
SYSTEMATIC APPROACHES TO IMPROVING GEOCODING AND REVERSE

GEOCODING SYSTEMS

A Dissertation

by

ZHENGCONG YIN

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Daniel W. Goldberg
Committee Members, Matthias Katzfuss

Ruihong Huang
Stacey Lyle

Head of Department, David Cairns

December 2021

Major Subject: Geography

Copyright 2021 Zhengcong Yin

ABSTRACT

Geocoding, and reverse geocoding is a process that enables transitions between human-readable

location information and machine-readable coordinates. The former converts human-readable in-

formation into machine-readable coordinates, and the latter does the opposite. These two processes

perform an essential data-processing function that enables further spatial analysis to be conducted

in a variety of fields such as public health. As a result, any subsequent studies and analysis that em-

ploy geocoded data are directly impacted by the quality of the output from geocoding and reverse

geocoding systems. To be specific, there are three indicators of output quality: (1) match rate,

which indicates the rate of successfully geocoded data and determines the usability of geocoded

data for further analysis; (2) spatial accuracy, which enhances the validity of studies employing the

geocoded data as input; (3) clear and concise metadata descriptions, which provides confidence for

selecting the most relevant geocoded and reverse geocoded output.

In this work, the process of geocoding and reverse geocoding has been distilled to reveal the

limitations of the existing solutions. The process of geocoding is divided into two sub-processes:

(1) text retrieval, which aims to match an input description with a candidate of the highest textual

similarity, and (2) geocoding interpolation, which corresponds to deriving the final output coor-

dinates based on the geometrical and spatial attributes of the retrieved reference candidates. In

examining these sub-processes, the limitations on the existing geocoding systems are identified as

the incapacity for handling (erroneous) geocoding inputs, and the drawbacks of typical geocoding

interpolation methods. As it relates to reverse geocoding, the sub-processes are: (1) match the

most similar candidates to the respective human input and (2) re-rank the candidates according to

specific criterion. The limitations of the existing reverse geocoding systems are the exclusion of

topographical relationships amongst reference data, the ignorance of input uncertainty, and unclear

metadata descriptions.

To overcome these limitations, three branches of research are conducted as follows. (1) To

improve the robustness of geocoding systems for low-quality input, a set of parsing, matching,

ii

and ranking methods are selected. To be specific, a unified evaluation protocol that is specific to

geocoding text retrieval tasks (i.e., parsing, matching, and ranking) is defined. Next, a geocoding

input dataset, which contains different degrees of errors and variants, is synthesized by mining hu-

man input patterns from existing geocoding transactions. From there, the input dataset is used to

benchmark a set of geocoding parsing, matching, and ranking methods that are built upon Natural

Language Processing (NLP) and Information Retrieval (IR) methods. (2) A novel geocoding inter-

polation approach, which incorporates Computer Vision (CV) technique, is developed to overcome

the parcel homogeneity assumption made by the linear interpolation method; the parcel centroid

assumption made by the polygon interpolation method, and the limited coverage of reference data

used by the point interpolation method. (3) A new reverse geocoding ranking approach is intro-

duced, which includes ranking output candidates by geometrical and topological attributes that

are provided by the retrieved reference data, propagating input uncertainty to output, and fully

quantifying each candidate based on relevance.

The work with these three branches aims to improve the match rate, spatial accuracy, and

metadata descriptions of geocoding and reverse geocoding systems when facing low-quality in-

put. Together, these improvements could lead to better geocoding and reverse geocoding systems

through benefits gained in various spatial analyses and applications that use these systems as part

of their data processing pipelines.

iii

DEDICATION

To my family and all my friends. In memory of my grandfather and grandmother. This

manuscript is written during the COVID-19 pandemic crisis. To everyone who fights to defeat it.

iv

ACKNOWLEDGMENTS

There are many people I want to say thank you while I am writing this acknowledgment.

First and foremost, I would like to thank my advisor, Dr. Daniel W. Goldberg, who over the

past many years has spent a significant amount of time and effort chiseling me into who I am today

as a researcher. Without his constant patience, support, and advice, this dissertation would not

have been possible. I still remember the moment when I stepped into his lab and became one of

his students back in 2014. I thank him for introducing the geocoding world to me and allowing me

to step away a little from the lab to explore the industrial world during the final stage of my Ph.D.

studies. His enthusiasm for academia, passion for transforming research into tools and software

everyone can use, and sense of humor have shaped me professionally and personally. Thanks, Dan.

I have been very fortunate to have Drs. Matthias Katzfuss, Ruihong Huang, and Stacey Lyle

ion my committee. I received tremendous support and useful suggestions from them. Engaging

in discussion with them or taking their courses gave me new insights for my research. I also want

to thank Dr. Tracy Hammond, whose dedication to research and detailed review of my paper

impressed me greatly.

I am very grateful to the great people I have bonded with while studying at Texas A&M Univer-

sity or in my life. I thank, Payton Baldridge, Aaron Harmon, and Edgar Hernandez for your help,

when I was very new to the lab. I further extend my gratitude to my classmates and lab-mates:

Andong Ma, Da Huo, Jinwoo Park, and Xiao Li; I hope you all can achieve your career goals.

Furthermore, there are friends I made outside my academic department to whom I feel grateful.

Yi Cui, Di Xiao, Jiayi Huang, and Shan Jin, I miss our after-work dinners and talk about various

research/non-research topics together. Tiben Che, Shi Chang, Ye Wang, and Yicong Cai, thanks

for making my life at College Station, Texas wonderful. Last, I would like to take this moment to

thank Shengnan Liu, Weilei Qiu,and Min Yangthank Shengnan Liu, Wenlei Qiu, and Min Yang,

who have given me lots of encouragement since we have known each other.

I have had the great fortune to do summer internships at Esri during my Ph.D. studies. My

v

thanks go to Jeff Rogers, Brad Niemand, and Jon Hancock, who give me the opportunity to engage

with industry-level geocoding works for the very first time. Furthermore, I would like to thank

Sathya Prasad, Peng Gao, and Ringu Abraham for providing me with opportunities to taste various

GIS projects, and thanks, Jay Chen and Ethan Zhou, it’s a great pleasure to work closely with

you guys. During my time at Esri, I also met lots of great friends: Chong Zhang, who greatly

impacted my Ph.D. studies and career, and Liwei Gao, who always encouraged me to do more

coding exercises. To Tina, Dwayne, Vera, Zelin, and Jimmy, cheers to our friendships, hoping

y’all keep moving to bigger and better things.

Last but never least, I am very grateful to my parents, my aunt, and my uncle for their un-

conditional love and support. They have always been there for me, from teaching me to wash my

hands to complete this manuscript. I would never have gotten to where I am today without them.

Additionally, I would like to thank Ming Yuan for the support and encouragement. I believe we

will eventually see the light at the end of the tunnel.

vi

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Daniel W. Gold-

berg of the Department of Geography and the Department of Computer Science and Engineering,

Professor Matthias Katzfuß of the Department of Statistics, Professor Ruihong Huang of the De-

partment of Computer Science and Engineering, and Professor Stacey Lyle of the Department of

Geography and the Department of Civil Engineering.

All work conducted for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported in part by funding provided by the North American Association

of Central Cancer Registries, the US National Institutes of Health, and the US National Cancer

Institute.

vii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES . vii

TABLE OF CONTENTS . viii

LIST OF FIGURES . xi

LIST OF TABLES. xiii

1. INTRODUCTION. 1

1.1 Research Motivation . 1
1.2 Problem Statement . 3
1.3 Contributions of the Work . 4
1.4 Outline of the Dissertation . 6

2. BENCHMARKS FOR GEOCODING PARSING, MATCHING, AND RANKING AP-
PROACHES . 7

2.1 Introduction and Related Work . 7
2.2 Benchmark Overview . 10

2.2.1 Benchmark Goal . 10
2.2.2 Benchmark Architecture . 10
2.2.3 Benchmark Configuration . 12

2.3 Address Error Injector . 13
2.4 Benchmark for Geocoding Matching Process . 14

2.4.1 Blocking Fields Selection . 15
2.4.2 Fuzzy Matching Approaches Evaluation . 18

2.4.2.1 Fuzzy Matching Approaches . 18
2.4.2.2 Data and Evaluation Metrics . 22
2.4.2.3 Evaluation Procedures and Results . 25

2.4.3 Matching Logic Evaluation . 37
2.4.3.1 Data and Evaluation Metrics . 38
2.4.3.2 Evaluation Procedures and Results . 38

2.5 Benchmark for Geocoding Ranking Process . 42

viii

2.5.1 Evaluated Ranking Approaches. 42
2.5.1.1 Per-attribute Score Ranking. 43
2.5.1.2 Term Frequency-based Ranking . 44
2.5.1.3 Classification-based Ranking . 46
2.5.1.4 Hybrid Ranking . 48

2.5.2 Data and Evaluation Metrics . 50
2.5.3 Evaluation Procedures and Results . 50

2.6 Benchmark for Geocoding Parsing Process. 52
2.6.1 Evaluated Address Parsing Approaches . 53

2.6.1.1 Statistic-based Address Parsing. 53
2.6.1.2 Neural Network-based Address Parsing. 53

2.6.2 Data and Evaluation Metrics . 56
2.6.3 Evaluation Procedures and Results . 57

2.6.3.1 Performance of the Statistical-based Address Parsing. 57
2.6.3.2 Performance of the Neural Network-based Address Parsing 58

2.7 Conclusions. 59

3. A DEEP LEARNING APPROACH FOR ROOFTOP GEOCODING . 62

3.1 Introduction. 62
3.2 Related Work . 64

3.2.1 Limitations of Current Geocoding Methods . 64
3.2.1.1 Street Geocoding . 64
3.2.1.2 Address Polygon Geocoding. 64
3.2.1.3 Address Point Geocoding . 65

3.2.2 Advances in Object Detection . 65
3.3 Workflow Formalization . 66

3.3.1 Searching Zone . 66
3.3.1.1 Fuzzy Searching Zone . 67

3.3.2 Building Detection and Centroid Extraction . 70
3.3.2.1 Model Setup and Data Training . 70
3.3.2.2 Building Detection and Centroid Extraction . 71

3.3.3 Centroid Candidate Selection . 72
3.3.3.1 Candidate Validation . 72
3.3.3.2 Candidate Selection . 73

3.4 Experiments and Results . 75
3.4.1 Experimental Setup. 75
3.4.2 Results and Discussions . 77

3.4.2.1 Match Rate. 77
3.4.2.2 Overall Spatial Accuracy . 78
3.4.2.3 Spatial Accuracy for Different Land-use Types. 81
3.4.2.4 Sources of Uncertainty and Limitations . 84

3.5 Conclusions. 85

ix

4. A PROBABILISTIC APPROACH FOR IMPROVING REVERSE GEOCODING OUT-
PUT . 86

4.1 Introduction. 86
4.2 Related Work . 88
4.3 Workflow Formalization . 90

4.3.1 Reference Datasets . 90
4.3.2 K-Nearest Search . 91
4.3.3 Spatial Topology Validation. 93

4.4 Weight-based Quantification for Reverse Geocoding . 93
4.4.1 Quantification for K- Nearest Search . 94
4.4.2 Quantification for Spatial Topology Validation . 95
4.4.3 Quantification for Candidate Fusion. 97

4.5 Input Uncertainty Propagation. 99
4.5.1 Input GPS Uncertainty Statistical Surface . 99
4.5.2 Input GPS Uncertainty Propagation . 101

4.6 Experiments and Results . 102
4.6.1 Experimental Setup. 102
4.6.2 Results and Discussions . 103

4.6.2.1 Correctness of the First Candidate. 103
4.6.2.2 Agreement of Candidate Ranking . 109
4.6.2.3 Impact of GPS Uncertainty . 114

4.7 Conclusions. 116

5. SUMMARY AND FUTURE WORK . 118

5.1 Summary . 118
5.2 Future Work . 119

5.2.1 Geocoding . 120
5.2.2 Reverse geocoding . 121

REFERENCES . 122

x

LIST OF FIGURES

FIGURE Page

2.1 Benchmark Overview . 11

2.2 Distributions of randomly injected errors for the 1-error and 2-error testing input
datasets . 15

2.3 Address components of an address description . 17

3.1 Workflow of the proposed approach . 67

3.2 Clockwise checking method to check address parity . 72

3.3 House number difference ranking to select the best candidate. 74

3.4 Cumulative distribution of spatial error in Exact Feature Matching (Left) and Fuzzy
Feature Matching. 78

3.5 Output for small-size (Left) and large-size parcels (Right) in Exact Matching sce-
narios . 80

3.6 Output for a Low-density Residential address (Left) and a Commercial address
(Right) in Fuzzy Feature Matching scenarios. 80

3.7 Two output examples for High-density Residential addresses . 83

4.1 Proposed reverse geocoding workflow . 90

4.2 Shortest distance from input coordinates to different address models: (a) Address
Point. (b) Street Segment. (c) Address Parcel. 91

4.3 Corner cases for topology validation. (a) A large area contains multiple buildings;
(b) Opposite-side buildings is extremely close to input coordinates. 96

4.4 GPS circular error probability.. 100

4.5 Frequency of error categories under indoor (a) and outdoor (b) scenarios 105

4.6 Impact of missing reference data on candidate selection. 106

4.7 First candidate for our approach (a) and Google (b) for indoor coordinate 107

4.8 First candidate for our approach (a) and Here (b) for outdoor coordinate. 108

xi

4.9 Candidate ranking in indoor (a) and outdoor (b) scenarios . 113

4.10 Input GPS coordinates with various accuracy in indoor (a) and outdoor (b) scenarios 115

xii

LIST OF TABLES

TABLE Page

2.1 Input error and variations on each address component . 16

2.2 Category of evaluated matching techniques . 23

2.3 The performance of matching techniques for zip codes . 26

2.4 Match rate of matching techniques under different street name error categories 28

2.5 Overall street name match performance of each matching technique 29

2.6 Overall performance of matching street base name under hybrid matching method
variations . 31

2.7 Match rate of matching techniques under different city name error categories 32

2.8 Overall performance of matching city name under each matching technique 33

2.9 Overall performance of matching city name under hybrid matching method variations 34

2.10 Overall match performance of each matching technique for short street-level de-
scriptions . 35

2.11 Overall match performance of each matching technique for long street-level de-
scriptions . 36

2.12 Performance of each matching logic variation facing 1-error and 2-error testing
input datasets . 40

2.14 Weight and similarity quantification of each address component for per-attribute
score ranking . 44

2.15 The candidate parameter search space and the best parameters for Random Forest
Classifier . 48

2.16 Performance of each ranking method facing 1-error and 2-error testing input datasets 51

2.18 Features used to train a CRF model . 54

2.20 The performance of the fine-tuned CRF models with different input features 57

2.21 Address parsing performance of each neural network configuration variations 59

xiii

3.1 Possible nearby features for Benchmark Points of Fuzzy Searching Zone 70

3.2 Match Rates . 77

3.3 Descriptive statistics for overall spatial error (meters) in Exact and Fuzzy Feature
Matching scenarios. 79

3.4 Descriptive statistics of spatial error (meters) across land-use types in the Exact
Feature Matching scenario. 82

3.5 Descriptive statistics of spatial error (meters) across land-use types in the Fuzzy
Feature Matching scenario. 83

4.1 Spatial topology validation rules . 94

4.2 Correctness of first candidates . 104

4.3 nDCG@K Comparisons . 111

4.4 Candidate list based on various CEP radius under indoor and outdoor scenarios. 116

4.5 Candidate list change rates by considering GPS uncertainty under different scenarios117

xiv

1. INTRODUCTION

1.1 Research Motivation

Geocoding encodes human-readable location descriptions (e.g., postal addresses) to machine-

readable geographic coordinates, and reverse geocoding converts geographic coordinates into lo-

cation descriptions. These transitions between human-readable location information and machine-

readable coordinates could help us discover insights behind spatial patterns. Recent decades have

seen a proliferation of applications that employ geocoding and reverse geocoding techniques.

These two services can be accessed anywhere, from academic spatial analysis to personal daily

usage, from typing in search bars to voice-based question answering systems [1, 2, 3, 4]. As more

human activities occur at a location, geocoding and reverse geocoding are starting to be used to

support mining information that link with a particular site, known as location intelligence. These

two services are becoming an essential step before conducting further spatial analysis in a variety

of fields. Using epidemic investigation as an example, the first geocoding action occurred in 19th

century as John Snow, who was one of the founders of modern epidemiology, plotted locations of

cholera death cases on a map to identify the contaminated water pump [5]. Because of the devel-

opment of geocoding and reverse geocoding services, we can do more in disease surveillance than

before. By geocoding patients’ residential addresses, we can monitor the disease outbreak situa-

tion, and we can track how diseases are transmitted [6]. By geocoding health provider location, we

can conduct a spatial accessibility estimation for communities [7]. By reverse geocoding GPS co-

ordinates, we can re-build people’s trajectories for their activities and analyze their exposure risks

to a disease [8]. During the recent COVID-19 pandemic, both geocoding and reverse geocoding

have been actively used to monitor and track the outbreak situation [9, 10].

There are three requirements for geocoded data and reverse geocoded data to be useful in

spatial analysis. The first requirement is spatial accuracy, which is considered the most important

metric in output data quality [11, 12]. For geocoding data, spatial accuracy is the distance between

1

the geocoding output coordinates and the ground-truth coordinates. Errors in geocoded data are

found to be propagated through to subsequent studies, thereby affecting the validity and accuracy

of further data creation and the research conclusions of these studies [13]. For example, in air

pollution exposure studies, two common geocoding error distances- 100 and 250 meters- could

lead to biased exposure classifications [14], and spatial errors produced by street geocoding has

been shown to result in consistent overestimation for the number of exposed individuals [15]. In

a cancer risk study, a spatial error for residential locations lower than 50 meters is required to

conduct further analysis [16]. For reverse geocoding data, spatial accuracy determines whether

output location descriptions correspond to the input correctly or not. For example, a false positive

location description returned by a reverse geocoding system may be located at the opposite side

of the street, creating problems with passenger pickups as a driver may need to make a U-turn to

arrive at the designated location.

The second requirement is the match rate. In both geocoding and reverse geocoding, match

rate represents the fraction of successfully processed data. A recent study shows that 85 percent is

considered the minimal acceptable match rate to conduct further analysis [17]. Therefore, match

rate could determine the usability of the whole processed dataset (e.g., patients’ residential ad-

dresses for a certain disease at a certain time period) for further analysis. Although match rates

can be improved by reverting to a lower spatial accuracy area (i.e., from a street-level to a city-

level) [18], it would largely sacrifice the spatial accuracy of geocoded data, which is unacceptable

in practice. The third requirement is a descriptive metadata description for output geocoded and

reverse geocoded data. For geocoded data, a high-quality metadata description should report its

spatial accuracy, and an area that true geocodes are located at [19]. For reverse geocoding, output

should be described by spatial topological relationships and how likely an output address descrip-

tion corresponds with input coordinates, with consideration of GPS errors. The quality of metadata

descriptions becomes more important as it can facilitate confidence for candidate selection and

candidate suggestion is demanded in more location-based service scenarios.

Because geocoding and reverse geocoding follow the "garbage in, garbage out" principle [20],

2

error-prone human input and inevitable GPS errors pose significant challenges for geocoding and

reverse geocoding to meet these three requirements, once the corresponding process is not able

to handle low-quality input properly. Given the impact of geocoded and reverse geocoded data

quality on research investigations that employ them, improving the quality of output from these

two systems when facing low-quality input becomes a necessity.

1.2 Problem Statement

Given the aforementioned wide usage of geocoding and reverse geocoding processes in dif-

ferent scenarios, substantial efforts have spent on development and evaluations of geocoding and

reverse geocoding. Specific to geocoding, the scope of previous studies ranges from address pars-

ing techniques [21, 22, 23]; feature matching techniques [24, 25, 26, 27]; interpolation meth-

ods [28, 29, 30]; output candidate selection and ranking [18, 31]; evaluation framework designs

[19, 32] and impacts of output data quality on subsequent studies [33, 19]. For reverse geocod-

ing, previous studies focused on reducing query latency [34, 35]; integrating more reference data

source [36]; improving output candidate ranking quality [37, 38, 39, 40].

Despite this rich body of prior work, there are still gaps that need to filled to enhance geocoding

and reverse geocoding systems. Since errors can be introduced at every step of the a geocoding

process [20], instead of treating it as a black-box or end-to-end process, a geocoding workflow can

be divided into two parts: (1) text retrieval, namely finding a candidate that has the highest textual

similarity with respect to an input description, and (2) geocoding interpolation, which corresponds

to deriving the final output coordinates based on the geometrical and spatial attributes of the re-

trieved reference candidates. For the text retrieval process, the inevitable challenge is erroneous

human input. When geocoding systems can not handle errors and variants appropriately, the match

rate and spatial accuracy of output data decrease, as geocoding interpolation could perform on

the incorrect reference candidates. However, existing work related to the development or evalua-

tion of geocoding systems seldom uses geocoding input that truly reflects the spectrum of human

input errors, leaving the performance of systems uncertain when receiving user input in real sce-

narios. Moreover, due to the lack of a standard testing dataset and evaluation metrics, consistent

3

and reproducible geocoding evaluation results are difficult to obtain. For these reasons, it is hard

to draw concrete conclusions about whether or not a geocoding or reverse geocoding system has

been improved by directly comparing new experimental results to previous work.

For the geocoding interpolation process, either linear or polygon interpolation methods have to

make assumptions to derive the final output, introducing significant spatial errors [28, 29]. Point

interpolation, which generates highly accurate results [41, 42], is limited due to the unavailability

of the rooftop reference dataset.

For reverse geocoding, when finding nearby candidates with input coordinates, most existing

solutions use distance as the single criterion, failing to consider the topological relationships among

reference data. This drawback can easily result in a situation in which while the returned candidate

is the closest to the input points, it may be located on the opposite side of the street, making

this candidate not ideal. Meanwhile, the current output metadata only includes the distance to

the input and the spatial accuracy level of this candidate. There is no metric to describe how

likely a candidate is to be the best, which limits confidence in selecting the best candidates. Input

uncertainty (e.g., GPS accuracy) is also unavoidable, but ignored by existing reverse geocoding

systems. As more mobile phones access reverse geocoding by using GPS input, taking input

uncertainty into account becomes of importance.

1.3 Contributions of the Work

This research systematically studies the workflow of geocoding and reverse geocoding pro-

cesses and attempts to improve the output quality of these two processes in a divide and conquer

manner. Specifically, this work splits a geocoding process into two parts: text retrieval and geocod-

ing interpolation. The first experiment targets geocoding text retrieval process, in which we detail

a way to analyze existing geocoding user input and synthesize input queries that match the ana-

lyzed human input patterns (i.e., errors and variants that occur in different address components).

Then, this experiment defines a unified evaluation protocol including testing dataset, evaluated

methods, and metrics for evaluating three sub-tasks: parsing, matching, and ranking. Finally, a set

of geocoding techniques that are robust to low-quality input are selected based on the benchmark

4

results. Experimental results produced by these benchmarks can serve as solid baselines for fu-

ture geocoding system development. The second experiment aims to solve drawbacks of existing

geocoding interpolation techniques and limitations of reference datasets. The proposed method

also can be used to update address reference datasets. For reverse geocoding, the third experiment

seeks to improve its output quality in three iterations. It first enhances the reverse geocoding work-

flow, leveraging distance and topological relationships among reference datasets to help candidate

selection. We then quantify the distance and topological relationships for each candidate in a prob-

abilistic manner. Finally, we propose a way to propagate input GPS uncertainty to output data,

quantifying each candidate with its likelihood of being the best candidate.

In the end, geocoded data and reverse geocoded data produced in this work are expected to have

better quality than existing approaches in terms of match rate, spatial accuracy, and metadata de-

scription facing low-quality user input. Point-by-point contributions of this work are summarized

as follows.

• An automatic approach to detect and analyze errors and variants occurs in geocoding in-

put from history data and synthesize low-quality geocoding input that mimics human input

patterns.

• A unified geocoding text retrieval (i.e., parsing, matching, and ranking) task evaluation pro-

tocol including benchmark datasets, evaluation procedures and metrics.

• A set of geocoding text retrieval (i.e., parsing, matching, and ranking) techniques that are

robust to low-quality input are systematically evaluated.

• An object detection based geocoding interpolation methods, which overcomes the typical

drawbacks of existing interpolation techniques and the limitation of reference datasets used

by geocoding systems.

• An automatic method to generate and update address or Point-of-Interest (POI) reference

datasets using highly available remote sensing data.

5

• A reverse geocoding workflow that leverages spatial topological relationships between ex-

isting address models (i.e., address point, address parcel, street segment) for candidate se-

lection, moving beyond simple distance-only measures to differentiate candidates.

• A reverse geocoding ranking approach to quantify topological relationships and distances of

address candidates to input coordinates with a uniform quantification.

• A reverse geocoding algorithm for propagating input GPS uncertainties into output data.

1.4 Outline of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 details how to synthe-

size low-quality geocoding input data that mimic human input patterns and defines three bench-

marks for evaluating three sub-task of geocoding text retrieval progress: Parsing, Matching, and

Ranking, respectively. We assess the performance of a set of techniques for each sub-task when

facing the synthesized low-quality geocoding input. Chapter 3 aims to resolve the drawbacks

and limitations of geocoding interpolation process. We describe how to integrate object-detection

techniques from the Computer Vision domain into the typical geocoding workflow to overcome

assumptions made by existing interpolation methods and to tackle the limitation of geocoding ref-

erence datasets. Chapter 4 focuses on the entire reverse geocoding workflow. We elaborate on the

proposed method to leverage and quantify distance and topological relationships among reference

data so that output reverse geocoded candidates can be ranked in a quantitative manner. Mean-

while, we describe how to have reverse geocoding output candidate ranks taking input GPS errors

into account, propagating such errors through the entire reverse geocoding workflow. Chapter

5 concludes the dissertation by highlighting key findings and describing the potential for future

work.

6

2. BENCHMARKS FOR GEOCODING PARSING, MATCHING, AND RANKING

APPROACHES

2.1 Introduction and Related Work

Geocoding is the process of converting address descriptions into geographic coordinates [43].

Such transition has been widely used as a standard data processing step in various domains before

conducting spatial analysis, and the quality of geocoding output is shown to be critical to subse-

quent studies which used geocoded data as input, as errors in geocoded data could easily propagate

through the spatial analysis workflow [13].

Given the importance of geocoded data, substantial effort has been devoted to evaluating the

performance of geocoding systems under different techniques and scenarios. These works in-

clude evaluations of output quality under different interpolation approaches (e.g., street linear in-

terpolation, address polygon interpolation, address point interpolation, or object detection based

interpolation), candidate matching methods (i.e., deterministic or probabilistic feature matching al-

gorithms), fuzzy matching techniques (i.e., string similarity-based or dense vector similarity-based

methods), land-use types (i.e., urban or rural areas), and input address types (i.e., postal address,

road intersection, or P.O. Box) [29, 44, 45, 46, 25, 47, 48, 24]. In terms of geocoded data quality

assessment metrics, most of these works quantify the geocoding quality by match rate and spatial

accuracy [44, 46, 29]. Some frameworks evaluated also include how geocoded data impact the fur-

ther spatial analysis operation such as point-in-polygon analysis [33] and how geocoding systems

impact on an organization from the aspect of operations [19].

Despite this rich body of prior work, there are still some gaps that can fill in to facilitate better

development and evaluations of a geocoding system. First, while every component in a geocod-

ing system could introduce and propagate errors into final output [20], most of the existing work

evaluate geocoding systems at a relatively Marco level, treating the entire geocoding process as

a black-box or only assessing geocoding interpolation methods [44, 29, 49]. In fact, a geocoding

7

interpolation process, which derives the output point based on the geometry of a reference record,

occurs after retrieving such a reference record (i.e., a feature matching process). Failures in a fea-

ture retrieval process are more likely to lead to a spatial error of final output severer than errors

resulting from interpolation methods because the final output is derived from an incorrect feature

record. However, few works [24, 50] have examined the quality of the feature retrieval process in-

side a geocoding workflow, and their evaluation metrics did not completely reflect its functionality

in geocoding systems. For example, one should evaluate the ratio of retrieved matching candidates

related to the entire reference dataset, as it is a necessity to pass a smaller number of candidates

into the following ranking step to reduce latency for an entire geocoding process. Therefore, every

step in a geocoding workflow needs to be evaluated individually, considering its ripple effects on

other geocoding steps.

Second, testing data used in current work did not fully reflect the quality of geocoding input

in real scenarios, making the performance of a geocoding system remains uncertain when facing

(erroneous) input in reality. Since geocoding systems are known for following the "garbage in,

garbage out" principle, and geocoding input is known as error-prone, containing both syntactic

and semantic errors [51], low-quality input may pose challenges for geocoding systems to produce

high-quality output. However, compared to the magnitude of errors can exist in geocoding input,

testing input data in existing evaluation works contains relatively simple misspellings [51, 32],

lacks certain types of errors (i.e., semantic errors) [32], or errors are generated based on other

address system rules rather than United States one [25]. To better evaluate the performance of a

geocoding system, testing input data should emulate human typing errors and should be closed to

data that a system faces in real scenarios.

