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ABSTRACT

Cancer is one of the leading causes of death across the world and accounted for almost 10

million deaths in the year 2020 alone. Anti-cancer drug discovery & response prediction is an

arduous and time-consuming process. This work investigates the use of generative models to

predict anti-cancer drug response and facilitate the discovery of new drugs, utilizing chemical

structure of drugs, gene expression data and response data of anti-cancer drugs.

Autoencoders are a type of neural network that are trained to learn a lower dimensional repre-

sentation of a high dimensional data, while a Variational Autoencoder (VAE) is trained to model

the data as a distribution over the latent space. The proposed approach models the anti-cancer drug

molecular data using a rectified junction tree VAE (JTVAE) model while the cancer cell lines’

gene expression data is encoded using a VAE. A feed-forward artificial neural network takes in

the concatenated encoded latent vectors of gene expression profile for a cancer cell line and latent

vectors of drugs to generate a final prediction, represented by the ln(IC50) score. The model was

trained on three different datasets, with one set consisting of breast cancer cell lines, another of

central nervous system cell lines and one consisting of pan-cancer cell lines. Testing on pan-cancer

cell lines produced a high average coefficient of determination (R2 = 0.875), and it was the best

performing model.

Additionally, this work has investigated the optimizing the latent space using weighted retrain-

ing. This was done to improve the sample efficiency. The technique adopted was sample efficient

and weighted data points based on the blood brain barrier permeability. A Message Passing Neural

Network (MPNN) based predictor was trained to predict blood brain barrier permeability score in

the input data. After training the generative model (JTVAE), the objective function was optimized

over the learned latent space using a surrogate model. This decoupled the tasks of training the

generative model, and optimizing it. Weighting the data distribution, and periodic retraining of the

generative model improved the prediction score of Blood Brain Barrier permeability, which is an

important factor for drugs that are targeted at Central Nervous Systems tumours.
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1. INTRODUCTION

Cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths world-

wide in the year 2020 [9]. Out of these, approximately 70% occur in low- and middle-income

countries, where the lack of access to diagnosis is common [10]. The lack of comprehensive treat-

ment is also disproportionate, with availability in more than 90% of high-income countries, but in

less than 15% of low-income countries. This has a consequential economic impact, with estimates

of annual economic cost due to cancer in 2010 alone being at US $1.6 trillion [11].

There are multiple treatment options for cancer, depending on the type of cancer and the pro-

gression stage. The figure 1.1 below shows the different treatment options available for cancer pa-

tients. Though multiple treatment options are available, and cancer drugs are widely used as a pri-

mary treatment option, precision medicine are increasingly being used to personalize the treatment

of cancer. Unlike chemotherapy, understanding of the genetics is used to develop these precision

medicines such that cancer cells are targeted selectively, and sparing healthy cells, ideally. This

can lead to more effective and less toxic treatment option. Therefore, predicting anti-cancer drug

response for precision medicine is becoming increasingly important, however, discovery of anti-

cancer drugs is both time and cost-intensive, and tailoring cancer therapies for individual patients

is an arduous task. This work proposes a generative model to predict anti-cancer drug response,

and propose new drugs that are potentially effective against a particular cell line to speed up drug

development.
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Figure 1.1: Cancer Treatment Options. Reprinted from [1]

Cancer is caused by genetic changes in the DNA of a cell that causes them to divide and grow

excessively. These genetic changes vary quite a lot by cancer types and even within a single type of

cancer. For example, all the patients with breast cancer cannot be treated with the same medicine.

The patients can be divided into subgroups, and based on the genomic profile of the tumor, the

treatment can be tailored that is the most effective. Despite having great clinical success using this

type of precision medicine approach, most patients today, do not receive this due to logistical and

financial constraints.

The target of this work is the problem known as Cancer Drug Response (CDR) prediction.

CDR describes how a cancer patient responds to a specific drug and it measured by different

metrics, such as ln(IC50), the half-maximal inhibitory concentration, and Blood Brain Barrier

permeability (BBB). Identification of CDR is therefore crucial for personalized cancer therapy as

CDR may vary in cancer patients due to heterogeneity. In addition to this, we still lack effective

drugs against some types of cancers. In addition to this, millions of compounds are there, out of

which only a minority can be considered as drugs. This makes finding effective drugs challenging.

It has been shown that for CDR, the compound structure is an important determining factor, and as

discussed in the later sections, the prediction models are designed to use the molecular structure.

2



In the past, the work done in predicting CDR can be divided into broad categories. One was

focused using network-driven models, such as [12]. These methods constructed a similarity-based

model & assigned sensitivity of a known drug to new drug in case of structural similarities. The

limitations of such an approach being low scalability & efficiency. The other broad category con-

sisted of predicting CDR using machine learning methods. Such methods used large-scale profiles

of either drug or cancer cell lines to predict drug response. [13] used gene expression data to

predict drug response, while others predicted drug efficacy by combining cancer genomic data and

drug molecular embeddings in Deep Neural Networks (DNNs) [14, 15, 16, 17, 18]. Chiu et al. [18]

proposed using the mutation and expression profiles of a cancer cell or a tumor for predicting drug

response, with the deep learning model consisting of three DNNs, including a mutation encoder,

pre-trained on a large pan-cancer dataset (TCGA), a pre-trained expression encoder and a drug

response predictor network that integrated the first two sub-networks. Most of the work referred

above focused on analysing the original data, which could inherently influence the prediction per-

formance, due to the presence of a large amount of redundant information.

