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ABSTRACT

Remote sensing (RS), a critical technology for large-scale-monitoring Earth-observing systems

(EOS), plays an important role in Earth science and other related fields where physical, biological,

and chemical properties of the Earth can be characterized in a non-contact manner. One of the

most widely used techniques to analyze land-cover information utilizing RS images is pixel-level

classification, where each individual pixel will be classified with a semantic label by employing

machine learning (ML) algorithms. In recent decades, with the tremendous developments in hard-

ware and software, computational capabilities have improved dramatically, which has facilitated

the development of deep-learning (DL) algorithms derived from traditional ML. Among various

deep learning models, recurrent neural networks (RNNs), which are able to process sequential in-

puts by utilizing a series of internal state, attracts more attention for the purpose of handling multi-

temporal RS image analysis due to their intrinsic recurrent structure. However, their application

on single-image classification still needs more investigations, especially from the perspective of

sequential feature extraction. To address this limitation, we propose a similarity measurements-

based sequential feature extraction method for singe RS image classification using long short-term

memory (LSTM), a special class of RNN. For a given pixel the proposed framework utilizes the

spectral information of those pixels collected from the whole image instead of the individual spec-

tral vector of its own. And its classification performance on two standard datasets demonstrates its

effectiveness compared with other benchmark algorithms.

However, the computational time cost of the aforementioned approach is a critical issue as

all pixels in that single RS image need to be considered during similarity measurement for every

pixel. That brings more difficulties, especially for processing large-scale RS image. Therefore,

building upon the previous work, we improve that model by adding segmentation map as an addi-

tional criterion for shrinking searching range from the whole image to selected segments. Within

such a segmentation map, homogeneous pixels will be aggregated into adjacent segments. Thus,

the similarity measurement will be split into two phases, including segment-level similarity calcu-
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lation and pixel-level similarity calculation. Experimental results obtained from three benchmark

hyperspectral RS images and large-scale satellite images illustrate that the proposed approaches

achieve promising classification performance with lower computational time cost.

Besides classification, another application of deep learning is object detection where interest of

object is allowed to identify and localized in an image or video. In this study, our focus is to detect

fallen trees from large-scale aerial photos. Therefore, we develop a framework to automatically

create image and annotation dataset which can be utilized as input data for deep learning based

object detection model. Quantitative and qualitative classification results illustrate that, for iso-

lated fallen trees, our model achieves promising results considering recall index. However, many

false positive detection results are generated as well. Then we further investigate the influence of

those fallen trees located on the boundary of extracted sub-image and find that using geographical

coordinates to calculate accuracy metrics can achieve better results. Furthermore, we also explore

the issue of overlapping fallen trees and observe that overlapping fallen tree introduce more detec-

tion errors which can be alleviated to some extend by considering fallen tree clusters. However,

detecting overlapping fallen trees is still a challenging task, especially for those large scale datasets

collected from the real world.
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1. INTRODUCTION

Remote sensing (RS), a critical technology for large-scale-monitoring Earth-observing systems

(EOS), plays an important role in Earth science and other related fields where physical, biological,

and chemical properties of the Earth can be characterized in a non-contact manner. Utilizing ad-

vanced geospatial technology is a common strategy to analysis RS images by taking advantaged

of great computational capability. Geospatial artificial intelligence (GeoAI) integrates data min-

ing, machine learning, deep learning, and high-performance computing to obtain knowledge from

geospatial datasets [1]. Due to the intrinsic similarity between conventional digital images and

videos exploited in computer vision, RS is attracting more attention regarding the utilization of

deep-learning models, which were proposed in the computer science community and are consid-

ered to be a key component of GeoAI. Various applications of deep learning in remote sensing data

analysis have been proposed with promising performance compared with other traditional machine

learning models.

One of the most widely used techniques to analyze land-cover information utilizing RS images

is pixel-level classification, where each individual pixel will be classified with a semantic label

by employing machine learning (ML) algorithms. In recent decades, with the tremendous devel-

opments in hardware and software, computational capabilities have improved dramatically, which

has facilitated the development of deep-learning algorithms derived from traditional ML. Among

various deep learning models, recurrent neural networks (RNNs), which are able to process sequen-

tial inputs by utilizing a series of internal state, attracts more attention for the purpose of handling

multi-temporal RS image analysis due to their intrinsic recurrent structure. However, their applica-

tion on single-image classification still needs more investigations, especially from the perspective

of sequential feature extraction. There are two main strategies to utilize RNNs: 1) utilizing the

spectral feature vector of the target pixel on its own; and 2) extracting pixels that are similar to the

target pixel and construct its sequential feature. To address this limitation, we propose a similarity

measurements-based sequential feature extraction method for singe RS image classification using
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long short-term memory (LSTM), a special class of RNN, based on the aforementioned second

strategy. For a given pixel the proposed framework utilizes the spectral information of those pixels

collected from the whole image instead of the individual spectral vector of its own. The main idea

is for a target pixel, we calculate similarity using all other pixels and only select first several similar

pixels to construct sequential feature. And its classification performance on two standard datasets

demonstrates its effectiveness compared with other benchmark algorithms.

However, the computational time cost of the aforementioned approach is a critical issue as all

pixels in that single RS image need to be considered during similarity measurement for every pixel.

That brings more difficulties, especially for processing large-scale RS image. Therefore, building

upon the previous work, we improve that model by adding segmentation map as an additional

criteria for shrinking searching range from the whole image to selected segments. Specifically,

two-phase similarity measurements are designed. Similarity measurements are first applied at the

segments level in order to select the similar segments from the whole image; and within those

selected similar segments, similar pixels are then selected to construct sequential features in the

same manner as what we proposed in previous work. Three different sequential feature extraction

strategies are developed, where local and non-local segments are considered in a separate and com-

bined manner, respectively. Experimental results obtained from three benchmark hyperspectral RS

images and large-scale satellite images illustrate that the proposed approaches achieve promising

classification performance with lower computational time cost.

Besides classification, another application of deep learning is object detection, where interest

of object is allowed to be identified and localized in an image or video. In this study, our focus is to

detect fallen trees from large-scale aerial photos. Therefore, we develop a framework to automati-

cally create image and annotation datasets that can be utilized as input data for deep learning-based

object-detection models. Quantitative and qualitative classification results illustrate that, for iso-

lated fallen trees, our model achieves promising results, considering a recall index. However, many

false positive detection results are generated as well. Then we further investigate the influence of

those fallen trees located on the boundary of extracted sub-image and find that using geographical
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coordinates to calculate accuracy metrics can achieve better results. Furthermore, we also explore

the issue of overlapping fallen trees and observe that overlapping fallen tree introduce more detec-

tion errors wwhich can be alleviated to some extent by considering fallen-tree clusters. However,

detecting overlapping fallen trees is still a challenging task, especially for large-scale datasets col-

lected from the real world.
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2. HYPERSPECTRAL IMAGE CLASSIFICATION USING

SIMILARITY MEASUREMENTS-BASED DEEP RECURRENT NEURAL NETWORKS1

2.1 Introduction

Hyperspectral remote-sensing images (HSI) can entail both abundant spectral and spatial in-

formation, which generally provides enhanced capability of distinguishing different objects from

one another, relative to multispectral images, and play an important role in a variety of research

domains, such as precision agriculture [2], land-use monitoring [3][4], change detection [5][6],

and environment measurements [7]. For such subfields, classification is a critical technology,

where each pixel in an HSI will be classified with a pre-defined label, and encouraging achieve-

ments have been produced from different methods.

Based on the acquisition of training samples, HSI classification frameworks can be divided into

three types: unsupervised, semi-supervised, and supervised classification. Considering the avail-

ability of training samples and classification performances, supervised methods are investigated the

most and are typically selected as benchmark algorithms, such as k-nearest-neighbor [8][9][10],

support vector machines (SVM) [11][12][13], sparse representation [14][15][16][17], and artifi-

cial neural networks (ANNs) [18][19]. Since acquiring sufficient labeled samples in the field can

be quite difficult and time-consuming, semi-supervised methods [20][21][22][23][24] and tensor-

based methods [25][26][27], which can obtain satisfying results only based on a limited number

of training samples, also warrant many investigations. To overcome the shortcoming of limited

training samples, researchers have also found that spatial information can be employed as cru-

cial complementary and supportive features in spectral-spatial feature-combination frameworks to

improve classification performance [28][29][30]. Various spatial feature-extraction methods have

been proposed for HSI classification; however, such kinds of spectral-spatial features still refer to

low-level features [31], and the classification performances arising from spectral-spatial methods

1Reprinted with permission from “Hyperspectral Image Classification Using Similarity Measurements-Based Deep
Recurrent Neural Networks ” by Andong Ma, Anthony M. Filippi, Zhangyang Wang, and Zhengcong Yin, 2019.
Remote Sensing, 11(2), 194, ©2019 MDPI.
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can be easily affected by the curse of dimensionality problem and the difficulty in discriminating

among some classes. Therefore, methods for extracting more robust and representative features

from the HSI image itself still need to be investigated.

In the most recent decade, deep learning (DL) has demonstrated marked effectiveness and ro-

bustness on large datasets. Considering the inherent deep architecture, which can be viewed as

an efficient feature-extraction model, from low-level feature to the highly-abstract level, DL algo-

rithms are always employed as end-to-end classifiers for both pixel- and image-based classification

tasks in remote-sensing communities [32]. Chen et al. proposed a stacked autoencoder (SAE)-

based HSI classification framework [33], and it was the first paper on DL applications in HSI

processing. During unsupervised feature extraction, spatial information was incorporated in order

to enhance the classification performance. The authors have also investigated the performance of

deep belief network (DBN), another unsupervised deep feature learning method for HSI classifica-

tion [34]. Additionally, even considering the relatively limited availability of ground-reference or

other training data, supervised DL algorithms have also been well-explored and have posted gen-

erally impressive results. Convolutional neural networks (CNNs) can been viewed as a milestone

in the DL epoch since its first successful application in target detection [35]. CNNs are similar

to conventional ANNs in that they are all composed of neurons, activation functions, and loss

functions for optimization. The most significant development pertaining to CNNs is that with

CNNs, 2-dimensional (2D) images can be fed directly into the network architecture via the input

layer by introducing convolutional layers, instead of transforming 2D images to one-dimensional

(1D) vectors. Such a property makes image-based processing more efficient and straightforward,

and applying a convolutional layer can utilize spatial contextual information with a specific re-

ceptive domain. However, regarding pixel-based processing of HSIs, CNNs cannot be employed

directly due to its 2D filter-processing characteristic, and preprocessing is needed, including patch

extraction. Hu. et al. [36] applied a 1D CNN (1DCNN) for pixel-based HSI classification, where

a single pixel is considered as a 2D image whose height is equal to 1. Makantasis et al. [37]

proposed a 2D CNN (2DCNN)-based HSI classification method where randomized principal com-
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ponent analysis (R-PCA) was conducted as a dimensionality reduction to reduce the number of 2D

convolutional filters. Li et al. [38] investigated the effectiveness of a three-dimensional (3D) CNN

(3DCNN)-based HSI classification technique, where spectral and spatial features were simultane-

ously exploited without any dimensionality reduction pre-processing.

Recurrent neural networks (RNNs) [39], another novel DL architecture with outstanding adapt-

ability for handling sequence data has recently achieved promising performance, particularly for

natural language processing (NLP) [40][41]. Since multi-temporal information can be obtained

conveniently with the development of modern satellite remote-sensing technology, RNNs and an

improved type of RNN, referred to as long short-term memory (LSTM) [42], were explored to

extract temporal features from multiple images. Ienco et al. [43] utilized RNN and LSTM to

perform land-cover classification on multi-temporal satellite images. In [44], Sharma et al. pro-

posed a patch-based RNN framework incorporating both spectral and spatial information within a

local window to classify Landsat 8 images. Furthermore, single-image-based RNN methods are

also applied to HSIs. Mou et al. [45] proposed a novel RNN-based HSI classification algorithm by

using a parametric rectified hyperbolic tangent function (PRetanh). In this framework, each indi-

vidual pixel in the HSI can be regarded as one sequential feature for the RNN input layer. Wu et

al. [46] investigated the combination of CNN and RNN layers on the spectral feature domain and

employed the convolutional RNN (CRNN) model for HSI classification. The utilization of a CNN

can extract patch-level local invariant information among spectral bands, which provides spatial

contextual features for the following RNN layers. Shi et al. [47] proposed another strategy to

design the sequential data in RNN model instead of taking spectral vector from all bands as one

sequential data, but taking advantage of spatial neighbors. For this method, local spectral-spatial

features were first extracted by exploiting a 3DCNN on a local image patch, and then sequences

were built based on an eight-directional construction.

Although the aforementioned RNN-based DL models have significantly contributed to HSI

processing efforts, there are still some critical problems that need to be addressed. The first issue

is the limitation of training sample. Acquiring sufficient labeled training data for HSI classifica-
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tion is often difficult and time consuming. Moreover, satisfactory DL-based classification accuracy

has always relied upon very large sets of training samples. Therefore, obtaining convincing HSI

classification results by utilizing limited training data for DL models is a challenging task. How-

ever, unlabeled samples, which are relatively easier to acquire than labeled samples, have already

been investigated for HSI classification purposes under semi-supervised classification frameworks

[20][21][22][23]. Such investigations illustrate the potential effectiveness of unlabeled data for

such a purpose. Another critical issue involves the construction of sequential data for the RNN

model. In [45][46], the respective authors analyzed the HSI from the perspective of a sequential

point, meaning that each pixel is considered to be a data sequence since all pixels in the HSI are

sampled densely from the entire spectrum, and they are expected to have dependencies between

different bands. Nonetheless, such dependencies still need to be explored in order to more fully

exploit the integrity of the full spectral signature. In order to distinguish different classes, it is

frequently advantageous to utilize the information encapsulated within the entire reflectance spec-

trum, as is the case with many conventional classification methods. Furthermore, exploiting the

spectral feature directly in the RNN model will introduce more parameters that need to be com-

puted and optimized in the training step.

In this paper, we propose a novel LSTM-based HSI classification framework with spatial sim-

ilarity measurements (SSM), which is inspired by [48], where the LSTM model and the spatial

location are combined simultaneously. First, the sequential feature for each pixel is constructed

by selecting candidates from the whole image based on the similarity between each candidate

and the target pixel. This selection method mainly relies upon two different similarity measure-

ments where spectral and spatial information are considered, namely pixel-matching-based (PM)

spatial similarity measurements and block-matching-based (BM) spatial similarity measurements,

respectively. LSTM entails the significant capability of handling sequential data, and it achieves

outstanding performance in NLP. The proposed similarity-measuring strategies provide an inno-

vative framework to extract sequential features for HSI classification by employing all pixels in

the entire HSI, regardless of whether the pixel candidates to be a given sequential feature are la-
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beled or not. The proposed sequential feature effectively encodes the dependency of the target

pixel with regard to its contexts, where the pixel-level spectral similarities and the patch-, or block-

level contextual similarities are naturally encoded, respectively. More specifically, LSTM assumes

that closer “time steps” (which denote selected pixels/blocks with higher similarity) in general

have stronger feature sharing, while also allowing for longer-term dependency that can account for

non-local similarity and long-tail effects. The motivation for extending one pixel to its sequen-

tial features is essentially to find a new feature embedding of the pixel, which makes reference

to other similar pixels. The action of re-ordering those pixels in terms of their similarity mea-

sures is to ensure that all obtained sequential features admit “comparable” formats in terms of

monotonically-decreasing similarity to the original pixel (i.e., the target pixel, or the given pixel

of interest). In this framework, the influence of unlabeled data in an HSI is enhanced compared

with conventional supervised-learning methods due to our proposed spatial selection, where any

pixel can be selected as a candidate to construct sequential features. In view of global searching

based on the whole image, more supportive pixels are incorporated with a wider receptive do-

main. In addition, spatial contextual information, which has already been utilized to reduce the

“salt-and-pepper” phenomenon in remote-sensing/HSI classification [49], is also investigated here

in the BM-based framework. Similarity measurements of two pixels is implemented by using the

neighboring points of two pixels instead of their spectral feature vectors. Compared with the PM-

based method, the BM-based scheme can obtain more typical sequential feature representation

combining both spectral and spatial features together. In summary, this is the first study to propose

such methods operating over the entire image. This is important because these new, novel methods

can incorporate additional information collected throughout the whole image by exploiting unla-

beled pixels, instead of utilizing only the limited prior information in the form of labeled pixels.

Figure 2.1 illustrates the framework of our proposed method.

The organization of the remainder of this section is as follows: Section 5.2 provides a brief

introduction to the original RNN and LSTM models. Section 5.3 describes the proposed LSTM

classification framework based on pixel matching and block matching. Experimental results are
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Figure 2.1: Architecture of the proposed methods

discussed in Section 5.4. Section 5.5 presents the conclusions.

2.2 Background: RNN and LSTM

2.2.1 RNN

The recurrent neural network (RNN) has shown great capability in time-sequence data pro-

cessing, including NLP [50] and speech recognition [41]. A significant characteristic of a time

sequence is that there is typically a strong relationship between a given sample and the previous

samples. In the hidden Markov model (HMM), which is a widely-utilized sequence model in lan-

guage processing, the probability of a specific state depends only on its previous state, instead of

all previous states. Let X = [x1,x2, · · · ,xt] be the sequence data where t is the label of state.

x1 represents the data at the first state, and xt represents the data at the t state. The Markov

assumption can be formulated as

P (xt|x1, · · · ,xt−1) = P (xt|xt−1), (2.1)

where P (·) expresses the conditional probability. Compared with HMM, RNN is quite similar

with HMM since the computation on the current state relies on the previous state. In contrast

to conventional ANNs, the RNN has a circular processing on the sequential data, which means

that such processing will be applied on each data instance in the sequence, and the result at each
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state relies on the previous state. This circular processing also represents the parameter sharing.

Parameter sharing is a prevalent method to control the number of parameters in a DL scheme.

Still given X = [x1,x2, · · · ,xt] as sequential data, the hidden state st can be represented as

st = fs(Wxsxt +Wssst−1 + bt), (2.2)

where Wxs is the weight matrix from input data to the hidden state, and Wss is the weight matrix

from the current state to the next state, respectively. bt is the bias variable. st denotes the hidden

state at time step t, and fs(·) represents the nonlinear activation function. The calculation of the

output at state t is quite similar with Equation (3.2) as follows:

yt = fy(Wsyst + by), (2.3)

where Wsy is the weight matrix from the hidden state to the output. by is the bias, and fy(·) is the

nonlinear activation function.

The hidden state st can be viewed as the memory of the RNN model, as it is calculated based on

the previous state through forward propagation. Meanwhile, sequential data in the previous states

are taken into consideration as well. In such forward propagation, some parameters, including

three different weight matrices Wxs, Wss, and Wsy, are shared across all steps, which is quite

different from a traditional neural network. The parameter-sharing scheme reduces the number of

trainable parameters, and makes the total computation more efficient.

2.2.2 LSTM

In Equation (3.2), the calculation of the hidden state depends on the previous state. How-

ever, with the increase in the length of the sequence data, gradient vanishing and gradient ex-

ploding will be introduced in this recurrent model due to the forward and backward propagations

of weight matrices. To address this issue, long short-term memory was developed with a more

sophisticated recurrent neuron. In LSTM, each recurrent neuron can be regarded as a cell state.

Similar to the conventional RNN, LSTM also employs the previous state as the input to the current

10



Figure 2.2: The basic structure of an unrolled long short-term memory LSTM unit

state. However, with LSTM, there are three gates, including forget gate, update gate, and output

gate, to control the update of the current neuron. Figure 2.2 illustrates the basic structure of the

LSTM recurrent unit.

The first part of LSTM is the forget gate which determines if the previous state will be retained

or not. Still given X = [x1,x2, · · · ,xt] as sequential data, yt and st are the output and the hidden

state at step t, respectively. The common computation for forget gate ft is as follows:

ft = σf (Wyfyt−1 +Wxfxt + bf ), (2.4)

where the W(·) terms denote the weight matrices, and the b(·) term is the bias variable. σ(·) is the

logistic sigmoid function. The following step is to compute the update gate ut and a new candidate

state value s̃t:

ut = σu(Wyuyt−1 +Wxuxt + bu), (2.5)

s̃t = tanh(Wysyt−1 +Wxsxt + bs), (2.6)

where tanh(·) is the hyperbolic tangent function. Then, the new hidden step st can be updated by
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using the aforementioned equations

st = st−1 × ft + s̃t × ut. (2.7)

Finally, the output gate and the output of the current neuron yields:

ot = σo(Wyoyt−1 +Wxoxt + bo), (2.8)

yt = ot × tanh(st). (2.9)

2.3 Spatial Similarity Measurements in LSTM

For the LSTM model, the sequential feature is a critical issue when training LSTM since deter-

mining the representative feature will improve classification performance and reduce the training-

time cost. In this section, the spatial similarity measurement-based LSTM model will be introduced

as a method to construct sequential features. First, two different strategies utilized in SSM will be

discussed, named PM-based and BM-based schemes. For each of them, when computing the sim-

ilarity between pixels, two distance measurements are investigated, which are Euclidean distance

(EU) and spectral angle mapper (SAM). Furthermore, we will introduce the way of constructing

sequence as the input of LSTM model.