Third, datasets and evaluation metrics in current evaluation frameworks are not standardized

[13], making evaluation results not comparable across different studies. In contrast, such standard-

ized testing and annotated training datasets can be easily found in the Natural Language Processing

(NLP) domain such as Named Entity Recognition (NER) tasks [52, 53, 54]. This can facilitate a

new study as the experimental results that were produced by the same standard datasets can be

8

directly used as baselines for performance assessments. Recently, a study in the domain of Geo-

graphic Information Retrieval (GIR) targeted to help geo-parser selections by building a platform,

which is configured with sets of geo-pasers, testing datasets, and evaluation metrics (i.e., recall,

precision, and F-1 score) [55]. Given the heterogeneity of geocoding system configurations (i.e.,

parsing, database indexing, and ranking), an open-access and standardized dataset could largely

facilitate the future development and evaluation of geocoding systems.

Given these observations, we argue that (1) testing input data that could reflect input quality in

real scenarios should be utilized to better evaluate the performance of a geocoding system, (2) when

facing low-quality input, the geocoding process which retrieves reference data becomes critical to

determine the quality of output geocodes and should be evaluated in a fine-grained manner, and

(3) testing datasets, metrics, and results of evaluation works should be standardized and open-

access to serve as solid baselines for future development. Therefore, in this work, we present

a benchmark framework to evaluate the geocoding text retrieval process. The advantages of the

proposed framework can be summarized as follows.

• An data processing pipeline is developed to analyze human input address descriptions and

synthesize low-quality geocoding input based on patterns of error and variations occurring

in different address components.

• A unified evaluation protocol including evaluation dataset, evaluation procedures and evalu-

ation metrics are defined individually for assessing three sub-process inside the text retrieval

portion of a geocoding workflow: Parsing, Matching, and Ranking.

• A set of geocoding text retrieval techniques ranging from classic fuzzy string matching meth-

ods to recent neural network-based address parsing and document relevance and dense vec-

tor combined hybrid ranking approaches are systematically evaluated by synthesized address

description input with different degrees of errors. The evaluation results could serve as base-

lines for future development and experimental comparisons as benchmark testing datasets

and evaluation metrics have been standardized.

9

The remainder of this chapter is organized as follows. In Section 2.2, we provide the overview

of the proposed benchmark, including benchmark goal, benchmark architecture, and basic setup.

Section 2.3 introduces the approach to synthesize the low-quality geocoding input based on human

search patterns. Section 2.4, Section 2.5 and Section 2.6 details the benchmark for the Matching,

Ranking, and Parsing process of a geocoding workflow, respectively. In each benchmark, we define

the benchmark task, evaluation data and evaluation metrics. We then elaborate the implementation

details of each evaluated approaches and present evaluation results. We summarize the findings in

Section 2.7.

2.2 Benchmark Overview

2.2.1 Benchmark Goal

When a geocoding input is received, a geocoding system needs to find one or more candidates

with the highest textual similarity or are entirely identical to input queries. Once candidates are re-

trieved, geocoding interpolation methods can be performed on coordinates of retrieved candidates

to derive final coordinates as geocoding output. We term this process as geocoding text retrieval

process. We argue that the performance of such a process is of more importance than the perfor-

mance of its successor workflow - the geocoding interpolation process in determining the quality of

output geocoded data under low-quality geocoding input scenarios because any mistakes inside the

candidate retrieval portion would result in a situation that geocoding interpolation algorithms are

performed on completely wrong address records. To this end, the goal of the proposed benchmark

is to assess and distill a set of geocoding text retrieval techniques that can be robust to error-prone

human geocoding input queries to improve the final output quality of geocoded data.

2.2.2 Benchmark Architecture

The proposed benchmark is composed of four modules - (1) Address Error Injector; (2) Pars-

ing; (3) Matching; and (4) Ranking. The first module describes how to synthesize input queries

that match human input patterns. The three remaining modules correspond to the Parsing, Match-

ing, and Ranking processes in a geocoding workflow, respectively. Figure 2.1 abstractly describes

10

the relationship between each module in this benchmark. Address Error Injector is mainly re-

Figure 2.1: Benchmark Overview

sponsible for randomly injecting different degrees of errors and variants (using errors for short in

this manuscript) to ground-truth geocoding inputs (e.g., address reference records) as needed so

that the evaluated performance of a geocoding system could close to how a geocoding system per-

forms when facing low-quality input in real scenarios. When feeding the synthesized low-quality

input to a Parsing process, the entire input address description is split into several tokens based on

the address component standards. Based on parsing results, a Matching process assembles query

strings to retrieve a set of candidates, and finally, a Ranking process calculates a score for each

candidate to reflect the textual similarity with respect to an input query. Given the strong con-

nections among these three modules (from input to output), we design three different benchmarks

to evaluate the performance of the Parsing, Matching, and Ranking processes individually for a

geocoding system.

At a high level, each benchmark is designed to not only target the performance of a single

11

geocoding process but also considers how does this process impacts the remaining geocoding pro-

cesses and final geocoding outputs. For example, the main goal of address parsing is to segment

the entire input query into small chunks based on standard address elements such as house number,

street name, and city name. Therefore, whether or not a parsing algorithm can split an input string

into standard segmentation is the primary concern, given the scope of the parsing task only. How-

ever, with the consideration of the matching process, parsing results may not need to strictly stick

to the standard address elements, as a relatively coarse-grained segmentation of input strings (e.g.,

house number and the entire street-level description) could have the same matching performance

as the fine-grained segmentation. Thus, each benchmark attempts to answer the following ques-

tions: (1) which method could achieve the best performance given the task itself only, such as an

address parsing algorithm that achieves the best F1 score, and (2) which method could lead to the

best performance considering the impact of output from the current task on other tasks. In terms

of evaluated approaches, we select a set of popular or state-of-the-art approaches and techniques

from studies in related domains. For instance, the evaluated address parsing techniques include re-

cent advanced neural network-based parsing methods from NER tasks [56], the ranking approach

involves dense vector-based multi-staged ranking methods [57]. As for matching techniques, we

evaluate a set of classical fuzzy string matching techniques that are widely used in various entity

matching works [24, 48, 58]. To this end, the evaluation results could reflect how does a geocoding

system that employs these advanced techniques performs facing low-quality input.

2.2.3 Benchmark Configuration

Data. We choose Navteq 2016 address point reference datasets as the geocoding reference

dataset to retrieve candidates for both matching and ranking processes. The testing input dataset

used for different evaluations is randomly selected from this reference dataset. To ensure the

heterogeneity of address formatting, we randomly extract address reference data based on unique

street base names from each unique pair of city and zip codes in every state in the United States,

resulting in 60,483 unique address descriptions. These sampled data serve as ground-truth data

for the corresponding task, and each address record will be paired with itself with injected random

12

errors and variants on any address components.

Software. Elasticsaerch, a NoSQL-based text search engine is selected as the data warehouse

in this benchmark, as it provides flexible storage schema setup options [59], mature relevance

ranking scoring function [60], and horizontal scaling capability [31].

Hardware. All benchmark evaluations are conducted on a workstation equipped with 16 cores

2.60-GHz Intel(R) Xeon(R) E5-2670 CPU, 64 GB DDR3 1600-MHz RAM, and SSD for storage.

2.3 Address Error Injector

Address Error Injector (AEI) is designed to randomly inject different errors into standard ad-

dress records so that synthesized address descriptions, which mimic human input patterns, could

be used as low-quality geocoding input for various evaluation tasks.

To capture human input patterns, we extract three-month geocoding transactions from Texas

A&M geocoding platform1 and only keep these inputs which cannot lead to full matching scores

(i.e., the input and the reference data are not completely identical.) In total, we obtain roughly

30,000,000 input queries. Next, we iterate each input and its corresponding reference data to

detect a set of possible input errors. Since address reference records are already segmented based

on address components, errors can be easily detected by aligning input address descriptions with

their corresponding description in address reference datasets. These detected errors are known as

syntactic errors [32, 51] and can be generated by reversing the process of how these errors are

detected. For example, by aligning address reference records and user input, we can detect an

error type: Spanish prefixes omission and collect a set of commonly used Spanish prefixes in street

names with the help of domain knowledge. When injecting the error of Spanish prefixes omission,

we can utilize the collected Spanish prefixes dictionary to identify Spanish prefixes existing in

street descriptions and delete such prefixes. As for typographic errors, we replace one character of

a word with one of its nearby characters based on the keyboard position, the exact mechanism that

is used by Freely Extensible Biomedical Record Linkage (FEBRL) [32].

The other category of errors that could happen in geocoding input queries is semantic errors

1https://geoservices.tamu.edu/

13

https://geoservices.tamu.edu/

[51]. Compared to syntactic errors, semantic errors are relatively hard to detect from the log history

because it is hard to use a threshold to determine if two terms have a similar meaning. To reproduce

semantic errors, we utilize the WordNet corpus2 from the NLTK library 3 to find words with similar

meaning as substitution. Specifically, we first give each token a Part of Speech (POS) tag, and then

we tend to find a synonym with the same POS tag as the current token. If more than one token has

a valid synonym substitution, we prioritize an adjective token more than a noun token to complete

the substitution process. If no suitable synonyms are found, we try to iterate a lemmatization of

the current token and use it as a substitution. In total, we are able to inject 45 different errors

occurring in all possible address components into an address description. We group these errors on

the basis of address components and provide an example for each error as a reference in Table 2.1.

To simulate geocoding input with various quality [50], AEI can synthesize address descriptions

containing 1 or 2 degrees of input errors by randomly selecting one applicable of input errors

into one of the address components. When 2 degrees of errors are desired, AEI injects two errors

into two distinct fields. Figure 2.2 describes the distribution of each injected error after randomly

injecting 1 or 2 errors into the sampled testing dataset described in Section 2.2.3. We denote these

two synthesized datasets as 1-error testing input dataset and 2-error testing input dataset in this

manuscript.

2.4 Benchmark for Geocoding Matching Process

In a geocoding workflow, a Matching process plays a pivotal role in determine output quality,

as such a process assembles query strings based on different entity resolutions of parsing results

and looks up candidates that will be fed into the final output ranking process, thereby profoundly

deter-mines if correct candidates could be included in the output list of a geocoding text retrieval

process. Additionally, a matching process primarily impacts the latency for a single geocoding

process, as different matching strategies will incur various comparisons to be conducted to find

likely matched records as output. Therefore, the overall goal of this benchmark is to evaluate a

2https://wordnet.princeton.edu/
3https://www.nltk.org/

14

https://wordnet.princeton.edu/
https://www.nltk.org/

(a) 1-error

(b) 2-error

Figure 2.2: Distributions of randomly injected errors for the 1-error and 2-error testing input
datasets

set of techniques that allows a matching process to retrieve a reasonably small group of candidates

that include the ground-truth candidate while keeping the whole candidate searching process to be

finished in a relatively short amount of time.

2.4.1 Blocking Fields Selection

In the record linkage domain, blocking fields are typically derived from the attribute of ref-

erence records. As a results, “similar” records that share the same Block Key Value (BKV) can

be grouped together [61]. To retrieve matching candidates, string comparisons must be made be-

15

Table 2.1: Input error and variations on each address component

Address Element Error Type Error Example

Pre-/Post-Direction

Typo Norh West → Norh West
Omission East Main St → Main St

Partial abbreviation North West Main St → N West Main St
Additional white-space NorthWest Main St → North West Main St

Pre/Post-Direction switch E Main St NW → NW Main St E

Street Base Name

Edit distance 1 Typo Main St → Man St
Edit distance 2 Typo Main St → Mian St

Ordinal number street suffix omission 5th Ave → 5 Ave
Spanish prefix omission La Brea Ave → Brea Ave
White-space omission Memory Hill → Memoryhill
Additional white-space Reachcliff → Reach Cliff

Partial abbreviation Warm Mountain → Warm Mtn
Road type-ish description omission Camden Cove Pkwy → Camden Cove

Number to word representation 5th Ave → Fifth Ave
Semantic error Small river St → Small creek St

Road Type
Omission Main St → Main

Road type random substitution Main St → Main Ave
Invalid road type substitution Main St → Main St St

City Name

Edit distance 1 Typo Austin → Austiun
Edit distance 2 Typo Luverne → Luvre
Additional direction Houston → South Houston
Direction omission North Little Rock → Little Rock
Partial abbreviation Saint Maries → St Maries

First character abbreviation Los Angeles → LA
City Postal code not paired College Station, 77845 → Byran,77845

Additional white-space Northgate → North Gate
Omission College Station, TX 77845 → TX 77845

State Name
Omission Houston, TX 77001 → Houston, 77001

State Postal code not paired TX 77845 → TN 77845

Postal Code
Omission Houston, TX 77001 → Houston, TX

one of any digit mismatch 77845 → 77843
two of any digit mismatch 77845 → 76443

tween the input and each record in the reference dataset. Thereby, blocking groups have smaller

dimensions in relation to the dimensions of the entire reference dataset, can potentially increase

the efficiency of the retrieval process [48]. An empirical study for several linkage record systems

have shown that the selection of blocking fields is more important than the matching approaches

in terms of determining the matching performance [62].

With regard to geocoding systems, each reference record is an address description and the

blocking fields could be selected from the base of address components, as shown in Figure 2.3.

16

Such selection can impact a geocoder from two perspectives. First and foremost, it could determine

Figure 2.3: Address components of an address description

the search performance for an input query. Different blocking strategies (e.g., addresses grouped

by city names vs. addresses grouped by state names) could result in various dimensions, directly

influencing the latency of search queries. Secondly, the choice of blocking fields also creates some

extent of relaxation space when searching a matched candidate. For example, for an input address

with omitted street directions, querying against the direction field may lead to zero matches. On

the contrary, querying without this field could lead to a match to proceed as long as at least one

of the other reference features (e.g., street name and city name) have a match. Since a complete

postal address has geographic partitions naturally, separated by states, cities, and zip codes. As

a result, modern geocoding systems usually employ these administrative areas as BKVs to group

addresses [63, 24, 2]. We follow the same notion to use these administrative areas directly as

BKVs. In terms of street-level descriptions, we only use the street base name from Figure 2.3 as a

BKV for two reasons: (1) to maintain the spatial accuracy of geocoded output, we only attempt to

retrieve candidates that at least match to the same street block as long as a street name is presented

in the input, and (2) given the fact that errors could occur in regard to street direction and road

type, matching the street base name could tolerate errors that occur with these street-level address

components.

It is worth noting that the prerequisite to using these aforementioned BKVs is that the whole

address is split into small segments correctly by an address parser according to these BKVs. Com-

pared to city and zip code, extracting a street base name from input queries is relatively difficult;

one must correctly identify the boundary of street direction and road type. Meanwhile, the street

17

base name itself has many ambiguities, and it contains various numeric, person or geographic de-

scriptions. In contrast, city and zip code in input queries are more likely to be identified with

the help of gazetteers, lexicon characteristics (e.g., five digits), relative positions. To cover the

possible coarse-grained parsing outcome, we defined two additional BKVs: (1) long street-level

description, namely the description between the house number and city name fields, and (2) the

short street-level description which is composed of street base name and road type only. These

two BKVs can be used in the event that an address parser cannot correctly identify the boundary

of certain street-level components (i.e., street directional, street base name, road type).

In summary, we use the following BKVs in the further matching process evaluations:

• Fine-grained BKVs: street base name; city; zip code;

• Coarse-grained BKVs:

– Long street-level descriptions: street direction + street base name + road type;

– Short street-level descriptions: street base name + road type.

2.4.2 Fuzzy Matching Approaches Evaluation

2.4.2.1 Fuzzy Matching Approaches

Only allowing strict matching strategies to query against these BKVs may lead to low match

rates (i.e., no candidates can be returned) or lower spatial accuracy output (e.g., revert to larger

administrative areas such as postal code or city level areas) in the event that the input contains

errors. For this reason, a variety of approximate string matching approaches have been devel-

oped and applied to overcome the mismatch between input queries and reference features in data

linkage or information retrieval systems [48]. We select a set of matching techniques from three

major method categories (i.e., phonetic-, character-, and token-based methods) because of their

performance on matching entity names in various studies [48, 64, 24, 65] as follows.

• Phonetic-based methods

18

Similar to all phonetic-based approaches, the selected Soundex and Double-Metaphone

encode the string based on its pronunciation in English. Soundex has been widely imple-

mented in geocoding systems; this approach, however, is only applicable to the English

language and is sensitive to the position that a typo may occur [49]. As opposed to Soundex,

Double-Metaphone encodes certain groups of characters in a string, and it returns two pho-

netic encodes that are composed solely of alphabetic letters [66].

• Character-based methods

Edit distance calculates the number of steps in required edit operations (e.g., insert, delete,

substitute, and swap) to convert one string into another. There are two ways to leverage

the calculated edit distance to find matching candidates. One method is to convert the edit

distance into a similarity score between [0, 1] using the following equation:

Similarity = 1− Edit(s1, s2)

max(|s1|, |s2|)
(2.1)

where s1 and s2 are the two strings to be compared, and Edit(s1, s2) calculates the edit

distance between s1 and s2. Max(|s1|, |s2|) obtains the shorter length of these two strings

s1 and s2. We term this method as Edit Similarity. The other method entails using a

threshold to include all candidates with an edit distance that is less than the aforementioned

threshold. In this benchmark, we only evaluated the threshold of 1 or 2, denoted as Edit Dist

T1 and Edit Dist T2, as errors with an edit distance of 3 are relatively rare in practice.

Jaro and Jaro-Winkler belong to the same family of approximate matching techniques,

and were originally designed for matching people’s names [65]. Jaro distance calculation

combines q-gram and edit distance techniques by tracking counts of the same characters

between two strings and the number of transpositions that exist in two compared strings.

The Jaro-Winkler method is an extension of the Jaro distance calculation. It weighs more

scores for matching candidates that share more prefixes with an input source string under the

assumption that errors tend to occur less frequently at the beginning of a string.

19

q-gram divides the whole string into multiple sub-strings with a length of q; this allows

for the similarity to be measured in the notion of the number of common substrings. Typ-

ically, q of of 2 or 3—known as Bi-grams and Tri-grams—are the most common cases in

string approximate matching studies. A common variation of q-gram is to add (q-1) special

characters to the original string, which has been proven to be robust to typographical errors

in a study [67]. The generated grams are used to select candidates in two ways: (1) select

candidates that share at least n grams and (2) select candidates based on calculated similar-

ity. For the first method, we initially process reference strings by utilizing q-gram methods

with padding; this increases the chances that two strings will share the same grams. These

reference strings are subsequently grouped by each substring obtained by q-gram methods

in a look-up dictionary-as originally proposed by [68]-and track the number of q-gram sub-

strings shared with the input string for every candidate. Those that have more than n shared

grams are retrieved. We name each variation of this method in the format of Pad q-grams

Tn. For example, Pad 2-grams T1 means the padded version of 2-grams with a threshold

of 1. For the second method, we select the Dice coefficient to quantify the string similarity,

as this quantification was reported in a study to have the best matching quality for match-

ing street and town names in the Netherlands [24]. Given substrings generated by q-gram,

Dice coefficient uses the number of common substrings to divide the average number of two

compared substrings. We evaluate the Dice coefficient calculated by 2-grams and 3-grams of

substrings, in reference to [24], and are denoted as 2-grams Dice Coeff and 3-grams Dice

Coeff, respectively.

• Hybrid methods:

Given the fact that string similarity calculation is computationally expensive when used to

speed up the search process, [24, 68] attempted to filter out candidates that has less than

certain number of padded n-grams first; subsequently, the similarity calculation was con-

ducted. To reduce the number of combinations, we select the most efficient filter-based

method variation first (i.e., the granularity of word grams and threshold of shared grams)

20

and subsequently combine it with similarity methods that have higher match rates than the

selected filter method..

• Token-based methods:

Term Frequency-Inverse Document Frequency (TF-IDF): Compared to character-based ap-

proaches, token-based approaches focus on using multiple sets of tokens extracted from the

whole input string for similarity calculation. TF-IDF is the most widely used method in

the information retrieval domain. This method considers a token as important if it appears

frequently within a single document or appears infrequently within the whole document

collection. In this benchmark, we use Elasticsearch to calculate the relevance score based

on TF-IDF, as we already use Elasticsearch to index the reference dataset. Elasticsearch

provides a default scoring function, BM25, which is an enhanced TF-IDF for matching long

textual descriptions. Hence, we also employ such a variation to calculate the relevance score.

[69], we also employ such a variation to calculate the relevance score. TF-IDF | BM25 in-

dicates a relevance score and is calculated by a TF-IDF or BM25 function, respectively. A

token may also be processed by a q-gram method. We compare scores calculated by two

different token resolution Bi-gram and Tri-gram tokens, denoted as 2-grams and 3-grams

and compared to scores calculated by individual terms. These three tokens resolution can

have two versions- padded version and non-padded version. For example, (Pad) 2-grams

TF-IDF represents scores calculated by TD-IDF with a padded and non-padded version of

the 2-grams token. Given the fact that Elasticsearch provides a fuzzy query option based on

edit distance methods, we also include fuzzy queries to see if the matching quality can be

further improved. It is worth noting that since Elasticsearch cannot handle the errors at the

first position [59], we generate a padded version of tokens by adding a special character and

only evaluate scores calculated by this padded version of tokens. In summary, the evaluated

token-based method variations depend on (1) the scoring function, TF-IDF | BM25; (2) the

token resolution, 2-grams and 3-grams; (3) tokens with and without padding, (Pad). (4)

usages of fuzzy queries, Fuzzy.

21

These matching methods can be grouped into different streams depending on how candidates

are produced as well as the usage for matching BKVs, as shown in Table 2.2. The first category

is filter-based approaches; these approaches select candidates once they meet certain criteria, such

as the same Soundex-encoded string. Therefore, one can use these approaches as coarse-grained

filters to reduce the computation expense for further selections. In contrast, the second category

is similarity-based approaches; these approaches compare the input string with every record in a

reference dataset, assigning each record a similarity score via a string similarity quantification and

use it to match. These scores could potentially be re-used in the further ranking steps, such as pro-

ducing weighted matching scores or classifying matching status [25]. A hybrid method leverages

the advantages of filter-based methods and similarity-based methods. This category of methods

attempts to use filter-based methods to filter out some unqualified candidates and calculate a sim-

ilarity score to each candidate. In this way, candidates can be ranked in a quantified manner. We

separate token-based methods with all other methods. Token-based methods, which are design to

match documents with a long text length, are used for coarse-grained BKVs. In contrast, the re-

maining methods are used to match fine-grained BKVs, which has the relatively short text lengths.

2.4.2.2 Data and Evaluation Metrics

Data

Since the performance of matching techniques is evaluated on the basis of BKVs, datasets used

in this benchmark are specific to these BKVs. Overall, the selection of data follows the principle

that input data are extracted from an address reference dataset and should have wide coverage of

various address description formats (e.g., numeric, fraction, and single-letter). The procedure to

prepare data for each BKV is described as follows.

Zip code: We compile a list that contains 30,646 zip codes in the United States from Navteq2016

address point reference datasets4 and randomly inject all possible errors occurring in the field of

zip code summarized in Section 2.3. We exclude errors that result in more than three different

digits because such errors indicate that the input zip code and the input state are not paired, which

4https://www.here.com/navteq

22

https://www.here.com/navteq

Table 2.2: Category of evaluated matching techniques

Category Matching Techniques

Jaro
Jaro-Winkler

Similarity-based Edit Similarity
2-grams Dice Coeff
3-grams Dice Coeff
Soundex
Double-Metaphone
Edit Dist T1
Edit Dist T2

Filter-based Pad 2-grams T1
Pad 2-grams T2
Pad 3-grams T1
Pad 3-grams T2

Hybrid Similarity based methods + Pad q-grams

Token-based

(Pad) TF-IDF | BM25
(Pad) 2-grams TF-IDF | BM25
(Pad) 3-grams TF-IDF | BM25
Fuzzy Pad TF-IDF | BM25
Fuzzy Pad 2-grams TF-IDF | BM25
Fuzzy Pad 3-grams TF-IDF | BM25

should be handled by a matching logic rather than handled by fuzzy string matching techniques.

Street base name and City: We first extract and obtain a unique list of street and city names

in the United States from Navteq2016 address point reference datasets. Then we order the unique

street names alphabetically and randomly sample one street name per 10 address records, resulting

in a unique street name list that has 76,025 street names. Using a similar producer, we compile a

list of 34,934 unique city names. Then we inject various applicable errors described in Section 2.3

to each street and city name in the compiled lists, meanwhile, each original address description is

used as the ground-truth data. To this end, every ground-truth address description is automatically

paired with synthesized erroneous formatting.

Street-level descriptions: We randomly select 58,357 address records from Navteq2016 datasets

with different states and zip code pairs across the United States. Then we randomly inject various

23

errors to street-level address components (i.e., street direction, street base name, and road type),

and finally, we assemble these address components to get two datasets based on the definition of

short and long street-level descriptions, as described in Section 2.4.1.

Evaluation Metrics

When retrieving the matching candidate to an input, each fuzzy matching technique attempts

to generate a set of candidates with respect to this input, so that the searching criteria could be

constructed and executed from these candidates. Thus, an ideal matching technique should be able

to (1) generate a relatively small number of candidates, because more candidates require more

comparisons to be conducted later in the ranking stage; (2) give a high-ranking position to the

correct reference candidate that matches the input, as a higher ranking position could help to cut

off several top candidates to build up queries; and (3) complete the candidate-searching process

in a relatively short time period. To this end, we evaluate the performance of each matching

technique primarily through by two metrics: match rate and match efficiency. Match rate, which

measures how likely a matching technique could find the ground-truth data, is more important for

differentiating different matching techniques. This is because whether the candidate list includes

the ground-truth data will directly determine whether the entire geocoding process could output

the correct geocoded data. For matching efficiency, we quantify this metric in two ways depending

on how matching candidates are selected.

Match Efficiency =


Filter Ratio = # of candidates

of total reference dataset Filter-based methods

MRR = 1
|Q|
∑|Q|

i=1
1

ranki
Similarity-based methods

(2.2)

When candidates can be ranked by similarity values, we quantify match efficiency by the Mean

Reciprocal Rank (MRR), which indicates the average rank position for all ground-truth data. If

candidates are selected by filter-based approaches, we quantify match efficiency by the ratio of the

number of matching candidates related to the number of address records in the reference datasets,

which reflects how many reference records are filtered out. We report runtime measurements for a

matching process under the scenario that the search space comprises the entire reference dataset,

24

which indicates the cost-time for the worst searching case where no additional information, such

as zip codes or state names can be leveraged to shrink searching space.

2.4.2.3 Evaluation Procedures and Results

In this section, we describe the evaluation procedures, present and discuss assessment results

for each BKV listed in Section 2.4.1

Zip code: Unlike other BKVs, zip codes in the U.S. address system are completely composed

of digits and digit positions indicate whether or not addresses belong to the same administrative

area. For example, if the zip code of two areas shares the same first two digits, these two areas

are located in the same state. Previous works have employed the relationship between zip codes

and state or the first-half prefix to filter zip codes not belonging to the same region as input [70].

Arguably, such methods are not robust since errors occur at the first-half portion of a zip code.

Thus, we consider that the best way to find matching zip code candidates is to generate a set of

zip code candidates that share certain portions with the input one. To this end, we search zip code

candidate using the q-gram based filter method described in Section 2.4.2.1. Depending on the

method to obtain q-gram and the threshold of shared chunks to consider as a match, we denote

these methods as q-grams Tn and Pad q-grams Tn, respectively. We also compare the performance

of the match approaches that leverage the first two and three digits of zip codes to conduct a

candidate look-up, denoted as First 2-digit and First 3-digit, respectively.

Table 2.3 summarizes the performance of each matching approach. As expected, both First

2-digit and First 3-digit have relatively low match rates in comparison to all other q-gram based

approaches, as they assume that no errors occur inside the first n-digits, which is not practical in real

scenarios. Padded q-grams methods have higher match rates than q-grams without padding, be-

cause padded zip codes could result in more chunks than non-padded ones, creating more chances

to find the common chunks between input and reference zip codes, especially the correct digits

are only located at the first and last positions. Within the same category of matching approaches,

match rates decrease as the increasing threshold for the number of common chunks that are used

for considering two zip codes is a match. This is expected because the increased threshold requires

25

the input and reference zip code to be more identical; therefore, most zip codes will be filtered

out. Overall, Pad 2-grams T2 has the best performance compared with all other approaches, as

such an approach could always retrieve a list of candidates that contains the correct zip code while

keeping the candidate list small, regardless of errors in the input zip codes. By using this method

we can conduct an exact matching strategy to find zip code candidates. Such a matching strategy is

computationally efficient, since the reference datasets could be pre-processed by the q-gram based

method during an indexing phase. Such that, we do not need to employ these fuzzy string sim-

ilarity methods as these methods are time-consuming and do not need to fine-tune the similarity

quantification for every digit as digits in the leading positions are of more importance than digits

in the tailing positions in terms of determining the administrative areas.