A large number of ways exist to perform feature extraction on drug molecular data and cancer

genomic data, including supervised and supervised learning methods. Supervised learning algo-

rithms, such as Random Forest, can be used to find feature importance in the gene expression data,

and aid in filtering out the most important genes. However, such supervised learning methods can’t

be used for unlabeled data, such as the Cancer Cell Line Encyclopedia (CCLE) datasets that are

being used for this work. Manifold learning based t-distributed stochastic neighbor embedding (t-

SNE), Principal Component Analysis (PCA), Independent Component Analysis (ICA), and some

other unsupervised learning algorithms are used commonly for analysis of high-dimensional un-

labeled medical data, but the prime purpose is for 2D visualization for majority of the cases. In

addition to this, there might be significant information loss when a lower-dimensional representa-

tion is achieved. Also, for higher dimensions, these methods do not perform well, and visualizing

to intuitively analyze performance is also not possible [19].
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1.1 Our Approach

This work is focused on using the anti-cancer drug molecular data as well as gene expression

data to, predict drug response on cancer cell lines using Generative Models, or Variational autoen-

coders (VAE) [20]. Using VAE’s enables us to extract features from a large amount of unlabelled

genomic and molecular data. VAE’s have been successfully used for unsupervised learning tasks

involving complex probability distributions. They differ from autoencoders, as discussed below,

but for the purpose of this work, VAEs have the ability to capture probabilistic distribution of latent

features, providing with a more comprehensive analysis of genomic data. That makes predicting

anti-cancer drug response for specific cancer cell lines easier. Junction Tree VAE (JTVAE) model

[3] is used to extract the low dimensional features of the anti-cancer drugs. The JTVAE transforms

a drug’s molecular graph into junction trees, exploiting valid subgraphs as components. This en-

sures chemically valid molecules are generated, a problem encountered if a traditional VAE model

is used. Once the two VAE’s are trained, multi-layer perceptron is used to extract features in order

to product the final drug response, represented by ln(IC50) value, indicating the efficacy of the

drug against the cancer cell line under consideration. Using a generative model has the added ben-

efit that unlike past studies [21, 22, 23], the model isn’t confined to specific drugs, and can taken

any organic compound as input to predict it’s efficacy.

Other researchers have worked on generative models for molecules [5, 6, 24], or [25] focused

on generating effective drugs with Generative Adversarial Networks (GANs) and VAE, however,

JTVAE outperforms these in reconstructing valid molecules, and in the case of [25], can also

predict the drug response on different cancer cell lines. In fact, JTVAE generated drug compounds

are always valid, proving it to be quite powerful. Random sampling of encoded features of drugs

can be performed along with the well-performing features decoded by JTVAE, generating a large

number of valid drug compounds, that are also effective for cancer therapy.
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Figure 1.2: Overview of the proposed methodology
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The figure 1.2 shows an overview of the proposed methodology discussed above. Gene ex-

pression data of 1019 cancer cell lines, and molecular data of organic compounds is used to train

generative models to get lower dimensional representations. Once trained, the gene expression

data, and drug response data against those cell lines is used to train the property predictor. After

the model is trained, a patient’s genomic data and an approved drug can be used to predict it’s

response for a specific cell line in the patient. It can also be used to predict potential new drugs

that are successful against a specific cell line, based on the property of interest (ln(IC50)).

Over the last few years, machine learning has shown promising results for problems that could

be framed as optimization, such as text generation [26] and molecular & material design [27].

However, the use of machine learning on problems with limited data and structured input spaces is

still not feasible. This challenge has been tackled by [28] in a recent paper, in an approach referred

to as latent space optimization (LSO), in which, first a generative model is trained to generate

lower dimensional and continuous representation of the input data, and then the objective function

is optimized over the learned latent space using a surrogate model, thereby effectively decoupling

the tasks of training the generative model and the optimization problem. In the paper, [28] Tripp

et al. have proposed weighting the data distribution using a property of interest, and periodic

retraining of the generative model to decouple the two tasks.
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2. MODEL ARCHITECTURE

2.1 Autoencoders

First introduced in 1986 by [29], Autoencoders are neural networks that are trained to recon-

struct their input, and in the process, learn a lower-dimensional representation of the data in an

unsupervised manner. Formally defined by [30], the problem in the Autoencoder is to learn the

functions A : Rn → Rp (encoder) and B : Rp → Rn (decoder) that satisfies:

argminA,BE[4(x, B ◦ A(x)] (2.1)

where E is the expectation over the distribution x, and 4 represents the reconstruction loss,

usually set to as the `2-norm. An illustration of the autoencoder model is provided in Figure 2.1,

using the Modified National Institute of Standards and Technology (MNIST) dataset [31] as an

example.

Figure 2.1: An example of an autoencoder, with MNIST data used as sample input
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Although not a requirement, but for most popular autoencoders, A and B are neural networks.

If A and B are linear operators, we get a linear autoencoder [32], and for linear autoencoder in

which we also drop the non-linear operators, we will get the same latent representation as for

PCA, and thus, the autoencoder is rather a generalization of PCA, learning a non-linear manifold

instead of finding a low-dimensional hyperplane along which the data lies. Autoencoders can either

be trained gradually layer by layer or end-to-end. In case of gradually training layer by layer, they

are stacked together to achieve a deeper encoder.

Even though auto-encoders have been used widely for unsupervised learning problems, and

extracting low dimensional features, however, there are a few downsides associated with them.

Autoencoders aren’t very robust, and a slight variance in the encoded vector might sometime lead

to a huge variability in the reconstructed data.

2.1.1 Variational Autoencoders

Figure 2.2: Overview of a Variational Autoencoder

Variational Autoencoders are considered to have a significant improvement over the represen-

tation capabilities of Autoencoders [20]. VAE is a generative model, following Variational Bayes
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(VB) inference [33], that attempt to learn the data generation through the underlying probabilistic

distribution with an inference network (encoder) and a generative network (decoder). An overview

of a VAE is depicted in the Figure 2.2. Given an observation of a dataset X = {xi}Ni=1 of V i.i.d

samples, assuming a generative model for each datum xi, that is conditioned on an unobserved

random latent variable zi. The parameters governing the generative distribution are represented

by θ. We can also think of this generative models as being equivalent to a probabilistic decoder.

Governed by the parameters φ, we assume an approximate posterior distribution over the latent

variable zi, given a datum xi, equivalent to a probabilistic encoder. We also assume a prior distri-

bution (a normal Gaussian distribution) of latent variables, denoted by p(z; θ), and the posterior is

also expected to follow a Gaussian distribution. The figure 2.3 below depicts this relationship.

Figure 2.3: A Graphical representation of a VAE. Reprinted from [2]

The marginal log-likelihood is expressed as a sum of over the individual data points:

log pθ(x1, x2, ...., xN) =
N∑
i=1

log pθ(xi) (2.2)
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And each data point can be written as a sum of two terms as:

log pθ(xi) = DKL(qφ(z|xi)||pθ(z|xi)) + L(θ, φ;xi) (2.3)

where DKL is the Kullback-Leibler divergence of the approximate recognition model from the

true posterior, and the rest of the expression represents the variational lower bound on the marginal

likelihood, and given the dataset X = {x}Ni=1 with N data points,the estimate for the marginal

likelihood lower-bound of the full dataset L(θ, φ;X) using a mini-batch XM = xi of size M is

given by:

L(θ, φ;X) ≈ L̃M(θ, φ;XM) =
N

M

M∑
i=1

L(θ, φ; xi) (2.4)

In VAE, the gradients of L̃M(θ, φ;XM) are approximated using stochastic gradient descent and

reparametrization trick. The reparametrization of variable z is done to enable back propagation,

where z ∼ N (µ, σ2).

