ε̇0 and hela is taken to be the specified value for each
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of the three materials. Fig. 5.2(c) shows a log10− log10 plot of the data in Fig. 5.2(b). Note that the

value of h/hela at which each material enters steady state creep differs. The unloading parts of the

responses are not shown in Figs. 5.2(a), (b) and (c), and are not used for identifying the power-law

creep parameters.

In the early stages of indentation, the plot of indentation depth h versus time t is not smooth

because when a new node comes into contact with the indenter, the contact length increases by

the length of one-element. This discrete change in contact length occurs in the early stages of

indentation when both t and h are small. In contrast to Ref. [2] the finite element output responses

are not smoothed, since only the differences between the “experimental” input response and the

responses of sets of material property values in the database matter, as described in Section 5.3.

Fig. 5.2(d) shows the normalized surface profiles near the indenter after unloading for the

three materials. The residual surface profile of CsHSO4 (dashed line) has a larger normalized

indentation depth than those for Se (solid line) and Sn (dash dot line). The residual surface profile

for Se exhibits sink-in while those for CsHSO4 and Sn exhibit pile-up.

Fig. 5.3 shows distributions of effective creep strain, εc, and mean normal stress, σm, for the

“experimental” materials subject to constant load and hold loading Eq. (5.13), in the vicinity of

the indenter at t2ε̇0 = 1.0 in Eq. (5.13). The size scale of the regions shown is material de-

pendent, being 100hela,Se, 300hela,CsHSO4 and 100hela,Sn for Se, CsHSO4 and Sn in Figs. 5.3 (a),

(b) and (c), respectively. For each of the three materials, the state of deformation shown is at

the maximum indentation depth hmax for each material just before unloading is initiated. For Se

hmax = 0.0185L0 = 23.4hela,Se, for CsHSO4 hmax = 0.0241L0 = 70.5hela,CsHSO4 and for Sn

hmax = 0.0159L0 = 13.5hela,Sn.

The extent, in terms of hela,CsHSO4 of the region with relatively large values of εc for CsHSO4 is

much larger , ≈ 300hela,CsHSO4 , than is the extent of the corresponding regions in terms of hela for

Se and Sn. This is because the ratio σ0/E for CsHSO4 is more than one order of magnitude smaller

than for the other two materials (see Table 5.1). The creep deformations for Sn are more localized

under the indenter than for Se and CsHSO4 because Sn has a larger value of n and a smaller value

112



of α.
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Figure 5.3: Distributions of effective creep strain, εc, and mean normal stress, σm, in the vicinity
of the indenter at tε̇0 = 1.0 (where ε̇0 is the value in Table 5.1 for each material). The indentation
depths are 23.4hela,Se, 70.5hela,CsHSO4 and 13.5hela,Sn for Se, CsHSO4 and Sn, respectively. (a)
Distribution of εc for Se. (b) Distribution of εc for CsHSO4. (c) Distribution of εc for Sn. (d)
Distribution of σm/σ0 for Se. (e) Distribution of σm/σ0 for CsHSO4. (f) Distribution of σm/σ0 for
Sn.

Figs. 5.3 (d)-(f) show the contours of the corresponding mean normal stress σm/σ0 for Se,

CsHSO4 and Sn. The mean normal stress is given by

σm =
1

3
tr(σ) (5.19)

where σ is the Cauchy stress tensor (since the materials are nearly incompressible there is little
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difference between the mean normal stress values based on Cauchy stress and based on Kirchhoff

stress). The peak magnitude of σm/σ0 is much smaller for Se than for CsHSO4 and Sn. For Se, the

value of n is the smallest for the three materials and the value of α is the largest.

5.5.4 Construction of the databases

The creep exponent n and associated pre-exponential factor α in Eq. (5.6) define the power-law

creep response. However, since the dimensions of α are stress−n/time, it is not convenient to base

the databases needed for the Bayesian analysis on α. Hence, for each material, the databases are

constructed for the parameters n, σ0 and ε̇0.

For each of the three “experimental” materials in Table 5.1, one database was constructed con-

sisting of indentation depth versus time responses and residual surface profiles directly calculated

from finite element simulation. All the database indentation responses, hi with Kh = 64 data

points and si with Ks = 56 data points, where i = 1, ..., Ktotal, are evaluated at specified values of

ε̇0t and r/hela that are obtained by interpolation of the computed responses. The specified values

of ε̇0t and r/hela are distributed in a material dependent nonuniform manner because of the large

variation in time scales and length scales between the three materials. For the calculation of the

likelihood functions, Eqs. (5.11), and of the variances, Eq. (A-14), the “experimental” indentation

responses, hm and sm, are evaluated at the same points.

In all three databases, the creep exponent n ∈ [1.0, 7.0] with step size 0.1 (61 points) and

ε̇0t2 ∈ [0.1, 1.0, 10.0, 100.0] (4 points). For Se and Sn, σ0/E ∈ [1 × 10−4, 1.1 × 10−3] with step

size 1×10−4 (11 points) while for CsHSO4, σ0/E ∈ [1×10−5, 1.1×10−4] with step size 1×10−5

(11 points). Thus there are Ktotal = 2684 sets of parameter values in each of the three databases.

For each set of parameter values, one finite element calculation was carried out.

As in Refs. [2, 140, 46], databases obtained directly from the finite element calculations are

relatively coarse and interpolation is used to populate finer databases. Here, linear interpolation

between nearby material parameters associated with database “points” (each database “point” con-

sists of a vector of indentation depth versus time and a vector of surface profile points) in the coarse

databases was used to define the responses associated with the “points” in the finer databases. The
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interpolated finer databases have a step size of 0.02 in n and of 0.2 in log10(ε̇0t2) for all three

materials, of 0.2 × 10−4 in σ0/E for Se and Sn, and of 0.2 × 10−5 in σ0/E for CsHSO4. This

results in Ktotal = 245616 points in the finer databases. The interpolated databases are used for the

predictions of creep parameters.

The accuracy of the interpolation was checked by carrying out a few finite element calculations

using interpolated values of material parameters. The agreement between calculated and interpo-

lated responses was best for larger values of the creep stress exponent n and worse for values of

n near 1. However, as the results to be presented subsequently will show, the lack of accuracy of

the interpolated response for n ≈ 1 does not adversely affect the ability to predict the indentation

creep response and the associated power-law creep parameters.

5.6 Identification of power-law creep properties from indentation

Values of the creep material parameters n, σ0 and ε̇0 are obtained from the indentation re-

sponses. The predicted material parameters are then used to calculate the spatially uniform uniaxial

creep and relaxation responses from a one-element finite element solution.

For uniaxial creep loading the prescribed stress σ is

σ =


σat/tC1, 0 ≤ t ≤ tC1

σa, tC1 < t ≤ tC2

(5.20)

where σa = 0.5σ0 = 4.37×106Pa, tC1 = 10−4s, tC2 = 3000s for Se, σa = 0.1σ0 = 0.1512×104Pa,

tC1 = 10−7s, tC2 = 500s for CsHSO4 and σa = 0.2σ0 = 1.866× 106Pa, tC1 = 10−5s, tC2 = 4000s

for Sn, giving the strain rate values ασna to be 4.51× 10−5s−1, 2.57× 10−4s−1 and 2.44× 10−5s−1

for Se, CsHSO4 and Sn, respectively. The value of σ0 is for each material given in Table 5.1.

For an imposed σa at t = 0 (i.e. with the rise time neglected),

ε =
σa
E

+ ασna t (5.21)
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For uniaxial stress relaxation loading, the displacement rate is prescribed so that ε = ln(`/`0)

is a constant, where ` is the current length and `0 the initial length, is given by

ε =


εat/tR1, 0 ≤ t ≤ tR1

εa, tR1 < t ≤ tR2

(5.22)

where εa = 1 × 10−7, tR1 = 10−3s, tR2 = 150s for Se, εa = 5 × 10−8, tR1 = 10−14s, tR2 = 500s

for CsHSO4 and εa = 1× 10−5, tR1 = 10−11s, tR2 = 2× 104s for Sn.

For an imposed εa at t = 0, and with n > 1,

σ =
Eεa

[1 + α(Eεa)n(n− 1)ε−1
a t]1/(n−1)

=
σa

[1 + ασna (n− 1)ε−1
a t]1/(n−1)

(5.23)

Note that with n > 1, σna/εa = (Eεa)
n/εa = 0 for εa = 0. Also, in both Eqs. (5.21) and (5.23), the

response is governed by α× (stress quantity)n.

A significant difference between the indentation depth versus time response in Eq. (5.18) and

the uniaxial creep responses in Eqs. (5.21) and (5.23) is that hcrp/hela is independent of the load

magnitude (i.e. hcrp and hela have the same dependence on applied load) whereas the uniaxial

creep responses strongly depend on the applied load magnitude.

5.6.1 Bayesian identification

For the three “experimental” materials in Table 5.1, the set of values n, σ0 and ε̇0 with the largest

posterior probability is identified as the set of parameter values characterizing the creep response

of the “experimental” material. The value of the pre-exponential factor α is then calculated using

Eq. (5.6.

Once the initial database is constructed, the computations for the interpolation and for the

statistical analysis are very light and are quickly carried out on a personal computer [140]:
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5.6.1.1 Noise-free data

For each database, the posterior probability distribution is calculated from: (i) indentation depth

versus time data (HT); (ii) residual surface profile data (S); (iii) both indentation depth versus time

data and residual surface profile data (HTS). The values of n, σ0 and ε̇0 associated with the largest

posterior probability value obtained from (i), (ii), (iii) and the responses based on these values are

denoted by HT,S, HTS, respectively.

For Se, the predicted values of n, σ0, ε̇0 and therefore α using any of the three sets of data (HT, S

and HTS) coincide. Fig. 5.4 shows the indentation responses (dashed lines and labeled “all cases”)

obtained using these predicted parameter values. For comparison, the indentation responses using

the input properties of Se in Table 5.1 (solid lines) are also shown. The indentation responses of

“all cases” are nearly indistinguishable from the “experimental” indentation responses.

The predicted parameter values n, σ0, ε̇0, α and associated largest posterior probability values

p1 using three types of data based on the noise-free “experimental” indentation responses of Se in

Fig. 5.2 are given in Table 5.2. The predicted parameter values of n and α are the same for all three

cases and are close to the input values but a direct comparison of the values of α is not meaningful

unless the values of n coincide since the units of α vary with n.

Table 5.2: Predicted values of n, σ0, ε̇0, α and the associated largest value of posterior probability
p1 for Se obtained based on noise-free “experimental” indentation responses. The predicted values
obtained using the indentation depth versus time data (HT), using the residual surface profile data
(S) and using both the indentation depth versus time data and the residual surface profile data
(HTS) all coincide and are denoted by “all cases.”

n σ0(MPa) ε̇0(s−1) α(Pa−ns−1) p1

all cases 1.16 8.648 1.0× 10−4 0.898× 10−12 1.00

The uniaxial creep responses obtained from a one-element finite element uniaxial solution with

the loading given by Eq. (5.20) for the “all cases” parameter values in Table 5.2 are shown in

Fig. 5.5(a). The corresponding stress relaxation responses using Eq. (5.22) are shown in Fig. 5.5(b).
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Figure 5.4: Comparison of predicted and “experimental” indentation responses for Se. The inden-
tation responses with the largest value of posterior probability for the indentation depth versus time
data (HT), for the residual surface profile data (S) and for both the indentation depth versus time
data and the residual surface profile data (HTS) coincide and are denoted by “all cases.” The asso-
ciated values of n, σ0, ε̇0 and α are given in Table 5.2. (a) Normalized indentation depth h/hela,Se

versus normalized time t/tref,Se where tref,Se = 1/ε̇0,Se. (b) Normalized surface profiles, z/hela,Se

versus r/hela,Se, near the indenter after unloading. (c) log10-log10 plot of (a). On the scales in this
figure, the “all cases” predictions are indistinguishable from the corresponding “experimental”
responses.

In both figures, the predicted responses compare well with those obtained using the input material

parameter values for Se in Table 5.1.
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Figure 5.5: Comparison of the predicted uniaxial creep and relaxation responses using the “all
cases” parameter values in Table 5.2 with the corresponding “experimental” responses for Se. (a)
Uniaxial logarithmic strain, ε, versus time, t. (b) Normalized uniaxial Cauchy stress, σ/E, versus
time, t. On the scales in (a), the “all cases” prediction is indistinguishable from the corresponding
“experimental” response.