Table 2.3: The performance of matching techniques for zip codes

Matching Approach Match Rate (%) Match Efficiency

Pad 2-grams T1 100 20.84
Pad 2-grams T2 100 3.20
Pad 2-grams T3 60.10 0.41
Pad 2-grams T4 33.48 0.05
Pad 3-grams T1 93.46 11.23
Pad 3-grams T2 66.79 1.25
Pad 3-grams T3 40.20 0.14
Pad 3-grams T4 6.585 0.01

2-grams T1 93.15 3.92
2-grams T2 53.31 0.32
2-grams T3 13.13 0.02
3-grams T1 33.14 0.32
3-grams T2 6.60 0.01
First 2-digit 40.18 1.05
First 3-digit 20.07 0.11

Street base name and City: The way to evaluate the best matching techniques for street base

names and city names are similar. First, we apply the similarity- and filter-based methods listed in

Table 2.2 to the defined testing dataset and evaluate their performance using defined metrics. Since

26

similarity based matching techniques in Table 2.2 will loop through the entire reference dataset

to calculate a similarity value for each record, the match rate is always equal to one, making this

metric meaningless when comparing to the filter-based methods. Meanwhile, a low similarity

threshold leads to more candidates being returned by a matching process, potentially reducing

the efficiency of the matching and ranking process. Therefore, we empirically select a similarity

score of 0.5 as the threshold, namely, only candidates with similarity values larger or equal to 0.5

(denoted as simi >= 0.5) will be considered as a match. This threshold is determined based on

distributions of similarity values for both street base names and city names. Second, we choose

the most efficient filter-based and similarity-based methods that have higher match rates than the

selected filter-based method to compose hybrid methods and conduct assessments. Since retrieved

candidates are eventually utilized for building query conditions by the logic of OR, we evaluate

the overall performance of each hybrid method variation with the retrieval of the at-most first 30,

50, 100, and all candidates to see whether it is possible to reduce the number of retrieved matching

candidates.

Street base name: We first group match rates by error types to get a notion of which match-

ing techniques should be used to handle each error type. Table 2.4 lists the match rate of each

similarity-based method and filter-based method. As mentioned before, to speed up the search

progress (i.e., reduce the number of comparison between input and reference data), we use a thresh-

old of 0.5 to consider a similarity based method successfully identify the correct ground-truth data

for an input. As shown in Table 2.4, among all listed error types, these matching approaches sys-

tematically have relatively low match rates on the Error V - "Number to word representation”.

Under this type of error, a majority of cardinal number-based street names are converted to their

word representations. For example, 100th street is converted to one hundred street. As these

matching approaches are designed to handle partial mismatching between two strings rather than

dealing with two strings with large differences, low match rates under this type of errors are ex-

pected, suggesting that this type of error should be handled in a different way. For the remaining

error categories, similarity-based approaches consistently have a higher match rate than filter-based

27

Table 2.4: Match rate of matching techniques under different street name error categories

Match method
Error category

I II III IV V VI VII VIII IX

Similarity-based Approach (simi >= 0.5)
Jaro 99.98 99.95 100 99.34 13.64 99.77 95.59 99.99 100

Jaro-Winkler 99.98 99.95 100 99.70 14.84 99.96 95.59 99.99 100
Edit Similarity 99.99 99.62 100 89.36 1.00 99.85 98.90 99.99 100

2-grams Dice Coeff 99.44 86.86 99.78 76.80 1.33 96.89 100 99.83 100
3-grams Dice Coeff 89.87 54.98 96.35 72.59 1.07 93.35 99.45 99.62 95.78

Filter-based Approach
Soundex 66.41 43.19 93.22 47.07 0.42 65.73 14.36 96.08 0

Double-Metaphone 59.26 36.76 90.40 43.60 0.42 62.54 14.36 94.89 0
Edit Dist T1 99.99 0 100 17.74 0.23 0 0 99.98 0
Edit Dist T2 100 99.97 100 20.75 0.49 0.50 0 99.98 100

Pad 2-grams T1 97.31 96.98 99.28 99.81 46.79 99.85 100 99.52 100
Pad 2-grams T2 97.26 96.42 99.28 99.81 29.87 99.81 100 99.52 100
Pad 3-grams T1 97.31 96.83 99.28 99.81 14.55 99.85 100 99.53 100
Pad 3-grams T2 97.26 95.95 99.28 99.81 5.18 99.81 100 99.52 100

* Error category: (I) One edit distance typographical error; (II) Two edit distance typographical error; (III) Additional
white-space; (IV) Semantic error; (V) Number to word representation; (VI) Partial abbreviation; (VII) Spanish prefix
omission; (VIII) White-space omission. (IX) Ordinal number suffix omission.

methods, as every address records in the reference datasets receive a score, whereas, filter-based

methods drop address records once certain criteria fail to be satisfied. For example, Edit Dist T1

only considers candidates that have an edit distance less than 2 to the input string, therefore, this

matching approach can not find any match candidate with a 2-edit distance of typographic errors.

Since errors could occur at any position in a term, low match rates resolved by phonetic-encoded

methods are expected as these two methods can not handle errors that change the first character of

a term [49].

To draw the concrete conclusion on which matching technique should be used for matching

street names, we first remove Error V since this error could be handled differently and summarize

matching rates, runtime, and matching efficiency in Table 2.5. We first look at the match rate and

runtime, as these two metrics could profoundly impact the final output match rate and the query

latency for a geocoding process. As can be observed, these similarity based approaches, espe-

cially Jaro and Jaro-Winkler, have relatively higher probabilities to find a correct candidate than

28

Table 2.5: Overall street name match performance of each matching technique

Match Rate (%) Runtime (ms) Match Efficiency

Similarity-based approach (simi > =0.5)
Jaro 99.89 496.59 0.7816
Jaro-Winkler 99.94 682.42 0.7969
Edit Similarity 98.84 768.88 0.8011
2-grams Dice Coeff 94.25 652.86 0.6731
3-grams Dice Coeff 83.25 637.43 0.5259
Filter-based approach
Soundex 69.50 – 0.0008
Double-Metaphone 64.83 – 0.0006
Edit Dist T1 64.13 453.81 0.00003
Edit Dist T2 88.31 608.54 0.0001
Pad 2-grams T1 98.37 123.08 0.3838
Pad 2-grams T2 98.23 91.41 0.1265
Pad 3-grams T1 98.34 39.12 0.1512
Pad 3-grams T2 98.12 24.63 0.0319

the remaining approaches. However, such high match rates also require more time to complete the

needed comparisons, as indicated by the empirical runtime measurements. Because the phonetic-

encoded strings (i.e., Soundex and Double-Metaphone) can be calculated and indexed beforehand,

we did not explicitly measure their runtime. Among matching techniques, Pad q-gram based ap-

proaches have a relatively small runtime while maintaining comparable match rates to Jaro-based

approaches and Edit Similarity. With an increase in the threshold of the number of shared grams

to be a matching candidate (denoted as T1 or T2) and granularity of word grams (i.e., q of 2 or

3), the match rates of Pad q-gram based approaches slightly reduces and the speed to complete

comparisons increases. In terms of matching efficiency, Edit Similarity has the best performance

among these measured techniques. The two approaches from the Jaro family perform closely, with

Jaro-Winkler having a slightly higher MRR than Jaro. For filter-based approaches, Pad q-gram

based approaches produce significantly more candidates than other techniques due to the relaxed

rule to consider matching candidates. When the threshold and the size of the word gram are small,

it is relatively easy for Pad q-gram based methods to find shared n-gram(s), even for totally dif-

29

ferent strings. For example, two strings: "East" and "Earl" could be considered a match because

these two words share one of 2-gram: "ea". Since the produced matching candidates are primarily

used as conditions of query strings, the importance of this metric depends on the query languages

and data warehouse used.

Finally, we explore the performance of hybrid methods under a different number of returned

candidates. Such a measurement can be treated as the method for selecting matching techniques,

with considering the geocoding matching process performance, as we tend to select a matching

techniques that have high match rates while returning a small number of candidates. Based on

Table 2.5, we choose Pad 3-grams T2 as the filter function owing to its relatively high match rate

and short runtime in comparison to other filtering functions, and choose similarity-based methods

that have a higher match rate than such a filter function: (1) Jaro, (2) Jaro-Winkler, and (3) Edit

Similarity to compose hybrid method variations. We then feed the same testing dataset used for

Table 2.5 into each hybrid method and compare the overall performance of each hybrid method

variation with the retrieval of the at-most first 30, 50, 100, and all candidates. Table 2.6 lists the

overall performance of each hybrid method variation. Jaro + Filter 10 and Jaro + Filter All indicate

hybrid methods that are composed of the Jaro similarity-based method and the Pad 3-grams T2

filter based method, returning only up to the first 10 and all candidates, respectively. As can be

observed, when retrieving all candidates, the match rates of the three evaluated hybrid methods are

higher than the selected filter method (i.e., Pad 3-grams T2) and are lower than the corresponding

similarity methods: Jaro, Jaro-Winkler, and Edit Similarity listed in Table 2.5. This is expected as a

similarity-based method that performs similarity calculations upon candidates selected by a filter-

based method; thereby, filter methods and similarity-based methods control the lower bound and

upper bound of the match rate for the composed hybrid method, respectively. For hybrid methods

that utilize the same similarity based method, their match rates increased as the number of retrieved

candidates increased. This is because similarity based methods did not yield high ground-truth

data rankings, resulting that correct candidates being excluded from the retrieved candidates (e.g.,

the first 30 candidates). Overall, we observed that the hybrid method that is composed by Edit

30

Similarity and Pad 3-grams T2 has the best matching performance, as such a hybrid method yields

the highest match rates at every level of retrieved candidate quantity.

Table 2.6: Overall performance of matching street base name under hybrid matching method vari-
ations

Match Rate (%) Match Efficiency

Hybrid-based approach
Jaro + Filter All 99.66 0.7842
Jaro + Filter 100 94.98 0.7841
Jaro + Filter 50 93.61 0.7840
Jaro + Filter 30 92.42 0.7832
Jaro-Winkler + Filter All 99.66 0.7969
Jaro-Winkler + Filter 100 95.98 0.7969
Jaro-Winkler + Filter 50 94.77 0.7968
Jaro-Winkler + Filter 30 93.63 0.7967
Edit Similarity + + Filter All 99.67 0.8010
Edit Similarity + + Filter 100 96.35 0.7999
Edit Similarity + + Filter 50 95.09 0.8005
Edit Similarity + + Filter 30 93.92 0.7992

City: We analyze the performance of matching techniques for city names similar to the way

of analyzing matching techniques for Street base names. Table 2.7 summarizes the match rates

of each matching technique facing different errors of city names. As can be seen, most matching

techniques except certain Pad q-gram based methods have relatively lower match rates on Error

V - "First Character Abbreviations", because this error tremendously decreases the length and

characters of the original city name string (e.g., Los Angeles will be converted to LA.) Different

from other matching techniques, Pad 2-grams T1 and Pad 3-grams T1 consider two records as a

match candidate as long as it has a common character with the input string. Therefore, in the case

of Error V, these two matching techniques can still find the correct matching candidates, since

the first character of the city name abbreviation and its corresponding reference data are the same.

Such a relaxing rule (i.e., threshold of 1) also explains the superior performance in terms of match

31

Table 2.7: Match rate of matching techniques under different city name error categories

Match method
Error category

I II III IV V VI VII VIII

Similarity-based Approach (simi >= 0.5)
Jaro 96.89 96.89 94.41 97.40 94.09 95.01 96.35 83.44

Jaro-Winkler 96.89 96.89 94.41 97.40 94.30 95.08 96.44 83.83
Edit Similarity 96.90 96.89 94.45 97.40 0 94.30 90.02 86.04

2-grams Dice Coeff. 96.34 82.60 94.45 97.40 0 92.98 84.11 97.39
3-grams Dice Coeff. 85.28 50.91 94.41 97.40 0 91.40 80.90 85.28

Filter-based Approach
Soundex 66.95 43.29 50.69 96.02 0.07 68.73 66.06 36.24

Double-Metaphone 60.84 36.32 54.76 92.73 0.02 68.47 61.81 35.33
Edit Dist. T1 96.90 0 0 97.40 0 0.06 28.39 0
Edit Dist. T2 96.89 96.90 46.99 97.40 0 15.56 29.34 0.39

Pad 2-grams T1 100 100 100 100 100 100 100 99.98
Pad 2-grams T2 100 99.32 100 100 11.14 99.74 100 99.74
Pad 3-grams T1 100 100 100 100 100 100 100 99.89
Pad 3-grams T2 100 98.57 100 100 8.10 99.71 100 99.61

* Error category: (I) One edit distance typographical error; (II) Two edit distance typographical error; (III)
Additional directional; (IV) Additional white-space; (V) First character abbreviation; (VI) Partial abbrevi-
ation; (VII) Semantic error; (VIII) Direction omission.

rates across different error types.

Table 2.8 summarizes the match rate, match efficiency, and runtime for each matching method

after removing Error V. In terms of the match rate, Jaro, Jaro-Winkler, and Edit Similarity outper-

form the remaining similarity-based methods and most of filter-based approaches, which is similar

to the pattern found in matching street names. The only exception is that Pad 2-grams T1 and Pad

3-grams T1 have a higher match rate than these three similarity methods because of the relaxed

rule of Pad q-gram based method for considering a match, which is also observed in Table . In

terms of runtime, as long as a matching method has a similarity calculation involved, the runtime

is slow, which is consistent with what has been detected in matching street base names evaluations.

Likewise, the patterns of match efficiency in matching city names and street base names are similar.

Among similarity-based approaches, Edit similarity still has the highest match efficiency; 2-grams

Dice Coeff and 3-grams Dice Coeff have a better performance in ranking the ground-truth city

32

names than street base names. For the filter-based approaches, the number of matching candidates

generated by Pad q-gram based approaches are larger than the number of candidates produced by

the remaining filter based approaches. For example, the Pad 2-grams T1 method produces over

3,000 times the candidates than Edit Dist T2. Such a large number of candidates can cause issues

for constructing query strings. Therefore, a hybrid method that combines similarity-based and

filter-based methods is worthy of investigation.

Table 2.8: Overall performance of matching city name under each matching technique

Match Rate (%) Runtime (ms) Match Efficiency

Similarity-based approach (simi > =0.5)
Jaro 95.91 20.86 0.8141
Jaro-Winkler 95.92 28.03 0.8180
Edit Similarity 95.60 43.36 0.8468
2-grams Dice Coeff. 90.87 28.91 0.7573
3-grams Dice Coeff. 76.95 30.39 0.6326
Filter-based approach
Soundex 48.19 – 0.0008
Double-Metaphone 44.99 – 0.0006
Edit Dist. T1 28.97 34.53 0.00003
Edit Dist. T2 63.61 34.21 0.0001
Pad 2-grams T1 99.99 3.84 0.3838
Pad 2-grams T2 86.67 3.61 0.1265
Pad 3-grams T1 99.97 1.83 0.1512
Pad 3-grams T2 86.01 1.15 0.0319

Based on Table 2.8, we select Pad 3-grams T1 as the filter function and pair with Jaro, Edit Sim-

ilarity and Jaro-Winkler methods to compose a hybrid method, since these three similarity-based

methods have higher match rates than remaining methods. We summarize the overall performance

in Table 2.9 for different method variations. Similar to the way we construct a hybrid method for

street base names, variations of hybrid methods come form the selection of similarity score meth-

ods (i.e., Jaro or Edit Similarity or Jaro-Winkler) and number of returned candidates. In this table,

Jaro + Filter All and Jaro + Filter 30 denote hybrid methods are compose of Jaro and Pad 2-grams

33

T1 and return all candidates and up to first 30 candidates, respectively. As can be observed, hybrid

methods that return all candidates have the highest match rates, and the match rate of each hybrid

method variation decreases with the decreasing in the number of returning candidates. This is

similar to the pattern observed for matching street base names in Table 2.6, as a high match rate re-

quires a hybrid method gives the correct candidate a relatively high ranking position. Overall, Edit

Similarity + Filter 100 can be considered the best matching technique for city names as it produces

the highest matching rate while keep number of returned candidates to be relatively small.

Table 2.9: Overall performance of matching city name under hybrid matching method variations

Match Rate (%) Match Efficiency

Hybrid-based approach
Jaro + Filter All 99.53 0.8499
Jaro + Filter 100 98.18 0.8497
Jaro + Filter 50 97.10 0.8494
Jaro + Filter 30 96.02 0.8491
Jaro-Winkler + Filter All 99.56 0.8514
Jaro-Winkler + Filter 100 94.41 0.8512
Jaro-Winkler + Filter 50 93.60 0.8511
Jaro-Winkler + Filter 30 93.04 0.8509
Edit Similarity + Filter All 99.23 0.8819
Edit Similarity + Filter 100 98.97 0.8825
Edit Similarity + Filter 50 98.59 0.8823
Edit Similarity + Filter 30 98.14 0.8832

Street-level descriptions: As described in Section 2.4.1, we seek matching candidates only

if address parsing results are coarse, namely, an address parser is not able to extract fine-grained

BKVs. Therefore, we only evaluate how well classical token-based approaches can be applied to

handle low-quality street-level descriptions since the length of a street-level description is relatively

longer than a street base name or a city name only. To conduct evaluations, we index the entire

Navteq2016 reference dataset into Elasticsearch so that the term frequency and ranking score are

the same as real production geocoding scenarios. Because we aim to evaluate whether or not it

34

is feasible to seek matching candidates utilizing street-level descriptions without further parsing,

we directly quantify their overall performance of each matching method variation for short and

long street-level descriptions, as shown in Table 2.10 and Table 2.11. This helps us getting a

notion of which method is the most efficient approach for matching street-level descriptions and is

competitive to methods that use street base name and city name fields to conduct matching.

Table 2.10: Overall match performance of each matching technique for short street-level descrip-
tions

Match Rate (%) Runtime (ms) Match Efficiency

TF-IDF 52.59 381.71 0.2089
BM25 52.40 234.73 0.2171
2-grams TF-IDF 75.29 1041.45 0.3314
2-grams BM25 75.32 279.48 0.3328
3-grams TF-IDF 71.17 298.93 0.3195
3-grams BM25 71.76 211.09 0.3242
Pad TF-IDF 52.72 361.24 0.2594
Pad BM25 52.42 254.08 0.2722
Pad 2-grams TF-IDF 75.29 980.79 0.3327
Pad 2-grams BM25 75.32 267.99 0.3341
Pad 3-grams TF-IDF 71.20 294.33 0.3330
Pad 3-grams BM25 71.77 211.10 0.2485
Fuzzy Pad TF-IDF 71.56 455.75 0.3374
Fuzzy Pad BM25 72.25 349.57 0.3681
Fuzzy Pad 2-grams TF-IDF 79.98 988.02 0.3883
Fuzzy Pad 2-grams BM25 75.32 272.50 0.3864
Fuzzy Pad 3-grams TF-IDF 69.50 1253.13 0.1983
Fuzzy Pad 3-grams BM25 68.11 553.71 0.1895

Match rates for short and long street-level descriptions show a similar pattern. In terms of

token resolutions, the individual term resolution has the lowest match rate using either the TF-IDF

or the BM25 scoring function, compared to 2-grams and 3-grams, due to the fact that any character

change would lead to mismatches at the level of individual terms. The 2-grams resolution is found

to have a higher match rate than the 3-grams resolution; this is because some street descriptions

35

Table 2.11: Overall match performance of each matching technique for long street-level descrip-
tions

Match Rate (%) Runtime (ms) Match Efficiency

TF-IDF 59.85 441.35 0.2571
BM25 59.44 237.68 0.2697
2-grams TF-IDF 79.96 1046.13 0.4145
2-grams BM25 79.99 279.81 0.4161
3-grams TF-IDF 72.03 307.68 0.2399
3-grams BM25 72.74 219.05 0.2458
Pad TF-IDF 60.03 421.73 0.4320
Pad BM25 59.64 233.79 0.4564
Pad 2-grams TF-IDF 79.98 1004.37 0.3227
Pad 2-grams BM25 80.04 271.43 0.3341
Pad 3-grams TF-IDF 72.02 301.17 0.3363
Pad 3-grams BM25 72.75 212.27 0.3416
Fuzzy Pad TF-IDF 71.56 510.92 0.3373
Fuzzy Pad BM25 72.25 253.91 0.3341
Fuzzy Pad 2-grams TF-IDF 79.98 1023.03 0.3327
Fuzzy Pad 2-grams BM25 80.04 279.20 0.3341
Fuzzy Pad 3-grams TF-IDF 69.51 1221.34 0.2854
Fuzzy Pad 3-grams BM25 68.11 565.40 0.2783

with a relatively short string length (i.e., ordinal number street names or abbreviation of street

directions) may not be split properly by a 3-grams segmentation. This also explains why the

padded version of 2-grams and 3-grams terms have slightly higher match rates than 2-grams and

3-grams terms without padding; namely, with the help of additional padding characters, strings

will be enough to be split into different chunks. We employ the default fuzzy matching strategy

(i.e., up to a 2-edit distance) from Elasticsearch to see if it could help in handling errors and

variations to improve the match rate. However, the benefit of a fuzzy query is only observed for

the individual term resolution, since 2-grams and 3-grams can already handle the certain string

mismatch scenarios. In terms of similarity scoring methods, BM25 outperforms TF-IDF in most

cases except for the individual term resolution, and BM25 also shows a shorter runtime compared

to the TF-IDF method.

Among all evaluated token-based methods, Pad 2-grams BM25 has the highest match rate while

36

maintaining a relatively short runtime and a relatively high match efficiency (i.e., MRR). However,

match rates of street-level descriptions resolved by token-based methods are not comparable to

match rates for these evaluated fine-grained BKVs. Thus, using street-level descriptions to retrieve

candidates should only be considered when fine-grained parsing results (i.e., address component

level) are not available.

2.4.3 Matching Logic Evaluation

The ultimate step to determining the performance of the entire matching process is to assemble

a query string that pairs each individual blocking field with the corresponding matching techniques;

we term such a process as matching logic. Although we obtained the most suitable matching tech-

nique through assessments in the Section 2.4.2, the performance of a query string that queries

applicable address components for an input address description remains uncertain and requires

further evaluations due to the following reasons: (1) Because of the logic operations, the summa-

tion of the best matching techniques on each BKV may not always lead to the best overall matching

performance. For instance, once a matching approach fails to return the correct city name with re-

spect to the input, a query string that requires strict matches to both city and street names will have

zero candidates to be returned. Moreover, a query string has to deal with situations such as when

a blocking field is omitted from the input queries. (2) A matching logic may return a huge number

of candidates as field string matching techniques attempt to include many matching candidates

for each BKV. For example, Pad q-gram based methods are expected to return zip codes outside

the target administrative areas. It is possible that the returned candidates may have the same de-

scriptions but are located at different administrative areas, especially for address records that have

common descriptions such as "main street". (3) When considering assembling a query string, more

information can be leveraged to potentially speed up the query execution. For example, using the

provided state name or the derived state name from a zip code, street names that are located outside

the target state can be filtered out, significantly reducing the needed comparisons between the input

street name and reference datasets. Given these uncertainties, our evaluations attempt to answer

which matching logic is robust to low-quality input, yielding the best matching candidate quality

37

and the lowest query latency.

2.4.3.1 Data and Evaluation Metrics

Data

Datasets used in this evaluation include input dataset and address reference dataset. For ref-

erence datasets which is used for querying, we index the whole Navteq2016 datasets into Elastic-

search so that the dimension of search space for queries can be the same as that in real scenarios.

We use both 1-error and 2-error testing input dataset generated by 2.3 as the input to evaluate the

matching performance facing input with different degrees of errors.

Differ from errors introduced in evaluations for individual fields, we include errors of omission

(e.g., a city name is omitted from the input query) and the unpaired zip codes and State names,

which commonly exist in real scenarios. To simulate geocoding input with various quality [50],

we generate two testing datasets by randomly injecting one and two errors into address records,

respectively.

Evaluation metrics

We choose match rate and runtime to quantify the performance of each matching logic vari-

ation. We consider that match rates as the most important metric as if no correct candidates can

be retrieved at this stage, the entire ranking process will become meaningless. As for runtime,

the query latency of a matching process could contribute to the time consumption for the entire

geocoding process, which becomes critical when facing large amounts of address records [19].

2.4.3.2 Evaluation Procedures and Results

To assemble query strings, we consider each address component based on their contributions to

finding likely match candidates. Street base name is the most important identifier when searching

for a candidate, even in the case that the input house number does not exist in the reference datasets,

we are still able to find a nearby candidate on the street [27, 63]. Thus, every constructed query

must hit against the field of street name. Since the field of city and zip codes could help to locate

the candidates in the correct administrative area, reducing the search space for street base names,

38

we consider that likely-matching candidates must match the input street base name and at least

match one from the set of input city names, state names and zip codes. To this end, we formalize

three matching logic variations as follows.

• Variation 1: Street base name ∩ {City, State, Zip code}

• Variation 2: Street base name ∩ {State, Zip code}

• Variation 3: Street base name ∩ {City, State}

• Variation 4: Street base name ∩ Zip code

• Variation 5: Street base name ∩ City

Each matching logic is expected to generate a query string which hits against these fields listed

above. Since errors occur in a zip code could lead to this zip code points to a new state, if both zip

code and state exist in input queries, the matching logic would check if zip code and state are paired

or not. If not, the matching logic adds the state that corresponds to the zip code. To deal with the

error of "First letter abbreviation" occurs in the field of city names, we build a dictionary that can

help the query strings to convert the abbreviation of city first letters to original city names. Vari-

ation 1 leverages all possible administrative area information provided by input queries, namely,

this variation attempts to match city, state, and zip code as long as these address components are

provided. Compared to Variation 1, Variation 2 and Variation 3 only leverage up to 2 different

administrative levels. Variation 4 and variation 5 attempt to an administrative area that is smaller

than the state. We exclude the matching logic that only utilizes state names as the only field to

query against because it is more likely that one can find multiple locations with the same street

name within a state such as "main street". These variations represent different degrees of matching

demands (i.e., matches to different numbers of blocking fields) to identify output candidates as

these query strings are attempting to leverage spatial constraints among matching fields to reduce

search space. However, the pros and cons of such variations remain uncertain and are worth ex-

ploring. For example, the difference between the first two matching variations is the requirement

39

of matching city names. On one hand, the additional query criterion of city name could reduce

search space for matching candidates. On the other hand, such a query criterion of city name may

introduce more uncertainty to candidate retrieval, since there is no guarantee that we can always

find the correct city name to build query strings when there are errors in the input city names.

To conduct an evaluation, we first select the best matching techniques based on the evaluations

in Section 2.4.2. Namely, we use Pad 2-grams T2 for zip codes, and use for Edit Similarity +

Pad 3-grams T2 and Edit Similarity + Pad 3-grams T1 for street base name and city. In terms

of constructing a query string, we select first 30 and 100 candidates that are ranked by string

similarity values for fields of street base name and city name as matching conditions for these two

fields. To limit the number of candidates being returned, we rank candidates by similarity values

between input and reference street base name based on Equation 2.1 and only return the first 500

candidates. We then feed each logic variation by 1-error and 2-error testing input datasets and use

match rates and runtime to quantify its matching quality. Table 2.12 lists the performance of the

Table 2.12: Performance of each matching logic variation facing 1-error and 2-error testing input
datasets

(a): 1-error dataset

Match Rate (%) Query Latency (ms)

Variation 1 92.57 47.12
Variation 2 93.30 61.66
Variation 3 89.88 63.50
Variation 4 88.54 73.04
Variation 5 66.14 98.52

(b): 2-error dataset

Match Rate (%) Query Latency (ms)

Variation 1 87.83 60.39
Variation 2 89.00 58.87
Variation 3 83.96 73.82
Variation 4 82.85 89.86
Variation 5 63.42 103.52

40

above matching logic variations facing one and two degrees of errors. Two tables show a similar

pattern, that is, Variation 1 and Variation 2 have higher match rates and lower query latency than the

remaining matching logic variations, the performance of matching logic decrease with less spatial

constraints, and Variation 5 have worse matching performance in terms of these two metrics. Such

a pattern can be explained by how errors occur in a field and underlying matching techniques we

used. For example, the unmatched case distribution of Variation 3 under 1 degree of error scenario

indicates that this variation is more likely to fail to include the ground-truth data in its output list

once errors touch the field of city and state, as the count of errors that omit the fields of state or

city and the errors that change city or state point to a new place is larger than the count of each

remained error. This also helps explain why Variation 5 produces a low match rate. Compared to

Variation 5, Variation 4 can still yield relatively high match rates, because the selected matching

technique for zip code, Pad 2-grams T2, is robust to zip code errors as shown in Table 2.3. Using

input with 1 degree of error as an example, after excluding the zip code omission error, roughly

82% input containing zip code related errors have been resolved to include ground-truth data in

their output list. When facing input with 1 degree and 2 degrees of errors, Variation 1 and Variation

2 have similarity performance, which is confirmed with their unmatched case distributions. Under

these two input dataset scenarios, the error of "number to word representation" dominates in error

distributions, as such an error is found to handle not very well by the evaluated fuzzy string methods

in Section 2.4.2. Under the 2 degrees of errors input scenario, Error - "zip code and state unpaired"

also dominates the unmatched case distribution. Based on the designed implementation, this error

causes the matching logic to search address candidates in multiple states (i.e., the provided state

and the state that derives from an input zip code). If the provided street name exists in multiple

states, the matching logic is observed to return a candidate that has the same description as the

input but is located in another state, thereby reducing the match rate. This is because a query string

is designed to conduct a rudimentary search process to include candidates as much as possible,

and all candidates are ranked by their textual similarity. The ground-truth candidate can be easily

filtered out, if one sets up a small number of candidates to be returned. This observation suggests

41

that the way to build up a query string can be adaptive to the frequency of a query field (e.g.,

street or city names). Namely, if a provided street name commonly exists in multiple places (i.e.,

an address component frequency is high across the entire address reference dataset), we would

construct a query string with more strict spatial constraints such as limited number of zip codes.