2.1.2 Gene Expression VAE (geneVAE)

One of the two variational autoencoders used in this work is the gene expression variational

autoencoder. The figure 2.4 gives an overview of the architecture of geneVAE. The model requires

to extract latent vectors from the CCLE gene expression data, which is achieved by the geneVAE.

The extracted latent vectors for drug response prediction. The encoder architecture consists of a

single layer fully connected neural network. A batch-norm layer before activation helps to train it

efficiently. The output of the activated layer is given by the following relationship:

µg = f1(Batch-norm((W1h
T
1 + b1)) (2.5)

where f1 is the activation function,W1 and b1 are the weight matrix and bias vector respectively,

and µg is the mean of the latent space, while the standard deviation σg is computed by another

single-layer dense network with a similar architecture. The latent vector zg is randomly sampled

from N (µg, σg). The decoder for the geneVAE consists of single dense layers, with the output
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Figure 2.4: Model architecture of geneVAE
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dimensions being the same as the input data. the decoded gene expression, G′ is given be:

G
′
= f4(W

T
4 zg + b4)) (2.6)

The reconstruction lossL(G,G′
) and Kullback-Leibler (KL) divergence lossKL(q(z)||p(z|x))

[20] are to be computed, where p and q are the posterior distribution and distribution of z.q(z)

respectively. The total loss of the geneVAE can be written as:

L(p, q) = L(G,G′
) +KL(q(z)||p(z|x)) (2.7)

The aim being to reduce the total loss until it converges. Here, we take µg as encoded features

instead of sampling the vectors from a Gaussian distribution.

2.1.3 Representation Learning on Graphs for Drug molecular features

Use of generative machine learning models has been on the rise recently for varied applica-

tions, ranging from generating realistic musical improvisations [34], to creating realistic pieces

of artwork [35]. Over the past few years, interest has been gaining momentum towards training

generative models to construct more complex, discrete data types, such as arithmetic expressions

[36] and molecules [37]. Extensive work in deep learning has been done in exploring realm of

molecular graph encoding [38, 39], the comparatively harder task of molecular graph generation

from latent representation has not received the same level of attention.

In the area of drug design, past work includes treating the graph generation task as a string

generation task [37], which was done in order to circumvent the direct generation of graphs. These

kind of models used Simplified Molecular-input Line-entry System (SMILES) [40], a linear string

notation for representing molecular structures. Although SMILES strings can be translated into

graphs via deterministic mappings, such as using RD-Kit [41], an open-source cheminformatics

tool, the design had limitations, including the fact that molecular similarity is not captured in the

SMILES representation, and two molecules with similar chemical structures might have evidently

different SMILES strings, as visible in the figure 2.5 below. Due to this, generative models, such as
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a VAE cannot learn smooth molecular embeddings. In addition to this, chemical properties such as

molecular validity are easier to express on graphs as compared to linear SMILES representations.

In graph based VAE models, such as Junction Tree VAE (JTVAE) [3], it is evident that representing

molecules in graphs improves the generative modelling of valid chemical structures.

Figure 2.5: Two similar molecules with strikingly different SMILES representation (plotted in
matplotlib using RDKit). The edit distance between the two strings is 22

2.1.3.1 Junction Tree VAE

Other researchers have tried to represent the molecules in a more efficient way (e.g parse trees

in Grammar VAE) to address the caveats of SMILES representation, such as [5], however, that

still doesn’t solve the problem of generating chemically invalid intermediaries. The reason being

that generating molecular graph node by node [7] leads to generation of chemically invalid inter-

mediaries, as depicted in Figure 2.8, with validation done after generation of the complete graph.
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Method Reconstruction Validity
CVAE 44.6% 0.7%
GVAE 53.7% 7.2%
SD-VAE 76.2% 43.5%
GraphVAE - 13.5%
Atom-by-Atom LSTM - 89.2%
JT-VAE 76.7% 100.0%

Table 2.1: Reconstruction accuracy and prior validity results. Baseline results reprinted from
[5, 6, 3, 7, 8].

For this reason, in this work, the generative model being used is the JT-VAE, that decomposes

molecules into valid substructures, and generates compounds from a vocabulary of these compo-

nents. Due to this technique, it generates 100% valid molecular structures, as can be seen in the

table 2.1 above, comparing the results of various generative methods. A pre-trained JTVAE is

used to encode molecular drug data to generate drugs that are effective against the cancer cell lines

under consideration.

The authors proposed generating molecules in two steps. First, the molecular graph G is de-

composed into a tree-structured object, junction tree TG , which represents the structure of the sub-

graph components and their coarse relative arrangements. The authors proposed extracting these

valid substructures automatically using tree decomposition on the training data. The junction tree

and the molecular graph offer two complimentary representation of a molecule, due to which the

encoding is done in a two-part latent representation z = [zT , zG]. Both the tree and the graph are

then encoded into their latent embeddings ZT and ZG , ZT encodes the tree structure and the infor-

mation about clusters, but doesn’t encode any information about the location of the clusters, while

ZG captures the fine-grained connectivity by encoding the graph. To decode, first the junction tree

is reproduced using a tree decoder p(T |ZT ), based on the encoded information in ZT . Then, the

connectivity between clusters in the junction tree is predicted by a graph decoder p(G|ZG), that

enables to complete the decoding and realize the molecular graph. Using the junction tree enables

this model to maintain chemical feasibility during generation. The figure 2.6 below shows the
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overview of JTVAE.

Figure 2.6: Overview of the Junction Tree Variational Autoencoder. Reprinted from [3]

2.1.3.2 Junction Tree

As stated above, the tree decomposition maps a graph G into a junction tree, as it contracts

certain vertices into a single node, such that G becomes cycle-free. Formally, given a graph G,

a junction tree TG = (V , E ,X ) is a connected labeled tree, with edge set E and node set V =

C1, ...., Cn. Each node is an induced subgraph of G, and it satisfies the following constraints:
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• The union of all clusters equals G. That is,
⋃
i Vi = V and

⋃
iEi = E

• For all clusters Ci, Cj and Ck, Vi ∩ Vj ⊆ Vk if Ck is on the path from Ci to Cj

Viewing induced subgraphs as cluster labels, junction trees are labeled trees with label vocabu-

lary X . Due to the molecular tree decomposition, X only contains cycles (rings) and single edges.