Fig. 5.6 shows the indentation responses calculated using the creep properties for CsHSO4

with the largest value of posterior probability p1 compared with the “experimental” indentation

responses. As seen in Fig. 5.6(a), for CsHSO4, the representation of the indentation depth versus

time response is improved by considering surface profile data. However, the improvement is small

and is negligible for the log10− log10 plot in Fig. 5.6(c).

Table 5.3 shows the predicted parameter values for CsHSO4 and the value of the associated

largest posterior probability obtained from the Bayesian analysis and Fig. 5.7 shows the com-

parison between the uniaxial creep and uniaxial relaxation responses using the predicted creep

parameter values in Table 5.3, for CsHSO4 and the “experimental” responses. For CsHSO4, nei-

ther the parameter values based on fitting the indentation depth versus time response (HT) nor the

residual surface profile (S) gives a particularly good fit to the uniaxial creep and stress relaxation

responses but when both sets of data are used (HTS) an excellent fit is obtained. We note that the

the predicted values of reference strain rate for the HTS fit is a factor of 100 times the input value of
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ε̇0 = 1s−1. Nevertheless, the predicted values of n and α are very close to the input “experimental”

values.
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Figure 5.6: Comparison of predicted and “experimental” indentation responses for CsHSO4. The
indentation responses are those corresponding to the largest value of posterior probability for the
indentation depth versus time data (HT), for the residual surface profile data (S) and for both the
indentation depth versus time data and the residual surface profile data (HTS). The associated
values of n, σ0, ε̇0 and α are given in Table 5.3. (a) Normalized indentation depth h/hela,CsHSO4

versus normalized time t/tref,CsHSO4 where tref,CsHSO4 = 1/ε̇0,CsHSO4 . (b) Normalized surface
profiles, z/hela,CsHSO4 versus r/hela,CsHSO4 , near the indenter after unloading. (c) log10-log10 plot
of (a). On the scales in this figure, the predictions with S and HTS data are indistinguishable from
the corresponding “experimental” responses.
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Table 5.3: Predicted values of n, σ0, ε̇0, α and the associated largest value of posterior probability
p1 for CsHSO4 obtained based on noise-free “experimental” indentation responses. See the caption
of Fig. 5.6 for the meanings of HT, S and HTS.

n σ0(MPa) ε̇0(s−1) α(Pa−ns−1) p1

HT 3.58 0.0312 15.8 12.9× 10−16 1.00
S 3.66 0.0528 100 5.19× 10−16 0.59
HTS 3.58 0.0552 100 10.6× 10−16 1.00
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Figure 5.7: Comparison of the predicted uniaxial creep and relaxation responses using the param-
eter values in Table 5.3 with the corresponding “experimental” responses for CsHSO4. See the
caption of Fig. 5.6 for the meanings of HT, S and HTS. (a) Uniaxial logarithmic strain, ε, versus
time, t. (b) Normalized uniaxial Cauchy stress, σ/E, versus time, t. On the scales in this figure, the
predictions with HTS data are indistinguishable from the corresponding “experimental” responses.

Fig. 5.8 shows the indentation responses calculated using the creep parameter values for Sn that

have the largest value of posterior probability p1. As for CsHSO4, the prediction of the indentation

response of the “experimental” material is slightly improved by considering surface profile data,

Fig. 5.8(a). For Sn, the creep parameter values in Table 5.4 obtained using only surface profile

data (S) and those obtained using both indentation depth versus time data and surface profile data
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(HTS) are identical. The HTS (or S) predicted value of ε̇0 is a factor of 10 times the “experimental”

input value of ε̇0 for Sn in Table 5.1.
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Figure 5.8: Comparison of predicted and “experimental” indentation responses for Sn. See the
caption of Fig. 5.6 for the meanings of HT, S and HTS. The associated values of n, σ0, ε̇0 and α
are given in Table 5.4. (a) Normalized indentation depth h/hela,Sn versus normalized time t/tref,Sn

where tref,Sn = 1/ε̇0,Sn. (b) Normalized surface profiles, z/hela,Sn versus r/hela,Sn, near the indenter
after unloading. (c) log10-log10 plot of (a). On the scales in (a) and (b), the predictions with S;
HTS data are indistinguishable from the corresponding “experimental” responses. In (c) all three
responses are indistinguishable.
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Table 5.4: Predicted values of n, σ0, ε̇0, α and the associated largest value of posterior probability
p1 for Sn obtained based on noise-free “experimental” indentation responses. See the caption of
Fig. 5.6 for the meanings of HT, S and HTS.

n σ0(MPa) ε̇0(s−1) α(Pa−ns−1) p1

HT 6.64 10.80 3.98 7.91× 10−47 0.85
S 6.46 13.50 10 86.7× 10−47 1.00
HTS 6.46 13.50 10 86.7× 10−47 1.00

Fig. 5.9 shows the uniaxial creep responses and uniaxial relaxation responses predicted for

Sn using the creep parameter values in Table 5.4 compared with the corresponding “experimental”

responses. Neither of the predicted responses for Sn in Fig. 5.9(a) provides a particularly good rep-

resentation of the “experimental” uniaxial creep response, although the inclusion of surface profile

data does improve the prediction. On the other hand, both the HT and S; HTS relaxation responses

in Fig. 5.9(b) do provide a fairly good approximation of the “experimental” response. Interest-

ingly, the HT response in Fig. 5.9(b) is actually slightly closer to the “experimental” response than

is the S; HTS response. Indentation creep responses are often represented using log10− log10 plots

so that it is worth noting that although the predicted and experimental indentation responses in

Fig. 5.8(c) are indistinguishable on a log10− log10 scale, the uniaxial creep responses in Fig. 5.9(a)

differ significantly.

For all three materials, predictions with a posterior probability p1 = 1.00, have power-law creep

parameters that differ from those of the corresponding “experimental” material. This is because

the “experimental” input parameters are not in the coarse database. Even if the “experimental”

input parameters are in the interpolated database, interpolation errors can preclude those material

parameters giving the largest value of posterior probability. For CsHSO4 and Sn, the predictions

using both the indentation depth versus time data and the residual surface profile data (HTS) pro-

vide the best fit to the “experimental” responses, while for Se (n ≈ 1), any of the three considered

data sets, HT, S and HTS, gives an identical prediction and have a posterior probability p1 = 1.00.

The indentation responses for CsHSO4 and Sn obtained using the values of the HTS material

parameters give a very good fit to the “experimental” indentation responses with a posterior prob-
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Figure 5.9: Comparison of the predicted uniaxial creep and relaxation responses using the param-
eter values in Table 5.4 with the corresponding “experimental” responses for Sn. See the caption
of Fig. 5.6 for the meanings of HT, S and HTS. (a) Uniaxial logarithmic strain, ε, versus time, t.
(b) Normalized uniaxial Cauchy stress, σ/E, versus time, t.

ability p1 = 1.00 even though the predicted values of ε̇0 are very different from the input values.

This shows that for constant load and hold indentation creep, different power-law creep parameters

can have very similar indentation responses.

5.6.1.2 Noise-contaminated data

With the noise-free “experimental” responses denoted by sinput andhinput, the noise-contaminated

data is obtained by superposing Gaussian noise on the noise-free data by

sm = sinput + snoise , hm = hinput + hnoise (5.24)

The noise is added to each indentation response, snoise and hnoise, via a call to the MATLAB [109]

function normrnd(0,ξ,[1,K]), where 0 is the mean value, ξ = ξh or ξs is the standard deviation and

K = Kh or Ks is the length of a 1 × K vector of random values with the specified mean and

standard deviation. Each call to normrnd provides a different vector of random values.

The standard deviation ξs is related to a reference length sref with noise amplitude ηs and the
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standard deviation ξh is related to the maximum indentation depth with noise amplitude ηh via

ξs = ηssref , ξh = ηhmax(hm
k ) (5.25)

with k = 1, 2, ..., Kh, ηs ≥ 0 and ηh ≥ 0. The reference length sref is taken to be the indentation

depth of the noise-free surface profile after unloading.

Fig. 6.4 shows examples of noise-contaminated indentation responses with values of the noise

amplitudes ηh = 0.01, ηh = 0.10 and with ηs = 0.01, ηs = 0.10. The effect of noise on the

prediction of the power-law creep parameters, we consider two noise levels: (i) a low noise level

ηh = ηs = 0.01; and (ii) a high noise level ηh = ηs = 0.10.

As in Ref. [2], calculations of the posterior probability distribution are carried out for 100

realizations with the same values of the noise amplitudes ηh and ηs. For each of the 100 realizations,

the values of n, σ0 and ε̇0 having the largest posterior probability p1 are determined. The arithmetic

averages of these values are taken as the predicted power law creep parameter values associated

with the specified noise amplitudes and the value of α is calculated from the resulting averaged

values of n, σ0 and ε̇0. We note that no additional finite element calculations are required to

determine these averaged values.

Fig. 5.11 shows the indentation responses predicted using noise-contaminated HTS data for Se

compared with the corresponding noise-free “experimental” responses. The responses for a low

noise level (ηh = ηs = 0.01) are indistinguishable from the experimental responses while those for

a high noise level (ηh = ηs = 0.10) still provide a good representation.

The material parameters and associated posterior probability obtained based on indentation

depth versus time data (HT), residual surface profile data (S) and on both indentation depth versus

time data and residual surface profile data (HTS) are given in Table 5.5. In contrast to the noise-free

case where the HT, S and HTS predictions coincided, the predictions based on different indentation

data differ for noise-contaminated data. With a low noise level (subscript 0.01), the values of n

and α obtained using HT data are closest to the “experimental” values in Table 5.1 even though the
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Figure 5.10: Illustration of realizations of noise-contaminated indentation data with noise ampli-
tudes ηh = 0.01, ηs = 0.01, ηh = 0.10 and ηs = 0.10 superposed on the indentation data for Se.
(a) Normalized indentation depth h/hela versus normalized time t/tref . (b) Surface profiles near
the indenter after unloading. (c) log10-log10 plot of (a).

posterior probability value is the smallest. On the other hand, the HT0.01 value of ε̇0 is 60% of the

input value. The posterior probability is significantly increased when surface profile data is used

in the identification analysis, increasing to p1 = 0.93 for the HTS based creep parameters. The

values predicted for data with a high noise level (subscript 0.10) have much larger differences from

the input values and have very low values of p1, indicating a lack of confidence in them. Although
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Figure 5.11: Comparison of predicted and “experimental” indentation responses for Se. The as-
sociated values of n, σ0, ε̇0 and α are obtained from noise-contaminated HTS data (averaged over
100 realizations) and given in Table 5.5. (a) Normalized indentation depth h/hela,Se versus nor-
malized time t/tref,Se. (b) Surface profiles near the indenter after unloading. (c) log10-log10 plot of
(a). On the scales in this figure, the predictions with ηh = ηs = 0.01 are indistinguishable from the
corresponding “experimental” responses.

the value of p1 for the HTS0.10 set of parameter values is low, it is much larger than those for the

HT0.10 and S0.10 predictions.

The predicted uniaxial creep and relaxation responses for Se obtained from one-element finite
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Table 5.5: Predicted values of n, σ0, ε̇0, α and the associated averaged largest posterior probability
p1 for Se obtained from averaging the predicted values over 100 realizations with ηs = ηh = 0.01
(subscript 0.01) and with ηs = ηh = 0.10 (subscript 0.10). See the caption of Fig. 5.6 for the
meanings of HT, S and HTS.

n σ0(MPa) ε̇0(s−1) α(Pa−ns−1) p1

HT0.01 1.15 5.38 0.6× 10−4 1.09× 10−12 0.31
S0.01 1.16 8.57 1.0× 10−4 0.907× 10−12 0.78
HTS0.01 1.16 8.67 1.0× 10−4 0.895× 10−12 0.93
HT0.10 1.15 5.55 0.7× 10−4 1.23× 10−12 0.0066
S0.10 1.27 6.64 1.2× 10−4 0.260× 10−12 0.0085
HTS0.10 1.17 7.17 0.9× 10−4 0.858× 10−12 0.030
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Figure 5.12: Uniaxial creep and relaxation responses using the averaged predicted parameter val-
ues over 100 realizations for Se obtained with noise-contaminated HTS data in Table 5.5. The
solid lines show the corresponding “experimental” responses. (a) Uniaxial logarithmic strain, ε,
versus time t. (b) Normalized uniaxial Cauchy stress, σ/E, versus time, t. On the scales in (a),
the prediction with ηh = ηs = 0.01 is indistinguishable from the corresponding “experimental”
response. In (b) the prediction with ηh = ηs = 0.01 is indistinguishable from the prediction with
ηh = ηs = 0.10.

element calculations (giving homogeneous stress and strain fields) using the creep properties in

Table 5.5 are shown in Fig. 5.12. For comparison, the corresponding responses for the “experimen-

tal” material are shown. The creep parameters obtained using the low noise HTS0.01 indentation
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data provide a good fit to the uniaxial creep and stress relaxation responses. The high noise level

HTS0.10 data also provides a rather good fit to the stress relaxation data but a much poorer fit to

the uniaxial creep data. As will also be seen subsequently, the uniaxial creep response is more

sensitive to the values of the creep parameters than is the stress relaxation response.