Variation 2 has better match rates than Variation 1. This can be explained by the additional city

field query conditions made by Variation 1. Once such a query condition fails, no candidate can be

retrieved. In terms of query latency, Variation 1 only shows its advantage of using city name as an

additional query condition under 1 degree of error scenario. Overall, the first two matching logic

variations are expected to be robust to low-quality input and Variation 2 is the most robust match

logic, given the matching techniques used.

2.5 Benchmark for Geocoding Ranking Process

In this benchmark, a Ranking process is defined as a process used to assign each candidate

retrieved by a matching process that scores and ranks these candidates in a quantitative manner.

Thus, such a process determines how each candidate is ranked in the final output list. It is possible

that even if the previous matching approach has retrieved the correct candidate from an input, this

candidate may not appear in the final output list because the ranking process failed to give it a

ranking position higher than the total number of candidates being returned. Typically, a candidate

who appears in the first position of the output list is considered the best. Given the context of

the geocoding text retrieval process, we consider the best candidate to either have high textual

similarity or be fully identical with respect to the input. Therefore, the goal of the ranking process

is to assign each candidate a score with the expectation that the best candidate can be ranked in the

first position.

2.5.1 Evaluated Ranking Approaches

We define a ranking process inside a geocoding workflow as a rank that retrieves address can-

didates in a quantitative manner based on textual similarity with respect to the input address de-

scription. In geocoding literature [43, 20], a ranking process is often considered as being tied to

42

two categories of matching mechanisms: deterministic-based and probabilistic-based approaches.

A deterministic-based approach empirically assigns these candidate scores using a defined penalty

scheme and selects a threshold used to differentiate between matching statuses (i.e., matched vs.

unmatched). In contrast, a probabilistic-based approach draws scores based on the importance

of an address component in determining the matching status. In the case of probabilistic-based

approaches, the quantification for a geocode candidate could come from term frequency, string

similarity, or both. To this end, we formalize the baselines covering both categories of ranking

approaches. As we consider looking up address candidates as a text retrieval process, we also in-

clude recommendation-based ranking approaches from the domain of information retrieval (IR) to

evaluate its feasibility for ranking address descriptions. We evaluate each approach, as detailed in

the following paragraphs.

2.5.1.1 Per-attribute Score Ranking

As the name applies, Per-attribute Score Ranking scores a reference candidate on the basis of

each individual address component. The score for each component depends on two factors. First

is an empirical-based weight, depending on the importance of an address element in determining

a match status. For example, the field of street base name, considered to be more important to

identifying a correct candidate, has a higher weight than the state field. Second is the quantification

of similarities between input queries and reference candidates based on the nature of the address

components. For example, the field of street base name is typically measured with fuzzy string

techniques, and a state name can be quickly compared in a gazetteer lookup manner. Table 2.14

summarizes the weight and similarity quantification used for each address component. For the

weights of the address components, we directly used the list of weights utilized by Texas A&M

GeoServices, given its performance in a variety of studies [18, 63, 28]. To quantify similarity, we

employ the edit distance-based similarity method (Equation 2.1) to calculate the similarity between

the input and reference data. For zip codes, we quantify the similarity of two zip codes as follows.

Similarity = 1− 0.2×N (2.3)

43

whereN is the number of digits that is not the same as that in the same position of the reference zip

code. Since house numbers in a street block has maximum numeric difference of 100 according to

USPS TIGER5, we consider two house numbers are completely different if their numeric difference

is larger than 100. We quantify their similarity in Equation 2.4.

Similarity = 1− |HNref −HNinp|
100

(2.4)

Where HNref and HNinp represent house number in the reference data and in the input, respec-

tively. For the remaining address components, namely, street pre- and post-direction, road type,

and state, the similarity is quantified in a Boolean manner, namely, the similarity is 0 if two com-

pared fields are not identical, and the similarity is 1 if they are the same.

Table 2.14: Weight and similarity quantification of each address component for per-attribute score
ranking

Address Component Weight Similarity Quantification

House number 20 Equation 2.4
Pre-Direction 7 Boolean
Street base name 45 Equation 2.1
Road type 10 Boolean
Post-Direction 4 Boolean
City 17 Equation 2.1
State 1 Boolean
Zip code 45 Equation 2.3

2.5.1.2 Term Frequency-based Ranking

Originally, term frequency-based methods in the geocoding domain attempted to weigh the

importance of an attribute based on the number of appearances in the reference datasets. Namely,

if a term appears too often across the entire reference datasets, such a term is considered to be less

5https://www2.census.gov/geo/pdfs/maps-data/data/tiger/tgrshp2017/
TGRSHP2017_TechDoc_Ch4.pdf

44

https://www2.census.gov/geo/pdfs/maps-data/data/tiger/tgrshp2017/TGRSHP2017_TechDoc_Ch4.pdf
https://www2.census.gov/geo/pdfs/maps-data/data/tiger/tgrshp2017/TGRSHP2017_TechDoc_Ch4.pdf

valuable for finding a true matching candidate, therefore receiving a lower weight. In the infor-

mation retrieval domain, a classic ranking method known as Term Frequency - Inverse Document

Frequency (TF-IDF) uses a similar principle to calculate the similarity value between an input

query and a document. Specifically, the more frequently a term appears in a document, the more

important this term is, whereas, if a term exists in multiple documents in a collection, such a term

is less important. Given that TF-IDF has been widely used for document relevance calculations in

various information retrieval systems such as search engines, we adopt this approach to quantify

similarity between geocoding input queries and address descriptions in the reference dataset. We

limit our use of this approach to fields of street and city names. As remaining address compo-

nents (such as street directions), after normalization, have fixed term numbers and can be easily

compared in a Boolean manner, the same Boolean comparison method is used in Section 2.5.1.1.

In total, we evaluate the performance of two variations of TF-IDF-based methods for relevance

score calculations, which are built upon the default scoring function of Elasticsearch, given the

wide usage of Elasticsearch in existing geocoding systems[60]. The first method is to calculate

scores purely from a term frequency perspective. Specifically, IDF for a term is calculated as:

IDF = ln N+1
n+1

+ 1, where N is the total number of documents that have this queried field and n

is the number of documents that contain queried terms. We add 1 to the IDF to prevent it from

becoming zero. The weight of this term is calculated as

W =
√
tf × (ln

N + 1

n+ 1
+ 1)× 1√

dl
(2.5)

where tf denotes the frequency of a query term and dl denotes the length of fields for retrieved

records. We term this method as Classic TF-IDF.

The other approach aims to provide more tolerance for mismatching that occurs between input

description and address reference data. By default, Elasticsearch conducts fuzzy queries within

a tolerance of up to two edit distances; namely, these scores are calculated for candidates that

have less or equal to two edit distances with respect to the input. Based on the evaluation results

45

from Section 2.4.2, we learned that such edit distance threshold-based methods could not handle

certain categories of input errors very well, such as input contains partial abbreviations. Therefore,

we embrace the Soft TF-IDF method, using string similarity as the second weight function upon

TF-IDF [58] as follows.

W =
√
tf × (ln

N + 1

n+ 1
+ 1)× 1√

dl
× Sim (2.6)

where Sim is edit distance based similarity, since such similarity values have been calculated

during the matching phase, we can save certain computational expense. We denotes this method as

Similarity TF-IDF. As for similarity quantification, we employ the same method from Table 2.14

except that we use Equation 2.7 for zip codes to better differentiate the mismatch at different digit

position P .

Similarity = 1− (5− P)/15 (2.7)

2.5.1.3 Classification-based Ranking

The classification-based ranking employs a statistical-based classifier to predict a matching

status for each candidate, and all output candidates are ranked according to their predicted status.

This approach is widely used in entity matching scenarios [61, 48] and scenarios in which only the

best geocoded data needs to be generated rather than to provide a list of ranked candidates [25].

To rank candidates in a meaningful way, we define two sets of matching status labels as follows.

2-Label:

1. Match: a output geocode represents the exact location of the building that has the same

address as the input query.

2. Unmatch: a output geocode can not represent the exact location of the building that has the

same address as the input query.

3-Label:

46

• Point match: a output geocode represents the exact location of the building that has the same

address as the input query.

• Street-level match: a output geocode can not pinpoint to the exact location of the input ad-

dress but could match other locations on the same street as the input. Such output geocoded

data could be considered as the best alternative output in the case that the exact location of

the input address is not available.

• Unmatch: a output geocoding candidate has a spatial accuracy lower than a street-level

match.

The first set of labels simply treats a geocoded process as a match/un-match task for all candidates.

In contrast, the second set of labels, which are based on the NAACCR geocode quality [28], are

able to differentiate between candidates with a street match level or lower than street match level.

To conduct the classification, each address component needs to be compared and quantified by

using string similarity. As for similarity quantification methods, we use the same quantification

methods listed in Table 2.14 for each address component. In terms of the classifier model, we

chose the Random Forest classifier [71], owing to its proven and robust over-fitting in a previous

geocoding classification task [25].

Since a training process is required to build such a classifier, we first train a classification model

with geocoding input queries and their matching candidates. Specifically, we sample input data

from the Navteq 2016 reference dataset, excluded the address records in the 1-error and 2-error

testing input dataset, and fed these data into the match process defined in Section 2.4.3 to obtain

a set of matching candidates for each input query. We then iterate and generate a set of similarity

values for each address component for every matching candidate. Since we know the correspond-

ing ground-truth data for every input data, we add the defined matching by comparing address

descriptions. We randomly select five records from every set of retrieved matching candidates and

ensured that these sampled records included labels of point match and street-level match and con-

tained the label of unmatchable when applicable. To this end, we process 100,000 input queries.

47

For each input, there are five corresponding tuples, which are composed of seven similarity values

(i.e., one similarity value per address component) and one match label. To build a robust random

forest classifier, we fine-tune hyper-parameters of a random forest model in an exhaustive search

manner, using scikit-learn library6. Specifically, we iterate each combination of hyper-parameters

drawn from the candidate parameter pool listed in Table 2.15 using three cross-validations to se-

lect parameters that lead to the best F1 score. To this end, we obtain two sets of best parameters

(listed in Table 2.15) that produce the best weighted F1 score of 0.9829 for the 2-labels scenario

and 0.8875 for the 3-labels scenario, respectively. Next, we build a random forest classifier using

Table 2.15: The candidate parameter search space and the best parameters for Random Forest
Classifier

Hyper-parameter Description Candidate Parameter 2-Label Best Parameter 3-Label Best Parameter

Number of trees The number of trees in the forest 100, 300, 500, 1000, 1200 100 300
Max tree depth The maximum depth of the tree 5, 8, 15, 25, 30 15 15
Min sample split The minimum number of samples required to split an internal node 2, 5, 10, 15, 100 25 25
Min sample leaf The minimum number of samples required to be at a leaf node 1, 2, 5, 10 1 1
Criterion The function to measure the quality of a split gini, entropy gini gini

the best parameters listed in Table 2.15 and use all the training data to train the classifier. Finally,

we feed the testing input data into the geocoding system and use retrieved candidates from the

previous matching process as the input for the ranking process. Each retrieved candidate is used

to generate a tuple of similarity values calculated from Table 2.14, and the classifier uses these

similarity values to generate a matching label. In the case that multiple candidates that have the

same matching label, we give a higher rank to candidates with similarity values.

2.5.1.4 Hybrid Ranking

By far, the evaluated term frequency-based and classification-based methods only considered

the similarity between input and reference data from the perspective of string similarity. The limita-

tions of these methods were observed in certain information retrieval tasks due to their inefficiency

6https://scikit-learn.org/stable/

48

https://scikit-learn.org/stable/

in examining the semantic similarity between two compared fields [72]. Recently, dense vector-

based encoding methods have shown promising results in capturing the semantic meaning of words

in various NLP tasks [73, 74, 75]. In principle, a word is represented as a high dimension vector,

where words with similar meanings are clustered [76]. Given the success of word embedding ap-

proaches, some works have already integrated these techniques into typical information retrieval

techniques and achieved improved document ranking quality by creating a multi-stage retrieval

workflow [77, 57]. Therefore, we adopt these approaches to see if they could help capture both

semantic meanings and term similarities among the input queries and reference datasets in the con-

text of geocoding. We choose to obtain vector representations for a word from Word2Vec (W2V)

[76] and FastText [78], as these two models use two distinct levels of information—word-based

information and n-grams-based sub-word information, respectively—to generate word vector rep-

resentations. For W2V, we use the pre-trained model training on Google News7 and the pre-trained

model training with subword information on Wikipedia 20178. For each word, we utilize a univer-

sal vector embedding library: Magnitude [79] to extract a 300-dimension vector. In cases where a

field contained more than one word, such as street names or city names, we fixe the dimension of

the vector for such a field by averaging the vector for each individual word using Equation 2.8, the

same approach used by [80].

Vf =

∑n
1 Vn
n

(2.8)

where n is the number of words in a field, Vn represents the vector for the n-th word and Vf repre-

sents the vector for a field. It is important to note that finding a field that has the highest similarity

related to the input requires iterating the entire dataset and sorting the cross product between the

input vector and the vector of every reference data. To reduce the computational complexity, we

only compare the input field with a subset of candidates retrieved from the previous matching pro-

cess, which is a common strategy used by [68]. For a matching candidate, its similarity to the

input is quantified by two portion, one is the word-frequency-based similarity, which we use the

7https://code.google.com/archive/p/word2vec/
8https://fasttext.cc/docs/en/english-vectors.html

49

https://code.google.com/archive/p/word2vec/
https://fasttext.cc/docs/en/english-vectors.html

value calculated by Similarity TF-IDF, denoted as SimiTD−IDF . The other portion is the similarity

value (denoted as Simivector) calculated by two dense vectors that represent input and reference

data, respectively. To this end, the similarity for a matching candidates is calculated by

Simicandidates = SimiTD−IDF + Simivector (2.9)

Depending on the pre-trained models used to generate word embeddings, we denote these two

evaluated hybrid ranking methods as Hybrid Ranking W2V and Hybrid Ranking FastText,

respectively.

2.5.2 Data and Evaluation Metrics

Data

Since a ranking process occurs after a matching process, we feed 1-error and 2-error testing

input datasets into the system, all retrieved candidates by the matching process are used as the

input to each ranking method.

Evaluation Metrics

Ideally, the best output geocode should be ranked in the first position, and the quality of each

candidate decreases as the position increases. Thus, we evaluate the ranking efficiency by two

metrics: (1) Correctness of the First Candidate (CFC), which is the ratio that the best candidate

is the ground-truth candidate; (2) MRR, which indicates output ranking quality of a geocoding

system by from the perspective that how does the best candidate (i.e., ground-truth data) rank in

the produced results. Since we already know the ground-truth address record that corresponds to

each input address description, we can easily find out the ranking position of the ground-truth data

in output candidate lists and calculate these two metrics.

2.5.3 Evaluation Procedures and Results

Given that the performance of a matching process can impact the quality of a ranking process,

we utilized matching techniques and matching logic that led to the best match rate, based on the

evaluation from Section 2.4.3, to retrieve a set of candidates for 1-error and 2-error testing input

50

datasets and used these retrieved candidates as input for each ranking method. We consider that

the candidate who ranks at the first position is the best candidate, comparing it to the ground-truth

data to determine the actual ranking position of the ground-truth data. Table 2.16 summarizes the

performance of each ranking method under one and two degrees of errors. As can be seen, ranking

Table 2.16: Performance of each ranking method facing 1-error and 2-error testing input datasets

(a): 1-error dataset

Correctness of the First Candidate MRR

Per-attribute Score Ranking 0.9145 0.9188
Classic TF-IDF 0.6408 0.6969
Simi TF-IDF 0.8725 0.8895
Random Forest 2-Label 0.9112 0.9160
Random Forest 3-Label 0.9039 0.9107
Hybrid Ranking W2V 0.8917 0.9041
Hybrid Ranking FastText 0.8946 0.9043

(b): 2-error dataset

Correctness of the First Candidate MRR

Per-attribute Score Ranking 0.8634 0.8690
Classic TF-IDF 0.5957 0.6522
Simi TF-IDF 0.8193 0.8386
Random Forest 2-Label 0.8634 0.8673
Random Forest 3-Label 0.8607 0.8650
Hybrid Ranking W2V 0.8418 0.8544
Hybrid Ranking FastText 0.8418 0.8543

performance shows a similar pattern under 1-error and 2-error testing input datasets: (1) Per-

attribute Ranking had the highest CFC and the highest MRR among all other categories of ranking

methods; (2) Random Forest 2-Label had the close performance in comparison to Per-attribute

Ranking; and (3) Each ranking approach performed better on 1-error over 2-error testing input

data. For term frequency-based ranking, Simi TF-IDF performed better than TF-IDF, which shows

efficiency to utilize similarity as the secondary weights. For Hybird ranking based methods, Hybrid

51

ranking FastText had a slightly improvement in the CFC and MRR, compared to Hybrid ranking

method which uses W2V to conduct word embedding under both 1-error and 2-error testing input

datasets. This observation indicates FastText [78] can be helpful to capture sub-word information.

For Random Forest-based ranking, Random Forest 2-Label performed better than Random Forest

3-Label because predicting two labels is a relatively easier task than predicting three labels, which

is consistent with the prediction performance indicating by the weighted F1 scores. There are two

directions to continue to improve the performance of the classifier-based ranking methods. One

way is to explore various approaches to quantify similarities between input and reference address

descriptions. The other direction is to fine-tune the hyper-parameter of the classification model

further or even using different classifiers that have better generalization capabilities.

2.6 Benchmark for Geocoding Parsing Process

Parsing is the process of decomposing the entire input address string into multiple segments

based on the standard address components, such as house number, street name, and postal code

[20]. This task is considered a domain-specific NER task. The challenges of this task come from

how people name a street, such as using a state name (e.g., Texas Ave.). It is difficult for an

address parser to differentiate between a street name and a state name. Such a case becomes more

complicated if the state name is missing from the input query. An immature address parser could

assign a label of State to Texas.

In the geocoding workflow, the output from a parsing process is used to construct matching can-

didate query strings and calculate scores for each matching candidate. According to Figure 2.1 and

the impacts of BKVs on matching performance assessed in section 2.4.2, the granularity of address

parsing output (i.e., whether there is a completed address description) is crucial for the quality of

matching output and matching latency. For example, the best matching and ranking performance,

as evaluated in sections 2.4.3 and 2.5.1, requires an address parser to at least correctly identify the

base street name, state name, and zip code. Otherwise, we must employ street-level description

matching techniques to complete the geocoding process, which performs poorly with low-quality

input. For a ranking process (section 2.5), all ranking approaches demand an address parser to

52

correctly recognize each address component to precisely calculate the ranking score. Therefore,

the goal of the evaluations in this section is to discern the most efficient parsing techniques for

satisfying the requirements of the matching and ranking processes based on our previous findings

when facing (erroneous) input.

2.6.1 Evaluated Address Parsing Approaches

In this section, we describe two main categories of approaches to build an address parser: the

statistical-based approach and the neural network-based approach.

2.6.1.1 Statistic-based Address Parsing

Statistics-based address parsers fall into the category of supervised learning. The features of

input address descriptions are extracted first and fed into a statistical model to learn the likeli-

hood of a label, followed by the previous label. Therefore, variation in statistics-based approaches

comes from the choice of extracted features and statistical models. For the statistical model, we

chose conditional random fields (CRF) over the Hidden Markov Model (HMM) to build an address

parser because the former can conduct sequential tagging by overcoming the dependency assump-

tion made by the HMM [81]. We compare the performance of address parsing that employs two

different sets of features—syntactic features and syntactic features combined with domain-specific

features—which have been used by [82]. Table 2.18 summarizes the features we used to train a

CRF model.

2.6.1.2 Neural Network-based Address Parsing

A neural network-based parser is built upon neural network architectures and is trained by

labeled address descriptions. The neural network-based approach is an end-to-end solution com-

pared to statistical-based models, which heavily rely on feature engineering. It is more easily being

applied to other address systems if training data is available.

[83] splits the entire neural network architecture into three modules, from input to output:

(1) distributed input representations, (2) context encoder, and (3) tag decoder. According to an

empirical study by [84], different choices of implementations or configurations of each module

53

Table 2.18: Features used to train a CRF model

(a): Syntactic features

Feature Description

lower case word word in the lower-case format
lower case word-1 word that is one word before from the current word
lower case word+1 word that is one word after from the current word
isDigitOnly is word only contains digits
isAlphabetOnly is word only contains alphabet letters
isAlphabetDigit is word contain both alphabet letters and digits

(b): Domain-specific features

Feature Description Possible Value

isRoadType is a road type in address reference datasets True, False
isDirection is a direction in address reference datasets True, False
isState is a state name in address reference datasets True, False
isZipLike is consist of five digits True, False

compose a variety of neural network architectures, leading to different NER performance [84, 85].

Therefore, we investigat “popular” settings for these three modules of a neural network architecture

based on previous works and made comparisons of their performance when facing low-quality

address description input.

Distributed input representations. This module converts words into vectors of numeric val-

ues, which can be fed into neural network layers. Depending on the portion of a word that is

encoded (e.g., the entire word, sub-word, or combination of the word and sub-word level), the

input representations can be split into word-level, character-level, and hybrid-level representations

[83]. For word-level representations, we select two pre-trained word-embedding models to encode

each word in address descriptions: W2V [76], which is trained by Google News corpus 9, and

ELMo [86]. These two models are selected because they generate two distinct word embeddings:

context-independent and contextualized word representations, respectively. In terms of utilizing

word representations from these two models, we use the extracted word vectors from W2V di-

9https://code.google.com/archive/p/word2vec/

54

https://code.google.com/archive/p/word2vec/

rectly, as word vectors of W2V are generated based on tokens. By contrast, word vectors of ELMo

are represented in the format of three layers of a language model, thereby requiring an additional

step to transform the three-layer representation into a single layer [87]. We choose the Fixed Av-

erage and Learned Weighted Average methods to conduct this computation because they achieved

the best performance of the NER task in CoNLL 2003 and a domain NER dataset, respectively

[87]. We denote these two variations of ELMo as ELMo fixed average and ELMo weighted

average. Given that character-level representations can be helpful in extracting morphological in-

formation, such as the prefix or suffix of a word [88], we evaluate whether additional distributed

representations could improve the performance of address parsing. Specifically, we select convo-

lutional neural network (CNN)-based [88] and LSTM-based [89] character representations, which

are considered two major streams, to generate such representations [83] and appended them to

W2V, denoted as W2V CNN and W2V LSTM, respectively. ELMo is already using a CNN layer

on the character-level features to derive word representations; therefore, we did not concatenate the

character representation of ELMo. We also compare the performance of each input representation

variation to the pure word vector of W2V.

Context encoder. The context encoder, which is the main component inside the neural net-

work architecture, aims to capture sequential dependencies using neural network structures, such

as CNN and recurrent neural networks (RNN). In this benchmark, we select bi-directional long

short-term memory (Bi-LSTM) neural networks for their state-of-the-art performance in sequen-

tial tagging tasks [56]. Thus, the variation of the context encoder in this work comes from the

configuration of hyperparameters for neural networks. From [84], we list the evaluated “high-

impact” hyperparameters and their candidate parameter pool as follows. The bold values are the

default or best parameter used in [84].

• Optimizer: {Nadam, adam}

• Dropout: {0.05, 0.1, 0.25, 0.5}

• Gradient Normalization: {1, 3, 5, 10}

55

Tag decoder. After the context dependencies inside the sequential data are encoded, a tag

decoder can predict tags for each token in the input sequence, which is also known as a classifier. In

the field of NER, two distinct tag decoders are widely used at the final stage in deep learning-based

NER systems: (1) the Softmax-based decoder, which labels the input sequence in a multi-class

classification manner, and (2) the CRF-based decoder, which assigns labels with considerations of

entire sequences, maximizing the joint probabilities of tags for input sequences.

2.6.2 Data and Evaluation Metrics

Data

Data used in this benchmark includes training, development, and testing datasets, as the evalu-

ated baselines include supervised-learning-based address parsers, which require a training process.

We use the 2-error testing input dataset because such a dataset contains more chaos address de-

scriptions. To build up the training dataset, we randomly sample 10 address descriptions from the

unique zip code, city, and state pairs and ensure that the selected address descriptions do not exist

in the testing dataset. In total, we have 435,133 address descriptions in the training dataset. When a

development dataset is desired, we further split such a training dataset at the ratio of about 7 : 3. To

this end, all three datasets (i.e., training, development, and testing datasets) are mutually exclusive.

Meanwhile, regardless of the category of address parsing techniques (i.e., rule-based, statistical-

based, and neural network-based) being evaluated, the used datasets for training, development (if

applicable), and testing are the same.

Evaluation Metrics

Given the context of address parsing, we quantify the parsing performance by the standard

NER evaluation metric: F1 score calculated by the precision and recall of every address compo-

nent based on the USPS address standard. Such a measurement indicates a parsing algorithm’s

capability to recognize all address components correctly, which is required by the geocoded output

candidate ranking performance (i.e., scoring based on each address component) and can help im-

prove the matching performance. Since annotated labels (i.e., address components) are imbalanced

in the testing dataset, we use a weighted F1 score to quantify the performance.

56

2.6.3 Evaluation Procedures and Results

2.6.3.1 Performance of the Statistical-based Address Parsing

To build a robust CRF model, we fine-tune regularization parameters of the CRF model using

the randomized search and 3-fold cross-validation provided by the sklearn library. Specifically,

we configure the searching space for the coefficient for L1 and L2 regularization of a CRF model

using Equation 2.10.


L1 regularization coefficient = Exponential distribution with λ of 2

L2 regularization coefficient = Exponential distribution with λ of 20
(2.10)

As for the parameter searching strategy, we limit the maximum iteration to be 50 and use the

weighted F1 score as the metric to evaluate the performance of the cross-validated model. After

identifying the best parameters for a CRF model, we construct a CRF model with the training

algorithm of Gradient descent using L-BFGS method and maximum iteration of 100, and apply

such a model to the 2-error testing data and quantify the performance by the defined metrics under

the scenarios that input features with and without considering domain-specific features as shown in

Table 2.18. We summarize the best estimator of and the corresponding parsing performance on the

testing input data using different input features in Table 2.20. As can be seen, the CRF model with

Table 2.20: The performance of the fine-tuned CRF models with different input features

Input Feature Best Parameter F1 Score

Without domain-specific features c1: 0.284602 c2: 0.003667 0.9903
With domain-specific features c1: 0.210872 c2: 0.026878 0.9904

both syntactic and domain-specific features slightly improves the parsing performance, compared

to the CRF model that only utilizes syntactic features. This can be explained by the effect of domain

57

features selection. Even without the usage of the selected domain-specific features, the CRF model

still can fully recognize fields of state and zip codes reasonable (i.e., both fields have F1 score of

1), thereby making these two features - isState and isZipLike not useful. Likewise, the feature of

isRoadType and isDirection may only provide limited information. This is because that the large

amount of training samples we used has already provided enough information about the road type

and street direction fields, given the limited spectrum of these two fields. The observations suggest

that feature engineering is of importance to a statistical model-based address parsing.

2.6.3.2 Performance of the Neural Network-based Address Parsing

To select a set of parameter configurations of neural networks that leads to the best parsing

performance while reducing the trails of hyperparameter combinations, we determine the best

hyperparameter in a progressive manner, similar to the approach used by [85]. Specifically, we

compare the performance of configuration variations drawing from the same configuration category

(e.g., distributed input representation) and fixed the remaining configurations by using the default

configuration setup defined in section 2.6.1.2 each time. In terms of neural network architecture

module priority (i.e., distributed input representations, context encoder, and tag decoder), we first

determine the configuration of the distributed input presentation and tag decoder that led to the best

performance, given that these two configurations function as the input and output layer of a neural

network. The setup variations inside the context encoder only impact the structure and utilization of

a neural network. When conducting evaluations, we implement the neural networks based on [90,

87]. The hyperparameter of the neural network was initially set up by the default values defined

in section 2.6.1.2. The number of recurrent units was 100. For the training process, we set up the

epoch to be 25, with a batch size of 32. To diminish the randomness of the neural network training

process, we took the average weighted F1 scores of two runs for each configuration variation.