The functional groups used in JTVAE can be seen in the figure 2.7 below.

Figure 2.7: Functional Groups used in the Junction Tree VAE. Reprinted from [3]

2.1.3.3 Graph Encoder

Molecular graphs can be generated node by node or structure by structure. For JTVAE, a struc-

ture by structure generation scheme is followed, and can be seen in Figure 2.8, along with the node

by node generation. The latent representation of G is encoded by a graph message passing network

[8, 38], where each vertex v has a feature vector xv, which indicates it’s atom type, valence, and

other properties. Correspondingly, each edge (u, v) ∈ E has a feature vector xuv, indicating its

bond type, and two hidden vectors vuv and vvu that denotes its message from u to v and vice versa.

Due to the loopy structure of the graph, messages are exchanged in a loopy belief propagation

fashion, and after T steps of iteration, the messages are aggregated as the latent vector of each
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vertex, which captures it’s local graphical structure.

hu = τ(U g
1xu +

∑
v∈N(u)

U g
2 v

(T )
vu ) (2.8)

The final representation is hG =
∑

i hi/|V |. The mean µG and log variance log σG of the

variational posterior approximation are computed from hG and with separate affine layers, and zG

is sampled from a Gaussian N (µG, σG).

Figure 2.8: Comparison of two graph generation schemes. Reprinted from [3]

2.1.3.4 Tree Encoder

TG is encoded similarly, with a tree message passing network. One-hot encoding is used to

encode each cluster Ci, and xi represents its label type. Each edge (Ci, Cj) has two message

vectors mij and mji. After picking an arbitrary leaf node as the root, messages are propagated

in two phases. In the first phase (bottom-up), leaf nodes initiate messages and are propagated

iteratively towards the root. In the second phase (top-down), messages are propagated from the

root to all the leaf nodes. Message mij is updated as:

mij = GRU(xi, {mki}k∈N(i)/j (2.9)
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in the equation above, GRU is a Gated Recurrent Unit [42]. The latent representation of each node

hi is obtained after message passing by aggregating inward messages:

hi = τ(W oxi +
∑
k∈N(i)

U omki) (2.10)

The final tree representation is HτG = hroot, which is the encoding for a rooted tree (τ, root).

zτG is sampled in a similar way as the graph encoder.

2.1.3.5 Molecular Reconstruction from Latent Vectors

Once we have encoded the molecule with a tree and a graph encoder,first the tree decoder

generates a junction tree from zT , then the graph decoder combines the substructures in the junction

tree, producing the final reconstructed molecule.

The tree decoder traverses the junction tree in depth-first order in a recursive manner, starting

from the root. The decoder predicts the probability of the current node having children, and every

time a child node is generated, it predicts the label of the child node. Nodes in the junction tree are

labeled with the most likely valid substructure.

The graph decoder only assembles one node at a time, following the order when the junction

tree is reconstructed. Though there might be multiple ways to assemble the substructures, JTVAE

uses the highest scoring strategy [3]. For the purpose of this work, a JTVAE model was pre-trained

with the ZINC dataset. As with geneVAE, the predicted mean value of latent vectors is used as

encoded features rather than sampling these vectors from a Gaussian distribution.

2.2 Drug Response Prediction Deep Neural Network

For the drug response prediction, once geneVAE and JTVAE are trained, post-processing of

the latent features encoded by the two VAE models is performed by two fully connected neural

networks, one for each VAE. Another deep neural network concatenates the processed outputs from

the two neural networks, producing the final drug response prediction. The input to the final MLP

model is Xall = [Xgene, Xdrug], where Xgene and Xdrug are the outputs generated by the two post-

processing deep neural networks. The two outputs are concatenated, such that the dimensionality
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of Xall is the sum of the dimensionality of Xgene and Xdrug. The value of a perceptron in the ith

layer of the final neural network is computed as:

X i+1
all = f

′
(W (i+1)TX i

all + bi+1) (2.11)

where W (i+1) is the weight matrix of the i-th layer of the neural network, and f ′ is the non-

linear activation function. For the activation function, the parametric rectified linear unit (PReLU)

is used in the model. The predicted ln(IC50) value is computed in the last layer of the final neural

network model. The value is computed as:

ln(IC50) = f
′
(W (n)TXn−1

all + bn) (2.12)

in the above equation, n is the total number of layers in the fully connected neural network. As

far architecture of the model goes, both of the post-processing neural networks consist of 3 fully

connected layers. As the geneVAE and JTVAE are 256-dimension and 56-dimension vectors,

respectively, the first of the two post-processing neural network consist of 256, 256 and 64 units

in the first, second and third hidden layer respectively, while the second neural network consists of

128, 128 and 64 units in it’s first, second and third hidden layer. The third neural network consists

of 4 fully connected layers, and consists of 128, 128, and 64 units in its hidden layers. The figure

2.9 below shows the architecture of the 3 fully connected neural networks.
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Figure 2.9: Model Architecture of the ln(IC50) predictor

2.3 Latent Space Optimization

Though the training results demonstrated that the latent representations encode the input data

well, they lacked sample efficiency. As a future direction of work, the focus was on exploring tech-

niques to improve the latent representation. The major problems faced when training generative

models are the fact that input is high dimensional and structured, as for the Junction Tree VAE,

and the objective function is expensive to evaluate. A sample-efficient optimization procedure,

known as weighted retraining [28] is used to achieve this. It is achieved by periodic retraining and,

weighting the data-points as per their objective function value Optimizing the Junction Tree VAE’s

latent space can produce even better results for our property of interest.

There are a few caveats that are to be considered when employing weighted retraining. If addi-

tional high-scoring points are augmented to the dataset, the model’s performance doesn’t improve

performance as the data size of high-scoring points is quite small as compared to training data [43].

Furthermore, retraining only on new data could also lead to catastrophic forgetting as the model

would have a disproportionate impact of new points [44].