For CsHSO4, Fig. 5.13 compares the indentation responses predicted using noise-contaminated

HTS data and the “experimental” indentation responses. The responses predicted with low noise

provide a very good representation of the “experimental” indentation responses while the inden-

tation depth versus time response predicted with the high noise level differs somewhat from the

corresponding “experimental” response.

The creep parameters and associated posterior probability values obtained for CsHSO4 from

noise-contaminated data are given in Table 5.6. The values of creep exponent n and associated

pre-exponential factor α obtained based on HTS0.01 are in good agreement with the “experimental”

creep parameters in Table 5.1 and the posterior probability is p1 = 0.80. However, the value of ε̇0,

as for the prediction based on noise-free data, is 100 times that for the “experimental” material. The

values of α obtained using the HT0.01 and the S0.01 are significantly different from the input value

for CsHSO4 in Table 5.1 and the posterior probability values for these predictions are much smaller

than p1 for the HTS0.01 prediction. The creep parameters obtained for CsHSO4 from the high noise

level data (subscript 0.10) differ substantially from the corresponding values for the “experimental”

material and, consistent with this, the posterior probability values are small. Here, as in Fig. 10

of Ref. [46], with increasing noise, the posterior probability distribution is more spread out with

similar values of posterior probability for a range of material constitutive parameter values.

Fig. 5.14 shows a comparison between the “experimental” uniaxial creep and stress relaxation

responses for CsHSO4 and those predicted based on noise-contaminated HTS data. For both the

high noise level, HTS0.10, based creep parameters and the low noise, HTS0.01, based creep param-

eters in Table 5.6, there is very good agreement with the “experimental” stress relaxation response

in Fig. 5.14(b). On the other hand, the creep response in Fig. 5.14(a) shows a large difference

between the uniaxial creep response of the “experimental” material and the prediction based on
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Figure 5.13: Comparison of predicted and “experimental” indentation responses for CsHSO4. The
associated values of n, σ0, ε̇0 and α are obtained from noise-contaminated HTS data (averaged
over 100 realizations) and given in Table 5.6. (a) Normalized indentation depth h/hela,CsHSO4

versus normalized time t/tref,CsHSO4 . (b) Surface profiles near the indenter after unloading. (c)
log10-log10 plot of (a). On the scales in (a) and (b), the predictions with ηh = ηs = 0.01 are
indistinguishable from the corresponding “experimental” responses. In (c) all three responses are
indistinguishable.

the HTS0.10 data.

The comparison of “experimental” and noise-contaminated HTS data predicted indentation

responses for Sn in Fig. 5.15 shows a noticeable difference even for a low noise (ηs = ηh = 0.01)
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Table 5.6: Predicted values of n, σ0, ε̇0, α and the associated averaged largest posterior probability
p1 for CsHSO4 obtained from averaging the predicted values over 100 realizations with ηs = ηh =
0.01 (subscript 0.01) and with ηs = ηh = 0.10 (subscript 0.10). See the caption of Fig. 5.6 for the
meanings of HT, S and HTS.

n σ0(MPa) ε̇0(s−1) α(Pa−ns−1) p1

HT0.01 3.59 0.0402 51.1 15.1× 10−16 0.20
S0.01 3.68 0.0502 87.3 4.39× 10−16 0.25
HTS0.01 3.59 0.0551 100 9.53× 10−16 0.80
HT0.10 3.60 0.0362 44.6 17.3× 10−16 0.0025
S0.10 4.56 0.0316 45.5 0.00138 ×

10−16

0.0013

HTS0.10 3.62 0.0432 63.8 10.6× 10−16 0.0080

t(s)

ε

0 100 200 300 400 500
0

0.05

0.1

0.15

CsHSO
4

η
h
=η

s
=0.01

η
h
=η

s
=0.10

(a)

t(s)

σ
/E

0 100 200 300 400 500

CsHSO
4

η
h
=η

s
=0.01

η
h
=η

s
=0.10

5x10
8

4x10
8

3x10
8

2x10
8

1x10
8

        0

(b)

Figure 5.14: Uniaxial creep and relaxation responses using the averaged predicted parameter val-
ues over 100 realizations for CsHSO4 obtained with noise-contaminated HTS data in Table 5.6.
The solid lines show the corresponding “experimental” responses. (a) Uniaxial logarithmic strain,
ε, versus time t. (b) Normalized uniaxial Cauchy stress, σ/E, versus time, t. On the scales in (b),
the prediction with ηh = ηs = 0.01 is indistinguishable from the corresponding “experimental”
response.

level. The HTS based creep parameters are given in Table 5.7 along with the associated posterior

probability value. The predicted values of the pre-exponential factor α all differ substantially from

the input value for Sn in Table 5.1 except for the value based on S0.01 and the largest value of
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Figure 5.15: Comparison of predicted and “experimental” indentation responses for Sn. The asso-
ciated values of n, σ0, ε̇0 and α are obtained from noise-contaminated HTS data (averaged over 100
realizations) and given in Table 5.7. (a) Normalized indentation depth h/hela,Sn versus normalized
time t/tref,Sn. (b) Surface profiles near the indenter after unloading. (c) log10-log10 plot of (a). On
the scales in (c), all three responses are essentially indistinguishable.

posterior probability is only p1 = 0.38 for HTS0.01. In contrast to the results for Se in Table 5.5

and for CsHSO4 in Table 5.6, the predicted value of α based on HTS0.01 data differs from the input

value of Sn in Table 5.1.

The noise-contaminated uniaxial creep and stress relaxation predictions for Sn in Fig. 5.16
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Table 5.7: Predicted values of n, σ0, ε̇0, α and the associated averaged largest posterior probability
p1 for Sn obtained from averaging the predicted values over 100 realizations with ηs = ηh = 0.01
(subscript 0.01) and with ηs = ηh = 0.10 (subscript 0.10). See the caption of Fig. 5.6 for the
meanings of HT, S and HTS.

n σ0(MPa) ε̇0(s−1) α(Pa−ns−1) p1

HT0.01 6.61 12.20 24.2 34.9× 10−47 0.11
S0.01 6.64 14.39 39.3 11.6× 10−47 0.19
HTS0.01 6.59 15.54 47.1 19.1× 10−47 0.38
HT0.10 6.54 11.92 25.5 134× 10−47 0.0016
S0.10 6.25 15.50 40.4 4643× 10−47 0.0013
HTS0.10 6.63 13.43 33.1 18.2× 10−47 0.0048
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Figure 5.16: Uniaxial creep and relaxation responses using the averaged predicted parameter val-
ues over 100 realizations for Sn obtained with noise-contaminated HTS data in Table 5.7. The
solid lines show the corresponding “experimental” responses. (a) Uniaxial logarithmic strain, ε,
versus time t. (b) Normalized uniaxial Cauchy stress, σ/E, versus time, t.

show a significant deviation from the corresponding responses of the “experimental” material. In

particular, in Fig. 5.16(a), the creep responses predicted based on both the HTS0.01 data and the

HTS0.10 data are very different from the responses of the “experimental” material.

For all three materials, values of n and α were calculated using a different 100 realizations.

The HTS0.01 predicted values of n were the same to three significant figures and the values of α
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differed by 1 in the third significant figure.

The results here show an increasing sensitivity to noise with increasing creep stress exponent

n, with relatively little sensitivity for Se (n = 1.15), more sensitivity for CsHSO4 (n = 3.59) and

the most noise sensitivity for Sn (n = 6.60).

5.6.2 Comparison with analytical models

The aim of the analytical power-law creep models is to provide explicit expressions for relating

measured indentation responses to the constitutive parameters n and α in Eq. (5.6). The first step

is to identify the power-law creep regime of the h/hela versus time t responses. The steady-state

portions of the indentation depth, h/hela, versus time, t, responses in Fig. 5.2(c) are taken to be

−2 ≤ log10(t/tref) ≤ 0 for Se; −3 ≤ log10(t/tref) ≤ 0 for CsHSO4 and Sn. A least squares fit

is used and, based on Eq. (5.18), the slope of the log10− log10 plot is identified with 1/(2n) and

β is obtained from the least squares intercept. The least square fit used to determine the value of

n involved 197, 455 and 253 points for Se, CsHSO4 and Sn, respectively. The values of n and β

so obtained are then used in analytical expressions for power-law creep indentation derived by the

Bower at al. [69] and Ginder et al. [151] to obtain the value of the pre-exponential factor α.

Using expressions derived by Bower et al. [69] and identifying p in Eq. (5.14) with the force

per unit nominal area as in Su at al. [3]

αBFNO = β(F nc2n−1) cot γ (5.26)

where both F and c are functions of n and the indenter angle γ (see Fig. 5.1). The values of F and

c were estimated using the values for an indenter angle γ = 70◦ in Tables 1 and 2 of [3].

The closed-form algebraic expression for α obtained by Ginder et al. [151] based on an

expanding cavity model is

αGNP = β
(2n

3

)n
cot γ (5.27)

For the noise-contaminated predictions of the analytical models, noise is added to the power-

law regime indentation depth versus time data using the MATLAB [109] function normrnd(0,ξ,[1,K])
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Table 5.8: A comparison of the values of n, α and ασna obtained using the input “experimental”
data in Table 5.1 (subscript inp), the Bayesian-type statistical approach with HTS data from Sec-
tions (5.6.1.1) and (5.6.1.2) (subscript Bayes), HT data with Eq. (5.26) (subscript BFNO), and HT
data with Eq. (5.27) (subscript GNP). The subscript ( )nf denotes noise-free data and the subscript
( )0.01 denotes values averaged of predictions over 100 realizations with ηh = ηs = 0.01. Also,
shown is the value of ασna where for each material, σa is the applied stress in Eq. (5.20). The
values of n used in Eqs. (5.26) and (5.27) were obtained from a least squares fit to the steady-state
portions of the “experimental” indentation depth versus time responses.

Se CsHSO4 Sn
ninp 1.15 3.59 6.60
αinp(Pa−ns−1) 1.04× 10−12 9.89× 10−16 9.97× 10−47

αinpσ
n
a (s−1) 4.50× 10−5 2.57× 10−4 2.44× 10−5

nBayes,nf 1.16 3.58 6.46
αBayes,nf(Pa−ns−1) 0.898× 10−12 10.6× 10−16 86.7× 10−47

αBayes,nfσ
n
a (s−1) 4.53× 10−5 2.56× 10−4 2.81× 10−5

nBayes,0.01 1.16 3.59 6.59
αBayes,0.01(Pa−ns−1) 0.895× 10−12 9.53× 10−16 19.1× 10−47

αBayes,0.01σ
n
a (s−1) 4.52× 10−5 2.48× 10−4 4.04× 10−5

nBFNO,nf 1.17 3.57 6.66
αBFNO,nf(Pa−ns−1) 0.813× 10−12 11.6× 10−16 3.91× 10−47

αBFNO,nfσ
n
a (s−1) 4.78× 10−5 2.60× 10−4 2.27× 10−5

nBFNO,0.01 1.17 3.57 6.66
αBFNO,0.01(Pa−ns−1)0.832× 10−12 11.8× 10−16 4.59× 10−47

αBFNO,0.01σ
n
a

(s−1)
4.89× 10−5 2.65× 10−4 2.67× 10−5

nGNP,nf 1.17 3.57 6.66
αGNP,nf(Pa−ns−1) 0.769× 10−12 5.09× 10−16 12.3× 10−47

αGNP,nfσ
n
a (s−1) 4.52× 10−5 1.14× 10−4 7.15× 10−5

nGNP,0.01 1.17 3.57 6.66
αGNP,0.01(Pa−ns−1) 0.790× 10−12 5.18× 10−16 14.2× 10−47

αGNP,0.01σ
n
a (s−1) 4.65× 10−5 1.16× 10−4 8.25× 10−5

where the K is the number of data points on the indentation depth versus time response that lie

in the power-law regime (in the range 197 to 455). Note that although the mean and standard

deviation are the same as for the Bayesian based calculations in Section (5.6.1.2), the number

of data points and the specific realizations differ. The values of n and α for noise-contaminated

data were again obtained by averaging over 100 realizations. As for the Bayesian statistics based

predictions, carrying out the noise-contaminated calculations for a different 100 realizations with
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ηh = ηs = 0.01 does not significantly change the results.