2.3.1 Pixel Matching

Measuring the similarity in the pixel data vectors between different pixels is a common technol-

ogy in many HSI analysis applications, such as endmember-based analysis [51], manifold learning

[52, 53], and graph-based semi-supervised learning [23]. Since HSIs have abundant spectral infor-

mation, typically entailing hundreds of bands, spectral features collected from all bands have the

most discriminative capability to distinguish different ground objects or materials encompassed

within the given image, and have been most widely utilized in HSI classification [54]. In the

pixel-matching scheme, pairwise spectral similarity measurements are applied for all pixels. Sup-

pose we have HSI data X ∈ RL×C×B with L rows, C columns, and B bands. X can be rewritten
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as X = [x1,x2, ...,xN] ∈ RB×N with row-major order, where N is the total number of pixels in

the HSI, which equals L ∗ C. For any pixels xi in X, the distances measured between xi and all

pixels of X will be computed as follows:

dPM(xi,X) = [d(xi,x1), · · · , d(xi,xj), · · · , d(xi,xN)], (2.10)

where d(xi,xj) denotes the distance between xi and xj, and d(·) is the distance calculation func-

tion. There are multiple methods available to compute pairwise distance. In this paper, Euclidean

distance and the spectral angle mapper (SAM) are utilized in the pixel-matching scheme. Eu-

clidean distance is a well-known distance measurement, and its definition is given as follows:

dEU(xi,xj) =
√

(x1i − x1j)2 + (x2i − x2j)2 + ...+ (xBi − xBj )2 = ‖xi − xj‖. (2.11)

The other distance measure adopted in this study is SAM, which is investigated well in endmember-

based HSI classification. It can be defined as follows:

dSAM(xi,xj) = cos−1(
xi

Txj

‖xi‖‖xj‖
). (2.12)

In the following text of this paper, we use d(·)() to represent either the EU or SAM distance

calculation function in the pixel-wise measurement. Therefore, Equation (3.10) can be rewritten

as follows:

dPM(xi,X) = [d(·)(xi,x1), · · · , d(·)(xi,xj), · · · , d(·)(xi,xN)]. (2.13)

2.3.2 Block Matching

Although spectral features provide rich, significant information that facilitates discrimination

of different ground objects in HSI, classification accuracy based on utilization of spectral features

alone is not always satisfactory due to the “salt-and-pepper” phenomenon [49]. Given Tobler’s
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First Law of Geography [55], incorporation of spatial contextual information has attracted increas-

ing attention in the research literature in recent years and has exhibited the capability to reduce

“salt-and-pepper” noise and improve classification performance, including yielding smoother clas-

sification maps. In the current study, we utilize the image patch distance (IPD), proposed in [56],

for similarity measurement that considers local spatial information. The IPD method was devel-

oped based on the Hausdorff distance [57], also referred to as the Pompeiu–Hausdorff distance.

Instead of using spectral features to measure the pairwise similarity between two pixels, spatial

neighbors within the respective local window of such two pixels will also be employed. Let w be

the local window size, and the si represents the block neighborhood, where pixel xi is centered

within the w × w spatial window. All block sets S can be defined as follows:

S = [s1, s2, · · · , sN]. (2.14)

Given ∀si, sj ∈ S, we first calculate the distances between one arbitrary pixel xm from si and

sj and then select the minimum distance as follows:

dmin(xm, sj) = min
xn∈sj

d(·)(xm,xn), (2.15)

where d(·) is the distance-measuring function. Correspondingly, the minimum distance between

one arbitrary pixel xm from sj and si can be computed in the following manner:

dmin(xm, si) = min
xn∈si

d(·)(xm,xn). (2.16)

Therefore, the definition of block matching between si and sj is:

dBM(si, sj) =
w2∑
m=1

(max(dmin(xm, si), dmin(xm, si)))

=
w2∑
m=1

(max(min
xn∈sj

d(·)(xm,xn), min
xn∈si

d(·)(xm,xn))).

(2.17)
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Finally, the ultimate BM measurements are defined as:

dBM(xi,X) = dBM(si,X)

= [dBM(si, s1), · · · , dBM(si, sj), · · · , dBM(si, sN)].

(2.18)

2.3.3 Sequential Feature Extraction

After measuring the pairwise similarity among pixels in the whole image, the sequential feature

for each pixel is extracted so that it can be fed into the RNN model directly. Based on the afore-

mentioned two matching schemes, given one pixel xi ∈ X, its corresponding matching vector

is

dM(xi,X) = [dM(xi,x1), · · · , dM(xi,xj), · · · , dM(xi,xN)], (2.19)

where dM(·) denotes the pairwise matching function introduced in previous sections. Note that

the order of dM(xi,X) is determined only based on its location in the image. To characterize a

representative sequential feature, dM(·) is reordered based on the degree of similarity, and then

the corresponding pixels are selected as the sequential representation. With the definition given in

Equation (3.19), we assume we have one pixel xi ∈ X, its reordered dM(xi,X), named dsf (xi,X),

is built as follows:

dsf (xi,X) = [di1sf , · · · , d
ij
sf , · · · , d

iN
sf ], (2.20)

where dijsf denotes the distance-measuring result between xi and xj. dsf (xi,X) is the ascending

sort of dM(xi,X). More specifically, d1sf is the minimum value among dsf (xi,X), and d2sf is the

second-smallest value. During ascending sorting, pixels most similar to xi among all pixels in the

whole image will be selected as the sequential representation of xi. Note that not all candidates in

dsf (xi,X) will be considered, and the parameter l is defined to control how many candidates can
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be selected or to determine the length of such sequence. The first l pixels with distance-measuring

results from d1sf to dlsf will be selected, and the first elements of this sequence is xi itself since

dM(xi,xi) equals zero, which is the minimum value in dM(xi,X). Given the sequence length l,

the final sequential feature of xi can be defined:

dsf (xi) = [xi1
sf , · · · ,x

ij
sf , · · · ,x

il
sf ], (2.21)

where xij
sf represents xj, whose distance-measuring result is located at the jth place.

2.4 Experimental Setup, Results, and Discussion

2.4.1 Datasets

In this study, two benchmark HSI datasets were utilized, including Pavia University, and Sali-

nas images, as displayed in Figure 2.3 and Table 2.1. The Pavia University image was collected

by the Reflective Optics System Imaging Spectrometer (ROSIS) sensor. It consists of 102 spectral

bands, with a spectral range from 430 nm to 860 nm. The image spatial resolution is 1.3 m, and the

total image size is 610 × 340 pixels. For the Pavia University image extent, nine (9) classes were

considered in the classification experiments. The Salinas image was acquired via the Airborne Vis-

ible/Infrared Imaging Spectrometer (AVIRIS), and the image contains 512 lines × 217 samples,

with the spatial resolution of 3.7 m. After removing 20 noise and water-absorption bands, 204

spectral bands remained for subsequent analysis. The ground-reference data for the Salinas image

entails 16 classes.

2.4.2 Experimental Design

To evaluate the performance of the proposed SSM-based LSTM methods, three algorithms, in-

cluding SVM, 1DCNN [36], and 1DLSTM [45], are investigated as baseline algorithms. For SVM,

the radial basis function (RBF) is utilized as kernel function, and the parameters of SVM are ac-

quired by cross validation. For the following two deep-learning algorithms, they are 1D-based

architectures, where spectral features are fed into the classifier directly. For the 1DCNN, two con-

volutional layers, two max pooling layers, and one fully-connected (FC) layer are selected due
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Figure 2.3: False-color image composites and their corresponding ground-reference data. (a) false-
color composite of Pavia University image bands (R: band 55, G: band 33, and B: band 13);
(b) ground-reference data (with class legend) for the Pavia University image; (c) false-color com-
posite of Salinas image bands (R: band 57, G: band 27, and G: band 17); (d) ground-reference data
(with class legend) for the Salinas image

Pavia University Image Salinas image
Class No. Name Class No. Name

1 Asphalt 1 Brocoli_green_weeds_1
2 Meadow 2 Brocoli_green_weeds_2
3 Gravel 3 Fallow
4 Trees 4 Fallow_rough_plow
5 Painted Metal Sheets 5 Fallow_smooth
6 Bare Soil 6 Stubble
7 Bitumen 7 Celery
8 Self-Blocking Bricks 8 Grapes_untrained
9 Shadows 9 Soil_vinyard_develop

10 Corn_senesced_green_weeds
11 Lettuce_romaine_4wk
12 Lettuce_romaine_5wk
13 Lettuce_romaine_6wk
14 Lettuce_romaine_7wk
15 Vinyard_untrained
16 Vinyard_vertical_trellis

Table 2.1: Class codes for Pavia University and Salinas images
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to the limited available training samples. For the 1DLSTM architecture, three LSTM layers and

one FC layer are adopted. Different model structures are implemented based on different images,

and the specific parameter settings for the Pavia Univeristy and Salinas images are summarized in

Table ??, where the convolutional layer is represented as “Conv(number of kernels)-(kernel size)”,

maxpooling layer is performed as “Maxpooling-(kernel size)”, and LSTM layer is denoted as

“LSTM-(kernel size)”. Regarding the proposed methods, both pixel-matching and block-matching

are investigated, and, for each matching scheme, EU and SAM are employed as distance mea-

surements. Therefore, there are four different LSTM-based classification frameworks investigated

here, named LSTM_PM_EU, LSTM_PM_SAM, LSTM_BM_EU, and LSTM_BM_SAM. For the

LSTM structure, we use four recurrent layers and two fully-connected layers, and the length of the

sequential feature is 20. The size of the recurrent layers are 32, 64, 128, and 256, respectively,

and the size of first fully-connected layer is 50. The second fully-connected layer is applied for

the purpose of classification, and its length equals the number of classes. During training of the

recurrent model, the batch size is set to 20, and the number of epochs is 500.

In order to evaluate classification performance quantitatively, all ground-reference data for each

image is randomly split into training and testing sample sets. In our experiments, we randomly se-

lect 200 samples per class as training data, with the remaining ground-reference data used as test-

ing data. Ten replications of the experiments with such random selections were performed, and all

classification accuracies were averaged across the ten replications. Furthermore, three other quanti-

tative indicators were also adopted for the evaluation, including overall accuracy (OA), average ac-

curacy (AA), and the Kappa coefficient (Kappa) [58]. The pixel-matching and block-matching ex-

periments were implemented on the Texas A&M High Performance Research Computing (HPRC)

system, and the remaining experiments, such as training LSTM models and classification accuracy

assessments, were carried out on a local workstation with a 3.2GHz Intel(R) core i7-8700 Central

Processing Unit (CPU), and a NVIDIA(R) GeForce GTX 1070 graphics card.

18



Pavia University Image Salinas Image

1DCNN 1DLSTM 1DCNN 1DLSTM

Conv(10)-8 LSTM-32 Conv(8)-12 LSTM-32

Maxpooling-2 LSTM-64 Maxpooling-2 LSTM-64

Conv(10)-8 LSTM-128 Conv(8)-12 LSTM-128

Maxpooling-2 Maxpooling-2

FC layer-9 FC layer-16

Table 2.2: Parameter settings for 1D-CNN and 1D-LSTM, where the convolutional layer is
represented as “Conv(number of kernels)-(kernel size)”, maxpooling layer is performed as
“Maxpooling-(kernel size)”, and LSTM layer is denoted as “LSTM-(kernel size)”

2.4.3 Classification Results: Pavia University Image

The first set of experiments is conducted on the Pavia University image. The quantitative results

are shown in Table 3.2, where values in bold are the highest class-specific accuracies and the stan-

dard deviations are also presented, which are calculated based on ten OAs obtained from the afore-

mentioned ten (10) experimental replications. The classified images are displayed in Figure 2.4

for qualitative analysis, which are obtained from the fifth trial. As shown in Table 3.2, the block-

matching-based method LSTM_BM_SAM achieved best performance, with 96.20% OA, 94.65%

AA, and 94.91% Kappa. For the first three benchmark algorithms, the highest OA (i.e., 84.45%) is

obtained from 1DCNN. Regarding our newly-proposed pixel-matching-based LSTM frameworks,

the OA of LSTM_PM_SAM is 84.56%, exhibiting limited improvement relative to SVM, 1DCNN,

and 1DLSTM, and the classification performance of LSTM_PM_EU even decreases relative to

1DCNN and 1DLSTM. However, after incorporating spatial information via similarity measure-

ments, LSTM_BM_EU and LSTM_BM_SAM obtain marked improvements over all non-block-

matching methods, with 95.96% and 96.20% OA, respectively. Within each matching method,

the performance of SAM is always better than that of the Euclidean distance. Regarding the AA

of each class, class 7 (Bitumen, Red) is more difficult to discriminate compared with other classes
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due to the mixed spectral features. The proposed LSTM_BM_SAM improves the original SVM

OA by more than 35%.

From the classification maps shown in Figure 2.4, marked improvements in classification per-

formance are visually apparent. In Figure 2.4b–f, “salt-and-pepper” noise is still obvious due to

the lack of incorporation of spatial contextual information in the classification. Within the red-

rectangle annotation, many class 2 (Meadow, Bright Green) pixels are misclassified as class 6

(Bare Soil, Yellow), and class 3 (Gravel, Brown), as shown in Figure 2.4b–f. However, the clas-

sification maps derived from LSTM_BM_EU and LSTM_BM_SAM (Figure 2.4g,h) are spatially

smooth and generally correctly classified, where most discrete, spurious/misclassified points are

eliminated if they are located within an otherwise homogeneous area. Therefore, combining spa-

tial contextual information can yield marked alleviation of image misclassification. Similar to what

is observed within the red-rectangle annotation, more accurate and homogeneous classification re-

sults can be achieved within the red-circle annotation as well. Such results demonstrate the validity

and capability of combining spatial and spectral features together when measuring the similarity

between two pixels, and the effectiveness of constructing a sequential feature for a specific pixel

based on such similarity between that target pixel itself and candidates from the whole image.

2.4.4 Classification Results: Salinas Image

For the Salinas image, the results are similar to those attained and described in Section 2.4.3.

The quantitative results are shown in Table 3.3, where, again, values in bold are the highest class-

specific accuracies. The OAs of the SAM-based method are lower than those associated with

its corresponding Euclidean distance-based method, and the performance of the block-matching

strategy is always better (more accurate) than that of the pixel-matching scheme, where spa-

tial contextual information is ignored. The best classification performance is still obtained from

LSTM_BM_SAM, with OA = 90.63%, AA = 93.95%, and Kappa accuracy = 89.55%. Class 15

(Vineyard_untrained, Violet) is the class with the lowest accuracy due to the high spectral and the-

matic similarity between this vineyard class and other grape fields, and the best classification result

for this class is acquired from 1DCNN (among SVM, 1DCNN, and 1DLSTM), with 59.34% accu-
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Figure 2.4: Classification maps for the Pavia University image from the fifth trial: (a) ground-
reference map; (b) SVM, with OA = 80.04%; (c) 1DCNN, with OA = 78.32%; (d) 1DLSTM, with
OA = 83.72%; (e) LSTM_PM_EU, with OA = 83.81%; (f) LSTM_PM_SAM, with OA = 86.78%;
(g) LSTM_BM_EU, with OA = 93.18%; and (h) LSTM_BM_SAM, with OA = 96.01%. The red-
rectangle and red-circle annotations represent sample areas of interest, discussed in the text
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racy. However, LSTM_BM_EU and LSTM_BM_SAM markedly improve classification accuracy

by utilizing spatial features, where class 15 accuracies increase by 7.99% and 10.51%, respectively,

compared with the 1DCNN result.

Manual interpretation of the classification maps shown in Figure 2.5 enables us to deter-

mine why class 15 (Vineyard_untrained) entails the lowest OA. Note that many class 15 (Vine-

yard_untrained, Violet) pixels are misclassified as class 8 (Grapes_untrained, Baby Blue). Pixel-

matching-based methods, including LSTM_PM_EU and LSTM_PM_SAM, still yield much dis-

crete noise within the red-circle annotation in Figure 2.5. However, LSTM_BM_EU and LSTM_BM_SAM

produce more homogeneous and smoothed classification results for the Grapes_untrained class, es-

pecially within the red-circle annotation, illustrated in Figure 2.5g,h. Within the red-rectangle an-

notation, we can see that it is difficult to classify class 10 (Corn_senesced_green_weeds, Brown),

for example, and many pixels are misclassified in Figure 2.5b–f. However, such misclassification

is markedly minimized when applying block-matching-based methods, i.e., LSTM_BM_EU (Fig-

ure 2.5g) and LSTM_BM_SAM (Figure 2.5h). Such improvement illuminates the advantages of

utilizing spatial contextual information when measuring the pixel-wise distances, especially when

it is challenging to discriminate between two classes with very similar spectral features.

2.4.5 Parameter Sensitivity Analysis

The influence of different parameter values associated with our proposed methods is investi-

gated in this section, including the length of sequential feature l, and the size of the local win-

dow w, utilizing block-matching-based methods. The effect of varying the value of l is tested

on LSTM_PM_EU, LSTM_PM_SAM, LSTM_BM_EU, and LSTM_BM_SAM, and the effect of

varying the value of w is tested using LSTM_BM_EU and LSTM_BM_SAM.

For the first parameter, l, five different lengths (10, 20, 30, 40, and 50) are investigated, while

the window size utilized in LSTM_BM_EU and LSTM_BM_SAM is fixed at 5. The results

are shown in Figure 2.6. Regarding the Pavia University data, the best performances for those

four proposed methods are obtained with different sequential feature lengths (Figure 2.6a). Se-

quential feature lengths of 20 and 10 result in the highest classification OAs for LSTM_PM_EU
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Figure 2.5: Classification maps of Salinas image from the fifth trial: (a) ground-reference
map; (b) SVM, with OA = 83.38%; (c) 1DCNN, with OA = 87.00%; (d) 1DLSTM, with
OA = 86.85%; (e) LSTM_PM_EU, with OA = 86.21%; (f) LSTM_PM_SAM, with OA = 87.13%;
(g) LSTM_BM_EU, with OA = 90.02%; and (h) LSTM_BM_SAM, with OA = 90.72%. The red-
circle and red-rectangle annotations represent sample areas of interest, discussed in the text
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(82.70%) and LSTM_PM_SAM (86.68%), respectively. For the two block-matching-based meth-

ods, the highest OA for LSTM_BM_EU is 96.54% (when l is 50), and setting l to 20 yields the

highest-accuracy result for LSTM_BM_SAM. For the pixel-matching-based algorithms, the clas-

sification performance of the Euclidean-distance measure is always better than that of SAM. Fur-

thermore, selecting a smaller sequential length (i.e., 10 or 20) is suitable for these two methods.

Regarding the block-matching-based methods, Euclidean distance performs better than SAM, ex-

cept for l is 20. Smaller sequential lengths used with SAM result in higher OAs, but such lengths

are not suitable when using the Euclidean distance measure. Nevertheless, the difference in the

resultant classification accuracies when employing these two distance measurements in the block-

matching scheme is smaller than what it is in pixel-matching scheme. Moreover, the standard

deviations for those four methods, across the five sequential lengths, are 1.0020, 1.4280, 0.5342,

and 0.4805, for LSTM_PM_EU, LSTM_PM_SAM, LSTM_BM_EU, and LSTM_BM_SAM, re-

spectively, which illustrates that, for the Pavia University data, the block-matching scheme is less

sensitive than the pixel-matching method to the sequential-length parameter value.

For the Salinas data, the best choices for l vary depending on the algorithm. As shown in

Figure 2.6b, the length of 40 yields highest accuracies in LSTM_PM_EU and LSTM_BM_SAM.

LSTM_PM_SAM achieves best OA when utilizing 20 as the sequential length. Length of 30 results

in the highest OA in LSTM_BM_EU. Different from what we observed from Figure 2.6a, within

the pixel-matching-based schemes, SAM always performs better than Euclidean distance except

l = 20. Additionally, smaller length provides a better performance for LSTM_PM_SAM (l = 20)

but not applicable in LSTM_PM_EU. For the blocking-matching schemes, SAM is the more robust

distance measurement since it performs better at four lengths (10, 20, 40, 50), and obtains the

highest accuracy with l = 40. Euclidean distance only yields better result compared with SAM

at the length of 30 and that is the highest OA among all lengths. For the standard deviations of

those four methods, they are 0.3658, 0.4739, 0.9334, and 0.8140, respectively, which exhibits that

pixel-matching-based methods is less sensitive than block-matching-based ones. However, due to

the higher OAs obtained by LSTM_BM_EU and LSTM_BM_SAM, block-matching schemes are
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Figure 2.6: Analysis of different sequential feature lengths. (a) OAs based on the Pavia University
image data; and (b) OAs based on the Salinas image data

still the applicable methods to classify the Salinas data.

Another investigation of parameter l is its influence on the training time of the LSTM model

since a larger l will introduce more parameters to be learned in the LSTM model and will re-

sult in more processing time. The training times of different approaches are given in Table ??.

Those training times are the average values obtained from the 10 replications. Different methods

with the same l have similar training times for both the Pavia University and Salinas images. How-

ever, the training time differs when a different l is applied within one LSTM model. As an example,

consider the application of the LSTM_BM_SAM to the Pavia University image; the training time

is 32.00 min when l is 10. The training time increases along with utilization of larger l, and it

reaches 142.07 min, which is more than four times the minimum training time consumption. For-

tunately, BM-based methods are less sensitive compared with PM-based methods regarding the

selection of different l, which can be obtained from Figure 2.6. To balance the computation time

cost and classification performance, choosing a smaller l (e.g., 10 or 20) is an appropriate strat-

egy for our proposed methods, even though PM-based methods are relatively more sensitive with

respect to parameter l.