The proposed technique is two step approach, First, the generative model, which in our case
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is the JTVAE, is trained to find a mapping in a lower-dimensional continuous space onto the data

manifold in space. This essentially generates a low-dimensional and continuous analog of the

optimization problem. In the second stage, the objective function is optimized over the latent

space, effectively decoupling the training & optimization tasks. The approach followed to achieve

this is by weighting the data distribution & retraining the Junction Tree VAE. A rank-based weight

function was used, that scored data points (molecules) based on the Blood-Brain Barrier (BBB)

permeability.

2.3.1 Blood Brain Barrier Permeability Prediction

In order to assign weight to the data-points, a property predictor was trained to predict Blood

Brain Barrier (BBB) permeability. The previously discussed ln(IC50) predictor cannot be used

since it predicted the property values based on latent representation of molecules. The latent rep-

resentation will, however, change upon the weighted retraining of the JTVAE.

Property predictors operate on precomputed molecular features, which aren’t available for the

ZINC dataset [45], a subset of which is used to train the JTVAE. Therefore, a property predictor is

required that generates property prediction based the molecules, without using their precomputed

features. A message passing neural network (MPNN) [38] has been used for this task. The MPNN

is based on Graph Neural Network, as that is how the molecules are naturally well represented.

The property of interest is log(BB), which is a measure of the blood-brain barrier permeability.

The equation 2.13 gives the mathematical representation of log(BB). BBB is a highly selective

semipermeable border of endothelial cells that prevents solutes in the circulating blood from non-

selectively crossing into the extracellular fluid of the central nervous system where neurons reside.

Thus, it is an important factor when considering drugs that target central nervous system cancers.

log(BB) = log
concentration in brain

concentration in blood
(2.13)

As mentioned previously, message passing neural network (MPNN) is a type of graph neu-

ral network (GNN). Since molecules are naturally represented as an undirected graph, GNNs
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are useful in predicting molecular properties. The figure 2.10 below shows an overview of the

predictor. First we generate graphs from the SMILES strings, which itself is a two step pro-

cedure. First, SMILES strings are converted to a molecule object using RDKit in Python, and

then the molecule object is converted into graph, represented as a three-tuple (atom_features,

bond_features, pair_indices). For training the MPNN, the input consists of a single graph, there-

fore, for a batch consisting of sub-graphs (multiple molecules), they are merged into a single graph.

The merged graph is a disconnected graph, with each molecule (sub-graph) completely separated

from the other molecules (sub-graph). The process can be divided into three stages, namely mes-

sage passing, readout and regression.

1. The message passing step, as depicted in the figure 2.10 below, itself consists of two parts.

(a) First, the edge network passes messages from 1-hop neighbors, and updates node states

based on edge features between them.

(b) Gated Recurrent Unit (GRU) takes recent node state, and updates it based on previous

node state (memory)

2. Once the message passing procedure ends, the aggregated node states need to be partitioned

into subgraphs, and subsequently reduced to graph-level embeddings. In the readout, the

transformer encoder is used to partition the global graph (batch) into subgraphs (molecules).

Each sub-graph is padded to match the sub-graph with greatest number of nodes. The tensor

is then passed to the transformer encoder, followed by average pooling.

3. The last stage is the regressor. It consists of a three-layer fully connected neural network

to generate log(BB) prediction. It consists of 512, 256 and 128 nodes in each of the layer

respectively, with ReLU (Rectified Linear Unit) activation
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Figure 2.10: Overview of the Message Passing Neural Network based log(BB) predictor
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3. MATERIALS AND METHODS

3.1 Datasets

As mentioned earlier, our drug efficacy model has two separated variational autoencoders, and

two different datasets are used to train the geneVAE and the JTVAE. Gene expression data of 1021

cancer lines, along with 57820 genes is provided by the Cancer Cell Lines Encyclopedia (CCLE)

[4]. Similarly, to train the JTVAE, ZINC dataset [45] containing molecular structure data of organic

compounds is used. It consists of molecular structure data in the form of SMILES strings. ZINC

dataset consists of 250k molecules, and the JTVAE is trained on randomly selected 50k molecules,

which is manifolds larger than the 367 drugs that are used for drug response prediction task. The

latent vector is of size 56, and consists of the concatenated tree and graph encoding.

3.1.1 Gene expression data

The gene expression data consisting of 57820 genes of 1019 cancer lines was obtained from

the Cancer Cell Lines Encyclopedia (CCLE) [4]. Each of the cell line belong to a specific type of

cancer, and for the purpose of this work, breast cancer was selected as the primary objective, and

the model was then generalized on pan cancer cell lines. The distribution of the various cancer cell

lines in CCLE is illustrated in the figure 3.1 below.
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Figure 3.1: Distribution of the cell lines with respect to the cancer types in the CCLE. Reprinted
from [4]

The data is filtered into three different subsets, to compare the model performance. One sub-

set consists of breast cancer cell lines, and 51 cell lines are selected from the dataset, including

[HMC18_BREAST], [HCC1395_BREAST], [MDAMB453_BREAST] and [ZR751_BREAST] to

list a few. Another subset consisted of 65 central nervous system cancer cell lines (glioma and

glioblastoma), and included [KG1C_CNS], [LN229_CNS], [SF268_CNS] and [TM31_CNS] to

name a few. The third dataset consisted of all cancer cell lines (pan-cancer). If we number of

genes g , and c is the number of cancer cell lines, the gene expression data can be represented

as G ∈ Rgxc. The matrix G would have log2(tpm + 1) number of elements, where tpm is the

transcriptome per million value (tpm) of the gene in the corresponding cell line.

Further, the Cancer Gene Census (CGC) dataset [15], which classifies genes into two categories
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Cancer Type Cell Lines Gene Expressions
Breast Cancer 51 564
Central Nervous System 65 590
Pan-Cancer 1019 659

Table 3.1: Number of gene expressions for each cancer type

is also to select the genes of interest for this work. The first category is of the genes that are

associated closely to cancers. These have a high mutation probability to mutate in cancers that

change the activity of the gene product. The second category is of the genes that lack evidence,

but have a high possibility of playing a strong role in cancer. Genes in both of these categories are

of interest, and therefore, are incorporated for further analysis. For the breast cancer analysis, 51

cell lines are selected from CCLE dataset, and expression data is removed for genes that are not in

the CGC dataset. Further filtering is performed based on the mean and variance. Gene expression

entrance having a mean µ < 1 or standard deviation σ < 0.5 are also not considered for further

analysis, for the lack of relevance with cancer cell lines [18]. Figure 3.2 summarizes the data

pre-processing, and a summary of gene expression & cell lines data is provided in table 3.1.
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Figure 3.2: Overview of gene expression data preprocessing

3.1.2 Molecular structure & anti-cancer drug data

For training the JTVAE, ZINC dataset [5] is used, that includes the molecular structure data

in SMILES strings. This dataset contains about 250K drug molecules, that are extracted from the

ZINC database [45]. This is used to train the JTVAE, so that it learns the molecular structure of

organic compounds. SMILES strings have been used widely to define drug’s structure [3, 5, 46, 15,

14, 17], and also used as an input for drug prediction problems. Another benefit of using SMILES

strings is that it’s easier to extract the embeddings from vocabulary by parsing the generated library.