Table 5.8 shows a comparison between the values of the creep exponent n and the pre-exponential

factor α associated with the input experimental materials, the Bayesian statistical analysis, the ex-

pression Eq. (5.26) and the expression Eq. (5.27). Note that the Bayesian statistics based predic-

tions shown are based on HTS data whereas the analytical model predictions only use HT data.

Also, because the values of n used in Eqs. (5.26) and (5.27) are obtained from the least squares

fits to computed power-law regime responses, the same value of n appears for the BFNO and GNP

entries in Table 5.8.

The values of α for the various entries in Table 5.8 are not directly comparable since the units of

α vary with n. However, the quantity ασna has the dimension 1/time and can be directly compared.

In the power-law creep regime, the uniaxial creep strain rate in Eq. (5.21) is given by ασna , with

σa the applied stress. Thus, the comparison between the various predictions for ασna with the

“experimental” value provides a measure of the accuracy of the prediction.

For Se (n = 1.15), all the predictions of n and ασna , both for noise-free data and for noise-

contaminated data (with ηh = ηs = 0.01 in Table 5.8) provide a good representation of the “exper-

imental” material. Perhaps surprisingly, the simple formula in Eq. (5.27) provides a slightly more

accurate prediction than Eq. (5.26).

For CsHSO4 (n = 3.59), the “experimental” values of n and ασna are well represented by the

Bayesian statistical predictions and by Eq. (5.26) while the predictions of ασna from Eq. (5.27)

differ from the “experimental” value by a factor of about 2.

For Sn (n = 6.60), the Bayesian statistical prediction and the prediction based on Eq. (5.26)

are both rather accurate for noise-free data. The prediction based on Eq. (5.26) also provides a

reasonably accurate value of ασna for the noise-contaminated data while the Bayesian statistics

based prediction of ασna differs from the “experimental” value. This is may be due to the values

of n and β used in Eq. (5.26) being obtained directly from the power-law regime indentation

data, whereas the Bayesian statistics values of n and α are obtained based on database data which

largely consists of interpolated approximations. Nevertheless, the Bayesian statistics values of n
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and α based on noisy data are rather close to the “experimental” input values of Sn.

The accuracy of the predictions becomes more sensitive to noise for larger values of the stress

exponent n. For example, for Se (n = 1.15) with ηh = ηs = 0.10, the predicted values of ασna =

5.04×10−5s−1, 6.23×10−5s−1, and 7.40×10−5s−1 for the Bayesian statistics approach, Eq. (5.26)

and Eq. (5.27), respectively. For Sn (n = 6.60), the corresponding values are 6.86 × 10−5s−1,

1.61 × 10−2s−1 and 2.89 × 10−2s−1. Hence, for very noisy data, both analytical approximations

for Sn (n = 6.60) are very inaccurate.

5.7 Conclusions

The Bayesian-type statistical approach of Zhang et al. [2] has been used to identify the power-

law creep constitutive parameters, the creep exponent n and the pre-exponential factor α, from

“experimental” load and hold indentation creep measurements, considering noise-free as well as

noise-contaminated data. The indentation creep measurements are: (i) the indentation depth ver-

sus time response; and (ii) the residual surface profile. Material properties representative of three

materials have been considered: amorphous selenium (Se), solid acid CsHSO4 and tin (Sn). Fi-

nite element calculations were carried out to populate a coarse database of power-law creep pa-

rameters. The finer database used for the Bayesian statistical analyses was created by interpola-

tion. Uniaxial creep and stress relaxation responses were computed using the power-law creep

parameters obtained from the Bayesian-type statistical approach using noise-free as well as noise-

contaminated data and compared with the corresponding responses of the “experimental” mate-

rials. The Bayesian statistics based predictions were also compared with predictions based on

analytical power-law creep indentation expressions of Bower et al. [69] and Ginder et al. [151].

1. The Bayesian-type statistical approach provides the values of power-law creep parameters that

provide a good fit to the indentation responses of all the materials considered when based on

noise-free data and for sufficiently small noise amplitudes. The sensitivity to noise increases

with increasing creep stress exponent n.

• For Se (n = 1.15), the creep parameters obtained from both the noise-free and noise-

137



contaminated indentation responses provide a good fit to the uniaxial creep and stress

relaxation responses.

• For Sn (n = 6.60), creep parameters that provide good fit to the load and hold in-

dentation responses do not necessarily give a good fit to the uniaxial creep and stress

relaxation responses.

2. Can very different power-law creep parameters give nearly the same responses in load and hold

indentation creep? In the circumstances analyzed, different values of the power law creep

parameters did give reasonably good fits to the “experimental” indentation data, particularly

for noisy data, but no cases were found where very different values of both power-law creep

parameters gave nearly the same indentation response.

3. Does using the residual surface profile in addition to or instead of the indentation depth versus

time data improve the quality of the prediction? Using both indentation depth versus time

data and residual surface profile data generally leads to an improved prediction of the uni-

axial creep and stress relaxation responses. For Se (n = 1.15), the improvement over only

using indentation depth versus time data is negligible.

4. How sensitive is the predicted creep response to noise in the “experimental” indentation data?

The uniaxial creep response is more sensitive to the accuracy of the predicted values of the

power-law creep parameters, and therefore to noise, than is the uniaxial stress relaxation

response.

5. How do the power-law creep properties obtained using the analytical steady state creep results

of Bower et al. [69] and Ginder et al. [151] compare with those predicted from the Bayesian-

type statistical approach? For Se (n = 1.15), the predictions of both the analytical models

of Bower et al. [69], and of Ginder et al. [151] are in very good agreement with those of the

“experimental” material, while the model of Bower et al. [69] provides a good fit for all three

values of creep stress exponent and the corresponding pre-exponential factor considered if

the noise level is sufficiently small.
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6. BAYESIAN INFERENCE FOR MATERIAL PROPERTIES

“Physicists believe that the Gaussian law has been

proved in mathematics while mathematicians think

that it was experimentally established in physics.”

– Henri Poincaré

6.1 Introduction

Bayes’ theorem was first published in the Philosophical Transactions of the Royal Society in

1763 [5]. The theorem itself is quite simple, but has enormous implications for statistical practice.

In recent years the use of Bayesian methodology has grown explosively, mainly because computing

challenges in its application have been overcome with the advent of Markov Chain Monte Carlo

[26]. Bayesian statistics has been applied in a wide variety of research areas, for example, gating

mechanisms [32], partially observed stochastic epidemics [34], semiconductor composition [33],

radiation biodosimetry [37], material damage control [38], and fatigue life [41].

Characterization of material properties is the foremost step in, for example, fundamental re-

search in biomechanics and bubble dynamics [48, 49, 50, 51], engineering applications ranging

from characterizing materials for microsystem to materials for nuclear reactors [166, 52, 53], and

clinical diagnosis of cancers [54, 55]. A material property is a scalar or tensor parameter that enters

the constitutive description of a material. Such properties could be mechanical, electrical, thermal,

magnetic, optical or chemical. Material properties characterization is the process of identifying the

parameter values in a constitutive relationship by post processing of experimental measurements.

For mechanical properties, Bayesian inference has been adopted to identify elastic properties, e.g.

spatial distribution of elastic properties [45], Young’s modulus parameter field [167] and elastic

parameters of micro-swimmers [60], as well as plastic properties, e.g. rate-independent materi-

als [2], impacts of strain hardening rules [140], plastically compressible materials [46] and creep
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parameters [4].

In a uniaxial tension test with uniform deformations, Young’s modulus of the sample can be

quantified by applying Hooke’s law on one pair of measurements, i.e. uniaxial Cauchy stress

and uniaxial logarithmic strain. However in some cases, multiple types of measurements can

be required for material properties characterization, for example in the identification of plastic

properties from indentation. The strain (rate) hardening rule for an elastic and plastic material is

nonlinear. The contact behavior during indentation process and the kinematics for finite strain are

both nonlinear. Given these, the deformations of indented materials are nonuniform, where one

pair of measurements may not be adequate to uniquely identify material properties. In particular,

the relation between indentation force versus indentation depth response and the uniaxial stress

versus strain response for an elastic and plastic material is not necessarily unique [91, 93, 124, 2].

One way to render the relation unique is by additionally considering the residual surface profiles

of the indented materials [116, 2, 117].

Bayesian inference has been applied in the characterization of plastic properties from indenta-

tion, e.g. [106, 2, 46, 140, 4, 122, 123]. Specifically, a uniform prior was used in [106, 2, 46, 140, 4,

122, 123] and a normal prior was numerically considered in [106]. In this paper, we propose a rig-

orously derived Bayesian formulation for material properties identification using one signal type.

An inverse gamma prior for the noise variance in a normal likelihood model is analyzed. Given

the demand of multiple signal types, a rational way to account for multiple types of experimental

measurements is provided. The following questions are to be addressed:

1. Given one pair of experimental measurements (single signal type), what would be a rigorous

Bayesian formulation for the inference of material properties?

2. How do prior parameters in the Bayesian formulation affect the inference? What are effective

choices for these parameters?

3. With multiple signal types, what are some rational approaches to inferring material proper-

ties using different signal types? In the presence of bias, is there an approach to diminish the
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influence of bias from certain signal types?

We begin by specifying the material properties identification problem and derive the posterior

probability for data of single signal type to answer question (i). The difference between this for-

mulation and a Bayesian-type approach of Zhang et al. [2] is discussed. Asymptotic analysis of

the derived posterior probability and numerical calculations of an analytical expression are carried

out to answer question (ii). A classical Bayesian approach is used to account for multiple types

of signals. Another method, using a weighted average of posterior probability distributions from

different signal types, is also proposed to address possible bias of some signal types. We apply

the formulations for both the single signal type and the multiple signal types to the creep prop-

erties identification from indentation problem of Zhang and Needleman [4]. The effect of prior

parameters is studied to help answer questions (ii) and (iii).

6.2 Bayesian formulation

We consider material properties θ = (θ1, θ2, . . . , θKp) either from multiple scalar parameters

or from multiple components of a tensor parameter. For a material with parameters θ, its response

under a particular type of test and initial/boundary conditions is denoted [x, f(x|θ)], x ∈ I , where

I is an interval that is the same for all components of θ.

In order to infer θ, we must measure experimental data from the same type of test that produces

[x, f(x|θ)]. These data are denoted Y , which is a Kd × 2 matrix with J th row (xJ , yJ), where

yJ = f(xJ |θ0) + δJ , J = 1, . . . , Kd. (A-1)

The subscript on θ0 reinforces the fact that θ0 contains the true parameter values that produced the

experimental data. The noise terms, δ1, . . . , δKd
, are assumed to be independent of each other and

to have a common normal distribution with mean 0 and (unknown) variance ξ2.

Characterization of material properties can be understood as a process of identifying parameter

values that best fit the experimental measurements. To do so, we build a database of possible

response solutions obtained from an appropriate model for various values of θ. Specifically, the
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parameter space for θ is discretized using a database grid denoted by G. For example, G could

be a quadrilateral mesh in a two-dimensional parameter space. A point in the grid G is denoted

θi = (θi1, . . . , θ
i
Kp

), i = 1, . . . , KG.

For each θi ∈ G, its corresponding response solution, denoted Zi = [x, f ∗(x|θi)], may be

calculated under the same test type as that producing [x, f(x|θ0)] and Y . This is done using

appropriate models obtained from either analytic expressions or numerical simulations, such as

finite element or finite difference. In practice, one calculates Zi for each θi, where Zi is the

Kd × 2 matrix with J th row (xJ , f
∗(xJ |θi)), J = 1, . . . , Kd. The values of xJ in Zi are the same

as those in Y .

We presume that f ∗(·|θ) well-approximates f(·|θ). Therefore, if we can find f ∗(·|θi) that

provides a good fit to the data Y , then θi will be deemed a good approximation to θ0, the true

material properties. Our approach to identifying a function that fits the data well is Bayesian. We

propose a probability model for Y , an appropriate prior distribution for the parameters of this

model, and then determine f ∗(·|θi) to maximize the posterior distribution.