Table 2.21 summarizes the parsing performance for the 2-error testing input dataset. In terms of

neural network modules, the distributed input representation module have the highest impact on

parsing performance among all three modules, and the F1 score varied from 0.9911 to 0.9924.

The selection of the optimizer also have a relatively large impact on parsing performance. These

58

Table 2.21: Address parsing performance of each neural network configuration variations

Module Configuration F1 Score

W2V 0.9911
W2V + CNN 0.9917

Distributed Input Representation W2V + LSTM 0.9921
ELMo Weight Average 0.9924
ELMo Fixed Average 0.9911

Tag Decoder CRF 0.9924
Softmax 0.9922

Context Encoder Optimizer - adam 0.9924
Optimizer - ndam 0.9913

Dropout - 0.05 0.9916
Context Encoder Dropout - 0.1 0.9918

Dropout - 0.25 0.9920
Dropout - 0.5 0.9924

Gradient Normalization - 1 0.9924
Context Encoder Gradient Normalization - 3 0.9922

Gradient Normalization - 5 0.9923
Gradient Normalization - 10 0.9921

two observations were consistent with the finding in [84]. For distributed input representation,

word embeddings obtained from the ELMo model with a weighted average strategy yields the

best parsing performance. For the tag classifier, CRF outperform Softmax, given that the label of

an address component has dependencies on adjacent labels [85, 91]. Inside the context encoder

module, the configuration by default parameters used in [85] also yields the best performance in

the address parsing task, which indicates that predicting address parsing is similar to other NER

tasks.

2.7 Conclusions

Motivated by the demand to evaluate and improve the robustness of a geocoding system to erro-

neous input, we defined benchmarks and use them to assess the geocoding text retrieval process for

low-quality input. Specifically, we presented an approach to synthesize low-quality geocoding in-

put that matches human input patterns by randomly injecting errors and variations based on historic

59

geocoding transactions. Next, we defined three benchmarks target parsing, matching, and ranking

process, respectively. Each benchmark includes evaluation datasets, evaluation procedures, and

evaluation metrics. Finally, we used the defined benchmarks to evaluate various geocoding pars-

ing, matching and ranking techniques and revealed a set of approaches that are robust when facing

erroneous input queries. Evaluation results produced by the defined benchmarks also can be used

as baselines to facilitate future geocoding evaluation and development works. The findings of each

sub-task benchmark are summarized as follows.

Matching. We selected street, city, and zip codes as the blocking fields to construct query

strings and evaluated various fuzzy string matching techniques for each field that contains ran-

domly injected errors. Evaluated results suggest that the edit distance-based similarity match-

ing method yields the best performance on matching both low-quality street base names and city

names, and a q-gram-based method is the most robust method to erroneous zip code inputs. In

terms of query fields, a matching query that hits against matching fields of street name, state, and

zip code produced the best match rate while having a relatively short runtime among all possible

query field permutations.

Ranking. We evaluated the ranking methods from four major categories: (1) attribute-based

ranking, (2) term-frequency-based ranking, (3) classification-based ranking, and (4) hybrid ranking

combines term-frequency and dense vector-based similarity. The attributed-based ranking methods

with empirical weights of each address component from an existing geocoding system produced

the best ranking performance. The random forest-based ranking method that ranks candidates

based on the predicted two labels had a closed ranking performance to the attribute-based ranking

method.

Parsing. We compared the parsing performance between two address parsers built upon a

CRF model and a neural network architecture, respectively. Overall, the neural network-based

address parser performed better than the statistical model-based address parsing for erroneous ad-

dress input. For the CRF-based address parser, the selected domain-specific features only slightly

improved the parsing performance, indicating the importance of feature engineering for a statistical

60

model-based NER parser. For the neural network-based address parsing, evaluation results suggest

that word embeddings obtained from a context-based pre-trained language model with a weighted

average strategy and the CRF-based tag decoder led to the best parsing performance. Compared to

all other configurations, distributed input representations and optimizer have higher impacts on the

parsing performance than the remaining evaluated configuration parameters, which are borrowed

from the general NER task configuration and also led to the best address parsing performance.

61

3. A DEEP LEARNING APPROACH FOR ROOFTOP GEOCODING1

3.1 Introduction

Geocoding is the process of converting text-based description of a location into a pair of co-

ordinates [92]. It has been widely used for spatial analysis in health, crime, and social research

investigations [2, 3, 93]. However, relatively large spatial errors are still found in most modern

geocoding systems due to the limitations of typical geocoding interpolation methods (i.e., Address

Point, Address Polygon, and Street geocoding) and the availability and quality of the reference

datasets they use [29, 28, 44, 42, 49]. Spatial errors in geocoding output are propagated through to

the output data utilized in subsequent studies, thereby affecting the validity and accuracy of further

data creation and the research conclusions of these studies [13]. For example, in air pollution ex-

posure studies, two common geocoding error distances: 100 and 250 meters could lead to biased

exposure classifications [14], and spatial errors produced by Street geocoding were proven to result

in consistent overestimation for the number of exposed individuals [15]. In a cancer risk study, the

spatial error for residential locations lower than 50 meters was required to conduct further analysis

[16]. Among typical geocoding methods, Address Point geocoding which attempts to pinpoint the

output to the centroid of a building rooftop has been shown to generate highly accurate results

and is recommended for use if the data are available [41, 42]. However, due to the unavailability

of rooftop reference datasets, this method is not widely used [49]. This leads to a question: Is

there a way to automatically generate building rooftop geocoding outputs using highly available

remotely sensed data? Recently, researchers have proposed different deep learning frameworks to

extract objects from high resolution remote sensing imagery [94, 95, 96]. Several articles noted that

aerial imagery can be used as supplementary material for producing geocoding reference dataset

[97, 12, 49]. However, to date, a geocoding approach integrating object detection for generating

rooftop centroid outputs has yet to be developed.

1Reprinted with permission from “A Deep Learning Approach for Rooftop Geocoding” by Zhengcong Yin, Andong
Ma, Daniel W. Goldberg, 2019. Transactions in GIS, 23, 495– 514. c©2019 John Wiley and Sons

62

This work combines a typical geocoding workflow and building detection based on the Fast

Region-based Convolutional Neural Network (Faster R-CNN) model to create a new geocoding

approach. This allows geocoding systems to place outputs at the centroid of building rooftops

without conducting typical geocoding interpolation methods or being completely limited by the

availability of reference datasets. The contributions of this work are two-fold:

• From a methodology perspective: we develop a deep learning-based building rooftop ex-

traction method and fully integrate it into the geocoding process. Then, we propose centroid

candidate selection methods specific to this new geocoding workflow. Through an evaluation

of 22,481 addresses, clear spatial error reductions resulting from the proposed approach in

comparison to typical geocoding methods using the same reference dataset were observed,

while maintaining a comparable match rate. Compared to Address Point/Polygon geocod-

ing, our approach reduced the average spatial error by 4.96 meters (from 16.76 meters to

11.80 meters). Compared to Street geocoding, our approach reduced the average spatial

error by 51.10 meters (from 130.46 meters to 79.36 meters). For different land-use types,

our approach performed better on Low-density Residential and Commercial addresses than

High-density Residential addresses.

• From an application perspective: the new geocoding approach provides the GIS community

with new insights to leverage recent advances in the computer vision and deep learning

domains for geospatial applications. For the geocoding community, our approach can be

used to generate new address or Point-of-Interest (POI) reference datasets. For general GIS

applications, the proposed approach can be extended to search different object locations with

appropriate model setup and training.

The remainder of this chapter is organized as follows. Section 3.2 outlines the limitations of

existing geocoding methods and recent advances in object detection. We detail the building rooftop

centriod extraction method and how we integrate it into geocoding workflow in Section 3.3. In

Section 3.4, we illustrate the evaluation metrics for our work and discuss the results. Finally, we

63

conclude this paper with potential avenues for future work in Section 3.5.

3.2 Related Work

3.2.1 Limitations of Current Geocoding Methods

Limitations of existing geocoding methods are well-studied in the literature. Although errors

can be found in every component of a geocoding process, reference datasets and interpolation

methods are still considered the main sources of spatial error [43, 20].

3.2.1.1 Street Geocoding

Street geocoding is the most widely used geocoding method, which utilizes street networks

as reference sources. However, the outputs of Street geocoding are determined by the numeric

value of the input and reference house numbers in a linear interpolation manner with three major

assumptions: (1) the address existence assumption, (2) the uniform lot assumption, and (3) the

parcel extension assumption [28]. According to USPS TIGER 2, house numbers are arbitrarily

assigned to an address range, even though they do not exist in reality. All parcels on a street are

assumed to have the same size and completely fill a street without corner offsets. A previous

study attempted to tackle these issues by incorporating the number of buildings and the parcel size

found online [30]. Arguably, this method relies heavily on the availability of auxiliary information.

In addition to these assumptions, the offset distance from a street centerline to a building is pre-

defined by geocoding systems without adjusting for variations across different places, which can

also introduce errors into the output. [44]

3.2.1.2 Address Polygon Geocoding

Address Polygon geocoding uses geographic polygons representing one or more administrative

units of geography as its reference dataset. To generate a geocoded output, a process for deriving

a point from a polygon is required. Typically, there are three interpolation methods to generate

such an output point: (1) the bounding box, (2) the mass of centroid, and (3) the weighted centroid

2https://www2.census.gov/geo/pdfs/maps-data/data/tiger/tgrshp2017/
TGRSHP2017_TechDoc_Ch4.pdf

64

https://www2.census.gov/geo/pdfs/maps-data/data/tiger/tgrshp2017/TGRSHP2017_TechDoc_Ch4.pdf
https://www2.census.gov/geo/pdfs/maps-data/data/tiger/tgrshp2017/TGRSHP2017_TechDoc_Ch4.pdf

[20]. However, these three methods make the same assumption: the point derived from a polygon

or a bounding box is the actual building location. This assumption was proven to work well for

small-sized parcels but failed in large-sized parcels [29]. Additionally, for parcels with irregular

shapes such as "L" or "S," this interpolation method cannot guarantee that the centroid is located

inside a parcel [42]. Improving on this method, researchers used population density information to

place the output at a more reasonable location [98]. However, this method typically only applies

to large geographic areas, such as zip-codes, or counties where a population surface derived from

a lower-level geography can be applied.

3.2.1.3 Address Point Geocoding

By definition, address points typically represent actual building locations [49]. The process of

generating such a dataset, either by producing the centroid from a building footprint/parcel or field

collection using the Global Positioning System (GPS) is costly in time and efforts [49, 42]. These

costs help explain the limited coverage of these datasets. Because the reference data are already

a point, no further interpolation is needed. The match rate and quality of the rooftop geocoding

method completely rely on the quality of reference data [42]. Modern geocoding systems usually

employ multiple sources of reference datasets [18]. This may lead one to question that which

reference dataset should be used if different data sources are available.

3.2.2 Advances in Object Detection

Object detection is an image processing technology that detects semantic objects of a specific

label in natural digital images. Girshick et al. [99] first proposed Region-based CNN (R-CNN) for

object detection. Because there are numerous candidate regions, and each requires computation

for feature extraction, the processing speed of R-CNN has been shown to be very slow. To address

this, Girshick proposed a new training algorithm for R-CNN by utilizing a Region of Interest

(ROI) pooling layer to train the whole network end-to-end, named as Fast R-CNN [100]. He et al.

[101] investigated the utilization of a Region Proposal Network (RPN) to generate region proposals

and innovated Faster R-CNN to have a much smaller time cost compared to R-CNN and Fast

65

R-CNN. Within the Faster R-CNN model, all learning schemes, including feature and proposal

extraction, and bounding box regression, and classification are incorporated into a single deep

learning network. These enhancements resulted in significant increases in processing accuracy

and speed.

3.3 Workflow Formalization

The workflow of the proposed approach is depicted in Figure 3.1. Similar to typical geocoding,

input addresses are parsed to generate a query string for the initial geographic context. We first

conduct an Exact Feature Matching process using a deterministic matching method to retrieve

geographic features that match the input house number. If there are zero matches, we revert to an

upper geographic level to retrieve geographic features that match the input street name, a process

known as Fuzzy Feature Matching. Next, the proposed approach constructs a Searching Zone

using the retrieved geographic context for Building Rooftop Centroid Extraction to generate output

candidates, the key difference from typical geocoding workflows.

3.3.1 Searching Zone

Since the spatial accuracy of the geographic context (i.e., address polygon or address point

features) returned from Exact Feature Matching should be relatively high [49], we chose two

Benchmark Points from them to construct the searching zone, as depicted in Algorithm 1. If

the geographic context is a polygon feature, we selected two vertexes from this polygon that have

the largest distance to be Benchmark Points so that we could calculate latitude and longitude dif-

ferences per pixel as required by Algorithm 3. If a point feature has been retrieved, we use two

endpoints of a 50-meter diagonal centered on this point feature as Benchmark Points. We consider

this empirical radius (i.e., 25 meters) to be reasonable because a point feature is considered to

represent a building centroid [49]. When both a point and a polygon feature are retrieved, we first

attempt to derive Benchmark Points from the polygon feature since it can depict the actual parcel

boundary for the input address.

66

Figure 3.1: Workflow of the proposed approach

3.3.1.1 Fuzzy Searching Zone

If Fuzzy Feature Matching has been carried out, namely, an exactly matched point or polygon

feature cannot be found, we build a Fuzzy Searching Zone that has the largest possibility of con-

taining the input address. Inspired by using the "similar" house number to improve match rates [2],

we select the geographic context with the minimum house number difference to the input address

as Benchmark Points to bound this search zone, as depicted in Algorithm 2. We first attempt to

identify the two house numbers that are closest to the input address and make sure they agree with

67

Algorithm 1: Identify two Benchmark Points of Exact Searching Zone
Input: collection of retrieved address point or address polygon features: Dictaddr;
Output: coordinates of two Benchmark Points: BP1 and BP2

maxIndex = -1; maxDist = -1;
if polygon feature Polg found in Dictaddr then

V0 = randomly choose one vertex Vi ∈ Polg;
for each vertex Vi in Polg do

if Distance between V0 and Vi > maxDist and latitude of V0 != latitude of Vi and
longitude of V0 != longitude of Vi then
maxDist = Distance between V0 and Vi ;
maxIndex = i;

end
end
BP1 = coordinates of V0 ;
BP2 = coordinates of VmaxIndex;
return BP1 and BP2;

end
if point feature Pnt found in Dictaddr then

BP1 = coordinates of a point with length of 25 meters to Pnt and bearing of 45
degree;
BP2 = coordinates of a point with length of 25 meters to Pnt and bearing of 225
degree;

return BP1 and BP2;
end

the parity (i.e., odd or even) of the input house number. According to USPS TIGER3, the last two

digits of an address range start from 00 and end with 99. Thus, we keep track of the valid address

range for each identified house number to ensure it belongs to the block of the input address. If

the nearest house number is outside the block of the input address, we use the nearest address

range number that has the same parity of the input house number as the substitution. For example,

given that the input house number is 1603, two nearby house numbers, 1515 and 1607, would be

selected. We consider that house number 1515 would belong to another block as the valid address

range for the input address should be 1600 to 1699. Since the range number 1601 has the smallest

numeric difference to the input address, it is selected to bound the size of the searching zone (i.e.,

3https://www2.census.gov/geo/pdfs/maps-data/data/tiger/tgrshp2017/
TGRSHP2017_TechDoc_Ch4.pdf

68

https://www2.census.gov/geo/pdfs/maps-data/data/tiger/tgrshp2017/TGRSHP2017_TechDoc_Ch4.pdf
https://www2.census.gov/geo/pdfs/maps-data/data/tiger/tgrshp2017/TGRSHP2017_TechDoc_Ch4.pdf

Algorithm 2: Identify two Benchmark Points of Fuzzy Searching Zone
Input: collection of retrieved address point, address polygon, and street line features:

Dictaddr; house number of the input address: hNuminput

Output: coordinates of two Benchmark Points: BP1 and BP2

hNumArr = []; indexL = indexR = -1;
for each retrieved feature do

hNumArr.add (feature.house number);
end
hNum_Idx = Binary Search (hNumArr, hNuminput) ; // identify location of the

input house number

while hNumArr[hNum_Idx - 1].parity != hNuminput.parity do
indexL = hNum_Idx− 1 ; // identify left-side nearby number which agrees parity

end
while hNumArr[hNum_Idx + 1].parity != hNuminput.parity do

indexR = hNum_Idx+ 1 ; // identify right-side nearby number which agrees parity

end
BP1 = Identify One-side Benchmark Point (indexL, hNumArr, Dictaddr);
BP2 = Identify One-side Benchmark Point (indexR, hNumArr, Dictaddr);
return BP1 and BP2;
Function Identify One-side Benchmark Point (idx, hNumArr, Dictaddr)

if hNumArr[idx]/100 != hNuminput/100 ; // check if nearby house number is outside

the block

then
return closest endpoint of address range in Dictaddr;

end
if hNumArr[idx] is point then

return Dictaddr[hNumArr[idx]].coordinates;
end
if hNumArr[idx] is polygon then

return Dictaddr[hNumArr[idx]].centroid;
end
if hNumArr[idx] is street line then

return closest endpoint of address range in Dictaddr;
end
return No Found;

1601 - 1607). When a nearby house number is found in more than one reference dataset, we select

the ideal reference data item based on the preferential ordering of reference data categories shown

as optimal in a previous study: Point > Polygon > Street line [49]. The possible combinations of

nearby features that can build a Fuzzy Searching Zone is summarized in Table 3.1.

69

Table 3.1: Possible nearby features for Benchmark Points of Fuzzy Searching Zone

Nearby Features Possible Scenarios

Two house numbers
Two nearby house numbers are found in polygon or point reference
datasets.

One house number,
one address endpoint

(1) Only one nearby house number is found in point or polygon
reference datasets and the other nearby feature is retrieved from
street line reference datasets; (2) One of two retrieved nearby house
numbers belongs to the block of the input address.

Two address endpoints
(1) Only address range endpoints are found; (2) Two retrieved nearby
house numbers both do not belong to the block of the input address.

N/A
No nearby house numbers are found in polygon or point reference
datasets and the matched address range is found in street line
reference datasets.

3.3.2 Building Detection and Centroid Extraction

3.3.2.1 Model Setup and Data Training

We collected 250 aerial RGB images with the size of 640 × 480 pixels in two cities in Texas

from Google Earth4, and labeled all rooftops on each image. We also expanded the training samples

by flipping images both horizontally and vertically and conducting 90-degree image rotation.

We adopted the Faster R-CNN model for building rooftop detection owing to its performance

and reliability [101]. ResNet-50 [102] was used as the base deep neural network, which was

pre-trained by ImageNet5. Our Region Proposal Network (RPN) consisted of three convolutional

layers. The input layer was assembled by 512 kernels with size of 3 × 3. The class prediction

layer was created by 9 kernels with size of 1 × 1. The regression layer contained 9 × 4 kernels

with size of 1 × 1. The total number of epochs and the length of each epoch were set as 50 and

400, respectively. With this setup, model training was completed in 12.5 hours.

4https://www.google.com/earth/
5http://image-net.org/index

70

https://www.google.com/earth/
http://image-net.org/index

3.3.2.2 Building Detection and Centroid Extraction

As shown in Figure 3.1, with the help of two Benchmark Points (i.e red/yellow dot), we cap-

tured satellite images covering the building in question using Google Maps 6. Then, the Faster

R-CNN model output a rectangular bounding box for each detected building rooftop on the input

images. Since the bounding box is presented as the pixel locations (i.e., row and column) of top-

left and bottom-right corners: Ptl and Pbr, it becomes possible to calculate each bounding box’s

centroid: Pc to represent a building location. We take advantage of two Benchmark Points: BP1

and BP2 by detecting their row/column by their own pre-assigned RGB values. Because lat/lng of

these two Benchmark Points are known, we can obtain the coordinate difference per pixel for the

input image. Finally, we can calculate the lat/lng of Pc using its pixel location related to the input

image’s top-left corner, which is (0, 0).

Algorithm 3: Building Rooftop Centroid Extraction
Input: geographic coordinates of two BenchmarkPoints: BP1, BP2 and their RGB

values;
Output: geographic coordinates of the extracted centroid point: Pc
Detect BP1, BP2 by RGB values, return pixel location (row, column);
Detect building rooftop bounding box(es), return pixel location of top-left
Ptl (row, column) and bottom-right Pbr (row, column);
lat_per_pixel = |BP1.lat−BP2.lat| / |BP1.row −BP2.row| ; // Calculate
lat/lng per pixel
lng_per_pixel = |BP1.lng −BP2.lng| / |BP1.column−BP2.column|;
Itl.lat = P1.lat+ lat_per_pixel × P1.row ; // Calculate lat/lng of
image’s top-left corner
Itl.lng = -(-P1.lng + lng_per_pixel × P1.column);
for each bounding box(es) do

Pc.row = (Ptl.row + Pbr.row)/2 ; // Calculate row/column of Pc
Pc.column = (Ptl.column + Pbr.column)/2;
Pc.lat = Itl.lat− lat_per_pixel × Pc.row ; // Calculate lat/lng of Pc
Pc.lng = - (-Itl.lng − lng_per_pixel × Pc.column);
return Pc

end

6https://developers.google.com/maps

71

https://developers.google.com/maps

3.3.3 Centroid Candidate Selection

3.3.3.1 Candidate Validation

To facilitate candidate selection, we use a multi-step procedure based on topological relation-

ships to filter out invalid candidates.

Step 1: The first step is to make sure candidates are located in reasonable areas. Since each

searching zone is the area that has the largest possibility of containing the input address, we conduct

a point-in-polygon analysis to filter out candidates that are outside the constructed searching zone.

Step 2: The second step is to check if the candidate agrees with the address parity rule (i.e.,

odd and even house numbers are located on the separate sides of a street). To do so, we propose a

Clockwise Checking method to select candidates that obey this rule.

Figure 3.2: Clockwise checking method to check address parity

Endpoint =


Left side If xpnt1 < xc

Right side If xpnt2 > xc

(3.1)

72

∣∣∣∣∣∣∣∣∣∣
xs ys 1

xpnt1 ypnt1 1

xpnt2 ypnt2 1

∣∣∣∣∣∣∣∣∣∣
=


> 0 If Counter Clockwise

< 0 If Clockwise
(3.2)

As shown in Figure 3.2, with the help of Equation 3.1, we can determine the left- and right-side

endpoints of an address, denoted as (xpnt1, ypnt1) and (xpnt2, ypnt2). Next, we randomly sample a

nearby address from the reference dataset, named as Sample Address, and connect these points as

follows: Sample Address -> Left-side endpoint -> Right-side endpoint. Finally, we determine if

this path is clockwise or counter-clockwise using Equation 3.2. To agree with the address parity

rule, all valid candidates should have the same path, if the input address and Sample Address have

the same house number parity.

Step 3: The last step is to test if a candidate is a false positive match, which means that it

is actually another address that exists in the reference datasets. We first conduct a K-Nearest

Neighbor (K-NN) query to retrieve 10 nearby addresses from the reference dataset. Then, we

compare the distances between a candidate and the 10 nearby addresses to a threshold distance of

3 meters. In the case when the smallest distance is less than 3 meters and their address descriptions

are different, the candidate is determined as a false positive match. We consider this threshold

distance to be reasonable, as it is much smaller than the conventionally employed off-set distance

of 15 meters [11].

3.3.3.2 Candidate Selection

The candidate selection process determines the best candidate for the final output. Because

the two types of searching zones result in different levels of confidence, the candidate selection

process works differently for each.

Exact Searching Zone: If multiple candidates exist in an Exact Searching Zone, it can be a

multi-building residential structure (e.g. a house with a detached garage), an apartment complex,

or a commercial complex. However, land-use information is difficult to obtain from reference

datasets. To deal with possible scenarios, the selection procedure is executed as follows:

73

• If the searching zone is constructed by address polygon reference data, we utilize the thresh-

old value: 5 as the minimum number of candidates to differentiate an apartment complex

from a residential parcel. This value was determined by a manual review of local apartment

complexes. If the number of candidates is less than 5, the input address is determined to

be a residential parcel, and the candidate with the largest bounding box is selected because

we assume that the main residential building would typically be larger than other structures

(such as a detached garage). Otherwise, we consider the input address to be an apartment

complex or a commercial complex. Typically, available reference datasets do not have unit

number information for each building, which is a consistent difficulty for geocoding systems

[15]. Thus, we use the centroid of a convex hull assembled from all detected rooftops as

the output. This centroid is weighted by the location of the buildings in a parcel, which is

considered to derive a more reasonable output than a geometric centroid [92, 98].

• If the searching zone is constructed by address point reference data, we empirically select

the candidate which is closest to this reference data as the best candidate. Owing to the

definition of address point reference data [49], the nearest candidate to this point feature is

the most likely to be the best candidate.

Fuzzy Searching Zone: We propose a House Number Difference Ranking method to select the

best candidates that exist in a Fuzzy Searching Zone, as illustrated in Algorithm 4. Intuitively, the

distance from a candidate to a benchmark address reflects the numeric difference between these

house numbers. Therefore, an important step of the algorithm is to determine a benchmark address.

Figure 3.3: House number difference ranking to select the best candidate

74

Because two Benchmark Points that bound a Fuzzy Searching Zone have the house numbers and

geographic locations which are near to the input address, we select one of them as the benchmark

address. First, the Benchmark Point that has a smaller house number difference than the input

house number is used as the benchmark address. If both Benchmark Points have the same house

number difference to the input address, we choose the one that comes from a high-quality reference

source as follows: Point > Polygon > Street line. The other key step is to determine the best

candidate from the candidate list sorted by distances from each candidate to the benchmark address

in an ascending order. As illustrated in Figure 3.3, considering the house number parity, the input

address 209 is only one magnitude away from the benchmark address 207, thereby making it the

candidate with the smaller distance d1 to the benchmark address more likely to be the candidate for

the input address. It is possible that the benchmark address 207 has been included in the candidate

list. To check this situation, we compare the distance between the benchmark address and the first

candidate in the sorted list to the same value used for testing a false positive match. If this distance

is less than 3 meters, we would choose the second candidate in the candidate list as the final output.

Otherwise, we would choose the first one.

3.4 Experiments and Results

3.4.1 Experimental Setup

Our evaluation primarily seeks to answer three specific questions: (1) What is the match rate of

our approach; (2) To what degree our approach can reduce spatial error; and (3) Is the performance

of our approach sensitive to land-use types.

The reference data used in the experiment included all three address models: address point,

address polygon, and street line. Address point reference data were extracted from Navteq7. Ad-

dress polygon reference data were obtained from the Boundary Solutions parcel database. Street

line reference data were generated from the US Census Bureau TIGER/Lines8. These reference

data sources were chosen because they represent the typical types and qualities of reference data

7https://www.here.com/en/navteq
8https://www.census.gov/geo/maps-data/data/tiger-line.html

75

https://www.here.com/en/navteq
https://www.census.gov/geo/maps-data/data/tiger-line.html

Algorithm 4: House Number Difference Ranking
Input: collection of candidates: Dictcandidate; the input house number: hNuminput

; two Benchmark Points: BP1 and BP2;
Output: coordinates of the best candidate Coordbest
hNumbenchmark = 0; distArr = []; Retcandidate = {};
if hNuminput −BP1.house number! = hNuminput −BP2.house number then

hNumbenchmark =
min(hNuminput −BP1.house number, hNuminput −BP2.house number);
Addrbenchmark = Benchmark Point with hNumbenchmark;

end
else

Addrbenchmark = Benchmark Point selected by the order: Point > Polygon > Street line;
end
Coordbenchmark = coordinates of Addrbenchmark;
for each candidate i do

Disti = Distance between Coordbenchmark and Coordi;
distArr add Disti;
Retcandidate[Disti] = Coordi;

end
Sort distArr by distance in ascending order;
if the first candidate is the benchmark address then

hNumdiff = hNuminput - hNumbenchmark ; // To avoid the first
candidate being selected

end
else

hNumdiff = hNuminput - hNumbenchmark - 1;
end
Coordbest = coordinates of Retcandidate[distArr[hNumdiff]];
return Coordbest;

sources routinely used by researchers and organizations [28]. The test dataset was obtained from

the city of College Station and contains 22,481 building centroid coordinates associated with ad-

dress descriptions across three land-use types: Low-density Residential, High-density Residential,

and Commercial.

To conduct the evaluation, the proposed approach was implemented as a web service using

Node.js9 and all reference data were indexed in the Elasticsearch10 NoSQL database framework.