For the second parameter, w, four different window sizes (5 × 5, 7 × 7, 9 × 9, 11 × 11) and

two methods (LSTM_BM_EU and LSTM_BM_SAM) are chosen for the comparison experiments,
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Figure 2.7: Analysis of different window sizes. (a) OAs based on the Pavia University image data;
and (b) OAs based on the Salinas image data

where l is fixed at 20. These results are shown in Figure 2.7. For the Pavia University data-based

results (Figure 2.7a), the overall classification accuracy of LSTM_BM_SAM is higher than that of

LSTM_BM_EU. LSTM_BM_EU obtains a higher OA only when w is set at 7, and that is also the

best accuracy across all four window sizes. LSTM_BM_SAM achieves the best performance with

a window size of 5 (the smallest window size considered), and the OA decreases as the window

size increases. Regarding the Salinas data-based results, given in Figure 2.7b, the classification

accuracies for LSTM_BM_SAM are still higher than those for LSTM_BM_EU, and both of those

two methods realize the most accurate results with a window size of 5. Compared with parameter

l, the optimal value for w is easier to determine in order to achieve a more accurate classifica-

tion result. It is predictable that incorporating local spatial contextual information is likely to help

better measure the similarity between two pixels, yielding improved classification performance.

However, with increasing window size, too many neighboring pixels are included in the calcula-

tion, resulting in over-smoothed classification maps, and class spatial boundaries are not preserved.

As a consequence, selection of a relatively small window size should introduce sufficient—though

not too much—spatial information, leading to higher classification accuracies.
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2.5 Conclusions

In this paper, we propose a novel LSTM HSI classification framework, where unlabeled data

are well-exploited in order to construct sequential features from a single HSI. Instead of using spec-

tral features as the sequential data structure of LSTM, similar pixels collected from the entire image

are used to construct the respective sequential features. Specifically, when constructing a sequen-

tial feature, the similarity between a target pixel and all other pixels in the image is considered.

To better depict the similarity between two pixels, two similarity-measuring strategies—pixel-

matching and block-matching—are adopted here, where individual spectral features are utilized

in the pixel-matching-based schemes, and both spatial and spectral information are employed in

block-matching-based schemes. Such schemes take full advantage of unlabeled data in the HSI,

as labeled data are almost always limited in nature and difficult to acquire for HSI classification.

Moreover, block-matching-based schemes also consider spatial contextual information in the clas-

sification process, and it is demonstrated in this research that such schemes are effective in increas-

ing HSI classification. Our proposed methods produce markedly more accurate results when oper-

ating on two well-known, extensively-studied HSI datasets compared with other selected baseline

algorithms. Particularly regarding the Pavia University image, the LSTM_BM_SAM achieves the

best classification performance, with 96.20% OA, which is 11.75% higher than the best result ob-

tained by the three benchmark algorithms, which in this case was 1DCNN, with 84.45% OA. Fur-

thermore, that OA is also higher than those from other three proposed methods (LSTM_PM_EU,

LSTM_PM_SAM, and LSTM_BM_EU), with an OA increase of 13.50%, 11.64%, and 0.24%, rel-

ative to those respective methods. Additionally, in these experiments, BM-based methods always

yield better results compared with their corresponding PM-based methods, which demonstrates the

effectiveness and capability of the utilization of spatial contextual information.

Regarding the proposed block-matching method, fixed window sizes are applied for classifica-

tion. In the future, we will explore adaptive window-size applications, intended to eliminate the

phenomenon of over-smoothing in the classified images and to preserve the respective boundaries

between different classes. In addition, measuring pixel-wise similarity from the entire HSI more
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efficiently still needs to be investigated in future research.

The proposed methods in this study combine similarity measurements and recurrent neural

networks, and, although in the present study we focus on encoding spatial contextual information,

future work may involve implementing these methods in a temporal context (i.e., in a true multi-

temporal remote-sensing context).
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3. FAST SEQUENTIAL FEATURE EXTRACTION FOR RECURRENT NEURAL

NETWORK-BASED HYPERSPECTRAL IMAGE CLASSIFICATION1

3.1 Introduction

Remote sensing (RS), a critical technology for large-scale-monitoring Earth observing systems

(EOS), plays an important role in Earth science and other related fields where physical, biological,

and chemical properties of the Earth can be characterized in a non-contact manner. Hyperspectral

remote-sensing images (HSIs), which are collected from a specialized sensor where the spectral

width of each band is relatively narrow compared with other optical RS systems, can provide

approximately continuous spectra that can be utilized to identify subtle differences among objects

with similar spectral reflectances and have been introduced successfully in various sub-fields [59,

60, 61, 62].

For those aforementioned application domains, classification is a widely-used technology for

processing and analyzing HSIs, where each pixel is assigned to a predefined semantic label. Super-

vised classification models are the most common, heavily-investigated methods in the hyperspec-

tral remote-sensing community, including k-nearest neighbor (k-NN) [9, 8], random forests (RFs)

[63], neural networks [18, 19] support vector machines (SVMs) [11, 13] and sparse representation

[14, 64, 65]. Although those algorithms have been demonstrated to have strong capability for HSI

classification, obtaining enough training samples for classification purposes is still a challenging

task due to the difficulty of labeling using either field data or visual/manual interpretation. Accord-

ingly, how to obtain acceptable or high classification performance with limited training samples is

a key issue, which has attracted increasing attention over the past decade.

An intuitive means of addressing this small-sample problem is to use abundant unlabeled data,

which can be easily acquired from the HSI. One popular approach is semi-supervised learning,

1Reprinted with permission from “Fast Sequential Feature Extraction for Recurrent Neural Network-based Hy-
perspectral Image Classification ” by Andong Ma, Anthony M Filippi, Zhangyang Wang, Zhengcong Yin, Da Huo,
Xiao Li, and Burak Güneralp, 2020. IEEE Transactions on Geoscience and Remote Sensing, 59(7), Page 5920-5937,
©2020 IEEE.
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such as graph-based semi-supervised learning [66, 23], and transductive SVM (TSVM) [21, 67],

where limited training samples and abundant unlabeled samples are utilized simultaneously for

classification model training. Similarly, to better characterize the capability of unlabeled samples

in model training, active learning is another powerful tool to address the small-sample problem,

where more informative samples are selected for training [68, 69, 70]. With the help of those

informative samples collected from active learning, the classification performance is likely to be

boosted in an iterative manner with very limited training samples.

The other shared strategy to address the small-sample problem is not only focusing on the

increments in the number of training samples, but to also enhance the capability of feature rep-

resentation for the limited number of available training samples. Apart from the conventional

spectral features, spatial features, which are always taken as the complementary information along

with spectral features, can also be obtained simultaneously from HSIs due to the intrinsic prop-

erties of images. Given Tobler’s First Law of Geography [55], neighboring pixels with similar

spectra are more likely to belong to the same class than those located further away. Thus, a mul-

titude of spectral-spatial feature-combination and classification methods have been proposed, in-

cluding multi-kernel methods [71, 72, 73], multi-feature fusion-based methods [74, 75, 76], and

segmentation-based methods [77, 78]. By utilizing spatial features for HSI classification, clas-

sification accuracy can be enhanced via minimization of “salt-and-pepper" noise. However, the

aforementioned spectral-spatial features are still classified as “shallow," or “low-level," features,

and the resulting spectral-spatial features can frequently introduce the curse of dimensionality and

an over-smoothing problem, especially for those pixels around the boundaries between different

classes. As a result, extracting more representative features constitutes a HSI classification prob-

lem that warrants further investigation.

Over the past decade, deep learning (DL), a sub-field of artificial intelligence where “deeper"

and highly-abstracted features are extracted and encoded, relative to conventional methods, has

attracted increasing attention in the fields of computer vision and image processing. Such algo-

rithms have also been introduced successfully in the remote sensing and HSI communities. Chen
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et al.[33] proposed a stacked autoencoder (SAE)-based HSI classification scheme, and it is consid-

ered to have been the first attempt of applying deep learning to the problem of HSI classification.

Afterwards, a great number of DL-based models have been investigated and proposed, including,

deep belief networks (DBNs), one-dimensional convolutional neural networks (1D_CNNs) [36],

2D_CNNs [37], 3D_CNNs [38], recurrent neural networks (RNNs) [45], and generative adversar-

ial networks (GANs) [79].

Among the aforementioned well-known DL algorithms, RNN, which has distinguished adapt-

ability and capability of handling sequence data, has been drawing increasing attention for re-

mote sensing, including HSI, classification. Unlike CNNs and other neural network-based models,

RNNs are able to process sequential inputs by having a recurrent hidden state whose activation

at each step depends on that of the previous step. The manner in which RNN-based models have

been utilized in the RS community has been to classify multi-temporal remote-sensing images,

given the intrinsic sequential features that exist in such images collected at different times. Ienco

et al.[43] investigated the utilization of long short-term memory (LSTM), which is an improved

type of RNN originally proposed in [42], on the classification of very high spatial-resolution im-

agery with limited temporal depth. Fig. 3.1 illustrates the fundamental neuron structure of LSTM.

In [80], Minh et al. proposed LSTM- and gated recurrent unit (GRU)-based classification mod-

els for vegetation-quality mapping using synthetic aperture radar (SAR) imagery. However, for

the HSI classification task, how to extract such sequential features from an individual image is a

critical issue since an individual image itself does not contain multi-temporal features.

To address this issue, many researchers have explored and proposed different solutions. Mou

et al.[45] developed a deep RNN-based HSI classification framework where a spectral feature

vector collected from all bands for each given pixel was employed as its sequential feature for the

RNN input layer. Wu et al.[46] combined CNN and RNN to extract more discriminative features

for classification. The dependencies between spectral bands were captured jointly by utilizing

both CNN and RNN. Hang et al.[81] proposed a cascaded RNN (casRNN) model to encode the

redundant and complementary information of spectral features obtained from a HSI. Instead of
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Figure 3.1: Analysis of different window sizes. (a) OAs based on the Pavia University image data;
and (b) OAs based on the Salinas image data

utilizing the whole spectral-feature vector as a single sequence for an RNN input layer, this model

employed a two-layer RNN. The first-layer RNN was applied to several sub-sequences split from

the original spectral vector to eliminate redundancies between adjacent bands, and the second-

layer RNN was used for encoding the complementary information between nonadjacent bands.

Shi et al.[47] also proposed a CNN-RNN-based HSI classification method. Instead of applying a

CNN on 1D spectral-feature vectors, as in [46], a 3D_CNN was utilized to extract spatial-spectral

features from each 3D cube, which was generated based on each single pixel and its neighboring

pixels. Then sequential features in eight directions were constructed, which were regarded as input

features for an RNN model. Zhang et al.[82] proposed a novel strategy to employ surrounding

pixels within a local window for sequential feature construction, where similarities between those

neighboring pixels and the central target pixel were calculated, and neighboring pixels were re-

ordered based on calculated similarities in a descending manner.

It is therefore evident that two main strategies are exploited to deal with sequential feature

extraction from an individual image. The first implementation is to utilize the spectral feature

vector of the target pixel on its own since the spectral (band-to-band) correlation and variability
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are similar to the temporal variability of a sequential signal [45]. The other strategy is to extract

pixels that are similar to the target pixel and construct its sequential feature. In our previous

work [83], to better characterize the sequential feature for each pixel, a similar-pixels selection

is implemented across the whole HSI image, where all pixels in an individual HSI are utilized

to calculate similarities between them and the target pixel. Then only the first several “similar"

pixels are selected to construct the sequence by re-organizing the spectral vectors of those selected

“similar" pixels in a descending manner based on their similarities. Even though experimental

results illustrate that a promising classification performance is achieved with that proposed method

compared with other standard algorithms, the computation time required remains a critical issue,

especially for large-scale images (i.e., in this context, images containing a large number of pixels)

since all pixels in a HSI need to be considered during similarity measurements involving each target

pixel. Thus, the issue of how to develop a more time-efficient sequential feature-construction

method within RNN-based models still needs more investigation for a single-HSI classification

purpose.

In this article, building upon our previous work [83], we propose an improved single-image-

based sequential feature extraction for a LSTM-based HSI classification model. Specifically, sim-

ilar pixels for one target pixel will not be selected in the range of the whole HSI, but rather from

similar segments generated by an object-based segmentation map, which will reduce searching

time cost for similar-pixels selection. As a very important image-processing technology, segmen-

tation has been investigated and applied in remote-sensing (including HSI) classification due to its

effective capability of extracting relatively homogeneous areas, or segments, that will markedly

alleviate “salt-and-pepper" noise compared with pixel-based classification methods [84, 85, 86].

Such relatively homogeneous segments provide an excellent data source that helps to reduce the

searching range from the whole-image pixel set to the segments set. For our proposed methods,

two-phase similarity measurements are designed: 1) similarity measurements are first applied at

the segments level in order to select the similar segments from the whole HSI; and 2) within those

selected similar segments, similar pixels are then selected to construct sequential features in the
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same manner as what we proposed in [83]. When measuring similarities between different seg-

ments, not only spectral features, but also geometry and shape features derived from segments

themselves are taken into consideration. Moreover, different similarity-matching schemes, such

as pixel-matching (PM) and block-matching (BM) [83], are still under evaluation as part of our

proposed methods in the present study in order to investigate the influence of spatial-contextual in-

formation on sequential-feature construction and classification performance. Compared with [83],

the search range is shrunk from pixel-wise comparisons to segment-wise comparisons first, and

pixel-wise comparisons only occur within similar segments. For the specific segment that contains

the target pixel, more similar pixels will likely be included in the similarity calculation. In contrast

to using a square local window with a fixed kernel size, use of a segment for constructing a se-

quential feature will translate into better delineations of boundaries, and hence, characterizations

of physical ground objects.

The main contributions of this article are summarized as follows:

1) We propose two-phase similarity measurements by utilizing object-based segmentation to

facilitate choosing similar pixels from a HSI in a much more time-efficient manner, building upon

preliminary research findings reported in [87]. To our knowledge, this is the first time that a

segmentation map has been incorporated into two-phase similarity calculations in order to select

similar pixels across an entire HSI and build sequential features for the LSTM model. Benefiting

from this innovative approach, the algorithms proposed here achieve tremendous improvements

in terms of computational time cost compared with our previous work [83]. 2) In the first phase,

during the similar-segments selection, both the current segment that contains the target pixel, as

well as other similar segments that do not contain the target pixel are investigated in the present

study. Often, the local segment provides more “similar" pixels and more robust spatial features

than non-local segments, but few studies provide insights on or investigate the effects of non-local

spatial-contextual information on similarity calculations and HSI classification.

3) The influence of different scales for object-based segmentation on similar-segments selec-

tion is also investigated in this article. Large segmentation-scale parameter values yield a smaller
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number of segments, which aids in reducing the computational time cost for both similarity mea-

surements and sequential-feature construction. However, those larger segments will tend to be less

homogeneous, which means that some dissimilar pixels may be incorporated into the similarity

calculations. The current research informs on the nature of this relationship between segment size

and classification accuracy in the context of the proposed methods.

The rest of this article is organized as follows: Section 5.2 introduces some background per-

taining to our research, including objected-based segmentation and LSTM methods. Section 5.3

describes the proposed sequential feature extraction and LSTM classification framework. In Sec-

tion 5.4, experimental results using three benchmark HSIs are discussed. Finally, conclusions and

potential suggestions are presented in Section 5.5 for future work.

3.2 Related work

3.2.1 RNN and LSTM

Compared with traditional neural networks (NN) with a feed-forward structure, the RNN is able

to encode sequential inputs via a series of hidden states whose activation at each step depends on

its previous step. Basically, a “recurrent" architecture is applied to each element within a sequence

in a recurrent manner, where its output at one state will be fed into the computation of its next state.

Such a design allows the RNN to encode previous states that persist in the internal dependencies

between different states. Given x = [x1,x2, · · · ,xL] as the sequential data where L denotes the

sequential length of x. At time step of t, hidden state st and its output yt can be calculated as

st = fs(Wssst−1 +Wxsxt + bt) (3.1)

yt = fy(Wsyst + by) (3.2)

where Wss, Wxs, and Wsy represent weight matrices that are utilized for calculations from the

previous state to its current state, from the input to the current hidden state, and from the current

hidden state to the output, respectively. bt and by denote bias variables. fs(·) and fy(·) are the
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activation functions.

Although promising performance has been achieved by using a RNN, its shortcomings are still

noticeable, and they will limit its further application, especially if the length of the input sequence

is large. Due to the simple structure of the recurrent neuron, vanishing or exploding gradients may

be introduced during back propagation [88]. Long short-term memory (LSTM), an improved type

of RNN, is capable of learning long-term dependencies by developing more sophisticated recurrent

neurons. Similar to the conventional RNN, LSTM also incorporates the previous state to update

the current state. The improvement comes from adding three “gates" including a forget gate, an

input gate, and an output gate. These three "gates" can regulate information flow into and out of

the current state and control the updates of the recurrent neuron. Still let x = [x1,x2, · · · ,xL] be

the sequential input of LSTM. At time step t, the computations of forget gate ft and input gate it

are designed as follows:

ft = σf (Wyfyt−1 +Wxfxt + bf ) (3.3)

it = σi(Wyuyt−1 +Wxixt + bi) (3.4)

where W(·) represents weight matrices where the different subscripts represent different data-flow

directions in the LSTM neuron, and b(·) are bias variables where the different subscripts denote

different gates to which they belong. yt−1 denotes the output at time step t − 1. σ(·) are sigmoid

functions where the different subscripts represent different gates to which they belong. For further

details on notation, see [83]. Then new hidden state ct is updated as follows:

c̃t = tanh(Wysyt−1 +Wxsxt + bs) (3.5)

ct = ct−1 � ft + c̃t � it (3.6)

where tanh is the hyperbolic tangent function, � stands for the element-wise product, and c̃t

denotes the updated component of the hidden state. Finally, output gate ot and the output of the
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current recurrent neuron yt are obtained by

ot = σo(Wyoyt−1 +Wxoxt + bo) (3.7)

yt = ot � tanh(ct) (3.8)

3.2.2 Object-based Segmentation

In remote-sensing image and HSI classification, object-based classification is a critical tech-

nique due to its promising capability of minimizing or eliminating discrete misclassification noise

compared with traditional pixel-based classification methods. As a preprocessing step, segmen-

tation can be adopted in order to segment a whole image into multiple adjacent segments that

encapsulate groups of homogeneous pixels. In this article, fractal net evolution approach (FNEA)

segmentation, a well-known segmentation method which was proposed by Baatz and Schäpe [89],

is utilized to construct a segmentation map of a HSI. FNEA was proposed based on a region-

growing algorithm where both spectral and geometric information were integrated. The main

objective of FNEA is to minimize the heterogeneity of all segments during iterative computation.

The key point of FNEA is to measure the heterogeneity of two segments before and after merging

them to minimize overall heterogeneity. In this context, merging two segments means combining

two segments into a single larger segment. Specifically, for one segment s in a segmentation map,

its heterogeneity h is formulated as follows:

h = wspechspec + wshphshp (3.9)

where wspec and wshp denote weighting variables for spectral feature and shape feature, respec-

tively, and the sum of those two weights is equal to 1. hspec represents spectral heterogeneity,

and hshp is shape heterogeneity. To measure the spectral heterogeneity of a single segment s, it is

characterized as follows:

hspec =
b∑

k=1

wkσk (3.10)
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where b is the number of spectral bands in a HSI, wk and σk represent the weight and the standard

deviation of band k, respectively. Given two adjacent segments si and sj in a segment map, the

spectral heterogeneity of a merged segment is defined as follows:

hspec =
b∑

k=1

wk(nmσ
m
k − (niσ

i
k + njσ

j
k)) (3.11)

where nm is the number of pixels in a merged segment, σm
k represents the standard deviation of

band k in that merged segment, ni and nj denote the number of pixels in those two segments si

and sj , and σi
k and σj

k are the standard deviations of band k in segments si and sj .

The definition of shape heterogeneity, hshp, is formulated as follows:

hshp = wcompacthcompact + (1− wcompact)hsmooth (3.12)

where wcompact is a weighting parameter for compactness heterogeneity, and hcompact and hsmooth

denote compactness heterogeneity and smoothness heterogeneity, respectively. Following the simi-

lar definitions in (3.10) and (3.11), the formulations for compactness and smoothness heterogeneity

are provided by considering single segments and merged segments separately as well. Regarding

a single segment s, its hcompact and hsmooth are defined as follows:

hcompact =
p√
n

(3.13)

hsmooth =
p√
r

(3.14)

where p is the perimeter of s, n is the number of pixels in s, and r represents the perimeter of

the bounding box of s. By considering two adjacent segments, si and sj , that are under merging

consideration, the definitions of hcompact and hsmooth are computed by

hcompact = nm
pm√
nm

− (ni
pi√
ni

+ nj
pj√
nj

) (3.15)
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Figure 3.2: Architecture of proposed SSFE-based LSTM HSI classification framework

hsmooth = nm
pm√
rm
− (ni

pi√
ri

+ nj
pj√
rj
) (3.16)

where nm is the number of pixels in a merged segment, pm is the perimeter of that merged segment,

rm is the perimeter of the bounding box of the merged segment, ni and nj are the pixel number of

si and sj , and ri and rj represent the perimeters of the bounding boxes of si and sj , respectively.