6.2.1 A single signal type

We first consider the case where there is only one type of experimental data (or signal). Since

the noise terms δ1, . . . , δKd
in Eq. (A-1) are assumed to be independent and identically distributed

(i.i.d.) normal variates having mean 0 and variance ξ2, we have

p(Y |Zi, ξ
2) =

Kd∏
J=1

1

ξ
√

2π
exp

[
− 1

2ξ2
[yJ − f ∗(xJ |θi)]2

]
. (A-2)

Our notation emphasizes that both Zi and ξ2 are unknown parameters, in which case a prior distri-

bution p(Zi, ξ
2) is required. The posterior probability distribution of Zi and ξ2 given observation

Y is expressed by

p(Zi, ξ
2|Y ) =

p(Y |Zi, ξ
2)p(Zi, ξ

2)

m(Y )
, (A-3)
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and we assume that the prior has the form

p(Zi, ξ
2) = U(Zi)π(ξ2|α, β). (A-4)

The prior U for Zi is (discrete) uniform over all choices for Zi in the range of the database, and

zero outside that range, while the prior for ξ2 is the following inverse gamma density:

π(x|α, β) =
βα

Γ(α)
x−(α+1) exp

(
−β
x

)
, x > 0, (A-5)

where Γ is the gamma function, α > 0 is a shape parameter and β > 0 is a scale parameter.

Setting U(Zi) = 1/KG, expressions (A-2), (A-4) and (A-5) imply that expression (A-3) is

p(Zi, ξ
2|Y )m(Y ) =

1

KG

βα

Γ(α)

(
1√
2π

)Kd

(ξ2)−(α+1+Kd/2) exp

[
−β + Ŝi/2

ξ2

]
, (A-6)

where

Ŝi =

Kd∑
J=1

[yJ − f ∗(xJ |θi)]2 . (A-7)

Comparing Eq. (A-6) with Eq. (A-5) reveals that p(ξ2|Y ,Zi), the conditional posterior of ξ2 given

Zi, is proportional to π(ξ2|α′, β′), with α′ = α + Kd/2 and β′ = β + Ŝi/2. This implies that

the inverse gamma distribution is a conditional conjugate prior distribution, since p(ξ2|Y ,Zi) and

the prior of ξ2 are both inverse gamma densities. With a different parameterization, the gamma

distribution would become a conditional conjugate prior.

Integrating Eq. (A-6) over ξ2 leads to the marginal posterior probability distribution of Zi:

p(Zi|Y )m(Y ) =

∫ ∞
0

p(Zi, ξ
2|Y )m(Y )dξ2. (A-8)

Making the change of variable κ = (β + Ŝi/2)/ξ2 in the integrand of Eq. (A-8),

p(Zi|Y )m(Y ) = CY (β + Ŝi/2)−(α+Kd/2), (A-9)
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where

CY =
1

KG

βα

Γ(α)

(
1√
2π

)Kd

Γ(α +Kd/2). (A-10)

Since the number of data points Kd does not depend on i, CY does not depend on Zi. The

evidence m(Y ) is also a constant given by

m(Y ) =

KG∑
i=1

∫ ∞
0

p(Y |Zi, ξ
2)p(Zi, ξ

2)dξ2. (A-11)

With Eqs. (A-9)-(A-11), we have the posterior probability distribution for Zi, i = 1, . . . , KG, in

the form

p(Zi|Y ) ∝ (β + Ŝi/2)−(α+Kd/2). (A-12)

Again, the corresponding parameters θi of Zi would be the inferred parameter values. If we are

only interested in finding the maximizer of the posterior, we do not need to calculate the constant in

the posterior probability distribution. On the other hand, the discreteness ofZi makes normalizing

(A-12) straightforward. One simply divides ψi = (β + Ŝi/2)−(α+Kd/2) by the sum of ψi over all

Zi considered.

The quantity Ŝi can be written

Ŝi
Kd

= ξ̂2 +D2
i + ∆i, (A-13)

where

ξ̂2 =
1

Kd

Kd∑
J=1

δ2
J , D2

i =
1

Kd

Kd∑
J=1

[f ∗(xJ |θi)− f(xJ |θ0)]2

and

∆i =
2

Kd

Kd∑
J=1

δJ [f(xJ |θ0)− f ∗(xJ |θi)].

The quantity Di is a distance that measures how close f ∗(·|θi) is to the true signal f(·|θ0). Since

expression (A-12) is monotone decreasing in Ŝi, it follows that if each ∆i was 0, then the posterior

probability would be maximized at the Zi that is closest to the truth. Of course, for noisy data
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the ∆is are not 0, but fortunately ∆i converges in probability to 0 as Kd becomes large. One can

therefore expect (A-12) to provide a good assessment of the various signals in the database.

6.2.2 Relation to a previous Bayesian-type approach

The Bayesian formulation for a single type of signal in Section 26.2.1 differs from the Bayesian-

type approach of Zhang et al. [2] in that the noise variance is dealt with differently. The formula-

tion in Section 26.2.1 treats the variance as an unknown parameter having a prior distribution. The

variance is then integrated out of the joint posterior, producing the marginal posterior of Zi. This

approach recognizes that ξ2 is merely a nuisance parameter. In the Bayesian-type approach of [2],

the variance is estimated by a maximum likelihood estimate (MLE).

In [2], the prior for Zi is uniform and the likelihood for Y is Gaussian. Instead of assigning a

prior to ξ2, it is replaced in the likelihood by the following MLE:

(ξ̂i)
2 =

1

Kd

Kd∑
J=1

[yJ − f ∗(xJ |θi)]2, i = 1, ..., KG. (A-14)

The index i on each variance estimate indicates that this statistic maximizes the likelihood at the

particular response solution θi in the database with grid G. Using a uniform prior for Zi, the

posterior distribution then becomes

p(Zi|Y ) ∝ ξ̂−Kd
i . (A-15)

Comparing Eqs. (A-7) and (A-14), we have Ŝi = Kdξ̂
2
i . Expressions (A-6) and (A-8) remain

valid when α = β = 0, in spite of the fact that the prior is improper in that case. Therefore, if

α = β = 0, then Eq. (A-12) becomes

p(Zi|Y )|α=β=0 ∝ (Ŝi/2)−Kd/2 = (2/Kd)Kd/2ξ̂−Kd
i ∝ ξ̂−Kd

i . (A-16)

We therefore see that the posterior probability in the approach of Zhang et al. [2] is a limiting case

(α = β = 0) of the general formula Eq. (A-12).
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6.2.3 Limiting version of posterior probabilities as Kd and/or α become large

Ideally the prior for ξ2 would be centered at the true variance, ξ2
0 . However, ξ2

0 is unknown and

it is of interest to investigate how the parameters chosen for the prior affect p(Zi|Y ). The mode

of the inverse gamma is M = β/(α + 1), and we may reparameterize in terms of M and α. Per

our discussion in section 26.2.1,

p(Zi|Y ) ∝ (M(α + 1) + Ŝi/2)−(α+Kd/2)

≈
[
M(α + 1) +Kd(ξ2

0 +D2
i )/2

]−(α+Kd/2)

= (Kdξ
2
0)−(α+Kd/2)

[
M(α + 1)

Kdξ2
0

+ (1 +D2
i /ξ

2
0)/2

]−(α+Kd/2)

, (A-17)

where the approximation holds for large Kd since ∆i and ξ̂2 converge in probability to 0 and ξ2
0 ,

respectively, as Kd tends to∞. Defining Ai = (1 +D2
i /ξ

2
0)/2, we have

p(Zi|Y ) ∝ A
−(α+Kd/2)
i

[
1 +

M(α + 1)

2ξ2
0Ai(Kd/2)

]−(α+Kd/2)

(A-18)

≈ A
−(α+Kd/2)
i exp

(
−M(α + 1)

2ξ2
0Ai

)
, (A-19)

where the last approximation holds when Kd is large and Kd/2 � α using the fact that lim
k→∞

(1 +

A/k)k = exp(A).

For two signals Zi and Zj with distances Di > Dj , the ratio of their corresponding posterior

probabilities is

p(Zi|Y )

p(Zj|Y )
≈
(
D2
j + ξ2

0

D2
i + ξ2

0

)α+Kd/2

exp

[
M(α + 1)

2ξ2
0

(
1

Aj
− 1

Ai

)]
. (A-20)

Since Di > Dj , Eq. (A-20)→ 0 as Kd → ∞. This implies that for a fixed α, the signal with the

smallest value of Di will have a posterior probability tending to 1 as Kd tends to∞. A commonly

used noninformative but improper prior for ξ2
0 uses α = 0. It is thus important to point out that the

analysis leading to Eq. (A-20) still holds if α = 0.
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For a given mode M , the inverse gamma density becomes ever more concentrated at M as α

tends to∞. Therefore, large α corresponds to a strong belief that ξ2
0 is very close to M . What is

the consequence of choosing α large when in fact ξ2
0 is not close to M? The natural logarithm of

the right hand side of (A-20) is

(α +Kd/2)(lnxj − lnxi) + (α + 1)

(
1

xj
− 1

xi

)
, (A-21)

where

xi = 2ξ2
0Ai/M, xj = 2ξ2

0Aj/M. (A-22)

Note that (α+Kd/2) lnx+ (α+ 1)/x is a decreasing function of x < (α+ 1)/(α+Kd/2) and an

increasing function of x ≥ (α+1)/(α+Kd/2). This means that ifM < (α+Kd/2)(ξ2
0 +D2

j )/(α+

1) as α and Kd become large, then Eq. (A-20) will tend to 0. In other words, a strong but incorrect

belief that M is relatively small is not troublesome. If M > (α + Kd/2)(ξ2
0 + D2

i )/(α + 1)

as α becomes large, the consequences are potentially dire, since then (A-20) could tend to ∞,

even though Dj < Di. However, one may guard against this eventuality by choosing α to be

o(Kd) as α and Kd become large. Doing so guarantees that ultimately M will be no larger than

(α+Kd/2)(ξ2
0 +D2

i )/(α+ 1) for any distance Di considered, and hence the signal with smallest

distance will have posterior probability tending to 1.

Eq. (A-20) suggests that using a prior with both M and α small will prevent any potentially

deleterious effects of poor choice of prior parameters. In particular, the noninformative prior with

α = β = 0 seems like a reasonable default choice. In spite of being improper, this prior still

produces a proper posterior for Zi and ξ2.

6.2.4 Numerical results

Section 26.2.3 provides asymptotic analyses of posterior probabilities when Kd and/or α are

large. In this Section we calculate our approximations to the posterior probabilities and find that

they are consistent with the analytical analyses.

Fig. 6.1 provides examples of the inverse gamma density Eq. (A-5). When the mode M is
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fixed, the density becomes more concentrated at the mode with an increase in α. Similarly, when

α is fixed, a smaller mode M makes the density more concentrated near M . Generally speaking,

smaller values of α correspond to more noninformative priors and larger values to more informative

priors.
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Figure 6.1: The inverse gamma density prior with various values of shape parameter α and mode
M where M = β/(α + 1). Black and red lines denote M = 2 and M = 6, respectively.

From Eq. (A-17) we have

p(Zi|Y ) ∝
[

(α + 1)

Kd

M

ξ2
0

+
1

2

D2
i

ξ2
0

+
1

2

]−(α+Kd/2)

= C · f(α,Kd,M/ξ2
0 , Di/ξ0), (A-23)

where the constant C is such that f(α,Kd,M/ξ2
0 , Di/ξ0) sums to 1 over a relevant range of values

for Di/ξ0. Define Pλ to be a summation of the posterior probabilities over a collection of Di/ξ0 in

the interval [0, λ]:

Pλ(α,Kd,M/ξ2
0) =

∑
0≤Di/ξ0≤λ

f(α,Kd,M/ξ2
0 , Di/ξ0). (A-24)

Computing a sum such as Pλ seems like a more realistic way to investigate the posterior distribution
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than simply calculating the posterior probability of the best model. Typically there will be a number

of different signals that are all very close to the best model. In the sequel the value of λ is chosen

to be half the largest value of Di/ξ0 considered.
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Figure 6.2: P0.1, Eq. (A-24), for various parameter values M/ξ2
0 , α and Kd. One thousand evenly

spaced points are considered for Di/ξ0 ∈ [0, 0.2]. (a) Kd = 50. (b) Kd = 100. (c) Kd = 200
and (d) Kd = 400. In all four plots, the curves from top to bottom correspond to M/ξ2

0 = 1/4,
M/ξ2

0 = 1/2, M/ξ2
0 = 1, M/ξ2

0 = 2 and M/ξ2
0 = 4, respectively.