Although the ZINC dataset contains hundreds of thousands of SMILES strings, for the purpose

of this work, 50,000 SMILES strings are randomly selected to train the JTVAE considering the

resource constraints. Even though the entire dataset is not used, it still includes far larger number

of chemical compounds as compared to the GDSC dataset that is used for the, which only has 367

drugs for the fact that this enable the model to have better generalization over all drug structures,

and won’t be limited to drugs related to specific cancer types.
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Cancer Type Cell Lines & Drug Training Data Validation Data Test Data
Response Data

Pan Cancer 24278 19666 2185 2427
Central Nervous System 2142 1736 192 214
Pan-Cancer 3526 2857 317 352

Table 3.2: Data Split for training ln(IC50) predictor

3.1.3 Drug Response prediction data

Once the JTVAE and geneVAE are trained, anti-cancer drug data is needed to predict response

for the cancer cell line under consideration. This data of anti-cancer drug response is obtained

from the Genomics of Drug Sensitivity in Cancer (GDSC) project [13]. GDSC contains response

data for anti-cancer drugs that are used against numerous cancer cell lines. This data is given in

the form of a matrix ICCCLE ∈ Rdxc, with d and c being the number of drugs and cancer lines

respectively. This matrix consists of ln(IC50), or the half maximal inhibitory concentration value

of the drugs that used again specific cancer cell lines. It is a quantitative measure of the potency

of a substance in inhibiting a specific biological or biochemical function, which in this case is

cancer. An, IC50 value indicates how much of the inhibitory substance is needed to inhibit, in

vitro, the biological process, or component by 50%. The molecular data of these anti-cancer drugs

is obtained from Pub-Chem dataset, using each drugs’ unique PubChem ID that is accessible in the

GDSC dataset. The figure 3.3 below summarizes the data preprocessing steps taken for training

the ln(IC50) predictor. The data was split into training, validation and test sets. The table 3.2 gives

a summary of the test, train and validation sets for each of the subsets.
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Figure 3.3: Overview of Data preprocessing for Training ln(IC50) predictor

For the purpose of this work, geneVAE and JTVAE need to be pre-trained before drug response

prediction for cancer cell lines can be performed. The datasets used for pre-training these varia-

tional auto-encoders are explained previously. Both the geneVAE and JTVAE are trained in an

unsupervised manner. Once trained, geneVAE is used to encode the gene expression data from

CCLE, while the Junction Tree VAE is used to encode anti-cancer drugs. The encoded features

from these VAEs are the used to train a deep neural network model on breast cancer cell lines, and

central nervous system cell lines. Later, the model is generalized, and tested on the pan-cancer cell

lines. A flow-diagram of the model is given in the figure 3.4 below.
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Figure 3.4: Flow Diagram of Training VAE’s and Anti-Cancer Drug Response Prediction Model

3.1.4 GeneVAE training

As geneVAE is trained, the objected is to minimize the sum of reconstruction loss and latent

loss. The reconstruction loss is represented by L(G,G0)), where G is the initial input gene expres-

sion data, while G′ is the reconstructed data. For reconstruction loss, cross entropy loss is used

as the input data is normalized, and the output layer has a sigmoid activation function, thereby

ensuring that the input and output values are in within the range of 0 and 1.

It was evident from the filtering out the gene subset using CGC dataset representative of the

specific cancer type under consideration (Breast Cancer or CNS) was of significance during the

training of the geneVAE model. As mentioned earlier, specific genes are selected based on CGC

dataset for breast cancer and CNS. The model is evaluated with and without filtering out a gene

subset on glioma and breast cancer cell lines. The results indicated that if a gene subset is filtered,

the prediction accuracy of IC50 value of the drug could be improved. According to the evaluation
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of total loss, validation loss converges after around 150 epochs. Total VAE loss was calculated as:

VAE_Loss = L(G,G′) + βKL (3.1)

where KL is the Kullback-Leibler loss, and β increases from 0 to 1 gradually during training. This

is also known as warm-up training strategy. Initially, the learning rate was set to 0.1, and then

decreased in the later epochs, with the minimum value being 0.01. This is also known as learning

rate decay, whereby the learning rate was decreased 20% if the validation loss in a range of 0.5 for

more than 10 epochs.

The training performance of geneVAE on validation set and training set for PanCancer dataset,

and Breast Cancer dataset is given in the figure 3.5 below.
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(a) VAE loss for training and validation set over 250 epochs on
Breast Cancer Dataset

(b) VAE loss for training and validation set over 150 epochs on
PanCancer Dataset

Figure 3.5: VAE Loss vs Epochs for geneVAE training

3.1.5 JTVAE training

For training the Junction Tree VAE, 50,000 SMILES strings are randomly selected from the

250K SMILES strings from the ZINC molecule dataset [5].The ZINC dataset is itself derived from

the ZINC database [45]. The latent space dimension is set as 56, with hT and hG , the tree & graph

representation, having 28 dimensions each. A vocabulary is required to train the JTVAE, and for
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this work, the trained vocabulary by [3] was used. It was trained on 240K molecules from the ZINC

dataset, and was of size |X | = 780. The dimensions for each hidden state is 450, in addition to the

latent space dimension of 56. For the graph encoder, the atom features include atom type, degree,

chiral configuration and it’s formal charge. For the tree encoder, each cluster is represented with

a neural embedding vector, in a way how word embeddings works for words. The tree and graph

decoders use same feature setting as their encoders. All the neural components are implemented

in PyTorch, while RDKit [41] is used for processing molecules.

The training of JTVAE is done in two steps, as suggested by [3]. First, the model is trained

for 3 steps and without Kullback-Leibler (KL) regularization term. This is practically the same as

training an autoencoder. In the second step, the model is trained with KL regularization.