3.3 Improved single-image sequential feature extraction

In [83], a single-image sequential feature extraction for a LSTM model for HSI classification

was proposed. The main idea is to extract similar pixels from the whole HSI by calculating pixel-

wise similarities and construct the sequential feature by re-ordering the spectral vectors of those

selected similar pixels in a descending manner. However, such computation on global similarity

measurements is exhaustive and very time-consuming, as such global searching and calculation is

repeated for all pixels in a HSI. In this section, an improved single-image sequential feature extrac-

tion (SSFE) method is introduced. The method exploits an object-based segmentation map, where

similar segments are first selected, and then similar pixels that will be utilized to construct sequen-
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tial features are chosen only from those similar segments. More specifically, we have designed

three different novel strategies to build sequential features which are discussed in this section, re-

ferred to as local segment-based SSFE (LS3FE), non-local segment-based SSFE (NS3FE), and

mixed segments-based SSFE (MS3FE). Fig. 3.2 provides a basic workflow for our proposed

framework.

3.3.1 Segment Feature Extraction

Suppose we have a HSI image X ∈ Rr×c×b with r rows, c columns, and b bands and a segment

set collected from segmentation map S = {s1, s2, · · · , sm−1, sm} where m denotes the number of

segments. Originally, for the ith segment si ∈ Rpi×b, where pi is the number of pixels comprising

si, and b represents the spectral bands. However, to better characterize the properties of segments,

especially during similarity measurements between different segments, we propose in this article

that both spectral features and geometry features are employed and incorporated simultaneously.

For spectral features, a common approach is to calculate mean and standard deviation values,

band-by-band. Due to the high dimensionality of a HSI, extracting mean and standard deviation

values across all bands will introduce more feature layers than that of the original HSI. Therefore,

we implement dimensionality reduction first to reduce the high dimensionality of segments-based

spectral features. In this article, principal component analysis (PCA) is utilized for dimensionality

reduction, and only the first several principal components (PCs) are chosen as new spectral features

of segments. The other important features characterizing those segments are the geometry features,

which have been widely exploited in objected-based segmentation and classification. Those geom-

etry features extracted from segment boundaries directly do not rely on the spectral features of

the segment and will provide more representative spatial features in terms of the shape and spatial

extent of those segments. Regarding the new spectral features generated from first several PCs,

they include mean values of each PC image, standard deviation of each PC image, and brightness

derived from the original image bands [90]. The geometry features consist of area, border length,

the ratio between length and width, number of pixels, asymmetry, compactness, density, main di-

rection, and rectangular fit [90]. After obtaining such new spectral and geometry features, for the
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ith segment si, its feature representation can be formulated as follows:

si = concat(sspeci , sgeoi ) (3.17)

where concat(·) denotes a concatenation process, and s
bspec
i ∈ Rb1 and s

bgeo
i ∈ Rb2 represent

extracted spectral and geometry features, respectively. Also, b1 and b2 are the number of new

spectral and geometry features, respectively. In the remaining parts of this article, we use si to

represent the combined spectral and geometry features of the ith segment.

3.3.2 Segments-based Similarity Measurements

Once we obtain the representing features of the segments, the next step is to calculate the sim-

ilarities between different segments. Given one target pixel xt ∈ st where st is the corresponding

segment that contains xt, we measure the similarities by calculating distances between the current

segment st and other segments in order to select the most similar segments. The distances between

st and all segments in S are defined as follows:

dseg(st,S) = [d(st, s1), · · · , d(st, sj), · · · , d(st, sm)] (3.18)

where d(st, sj) represents the distance between segments st and sj and d(·), denotes the distance

calculation function. Measuring similarity between different segments can be regarded as mea-

suring the distance between two feature vectors of those two segments. In this article, Euclidean

distance (EU) is employed as the distance calculation function to assess the segment-wise similar-

ity. The definition of EU between two segment feature vectors st and sj is given as follows:

dEU(st, sj) =

√√√√ bs∑
k=1

(skt − skj )2 (3.19)

where bs = b1 + b2 is the number of extracted spectral-geometry features defined in Section 3.3.1.

In order to extract similar segments of st, the calculated distance list dseg(st,S) needs to be
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Figure 3.3: The proposed three SSFE methods : (a) Local segment-based SSFE; (b) Non-local
segment-based SSFE; and (c) mixed segments-based SSFE

sorted in an ascending manner due to the intrinsic property of EU distance, which is formulated as

follows:

dseg_sort(st,S) = sort(dseg(st,S))

= [dEU(st, s
sort_1
t ), · · · , dEU(st, ssort_mt )]

(3.20)

where sort(·) represents a sorting function, ssort_1t denotes the most similar segment compared

with st, and ssort_mt is the least similar segment. Based on (3.20), the sorted segments set, which is

composed based on similarities, will be built simultaneously and can be defined as follows:

sseg_sort
t = [ssort_1t , · · · , ssort_mt ] (3.21)
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3.3.3 Improved Single-image Sequential Feature Extraction

In this section, our ultimate goal is to extract a sequential feature representation F ∈ Rp×l×b

for all pixels in a HSI, where p = r × c denotes the number of pixels in the whole HSI, and l

represents the sequence length. Once similar segments sseg_sort
t relative to the target segment st

are obtained, the next step is to extract pixels that are similar to target pixel xt from those similar

segments for sequential feature construction. That comprises a significant difference between our

previous work [83] and this article; the shrinkage of the similar-pixel searching domain from all

pixels in the HSI to those similar segments is the primary innovation of the present work. As

the pixel-wise similarity calculation is implemented segment-by-segment, let st be an example

segment for searching for similar pixels. The distance between xt and all pixels within st can be

defined as follows:

dpx(xt, st) = [d(xt,x1), · · · , d(xt,xj), · · · , d(xt,xn_px)] (3.22)

where n_px denotes the number of pixels in st and d(·) represents the distance calculation function.

Regarding the distance calculation and extraction of similar pixels, based on [83], pixel matching

(PM) and block matching (BM) are still utilized here as the matching schemes for pixel-wise

similarity measurements. Within the PM scheme, spectral angle mapping (SAM) is adopted in this

article. Given ∀xi,xj ∈ X, its SAM distance is formulated as follows:

dSAM(xi,xj) = cos−1(
xT
i xj

‖xi‖‖xj‖
). (3.23)

For the BM scheme, the image patch distance (IPD) proposed in [56] is also utilized as the

similarity calculation function whose inputs are image patches centered by two target pixels in-

stead of individual spectral vectors. To maintain consistency, we still use the SAM scheme when

calculating IPD between different blocks for BM-based methods. Once a particular distance cal-

culation function is applied, the sorted dpx(xt, st) and sorted pixel sets xpx_sort
t are characterized in
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a manner similar to that described in (3.20) and (3.21)

dpx_sort(xt, st) = sort(dpx(xt, st))

= [d(xt,x
sort_1
t ), · · · , d(xt,x

sort_n_px
t )]

(3.24)

xpx_sort
t = [xsort_1

t , · · · ,xsort_n_px
t ] (3.25)

where xsort_1
t represents the most similar pixel to xt in st and xsort_n_px

t is the least similar pixel.

Another key point pertaining to our proposed method is how many similar segments and what

kind of segments will be incorporated to calculate pixel-wise similarities. Here we propose three

different strategies, graphically illustrated in Fig. 3.3 and referred to as local segment-based SSFE

(LS3FE), non-local segment-based SSFE (NS3FE), and mixed segments-based SSFE (MS3FE);

these strategies are explained in detail as follows:

1) LS3FE: In LS3FE, only the segment that contains current target pixel xi is taken into con-

sideration for pixel-wise similarity measurements. In (3.22), such a segment is ssort_1t , which is the

first element of sseg_sort
t since only the segment itself is the most similar to it. If such a searching

range is determined, those pixels will be reordered in a descending manner using the similarities

calculated via either the PM or BM schemes. However, with the restriction of sequential length

l, extracting enough pixels from a single segment is a challenging task, especially if that segment

comes from a small-scale segmentation map. Such a challenge also occurs with the NS3FE strat-

egy, described below. To address this issue, we adopt a repeat-sampling strategy to satisfy the

requirement of a given sequential length l. If l exceeds the number of pixels in the current process-

ing segment, the previous part of sequence is constructed as normal, and the remaining part of the

sequence that exceeds the number of pixels in the segment is built by randomly selecting pixels

from the current segment, one-by-one, until the constructed sequence length l′ reaches l [87].

2) NS3FE: For NS3FE, local segment ssort_1t will not be selected for pixel-wise similarity

calculation. Apart from the most similar segment, which is the one containing the target pixel

itself, we utilize the second-most similar segment compared with the current segment, which is
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the second element of sseg_sort
t . Local spatial contextual information has been well-investigated for

feature extraction and HSI classification. However, regarding the examination of non-local spatial

information, limited research has been conducted. In this article, NS3FE provides insights on the

effects of non-local spatial information on SSFE. Still, the repeat-sampling strategy will be utilized

as well when the pre-defined l is larger than the number of pixels in the current processing segment.

3) MS3FE: Different from LS3FE and NS3FE, MS3FE does not choose a single segment

but multiple segments, and pixels within those selected multiples segments will be selected only

once in pixel-wise similarity calculation and sequential feature construction. Still supposing that

l exceeds the number of pixels in the first segment in sseg_sort
t which contains target pixel xi,

those pixels in the current processing segment will be selected and sorted based on calculated

similarities as normal. Then, the method will move to the next segment in sseg_sort
t to execute the

same processing as that in its previous step in order to select pixels to build the sequence until the

length of the created sequence l′ reaches l.

In a nutshell, the procedures of proposed LS3FE, NS3FE, and MS3FE are summarized in

Algorithm 1 and 2. Note that the only difference between LS3FE and NS3FE is with the selection

of the segment; we combine those two methods into a single pseudo-code.

3.4 Experiments

In this section, we apply the proposed three different SSFE methods on three benchmark HSIs

and evaluate their classification performance by comparing them with other state-of-the-art clas-

sification models. Moreover, we also conduct a sensitivity analysis of the hyperparameters in this

section.

3.4.1 Datasets

1) Pavia University: The first HSI utilized is the Pavia University HSI (PU), which was col-

lected by the Reflective Optics System Imaging Spectrometer (ROSIS) sensor over Pavia Univer-

sity, Italy. PU consists of 610 × 340 pixels with 115 spectral bands. After removing noise and

water vapor-absorption bands, 103 bands remain for the experiments. The spatial resolution is 1.3
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Algorithm 1 Proposed LS3FE and NS3FE Framework
Input: HSI X , unsorted segment set S, sequence length l,
extraction type et
Initialization: Sequential feature representation F ← []
Begin:

1: for xt in X do
2: Find segment st that contains xt

3: Calculate dseg(st,S) by (3.18)
4: Calculate dseg_sort(st,S) by (3.20)
5: Extract sorted segment set sseg_sort

t by (3.21)
6: if et is LS3FE then
7: scur ← sseg_sort

t [0]
8: else
9: scur ← sseg_sort

t [1]
10: end if
11: Compute number of pixels ncur of scur
12: Calculate dpx(xt, scur) by (3.22)
13: Calculate dpx_sort(xt, scur) by (3.24)
14: Extract sorted pixel set xpx_sort

t by (3.25)
15: if ncur ≥ l then
16: F .append(xpx_sort

t [0 : l])
17: else
18: F .append(xpx_sort

t )[0 : ncur])
19: while ncur < l do
20: ncur ← ncur + 1
21: xrand ← RandSelect(xpx_sort

t )
22: F .append(xrand)
23: end while
24: end if
25: end for

Output: Sequential feature representation F
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Algorithm 2 Proposed MS3FE Framework
Input: HSI X , unsorted segment set S, sequence length l
Initialization: Sequential feature representation F ← []
Begin:

1: for xt in X do
2: Find segment st that contains xt

3: Calculate dseg(st,S) by (3.18)
4: Calculate dseg_sort(st,S) by (3.20)
5: Extract sorted segment set sseg_sort

t by (3.21)
6: Initialize accumulated sequence length l′ ← 0
7: Initialize current segment index i← 0
8: while l′ < l do
9: scur ← sseg_sort

t [i]
10: Calculate dpx(xt, scur) by (3.22)
11: Calculate dpx_sort(xt, scur) by (3.24)
12: Extract sorted pixels set xpx_sort

t by (3.25)
13: Compute number of pixels ncur of scur
14: l′ ← l′ + ncur

15: if l′ ≤ l then
16: F .append(xpx_sort

t )[0 : ncur]
17: else
18: F .append(xpx_sort

t )[0 : l − l′]
19: end if
20: i← i+ 1
21: end while
22: end for

Output: Sequential feature representation F
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Class No. Class Name Number of Samples
C1 Asphalt 6631
C2 Meadows 18649
C3 Gravel 2099
C4 Trees 3064
C5 Painted Metal Sheets 1345
C6 Bare Soil 5029
C7 Bitumen 1330
C8 Self-Blocking Bricks 3682
C9 Shadows 947
- Total 42776

Table 3.1: Class Codes and Sample Sizes for Pavia University Image

m and the spectral range is from 430 nm to 860 nm. Nine classes are labeled in the corresponding

ground-reference data, and the specific ground categories along with an example false-color com-

posite image are given in Fig. 3.4, and their corresponding class codes and samples sizes are given

in Table ??.

2) Salinas: The Salinas HSI was obtained by employing the Airborne Visible/Infrared Imag-

ing Spectrometer (AVIRIS) over Salinas Valley, California, USA. It comprises 512 rows by 217

columns with a spatial resolution of 3.7 m. Twenty water vapor-absorption bands were discarded,

and the remaining 200 bands were kept for subsequent analysis. The Salinas HSI entails 16 classes,

as shown in Fig. 3.5. Its class codes and the number of samples per class are listed in Table 3.2.

3) Indian Pines: The Indian Pines (INP) HSI was also acquired via the AVIRIS sensor over

Northwest Indiana in June 1992. The spatial dimension is 145 × 145 pixels, its spatial resolution

is 20 m, with 224 spectral bands. The spectral wavelength range is from 400 nm to 2400 nm.

The number of bands was reduced by removing 24 water vapor-absorption bands, with 200 bands

remaining. Fig. 3.6 illustrates a false-color composite image, the ground-reference map, and the

corresponding list of labeled classes for the INP dataset. More detailed information, including

number of samples, is provided in Table 3.3.
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Figure 3.4: Pavia University hyperspectral image: (a) False-color composite (R: band 55, G: band
33, and B: band 13); (b) Ground-reference data
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Figure 3.5: Salinas hyperspectral image: (a) False-color composite (R: band 57, G: band 27, and
B: band 17); (b) Ground-reference data

Figure 3.6: Indian Pines hyperspectral image: (a) False-color composite (R: band 57, G: band 27,
and B: band 18); (b) Ground-reference data
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Table 3.2: Class Codes and Sample Sizes for Salinas Image

Class No. Class Name Number of Samples
C1 Brocoli_green_weeds_1 2009
C2 Brocoli_green_weeds_2 3726
C3 Fallow 1976
C4 Fallow_rough_plow 1394
C5 Fallow_smooth 2678
C6 Stubble 3959
C7 Celery 3579
C8 Grapes_untrained 11271
C9 Soil_vinyard_develop 6203
C10 Corn_senesced_green_weeds 3278
C11 Lettuce_romaine_4wk 1068
C12 Lettuce_romaine_5wk 1927
C13 Lettuce_romaine_6wk 916
C14 Lettuce_romaine_7wk 1070
C15 Vinyard_untrained 7268
C16 Vinyard_vertical_trellis 1807

- Total 54129

3.4.2 Experimental Setup

To characterize the performance of our proposed methods quantitatively, similar to [83], three

benchmark, or baseline, algorithms are still utilized for comparison, including SVM, 1D_CNN,

and 1D_LSTM. Additionally, in order to examine the efficiency improvements of our proposed

methods, the model developed in [83] with the best classification performance is also utilized here

for comparison in this article. Information regarding the different models used is summarized as

follows:

1) SVM: SVM with a radial basis function (RBF) kernel as the kernel function. The best

parameter combination is obtained from cross-validation.

2) 1D_CNN: The architecture of a 1D_CNN is set based on [36], which contains two convo-

lution layers, two maximum pooling layers, and one fully-connected layer for classification for all

three HSIs. 10 convolution kernels are utilized, with a size of 8. Regarding the maximum pooling

layer, the kernel size is 2. Furthermore, the number of hidden units for the final fully-connected
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Table 3.3: Class Codes and Sample Sizes for Indian Pines Image

Class No. Class Name Number of Samples
C1 Alfalfa 46
C2 Corn-notill 1428
C3 Corn-mintill 830
C4 Corn 237
C5 Grass-pasture 483
C6 Grass-trees 730
C7 Grass-pasture-mowed 28
C8 Hay-windrowed 478
C9 Oats 20

C10 Soybean-notill 972
C11 Soybean-mintill 2455
C12 Soybean-clean 593
C13 Wheat 205
C14 Woods 1265
C15 Buildings-Grass-Trees-Drives 386
C16 Stone-Steel-Towers 93

- Total 10249

layer is set to be the number of classes that the specific HSI entails.

3) 1D_LSTM: Similar to the 1D_CNN, 1D_LSTM is applied to the original 1D spectrum fea-

ture. Three LSTM layers are adopted, where the numbers of LSTM units are 32, 64, and 128,

respectively. The last fully-connected layer, whose dimension is equal to the number of classes

encompassed by the HSI currently being processed, is also included for classification purposes.

4) BM_LSTM: LSTM with the block-matching (BM) strategy to extract similar pixels and

construct sequential features, as proposed in [83]. The method of calculating pixel-wise similarity

is SAM. For the LSTM network structure, we follow the implementation of LSTM utilized in [83],

where four LSTM layers and two fully-connected layers are exploited. The dimensions of the

LSTM layers are 32, 64, 128, and 256, respectively. Before the last fully-connected layer (which

is same as that of the 1D_CNN and 1D_LSTM), there is one additional fully-connected layer with

50 hidden units. Note that such a LSTM model-structure design is applied to all of our LSTM-

based schemes in order to maintain consistency for comparisons of classification performance and
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Figure 3.7: Classification results from the PU image, from the eighth trial: (a) SVM (82.65%);
(b) 1D_CNN (84.98%); (c) 1D_LSTM (83.52%); (d) BM_LSTM (95.94%); (e) LS3FE_LSTM
(PM) (93.39%); (f) LS3FE_LSTM (BM) (95.24%); (g) NS3FE_LSTM (PM) (86.31%); (h)
NS3FE_LSTM (BM) (90.36%); (i) MS3FE_LSTM (PM) (93.83%); and (j) MS3FE_LSTM (BM)
(97.28%)

computational cost.

5) LS3FE_LSTM: LSTM with LS3FE. Due to the different pixel-wise similarity calculations,

for simplicity, LS3FE_LSTM using PM is abbreviated as LS3FE_LSTM (PM), and LS3FE_LSTM

using BM is abbreviated as LS3FE_LSTM (BM).

6) NS3FE_LSTM: LSTM with NS3FE. Similar to the case of LS3FE_LSTM, the two NS3FE_LSTM

approaches using PM and BM are abbreviated as NS3FE_LSTM (PM) and NS3FE_LSTM (BM),

respectively.

7) MS3FE_LSTM: LSTM with MS3FE. Same as with the two aforementioned S3FE-based

LSTMs, MS3FE_LSTM (PM) and MS3FE_LSTM (BM) represent two MS3FE_LSTM-based meth-

ods using PM and BM, respectively.

For the segmentation maps that are utilized in all aforementioned proposed S3FE-based meth-
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Figure 3.8: Classification results from the Salinas image, from the eighth trial: (a) SVM (85.23%);
(b) 1D_CNN (85.98%); (c) 1D_LSTM (85.17%); (d) BM_LSTM (91.94%); (e) LS3FE_LSTM
(PM) (94.17%); (f) LS3FE_LSTM (BM) (95.29%); (g) NS3FE_LSTM (PM) (92.92%); (h)
NS3FE_LSTM (BM) (92.95%); (i) MS3FE_LSTM (PM) (94.91%); and (j) MS3FE_LSTM (BM)
(96.85%)
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Figure 3.9: Classification results from the INP image, from the eighth trial: (a) SVM (86.00%);
(b) 1D_CNN (79.71%); (c) 1D_LSTM (76.46%); (d) BM_LSTM (89.91%); (e) LS3FE_LSTM
(PM) (93.43%); (f) LS3FE_LSTM (BM) (94.58%); (g) NS3FE_LSTM (PM) (86.57%); (h)
NS3FE_LSTM (BM) (87.16%); (i) MS3FE_LSTM (PM) (92.60%); and (j) MS3FE_LSTM (BM)
(93.79%)

ods, we select the eCognition embedded FNEA-segmentation algorithm [90] to obtain the seg-

mentation maps. Parameter values for the scale, compactness, and shape parameters are set to 40,

0.1, and 0.5, respectively. For the extraction of new spectral features with reduced dimensional-

ity, which will be used for segments-based similarity calculations, the first 5 PCs are selected for

all three HSIs. To ensure that classification results derived from different classification models

are quantitatively comparable, we split the ground-reference data for each HSI into training and

testing datasets via a controlled scheme. More specifically, for the PU and Salinas images, 200

samples per class are selected randomly as training samples, and all remaining samples from the

ground-reference data are used as testing samples. Regarding the INP image, due to the relatively

limited number of labeled pixels for some classes only 30% of samples per class from the ground-

reference data are used as training samples, and the remaining samples are exploited as testing

samples. Such training-testing sample selection is utilized for all classification models in order

to reduce potential errors introduced by sample differences. Moreover, to avoid sampling bias,

10 replications of experiments using such a random sample-selection method for each model are

performed, and all classification accuracies are obtained by averaging those accuracies across all
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10 replications.