150



Fig. 6.2 provides P0.1 for various choices of M/ξ2
0 , α and Kd. When the prior is centered at the

correct ξ2, i.e. M/ξ2
0 = 1, the posterior probabilities hardly change with α. Arguably, the posterior

probabilities are "correct" when M/ξ2
0=1 since in this case the prior is centered at the true noise

variance. Importantly, when α is small, all the posterior probabilities are close to what they are

when M/ξ2
0 = 1, which seems to be a strong argument for choosing α to be small.

When the prior modeM is not centered at ξ2
0 , the posterior probabilities deviate from the middle

curve (corresponding to M/ξ2
0 = 1) when α is large. Specifically, when M/ξ2

0 < 1 and M/ξ2
0 > 1,

P0.1 tends to be larger and smaller, respectively, than P0.1 for M/ξ2
0 = 1. This is consistent with

the analytical analysis in Section 26.2.3. With M/ξ2
0 and α fixed, the posterior probabilities P0.1

increase toward 1 as Kd increases. Again, this is consistent with the conclusions of Section 26.2.3.

To summarize, if correct information about ξ2 is used, i.e. M/ξ2
0 = 1, the choice of α does

not matter. If the prior distribution for ξ2 is not centered at ξ2
0 , then posterior probabilities can be

misleading if α is large. Therefore, it makes sense to choose α small whether one is confident or not

in the prior information about ξ2. Finally, we note that the largest possible value for Kd is always

recommended, since the largerKd is the less important it is to correctly quantify information about

the noise variance.

6.2.5 Multiple signal types

In general, multiple types of test on the same material could be performed and we organize

the experimental measurements in the form Y = (Y 1, ...,Y Ky), where each Y q, q = 1, ..., Ky,

has the same data structure as Y in Section 26.2.1 and Ky is the number of test types. For each

θi ∈ G, Zi is, in the present context, a matrix consisting of response solutions of the Ky types.

In other words, Zi = (Zi1, ...,ZiKy), which are fitted to the experimentally measured responses

(Y 1, ...,Y Ky), respectively. Each Ziq, q = 1, ..., Ky, is of the same form as Zi in Section 26.2.1.

Letting ξ2
q be the error variance for the qth data type, q = 1, . . . , Ky, the prior is taken to be

p(Zi, ξ
2
1 , ..., ξ

2
Ky) =

1

KG

Ky∏
q=1

π(ξ2
q |αq, βq), (A-25)
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implying that each θi has the same prior probability. Assuming that data of different types are

independent given the parameters, the likelihood is

p(Y |Zi, ξ
2
1 , ..., ξ

2
Ky) =

Ky∏
q=1

p(Y q|Ziq, ξ
2
q ), (A-26)

which yields the posterior

p(Zi, ξ
2
1 , . . . , ξ

2
Ky |Y ) ∝

Ky∏
q=1

π(ξ2
q |αq, βq)p(Y q|Ziq, ξ

2
q ).

It follows that the marginal posterior of Zi can be obtained by integrating out each ξ2
q sepa-

rately, leading to

p(Zi|Y ) ∝
Ky∏
q=1

p(Ziq|Y q), (A-27)

where each p(Ziq|Y q) has the same form as Eq. (A-12). An estimate of θ0 is provided by the θi

corresponding to the Zi that maximizes the joint posterior Eq. (A-27).

Another way of estimating θ0 is to use a convex combination of θ values that correspond to

estimates of Zi1, . . . ,ZiKy . In this approach the estimates of Ziq are obtained by maximizing the

Ky posteriors of the different data types separately. A classical, asymptotic argument, provided

in the Appendix D, shows that the approach of choosing θi to maximize (A-27) is usually more

efficient than such a convex combination, in the sense of leading to an estimator with smaller

variance.

6.2.6 Additive approach to deal with bias

Suppose that a bias exists in the measurements Y , in the sense that

yJ = f(xJ |θ0) + b(xJ , ...) + δJ , J = 1, . . . , Kd, (A-28)

where b(xJ , ...) is a bias function which could consist of a constant term and terms that depend

on xJ and other test parameters, such as environmental factors and test facilities. In practice,
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identification of the bias function b(xJ , ...) could be challenging. Often, one would be unaware of

b(xJ , ...) and it would simply become merged into the true function f(xJ |θ0). Unless the bias is

negligible, poor estimates of f(xJ |θ0) are likely to result from failure to account for the bias. The

efficiency of the approach in Section 26.2.5 is only guaranteed when the assumed model is correct,

and hence does not necessarily lead to accurate inference in the presence of bias.

While the exact nature of bias may be unknown, the investigator may be aware that some data

sources are more unreliable than others. To deal with such a scenario we propose that one choose

Zi to maximize the following:

p(Zi|Y ) =

Ky∑
q=1

p(Ziq|Y q)Wq, (A-29)

where each p(Ziq|Y q) is of the same form as Eq. (A-12), q = 1, ..., Ky, and W1, . . . ,WKy are

positive weights that add to 1. The idea is that data types suspected to be more biased receive

smaller weights.

6.3 Application to creep properties identification from indentation

The Bayesian-type approach of [4] (discussed in Section 26.2.2), which corresponds to setting

α = 0 and β = 0 in Eq. (A-12), has been used to characterize creep parameters, both the creep

exponent and the associated pre-exponential factor, from indentation measurements [4]. Here, the

general Bayesian formulations in Sections 26.2.1 and 26.2.5 are applied to the creep properties

identification to study the influence of statistical parameters and method for multiple types of

signals on the posterior probabilities.

The indentation problem is briefly summarized here. Background, initial/boundary conditions,

constitutive relation, constant load and hold indentation creep, normalization of responses, finite

element implementation, construction of databases and a more complete description are given in

Zhang and Needleman [4].

The axisymmetric part of a conical indenter indenting a half space with bottom frictionless

support and other free surfaces traction-free is considered, Fig. 6.3. The indenter is rigid with
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an angle γ = 70.3◦ and the contact between indenter and the specimen is non-slip. During the

indentation process, the reaction force along z direction on the indenter is recorded as F , the

corresponding penetration depth without considering pile-up or sink-in is recorded as h. Values

of F and h are recorded for each time step t during the whole test process, where t = 0 at the

beginning of the test.

γ

L0

Z0

z

r

h

Figure 6.3: Sketch of the indentation configurations with a conical indenter.

The specimen being indented is an elastic-creep material provided in Abaqus standard [118],

where the small elastic strain is governed by Hooke’s law and the creep part of the rate of defor-

mation is given by J2 flow theory with a power-law creep strain rate hardening rule.

The constant load and hold indentation process basically holds a maximum indentation force

F for a period of time. The indentation depth h versus time t response is recorded (denoted HT

signal) and the residual surface profile, z versus r, after unloading is recorded (denoted S signal).

Other type of measurements, e.g. surface components of strain [168], can be used as well. Here,

only S signal and HT signal are considered for inference.

We only consider amorphous selenium (Se) at 35◦C, its numerically generated normalized
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noise-free “experimental” responses are shown by the solid lines in Fig. 6.4, where (a) shows

normalized indentation depth h/hela versus normalized time t/tref responses and (b) shows the

normalized surface profiles near the indenter after unloading, where hela is the elastic solution of

indentation depth with an indentation force for an axisymmetric indenter by Sneddon [165], tref is

the inverse of a reference strain rate [4]. Convergence of the mesh and other numerical concerns

have been verified in [4]. The original database was constructed (denoted G0) with number of sets

of parameters KG0 = 2684 and an interpolated database was obtained (denoted G) with sets of

parameters KG = 245616. The accuracy of interpolation in the database has been checked in [4]

and the interpolated database G is used for inference.

Recall that the noise terms, δ1, . . . , δKd
in Eq. (A-1), are independent of each other and have a

common normal distribution with mean 0 and variance ξ2
0 . The standard deviation ξ0 is defined as

a product of noise amplitude η and a reference value sref or href,

ξ0s = ηssref , ξ0h = ηhhref (A-30)

where noise amplitudes ηs ≥ 0 and ηh ≥ 0 quantify the noise to signal ratio. The reference

length sref is taken to be the indentation depth of the noise-free residual surface profile. The ref-

erence length href is taken to be the maximum indentation depth. To generate noise, we call the

MATLAB [109] function normrnd(0, ξ0) for each noise term in δs or δh, where 0 is the mean value.

The dashed and dash-dot lines in Fig. 6.4 show examples of noisy normalized indentation depth

versus normalized time signals in (a) and noisy normalized residual surface profile signals in (b).

Here ηh = ηs = 0.01 is for a low noise condition and ηh = ηs = 0.10 is for a high noise condition.

The reference values sref and href turn out to be the same to the third significant figure for Se,

sref/hela=23.4. When noise amplitudes are ηh = 0.01, ηs = 0.01, we have ξh = ξs = 0.234, and

when ηh = 0.10, ηs = 0.10, ξh and ξs are 10 times as large as those in the low noise condition.

The effect of parameter choice on posterior probabilities was investigated using simulated data.

For each data set and choice of parameters, we computed Psum = the sum of the posterior prob-
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Figure 6.4: Noise-free indentation responses and realizations of noisy indentation responses with
noise amplitudes ηh = 0.01, ηs = 0.01, ηh = 0.10 and ηs = 0.10 for Se. (a) Normalized indenta-
tion depth h/hela versus normalized time t/tref . (b) Normalized residual surface profiles near the
indenter. Similar to Figs.10(a) and (b) in [4].

abilities corresponding to the three smallest Di values. Fig. 6.5 shows, for various choices of

M/ξ2
0 and α, averages of Psum over 100 replications. The number of data points on the signals are

Kd = 56 and 64 for S type and HT type signals, respectively. The results in Fig. 6.5 are consistent

with the conclusions of the theoretical analysis in Section 26.2.4.

The Psum values at α near 0 are different for HT and S signal types since their corresponding

calculatedD values are different. The values of Psum are 0.43 and 0.89 whenM/ξ2
0 = 1 and α = 0

for low noisy HT signals in Fig. 6.5(a) and low noisy S signals in Fig. 6.5(b), respectively. When

noise amplitude increases from η = 0.01 to η = 0.10, the Psum values at α near 0 drop by two

orders of magnitude. Specifically, Psum = 0.77×10−2 and 0.87×10−2 whenM/ξ2
0 = 1 and α = 0

for high noisy HT signals in Fig. 6.5(c) and high noisy S signals in Fig. 6.5(d), respectively.

Table 6.1 lists the standard deviations of Psum for various M/ξ2
0 and α values using S type

signals and noise amplitude ηs = 0.01. Each standard deviation is calculated from 100 replications.

The standard deviations become one order of magnitude smaller when α is larger and M/ξ2
0 = 16.

The standard deviations are at similar values when α is close to 0.
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Figure 6.5: Averages of Psum, the sum of posterior probabilities corresponding to the three smallest
Di values, for various parameter values M/ξ2

0 and α. The four plots correspond to (a) noisy HT
signals with ηh = 0.01, (b) noisy S signals with ηs = 0.01, (c) noisy HT signals with ηh = 0.10
and (d) noisy S signals with ηs = 0.10. In all four plots, the curves from top to bottom correspond
to M/ξ2

0 = 1/16, M/ξ2
0 = 1/4, M/ξ2

0 = 1, M/ξ2
0 = 4 and M/ξ2

0 = 16, respectively.

Fig. 6.6 shows averages of the largest posterior probability p1 over 100 realizations using both

the S type and HT type of signals with multiplicative approach Eq. (A-27) or additive approach

(A-29) with equal weightsWq = 0.5. The impacts ofM/ξ2
0 and α on p1 are similar to those on P0.1

and Psum. For signals with the same noise amplitude η, the p1 values from the additive approach at
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Table 6.1: Standard deviations of Psum for various M/ξ2
0 and α values using noisy S signals with

ηs = 0.01, corresponds to Fig. 6.5(b).

α 0 0.5 5 10 30 50 100
M/ξ2

0 = 1/16 0.16 0.16 0.23 0.23 0.20 0.21 0.11
M/ξ2

0 = 1/4 0.16 0.15 0.18 0.18 0.22 0.17 0.19
M/ξ2

0 = 1 0.16 0.22 0.17 0.20 0.20 0.22 0.17
M/ξ2

0 = 4 0.19 0.16 0.17 0.14 0.15 0.16 0.13
M/ξ2

0 = 16 0.17 0.14 0.10 0.11 0.04 0.04 0.03

α near 0 (Fig. 6.5(b) and (d)) are smaller than the corresponding p1 values from the multiplicative

approach (Fig. 6.5 (a) and (c)). Similar to Psum calculated from each individual type of signal in

Fig. 6.5, p1 values at α = 0 using signals with high noise level ηs = ηh = 0.10 are more than one

order of magnitude smaller than those using signals with low noise level ηs = ηh = 0.01.