3.2 Experiments

As part of this work, experiments were done to evaluate the performance of the model. First,

the geneVAE and JTVAE were trained in an unsupervised manner. Then, these trained VAE’s were

used to encode encode gene expression data (filtered by the CGC data set or not on the breast cancer

cell lines), and to encode anti-cancer drug molecular data from PubChem. These encoded features

were then used to train the fully connected neural network for drug response prediction. (Add

also 1/2 baseline models here for comparison). Once trained, the model was then tested on breast

cancer cell lines, followed by glioma cell lines and then by pan-cancer cell lines. In addition to

drug response prediction, this work also demonstrates the generative aspect of this model, and it’s

ability to generate effective drugs for specific cancer cell lines under consideration. The test, train

and validation split used for training the fully connected neural network was 1:18:1. The model

was implemented using PyCharm on a Microsoft Windows PC. Training was performed using an

NVidia GeForce GT740m GPU, or using Texas A&M’s High Performance Research Computing’s

resources for the more resource intensive tasks, including training the JTVAE and geneVAE.
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3.2.1 Results on Breast Cancer Dataset

The first dataset that the model was evaluated on was for breast cancer cell lines. Two metrics,

including Root Mean Square Error (RMSE) and Coefficient of Determination (R2 score), were

used to compare the predicted drug response and the actual drug response. In order to compare the

results, the model was trained with a fully connected neural network, as well with Support Vector

Machine. In addition to this, the models were tested on gene expression data encoded by geneVAE,

and also without encoding.

1. SVR with CGC filtered data : A Support Vector Regression model (for drug response predic-

tion) trained on CGC filtered gene expression data, and drug molecular structure data, with

both being encoded by VAE model.

2. Fully connected Neural Network with CGC filtered data : Fully connected neural network

model trained on drug molecular structure data encoded by VAE model, & gene expression

data filtered by CGC dataset (not encoded by geneVAE).

3. Fully connected Neural Network with CGC filtered data VAE encoding: Fully connected

neural network model trained on drug molecular structure data & gene expression data, both

encoded by VAE model, with the gene expression data being filtered by CGC dataset.

The results of these models showed that the neural network model had better performance

when compared with SVR (R2 of 0.792 vs 0.63), and the that the model in which gene expression

data was encoded also had better performance. The performance improvement was significant for

the same model with geneVAE encoded data vs without (R2 of 0.792 vs 0.68). This also depicts

the fact that the selection of a representative gene is significant to the performance. Moreover, the

selection of representative gene subset is essential to the performance of our models.

3.2.2 Results on CNS Dataset

The second dataset that the model was evaluated on was for brain cancer (glioma), including

Glioblastoma. The same metrics (RMSE and R2 score) were used to compare the predicted drug
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response and the actual drug response. In order to compare the results, the model was trained with

a fully connected neural network, as well with Support Vector Machine. In addition to this, the

models were tested on gene expression data encoded by geneVAE, and also without encoding.

1. SVR with CGC filtered data : A Support Vector Regression model (for drug response predic-

tion) trained on CGC filtered gene expression data, and drug molecular structure data, with

both being encoded by VAE model.

2. Fully connected Neural Network with CGC filtered data : Fully connected neural network

model trained on drug molecular structure data encoded by VAE model, & gene expression

data filtered by CGC dataset (not encoded by geneVAE).

3. Fully connected Neural Network with CGC filtered data VAE encoding: Fully connected

neural network model trained on drug molecular structure data & gene expression data, both

encoded by VAE model, with the gene expression data being filtered by CGC dataset.

The results of these models showed that the neural network model had better performance

when compared with SVR (R2 of 0.835 vs 0.69), and the that the model in which gene expression

data was encoded also had better performance. The performance improvement was significant for

the same model with geneVAE encoded data vs without (R2 of 0.835 vs 0.78). This also depicts

the fact that the selection of a representative gene is significant to the performance. Moreover, the

selection of representative gene subset is essential to the performance of our models.

3.2.3 Results on Pan Cancer Dataset

After comparing the results for breast cancer and glioma, it was evident the model with neural

network, and with gene expression data encoded by geneVAE performed the best. Therefore, it

was also trained on pan-cancer dataset to understand how well it generalizes. The performance on

pan-cancer dataset was even better, with the R2 score being 0.875m and RMSE score of 0.921

for pan-cancer cell lines (1019).

The plots in figure 3.6 below show the comparison of the predicted vs true ln(IC50) values.
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(a) Predicted vs true ln(IC50) values for CNS Dataset

(b) Predicted vs true ln(IC50) values for Pan-cancer Dataset

Figure 3.6: Scatter plots showing the model performance for the predicted ln(IC50) values for
Pan-cancer model and CNS Cancer model
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Model Type R2 score RMSE R2 score RMSE
Test Set Test Set (Trained without (Trained without

geneVAE) geneVAE)
Pan Cancer 0.875 0.92 - -
Central Nervous System 0.792 1.0374 0.68 1.42
Pan-Cancer 0.835 0.926 0.69 1.37

Table 3.3: Performance of the ln(IC50) predictor

The table 3.3 above summarizes the model performance.

3.2.4 ln(IC50) predictor sanity check

In order to demonstrate that property predictor can produce similar latent variables, even for

molecules having quite different chemical structures, two drugs, MG-132 and Erlotnib were se-

lected. Their chemical structures are provided in the figure 3.7 They are used against Cell Line

SF539 of central nervous system. The model was trained by removing these two drugs from the

training set, and their ln(IC50) value was predicted, as given in the table 3.4. Though the ln(IC50)

predicted values are a bit different, the model was able to predict the molecule’s ln(IC50) response

similar to it’s actual value (positive). Therefore, despite quite different molecular structures, the

model is able to extract useful features and predict ln(IC50) values.