Regarding LSTM-based model training, all codes are implemented based on the Keras frame-

work [91], with TensorFlow [92] as the backend. For model optimization, the optimizer that was

utilized is Adadelta, with a learning rate of 0.5. The number of epochs and the batch size are set to

500 and 20, respectively. All experiments regarding DL model training were conducted with the

advanced computing resources provided by Texas A&M High Performance Research Computing.

The quantitative metrics for evaluating classification performance used in this research are

overall accuracy (OA), average accuracy (AA), and the Kappa coefficient (Kappa). OA is defined

by calculating the ratio between the number of pixels classified correctly and the number of all

pixels in the set of testing samples. AA is the average of all accuracies obtained across all classes.

Kappa is a statistical index for a consistency test, which can be calculated from a confusion matrix.

3.4.3 Classification Performance Comparisons

The quantitative classification results for the three HSIs of interest are shown in Tables ??, ??,

and ??. For the PU image, the best classification performance was obtained by MS3FE_LSTM

(BM) with OA=96.89%, AA=95.17%, and Kappa=95.01%. Compared with BM_LSTM, which

was proposed in our previous work, the OA and AA improved by 0.69% and 0.52%, respec-

tively. Regarding our other proposed methods, such as the LS3FE_LSTM- and MS3FE_LSTM-

based methods, the performance of each method is still competitive compared with the bench-

mark algorithms. The OAs of the two NS3FE_LSTM-based approaches even decreased relative to

those of BM_LSTM, but they still perform better than SVM, 1D_CNN, and 1D_LSTM. The two

LS3FE_LSTM methods performed better (with OA=94.16% and 96.03%, respectively) than the

two MS3FE_LSTM models. However, their OAs are still less than that of the best MS3FE_LSTM

model. Moreover, within each S3FE scheme, the BM-based method always performed better than

that of the PM-based method, which demonstrates the effectiveness of the utilization of spatial-

contextual information in the PU image.

For the classification maps shown in Fig. 3.7, the apparent improvements in classification

performance can be visually observed. In Fig. 3.7 (a) to (c), the “salt-and-pepper" phenomenon
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is obvious, as no spatial-contextual information is utilized for those classifications. For Fig. 3.7

(d), which results from our proposed BM-based method in [83], a smoother classification map

was produced by exploiting spatial-contextual information when measuring pixel-wise similari-

ties. For Fig. 3.7 (e) to (j), those classified images generated from the six newly-proposed methods

visually exhibit strong correspondences with their respective quantitative accuracy results (e.g.,

overall accuracies). Among those six classification maps, the two NS3FE_LSTM methods pro-

duced more misclassified pixels than other four approaches. The best classification was obtained

by MS3FE_LSTM (BM), as it has the highest OA. When comparing the classification maps be-

tween each of the sequential feature-extraction schemes, it is also quite evident that, with BM-

based methods, there are reductions in discrete misclassified pixels within relatively homogeneous

areas in the image, and they thus entail more smoothed classified images. Such a phenomenon

illustrates the capability of the utilization of spatial-contextual information for similarity measure-

ments during the extraction of the sequential features.

For the Salinas image, whose classification results are displayed in Table ??, results/phenomena

similar to those observed with the PU image are attained. The best classification performance was

still obtained from MS3FE_LSTM (BM), with OA=96.64%, AA=95.95%, and Kappa=96.24%.

The two NS3FE_LSTM-based methods still performed worse than the other two sequential feature-

extraction approaches. The OAs obtained from the two LS3FE_LSTM-based methods are higher

than those from the NS3FE_LSTM-based methods, but lower than that from MS3FE_LSTM (BM).

The performance of each of the six proposed methods is better (more accurate) than that of the

baseline algorithms, especially for BM_LSTM. Furthermore, the BM-based approaches still ob-

tained higher classification accuracies than their corresponding PM-based methods.

The classification maps derived from the Salinas image are given in Fig. 3.8. The “salt-

and-pepper" phenomenon is still very apparent for those approaches that do not exploit spatial-

contextual information. After combining both spectral and spatial features in the BM-based match-

ing schemes, such misclassification are markedly alleviated, and the OAs improved as well. Through

visual interpretation, we observe that for the MS3FE_LSTM (BM) result, which has the highest
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OA, its classification map is less noisy relative to other maps. For the class Grapes_untrained, col-

ored in light blue in the central part of Salinas image, more pixels are classified correctly compared

with other approaches, which provides additional evidence of the effectiveness of the BM-based

strategy.

For the INP image, the best results are obtained from the LS3FE_LSTM (BM) method, with

OA=94.04%, AA=93.60%, and Kappa=93.21%, which is different from what we attained in the

PU and Salinas images. The two NS3FE_LSTM-based approaches still have lower accuracies,

with OA=85.86% and 87.92%, respectively, which are even lower than that of the BM_LSTM.

The two MS3FE_LSTM-based approaches achieve higher OAs than those of the NS3FE_LSTM-

based methods. We can still find that the performance of each of the BM-based methods can obtain

higher OAs than their corresponding PM-based methods.

All of the classification maps derived from the INP image are displayed in Fig. 3.9. Simi-

lar to the PU and Salinas image-classification results, those approaches where only PM- or only

spectral-feature-based features are applied still yield noisy classification maps, and those methods

produce lower OAs compared with their corresponding BM-based approaches. Given the OAs of

each classification map, we observe that the classification map with the highest OA is generated

by LS3FE_LSTM (BM). Those misclassified pixels that exist in the other classification maps are

generally classified correctly via LS3FE_LSTM (BM), especially for those pixels belonging to the

Soybean-mintill and Soybean-notill class, located in the central part of the image.

3.4.4 Parameter Analysis

In order to analyze and evaluate the influence of different parameters that are employed with

our proposed methods, parameter sensitivity analyses were conducted for three parameters: the

number of training samples ntr, sequence length l, and the scale parameter in FNEA sf . Moreover,

an evaluation of the computational time cost for SSFE was also conducted, as explained in this

section.
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(a) (b)

(c)

Figure 3.10: Classification accuracies of different models using different numbers of training sam-
ples per class on three experimental datasets: (a) PU image; (b) Salinas image; and (c) INP image
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(a) (b)

(c)

Figure 3.11: Classification accuracies of proposed SSFE-based models using different sequence
lengths on three experimental datasets: (a) PU image; (b) Salinas image; and (c) INP image
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(a) (b)

(c)

Figure 3.12: Classification accuracies of proposed SSFE-based models using segmentation map
with different scale parameters on three experimental datasets: (a) PU image; (b) Salinas image;
and (c) INP image
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Table 3.7: Numbers of segments obtained using different scale parameter values, for each image

Dataset sf=40 sf=80 sf=120
PU 5924 1617 797

Salinas 694 218 131
INP 283 89 51

3.4.4.1 Number of training samples

Regarding the number of training samples per class ntr, two differently-sized sets of training

samples were utilized for processing the three experimental HSIs. For the PU and Salinas images,

five different values of ntr ({50, 100, 200, 300, and 400}) are investigated. For the INP image, the

five different values are set to be 5%, 10%, 20%, 30%, and 40%. The scale parameter sf is fixed to

be 40, and the sequence length l is 20. Fig. 3.10 shows the classification accuracies of all models

utilized in this article using different numbers of training samples per class. It is clear that the OAs

of all methods increase when the number of training samples increase. Meanwhile, for the PU

image, the OAs for the proposed SSFE-based models become stable when ntr is sufficiently large.

However, for the Salinas and INP images, the increases in OAs for those SSFE-based approaches

remain essentially the same across all different numbers of training samples.

3.4.4.2 Sequence length

For the sequence length parameter l, four different sequence lengths ({10, 20, 30, and 40})

are utilized for performance evaluation. The scale parameter sf is 40, and the number of training

samples per class is set to 200 for the PU and Salinas images, and 30% for the INP image. Fig.

3.11 shows the classification accuracies accrued with all six proposed SSFE-based methods. For

most methods, we observe that the classification accuracies tend to rise with increasing sequence

length. However, such OA increases may not be applicable for all proposed models. For example,

the OAs derived from MS3FE_LSTM (BM) for the PU image decrease when decrementing the

sequence length from 20 to 10. However, such a kind of decrease in OA is not significant, and is

not exhibited with all proposed models applied to all experimental images.
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3.4.4.3 Scale parameter in FNEA

When employing FNEA in our proposed methods, the scale parameter sf plays an important

role since it will influence the average size of the extracted segments. In other words, too large

of an sf will introduce under-segmentation problems, where too many pixels with relatively low

similarities will be incorporated into segments. In contrast, too small of an sf value will yield an

over-segmented segmentation map, where too few pixels will be selected to generate individual

segments. In this article, three different sf values ({40, 80, and 120}) are investigated, and their

corresponding classification accuracies acquired by the six proposed models are shown in Fig. ??.

The number of segments obtained from FNEA using different sf are illustrated in Table 3.7 as

well. The sequence length l is fixed to be 20, and the number of training samples per class is set

to 200 for the PU and Salinas images and 30% for the INP image. For the PU and Salinas images,

the obtained OAs increase when the scale parameter value increases, and the best classification

results for each approach are obtained at the largest sf . Therefore, for those two HSIs, larger scale

parameter values perform better in characterizing both segment-wise and pixel-wise similarity

measurements and yield higher OAs. However, for the INP image, we observe that OAs decrease

when the values for the scale parameter sf increase, except for the NS3FE_LSTM (BM) method

when sf is 80. Due to the low spatial resolution (20 m) and limited spatial dimensions (145 × 145

pixels), a larger sf will generate an over-segmented segmentation map, where less similar/relevant

pixels will be incorporated, which will reduce the expressiveness of a given segment-based feature

and extracted sequential feature.

3.4.4.4 Computational time cost for SSFE

To evaluate the computational time cost improvements of our proposed methods compared

with our previous work [83], such as the BM_LSTM method which has been investigated in the

previous sections, the average time costs of extracting sequential features from a single line (row)

of a given image are calculated since such computation is the most time-consuming step in the

proposed methods, and those results are shown in Table 3.8, where three BM-based methods uti-
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lizing three SSFE strategies are selected for comparison. The computational time cost of our

proposed methods consists of three components, including the computation of PCA, computation

of FNEA, and sequential feature extraction. All of those experiments are conducted on a worksta-

tion equipped with a 3.2-GHz Intel(R) core i7-8700 CPU, 16GB RAM, and utilizing Python 3.5 as

the programming language. It is clear that BM_LSTM proposed in our previous work [83] entails

enormous time costs across the three experimental HSIs. However, such time costs are reduced

significantly, by more than one hundred times, with the three newly-proposed models tested here,

after combining the time costs of PCA, FNEA, and the corresponding SSFEs. For the INP im-

age, compared with the time cost resulting from the application of BM_LSTM, the best time-cost

reduction is greater than 540 times, a performance obtained by MS3FE_LSTM (BM). Moreover,

from Table 3.8, we can see that within each SSFE method, the computational time cost increases

when sf increases, but at the same time, the time cost of FNEA decreases. Utilizing larger sf ,

FNEA will yield fewer segments with less associated time cost, but the searching time for a given

SSFE will increase due to the increasing number of pixels in those segments. Therefore, choosing

an appropriate sf to achieve a balance between the time cost of the FNEA and SSFE methods is a

key point in minimizing the total computational cost.

3.5 Conclusion

In this article, a fast single-image sequential feature extraction (SSFE) framework for LSTM-

based HSI classification is proposed, where object-based segmentation is utilized to accelerate

sequential feature construction. Specifically, similar pixels which are employed for sequential

features are not selected from the whole-image scope, but are rather chosen from individual seg-

ments within the segmentation map. Three different SSFE-based strategies are developed, where

local and non-local segments are considered in a separate and combined manner, respectively.

Quantitative and qualitative classification results illustrate that, for the PU and Salinas images,

MS3FE_LSTM (BM) achieves the best classification performance, where both local and non-local

similar segments are utilized for pixel-wise similarity measurement and sequential feature con-

struction. Such experimental results demonstrate the capability and effectiveness of combining
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both the local segment, which contains the target pixel, and the non-local segment with the highest

similarity score when searching similar pixels for sequential feature construction. Instead of only

using the local segment, the incorporation of non-local-segment information can also aid in select-

ing similar pixels, which will tend to make the extracted sequential feature more representative,

likely leading to improved classification performance. For the INP image, the best classification

performance is obtained by LS3FE_LSTM (BM), instead of MS3FE_LSTM (BM), which indicates

that for the INP image, the local segment makes a greater contribution to the similar-pixel calcula-

tion and selection. This means that, for INP image, similar pixels for/associated with a given target

pixel will be more likely to be located in the local segment. Introducing non-local segment will

make the algorithm select less similar pixels than that of only utilizing local segment. By investi-

gating the computational time cost of our proposed methods, we find that even though the proposed

methods may not, in some cases, achieve a better classification performance than that of the best

model proposed in [83] (e.g., the two LS3FE_LSTM methods perform worse than BM_LSTM on

the PU image), those approaches are still very competitive, accuracy-wise, and they are capable of

achieving acceptable classification performance with markedly lower computation cost.

In the future, more experiments will be conducted using other segmentation algorithms to fur-

ther investigate the influence of different segments on sequential feature extraction. Additionally,

future work will involve more applications of our proposed methods on large-scale remote-sensing

images and aerial images with very high-spatial resolution.
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4. CHARACTERIZATION OF LAND COVER INFORMATION USING SINGLE-IMAGE

BASED RECURRENT NEURAL NETWORK AND LANDSAT IMAGERY: A CASE

STUDY IN NORTHERN INDIA1

4.1 Introduction

As a predominant terrestrial ecosystem of the Earth, forest plays an important role in ecosys-

tem services, including serving as a carbon sink, generating oxygen from carbon dioxide, alleviate

nature hazards, and serving as a genetic reserve. Therefore, forest managements are essential for

various domains such as biological diversity protection, soil and water conservation, and Carbon

fixation. An accuracy and detailed characterization of forest is always required for forest preven-

tion and management. However, those detailed information (e.g., species distribution and com-

position) is difficult and time consuming to obtain from large scale forest areas by using ground

inventory [93]. Remote sensing is a useful technique to analyze forest in a large-scale manner,

particularly for those areas with limited accessibility. Abundant studies have been carried out in

this field, investigating the capabilities of different remote sensing produces collected from various

sensors and platforms. Datasets collected from different platforms with different sensors can pro-

vide different information/features withe their own peculiarities to analyze forest. Among them,

Satellite imagery has been becoming an important data resource for large-scale observation and

monitoring due to its relatively low cost, large observation area, and revisitable ability, and has

been introduced successfully in forest analysis. The spectral features captured from satellite-based

sensors are the critical information that can help us distinguish different objects within forest. And

classification, which is a common machine learning based technique to determine the category of

a pixel within RS image, has been utilized to process satellite RS image in order to obtain tree

species information and biophysical parameter of forest.

1Part of the data reported in this chapter is reprinted with permission from “Limited Effects of Tree Planting on For-
est Canopy Cover and Rural Livelihoods in Northern India” by Eric A Coleman, Bill Schultz, Vijay Ramprasad, Harry
Fischer, Pushpendra Rana, Anthony M. Filippi, Burak Güneralp, Andong Ma, Claudia Rodriguez Solorzano, Vijay
Guleria, Rajesh Rana, and Forrest Fleischman, 2021. Nature Sustainability, 59(7), https://doi.org/10.1038/s41893-
021-00761-z, ©2021 Nature Portfolio.
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Conventional multispectral remote sensing images haven been widely exploited in the past

years for forest analysis. [94] utilized the iterative self-organizing data analysis technique (ISO-

DATA), an unsupervised classification method for deciduous forest classification. Satellite images

are collected from Landsat 5 Thematic Mapper (TM) sensor. Within such proposed scheme, other

features including normalized difference vegetation index (NDVI) and Tasseled Cap brightness,

greenness, and wetness are incorporated as well to generate input data. [95] proposed a stratified

forest estimation framework using k-nearest neighbor (k-NN) as classifier. The satellite images uti-

lized in this study are obtained from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor.

[96] developed a workflow for Amazonian rain forest classification by employing both Landsat 7

ETM+ data and Shuttle Radar Topography Mission (SRTM) elevation model, where elevation in-

formation is considered as ancillary data source. During its classification procedure, linear discrim-

inant analysis (LDA) is utilized for both feature extraction and classification. For those aforemen-

tioned studies, they are all constructed for pixel-level classification where each pixel is assigned a

predefined label. Consequently, “salt-and-pepper” noise, which is taken as discrete misclassifica-

tion points, is obvious. In order to alleviate such a phenomenon, benefited from the improvement

of spatial resolution of satellite remote sensing produces, segmentation-based approaches are in-

troduced in remote sensing community for forest classification. Segmentation-based algorithms

focus on grouping homogeneous pixels in a local area to create pixel cluster, which is named “seg-

ment”. For those pixels within the same segment, they share similar spectral features and always

be regarded as a whole during classification. Such a strategy can alleviate “salt-and-pepper” phe-

nomenon significantly. [97] utilized eCognition [90] software to create segmentation map from

high resolution image generated from the fusion of multispectral and panchromatic images. Then

nearest neighbor classifier is applied on segmentation map for forest type classification. [98] pro-

posed an object-oriented classification scheme for forest ecosystem classification. High spatial

resolution QuickBird images are used in this study. Regarding feature representation for segmen-

tation map, it combines spectral feature, vegetation indices, and text feature created by grey-level

co-occurrence matrix (GLCM). [99] adopted random forest as classifier for tree species classifica-
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tion problem. It utilized WorldView-2 satellite images as main data source and characterized tree

species information from both pixel and object levels. Similar research can be found in [100] as

well. The only difference is that [100] utilized digital elevation model (DEM) and its derived slop

and aspect layers as additional datasets.

In recent decade, deep learning, a novel machine learning scheme developed from traditional

neural network, have been attracting more attentions due to its promising performance on remote

sensing data analysis. Different from those conventional approaches which heavily rely on hand-

craft features, deep learning-based models extract more complex and higher-level features in a

hierarchical manner. The applications of deep learning in remote sensing community involve land-

use and land-cover characterization [101][33], object detection [102][103], scene classification

[104][105], image super resolution [106][107], and multi-source data fusion [108][109]. For for-

est classification, some investigations have been applied using deep learning models. [110] pro-

posed a 1-dimensional convolutional neural network (1DCNN) based model to classify forest. The

Sentinel-2 satellite images are used as data source. And various spectral and spatial features are

extracted, including NDVI, brightness, GLCM homogeneity, and rectangular fit. [111] developed

a data fusion and classification framework in order to fuse light detection and ranging (LiDAR)

data and high resolution satellite images. Within this model, two separate deep neural networks

are adopted to process two different datasets, and they are merged at specific layer to output classi-

fication results. [112] proposed a deep learning-based model, named ForestNet to classify drivers

of deforestation on Landsat 8 imagery. It uses conventional CNN as its backbone neural network.

In this research, we focus on a specific deep learning model, recurrent neural network (RNN),

for remote sensing image classification. Different from traditional feedforward neural network,

RNNs are able to process the sequential inputs by having a recurrent hidden state whose activation

at each step depends on that of the previous step. In other words, RNNs is capable to encode depen-

dencies between data at different steps, which provide capacity to handle sequential data properly

compared with other machine learning models. And such a property leads its successful applica-

tion in natural language processing (NLP). For remote sensing sub-field, researchers have proposed
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various algorithms for its applications on multi-temporal remote sensing datasets. [113] exploited

recurrent convolutional neural network (RCNN) to encode spectral-spatial-temporal features and

to detect changes in multispectral images. [44] adopted patch-based RNN for multi-temporal im-

age classification. However, as the availability of multi-temporal images are limited due to the

intrinsic restriction of remote sensing platforms (e.g., cloud-cover condition, limitation of light,

and revisit cycle), some single-image-based RNN classification models are developed as well in

order the aforementioned issues [45][46][81].

From the aforementioned investigations, we can see that the popular strategy to apply RNN on

single-image-based classification problem is to take spectral feature of an individual pixel as its

sequential feature. However, the dependencies between different bands are characterized in a “se-

quential” manner starting from the first band to the last band, where the representative reflectance

information collected from specific bands may be ignored. In addition, spatial contextual informa-

tion, which have been demonstrated its significant performance to promote classification accuracy,

is not utilized in those proposed models. More importantly, those approaches are mainly developed

for hyperspectral remote-sensing image classification, where hundreds of spectral bands can be ob-

tained easily. For multi-spectral remote-sensing image, only limited spectral channels are captured

which brings difficulties for RNNs application. And if those images are collected from different

sensors, their spectral bands or the number of spectral bands may not be the same, where a single

RNN-based model can not be applied to all those images due to the inconsistency of input chan-

nels. Inspired on our previous research [114], a modified single-image-based sequential feature

extraction (SSFE) and classification using RNN is employed. Similar with [114], segmentation

map will be generated first by utilizing fractal net evolution approach (FNEA). Then spectral and

shape features of those segments are obtained for segment-based similarity measurement. After

determining similar segments, pixel-based similarities between those pixels within selected similar

segments and target pixel will be calculated. Lastly, sequential feature of the target pixel will be

presented by those similar pixels selected based on similarity indices. This is the first application

of
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The rest of this section is organized as follows: Section 5.2 describes study area and datasets

used in our analysis. Section 5.3 presents the classification methods. Experimental results and

discussions are provided in Section 5.4. Finally, Section 5.5 draws the conclusion of this study.