9https://nodejs.org
10https://www.elastic.co/products/elasticsearch

76

https://nodejs.org
https://www.elastic.co/products/elasticsearch

We geocoded the test dataset using our approach (denoted as DLRooftop), the Texas A&M Geocod-

ing Services11 (denoted as Base Reference) and Google’s Geocoding API12 (denoted as Google),

respectively. Then, outputs produced by each system were compared in terms of match rate and

spatial accuracy (i.e., the distance between geocoded data and the true value), which is consistent

with other studies [18, 103, 104]. It is worth noting that the proposed approach and the Texas

A&M Geocoding Services utilized the same reference dataset, whereas Google maintains its own

reference datasets of unknown number, type, or quality, though these are typically assumed to be

numerous and of very high quality. Given the non-normal distribution of spatial error and the rela-

tively large sample size (n >30), a Wilcoxon signed rank test and a Student’s t-test on the original

and the log-transformed spatial error was performed to determine the significance of spatial errors

are reduction, respectively [18, 105].

3.4.2 Results and Discussions

3.4.2.1 Match Rate

Table 3.2: Match Rates

System Match Level Match Rate (%)

DLRooftop Rooftop 82.18
DLRooftop Unmatched 17.82

Base Reference Building 80.83
Base Reference Street 2.86
Base Reference Unmatched 16.31

Google Rooftop 95.05
Google Other 4.87
Google Unmatched 0.8

Table 3.2 lists match rates from different geocoding systems. Google achieved the highest

match rate. In comparison to Base Reference, the proposed approach slightly reduced the overall

11http://geoservices.tamu.edu/
12https://developers.google.com/maps/documentation/geocoding/start

77

http://geoservices.tamu.edu/
https://developers.google.com/maps/documentation/geocoding/start

match rate by 1.51%. The main reason for this is that the proposed approach increases the granu-

larity of the match level. Each output produced by the approach must match a building rooftop, a

higher spatial level, with matches of a lower accuracy being thrown away. In total, our approach

produced 82.18% rooftop geocoded results, improving the building level match rate by 1.35% from

80.83%. In contrast, 2.86% of geocodes were in the Base Reference only matched the street level,

a lower spatial accuracy level. Such trade-offs between the match rate and spatial accuracy have

been shown in previous studies as well [49]. Overall, our approach maintained a comparable match

rate to that of typical geocoding methods, even though it produced outputs with higher geographic

levels of matches (rooftop vs. street level).

3.4.2.2 Overall Spatial Accuracy

When compared to the match rate, spatial accuracy is considered a more important metric to

demonstrate the quality of a geocoding method [44, 11, 49, 18, 70]. To assess spatial accuracy,

we filtered out unmatched records from each system and grouped outputs by feature matching

scenarios, which refer to different typical geocoding methods. The descriptive statistics (Table

3.3) and the cumulative distribution of spatial error (Figure 3.4) show that the proposed approach

significantly reduced spatial error compared to typical geocoding methods (i.e., Base Reference)

in both feature matching scenarios.

Figure 3.4: Cumulative distribution of spatial error in Exact Feature Matching (Left) and Fuzzy
Feature Matching

(Right) scenarios

78

Table 3.3: Descriptive statistics for overall spatial error (meters) in Exact and Fuzzy Feature Match-
ing scenarios

Exact Feature Matching Fuzzy Feature Matching

Statistics DLRooftop Base
Reference

Google DLRooftop Base
Reference

Google

25th 0.96 6.49 1.60 16.31 47.98 2.94
50th 1.58 9.54 2.49 35.61 84.46 10.11
75th 2.60 13.45 3.69 94.51 180.56 39.73

Average 11.80 16.76 951 79.36 130.46 62.46
p (t-test) < 0.001 < 0.001 < 0.001 < 0.001

p (wil. sign) < 0.001 < 0.001 < 0.001 < 0.001

In Table 3.3, compared to Base Reference in the Exact Feature Matching scenario (i.e., Address

Point/Polygon geocoding method), our approach reduced the average and the median spatial error

by 4.96 meters (from 16.76 meters to 11.80 meters) and by 7.96 meters (from 9.54 meters to 1.58

meters), respectively. Our approach also outperformed Google in this scenario, producing outputs

with smaller spatial error, even though we did not have access to their luxury reference dataset.

The spatial error reduction produced by our approach was shown to be statistically significant in

comparison to these two systems (p < 0.001). Such improvement was gained because our approach

can place the output closer to the true building location with the help of rooftop detection, as shown

in Figure 3.5. The left-side of Figure 3.5 shows that our approach and Google can place the output

at the centroid of rooftop which is close to the true location, whereas the output of Base Reference

was far away from the actual building location, depending on the spatial accuracy of reference

data. On the right-side of Figure 3.5, Base Reference output the centroid of the parcel, since

address point reference data could not be found. However, the parcel centroid may not be the

building’s location, especially for a large-sized parcel, which is known as a major drawback of

Address Polygon interpolation methods [29]. Because our approach can detect building rooftops,

we do not need to conduct this interpolation to generate an output.

As can be seen in the Fuzzy Feature Matching scenario of Table 3.3, Google produced the most

accurate results because it resulted in a rooftop match level for input addresses. These addresses

could not be found in the address point or address polygon reference datasets employed by our

79

Figure 3.5: Output for small-size (Left) and large-size parcels (Right) in Exact Matching scenarios

Figure 3.6: Output for a Low-density Residential address (Left) and a Commercial address (Right)
in Fuzzy Feature Matching scenarios

approach and Base Reference, therefore Base Reference performed the Street geocoding method.

Unlike Street geocoding which conducts its linear interpolation only on address ranges, our ap-

proach is able to estimate the input address location utilizing nearby buildings (Algorithm 4). As

shown in the left-side of Figure 3.6, for an input address 2820, two nearby house numbers (i.e.,

yellow triangles) with the same parity as the input address were retrieved, and 2818 was deter-

mined as the benchmark address due to the smaller numeric difference related to the input address.

Since 2820 is only one magnitude away from the benchmark address, we chose the nearest can-

didate as the final output. The right-side of Figure 3.6 demonstrates that this method also applied

80

to Commercial addresses, even though only one nearby house number has been identified. In con-

trast, outputs of Base Reference (i.e., orange dots) were far away from the true data for these two

cases due to the limitations of Street geocoding. To this end, our approach reduced the average and

median spatial error of Base Reference by 51.10 meters (from 130.46 meters to 79.36 meters) and

by 48.85 meters (from 84.46 meters to 35.61 meters), respectively. Such spatial error reduction

resulting from our approach was seen to be statistically significant (p < 0.001).

These examples in Figures 3.5 and 3.6 also demonstrate that our approach has the potential to

generate new address point level reference data, when the original reference data are not precise

enough or are not available. However, it is worth noting that the quality of reference data could

impact the output quality, as it may suggest an incorrect searching zone. For example, the initial

geographic context for the input address: "901 Texas Ave" resolved at the location of "901 S Texas

Ave", because this reference data missed the directional component of the input address. Thus,

the final output was also pinpointed at the incorrect location. This can be one reason for the large

spatial error variance observed in Figure 3.4 and Table 3.3, namely, where the curve for each

geocoding system result overlaps near the 100% mark and the large difference between the mean

and the median spatial error produced by our approach. The main reason for this phenomenon is

due to the geocoding performance results varying by different land-use types, which is observed in

previous studies as well [49, 97, 29].

3.4.2.3 Spatial Accuracy for Different Land-use Types

To further explore the performance variations seen in the results of this testing, we grouped

geocoded results by land-use types. The descriptive statistics of spatial error for each land-use

type in the Exact and the Fuzzy Feature Matching scenarios were summarized in Tables 3.4 and

3.5, respectively. Both tables show a similar pattern for each feature matching scenario: our ap-

proach performed better for Low-density Residential and Commercial addresses than for High-

density addresses in terms of reducing spatial error from Base Reference. As can be seen from

these two tables, for Low-density Residential addresses, our approach reduced the mean spatial

error of Base Reference by 4.95 meters (from 13.42 meters to 8.47 meters) in the Exact Feature

81

Matching scenario and by 45.57 meters (from 81.71 meters to 36.14 meters) in the Fuzzy Fea-

ture Matching scenario, respectively. For Commercial addresses, our approach reduced the mean

spatial error of Base Reference by 9.40 meters (from 85.59 meters to 76.19 meters) in the Exact

Feature Matching and by 152.28 meters (from 215.64 meters to 63.36 meters) in the Fuzzy Feature

Matching scenario, respectively. For High-density Residential addresses, our approach delivered

output with the similar mean spatial error to Base Reference in each feature matching scenario.

The statistical analysis also showed that in comparison to Base Reference, the spatial error reduc-

tion resulting from our approach for Low-density Residential addresses and Commercial addresses

were significant but not for High-density Residential addresses in both feature matching scenarios.

Table 3.4: Descriptive statistics of spatial error (meters) across land-use types in the Exact Feature
Matching scenario

Low-density Residential
(n=17,138)

High-density Residential
(n=333)

Commercial
(n=487)

Statistics DLRooftop Base
Reference

Google DLRooftop Base
Reference

Google DLRooftop Base
Reference

Google

25th 0.94 6.49 1.57 3.35 4.32 2.89 2.18 11.42 2.96
50th 1.53 9.47 2.45 7.94 7.76 4.95 5.64 22.04 6.82
75th 2.45 13.14 3.55 21.85 20.14 7.88 21.25 41.37 19.62

Average 8.47 13.42 984 89.41 88.04 10.72 76.19 85.59 409.85
p (t-test) < 0.001 < 0.001 0.43 < 0.001 < 0.001 < 0.001

p (wil. sign) < 0.001 < 0.001 0.023 < 0.001 < 0.001 0.020

Such variations in the performance can be explained by the building distribution and the details

of reference datasets for different land-use types. The reference dataset of Low-density Residen-

tial addresses usually contains house number information for each parcel or each building. Such

information helps our approach to precisely pinpoint the correct parcel and detect the rooftop cen-

troid without being affected by the parcel size or nearby buildings in the scenario of Exact Feature

Matching, as shown in Figure 3.5. The regular distribution of Low-density Residential buildings,

shown in Figure 3.6, helps to estimate the input address location using nearby house numbers

in the Fuzzy Feature Matching scenario. Similar to Low-density Residential buildings, Commer-

82

Table 3.5: Descriptive statistics of spatial error (meters) across land-use types in the Fuzzy Feature
Matching scenario

Low-density Residential
(n=240)

High-density Residential
(n=77)

Commercial
(n=59)

Statistics DLRooftop Base
Reference

Google DLRooftop Base
Reference

Google DLRooftop Base
Reference

Google

25th 12.11 36.86 2.37 109.10 158.52 40.14 21.28 69.86 3.37
50th 22.63 63.43 6.06 272.83 221.55 181.98 56.36 109.39 6.15
75th 40.88 99.45 19.82 305.09 293.13 380.29 89.37 211.01 13.92

Average 36.14 81.71 16.94 226.33 217.13 228.61 63.36 215.64 30.79
p (t-test) < 0.001 < 0.001 0.274 0.006 < 0.001 < 0.001

p (wil. sign) < 0.001 < 0.001 0.395 0.027 < 0.001 < 0.001

cial buildings are aligned regularly in a large-sized parcel, and reference datasets for Commercial

addresses, known as POI datasets are often well-detailed. Thus, the spatial error reduction of

Commercial addresses by our approach was comparable to Low-density addresses. In contrast,

reference datasets for High-density Residential addresses (i.e., apartment complexes or multi-unit

buildings) are less detailed (i.e., they do not contain house number or unit number information for

each building) [15], and the building distribution can be ambiguous. Even though we can detect the

Figure 3.7: Two output examples for High-density Residential addresses

number of buildings in a complex, it is difficult to assign an address to each building in the parcel

using a generic building distribution rule. Thus, our approach outputs the centroid (i.e., blue dot)

of a convex hull (i.e., red outline) composed from each of the detected rooftops, as shown in the

83

left-side of Figure 3.7. Even though this centroid is weighted by building location, it still shares

the same drawback of typical Address Polygon interpolated methods. For multi-unit apartments, a

single building contains multiple addresses. As shown in the right-side of Figure 3.7, each address

only occupied a small portion of a rooftop. However, the Building Centroid Detection process

output only one centroid per rooftop, generalizing multiple address locations as one. These factors

explain why the spatial error in the output from our approach was similar to Base Reference in both

scenarios for this land-use type.

3.4.2.4 Sources of Uncertainty and Limitations

To increase the transparency of our proposed approach, provide insight for studies that utilize

our results, and motivate future improvement, we next summarize the uncertainties and limitations

that exist in the workflow.

First, Building Rooftop Extraction played a critical role in determining the final output. This

process relied on aerial images obtained from online map services. Thus, the uncertainty of the map

source from the perspectives of the image quality and temporal accuracy would impact the quality

of geocoded outputs, resulting in a lower match rate and a larger spatial error. The detection process

could be limited by the training dataset. Arguably, our training dataset was relatively small and we

only labelled building rooftops, omitting other common objects appearing in human-housing areas

such as swimming pools or vehicles. Even though the performance of the Faster R-CNN has been

demonstrated in the past [101], it could not guarantee that all buildings in the input images would

be precisely detected. In addition, the output bounding box from the detection model resulted in

a planar surface being used to calculate the centroid coordinates, which may limit the coordinate

accuracy.

Second, in addition to the reference data quality, the address parsing and the feature matching

processes could also lead to incorrect initial geographic contexts for building rooftop detection,

eventually impacting the final output. In this work, we only employed the deterministic feature

matching approach for the geographic context retrieval, and input addresses were well-formatted.

To deal with more sophisticated input addresses and to improve the accuracy of the initial geo-

84

graphic context retrieval, more effort should be devoted to the development of address parsing and

feature matching algorithms.

Third, while the candidates selection strategy is specific to land-use types, it still has limita-

tions. Since the reference datasets used here did not provide land-use information, we differenti-

ated land-use types by the number of buildings chosen from empirical testing. This may limit the

accuracy of our judgement. For apartment complex addresses, without a rule to assign a house

number to each building, we can only weight the output by the nearby building location, which

largely limits the output accuracy. When multiple candidates align on a street, we determined the

best candidate by candidate locations related to a benchmark address and the house number dif-

ference. Even though this algorithm does not use assumptions that are made by Street geocoding,

it also relies on the distributions of buildings and house numbers. If the difference between the

input house number and the benchmark house number is too large, or the building distribution is

irregular, this method may lead to a low spatial accuracy output.

3.5 Conclusions

The output quality of geocoding systems has been limited by typical geocoding interpolation

methods and reference datasets for long time. In this chapter, we present a novel geocoding ap-

proach utilizing object detection based on deep learning framework to generate rooftop geocoding

output. Specifically, we introduce a method to obtain coordinates of building rooftop centroids

using the Faster R-CNN model from aerial imagery and integrate this method into a geocoding

process. Then, we develop a series of centroid candidate selection methods specific to this work-

flow. Compared to typical geocoding methods, clear spatial error reduction resulting from our

approach is observed, while maintaining a comparable match rate. The performance variation of

our approach for different land-use types is found due to the building distributions and detail of

reference datasets.

85

4. A PROBABILISTIC APPROACH FOR IMPROVING REVERSE GEOCODING OUTPUT1

4.1 Introduction

Reverse geocoding comprises the process of converting a pair of coordinates to the informa-

tion contained in that location [106, 8]. Recent decades have seen a significant evolution of such

transition from machine-readable GPS coordinates to human-readable location information. On

the one hand, recent advances in ubiquitous GPS-enabled devices have sparked the need to link

spatial coordinates to place descriptions, making reverse geocoding prevalent in navigation and

routing services [107]. On the other hand, as more information such as Point-of-Interests (POIs)

and human activities is added to locations, reverse geocoding has been used for retrieving informa-

tion to support crime analysis, site selection, and human trajectory retrieval [108, 109, 110, 111].

These applications not only expand the content of reverse geocoding output but also create a huge

demand for better reverse geocoding output quality to benefit end-users or subsequent studies. For

example, a precise location description obtained from reverse geocoding could help first respon-

ders understand where you are in emergencies.

Modern commercial map providers such as Google Maps2, HERE WeGo3, Bing Maps4, and

Esri5 offer reverse geocoding services to the public. However, the outputs from these reverse

geocoding systems suffer from three challenges. First, current solutions typically rely on distance

only for candidate selections, failing to consider spatial topology relationships. While it is possible

that the returned candidate is the closest to the input points, it may be located on the opposite side

of the street. Such a candidate can lead to problems with passenger pickups (for example) as a

driver may need to make a U-turn to arrive at designated locations.

1Reprinted with permission from “A Probabilistic Approach for Improving Reverse Geocoding Output” by Zheng-
cong Yin, Daniel W. Goldberg, Tracy A. Hammond, Chong Zhang, Andong Ma, Xiao Li, 2020. Transactions in GIS,
24, 656– 680. c©2020 John Wiley and Sons

2https://www.google.com/maps
3https://wego.here.com
4https://www.bing.com/maps
5https://developers.arcgis.com/rest/geocode/api-reference/

geocoding-reverse-geocode.htm

86

https://www.google.com/maps
https://wego.here.com
https://www.bing.com/maps
https://developers.arcgis.com/rest/geocode/api-reference/geocoding-reverse-geocode.htm
https://developers.arcgis.com/rest/geocode/api-reference/geocoding-reverse-geocode.htm

Second, current output metadata do not describe how candidates are ranked. Candidates in

output list are ranked in an uninformative manner, as the current metadata descriptions only include

distance to the input coordinates and the geographic match level, making the ranking mechanism

unclear. Therefore, subsequent processes have limited information that could be used to choose the

best candidate from output lists. Modern reverse geocoding systems have started to use multiple

reference data sources and additional information to suggest the best candidates. Therefore, a

consistent ranking mechanism is needed to order candidates drawn from different reference sources

to improve location suggestions.

Third, current approaches have not utilized input GPS uncertainty as a contributing factor for

determining output or for reporting error/uncertainty. Prior work has suggested uncertainty in-

troduced by GPS sensors is unavoidable [112, 113]. However, such uncertainty is omitted from

current reverse geocoding solutions, meaning that a correct output location might be easily ex-

cluded from a candidate set of potential outcomes. Given more LBS applications make use of

mobile-phone based GPS with varying degrees of accuracy, considering GPS uncertainty become

a necessity.

Given these observations, we argue that reverse geocoding output should (1) be spatially close

to and topologically correct with respect to the input location (2) contain multiple suggestions

ordered by the likelihood of being the best candidate, and (3) incorporate input GPS uncertainties.

To meet these criteria, we proposed a probabilistic framework to improve the quality of reverse

geocoding output. The contributions of this work are as follows:

• We present a reverse geocoding workflow that leverages spatial topological relationships

between existing address models (i.e., address point, address parcel, street segment) for can-

didate selection, moving beyond simple distance-only measures to differentiate candidates.

This results in comparable best candidate quality (i.e., one based on correct first candidate

and number of errors) in comparison to that offered by four commercial reverse geocoding

systems: Google, Microsoft, Esri, Here, and one open-access reverse geocoding system:

Texas A&M GeoServices.

87

• We introduce a ranking mechanism to quantify topological relationships and distances to ad-

dress candidates with a uniform quantification. Instead of only returning the single best can-

didate, this approach enables an address candidate sorting, which provides end-users with a

clearly ranked set of potential candidates. Evaluation results indicate that candidates ordered

by the proposed method mimic human spatial cognition more effectively in comparison to

existing ranking approaches.

• We propose an algorithm for incorporating input GPS uncertainties into the output results.

We derive the statistical surface for input GPS coordinates, combine it with the candidates

from the proposed ranking mechanism, and utilize this uncertainty as part of the compu-

tational process. Experimental results show that candidate lists generated by the proposed

approach successfully capture and reflect input uncertainties.

The remainder of this chapter is organized as follows. Related work is described in Section

4.2. In Section 4.3, we describe the components of the proposed reverse geocoding workflow.

Section 4.4 and Section 4.5 introduces a weight-based quantification method for ordering each

candidate and the algorithm that propagates the input GPS uncertainty to output candidate lists,

respectively. In Section 4.6, we illustrate the evaluation metrics for our work and discuss the

results. We conclude this paper with potential avenues for future work in Section 4.7.

4.2 Related Work

Efforts to improve reverse geocoding have been carried out in both industry and academia.

Industrial work has primarily focused on system performance and system optimization such as

caching addresses and POIs within bounding areas to improve query performance [34]; tuning

contextual output based on approximations of reference points [114]; and integrating street seg-

ments data with street points data [36]. A performance related study in academia explored the

feasibility of spatial partition methods such as the Global Subdivision Model (GSM) and Geohash

to reduce the query latency of reverse geocoding systems [35].

In terms of improving output quality, the majority of the existing solutions achieve this by

88

mining a variety of data sources, including Geo-tagged text, photos, and users’ demographic data

[37, 38, 39, 40]. These works focused on weighting POIs by modeling geographic footprints

with demographic data, human activity, and temporal signatures, respectively. Other works have

attempted to distort distance measures to nearby POIs as a function of time [106], or directly embed

POIs based on distributional semantics [115]. Arguably, the significance of these works could be

limited by the availability of additional supplementary information and the quantification of each

candidate before considering these supplementary information.

While reverse geocoding is widely used across domains, relatively few works have surveyed

the output quality produced by existing reverse geocoding systems [116]. To our knowledge, to

date, no work has explicitly studied the metadata descriptions of reverse geocoding. Since few

implementation details of commercial systems have been revealed, these systems are treated as a

"black box” when they are employed in different application scenarios. Current efforts regarding

quality and metadata reporting exist primarily in the realm of geocoding. The quality of geocoding

systems is typically quantified by match rate and spatial accuracy [49, 26, 70]. Geocoding inter-

polation techniques (e.g., street geocoding, address polygon geocoding, address point geocoding,

and object detection approach) have been evaluated for different land-use locations (i.e., urban and

rural areas) or different address types (i.e., postal address and P.O. Box) [29, 44, 45, 46]. [19]

proposed a framework for evaluating geocoding systems. In this framework, meta-reporting capa-

bilities are considered an important criterion for differentiating geocoding systems. For example,

the spatial area of reference features was used to approximate uncertainties and select multiple

candidates for the geocoding process [26]. Researchers have pointed out that better quantifications

for geocoding/reverse geocoding workflow (i.e., from input to output) could benefit subsequent

studies that employ the geocoded data [117, 43].

Our work extends the existing works in two main aspects. First, the proposed workflow and

algorithms purely utilized the spatial attributes, geometries, and typologies of existing address

models to improve the accuracy of output data without other supplementary information. Second,

we explicitly quantify uncertainty for the entire reverse geocoding workflow based on the likeli-

89

hood of candidates being the best and incorporated input GPS uncertainties to generate the final

candidate list as well as corresponding metadata descriptions.

4.3 Workflow Formalization

Generally, a reverse geocoding workflow can be summarized as the finding and ordering the

nearest address descriptions using certain criteria, given an input latitude and longitude. Figure

4.1 describes the proposed workflow. It consists of three main components: Reference Datasets,

K-Nearest Search, and Spatial Topology Validations.

Figure 4.1: Proposed reverse geocoding workflow

4.3.1 Reference Datasets

All three address models are utilized to leverage the geometrical and topological characteristics

for different aspects of the workflow. Specifically, point and polygon models are used to derive

90

output candidates considering their typical high spatial accuracy. Line models are used to identify

the nearest streets for spatial topology validations.

4.3.2 K-Nearest Search

To retrieve nearby candidates given a GPS input, the shortest distances from the input to the

reference data need to be calculated. In this work, we adopt the Euclidean equation between

coordinates of two points under the same projection (i.e., WGS84) for distance calculation as

follows.

D =
√
(x1 − x2)2 + (y1 − y2)2 (4.1)

This distance calculation has the following three advantages: (1) possible candidates should be

distributed near input coordinates, so this nearby area could be considered as a planar without

affecting the accuracy of distance calculation [30]; (2) the purpose of distance calculations is to

assign each candidate a ranked order rather than obtaining precise distance values; (3) the calcu-

lation of Euclidean distance between two coordinates is less computationally intensive than other

measures such as great circle distance. As shown in Figure 4.2, we specify the distance calculation

based on the geometry of the reference data : point, line, polygon.

Figure 4.2: Shortest distance from input coordinates to different address models: (a) Address Point.
(b) Street Segment. (c) Address Parcel.

Point: The shortest distance Dpoint from the pair of input coordinates to a point reference data

91

can be directly calculated using Equation 4.1.

Line: As shown in Figure 4.2 (b), the shortest distance DLs between a street segment Ls and

input coordinates has two cases, depending on the intersection point of the perpendicular line from

input coordinates to the street segment, Pintersect, is on this street segment or not. We calculate

DLs using Equation 4.2, where Dintersect, Dstart, and Dend denotes the Euclidean distance from

input coordinates to Pintersect and start/end-point of street segments, respectively.

DLs =


Dintersect If Pintersect on Ls

min(Dstart, Dend) Otherwise
(4.2)

If multiple street segments exist in a street, we iterate through each segment Lsi of the whole

street St to obtain the global minimal distance value as the shortest distance Dline as follows:

Dline = min{DLsi | Lsi ∈ St}, (4.3)

Polygon: As depicted in Equation 4.4, if the input point I is inside a polygon, we can always

find a point inside this polygon which overlaps with I . As a result, the shortest distance Dpolygon

will be zero.

min
p∈Ppolygon

Dpolygon(p, I) = ||I − p||22 = 0; (4.4)

If I is outside a polygon, Dpolygon should stretch from I to one edge of this polygon. Because

polygon edges are identical to line segments, we iterate through each edge of this polygon and use

Equation 4.2 and 4.3 to obtain Dpolygon as follows:

Dpolygon = min{DEi
| Ei ∈ Polygon} (4.5)

92

To this end, Dpolygon can be determined as:

Dpolygon =


0 If the input point inside the polygon

min{DEi
| Ei ∈ Polygon} Otherwise

(4.6)

4.3.3 Spatial Topology Validation

We propose a series of topological relationships to further validate candidates, inspired by the

usage of topology relations for candidate selections in standard geocoding processes [26]. Given

the geometry of the input point and possible address candidates (i.e., point, line, and polygon),

we utilize three spatial topological relationships: Containment, Intersection, and Disjoint, which

are drawn from the 4 - intersection model [118]. It is important to identify a correct nearby street

from all retrieved line data to conduct spatial topology validation. There are two reasons that the

street with the nearest distance to the input is not always the most appropriate: (1) the true positive

nearby street may not exist in the reference datasets, and (2) the location description for an input

and the nearest street may have different descriptions, especially for buildings are located near the

end of street blocks. Therefore, we check whether the street descriptions of each candidate agrees

with the retrieved nearest line data and determine the most appropriate candidate in a quorum

manner. Namely, we first check if there is a street candidate with the same description as the first

point candidate. If not, we then attempt to find a street candidate that agrees with the first polygon

candidate. If still unsuccessful, we choose the street candidate with the description that coincides

with the majority (i.e., larger than 50%) of point and polygon candidates. If all failed, we select

the nearest street candidate.

4.4 Weight-based Quantification for Reverse Geocoding

To rank multiple candidates consistently, we quantify the proposed workflow (i.e., K-Nearest

Search and Spatial Topology Validation) by a weight that indicates how likely one candidate is to

be the best.

93

Table 4.1: Spatial topology validation rules

Retrieved
Reference Data

Spatial Relations Descriptions

Point data,
Polygon data,

Line data
Intersection

Determine points and polygon candidates that are
located on the same side of a street as the input if the
connected lines between candidates and the input
point do not intersect with the street line.

Polygon data,
Point data

Containment
Determine the containing polygon. Namely, a
polygon candidate only contains the input point or
contains the input point and any other candidates.

Point data,
Polygon data Containment

Determine inside candidates, namely candidates are
inside the containing polygon.

Point data,
Polygon data

Disjoint
Determine point or polygon candidates that are
outside the containing polygon

4.4.1 Quantification for K- Nearest Search

In the K-Nearest Search phase, the distance between a candidate in reference datasets and

input coordinates is a key metric for discriminating among candidates. This metric has been used

to quantify the weight of linear interpolation for (standard) geocoding processes [119]. Thus, we

consider the distance D from candidates to input coordinates as an approximation of the weight W

that one candidate is the best. Ideally, W decreases monotonically with D and must meet:


limD→∞ f(D) = 0

limD→0 f(D) = 1

(4.7)

Thus, we define the weighting function as the following:

W = exp(−D) (4.8)

With the substitution of D with the shortest distance obtained from Equation 4.1 to Equation

4.6, we can quantify the candidates retrieved from the K-Nearest Search process using the same

94

standard.

4.4.2 Quantification for Spatial Topology Validation

Our spatial topology quantification approach derives weights for two scenarios: (1) any poly-

gon candidates that contain the input coordinates, and (2) any point or polygon candidates that are

located on the same side or opposite side of the street as that of the input coordinates.