6.4 Conclusions

The posterior probability distribution (A-12) based on an inverse gamma prior and a normal

likelihood has been derived for data from a single signal type. The posterior probability can be

written as a function of four dimensionless quantities. Asymptotic study shows that the largest

posterior probability value tends to 1 when the number of data points tends to∞. A critical ratio

is the mode of the inverse gamma prior to the true variance of the normally distributed noise.

This ratio determines how the posterior probability varies with the shape parameter of the inverse

gamma prior. Numerical results based on the analytic expression (A-23) are consistent with the

conclusions of our theoretical analysis: sums of a few of the largest posterior probabilities are very

similar to each other when the shape parameter is close to 0, regardless of the chosen prior mode.

To apply the Bayesian formulation, Eq. (A-12), we consider an identification of creep parame-

ters from indentation. This problem was studied by Zhang and Needleman [4] using a Bayesian-

type approach that turns out to be a special case of the methodology in the current paper. Sim-

ulations were conducted in which noisy data were generated for two types of indentation signals

using pre-calculated solutions in a database. Analyses of 100 different realizations are performed

for each combination of noise level and data type. The results of the simulation are consistent with
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Figure 6.6: Variation of p1, averages of largest posterior probability over 100 replications, with
various parameter values M/ξ2

0 and α. The four plots correspond to (a) Multiplicative approach
Eq. (A-27) with ηs = ηh = 0.01. (b) Additive approach Eq. (A-29) with ηs = ηh = 0.01. (c)
Multiplicative approach Eq. (A-27) with ηs = ηh = 0.10. (d) Additive approach Eq. (A-29) with
ηs = ηh = 0.10. In all four plots, the curves from top to bottom correspond to M/ξ2

0 = 1/16,
M/ξ2

0 = 1/4, M/ξ2
0 = 1, M/ξ2

0 = 4 and M/ξ2
0 = 16, respectively.

the conclusions from both the analytical analysis in Section 26.2.3 and the numerical calculations

from the analytical expression, Eq. (A-23). A comparison between the classical Bayesian approach

and an additive approach is provided.
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Importantly, our analysis confirms that the noninformative prior corresponding to α = β = 0

is a good default choice for the prior of ξ2.
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7. CONCLUSIONS AND FUTURE WORK

“I may not have gone where I intended to go, but I

think I have ended up where I needed to be.”

– Douglas Adams

A Bayesian-type statistical approach was developed that incorporates heuristic aspects in order

to limit the amount of computation needed for plastic material property identification. The pro-

posed approach was used to identify plastic material properties for three types of elastic-plastic

constitutive descriptions: rate-independent isotropically hardening plastic materials, plastically

compressible materials and power-law creep materials. Synthetic “experimental” indentation re-

sponses were used for the parameter identification for both noise-free and noise-contaminated data.

We started by considering conical indentation for three sets of plastic material properties that

give rise to essentially identical curves of indentation force versus indentation depth. We built the

database for the Bayesian-type analysis using finite element calculations for a relatively coarse

set of parameter values and use interpolation to refine the database. We showed that by taking

account of residual surface profiles in addition to indentation force versus indentation depth data,

the plastic properties could be identified using the proposed Bayesian-type statistical approach.

The effect of fluctuations (“noise”) superposed on the “experimental” data was also considered

and a good estimate of the uniaxial stress-strain response was obtained for each material both in

the absence of fluctuations and in the presence of sufficiently small fluctuations. The sensitivity

of the representation of the predicted uniaxial stress-strain response to fluctuations increases with

increasing strain hardening. Refining the interpolated database grids gives improved predictions

up to a point. Without noise, an over refined database grid can lead to a somewhat less accurate

prediction due to numerical errors associated with interpolation. With noise and with increasing

database grid refinement, there is a rather wide range of predicted values of the plastic properties

with similar values of the posterior probability. Over refinement can lead to an increasing range of
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predicted responses due to the refinement fitting the noise and not only the underlying data.

We then considered four characterizations of plastic uniaxial stress-strain response in a rate-

independent plastic framework and used the databases constructed with these four strain hardening

relations to infer the uniaxial plastic stress-strain response of three weakly rate-dependent materi-

als. We used the Bayesian-type statistical approach and showed that the identification of the hard-

ening relation parameters and the associated uniaxial stress-strain response is not very sensitive to

the form of the power-law strain hardening relation chosen even with data that has significant noise.

We also found that the specific form of strain hardening relation does not affect the sensitivity of

the predicted stress-strain response to the noise amplitude of the data.

Next we identified the plastic property values and the corresponding uniaxial stress-strain re-

sponses of two sets of plastically compressible properties represented for two real materials. The

materials are characterized by a Deshpande-Fleck constitutive relation with three plastic properties.

Both noise-free and noise-contaminated responses from spherical indentation were considered in

the Bayesian-type statistical approach. The initial coarse database with only 140 full field finite

element solutions was constructed for each material. Linear interpolation between the finite ele-

ment solution data was used to create the finer databases with 10416 solutions used for property

identification. We found that the identified uniaxial stress-strain responses are good approxima-

tions of those of the “experimental” input materials, particularly if surface profile data is used.

The quality of the approximation decreases with increasing noise amplitude, but can still provide

at least a good qualitative representation for a moderate value of noise amplitude. A good fit to

indentation data does not guarantee a good fit to the uniaxial stress-strain response of a plastically

compressible material. Plastic compressibility was found to have a relatively small effect on the

correction factor in the Oliver-Pharr relation [81] between the unloading slope and the effective (or

reduced) elastic modulus. The indentation response of the plastically compressible materials can

be well-represented by a nearly incompressible plastic constitutive relation but the inferred uniaxial

stress-strain response is a poor representation of the “experimental” material uniaxial stress-strain

response. The predicted residual surface profile is less dependent on the assumed elastic constant
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values than is the indentation force versus indentation depth response. The indentation force versus

indentation depth responses in spherical indentation for three materials with very different uniaxial

stress-strain curves were found to be indistinguishable if the indentation depth is sufficiently small

but are distinguishable if the indentation depth is sufficiently large.

We also characterized power-law creep parameters as well as the corresponding uniaxial creep

response and uniaxial stress relaxation response for materials representative of three real materials.

The creep response is apparently characterized by two parameters, a creep exponent and a pre-

exponential factor. However, the dimensions of the pre-exponential factor depend on the value

of the creep exponent and comparing responses of different power-law creep materials requires

consideration of three parameters, the creep exponent, a representative stress and a representative

strain rate. We simulated the constant load and hold indentation creep tests, considered the residual

surface profile and the indentation depth versus time response. We found that the Bayesian-type

statistical approach provides the values of power-law creep parameters that provide a good fit to

the indentation responses of all the materials considered when based on noise-free data and for

sufficiently small noise amplitudes. The uniaxial creep and uniaxial stress relaxation responses

using the identified creep parameters were found to provide a very good approximation to the

“experimental” responses for a sufficiently small values of creep exponent (Se with n = 1.15) but

a less good agreement for the largest value of creep exponent (Sn with n = 6.60) considered. A

good agreement with the indentation response does not guarantee good agreement with the uniaxial

responses. In the circumstances analyzed, different values of the power-law creep parameters did

give reasonably good fits to the “experimental” indentation data, particularly for noisy data, but

no cases were found where very different values of both power-law creep parameters gave nearly

the same indentation response. The uniaxial creep response is found to be more sensitive to the

accuracy of the predictions, and therefore to noise, than the uniaxial stress relaxation response.

As for time independent materials, the sensitivity to noise also increases with increasing stress

exponent. We found that if the noise level is sufficiently small, for Se (n = 1.15), the predictions

of both the analytical models of Bower et al. [69] and of Ginder et al. [151] are in very good

163



agreement with those of the “experimental” material, while the model of Bower et al. [69] provides

a good fit for all three values of creep stress exponent and the corresponding pre-exponential factor.

We further derived a rigorous Bayesian formulation for material properties identification con-

sidering single signal type as well as various signal types. Both analyses and numerical simulations

were used to show that the Bayesian-type statistical approach used in the studies of this thesis is

a limiting form of the more rigorous formulation with recommended prior parameter values. A

method using a weighted average of posterior distributions from different signal types was pro-

posed for circumstances where multiple signal types are analyzed simultaneously. This method

was compared with a classical Bayesian approach that uses a joint likelihood.

All cases of material property identification in this dissertation have been based on numerically

generated “experimental” responses thus the application of the approach to real experimental mea-

surements would be an important further step. Also, the constitutive relations considered have been

rather simple. Extension to more complex constitutive relations accounting for plastic anisotropy

as for single crystals and textured polycrystals is possible in principle and would be worthwhile.

As is well-known, at the scale of microns and below, there is a significant indentation size effect. A

wide variety of size dependent constitutive relations have been proposed with parameters that are

difficult to identify. Using the Bayesian-type formulation developed to identify such parameters

would be useful.

The extent to which the more rigorous formulation can improve the prediction of material

properties from indentation measurements, particularly, for more complex constitutive descrip-

tions, merits exploration. Finally, as noted with regard to size dependent plasticity, but true more

generally, the appropriate constitutive description to characterize the mechanical response of a ma-

terial in some circumstances of interest is not known. Extending the framework here to assess the

appropriateness of competing constitutive relations would be an important development.
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APPENDIX A

BRIEF SUMMARY OF PLASTICITY THEORY

The classical plasticity theory for metal is briefly summarized. For a more detailed description

of plasticity theory history, continuum mechanics and further discussions on special topics, see for

example [169, 170, 171, 172, 173, 174, 175, 66, 176, 177, 178].

A.1 Rate-independent plasticity

Rate independent plasticity can be summarized in 4 components:

(1) Decomposition of strain increment or rate of deformation

dεij = dεeij + dεpij (A-1)

We simply consider infinitesimal strain here, for finite strain the decomposition of rate of defor-

mation can be used

dij = deij + dpij (A-2)

(2) Yield criterion

For example, the commonly used von Mises yield criterion can be expressed as

f(σij, ε̄
p) = σe − σy (A-3)

with von Mises effective stress σe defined by

σe =

√
3

2
σ′ijσ

′
ij σ′ij = σij −

1

3
σkkδij (A-4)

where σ is Cauchy stress, ε̄p is effective plastic strain, and σy is flow stress.

(3) Flow rule
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Normality hypothesis requires the plastic strain increment perpendicular to the yield surface.

(plastic strain rate tensor is perpendicular to a yield surface in the corresponding stress space.) It

is one of the consequence of Drucker’s postulate, it is about the stability of material during load-

ing and unloading. We assume the relation between plastic strain increment and loading history

(accumulated plastic strain and stress states) can be written as

dεpij = dε̄p
∂Ψ

∂σij
(A-5)

If the plastic potential Ψ is taken to be yield function f(σij, ε̄
p), it is called an associated flow

rule since the flow rule is associated with a specific yield criterion. Otherwise, it is called a non-

associated flow rule.

(4) Evolution equations

The evolution of variables with deformation needs to be described. For a simple case, only

the evolution of flow stress with deformation is considered here by a strain hardening rule. For

example, the flow stress is isotropically hardened by accumulated plastic strain magnitude εp in a

power law form

F0 :
σe

Y
=

(
1 +

εp
ε0

)N
, σe ≥ Y (A-6)

where Y is the initial yield stress, accumulated plastic strain magnitude is the integration of effec-

tive plastic strain increment along deformation history εp =
∫
dε̄p, N is strain hardening exponent

and reference strain ε0 = Y/E. In rate-independent plasticity, consistency condition requires stress

state cannot exceed yield surface, thus σe = σy holds at plastic loading condition.

(5) Elastic unloading

The elastic unloading condition for an isotropically strain hardened material is

σ′ijdσij < 0 (A-7)

It requires the angle between stress increment tensor and the current deviatoric stress tensor to be
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larger than 90◦, which brings the stress state back to the inner of yield surface in principle stress

space.