4.2 Material

4.2.1 Study site and field data

For this study, the study area is located in the Kangra district of Himachal Pradesh in the north-

ern India. The total area of Kangra district is 5737.41 square kilometers. As tree plantations have

a long history in Kangra district, we will focus on the land-cover classification within plantation

areas. In this research, 179 plantations are collected and created. And ground reference data are

collected simultaneously within those plantations, which will be utilized for classification model

training and evaluation. Here four different land-cover classes are defined, including “Pure Nee-

dle Leaf”, “Pure Broad Leaf”, “Mixed Forest”, and “Pasture”. Note that “Mixed Forest” consists

of two sub-classes, “Mixed Predominantly Needle Leaf” and “Mixed Predominantly Broad Leaf”.

Detailed explanation about how to create training and testing samples are provided in Section 4.2.3

and 4.4.1. The spatial extent is shown in Figure 4.1.

4.2.2 Landsat image acquisition and preprocessing

Satellite images collected from Landsat platform. Since the objective of this study is to analyze

the land cover information in spring (March to May) from 1990 to 2018, all images obtained from

such a time period have been checked by accessing the EarthExplorer (https://earthexplorer.usgs.gov/).

The primary factor that needs to be considered is the cloud cover (CC). In this study, images with

CC over 5% will be ignored. In the meanwhile, we need to make sure that all Kangra district

area will be covered. Therefore, two Landsat scenes (path/row: 148/38, and path/row: 147/38) are

selected, and five years, including 1991, 1993, 1996, 1998, 2009, and 2018, are chosen. Table 4.1

illustrates detailed information about those selected images. Note that one image is collected from

1991 and another image is obtained from 1992. The reason is that for the right scene (path/row:

148/37) at 1991, there is no image that meet the requirement of cloud cover. Therefore, we choose
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Figure 4.1: The study area. Base image is collected from Landsat 8 where false color composite is
applied (R: Band 5, G: Band 4, and B: Band 3)
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the image of 1992 collected from similar season.

Sensor Acquisition date Path Row Cloud cover Processing level
Landsat 5 TM 05/15/1991 148 38 2.00% L1TP
Landsat 5 TM 05/10/1992 148 37 2.00% L1TP
Landsat 5 TM 05/04/1993 148 38 1.00% L1TP
Landsat 5 TM 04/27/1993 148 37 2.00% L1TP
Landsat 5 TM 04/26/1996 148 38 0.00% L1TP
Landsat 5 TM 04/03/1996 148 37 3.00% L1TP
Landsat 5 TM 04/16/1998 148 38 1.00% L1TP
Landsat 5 TM 05/27/1998 148 37 3.00% L1TP
Landsat 5 TM 04/30/2009 148 38 1.00% L1TP
Landsat 5 TM 05/09/2009 148 37 3.00% L1TP
Landsat 8 OLI 04/07/2018 148 38 2.56% L1TP
Landsat 8 OLI 03/31/2018 148 37 1.41% L1TP

Table 4.1: Information of acquired images. “TM” is Thematic Mapper, and “OLI” represents
Operational Land Imager

Besides of those satellite images, DEM is utilized as another data source in this study. DEM

data is collected from SRTM whose spatial resolution is 28.83 meters. In order to cover the whole

arae of Kangra district, six DEM tiles are utilized and mosaiced into a single DEM file for the

following steps. Since the spatial resolution (28.83 meters) of SRTM DEM data is different from

that of Landsat 5 and 8 images (30 meters). DEM needs to be resampled into 30 meters raster to

make sure that both datasets share the same cell size. In this study, nearest neighbor is employed

to resample DEM data where minimized changes will be applied to pixel values as no new values

are created.

As those images are in L1TP level, atmospheric collection is needed to remove the effects of the

atmosphere. FLAASH module embedded in ENVI software is utilized for atmospheric collection.

After obtaining atmospheric collection results, seamless mosaic tool in ENVI is applied on two

images obtained from two different scenes but within the same year. For the “Input Images”

parameter of seamless mosaic tool, the image collected from left scene (path/row: 148/38) is
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defined as “Adjust”, and the one obtained from right scene (path/row: 148/37) was defined as

“Reference”.

4.2.3 Ground reference data generation

As mentioned in Section 4.2.1, four different classes are defined for land-cover classification

purpose in this study area, which are “Pure Needle Leaf” (class 1), “Pure Broad Leaf” (class 2),

“Mixed Forest” (class 3), and “Pasture” (class 4). Those training samples are selected only from

those plantations, and generated accordingly based on the mosaic image of each year. Table 4.2

shows detailed information regarding those labeled samples for different dates.

Acquisition date Class 1 Class 2 Class 3 Class 4 Total
1991 1880 1759 3973 288 7900
1993 1880 1759 3973 288 7900
1996 1880 1759 3973 288 7900
1998 1933 1759 4147 288 8127
2009 2038 2153 4496 301 8988
2018 2058 2367 4778 314 9517

Table 4.2: Number of pixels for ground reference data

4.3 Single-image-based sequential feature extraction and classification

In this study, the classification method proposed in [114] is employed. Regarding the utilization

of RNN on remote sensing image classification, the key issue is to find/extract sequential feature

representation of a given individual pixel. Figure 4.2 exhibits the workflow of that single-image-

based sequential feature extraction (SSFE) and classification scheme. In the first step, we combine

Landsat image and DEM into a single raster input where DEM is stacked after the last band of

Landsat image. Then the FNEA algorithm is applied on that resulting raster to create segmentation

map. There are three main parameters used in FNEA, which are scale, compactness, and shape

parameters, to control if two segments will be merged or not by characterizing the heterogeneity of

two segments before and after merging them. Once the segmentation map is obtained, segments-
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Figure 4.2: Single-image-based sequential feature extraction and classification framework

based similarity calculation will be implemented. Specifically, given a target pixel pt and its

corresponding segment st that contains pt, the similarities between st and all other segments will

be calculated by utilizing Euclidean distance (EU). The EU between st and si is defined as follows:

dEU(st, si) =

√√√√ bs∑
k=1

(skt − ski )2 (4.1)

where bs represents the number of segment features, and skt and ski denote kth feature for st and

si, respectively. For this study, segment features are constructed based on spectral features and

geometry features. Spectral feature consists of mean value, standard deviation, and brightness of

each band. Geometry feature includes area, asymmetry, border length, compactness, density, main

direction, number of pixels, ratio between length and width, and rectangular fit [90].

Once we obtain the segment-based similarities, similar segments will be selected. And pixel-

based similarity measurement are calculated between pt and all pixels within those selected seg-

ments. In this study, block matching (BM) and spectral angle mapping (SAM) [83] are utilized

to measure distance/similarity between two pixels. BM characterizes similarity between two in-

dividual pixels by exploiting their neighboring pixels located within a fixed-size window, and its

effectiveness of sequential feature construction and classification has been demonstrated in [83].

Lastly, the first several similar pixels are chosen and re-ordered based on calculated similarity

values in a descending manner to construct the sequential feature of pt. After obtaining those

sequential features, they will be fed into the RNN-based classification model.
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4.4 Experiments

In this section, we apply the single-image based sequential feature extraction approach and

RNN-based classification model on those six “satellite+DEM” images. To evaluate its perfor-

mance, we also compare it within 2DCNN [37] classification model. Moreover, we conduct a

sensitivity analysis of those hyperparameters utilized in that sequential feature extraction method.

4.4.1 Experimental setup

As discussed in Section 5.3, the satellite image and DEM raster is combined into a single

raster. To better characterize the classification results within plantation and reduce computational

time cost, the minimum bounding box of all plantation polygons is generated and is employed to

clip input raster. The spatial dimension of final raster is 1577 × 1324.

For the 2DCNN model, its input needs to be a 2D image patch with one or multiple channels.

To classify individual pixels from those images, a sliding window is applied to all pixels to extract

image patches. The size of input image patch is 5 × 5. Regarding the 2DCNN architecture, it fol-

lows the one proposed in [37]. There are two convolutional layers, two batch normalization layers,

two dropout layers, one fully connected layers, and one classification layer which utilized softmax

as the activation function. For the first convolutional layer, it has 21 trainable convolutional filters

of dimension 3 × 3. In the second convolutional layer, 42 convolutional filters with the dimension

of 3 × 3 are adopted. Batch normalization layer and dropout layer are added right after each con-

volutional layer, and the dropout rate is 0.3. The dimensions of those two fully connected layers

are 42 and 4 (number of classes), respectively.

Within SSFE step, parameter values for the scale, compactness, and shape are set to 50, 0.5, and

0.1, respectively when generating segmentation map using FNEA. And only one similar segment is

selected. Regarding the RNN classification, we use long short-term memory (LSTM) [42] which

is an improved version of RNN as classifier. Its architecture consists of four LSTM layers and

two fully connected layers. The dimensions of those four LSTM layers are 32, 64, 128, and 256,

respectively. And the first fully connected layer has 50 hidden units.
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For the LSTM-based classification model training, it is implemented using Keras [91] and

TensorFlow [92]. The optimizer used in training step is Adadelta [115]. Batch size is 64, and

the number of epochs is 500. All experiments regarding 2DCNN and LSTM model training are

conducted on the Texas A&M High Performance Research Computing.

For the aforementioned two classification approaches, the ground reference data is split into

training and testing sample randomly. And the ratio between them is 1:1, which means that 50%

of samples per class are selected randomly as training samples and the remaining samples are uti-

lized as testing samples. Moreover, 10 replications of experiments using such a random-selection

strategy are applied in order to avoid any bias introduced from sampling procedure. To evalu-

ate classification performance quantitatively, overall accuracy (OA), average accuracy (AA) and

Kappa coefficient (Kappa) are exploited in this study. OA is the ratio between the number pixels

that are classified correctly and the total number of pixels. AA represents the average accuracy

calculated across all classes. Kappa is obtained from confusion matrix and is utilized to indicate

the extent of agreement between ground truth and predicted results. All those three accuracies are

obtained by averaging corresponding accuracies across 10 replications.

4.4.2 Classification results

The classification results are display from Table 4.3 to Table 4.8. We can find that OAs ob-

tained from SSFE-based LSTM models are higher that those from 2DCNN methods across all

six datasets. The one that increases the most is obtained from 1998-pair image from 82.50% to

85.48%. And the one that increases the least is collected from 1993-pair image from 84.73% to

85.06%. Moreover, not all accuracies of those four classes are improved simultaneously. For ex-

ample, for the 1991-pair image, the accuracies of classifying “Pure Needle Leaf” and “Pure Broad

Leaf” using SSFE-based LSTM decrease compared with those from 2DCNN. However, the accu-

racy of “Mixed Forest” increases significantly frrm 84.62% to 87.03%. Similar phenomenon can

be observed from other images. As mentioned in 4.2, even though different image shares differ-

ent training samples, “Mixed Forest” still has the most labeled samples. Therefore, SSFE-based

LSTM may not achieve a good performance on “Pure Needle Leaf”, “Pure Broad Leaf”, and “Pas-
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ture”, but presents better result on “Mixed Forest”. Therefore the final OA is always better than

that of 2DCNN across all images. Figure 4.3 illustrates classification results of 2019-pair image.

Class name 2DCNN SSFE-based LSTM
Pure Needle Leaf 86.01±2.50 84.37±1.79
Pure Broad Leaf 84.65±2.99 82.49±1.86

Mixed Forest 84.62±1.84 87.03±1.13
Pasture 85.93±3.45 88.97±3.83

OA 84.91±1.38 85.43±1.03
AA 85.30±0.66 85.71±2.48

Kappa 76.10±2.17 77.19±1.64

Table 4.3: Classification results (in units of %) in the 1991-pair image

Class name 2DCNN SSFE-based LSTM
Pure Needle Leaf 86.61±3.73 85.22±2.16
Pure Broad Leaf 83.79±3.01 81.76±1.80

Mixed Forest 84.41±1.29 86.56±1.82
Pasture 86.54±5.26 83.19±5.22

OA 84.73±0.88 85.06±1.77
AA 85.34±1.25 85.58±1.84

Kappa 75.80±1.33 76.54±2.88

Table 4.4: Classification results (in units of %) in the 1993-pair image

In order to evaluate the influence of different hyperparameters utilized in SSFE-based LSTM,

parameter sensitivity analysis is conducted on two hyperparameters: scale parameter used in FNEA

segmentation algorithm scale, and the number of similar segments selected n_seg. Utilizing

smaller scale will aggregate less pixels into a single segment where the similarities between those

pixels are relatively high. A larger scale will generate larger segments which means that the total

number of segments is decreased compared with that of using smaller scale. However, that means

more pixels with lower similarities will be incorporated into segments. In this study, two different
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Figure 4.3: Classification results obtained from 2019-pair image. (a1), (a2), and (a3) are false
color composite of 2018-pair image collected from three different areas. (b1), (b2) and (b3) are
training samples. (c1), (c2) and (c3) are classification results collected from 2DCNN model. (d1),
(d2) and (d3) are classification maps genereated from SSFE-base LSTM approach
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Class name 2DCNN SSFE-based LSTM
Pure Needle Leaf 82.89±2.66 85.23±1.48
Pure Broad Leaf 83.27±3.05 82.87±1.51

Mixed Forest 82.67±2.62 86.91±0.70
Pasture 85.05±3.68 87.07±2.44

OA 82.73±1.02 85.62±0.59
AA 83.47±0.94 85.52±1.69

Kappa 72.49±1.95 77.44±0.94

Table 4.5: Classification results (in units of %) in the 1996-pair image

Class name 2DCNN SSFE-based LSTM
Pure Needle Leaf 85.51±4.01 83.81±1.07
Pure Broad Leaf 75.13±5.07 82.70±1.60

Mixed Forest 84.69±1.69 87.33±0.87
Pasture 86.95±6.69 87.86±4.24

OA 82.50±1.29 85.48±0.54
AA 83.07±4.65 85.42±2.21

Kappa 72.47±2.06 77.13±0.86

Table 4.6: Classification results (in units of %) in the 1998-pair image

Class name 2DCNN SSFE-based LSTM
Pure Needle Leaf 85.38±3.35 83.95±1.20
Pure Broad Leaf 82.83±2.41 81.05±1.38

Mixed Forest 82.81±1.29 85.02±0.94
Pasture 82.40±3.87 81.98±3.64

OA 83.25±0.87 83.72±0.80
AA 83.36±1.18 83.68±1.57

Kappa 73.50±1.33 74.46±1.28

Table 4.7: Classification results (in units of %) in the 2009-pair image

scale (50, and 100) are tested. Regarding the parameter n_seg, it will influence how many pixels

will be extracted for the further pixel-based similarity measurement. Two different n_seg values,

1 and 10, are investigated in the experiments. Table 4.9 illustrates the experimental results using

different combination of those two parameters. For different scale parameter scale, we observe
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Class name 2DCNN SSFE-based LSTM
Pure Needle Leaf 80.75±2.62 81.11±1.89
Pure Broad Leaf 84.25±2.91 79.92±1.34

Mixed Forest 81.19±2.13 83.92±1.00
Pasture 87.71±3.29 83.07±3.96

OA 81.78±0.79 82.28±0.93
AA 83.48±2.79 83.79±1.57

Kappa 70.95±1.48 72.13±1.43

Table 4.8: Classification results (in units of %) in the 2018-pair image

that the accuracies decrease when s increase. And regarding the other parameter n_seg, similar

phenomenon can be found where the higher accuracies are always obtained using smaller n_seg.

Those results demonstrate that using smaller scale and n_seg can achieve better classification

performance. For an individual segment, large scale introduces more pixels with low similarities

which will reduce the expressiveness of the extracted sequential features. Using larger n_seg,

where more similar segments are incorporated for the similar pixel measurements and extraction,

will yield similar issue, resulting in lower classification accuracies.

4.5 Conclusion

In this study, we apply the single-image-based sequential feature extraction (SSFE) framework

proposed in [114] for LSTM-based land-cover classification. This is an further extension of our

proposed approach from the utilization on benchmark dataset to the large-scale satellite image

classification problem. For this research, the study site is located in the rural area in the northern

India, and the objective is to classify/identify land-cover information within plantations. Landsat

images collected from six years are utilized as base data source. Experimental results illustrate

that SSFE-based LSTM classification approach achieves better performances compared with the

results obtained from 2DCNN. The parameter sensitivity analysis is adopted as well to evaluate the

influence of using different segmentation maps and similar segments. We find that smaller scale

parameter and less number of similar segments will produce higher accuracy, which illustrates that

incorporating more pixels by either increasing scale parameter when generating segmentation map

87



A
cq

ui
si

tio
n

da
te

2D
C

N
N

SS
FE

-b
as

ed
L

ST
M

sc
al

e:
50

,n
_s

eg
:1

sc
al

e:
10

0,
n_

se
g:

1
sc

al
e:

50
,n

_s
eg

:1
0

sc
al

e:
10

0,
n_

se
g:

10
19

91
pa

ir
84

.9
1%

85
.4

3%
82

.3
7%

81
.1

0%
79

.9
0%

19
93

pa
ir

84
.7

3%
85

.0
6%

82
.3

7%
81

.0
5%

80
.4

0%
19

96
pa

ir
82

.7
3%

85
.6

2%
82

.1
1%

78
.3

5%
79

.5
4%

19
98

pa
ir

82
.5

0%
85

.4
8%

81
.5

4%
81

.0
1%

77
.1

6%
20

09
pa

ir
83

.2
5%

83
.7

2%
79

.6
3%

80
.5

6%
77

.7
1%

20
18

pa
ir

81
.7

8%
82

.2
8%

79
.3

2%
79

.9
3%

77
.3

8%

Ta
bl

e
4.

9:
C

la
ss

ifi
ca

tio
n

ac
cu

ra
ci

es
of

di
ff

er
en

tm
od

el
s

us
in

g
di

ff
er

en
tp

ar
am

et
er

s

88



or adding more similar segments will reduce the expressiveness of the extracted sequential features

and thus lower the classification accuracies.

Future work will focus on more detailed classification system by involving canopy-cover classes.

And utilizing high-resolution satellite images will be investigated as well to further improve accu-

racy. Additionally, other spectral features and texture features derived from the original image can

be employed as ancillary data source.
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5. FALLEN TREE DETECTION USING HIGH-RESOLUTION AERIAL PHOTOS AND

DEEP LEARNING IN A COASTAL RIVER AND ITS FLOODPLAIN

5.1 Introduction

Coastal communities in the southern Texas, United States have experienced hurricane impacts

regularly. During each hurricane hazard, flood inundation and strong wind will always introduce

forest damage within the coastal area. A large amount of fallen trees will be observed after the

hurricane. Those fallen trees play an crucial role in various domains, including ecosystem man-

agement, hydrological analysis, and recovery policy-making. For ecosystem management, efficient

and accuracy statistical method to characterize the amount of fallen trees is needed [116]. As the

landscape and geomorphological features will be changed by fallen trees, the detailed information

of those fallen trees can be regarded as additional inputs for hydrological analysis when measuring

the further influence of such a disaster [117]. In the mean while, federal and state agencies need to

response quickly with information regarding the severity of hurricane by accessing the amount and

location of fallen trees in order to better facilitate recovery efforts in those areas [118]. Therefore,

characterizing fallen tree, including fallen tree extraction and localization, is an important research

focus for those and other potential sub-fields.

As the damage of fallen trees always occurs in rural areas, surveying in the field will be time-

consuming and high-cost. Remote sensing is a better tool for the researchers to obtain the data

in a timely manner right after the hurricane happens. Basically, remote sensing is an technology

of obtaining and monitoring the properties of the Earth surface in a non-contact manner [119].

According to the source of signal the remote-sensing sensors use to explore the object, there are

two main types of remote sensing, including the passive and active remote sensing. Passive remote

sensing refers to the technique where the electromagnetic radiation (EMR) recorded by sensor is

reflected or emitted from the surface of the Earth. On the other side, active remote sensing will

receive and operate signals emitted from its own instruments. Both remote sensing systems have a
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wide application for fallen tree detection.

For the application of fallen tree detection utilizing passive remote sensing, the most widely

used datasets include satellite imagery and unmanned aerial vehicle (UAV) based imagery. Satel-

lite images can provide large-scale raster with relative higher spectral resolution where the slight

differences between fallen tree and background can be extracted. Regarding the UAV-based im-

ages, they always have very high spatial resolution where the detailed spatial information can be

characterized for the extraction of fallen tree. [120] developed a framework to extract damage

forest from high-resolution RS images and DEM. Multinomial logit model was adopted as classi-

fication model, and accuracies were assessed on pixel level. [121] proposed a method to extract

fallen tree pixels by comparing two satellite images with before and after the typhoon. A couple

of normalized spectral indices were calculated and exploited under machine learning-based model.

[118] utilized high-resolution aerial photos to detect fallen tree trunks. Instead of employing ma-

chine learning model, the authors mainly focus on threshold-based selection where edge and line

detection maps were computed. [122] investigated the application of deep learning algorithm,

to extract forest damage areas from multispectral aerial remote sensing data. The U-Net seman-

tic segmentation [123] was employed to segment images and extract forest damage areas. [124]

also proposed U-Net-based framework, but the authors applied this scheme on very-high spatial

resolution satellite imagery.