Polygon Containment Validation: The weight calculation for polygon candidates is specific

to building distributions. In most cases, such as residential housing areas, the polygon candidate

only contains the input coordinates. Such a polygon receives a full score of 1. The weight of

other candidates that do not contain the input coordinates is proportional to the distance d′ to in-

put coordinates based on Equation 4.8. However, in some corner cases such as multiple buildings

inside a shopping area, as depicted in Figure 4.3 (a), we can find a polygon that contains multiple

points or polygon candidates (i.e., buildings), denoted as “containing polygon”. Intuitively, build-

ings inside this area (i.e., address 201 -204) should receive higher weights than the area itself (i.e.,

address 200) and other outside buildings (i.e., address 210). To do so, we first obtain the maxi-

mum distance (denoted as dmax) between input coordinates and each inside candidate. We then

apply exp(−(dmax+1)) to ensure the containing polygon receives a lower weight than that of any

inside candidates. To ensure outside candidates receive lower weights than that of the containing

polygon, their weights are calculated as exp(−(dmax + d′)), where d′ denotes their distance to the

input coordinates. To this end, we have

W =



1 Containing polygon & if containing polygon only contains input

exp(−d′) Outside candidates & if containing polygon only contains input

exp(−(dmax + 1)) Containing polygon & if this polygon contains input and other candidates

exp(−(dmax + d′ + 1)) Outside candidates & if this polygon contains input and other candidates

exp(−d′) Inside candidates & if containing polygon contains input and other candidates
(4.9)

95

Figure 4.3: Corner cases for topology validation. (a) A large area contains multiple buildings; (b)
Opposite-side buildings is extremely close to input coordinates.

Street Side Validation: To boost candidates that are located on the same side as that of input

coordinates, we define the following equation:

W =


1 If candidates located on the same side as input

exp(−(dn−i+1 −Min(d′1, ..., d
′
n) + 1 + d′)) Otherwise

(4.10)

As shown in Figure 4.3 (b), we assign a full score of 1 to each candidate located on the same side

(i.e., 201-219). In contrast, candidates located on the opposite side (i.e., 200-220) have weights

that are proportional to their distance to the input point. To calculate weights for opposite-side

candidate, we introduce a parameter i to indicate the position where the nearest opposite-side

candidate could appear. For example, in Figure 4.3 (b), if i equals to 6, the nearest opposite-side

candidate 202 will be ranked sixth in the final output. We descendingly order the distance to the

input point for the same-side candidates (d1 to dn) and the opposite-side candidates (d′1 to d′n). The

weight of each opposite-side candidate is calculated as exp(−(dn−i+1−Min(d′1, ..., d
′
n)+1+d′)),

where d′ is the distance from input coordinates to this candidate, and n is the number of candidates.

To this end, candidates on the opposite-side always receive lower weights than those on the same-

side, and the rank of the nearest opposite-side candidate is configurable by end-users.

96

4.4.3 Quantification for Candidate Fusion

In short, the final weight for each candidate is accumulated through each of the quantification

processes in our workflow as follows:

Wfinal =
∏

Wprocess (4.11)

As indicated in Section 4.4.1, nearest candidates and their corresponding weights will be generated

from the K-Nearest Search process. We group each pair of address descriptions and their weights

into three sets based on the geometry of retrieved candidates, denoted asDictpoint,Dictpolygon, and

Dictline, respectively. Next, we use the proposed spatial topology rules to validate each candidate

and obtain a new weight. Because point and polygon candidates come from separated reference

sources, identical address descriptions may exist in both point and polygon candidates sets. We

merge candidates based on their address descriptions to generate final output candidates. Since the

reference datasets used were processed by [26], we conduct exact comparisons of every address

component value to determine the duplicate address descriptions. Finally, we calculate the final

weight for each candidate as follows.

WAddr = max(Wpoint,Wpolygon) (4.12)

To this end, Dictpoint and Dictpolygon are merged into a new set Dictresult, which contains candi-

dates with unique address descriptions and their corresponding weights. Naturally, the top candi-

dates should share the same street name (i.e., addresses distributed on two sides of a street). Thus,

we track whether the first candidate street name agrees with that of the other candidates. If not, we

apply a downgrading factor of 0.9 for them to uplift the rankings of candidates that have identical

street names.

97

Algorithm 5: Weight-based Candidate Ranking (WCR)
Input : Input GPS Point pnt; Dictpolygon, Dictpoint, Dictline from K-Nearest Search; the position of nearest opposite-side

candidate i
Output: A set of Ranked Addresses Dictresult

1 Function WCR (pnt, i) :
2 if Dictpolygon exists then
3 Dictpoint, Dictpolygon = Polygon Containment Validation (pnt,Dictpoint, Dictpolygon);
4 end
5 if Dictline exists then
6 St = Quorum(Dictline);
7 Dictpoint, Dictpolygon = Street Side Validation (pnt,Dictpoint, Dictpolygon, St, i);
8 end
9 Dictresult = Merge Dictpoint, Dictpolygon using Equation 4.12;

10 Apply 0.9 * WAddr in Dictresult for an address description differs from the street name;
11 Sort by WAddr in Dictresult;
12 Return Dictresult;
13 Function Street Side Validation (pnt,Dictpoint, Dictpolygon, St, i) :
14 sameSideDistArr = [], oppoSideDistArr = [];
15 for cand in Dictpoint and Dictpolygon do
16 Lpnt = Connect pnt to cand ;
17 if Lpnt intersects with St then
18 oppoSideDistArr.add(dcand);
19 Wcand = exp(−dcand)

20 end
21 else
22 sameSideDistArr.add(dcand);
23 Wcand = 1

24 end
25 end
26 Sort sameSideDistArr descendingly;
27 dpe = sameSideDistArr[n− i+ 1]−Min(oppoSideDistArr) + 1;
28 for cand in Dictpoint and Dictpolygon do
29 if Wcand! = 1 then
30 Wcand ∗= exp(−dpe)
31 end
32 end
33 Return Dictpoint, Dictpolygon;
34 Function Polygon Containment Validation (pnt, Dictpoint, Dictpolygon) :
35 for polyg in Dictpolygon do
36 Apolyg = the area of polyg;
37 if pnt inside polyg & Apolyg is minimal then
38 containPolygon = polyg;
39 WcontainPolygon = 1;
40 end
41 end
42 if containPolyg exits then
43 distArr = [], outsideCandArr = [];
44 for cand in Dictpoint and Dictpolygon do
45 if cand Inside containPolygon then
46 distArr.add(dcand);
47 outsideCandArr.add(cand);
48 end
49 end
50 if Length of distArr! = 0 then
51 dmax =Max(value ∈ distArr);
52 WcontainPolygon = exp(−(dmax + 1));
53 for cand ∈ outsideCandArr do
54 Wcand ∗= exp(−dmax)
55 end
56 end
57 end
58 Return Dictpoint, Dictpolygon;

98

4.5 Input Uncertainty Propagation

To propagate GPS uncertainty into the final outputs, we first derive a statistical surface for GPS

accuracy and then incorporate this uncertainty into final candidate ranking lists.

4.5.1 Input GPS Uncertainty Statistical Surface

On Android-based phones, the accuracy of a GPS signal is described by the Circular Error

Probability (CEP) circle, and there is a 68% probability that a true GPS location will be located

within that circle [120]. For example, if a GPS reads “19 meters,” there is a 68% probability that

the true location is inside the circle with a radius of 19 meters. A previous study suggested that the

distribution of the true GPS location inside a CEP circle is not uniform, and that the distribution of

error distances between the true GPS location and the input coordinates can be well approximated

by the Rayleigh distribution [121]. Based on their findings, we have the cumulative distribution

function of the Rayleigh distribution as:

F = 1− exp(− R
2

2σ2
) (4.13)

whereR is the radius of a CEP circle, and F is the probability that the true GPS is inside this circle.

Therefore, we can obtain the scalar parameter σ using Equation 4.14.

σ =

√
R2

−2 ln(1− F)
(4.14)

In this work, the maximum radius we consider is the radius of a circle that has a 95% probability

of containing the true GPS position, denoted as R95. We do not include the remaining 5%, because

these points are too far away from the input according to this distribution. Thus, we can rewrite

the cumulative distribution function as:

∫ R95

0

R

σ2
exp(− R

2

2σ2
) dR = 0.95 (4.15)

99

Figure 4.4: GPS circular error probability.

Given Equation 4.15, CEP is the integral of circles with different radii. Each Cir ∈ CEP has

its probability with respect to radius R, and each Cir comprises a set of possible GPS locations,

denoted as p ∈ Cir. Figure 4.4 (a) depicts a particular circle that composes the whole CEP and a

possible GPS location pij (xij, yij) on this circle, given input coordinates (x0, y0). To obtain the

probability that the true GPS point appears at any positions in the CEP, we have to first obtain the

probability of a Cir with a particular R. However, due to the properties of continuous probability

distributions, we could not directly obtain the probability of each Cir by Equation 4.15. Therefore,

we introduce the parameter ε to represent the small offset distance for any radius Rj . Therefore,

we can approximate the probability of Cir with Rj ∈ [0, R95] as:

PrRj
=

∫ R+ε

R−ε

R

σ2
exp(− R

2

2σ2
) dR = exp(−(R− ε)2

2σ2
)− exp(−(R + ε)2

2σ2
) (4.16)

In this work, we set ε as 1
2000

meters, which is exceedingly small in comparison to CEP radii. To

indicate different positions of points on a Cir, we introduce the other parameter θ as the bearing

related to the horizontal line. We assume it has a uniform distribution. To this end, the position

of a GPS point can be described as a position that has θi related to the horizontal line and has a

100

distance of Rj to the input coordinates, denoted as pij . We define the increment for θ and R as π
18

degrees and R
100

, respectively. Since the total probability is 0.95, we normalize the probability of

pij as:

Prpij =
PrRj

36
∑R95

0 PrRj

× 0.95 (4.17)

where PrRj
is the probability obtained by Equation 4.16. Finally, we calculate coordinates of this

point pij using the distance Rj and the bearing θi related to the input GPS point as follows:


xij = x0 +Rj cos θi

yij = y0 +Rj sin θi

(4.18)

In the end, the point pij is paired with a probability Prpij for the coordinates (xij, yij) to be the true

GPS location. Figure 4.4 (b) shows the statistical surface of points appearing at different positions

in a CEP circle with a radius of 25 meters, which is analog to previous findings for how GPS points

clustered for a fixed position [113, 122].

4.5.2 Input GPS Uncertainty Propagation

To incorporate input GPS uncertainty into final candidate lists, the proposed reverse geocoding

workflow can be considered a function of any input coordinates (xij, yij). Given an input, the re-

verse geocoding process will output a set of address candidates A = {Addr1, Addr2, · · · , Addrn}.

Each Addri ∈ A is ranked by a calculated WAddressRecord, which is the likelihood of a candi-

date to be the best. Meanwhile, the input point (xij, yij) has a probability Prpij of being the true

GPS location. Since the reverse geocoding process and the true GPS location are independent, we

propagate input uncertainties into and through the proposed workflow using the conditional prob-

ability production rule. In the end, the ranked candidates returned by the proposed workflow can

be considered to have uncertainty values propagated end to end, from input to output.

101

Algorithm 6: Input GPS Uncertainty Incorporation
Input : Input GPS Coordinates (x0, y0); GPS CEP Radius Rphone

Output: A set of Ranked Addresses Dictresult

1 I ← Input GPS Coordinates (x0, y0);
2 R95 ← GPS CEP Radius Rphone;
3 Dictresult ← {};
4 for θi = θi; θi <= 2π; θi = θi +

π
18

do
5 for Rj = R0;Rj <= R95;Rj = Rj +

R95

100
do

6 Dicti ← {};
7 Ppij ←

PrRj

36
∑R95

0 PrRj

× 0.95;

8 xij ← x0 +Rj cos θi;
9 yij ← y0 +Rj sin θi;

10 Dicti ← WCR(xij, yij);
11 end
12 for Addrj ∈ Dicti do
13 WAddrj ← WAddrj ∗ Ppij ;
14 Dictresult ← Dicti;
15 end
16 end
17 Sort by WAddr in Dictresult;
18 Return Dictresult;

4.6 Experiments and Results

4.6.1 Experimental Setup

We evaluated the effectiveness of the proposed approach by answering three questions: (1)

Does the proposed workflow deliver more accurate first candidates; (2) Does the proposed ap-

proach efficiently rank candidates that strongly align with the ground-truth ranks; and (3) Does

consideration of input GPS uncertainty benefit final output candidates.

Reference data used include address point, address parcel, and street line. Address point data

were extracted from Navteq 2016 dataset6. Address parcel data were obtained from National

Boundary Solution databases. These two datasets are commercial datasets. Street line data were

6https://www.here.com/en/navteq

102

https://www.here.com/en/navteq

generated from the US Census Bureau TIGER/Lines7, which is an open-source dataset. The testing

dataset was building rooftop centroid coordinates, obtained from the city of College Station, TX.

Each pair of coordinates was associated with an address description on one of three land-use types:

Low-density Residential (LDR), High-density Residential (HDR), and Commercial (COM).

To conduct the evaluation, the proposed approach was implemented as a web service using

Node.js8. Reference data were indexed in the Elasticsearch9 NoSQL database. Visualization was

implemented using Leaflet10.

The first and second experiments assume that input points are accurate without uncertainty.

To simulate people using reverse geocoding services inside buildings, we directly used building

centroids as inputs. To simulate people using reverse geocoding services outside buildings, we

employed the street geocoding techniques of Texas A&M GeoServices11 to “place” these centroids

on streets. It is worth noting that street geocoding and the proposed approach are two independent

systems. Thus, the generated on-street coordinates have no correlation with the output from reverse

geocoding. For the third experiment, we collected input points with various degrees of errors using

an Android-based phone.

4.6.2 Results and Discussions

4.6.2.1 Correctness of the First Candidate

To answer the first question, we compared the first candidate produced by the proposed approach-

Weighted based Candidate Ranking (denoted as WCR) to the open-access Texas A&M GeoSer-

vices (denoted as TAMU), which uses the same reference data as the proposed approach. We

also compared WCR with four other commercial reverse geocoding systems: Google Maps, Bing

Maps, Esri, and Here WeGo. To better capture the characteristics of building distributions across

locations, we randomly selected one address on every street from the test dataset. In total, we used

1616 building centroid and 1,477 valid on-street coordinates. We ran this sample through each

7https://www.census.gov/geo/maps-data/data/tiger-line.html
8https://nodejs.org
9https://www.elastic.co/products/elasticsearch

10https://leafletjs.com/
11http://geoservices.tamu.edu/

103

https://www.census.gov/geo/maps-data/data/tiger-line.html
https://nodejs.org
https://www.elastic.co/products/elasticsearch
https://leafletjs.com/
http://geoservices.tamu.edu/

system and summarized the correctness rate produced by each system. Table 4.2 shows that our

approach achieved the fourth and third rankings among the six systems, in terms of correctness

rate, under the indoor and outdoor scenarios, respectively. It is important to note that commercial

systems may have better reference data, which are not revealed publicly [46, 26]. Therefore, a

comparison of our approach to the system that uses the same reference dataset can better reveal the

advantage of the proposed workflow. Compared to TAMU, which uses the same reference data,

the proposed approach improved the correctness rate by 4.02% and 6.58% under the indoor and

outdoor scenarios, respectively.

Table 4.2: Correctness of first candidates

Scenario WCR TAMU Google Microsoft Esri Here

Indoor 83.35% 79.33% 93.44% 89.85% 89.36% 81.06%

Outdoor 84.63% 78.05% 81.72% 87.41% 89.38% 76.1%

To further explore the performance of each system, we manually reviewed all outputs produced

by each system and classified unreasonable outputs into four error categories. These four categories

are similar to previous (reverse) geocoding quality assessments: (I) Spatially far away from the

input coordinates (i.e., incorrect house numbers or street name). (II) Reverted to an address range

(i.e., correct street name). (III) Opposite side of the street (i.e., opposite-side house number and

correct street name). (IV) Reverted to a large geographic area (i.e., cities or postal areas). Figure

4.5 summarizes the unreasonable outputs produced by each system. According to this figure, our

approach mainly had Error I. The reason for this phenomenon is the coverage and quality of the

reference data. As shown in the examples in Figure 4.6 (a), our approach only retrieved a large

polygon representing the whole building complex rather than particular buildings, resulting in the

first candidate being far away from the input point (i.e., Error I). The limited coverage of our

104

Figure 4.5: Frequency of error categories under indoor (a) and outdoor (b) scenarios

reference dataset also resulted in Error III. As shown in Figure 4.6 (b), because the correct nearby

street did not exist in our reference datasets, we could not filter out the opposite-side candidates.

Likewise, TAMU has a large extent of Error I due to the same reference data used.

105

Figure 4.6: Impact of missing reference data on candidate selection

106

Figure 4.7: First candidate for our approach (a) and Google (b) for indoor coordinate

107

Figure 4.8: First candidate for our approach (a) and Here (b) for outdoor coordinate

In terms of input scenarios, inputs in indoor scenarios are building centroids, which are easier

for each system to determine the nearest candidates. In most cases, if a parcel only contains the

input point, our approach primarily uses the containment relationship to generate output candi-

dates. If multiple candidates are also inside this parcel, our approach determines candidates using

Equation 4.9. Even though indoor inputs are relatively straightforward, we still observed the ad-

vantage of conducting spatial topology validation. As shown in Figure 4.7 (b), Google returned a

Error I candidate: 11574 Hickory Rd, which corresponds to a parcel next to the input. Conversely,

our approach (Figure 4.7 (a)) utilized the containment relationship to output the correct candidate.

Compared to indoor scenarios, inputs in outdoor scenarios involve more topological relationships,

108

and the benefit of spatial topology validations for candidate selection becomes more significant

as input points move toward street center-lines. Figure 4.8 shows that once the nearby street was

found, we could avoid outputting candidates located on the opposite side of the street. In contrast,

other reverse geocoding systems may not conduct this process, resulting in a larger extent of Error

III in both scenarios. These findings help explain that our approach had fewer Error III incidences

and had a higher ranking of correctness rate in outdoor scenarios than that in indoor scenarios,

as shown in Table 4.2. Errors II and IV can be explained by the search radius and logic used by

each commercial vendor. We found that Here tends to conduct linear interpolations at the street

level to generate the final output. It is interesting to note that 366 outputs had spatially correct

locations but also had address descriptions that differed across other commercial providers. This

finding is particularly important because the usage of such linear interpolation approaches could

result in address descriptions, different from those produced by other systems, creating additional

communication difficulties. In contrast, our approach and TAMU avoided Error II by limiting the

usage of linear interpolation on the street level. Arguably, the limited knowledge of reference data

and search logic used by commercial systems prevent us from drawing concrete conclusions for

the advantage of our approach over these commercial systems. The improvement of correctness

rate in comparison to the system that uses the same reference data and in a more complicated input

scenario shows the validity of the proposed workflow.

4.6.2.2 Agreement of Candidate Ranking

To answer the second question, we compared the top five candidates obtained from our sys-

tem to those ranked by humans and examined the level of their agreement. To avoid the impact

of missing reference data on ranking results, we randomly selected input coordinates that could

be resolved to the correct address descriptions from the first experiment. In total, we collected

130 building-centroid coordinates and 130 on-street coordinates on three land-use types (i.e., 50

LDR, 30 HDR, and 50 COM). We recruited 10 reviewers to rank the top five candidates for each

input. Each reviewer was assigned 13 building-centroid and 13 on-street coordinates, which were

randomly selected from these three land-use types. Then, we used between-subjects repeated mea-

109

sure design to address possible disagreements on the ranking of these candidates [123, 124]. In

particular, for each reviewer, we randomly switched their judge results to other reviewers, making

sure each ranking was repeatedly judged by other reviewers. The study resulted in a 15% disparity

in the judgments. We found that this is because the reviewers were not sure if the fifth candidate

should be located on the same-side or the opposite-side. Finally, for the small percentage of dispar-

ity, we discussed the disagreements and considered driving or walking accessibility and made the

final agreements on the rankings. We employed normalized Discounted Cumulative Gain (nDCG)

to quantify the agreement between system output and human judgment. This metric is widely used

to evaluate output quality for search engines and POI suggestions [125, 106]. We chose nDCG

over other common metrics such as Mean Reciprocal Rank (MRR) because we already evaluated

the quality of the first candidates and wanted to focus on the ranking quality of the remaining

positions. In this work, nDCG@K calculated by:

nDCG@K =
DCG@K

IDCG@K
(4.19)

where DCG@K =
∑K

i=0
Scorei
log2(i+1)

and IDCG@K =
∑K

i=0
Score′i
log2(i+1)

. Score′i represents the ideal

relevant score for each candidate. This score decreases from 5 to 1 as its position i in the human-

judged ranking increases from 1 to 5. Scorei is the relevant score assigned to a candidate according

to its ranking i in human-judged rankings. If a candidate does not exist in the human-judged

ranking, it receives a score of 0. We specified the values of K to be 3 and 5, as these are common

numbers of candidate suggestions. We made comparisons to Here and Google, because only these

two commercial systems allow returning multiple candidates through their API endpoints. To

avoid the impact of reference data on rankings, we compared our approach to a distance-only

ranking method that uses the same reference data, denoted as Distance. We also compared the

ranking results obtained by our approach with different settings for the position in which the nearest

opposite-side candidate could appear, denoted as WCR′i. Table 4.3 summarizes nDCG@3 and

nDCG@5 scores for different ranking approaches. The comparison of nDCG@3 under WCR′2

110

Table 4.3: nDCG@K Comparisons

Input Scenarios Method nDCG@3 nDCG@5
LDR HDR COM Total LDR HDR COM Total

Indoor WCR′2 0.7188 0.7435 0.8100 0.7596 0.7727 0.7891 0.8125 0.7918
Indoor WCR′3 0.8750 0.8597 0.8604 0.8659 0.8576 0.8415 0.8428 0.8482
Indoor WCR′4 0.9626 0.9169 0.8970 0.9268 0.8922 0.8804 0.8734 0.8822
Indoor WCR′5 0.9626 0.9169 0.8970 0.9268 0.9278 0.8961 0.8896 0.9058
Indoor WCR′6 0.9626 0.9169 0.8970 0.9268 0.9376 0.9011 0.8934 0.9122
Indoor WCR′7 0.9626 0.9169 0.8970 0.9268 0.9376 0.9011 0.8934 0.9122
Indoor Distance 0.9453 0.8643 0.8599 0.8937 0.9120 0.8539 0.8393 0.8706
Indoor Google 0.6322 0.5894 0.5531 0.5919 0.5622 0.5189 0.4746 0.5185
Indoor Here 0.5737 0.5632 0.5086 0.5462 0.5123 0.5057 0.4839 0.4999
Outdoor WCR′2 0.7350 0.8034 0.7596 0.7602 0.7827 0.8287 0.7636 0.7860
Outdoor WCR′3 0.8535 0.8967 0.8345 0.8561 0.8543 0.8781 0.8148 0.8446
Outdoor WCR′4 0.9576 0.9503 0.8932 0.9312 0.8988 0.9198 0.8578 0.8879
Outdoor WCR′5 0.9576 0.9503 0.8932 0.9312 0.9347 0.9334 0.8801 0.9134
Outdoor WCR′6 0.9576 0.9503 0.8932 0.9312 0.949 0.9347 0.8928 0.9241
Outdoor WCR′7 0.9576 0.9503 0.8932 0.9312 0.949 0.9347 0.8928 0.9241
Outdoor Distance 0.8482 0.7883 0.8047 0.8253 0.8253 0.7873 0.7646 0.7893
Outdoor Google 0.6159 0.5152 0.4728 0.5376 0.5392 0.4540 0.4305 0.4777
Outdoor Here 0.5555 0.4345 0.4794 0.4983 0.5040 0.4387 0.4704 0.4760

111

to WCR′4 could indicate the changes of the first three candidate rankings and the comparison of

nDCG@5 under WCR′2 to WCR′7 could reflect the changes of first five candidate rankings. As

can be observed, the score of nDCG@3 increased as i increased from 2 to 4, and the score of

nDCG@3 remained the same after WCR′4. This is because when i equals 4, the nearest opposite-

side candidate appears at 4, resulting in the first three candidates being unchanged. For the same

reason, the score of nDCG@5 increased as i increased from 2 to 6 but remained the same from

6 to 7. Although the differences in nDCG@K for each WCR′i were limited by the existence of

opposite-side candidates and the nearby street, these observed changes still reflected the validity of

the proposed algorithm. The overall nDCG@3 and nDCG@5 performed the best when i reached

at 6. Namely, the nearest opposite-side candidate was ranked in the sixth position. We chose i = 6

for the remaining work of this study.

The nDCG@K of Google and Here were systematically low due to their unclear ranking mech-

anism. Duplicate candidates generated by different interpolation methods and upper geographic

level candidates (i.e., street range or city) were found in their output lists. Compared to the Dis-

tance method, WCR systematically improved nDCG@K scores. For the indoor inputs, WCR′6

improved by 3.70% and 4.78% for nDCG@3 and nDCG@5, respectively. For the outdoor inputs,

WCR′6 improved by 12.83% and 17.08% for nDCG@3 and nDCG@5, respectively. For an out-

door scenario in a LDR land-use type, as shown in Figure 4.9 (a), WCR′6 ranked 208 at the sixth

position, because it was located on the opposite side of the street, whereas the Distance method put

208 and 206 at the second and fourth position incorrectly. Figure 4.9 (b) depicts given an indoor

input in a COM land-use type, WCR′6 delivered candidates ranked as: 1605, 1601, 1625, 514,

which are identical to the human-judged ranking. Our approach produced this ranking because

1605 has a higher weight than 1601, as it was located inside the area of 1601, whereas, 1625 and

514 were outside this area, receiving lower weights than 1601. However, the Distance method gave

1625 and 514 the second and third positions based on their distances to the input. These differences

illustrate the efficiency of our ranking approach and indicates the distance ranking approach leads

to false-positive results more easily in an outdoor scenario. This finding helps to explain the better

112

Figure 4.9: Candidate ranking in indoor (a) and outdoor (b) scenarios

113

improvement for nDCG@K in the outdoor scenario than the indoor scenario. In terms of land-use

types, our approach had a better performance for LDR and HDR types over COM type, resulting

in the highest scores for LDR types. This can be explained by the fact that residential houses are

distributed more regularly on the two sides of the streets; candidate selection can be efficiently

constrained by the proposed spatial validations. In contrast, commercial buildings are typically

clustered inside certain areas. Thus fewer candidates are constrained by Street Side Validation.

4.6.2.3 Impact of GPS Uncertainty

The third question concerns the efficiency of the proposed algorithm, which attempts to incor-

porate the uncertainty of input GPS into reverse geocoding output. It is worth mentioning that this

algorithm aims to change the order of candidates to reflect GPS uncertainty instead of generating

the most probable candidate by correcting GPS errors. Since the reverse geocoding workflow sel-

dom considers GPS uncertainty, the standard assessment for this algorithm is hard to find in the

existing literature. To conduct the evaluation, we collected real GPS coordinates and their accu-

racy readings by fixing phone positions. Specifically, at each land-use type, we fixed the phone

in one indoor location and one outdoor location and recorded the readings of 10 GPS coordinates

along with their accuracy readings. In total, we had 60 coordinates and the corresponding accu-

racy readings. We first examined whether GPS uncertainties could impact candidate rankings by

applying GPS accuracy readings of 3, 10, and 30 meters, which were roughly 10th, 50th, and 90th

percentiles among the collected readings. Figure 4.10 and Table 4.4 depict the output candidate

list, given input coordinates with different accuracy readings (i.e., CEP radius). As one can see,

when the CEP was relatively small (i.e., 3 meters), candidate lists remained unchanged. When the

CEP became larger, opposite-site candidates (i.e., 210 or 212) joined the top five list, and their

ranking positions increased. Such changes were more significant in the outdoor scenario than in

the indoor scenario, as input coordinates move closer to the street centerline. When the CEP was

30 meters, 210 and 212 were ranked in the third and fifth positions in the outdoor scenario, whereas

210 appeared at the fourth position in the indoor scenario. Therefore, large GPS uncertainties were

observed to impact the final candidate lists. We then processed all 60 GPS records and evaluated

114

Figure 4.10: Input GPS coordinates with various accuracy in indoor (a) and outdoor (b) scenarios

outputs by humans. Table 4.5 summarizes the change rate of candidate ranking (i.e., new candi-

dates join the top five list or the change in the order of the original top five candidates) with the

consideration of GPS uncertainty to explore the impact from building distributions, input position

(i.e., indoor or outdoor), and GPS accuracy (i.e., CEP). Overall, the ranking change was more

significant for the outdoor coordinates, as the nearby opposite-side candidates were more likely

to become top five candidates. Regarding different land-use types, LDR and HDR buildings were

more likely to result in changes in candidate lists, whereas there were no such changes with respect

to COM buildings, even though CEP was larger on the COM land-use type than others. This is be-

cause LDR and HDR buildings are more densely distributed than COM ones on the selected sites

in this experiment. The minimal distance among the top five candidates was roughly 15 meters,

25 meters, and 150 meters on LDR, HDR, and COM land-use types, respectively. Finally, review-

ers compared these two output candidate lists obtained by implementing and not implementing

Algorithm 6 to judge the candidate ranking through figures that were similar to Figure 4.10. We

quantified the agreement between the human-judged results and the system outputs by the percent-

age of agreement and the nDCG@5 score. In total, we found that the system output agreed with

93.3% of the votes of the human judges. Four out of the 60 sets of ranking lists were considered

115

Table 4.4: Candidate list based on various CEP radius under indoor and outdoor scenarios

Input Scenarios CEP Radius

0 meter 3 meters 10 meters 30 meters

Indoor 209 Augsburg Ct. 209 Augsburg Ct. 209 Augsburg Ct. 209 Augsburg Ct.