Drug ln(IC50) true value ln(IC50) predicted value
Erlotnib 2.47 3.5
MG-132 2.12 1.07

Table 3.4: Property predictor performance comparison
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(a) Chemical Structure of Drug Erlotnib (b) Chemical Structure of Drug MG132

Figure 3.7: Chemical Structures of MG132 & Erlotnib used against Cell Line SF539 of CNS

3.3 Exploring geneVAE latent vectors

In order to visualize whether the geneVAE was able to encode gene expression data well, t-SNE

was used to reduce the dimensionality of both the original gene expression data, and the encoded

data by geneVAE, as provided in the figure 3.8 below. The figure is the t-SNE visualization of

the gene expression data for top 12 Cancer types (to help visualize better). It can be seen that

the clustering remained similar as for the original data, where primary cancer tissue types are

separated clearly. This depicts that the latent vectors encoded by geneVAE model retained the

essential features of original data robustly.
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(a) Input data

(b) Encoded data

Figure 3.8: t-SNE visualization of gene expression data for 12 most occurring cancers
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3.4 Exploring JTVAE latent vectors

In order visualize how close the latent vectors of different drugs are encoded in the latent space

by the JTVAE, 4 different drugs were selected (MG-132, Erlotnib, Vismodegib and FH535) used

against SF126 Cell Line of Central Nervous System. The molecular structures are also given below

in Figure 3.9. To compare their latent representations, Euclidean distance was used to measure how

close, or further away the drugs are in the latent space. The drugs Vismodegib and FH535 share

the most functional groups, and also have the lowest Euclidean distance, while the largest value of

Euclidean distance is between drug Erlotnib and Vismodegib. It is visible that they Erlotnib and

Vismodegib have quite different functional groups, which depicts that they are further away in the

latent space. A comparison of the euclidean distances for these 4 drugs is provided in the table 3.5

(a) MG132 (b) Erlotnib

(c) Vismodegib (d) FH535

Figure 3.9: Molecular structures of different drugs
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Drug Erlotnib MG-132 FH535
Erlotnib - - -
MG-132 23.36 - -
FH535 17.06 25.1 -
Vismodegib 17.4 22.88 -

Table 3.5: Euclidean distance of latent vectors of Drugs encoded by JTVAE

3.5 Drug Compound Generation

The above mentioned results for drug response prediction, though useful, don’t fully utilize the

representations generated by the generative models (JTVAE and geneVAE). As explained earlier,

JTVAE has the advantage that it’s reconstruction accuracy, when compared with other generative

models, is higher (76.7%) and almost all the molecules generated have valid molecular structures.

Also, drugs sharing similar molecular structure have similar latent vectors. (add more info here,

exploring the latent space) To demonstrate how JTVAE can to generate customized & effective

drug compounds for a given cancer cell line, the breast cancer cell line HCC1419 is used. for a

given cancer cell line. Several 56-dimension vectors were sampled from the Gaussian distribution

N (µ, σ2), with µ = 0 and sigma = 7. The dimensionality was selected to match the dimensions of

the JTVAE latent space. Next, these randomly sampled drug vectors were then concatenated with

encoded latent vector of gene expression profile of HCC1419 by the geneVAE. This concatenated

vector was fed to the neural network as input, and it predicted the IC50 score for the drug. Based

on the IC50 score, we can see whether the drug is effective against the cancer cell line, and if it is,

the molecular structure can be found using the JTVAE decode. The 4 vectors with least score were

fed to the JTVAE decoder and their molecular structures are provided in the Figure 3.10
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(a) ln(IC50) = -1.21 (b) ln(IC50) = -1.031

(c) ln(IC50) = -1.17 (d) ln(IC50) = -1.05

Figure 3.10: Molecular structures of potential drugs predicted to be effective against HCC1187
cell line

3.6 Latent Space Optimization

Although we have demonstrated that the latent representations encode the input data well, they

lack sample efficiency. As a future direction of work, I’ve focused on exploring techniques to

improve the latent representation. For weighted retraining, first a property predictor was trained,

with training data consisting of log(BB) for 333 drugs used against CNS tumors. First, the MPNN

based predictor was trained. Once trained, it was used to predict log(BB) values for 50k molecules

in the ZINC dataset that were used originally to train the JTVAE. The log(BB) values were used

in the rank-based weighting of the training data, which was then used to retrain the JTVAE.
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3.6.1 MPNN Training

The Message Passing Neural Network based log(BB) predictor was trained for 160 epochs,

and the performance on the training & test data is provided in the Figure 3.11 below. It can be seen

that the validation MSE stabilizes around 100 epochs.

The predicted and true values of log(BB) for the dataset were plotted, as can be seen in the

Figure 3.12.

Figure 3.11: Training performance of MPNN (training MSE vs validation MSE)
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Figure 3.12: Scatter plot showing the true drug response vs predicted drug response

3.6.2 Weighted Retraining

As explained above, weighted retraining was performed. The performance is given in the

Figure 3.13 below. In the image, top 1 denotes the single best score obtained until the query f, top

10 denotes the worst of the top 10 scores, and top 50 denotes the worst of the top 50 scores. K is the

weighting parameter, and r gives the retraining frequency for the samples. The area shaded gives

the standard deviation. This is a future direction for the presented work and further experiments

are needed to evaluate the performance of weighted retraining.
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(a) Top 1 (b) Top 10

(c) Top 50

Figure 3.13: Optimization performance of Weighted retraining for different values of weighting
factor k and retraining frequency r
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3.7 Code Availability

All the codes for reproducing the results presented above can be found at Cancer Drug Discov-

ery Github Repo.
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4. CONCLUSIONS

This work describes the development of an integrated machine learning approach for anti-

cancer drug discovery using generative models. In the sections above, details about two gener-

ative models, a gene expression encoding VAE(geneVAE) model, and a Junction Tree VAE (JT-

VAE)model for molecular structure encoding has been explained. Also, performance was com-

pared for a Support Vector Regression model and a Deep Neural Network to predict anti-cancer

drug response. Also, the latent vectors encoded by geneVAE and JTVAE model are then fed to

the drug prediction network to generate the final drug efficacy, represented by IC50 score. The

models are trained for different datasets, with gene expression data filtered for cancer cell lines

(breast cancer and glioma) and the performance was compared, including the effect of encoding

gene expression data using the geneVAE. The model achieved an R2 score of 0.85 on pan-cancer

data. Also, the work discuses how the geneVAE and JTVAE model can be used to generate new

drug molecular structures for a specific cancer cell line.

In addition to this, Latent Space Optimization improves the latent representation based on our

property of interest – Blood Brain Barrier Permeability.

4.1 Future Work

In the future, further work on Latent space optimization is to be done in the near future to further

improve the prediction performance. Also, potential of using Graph Neural Networks (GNN) to

encode drug data and also explore the potential of prediction drug-drug interaction with the use

of GNN. And last, my target is to build a toolkit for drug response prediction, and aid in drug

discovery process, based on the models presented in this thesis (ln(IC50)and log(BB)),
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