Apart from those aforementioned passive remote sensing based models, active remote sensing

produces are still an critical datasets for fallen tree detection. The most popular data source of

active remote sensing is light detection and ranging (LiDAR). LiDAR uses a laser to target an

object and measures the time/distance for the reflected light to return to the sensor. LiDAR product

is 3-dimensional (3D) point cloud where the coordinates of those points can be delineated. Such

a property can be used to represent the surface structure of target object in a detailed manner.

[125] generated multiple rasters based on LiDAR point cloud datasets and utilized multi-resolution

object-based image analysis (OBIA) and classification algorithms to identify downed logs. [126]

proposed to generate digital terrain model (DTM) from point clouds obtained from airborne laser
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scanning (ALS) system. And then line matching strategy was employed to detect fallen trees.

Its accuracy measurements were implemented based on line-to-line comparison.[127] developed a

model to detect fallen trees directly from ALS point clouds. Segmentation was applied on point

clouds, and the Normalized Cut algorithm was adopted in order to merge short segments into whole

stems. Similar with the previous work, [128] exploited specialized constrained conditional random

field (CRF) to better construct point cloud segmentation.

Regarding the aforementioned proposed approaches, it can be found that using satellite- or

UAV-based images are more straightforward as fallen tree detection problem can be transformed

into classification problem. Benefit from that, various machine learning-, even advanced deep

learning-based models have been proposed and achieved satisfactory performance. However, their

drawbacks are obvious. First, some investigations [118][129] focus on fall tree trunk instead of the

whole fallen tree. It means that the properties of those fallen trees with crowns and/or branches

will not be delineated correctly. Second, those models utilizing deep learning models are applied

on damaged forest identification in a relatively large scale, and detailed information of individual

fallen trees will be ignored accordingly. For the LiDAR-based models, the precise structures of

fallen trees are characterized well due to the intrinsic properties of 3D point cloud. However, those

methods need many user-defined parameters which have strong relationship with LiDAR data itself

and terrain condition. Therefore, the issue of how to develop a more general fallen tree detection

model, especially for individual fallen tree, still needs more investigation.

In this research, we propose a novel object-detection-based fallen tree detection framework us-

ing very-high-resolution aerial photos. Specifically, it consists of three main steps, including fallen

tree digitization, automatic training and testing sample generation, and object detection model

training and evaluation. As an crucial prerequisite of deep learning-based object detection model,

localization of fallen trees is needed. For this research, large-scale high-spatial-resolution aerial

photos are employed as base images for both digitization and object detect purposes. Fallen trees

will be identified based on visual interpretation and digitized on ArcGIS Pro, which is a popular

desktop GIS software developed by ESRI(R). And those digitization results are saved as an indi-
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vidual shapefile, a geospatial vector data format for data interoperability. As such a digitization

processing is built on geographical coordinates, where the real location information of those fallen

trees including boundaries of fallen trees are recorded, and on large-scale aerial photos (i.e. 500

meters by 500 meters for each individual aerial photo), the digitized fallen tress and their corre-

sponding aerial photos will not be regarded as inputs of object detection model. For those deep

learning-based object detection models, a single input consists of two parts: 1) an image which

contains one or more objects; and 2) an annotation file which encloses the detailed location infor-

mation of bounding boxes of those objects in image-based coordinates. Consequently, the trans-

formation from large-scale shapefile containing objects of interest and aerial photos to small-scale

digital images with bounding boxes information indicating location information of those objects

is needed. In this article, we designed an automatic workflow to handle such an issue with the

purpose of generating inputs/datasets which can be utilized directly for object detection model.

Specifically, given a fallen tree polygon, its minimum bounding box is extracted in the first step.

Then based on the size of this bounding box, the size of sub-image (the image used as input of ob-

ject detection model) is determined. And the sub-image will be extracted from its corresponding

aerial photo by utilizing its geospatial location and size. Lastly, for those fallen tree polygons in-

corporated with the current sub-image, their image-based coordinates will be calculated and added

into its annotation file. Such a processing will be iterated until all fallen tree polygons has been

employed to create their sub-images and annotation files. Once that dataset is prepared, they will

be split into training and testing datasets where training dataset will be utilized to train the object

detection model and testing dataset will be exploited to assess the detection accuracy.

The main contributions of this research are summarized as follows:

1) We propose a deep learning-based object detection model to detect fallen tree in a large scale

manner. To the best of our knowledge, this is the first time to apply for object detection algorithm

on individual fallen tree detection problem, especially in such a large scale dataset. There are some

research on the utilization of deep learning models to handle this problem but they mainly focus

on forest damage measurement, instead of individual fallen tree identification.
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2) An automatic scheme for generating/re-organizing training and testing datasets for the object-

detection model is specifically designed. Currently, previous studies mainly rely on manual work

where the sub-images are determined and extracted manually. However, this strategy introduces

loss of pixel information due to the resampling issue, and it is very time-consuming and includes

high labor costs. Few studies provide insights on or investigate the possibility of transforming

large-scale vector geographic information system (GIS) data (e.g., polygon shapefiles) into deep

learning-amenable datasets automatically.

3) The influence of different degrees of fallen tree overlapping is also investigated in this re-

search. Within our study area, some areas have more individual fallen trees but some may have

more overlapped fallen tress. The detection performance will be evaluated on those different areas

on both individual tree level and tree cluster level.

The rest of this section is organized as follows: Section 5.2 describes some background, includ-

ing deep learning-based object detection algorithm. Study area and dataset utilized in this study

is illustrated in Section 5.3. Section 5.4 proposes the proposed the framework for automatic train-

ing and testing dataset generation for object detection model. Section 5.5 shows the experimental

results. Finally, in Section 5.6, conclusions and discussions are presented.

5.2 Background: CNN and Faster R-CNN

5.2.1 CNN

Convolutional neural networks (CNNs) [130] is a popular deep learning model which was de-

veloped from traditional feed-forward neural network. Similar with those simple neural networks,

CNNs also have input layers, hidden layers, and output layers, and utilize non-linear activation

function to make layer-wise connection. Inspired by biological processes [131], convolutional fil-

ters are introduced into CNNs which are utilized to simulate visual fields in a restricted region.

Those visual fields overlap partially so that they can cover the whole visual field. Convolutional

filters are implemented with convolutional layer, which convolves its input layer and pass its results

to the next layer. Such a convolutional filters will be applied on all those pixels within input image,

94



and the corresponding output is equal to the dot product between convolutional filter and those pix-

els within the sliding window of current convolutional filter. Another difference between CNN and

conventional neural network is pooling layer. Within pooling layer, a pooling filter will be applied

on the input feature image as well. Role of pooling layer is to reduce dimension of input through

translational and rotational invariants. There are two popular pooling filters, including maximum

pooling where the maximum value within filter window is extracted and average pooling which

takes the average values. Due to the concept of visual field/receptive field introduced by convo-

lutional filter, CNNs achieve significant performance on 2D image/video based tasks, including

image recognition [132][133], object detection [35][134][135], semantic segmentation [123][136]

, and video analysis [137][138]. CNNs themselves can be regarded as a series of neutral network

structure and can be easily plugged into other deep learning models as backbone networks for

different tasks.

5.2.2 Faster R-CNN

Faster region-based CNN (Faster R-CNN) [135] is utilized as object detection model for this

research. It belongs to the R-CNN family, whose basic model was developed and described in [35].

R-CNN itself can be regarded as the first and successfully application using CNN for object detec-

tion. R-CNN consists of three steps: 1) region proposal extraction; 2) CNN feature computation;

and 3) region classification. Even though the utilization of CNN achieve satisfied performance in

terms of feature extraction, the computational time cost is critical due to "selective search" when

proposing candidate regions. And additional classifier (e.g. SVM) is employed to further increase

memory and time cost. As an improvement of R-CNN, Fast R-CNN [134] was developed by

employing a single model instead of a pipeline to learn regions and classification. Within Fast

R-CNN, bounding boxes and classification can be yielded simultaneously where computation can

be accelerated to some extend. However, it still need a set of candidate regions to be proposed

for each image. As a further development and improvement of Fast R-CNN, Faster R-CNN is

a single unified model, which consists of two modules: 1) region proposal network (RPN); and

2) Fast R-CNN. Both modules are connected with the same output of a deep CNN, which means
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Figure 5.1: The architecture of Faster R-CNN. “Conv” is convolutional layer, “FC” represents
fully connected layer. “Bbox_pred” is position offset of predicted bounding box, and “Cls_prob”
denotes category probability of predicted bounding box

that all those aforementioned step, including feature extract, region proposal extraction, bounding

box regression, and classification, are integrated into a single network. Such a strategy speeds up

object detection procedure compared with the other two R-CNN-based models and achieve more

accurate results. Figure 5.1 illustrates basic framework of Faster R-CNN. The main contribution of

Faster R-CNN is RPN, which is utilized to extract region proposals. After obtaining feature map

generated from deep CNN backbone network, RPN outputs a set of region proposals with object-

ness scores that are utilized to measure if an anchor belongs to foreground or background. Once

those proposals created from RRN are obtained, they are combined with feature map within ROI

pooling layer to get fixed-size proposal feature maps. And those feature maps are fed into multiple

fully connected layers to obtain final object detection results, including determining bounding box

category and its precise location.

5.3 Study area and Data

For this research, we choose the Fennessey Ranch on the Texas Coastal Bend in the U.S. The

Fennessey Ranch lies on the Mission-Aransas National Estuarine Research Reserve (MANERR),
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which is a large complex of wetland, terrestrial, and marine environments. The total area of our

study site is 13752539.544 square meters. Fennessey Ranch is a suitable area for this research

regarding hurricane-induced tree-blowdown impacts as it is on the path of Hurricane Harvey. Ex-

treme winds induced substantial amount of tree blowdowns and large wood debris on the river

and its floodplain. Obtaining the location of those fallen trees and analyzing their distribution

will benefit further investigation on other research sub-fields, including hydrodynamic modeling,

geomorphology study, and nature hazard evaluation.

The fallen trees are identified manually from very-high-resolution georeferenced aerial photos

obtained from DIMAC RGB digital camera. In total 64 images are utilized in this study, and

they were obtained after Hurricane Harvey at 2018. For each aerial photo, its spatial resolution is 5

centimeter and its spatial extend is 500 meter by 500 meter. In order to better extract corresponding

aerial photos based on geographical coordinates, those aerial photos follow a name convention

using the lower-left coordinate as the seed for the file name. Assume we have such an aerial

photo named "2018_Refugio_667000_3122000.tif", that means "667000" is the easting value of

its lower left corner, and "3122000" is the northing value of the lower left corner. During the visual

interpretation of fallen trees by utilizing those high-resolution aerial photos, the detailed boundary

will be digitized by using ArcGIS Pro and saved in shapefile which will not only be utilized in this

study but also benefit other related geospatial research. Figure 5.2 illustrates basic framework of

Faster R-CNN.

5.4 Methodology

For the fallen tree detection problem, it is critical to identify the location and boundary of

those trees from large-scale remote sensing product (e.g., high-resolution aerial photos) and create

datasets accepted by deep learning-based object detection model accordingly. Basically, in order

to create such kind of datasets in geospatial data science, especially for object detection problem,

a popular workflow is to only focus on dataset creation. During this step, training and testing im-

ages can be extracted directly by either clipping the original images or taking screenshots. Then a

labeling tool is employed to annotate objects by drawing their bounding boxes and export annota-
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Figure 5.2: Study area for this research
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Figure 5.3: Architecture of proposed framework. Red polygons are digitized fallen trees. Yellow
rectangles are the minimum bounding boxes of fallen trees. Blue rectangles are object detection
results

tion files. From this strategy, scale issue can be well controlled as the size of training and testing

images are always determined manually. However, if the annotation files are generated in this

manner, the geospatial information of those bounding boxes of objects is always ignored which

means that we know where are those objects on the images but we don’t know where are they on

the Earth. Thus, to address the aforementioned issue, we propose automatic scheme for dataset

creation by utilizing digitized fallen trees with geographical coordinates and aerial photos. Within

this framework, geospatial information of fallen trees will be kept which is able to be utilized in

any potential further geospatial analysis. Figure 5.3 provides a basic workflow of our proposed

scheme.

5.4.1 Fallen tree digitization

In the research, digitization of fallen trees is implemented in ArcGIS Pro, a widely used geospa-

tial software, where both vector data (i.e. shapefile) and raster data can be displayed simultane-
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Figure 5.4: Examples of fallen tree digitization. Red polygons are digitized fallen trees

ously. Given an aerial photo, those fallen trees, especially for their boundaries, appeared in this

image will be identified and digitized based on visual interpretation. And they will be marked on

individual fallen tree level. It means that even if two fallen trees are overlapped with each other,

those two will still be digitized as two individual fallen trees. Moreover, when digitizing fallen

trees, not only tree trunks, but canopies will be delineated as well in order to keep the integrity of

fallen tress. Figure 5.4 shows two examples of digitized fallen trees. Once all fallen trees have

been digitized, they will be saved into a single shapefile, a common geospatial vector data, and

their corresponding bounding boxes of each fallen tree will be computed separately as an input

dataset for the following steps.

5.4.2 Automatic image and annotation generation for deep learning-based object detection

model

Once the shapefile containing all bounding boxes of fallen trees is generated, the next step is to

combine it with aerial photos to generate image and annotation datasets for object detection model.

In general, the entire scheme for image and annotation generation consists of four part: 1) locating

fallen tree and aerial photo based on geographical coordinates; 2) determining image size based

on current processing fallen tree bounding box; 3) clipping and resampling aerial photo; and 4)

creating annotation files.
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The first issue of generating image datasets with annotation information automatically is to find

the correct aerial photo that can cover the target fallen tree polygon. Benefited from the naming

convention of those aerial photos, correct image will be determined by constructing the relation-

ship between the geographical coordinates of fallen tree and those of lower left corner of aerial

photo. Suppose we have a digitized fallen tree set T = {t(1), t(2), · · · , t(n−1), t(n)} where t(i) is

polygon for ith fallen tree and n denotes the number of fallen trees, its minimum bounding box

set B = {b(1),b(2), · · · ,b(n−1),b(n)} where b(i) represents the minimum bounding box of t(i),

and aerial photo dataset P = {p(1),p(2), · · · ,p(63),p(64)} as we have 64 aerial photos in total.

Since the fallen tree bounding box and aerial photo can be represented by the geographical coor-

dinates of their four vertices, respectively, B and P can be rewrite as sets of coordinates where B =

{bbox(1),bbox(2), · · · ,bbox(n−1),bbox(n)} ∈ Rn×4 andP = {pbox(1),pbox(2), · · · ,pbox(n−1),

pbox(n)} ∈ R64×4, respectively. For the bbox(i) and pbox(i), their representations are defined as

follows:

bbox(i) = [b_geogmin(i)
east , b_geogmax(i)

east , b_geogmin(i)
north , b_geog

max(i)
north ] (5.1)

pbox(i) = [p_geogmin(i)
east , p_geogmax(i)

east , p_geogmin(i)
north , p_geogmax(i)

north ] (5.2)

Figure 5.5 shows the detailed information of those geographical coordinates for fallen tree

bounding boxes and aerial photo. Given the bbox(i), its corresponding aerial photo located at the

same area for further image extraction will be determined by exploiting the following equations:

easting_name(i) = b_geogmin(i)
east //1000 ∗ 1000

+ (b_geogmin(i)
east //100− b_geogmin(i)

east //1000 ∗ 10)//5 ∗ 5 ∗ 100
(5.3)
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northing_name(i) = b_geogmin(i)
north //1000 ∗ 1000

+ (b_geogmin(i)
north //100− b_geog

min(i)
north //1000 ∗ 10)//5 ∗ 5 ∗ 100

(5.4)

where easting_name(i) and northing_name(i) are two geographical coordinates which are taken

as components of file name of target aerial photo, and “//” represents floor division where the

result is the quotient in which the digits after the decimal point are removed.

Figure 5.5: Example of geographical coordinates for fallen tree bounding box and aerial photo

After obtaining the correct aerial photo, next step is to choose an appropriate rectangle around

the target fallen tree to clip aerial photo. Since different fallen trees have different spatial dimen-

sions, the size of this rectangle cannot be specified in the same size and applied to all fallen trees as

very “small” or “large” fallen tree measured by image size will be extracted which will bring more

difficulties and challenges for object detection task. Therefore, we propose a dynamic strategy to
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determine the spatial extend for clipping aerial photos. The clipped image is named as “sub-image”

and will be used in the following text, and its coordinates of 4 vertices need to be calculated. Given

the ith fallen tree bounding boxes bbox(i), we define a scale parameter c which will be applied to

modify the length and width of bbox(i) in the following way:

s_geogix = (b_geogmax(i)
east − b_geogmin(i)

east )/c (5.5)

s_geogiy = (b_geogmax(i)
east − b_geogmin(i)

north )/c (5.6)

where s_geogix and s_geogix represent width and length of new created sub-image clipped from its

aerial photo and extracted based on the geographical coordinates of ith fallen tree bounding boxes,

respectively. This sub-image which is extracted based on bbox(i) is named as s(i).

Here another issue that needs to be consider is the aspect ratio. Since different fallen trees may

share different aspect ratio and the sizes of bounding boxes influence the size of extracted sub-

image, we choose to define a fixed aspect ratio r that works for all sub-images in order to make

sure that all sub-images share the same aspect ratio. Thus, before moving forward to the next step,

aspect ratio for sub-image s(1) will be checked and updated as:

s_geogix_updated =


s_geogix_updated, if s_geogix/s_geog

i
y ≥ r

s_geogiy × r, otherwise
(5.7)

s_geogiy_updated =


s_geogix

r
, if s_geogix/s_geog

i
y ≥ r

s_geogiy_updated, otherwise
(5.8)

Once the updated width s_geogix_updated and length rect_imgy_updated
i for sub-image s(i) are

obtained, then the spatial extent of s(i) will be used to clip aerial photo. Note that s(i) shares the

same centroid with its fallen tree bounding box bbox(i). Therefore, the geographical coordinates

of four vertices of this rectangle can be calculated as
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s_geogmin(i)
east = (b_geogmax(i)

east − b_geogmin(i)
east )/2− s_geogix_updated/2 (5.9)

s_geogmax(i)
east = (b_geogmax(i)

east − b_geogmin(i)
east )/2 + s_geogix_updated/2 (5.10)

s_geogmin(i)
north = (b_geogmax(i)

north − b_geog
min(i)
north )/2− s_geogiy_updated/2 (5.11)

s_geogmax(i)
north = (b_geogmax(i)

north − b_geog
min(i)
north )/2 + s_geogiy_updated/2 (5.12)

Currently, the representation of coordinates of sub-image s(i) is in geographical coordinates. In

order to extract clipping image from aerial photo in a more efficient way, using image coordinates

(indices in rows and columns) is well accepted due to the intrinsic vector structure of aerial photo.

In other words, given the geographical coordinates of a bounding boxes of fallen tree and its

corresponding aerial photo, we will need to know the position of this bounding box on the aerial

photo describing in rows and columns. Consequently, regarding the coordinates of vertices of

sub-image s(i), they need to be converted as follows:

s_imgmin(i)
row = (p_geogmax(i)

north − s_geog
max(i)
north )/pixel_size_northing (5.13)

s_imgmax(i)
row = (p_geogmax(i)

north − s_geog
min(i)
north )/pixel_size_northing (5.14)

s_imgmin(i)
col = (s_geogmin(i)

east − p_geogmin(i)
east )/pixel_size_easting (5.15)

s_imgmax(i)
col = (s_geogmax(i)

east − p_geogmin(i)
east )/pixel_size_easting (5.16)

where pixel_size_northing and pixel_size_easting represent spatial resolution for an individual
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pixel along northing (vertical) and easting (horizontal) directions, respectively. By utilizing results

calculated from Equations 5.13 - 5.15 as row and column indices, sub-image s(i) can be extracted

from the original aerial photo as follows:

s(i) = p(i)[s_imgmin(i)
row : s_imgmax(i)

row , s_imgmin(i)
col : s_imgmax(i)

col ] (5.17)

After obtaining sub-image ss(i) from aerial photo, next step will be on extraction of image

coordinates for those fallen tree bounding boxes located within this sub-image. Here we calcu-

late intersect areas (denotes as iter_areas(i)) between the spatial extent of ss(i) and all fallen tree

bounding boxes, and only extract those bounding boxes with intersect areas that are equal to their

own areas. Those selected fallen tree bounding boxes are represented as included_bbox(i) =

{included_bbox(i)
1 , included_bbox(i)

2 , · · · , included_bbox(i)
m }wherem is the number of in-

cluded bounding boxes. Similar with Equations 5.13 - 5.15, transformation from geographical co-

ordinates to image coordinates is essential for all those included fallen tree bounding boxes. Given

a bounding box bbox(j) which is included in sub-image s(i), its image coordinates on s(i) can be

calculated as follows:

b_imgmin(j)
row = (s_geogmax(i)

north − b_geog
max(j)
north )/pixel_size_northing (5.18)

b_imgmax(j)
row = (s_geogmax(i)

north − b_geog
min(j)
north )/pixel_size_northing (5.19)

b_imgmin(j)
col = (b_geogmin(j)

east − s_geogmin(i)
east )/pixel_size_easting (5.20)

b_imgmax(j)
col = (b_geogmax(j)

east − s_geogmin(i)
east )/pixel_size_easting (5.21)

As the original spatial dimension of s(i) may not fit our predefined dimension (numbers of rows

and columns), resampling needs to be implemented on the extracted sub-image. Suppose we have
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a user-defined two parameters, including the number of rows (nR) and the number of columns

(nC), the subimagei will be resampled as follows:

s
(i)
resample = fr(s

(i), nR, nC) (5.22)

where s(i)resample is the resampled image of s(i), and fr(·) denotes resampling function. In the re-

search, we utilize nearest neighbour as resampling algorithm in order to avoid reconstructing pixel

information. Accordingly, the image coordinates of those bounding boxes will be modified as well.