Consider an example, an associated plastic flow rule is used for plastic strain increment dεp

dεpij = dε̄p
∂f

∂σij
(A-8)

where the yield potential/yield surface is given by

f(σij, ε̄
p) = σe − σy (A-9)

with von Mises yield criterion

σe =

√
3

2
σ′ijσ

′
ij σ′ij = σij −

1

3
σkkδij (A-10)

where σe is von Mises effective stress and σy is flow stress. With these equations, the plastic flow

rule can be simplified to

dεpij =
3

2

σ′ij
σy
dε̄p (A-11)

Square both sides of σe =
√

3
2
σ′ijσ

′
ij to get σ2

e = 3
2
σ′ijσ

′
ij , and do time derivative of the equation to

have

σ̇e =
3

2

σ′ij
σe
σ̇′ij (A-12)

Because σ̇ij = σ̇′ij , so that

σ̇e =
3

2

σ′ij
σe
σ̇ij (A-13)

Multiply both sides by ˙̄εp (or dε̄p) and move σ̇e to the right side of equation to get

˙̄εp =
˙̄εp

σ̇e

3

2

σ′ij
σe
σ̇ij (A-14)

From the requirement of consistency condition ḟ = 0, the effective plastic strain increment dε̄p
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can be expressed as

dε̄p =
1

Ep

3

2

σ′ij
σy
dσij (A-15)

where Ep is the slope of flow stress to effective plastic strain

Ep =
dσy
dε̄p

Given for a uniaxial stress-strain response σ = Eεe = Epε
p = Etε, with Eq.(A-1) we get

1

Ep
=

1

Et
− 1

E
(A-16)

So that the plastic strain increment can be written as

dεpij =
3

2

σ′ij
σy

(
1

Et
− 1

E
)
3

2

σ′kl
σy
dσkl =

9

4
(

1

Et
− 1

E
)
σ′ijσ

′
kl

σ2
y

dσkl (A-17)

A.2 Rate-dependent plasticity

One way to treat rate-dependent plasticity is simply by using an explicit strain rate hardening

relation for the effective plastic strain rate. For example, the effective plastic strain rate ˙̄εp is

directly given by an empirical hardening power rule

˙̄εp = ˙̄ε0

(
σe

g

)1/m

(A-18)

where, ε̇0 is a reference effective plastic strain rate, m is the rate sensitivity exponent, σe is the von

Mises effective stress.

The hardening strength g(εp) in Eq. (A-18) can be given by a power law relation, for example

g (εp) = Y

[
1 +

ε̄p
ε0

]N
(A-19)

where Y is a reference flow strength, ε̄p is effective plastic strain and ε0 = Y/E is the initial yield
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strain.

Note that in both rate-independent and rate-dependent plasticity, we calculate plastic increment.

However the concept of “time” in plasticity is a monotonically increasing parameter, which is used

to measure the loading and deformation history. Time here is not the physical time in our daily

life.
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APPENDIX B

FORMULATION IN CONVECTED COORDINATES

For the completeness in aspect of displacement finite element analysis, the finite strain plastic-

ity formulations based on convected coordinate are briefly summarized. Many equivalent formu-

lations can be derived for the finite element analyses, only the formulations based on convected

coordinates are adopted here. Works on convected coordinate formulations are given by Green and

Zerna [179] and Budiansky [180]. The formulations here are summarized from Needleman [181]

and Peirce et al. [182].

The convected coordinate net is introduced in the reference configuration, and changes as the

body deforms. The convected coordinates for each material point is denoted by yi (i = 1, 2, 3),

which can be regarded as the labels of material points. Thus all field variables can be expressed as

functions of convected coordinates and time.

In general tensor analysis, subscripts represent covariant components, superscripts represent

contravariant components. The conventional summation notation for dummy indices is adopted.

The covariant base vectors in reference and current configurations are defined respectively as

gi =
∂X

∂yi
ḡi =

∂x

∂yi
(A-1)

The corresponding covariant metric tensors in reference and current configurations are

gij = gi · gj ḡij = ḡi · ḡj (A-2)

The contravariant base vectors in reference and current configurations can be obtained by

gi = gijgj ḡi = ḡijḡj (A-3)
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Where the contravariant metric tensors gij, ḡij are the inverse of their corresponding convariant

metric tensors. The Lagrangian strain tensor is defined as

η =
1

2
(F ᵀF − I) (A-4)

Given the transformation between base vectors ḡi = F · gi, a relation between covariant

components of d in current configuration and η̇ in reference configuration can be obtained

ḡi · d · ḡj = gi · η̇ · gj (A-5)

For elastic-viscoplastic solids, by adopting tangent modulus approach [182], the rate form of

constitutive relation can be expressed as

τ̂ = C : d−R (A-6)

Where C is the tensor of incremental moduli for Jaumann stress rate. Small elastic strains are

presumed, i.e. τ̂ ij = Cijkldkl and C is a constant. For the problem discussed here, the following

specific expressions are derived [182]

C = Le − (
ξ

1 + ξ
)

1

ω
PP , R =

ε̇pt
1 + ξ

P (A-7)

ω = p : L : p+
( ε̇pt
ε̇0

)m dg
dεp

, ξ =
κ∆tωε̇pt
mσe

, P = Le : p (A-8)

Where ε̇pt is ε̇p at time step t, ∆t is time interval for integration. The weight parameter κ ∈ [0, 1]

with κ = 0 corresponds to the explicit Euler method. p is given by J2 flow theory

p =
3

2

σ′

σe
(A-9)
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The relation between convected derivative and Jaumann rate of Kirchhoff stress is

τ̂ = τ̇ c + d · τ + τ · d (A-10)

Where the convected derivative of Kirchhoff stress is defined as

τ̇ c = τ̇ ijḡi ⊗ ḡj (A-11)

From Eqs. (A-6), (A-10) and (A-5), based on the current base vectors, the component form relation

can be obtained as

τ̇ ij = Lijklη̇kl −Rij (A-12)

Where the tangent modulus for convected stress rate is written as

Lijkl = Cijkl − 1

2

(
ḡikτ jl + ḡjkτ il + ḡilτ jk + ḡjlτ ik

)
(A-13)

The rate of nominal stress can be expressed in terms of Kirchhoff stress as

ṡij = τ̇ ikF j
·k + τ iku̇j,k (A-14)

After using Eqs. (A-12), (A-14) and the minor symmetry of elastic modulus tensor, Eq. (4.1)

yields the finite element model given by

∆t

∫
V

(
Kijklu̇l,k −RikF j

·k
)
δuj,i dV = ∆t

∫
S

Ṫ jδuj dS −

(∫
V

sijδuj,i dV −
∫
S

T jδuj dS

)
(A-15)

With

Kijkl = LpiqkF l
·qF

j
·p + τ ikgjl (A-16)
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APPENDIX C

VALUES OF ζ FOR CONSTANT LOAD AND HOLD INDENTATION CREEP

The tabulated values of ζ(n, ε̇0t2) are given in Eqs. (A-1) to (A-3). For the values of n and ε̇0t2

that are not tabulated, the value of ζ(n, ε̇0t2) used in Eq. (5.13) is obtained by linear interpolation

between tabulated values.

ζ(1, ε̇0t2) =



4.7× 104, ε̇0t2 = 0.1

4.7× 103, ε̇0t2 = 1.0

4.7× 102, ε̇0t2 = 10.0

4.7× 101, ε̇0t2 = 100.0

ζ(2, ε̇0t2) =



2.4× 105, ε̇0t2 = 0.1

4.7× 104, ε̇0t2 = 1.0

1.4× 104, ε̇0t2 = 10.0

4.7× 103, ε̇0t2 = 100.0

(A-1)

ζ(3, ε̇0t2) =



9.4× 104, ε̇0t2 = 0.1

4.7× 104, ε̇0t2 = 1.0

1.9× 104, ε̇0t2 = 10.0

9.4× 103, ε̇0t2 = 100.0

ζ(4, ε̇0t2) =



1.4× 105, ε̇0t2 = 0.1

1.1× 105, ε̇0t2 = 1.0

9.4× 104, ε̇0t2 = 10.0

3.8× 104, ε̇0t2 = 100.0

(A-2)

ζ(5, ε̇0t2) =



1.4× 105, ε̇0t2 = 0.1

1.1× 105, ε̇0t2 = 1.0

9.4× 104, ε̇0t2 = 10.0

7.5× 104, ε̇0t2 = 100.0

ζ(n > 5, ε̇0t2) =



1.4× 105, ε̇0t2 = 0.1

1.1× 105, ε̇0t2 = 1.0

9.4× 104, ε̇0t2 = 10.0

9.4× 104, ε̇0t2 = 100.0

(A-3)
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APPENDIX D

LIKELIHOOD ANALYSIS

One way to consider responses from multiple signal types is simply to organize responses from

various test types into one matrix (Y 1; ...;Y Ky), which is (
∑Ky

q=1Kdq) × 2, Kdq is the number

of data points in the response matrix Y q, q = 1, ..., Ky. Then we can treat the responses from

multiple test types as a single signal type, Eq. (A-12).

Consider a simple case in which we have two signal types, i.e., Ky = 2, and suppose we have

data vectors X and Y that are independent given θ (Here we consider the special case where θ is

a scalar, but the results generalize to the case of multiple parameters). The data X and Y have

log-likelihoods `1(θ) and `2(θ), respectively. This entails that the log-likelihood for the combined

data (X, Y ) is

`(θ) = `1(θ) + `2(θ). (A-1)

For the moment, think of ` as a general likelihood. Defining θ̂ to be the MLE, classical likelihood

theory tells us (assuming standard regularity conditions) that

Var(θ̂) ∼ −1

E[`′′(θ0)]
,

where θ0 is the true parameter value and

`′′(θ) =
∂2

∂θ2
`(θ).

This result will be applied to the case where ` has the form (A-1) and to the individual likelihoods

`1 and `2.

When (A-1) is the likelihood, we have

`′(θ) = `′1(θ) + `′2(θ) and `′′(θ) = `′′1(θ) + `′′2(θ).
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At this point we will assume that

`1(θ) =
m∑
i=1

`1i(θ) and `2(θ) =
n∑
j=1

`2j(θ),

where `1i(θ) = log f1(Xi|θ) and `2j(θ) = log f2(Yj|θ). In other words, X and Y are i.i.d. samples.

We will also assume that m/(m+ n)→ ρ (0 < ρ < 1) as m,n tend to∞. Now let `′′k1 denote the

second partial derivative of `k1 with respect to θ, k = 1, 2. Then

Var(θ̂) ∼ −1

(mE1 + nE2)

∼ 1

(m+ n)
· −1

[ρE1 + (1− ρ)E2]
, (A-2)

where

E1 = E(`′′11(θ0)) and E2 = E(`′′21(θ0)).

Another approach to estimating θ0 would be to compute MLEs (separately) from the two sam-

ples and then use a convex combination of the two MLEs. Let θ̂1 and θ̂2 be the MLEs from the X

and Y samples, respectively. Then we may use the estimator

θ̂w = wθ̂1 + (1− w)θ̂2,

where w is fixed a priori. The variance of θ̂w is w2Var(θ̂1)+(1−w)2Var(θ̂2). Using the likelihood

theory above, we have

Var(θ̂1) ∼ −1

mE1

and Var(θ̂2) ∼ −1

nE2

,

and so

Var(θ̂w) ∼ −1

m+ n
·
[
w2

ρE1

+
(1− w)2

(1− ρ)E2

]
. (A-3)
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Of interest is comparing the variances (A-2) and (A-3). It is easily checked that the smallest right

hand side of (A-3) is when w = V2/(V1 + V2), where

V1 =
−1

ρE1

and V2 =
−1

(1− ρ)E2

.

With this choice of w,

Var(θ̂w) ∼ 1

m+ n

V1V2

(V1 + V2)
=

1

(m+ n)
· −1

[ρE1 + (1− ρ)E2]
.

Remarks

• Suppose that E1 = E2, as would happen in the case where one divided an i.i.d. data set

into two parts. Then the best choice for w is ρ, i.e., the best weights are proportional to the

sample sizes.

• When the likelihoods are fundamentally different (i.e., E1 6= E2), then Var(θ̂w) > Var(θ̂)

when w is not the optimal weight. Since the optimal weight depends on an unknown pa-

rameter, this is an important consideration. The weight could be estimated, but the error in

estimation will undoubtedly make the finite sample variance of θ̂ŵ larger than that of θ̂.

• All things considered, it seems better to use the estimator based on the complete likelihood

since it gives an estimator with variance no larger than the one from a convex combination.

This dissertation was typeset with LATEX∗ by the author.

∗LATEXis a document preparation system developed by Leslie Lamport as a special version of Donald Knuth’s TEX
Program.
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