Therefore, for Equations 5.18 - 5.20, they can be re-writed as follows:

b_imgmin(j)
row = (s_geogmax(i)

north − b_geog
max(j)
north )/pixel_size_northing ∗ par(i)row (5.23)

b_imgmax(j)
row = (s_geogmax(i)

north − b_geog
min(j)
north )/pixel_size_northing ∗ par(i)row (5.24)

b_imgmin(j)
col = (b_geogmin(j)

east − s_geogmin(i)
east )/pixel_size_easting ∗ par(i)col (5.25)

b_imgmax(j)
col = (b_geogmax(j)

east − s_geogmin(i)
east )/pixel_size_easting ∗ par(i)col (5.26)

where par(i)row and par(i)col represent resampling parameters for the vertical and horizontal dimensions

for ith fallen tree bounding box, respectively. Their calculations can be seen as follows

par(i)row = nR/(s_imgmax(i)
row − s_imgmin(i)

row ) (5.27)
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par
(i)
col = nC/(s_imgmax(i)

col − s_imgmin(i)
col ) (5.28)

For those extracted image coordinates of all fallen tree bounding boxed included within a given

clipping rectangle, they will be reorganized and saved into an annotation file associated with the

corresponding extracted sub-image. There are two main data formats which have been widely used

for annotating objects, including COCO data format [139] and Pascal VOC data format [140]. In

this research, Pascal VOC format is adopted for annotation file generation. The detailed algorithm

description can be found in Algorithm 3.

5.5 Experiments

5.5.1 Experimental setup

For the digitized fallen tree dataset, it consists of 41796 fallen tree polygons and their cor-

responding bounding box rectangles. Their resulting sub-image and annotation dataset contains

27295 extracted JPG image and XML annotation files. This dataset will be split into training

and testing datasets where training sample are utilized to train object detection model, and test-

ing samples are employed to evaluate the performance of object detection model. Regarding the

implementation of Faster R-CNN model, its backbone deep neural network is ResNet-50 [141]

which was proposed in 2016. It introduces residual learning framework to overcome difficulties

when training deeper neutral works. The size of its input image is 600 × 800 × 3. The optimizer

is Adam [142] with the initial learning rate is 1× 10−5. The number of epoch is 60 and the length

for each epoch is 400. All codes are implemented based on Keras [91], a popular deep learning

package, within Tensorflow [92] as its backend.

The quantitative evaluation for evaluating object detection performance utilized in this study

are intersection over union (IOU), true positive (TP), false positive (FP), false negative (FN), pre-

cision, and recall. The first index IOU is utilized to measure overlap between two bounding boxes.

The IOU of two bounding boxes bbox1 and bbox2 can be calculated as follows:
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Algorithm 3 Automatic image and annotation generation for object detection model
Input: Dataset of digitized fallen tree T , dataset of aerial photo P , scale parameter c aspect

ratio r, target number of rows (nR), and target number of columns (nC)
Initialization: Sub-image dataset IMG ← [], annotation dataset ANO ← [], list

b_processed.all()← False
Begin:

1: for t(i) in T do
2: if b_processed[t(i) is False then
3: Calculate its minimum bounding box bbox(i)

4: Determine the correct aerial photo pi by (5.3) to (5.4)
5: Calculate original size of sub-image s(i) by (5.5) to (5.6)
6: Reshape s(i) by (5.7) to (5.8)
7: Calculate updated geographical coordinates of s(i) by (5.9) to (5.12)
8: Calculate image coordinates of s(i) by (5.13) to (5.16)
9: Extract sub-image s(i) by (5.17)

10: Calculate intersect areas iter_areas(i) and extract included_bbox(i) using s(i)

11: Calculate s(i)resample by (5.22)
12: for included_bbox(i)

1 in included_bbox(i) do
13: Calculate image coordinates b_imgmin(j)

row , b_imgmax(j)
row , b_imgmin(j)

col , and b_imgmax(j)
col

based on s(i) by (5.18) to (5.21)
14: b_processed[included_bbox(i)

1 ]← True

15: Update image coordinates b_imgmin(j)
row , b_imgmax(j)

row , b_imgmin(j)
col , and b_imgmax(j)

row

based on s(i) by (5.23) to (5.26) using s(i)resample

16: ANO[i].append([b_imgmin(j)
row , b_imgmax(j)

row , b_imgmin(j)
col , andb_imgmax(j)

col ])
17: end for
18: IMG.append(s(i)resample)
19: end if
20: end for

Output: Sub-image dataset IMG, and annotation dataset ANO
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Figure 5.6: Calculation of IOU between two bounding boxes. Red rectangle is ground reference
bounding box, and blue rectangle is detected bounding box

IOU =
bbox1 ∩ bbox2
bbox1 ∪ bbox2

(5.29)

where bbox1 ∩ bbox2 represents the calculation of intersection area between bbox1 and bbox2, and

bbox1∪ bbox2 denotes union area between bbox1 and bbox2. Figure 5.6 illustrates the IOU between

a ground reference bounding box and a detected bounding box.

IOU will be utilized to measure if a ground reference bounding box is extracted or not by a

given threshold IOU . In this research, IOU is set to 0.5. It means that if IOU is greater or equal

to IOU , the ground reference bounding box is regarded as detected. Based on the aforementioned

definition, additional three metrics, including TP, FP, and FN. TP is correct detection with IOU is

greater or equal to IOU . FN is a wrong detection if IOU is smaller than IOU . If a ground reference

bounding box is given in the image and model fails to detect this object, it will be classified as FN.

Consequently, the calculations of precision and recall can be calculated as follows:

Precision =
TP

TP + FP
=

TP

number of all detections
(5.30)

Recall =
TP

TP + FN
=

TP

number of all ground truths
(5.31)
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5.5.2 Experimental results on testing dataset

The quantitative results of Faster R-CNN on our generated dataset are shown in Table 5.1.

Note that "No. of GT" represents the number of ground reference bounding boxes, and "No. of

PRE" denotes the number of detected bounding boxes. And those terms will be reused in the

following tables. All those results are calculated on sub-image level, which means that those

metrics computation is implemented sub-image by sub-image. From it we can see that the recall

and precision are 51.71% and 42.46%, respectively. In the meanwhile, the number of detected

bounding boxes are larger than that of the ground truth bounding boxes, which illustrates that

this object detection model predicts more bounding boxes compared with the ground reference

data. Qualitative results obtained from Figure 5.7 also exhibits similar phenomenon. It is obvious

that some fallen trees can be detected very well. However, some fallen trees have more than one

detected bounding boxes, where the precision is reduced.

Recall Precision TP FP FN No. of GT No. of PRE
51.72% 42.46% 13733 18609 12818 26551 32342

Table 5.1: Object detection result on sub-image level using the entire testing dataset

From Figure 5.7 we also find that there are some fallen trees (e.g., Figure 5.7 (e) and (f)) lo-

cated near the boundaries of sub-images but without labeling information. It is determined and

generated based on our proposed sub-image extraction strategy. In the our proposed method, those

fallen trees located on the boundary of sub-image belong to “intersect” fallen trees, instead of

“included” fallen trees and they will be ignored for annotation for current sub-image. However,

their remaining parts within sub-image may have notable features which allow object detection

model to detect them as “fallen trees”. Therefore, in order to characterize and evaluate those de-

tected “fallen trees”, we calculate the accuracy indices on the global scale. Specifically, instead

of computing those indices sub-image by sub-image, we extract the geographical coordinates of
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Figure 5.7: Some object detection results. Red rectangle is ground reference bounding box, and
blue rectangle is detected bounding box
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those detected bounding boxes and all ground reference bounding boxes from all testing images.

Then the IOUs and other accuracy metrics are calculated based on geographical coordinates. Ta-

ble 5.2 shows the results using geographical coordinates. The apparent improvements in object

detection performance can be observed. The recall is increased from 51.72% to 61.07%, and the

precision is increased from 42.46% to 50.15%. In the meanwhile, TP is increased, and FP and FN

are decreased as well. Such an improvement illustrates the importance of considering the detection

results coming from boundaries of sub-images.

Recall Precision TP FP FN No. of GT No. of PRE
61.07% 50.14% 16216 16126 10335 26551 32342

Table 5.2: Object detection result on geographical coordinate level using the entire testing dataset

5.5.3 Analysis on different areas with different overlapping level

From the digitization results of fallen trees, we can find that there are a lot overlapping fallen

trees in our study area. That is common phenomenon for dense woods and forest. As the object

detection performance shown in Table 5.1 and 5.2 is not competitive and good enough compared

with other object detection tasks, we create two different datasets based on different overlapping

level: 1) dataset A with more isolated fallen trees; and 2) dataset B with more overlapping fallen

trees. Those two datasets are all generated from the original dataset in Section X. Within dataset A,

there are 2165 fallen trees included. And for dataset B, 3383 fallen trees are selected with relatively

higher density and overlapping level. Afterwards, the same Faster R-CNN models are implemented

on those two datasets starting from initial training to accuracy assessments. Moreover, the object

detection performance are still evaluated on both image coordinate level (evaluation image by im-

age) and geographical coordinate level. Table 5.3 illustrated the accuracies on those two datasets.

From this table we can find that the best recall and precision are obtained from the dataset with

more isolated fallen trees when evaluating accuracies on geographical coordinate. Compared with

112



the best results obtained from Table 5.2, its precision is decreased slightly from 50.14% to 47.76%

but its recall increases markedly from 61.07% to 88.40%. Such an improvement illustrates that

this object detection model performs better on individual fallen tree detection. In other words, it

is more easier to detect isolated fallen trees for object detection model. For the other dataset with

more overlapping fallen trees, it is obvious that the model performs worse with lower recall and

precision compared with those results within Table 5.2. Figure 5.8 shows object detection results

collected from the aforementioned two datasets, where Figure 5.8 (a) to (f) are detection results

from dataset A and 5.8 (g) to (l) are obtained from dataset B.

Data Evaluation Recall Precision TP FP FN No. of GT No. of PRE
A IMG 79.63% 43.02% 1724 2283 441 2165 4007
A GEO 88.40% 47.76% 1914 2093 251 2165 4007
B IMG 35.74% 29.92% 1209 2832 2174 3383 4041
B GEO 46.44% 38.88% 1571 2470 1812 3383 4041

Table 5.3: Object detection results on two different datasets. “A" represents the dataset with more
isolated fallen trees. “B” is the dataset with more overlapping fallen trees. “IMG” denotes the
accuracy evaluation on sub-image coordinates. “GEO” is the accuracy evaluation on geographical
coordinates

In order to analysis the influence of those overlapping fallen trees and to overcome such a

difficult, we propose another evaluation framework to alleviate misdetection. Specifically, we

choose to merge individual overlapped bounding boxes to create multiple polygon clusters, and

evaluate the accuracies between those clusters. Figure 5.9 illustrates an example of creating a

cluster based on multiple overlapping bounding boxes. This experiments are implemented only

on dataset B, which is a subset of the original dataset with more overlapping fallen trees. And

the geographical coordinates are utilized for IOU calculation. The merging criterion is defined

based on the IOU between two overlapped polygons. If the IOU is greater than a predefined

threshold, then those two bounding boxes will be regarded as “overlapped” bounding boxes and

will be merged into a single one. As resulting clustering polygons are irregular polygon which may

113



Figure 5.8: Some object detection results collected from two datasets with different overlapping
degrees
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Figure 5.9: Example of creating clusters based on overlapped fallen trees. Red rectangles represent
the original polygons, and yellow rectangles denote merged polygons. Merged bounding boxes are
highlighted in blue rectangles

belong to concave polygons or have holds, calculating their intersect and union are pretty complex

and difficult. To simplify this problem, we still create minimum bounding boxes for those cluster

polygons and utilize those bounding boxes for accuracy evaluation. Algorithm 4 provides detailed

explanations for this merging procedure.

In order to further investigate the influence of clusters on accuracy assessment, two experiments

are implemented. The first is to only create those clusters and corresponding bounding boxes for

overlapping fallen trees on the detected results. And we exploit the individual bounding boxes

of ground reference dataset as base dataset for accuracy assessment. In other words, for the first

experiment, the accuracy evaluation is calculated between individual fallen tree level and fallen tree

cluster level. Additionally, for the IOU parameter (iou_pred), 10 different values (0, 10%, 20%,

30%, 40%, 50%, 60%, 70%, 80%, 90%) are utilized in current experiments. Table 5.4 illustrates

all results obtained from those different parameters. The best recall (46.36%) is obtained when

(iou_pred) is 90%, which is slightly decreased compared with the base one (46.44%) collected

from bounding box to bounding box comparison. Regarding the precision, we can see that for

multiple trials when (iou_pred) is set to from 20% to 90%, precision values are always greater
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Algorithm 4 Generation of bounding box clusters by merging overlapping bounding boxes
Input: Dataset of fallen tree bounding boxes B, IOU parameter iou
Initialization: Cluster dataset CLU ← [], list list_cluster_index.all() ← 0, and index

process_idx← 0
Begin:

1: for bbox(i) in B do
2: if list_cluster_index[bbox(i)] is not 0 then
3: Calculate list_IOU (i) between bbox(i) and B
4: Select overlapped fallen tree set list_op_tree(i) ← B[where(list_IOU (i) > iou)]
5: list_cluster_index.all(list_op_tree(i))← process_idx
6: while list_op_tree(i).size is not 0 do
7: if list_op_treei.size[0] is not bbox(i) then
8: list_op_tree(j) = list_op_tree(i)[0]
9: Calculate list_IOU (j) between list_op_tree(j) and B

10: Select overlapped fallen tree set list_op_tree(j) ← B[where(list_IOU (j) > iou)]
11: list_cluster_index.all(list_op_tree(j))← process_idx
12: end if
13: list_op_tree(i).size.pop(0)
14: list_op_tree(i).size.append(list_op_treej)
15: end while
16: process_idx← process_idx+ 1
17: end if
18: end for
19: CLU = Dissolve(B, list_cluster_index)

Output: Cluster dataset CLU

than the base one that is 38.88%. However, it may not be available to achieve a better results in

terms of both recall and precision.

The other experiment is to create clusters for both ground reference bounding boxes and

detected bounding boxes. Therefore, calculation of those accuracy metrics is implemented on

“cluster-to-cluster” level. For this experiments, two different IOU parameters (iou_gt and iou_pred)

are utilized on both ground reference data and detected results, respectively. And both of them are

all 10 different values from 0 to 90% with a step of 10%. Thus, we have 100 different combinations

using those two IOU parameters in total. All those results are displayed in Figure 5.11 and 5.12.

Regarding the recall results, we noticed that given a specified iou_gt, a higher recall value

can be obtained when the iou_pred is large enough. And the trend is smaller iou_gt and larger
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IOU Recall Precision TP FP FN No. of GT No. of PRE
0 8.63% 32.48% 292 607 3090 3382 899

0.1 11.65% 35.82% 394 706 2988 3382 1100
0.2 26.76% 45.00% 905 1106 2477 3382 2011
0.3 32.82% 47.29% 1110 1237 2272 3382 2347
0.4 35.87% 46.96% 1213 1370 2169 3382 2583
0.5 41.69% 44.88% 1410 1732 1972 3382 3142
0.6 45.74% 40.48% 1547 2275 1835 3382 3822
0.7 45.98% 39.57% 1555 2375 1827 3382 3930
0.8 46.30% 39.24% 1566 2425 1816 3382 3991
0.9 46.36% 38.90% 1568 2463 1814 3382 4031

Table 5.4: Accuracy assessment on the dataset with more overlapping fallen trees using clusters
created from detected results

iou_predwill produce higher recall values. Moreover, the best recall is obtain when iou_gt is 0 and

iou_pred is 60%, where all overlapped bounding boxes are merged into clusters. However, such

a trend is opposite when analyzing precision results. The best precision is achieved when iou_gt

is 60% and iou_pred is 30%. And precision tends to rise with decreasing iou_pred, which means

that if more predicted bounding boxes are merged into clusters, higher precision will be yielded.

Furthermore, among those 100 results, we find that there are 48 records with higher recall and 24

records with high precision compared with the base one shown in Table 5.3. And none of them

has higher recall and precision simultaneously. Those results illustrates that detecting overlapping

fallen trees is still a very challenging problem, even considering clustering those overlapping fallen

trees bounding boxes.

5.6 Conclusion

In this study, for the purpose of detecting fallen tress from large scale aerial photos, we de-

velop a framework to automatically create image and annotation dataset which can be utilized as

input data for deep learning based object detection model. Based on such a dataset generated from

digitized fallen trees and very high resolution aerial photos, we investigate the fallen tree detection

problem using Faster R-CNN model. Quantitative and qualitative classification results illustrate

that, for isolated fallen trees, our model achieves promising results considering recall index. How-
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Figure 5.10: Recall and precision using different IOU parameters

ever, many false positive detection results are generated as well. As the proposed automatic data

generation framework ignores those fallen trees lying on the boundaries of extracted sub-image,

the accuracy calculation method is modified as well from image level to geographical level us-

ing the geographical coordinates of all predicted bounding boxes. Experimental results show that

utilizing geographical coordinates based accuracy measurement will have higher accuracies. We

also investigate the influence of overlapping fallen trees. For the study area with more overlapping

fallen trees, clustering based analysis is introduced where overlapped fallen trees will be merged

into a single one for further accuracy assessment. From experimental results, we notice that recall

and precision can be improved at some specific circumstances when using different IOU parameter

for different merging level. However, they will not be improved simultaneously. Therefore, de-

tecting overlapping fallen trees is still a challenging task, especially for those large scale datasets

collected from the real world.

In the future, more experiments using different object detection algorithms will be imple-

mented. Furthermore, combining aerial photos and hyperspectral remote sensing images needs to
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Figure 5.11: Recall results using different IOU parameters
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Figure 5.12: Precision results using different IOU parameters
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be conducted to investigate the potential detection improvements by adding additional data source.
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6. CONCLUSION

In this study, a novel sequential feature extraction framework for single image classification

problem is proposed, where unlabeled data are well-exploited in order to construct sequential fea-

tures from a single image. Instead of using spectral features as the sequential data structure of

RNN, similar pixels collected from the entire image are used to construct the respective sequen-

tial features. Such schemes take full advantage of unlabeled data in the HSI. Moreover, block-

matching-based schemes also consider spatial contextual information in the classification process,

and it is demonstrated in this research that such schemes are effective in increasing image clas-

sification performance. From the experimental results, we also found that choosing a smaller

sequence length and smaller window size for block-matching is an appropriate strategy for our

proposed methods to achieve higher classification.

Then we improved such a model by introducing object-based segmentation to accelerate se-

quential feature construction. Similar pixels which are employed for sequential features are not

selected from the whole-image scope, but are rather chosen from individual segments within the

segmentation map. Three different sequential feature extraction strategies are developed, where

local and non-local segments are considered in a separate and combined manner, respectively.

Classification results illustrate that, for the Pavia University and Salinas images, the method using

mixed strategy and block matching achieves the best classification performance. For the Indian

Pine image, the best classification performance is obtained by the method using local segment and

block matching, which indicates that for the Indian Pine image with lower spatial resolution, the

local segment makes a greater contribution to the similar-pixel calculation and selection. Similar

pixels associated with a given target pixel will be more likely to be located in the local segment. By

investigating the computational time cost of our proposed methods, we find that those approaches

are still very competitive, accuracy-wise, and they are capable of achieving acceptable classifica-

tion performance with markedly lower computation cost.

We also apply this proposed framework for LSTM-based land-cover classification. This is a
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first extension of our proposed approach from the utilization on benchmark dataset to the large-

scale satellite image classification problem. For this research, the study site is located in the rural

area in the northern India, and the objective is to classify/identify land-cover information within

plantations. Experimental results illustrate that our proposed approach achieves better perfor-

mances compared with the results obtained from 2DCNN. The parameter sensitivity analysis is

adopted as well to evaluate the influence of using different segmentation maps and similar seg-

ments. We find that smaller scale parameter and less similar segments will produce higher accu-

racy.

Apart from classification, we also investigated the application of object detection for remote

sensing data analysis. The main objective is to detect fallen trees from coastal areas in southern

Texas, United States. We developed a framework to automatically create image and annotation

dataset which can be utilized as input data for deep learning based object detection model. Based

on such a dataset, we investigated the fallen tree detection problem using Faster R-CNN model.

Quantitative and qualitative classification results illustrate that, for isolated fallen trees, our model

achieves promising results considering recall index. However, many false positive detection results

are generated as well. As the proposed automatic data generation framework ignores those fallen

trees lying on the boundaries of extracted sub-image, the accuracy calculation method is modified

as well from image level to geographical level using the geographical coordinates of all predicted

bounding boxes. Experimental results show that utilizing geographical coordinates based accuracy

measurement will have higher accuracies. We also explore the influence of overlapping fallen

trees. For the study area with more overlapping fallen trees, clustering based analysis is introduced

where overlapped fallen trees will be merged into a single one for further accuracy assessment.

From experimental results, we notice that recall and precision can be improved at some specific

circumstances when using different IOU parameter for different merging level. However, they will

not be improved simultaneously.

Our future work includes applying novel deep learning models in other tasks utilizing datasets

collected from real scenarios, such as natural hazard assessment and climate changes analysis.
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