207 Augsburg Ct. 207 Augsburg Ct. 207 Augsburg Ct. 207 Augsburg Ct.

211 Augsburg Ct. 211 Augsburg Ct. 211 Augsburg Ct. 211 Augsburg Ct.

205 Augsburg Ct. 205 Augsburg Ct. 213 Augsburg Ct. 210 Augsburg Ct.

213 Augsburg Ct. 213 Augsburg Ct. 210 Augsburg Ct. 213 Augsburg Ct.

Outdoor 209 Augsburg Ct. 209 Augsburg Ct. 209 Augsburg Ct. 209 Augsburg Ct.

211 Augsburg Ct. 211 Augsburg Ct. 211 Augsburg Ct. 211 Augsburg Ct.

207 Augsburg Ct. 207 Augsburg Ct. 207 Augsburg Ct. 210 Augsburg Ct.

213 Augsburg Ct. 213 Augsburg Ct. 210 Augsburg Ct. 207 Augsburg Ct.

205 Augsburg Ct. 205 Augsburg Ct. 212 Augsburg Ct. 212 Augsburg Ct.

discrepancies between the human and the algorithm. All four cases where the input coordinates

were very close to the boundary of parcels on the LDR land-use type. Reviewers often determined

that the last few candidates (i.e., the 4th or 5th candidates) should be the candidates that belong to

other street blocks. We believe that returning such candidates may lead to practical problems, such

as a driver needing to detour to incorrect street blocks. Such settings within our algorithm resulted

in the average nDCG@5 of 60 inputs being 0.9824. Although there is no baseline for compari-

son, the experimental results presented above provide evidence that the proposed algorithm can

successfully reflect the input GPS uncertainties.

4.7 Conclusions

In this chapter, we proposed a probabilistic framework for improving reverse geocoding output

by delivering spatially close, topologically correct, and uncertainty-quantified candidates as well

as incorporating input GPS uncertainties. First, we presented a reverse geocoding workflow that

can adapt all existing address models and leverage spatial topology relationships. By comparing

116

Table 4.5: Candidate list change rates by considering GPS uncertainty under different scenarios

Input Scenario Measurement Land-use Type
LDR HDR COM

Indoor CEP Range (meters) 2.31-12.80 2.36-11.79 2.23-15.00
Indoor Change Rate (%) 20 0 0
Outdoor CEP Range (meters) 6.43-19.30 3.13-35.38 16.08-49.31
Outdoor Change Rate (%) 100 90 0

this approach with state-of-the-art commercial reverse geocoding systems, the proposed workflow

was shown to be capable of producing a comparable amount of correct first candidates. Next,

we introduced a scoring method to fully quantify each candidate in explicitly spatial terms (i.e.,

distance and topology) for each step in the proposed workflow to rank multiple candidates. The

measured agreement between system output ranking and human-ordered ranking demonstrated the

efficiency of the proposed ranking mechanism. Finally, we proposed an algorithm to propagate

GPS uncertainty to final reverse geocoding output. The experimental results indicate that our

algorithm can successfully propagate GPS uncertainty to its outputs. This work has attempted to

deliver better reverse geocoding output by leveraging the pure spatial and geometric attributes of

the reference data. We envision that more advanced candidate suggestion algorithms specific to

different application scenarios can be built upon the quantification produced in this work.

117

5. SUMMARY AND FUTURE WORK

5.1 Summary

The dissertation is motivated by the wide adoption of geocoding and reverse geocoding sys-

tems as a data-processing procedure in various spatial analysis and application scenarios, which

demands high output data quality in terms of match rate, spatial accuracy, and metadata descrip-

tions when facing (low-quality) input. Research presented in this dissertation has systematically

investigated various approaches to improve the output quality of geocoding and reverse geocoding

systems.

Specifically, both geocoding and reverse geocoding workflow have been studied and decom-

posed into small sub-tasks. A geocoding workflow is split into two parts: text retrieval, which is

responsible for retrieving address reference records from reference datasets based on input queries,

and geocoding interpolation, which derives the final output coordinates on these retrieved address

records. A reverse geocoding workflow is considered as retrieving nearest candidates to input coor-

dinates and re-ranking these candidates by certain criteria. Chapter 2 and Chapter 3 enhance these

two aforementioned parts of a geocoding workflow, respectively. Chapter 4 focuses on improving

the output quality of reverse geocoding.

Chapter 2 benchmarks three sub-tasks inside the text retrieval process of a geocoding work-

flow: parsing, matching, and ranking. In this benchmark, (1) an automatic approach that analyzes

human input patters from geocoding historic log data and utilizes such patterns to synthesize low-

quality geocoding input. Using the synthesized address descriptions as testing input can reflect the

performance of a geocoding systems that are closed to how it perform when facing user inputs in

real scenarios; (2) an unified evaluation protocol including testing datasets, evaluation procedures

and metrics is defined for these three sub-tasks; and (3) various parsing, matching, ranking tech-

niques are assessed for low-quality geocoding input data, and experimental results suggest a set of

methods that lead to the best performance for each geocoding text retrieval sub-task. Evaluation

118

results are expected to be reproducible to serve as solid baselines for future development.

In Chapter 3, a new interpolation method, which combines deep learning object detection tech-

nique with a typical geocoding workflow, is proposed to overcome drawbacks of typical geocoding

interpolation methods and limitations of reference datasets. With the integration of the object de-

tection technique into geocoding workflow, building rooftop centroid location becomes visible dur-

ing the geocoding process, which helps to largely increase the output coordinate accuracy while

maintaining comparable match rates compared to the original workflow. When original address

reference data can pinpoint to correct parcels, the proposed approach outperformed a commercial

geocoding solution in spatial accuracy. The proposed approach’s performance is sensitive to build-

ing distributions on different land-use types (i.e., low-density residential, high-density residential,

and commercial land-use types), suggesting such an approach should be utilized based on land-use

types.

In Chapter 4, a probabilistic framework for improving reverse geocoding output is developed.

Specifically, the proposed reverse geocoding work takes both distance and topological relationships

into account to retrieve nearby address descriptions and ranks candidates by quantifying distance

and topology a candidate has in relation to the input in a probabilistic manner. Experimental re-

sults show that the first candidate’s correctness is improved compared to other commercial reverse

geocoding solutions, and the method using distance as the sole metric to rank candidates. Mean-

while, the overall ranking quality is found to be closed to human spatial recognition via a human

ranking evaluation. To accommodate the inevitable input GPS errors, the proposed approach can

propagate such GPS errors through the reverse geocoding workflow and are reflected on the output

candidate ranking. The efficiency of GPS error propagation is proven by comparing changes of

output candidate ranking under different combinations of GPS error readings and input locations.

5.2 Future Work

The work presented in this dissertation demonstrates how we improve the output quality of

geocoding and reverse geocoding systems when facing low-quality input. There is still plenty of

additional research opportunities that can be done from our work.

119

5.2.1 Geocoding

For the geocoding text retrieval process, future work avenues can be (1) building a universal

address parser. Recent advance in word embedding offers the opportunity to convert word in dif-

ferent languages into dense vector representations. [126] can be seen as the first step towards this

direction. Moving forward, different neural network architectures and different ways to utilize

pre-trained word embedding models can be evaluated. (2) moving to scenario-based geocoding

text retrieval methods. In Chapter 2, geocoding transactions that are used to mining human input

patterns are relatively limited in terms of the number of transactions and time duration that transac-

tions happen. Meanwhile, we have not considered probabilities of errors that occur when injecting

errors into address descriptions. In the future, long-term geocoding transactions can be used to

better capture how likely an error occurs under different usage scenarios. Under this direction, the

selected text retrieval methods (i.e., parsing, matching, and ranking) can be suitable to particular

input patterns and, eventually, make geocoding systems adaptive to different application scenarios.

For the geocoding interpolation methods, since the address point-based interpolation method

yields the highest spatial accuracy output, one future direction can be using the presented workflow

proposed in Chapter 3 to update the address reference dataset by geocoding every address descrip-

tion in reference datasets. Meanwhile, since the output geocodes are generated from the presented

workflow are observed to varies on building distributions, and land-use types, the method to gen-

erate rooftop centroid should be adaptive to these variants on buildings and land usages such as

single building and multi-building complex.

Additionally, one promising perspective of future geocoding system enhancement is to create

continuously self-improving geocoding systems. Such a concept was first proposed by [59], and

the self-improving capability was gained by keeping indexing address descriptions with errors. In

Chapter 2, we show that various approaches can be utilized to improve the quality of geocoding

output when facing low-quality input. Namely, synthesized low-quality input can be used to train

a neural network-based address parser and to distill suitable fuzzy matching and candidate ranking

approaches. In Chapter 3, we demonstrate one way to update coordinates of address point reference

120

data, improving the spatial accuracy of reference datasets. By integrating these two features into a

typical geocoding workflow, geocoding systems are expected to have the capability to learn from

historic geocoding data. Specifically, geocoding input and the corresponded output data will be

analyzed to identify reasons that lead to low-quality output and trigger different approaches to

enhance the system itself. For instance, updating reference data coordinates can be activated (1)

if retrieved candidates have relatively high textual similarity but have low spatial accuracy or (2)

to accommodate the reference map coordinates changes resulted from the plate tectonic motion.

Meanwhile, input address descriptions can be used as a training sample to learn how does such

input errors and variants occur and what is the robust text retrieval strategy to handle such errors,

once geocoding input cannot be resolved as a matching status or the first few candidates have

relatively low textual similarity with respect to the input. Given the uncertainty of user input, the

feasibility of such a self-improving geocoding system concept is worthy of further investigation.

5.2.2 Reverse geocoding

Reverse geocoding systems can be improved in various ways. In terms of output candidate

ranking by reverse geocoding workflow, we assumed that the reference datasets used did not intro-

duce errors or uncertainties in the reverse geocoding workflow, which is not likely true in reality

[11]. The spatial accuracy and coverage of reference datasets were observed to impact the selection

of the first candidate and the candidate rankings. Therefore, further quantification of reference data

uncertainties could help to formalize error prediction models for reverse geocoding output, similar

to the geocoding process [26]. In terms of output candidate ranking using auxiliary information,

more factors can be incorporated and quantified. For example, time [106] has been used to differ-

entiate the ranking of POI categories. As for low-quality coordinate input, we only considered that

input obtained through Android systems. However, uncertainty coming from other signal sources

such as GNSS, WiFi, or cell phone signal could be considered and evaluated separately. Another

direction could investigate system performance (i.e., system throughput) enhancement by utilizing

novel spatial indexing and data storage techniques or more efficient calculation approaches.

121

REFERENCES

[1] Z. Yin, C. Zhang, D. W. Goldberg, and S. Prasad, “An nlp-based question answering frame-

work for spatio-temporal analysis and visualization,” in Proceedings of the 2019 2nd Inter-

national Conference on Geoinformatics and Data Analysis, pp. 61–65, ACM, 2019.

[2] A. T. Murray, T. H. Grubesic, R. Wei, and E. A. Mack, “A hybrid geocoding methodology

for spatio-temporal data,” Transactions in GIS, vol. 15, no. 6, pp. 795–809, 2011.

[3] K. M. Rose, J. L. Wood, S. Knowles, R. A. Pollitt, E. A. Whitsel, A. V. D. Roux, D. Yoon,

and G. Heiss, “Historical measures of social context in life course studies: retrospective

linkage of addresses to decennial censuses,” International journal of health geographics,

vol. 3, no. 1, p. 27, 2004.

[4] G. Rushton, M. P. Armstrong, J. Gittler, B. R. Greene, C. E. Pavlik, M. M. West, and D. L.

Zimmerman, “Geocoding in cancer research: a review,” American journal of preventive

medicine, vol. 30, no. 2, pp. S16–S24, 2006.

[5] K. S. McLeod, “Our sense of snow: the myth of john snow in medical geography,” Social

science & medicine, vol. 50, no. 7-8, pp. 923–935, 2000.

[6] K. Zinszer, C. Jauvin, A. Verma, L. Bedard, R. Allard, K. Schwartzman, L. de Montigny,

K. Charland, and D. L. Buckeridge, “Residential address errors in public health surveillance

data: A description and analysis of the impact on geocoding,” Spatial and Spatio-temporal

Epidemiology, vol. 1, no. 2-3, pp. 163–168, 2010.

[7] Y. J. McDonald, D. W. Goldberg, I. C. Scarinci, P. E. Castle, J. Cuzick, M. Robertson,

and C. M. Wheeler, “Health service accessibility and risk in cervical cancer prevention:

Comparing rural versus nonrural residence in new mexico,” The Journal of Rural Health,

no. 4, pp. 382–392, 2017.

122

[8] D. Li, “Geocoding and reverse geocoding,” in Comprehensive Geographic Information Sys-

tems (B. Huang, ed.), pp. 95–109, Oxford: Elsevier, 2018.

[9] C. D. Smith and J. Mennis, “Incorporating geographic information science and technology

in response to the covid-19 pandemic,” Preventing Chronic Disease, vol. 17, 2020.

[10] U. Qazi, M. Imran, and F. Ofli, “Geocov19: a dataset of hundreds of millions of multilingual

covid-19 tweets with location information,” SIGSPATIAL Special, vol. 12, no. 1, pp. 6–15,

2020.

[11] P. A. Zandbergen, “Geocoding quality and implications for spatial analysis,” Geography

Compass, vol. 3, no. 2, pp. 647–680, 2009.

[12] D. W. Goldberg, G. M. Jacquez, and N. Mullan, “Geocoding and health,” in Geographic

Health Data: Fundamental Techniques for Analysis, pp. 51–71, CABI, 2013.

[13] G. M. Jacquez, “A research agenda: does geocoding positional error matter in health gis

studies?,” Spatial and spatio-temporal epidemiology, vol. 3, no. 1, pp. 7–16, 2012.

[14] D. Nuvolone, R. della Maggiore, S. Maio, R. Fresco, S. Baldacci, L. Carrozzi, F. Pistelli,

and G. Viegi, “Geographical information system and environmental epidemiology: a cross-

sectional spatial analysis of the effects of traffic-related air pollution on population respira-

tory health,” Environmental Health, vol. 10, no. 1, p. 12, 2011.

[15] P. A. Zandbergen and J. W. Green, “Error and bias in determining exposure potential of

children at school locations using proximity-based gis techniques,” Environmental Health

Perspectives, vol. 115, no. 9, p. 1363, 2007.

[16] E. P. Washburn, M. J. Orza, J. A. Berlin, W. J. Nicholson, A. C. Todd, H. Frumkin, and T. C.

Chalmers, “Residential proximity to electricity transmission and distribution equipment and

risk of childhood leukemia, childhood lymphoma, and childhood nervous system tumors:

systematic review, evaluation, and meta-analysis,” Cancer Causes & Control, vol. 5, no. 4,

pp. 299–309, 1994.

123

[17] Á. Briz-Redón, F. Martinez-Ruiz, and F. Montes, “Reestimating a minimum acceptable

geocoding hit rate for conducting a spatial analysis,” International Journal of Geographical

Information Science, vol. 34, no. 7, pp. 1283–1305, 2020.

[18] D. W. Goldberg and M. G. Cockburn, “Improving geocode accuracy with candidate selec-

tion criteria,” Transactions in GIS, vol. 14, no. s1, pp. 149–176, 2010.

[19] D. W. Goldberg, M. Ballard, J. H. Boyd, N. Mullan, C. Garfield, D. Rosman, A. M. Fer-

rante, and J. B. Semmens, “An evaluation framework for comparing geocoding systems,”

International journal of health geographics, vol. 12, no. 1, p. 50, 2013.

[20] D. Goldberg, “Geocoding techniques and technologies for location-based services,” in Ad-

vanced Location-Based Technologies and Services, pp. 75–106, CRC Press: Boca Raton,

FL, 2013.

[21] P. Christen, D. Belacic, et al., “Automated probabilistic address standardisation and verifi-

cation,” in Australasian Data Mining Conference, Citeseer, 2005.

[22] S. Mokhtari, A. Mahmoody, D. Yankov, and N. Xie, “Tagging address queries in maps

search,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9547–

9551, 2019.

[23] L. Li, W. Wang, B. He, and Y. Zhang, “A hybrid method for chinese address segmentation,”

International Journal of Geographical Information Science, vol. 32, no. 1, pp. 30–48, 2018.

[24] B. Ranzijn, “A geocoding algorithm based on a comparative study of address matching

techniques,” 2013.

[25] Y. Lin, M. Kang, Y. Wu, Q. Du, and T. Liu, “A deep learning architecture for semantic

address matching,” International Journal of Geographical Information Science, vol. 34,

no. 3, pp. 559–576, 2020.

[26] D. W. Goldberg and M. G. Cockburn, “Improving geocode accuracy with candidate selec-

tion criteria,” Transactions in GIS, vol. 14, no. s1, pp. 149–176, 2010.

124

[27] A. T. Murray, T. H. Grubesic, R. Wei, and E. A. Mack, “A hybrid geocoding methodology

for spatio-temporal data,” Transactions in GIS, vol. 15, no. 6, pp. 795–809, 2011.

[28] D. W. Goldberg, “A geocoding best practices guide,” 2008.

[29] M. R. Cayo and T. O. Talbot, “Positional error in automated geocoding of residential ad-

dresses,” International Journal of Health Geographics, vol. 2, p. 10, Dec 2003.

[30] R. Bakshi, C. A. Knoblock, and S. Thakkar, “Exploiting online sources to accurately

geocode addresses,” in Proceedings of the 12th Annual ACM International Workshop on

Geographic Information Systems, GIS ’04, (New York, NY, USA), pp. 194–203, ACM,

2004.

[31] C. A. Knoblock, A. R. Joshi, A. Megotia, M. Pham, and C. Ursaner, “Automatic spatio-

temporal indexing to integrate and analyze the data of an organization,” in Proceedings of

the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics, p. 7, ACM,

2017.

[32] P. Christen, T. Churches, et al., “Febrl-freely extensible biomedical record linkage,” 2002.

[33] P. A. Zandbergen, T. C. Hart, K. E. Lenzer, and M. E. Camponovo, “Error propagation

models to examine the effects of geocoding quality on spatial analysis of individual-level

datasets.,” Spatial and spatio-temporal epidemiology, vol. 3 1, pp. 69–82, 2012.

[34] N. B. Ngo and R. N. Owen, “Expediting reverse geocoding with a bounding region,” Feb. 25

2014. US Patent 8,660,793.

[35] M. Ma, Z. Zhong, N. Guo, N. Jing, and W. Xiong, “An efficient reverse geocoding method

based on global subdivision model,” in Geoinformatics, 2016 24th International Conference

on, pp. 1–9, IEEE, 2016.

[36] K. R. Searight, D. J. Logan, J. B. I. Freddie, C. J. Loher, and B. R. Charlton, “Reverse

geocoding system using combined street segment and point datasets,” Feb. 23 2010. US

Patent 7,668,651.

125

[37] C. Hauff, “A study on the accuracy of flickr’s geotag data,” in Proceedings of the 36th

international ACM SIGIR conference on Research and development in information retrieval,

pp. 1037–1040, ACM, 2013.

[38] M. Ye, K. Janowicz, C. Mülligann, and W.-C. Lee, “What you are is when you are: the tem-

poral dimension of feature types in location-based social networks,” in Proceedings of the

19th ACM SIGSPATIAL International Conference on Advances in Geographic Information

Systems, pp. 102–111, ACM, 2011.

[39] S. Yu, S. Spaccapietra, N. Cullot, and M.-A. Aufaure, “User profiles in location-based ser-

vices: Make humans more nomadic and personalized,” in Proc. of the International Work-

shop on Next Generation Geospatial Information, no. LBD-CONF-2003-009 in NG2I 2003,

pp. 1–6, 2003.

[40] H. Chen, M. S. Arefin, Z. Chen, and Y. Morimoto, “Place recommendation based on

users check-in history for location-based services,” International Journal of Networking

and Computing, vol. 3, no. 2, pp. 228–243, 2013.

[41] V. Vieira, A. Fraser, T. Webster, G. Howard, and S. Bartell, “Accuracy of automated and

e911 geocoding methods for rural addresses,” Epidemiology, vol. 19, no. 6, p. S352, 2008.

[42] D. W. Goldberg and M. G. Cockburn, “The effect of administrative boundaries and geocod-

ing error on cancer rates in california,” Spatial and Spatio-temporal Epidemiology, vol. 3,

no. 1, pp. 39 – 54, 2012. Special Issue on Geocoding in the Health Sciences.

[43] D. W. Goldberg, J. P. Wilson, and C. A. Knoblock, “From text to geographic coordinates:

the current state of geocoding,” URISA-WASHINGTON DC-, vol. 19, no. 1, p. 33, 2007.

[44] T. H. Grubesic and A. T. Murray, “Assessing positional uncertainty in geocoded data,” in

Proceedings of the 24th urban data management symposium, 2004.

[45] S. E. Hurley, T. M. Saunders, R. Nivas, A. Hertz, and P. Reynolds, “Post office box

addresses: a challenge for geographic information system-based studies,” Epidemiology,

vol. 14, no. 4, pp. 386–391, 2003.

126

[46] Z. Yin, A. Ma, and D. W. Goldberg, “A deep learning approach for rooftop geocoding,”

Transactions in GIS, vol. 23, no. 3, pp. 495–514, 2019.

[47] N. Kirielle, P. Christen, and T. Ranbaduge, “Outlier detection based accurate geocoding

of historical addresses,” in Australasian Conference on Data Mining, pp. 41–53, Springer,

2019.

[48] P. Christen, Data matching: concepts and techniques for record linkage, entity resolution,

and duplicate detection. Springer Science & Business Media, 2012.

[49] P. A. Zandbergen, “A comparison of address point, parcel and street geocoding techniques,”

Computers, Environment and Urban Systems, vol. 32, no. 3, pp. 214–232, 2008.

[50] V. Sengar, T. Joshi, J. Joy, S. Prakash, and K. Toyama, “Robust location search from text

queries,” in Proceedings of the 15th annual ACM international symposium on Advances in

geographic information systems, p. 24, ACM, 2007.

[51] M. J. Hutchinson, Developing an agent-based framework for intelligent geocoding. PhD

thesis, Curtin University, 2010.

[52] E. F. Tjong Kim Sang and F. De Meulder, “Introduction to the CoNLL-2003 shared task:

Language-independent named entity recognition,” in Proceedings of the Seventh Conference

on Natural Language Learning at HLT-NAACL 2003, pp. 142–147, 2003.

[53] M. Van Erp, P. Mendes, H. Paulheim, F. Ilievski, J. Plu, G. Rizzo, and J. Waitelonis, “Eval-

uating entity linking: An analysis of current benchmark datasets and a roadmap for doing

a better job,” in Proceedings of the Tenth International Conference on Language Resources

and Evaluation (LREC 2016), pp. 4373–4379, 2016.

[54] A. Jimeno, E. Jimenez-Ruiz, V. Lee, S. Gaudan, R. Berlanga, and D. Rebholz-Schuhmann,

“Assessment of disease named entity recognition on a corpus of annotated sentences,” in

BMC bioinformatics, vol. 9, p. S3, BioMed Central, 2008.

127

[55] J. Wang and Y. Hu, “Enhancing spatial and textual analysis with eupeg: an extensible and

unified platform for evaluating geoparsers,” Transactions in GIS, vol. 23, no. 6, pp. 1393–

1419, 2019.

[56] Z. Huang, W. Xu, and K. Yu, “Bidirectional lstm-crf models for sequence tagging,” arXiv

preprint arXiv:1508.01991, 2015.

[57] R. Nogueira, W. Yang, K. Cho, and J. Lin, “Multi-stage document ranking with bert,” arXiv

preprint arXiv:1910.14424, 2019.

[58] W. W. Cohen, P. Ravikumar, S. E. Fienberg, et al., “A comparison of string distance metrics

for name-matching tasks.,” in IIWeb, vol. 2003, pp. 73–78, 2003.

[59] K. Clemens, “Geocoding user queries,” 2020.

[60] K. Clemens, “Geocoding with openstreetmap data,” GEOProcessing 2015, p. 10, 2015.

[61] L. Gu, R. Baxter, D. Vickers, and C. Rainsford, “Record linkage: Current practice and future

directions,” CSIRO Mathematical and Information Sciences Technical Report, vol. 3, p. 83,

2003.

[62] P. Christen, “A survey of indexing techniques for scalable record linkage and deduplication,”

IEEE transactions on knowledge and data engineering, vol. 24, no. 9, pp. 1537–1555, 2011.

[63] D. W. Goldberg, “Improving geocoding match rates with spatially-varying block metrics,”

Trans. GIS, vol. 15, pp. 829–850, 2011.

[64] G. Dias and T. Honkela, “Term weighting in short documents for document categorization ,

keyword extraction and query expansion,” 2012.

[65] P. Christen, “A comparison of personal name matching: Techniques and practical issues,”

in Sixth IEEE International Conference on Data Mining-Workshops (ICDMW’06), pp. 290–

294, IEEE, 2006.

[66] L. Philips, “The double metaphone search algorithm,” C/C++ users journal, vol. 18, no. 6,

pp. 38–43, 2000.

128

[67] H. Keskustalo, A. Pirkola, K. Visala, E. Leppänen, and K. Järvelin, “Non-adjacent digrams

improve matching of cross-lingual spelling variants,” in International symposium on string

processing and information retrieval, pp. 252–265, Springer, 2003.

[68] C. Li, J. Lu, and Y. Lu, “Efficient merging and filtering algorithms for approximate string

searches,” in 2008 IEEE 24th International Conference on Data Engineering, pp. 257–266,

IEEE, 2008.

[69] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, M. Gatford, et al., “Okapi

at trec-3,” Nist Special Publication Sp, vol. 109, p. 109, 1995.

[70] D. W. Goldberg, “Improving geocoding match rates with spatially-varying block metrics,”

Transactions in GIS, vol. 15, no. 6, pp. 829–850, 2011.

[71] A. Liaw and M. Wiener, “Classification and regression by randomforest,” R News, vol. 2,

no. 3, pp. 18–22, 2002.

[72] J. Ramos et al., “Using tf-idf to determine word relevance in document queries,” in Proceed-

ings of the first instructional conference on machine learning, vol. 242, pp. 29–48, Citeseer,

2003.

[73] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer, “Neural architec-

tures for named entity recognition,” arXiv preprint arXiv:1603.01360, 2016.

[74] J. Zhu, Y. Xia, L. Wu, D. He, T. Qin, W. Zhou, H. Li, and T.-Y. Liu, “Incorporating bert into

neural machine translation,” arXiv preprint arXiv:2002.06823, 2020.

[75] L. Ge and T.-S. Moh, “Improving text classification with word embedding,” in 2017 IEEE

International Conference on Big Data (Big Data), pp. 1796–1805, IEEE, 2017.

[76] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representa-

tions of words and phrases and their compositionality,” in Advances in neural information

processing systems, pp. 3111–3119, 2013.

129

[77] Z. A. Yilmaz, S. Wang, W. Yang, H. Zhang, and J. Lin, “Applying bert to document re-

trieval with birch,” in Proceedings of the 2019 Conference on Empirical Methods in Natural

Language Processing and the 9th International Joint Conference on Natural Language Pro-

cessing (EMNLP-IJCNLP): System Demonstrations, pp. 19–24, 2019.

[78] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with sub-

word information,” Transactions of the Association for Computational Linguistics, vol. 5,

pp. 135–146, 2017.

[79] A. Patel, A. Sands, C. Callison-Burch, and M. Apidianaki, “Magnitude: A fast, efficient

universal vector embedding utility package,” in Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing: System Demonstrations, (Brussels,

Belgium), pp. 120–126, Association for Computational Linguistics, Nov. 2018.

[80] X. Yang, D. Lo, X. Xia, L. Bao, and J. Sun, “Combining word embedding with information

retrieval to recommend similar bug reports,” in 2016 IEEE 27Th international symposium

on software reliability engineering (ISSRE), pp. 127–137, IEEE, 2016.

[81] M. Wang, V. Haberland, A. Yeo, A. Martin, J. Howroyd, and J. M. Bishop, “A probabilistic

address parser using conditional random fields and stochastic regular grammar,” in 2016

IEEE 16th International Conference on Data Mining Workshops (ICDMW), pp. 225–232,

IEEE, 2016.

[82] H. Craig, D. Yankov, R. Wang, P. Berkhin, and W. Wu, “Scaling address parsing sequence

models through active learning,” in Proceedings of the 27th ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems, pp. 424–427, 2019.

[83] J. Li, A. Sun, J. Han, and C. Li, “A survey on deep learning for named entity recognition,

corr abs/1812.09449 (2018),” arXiv preprint arXiv:1812.09449, 2018.

[84] N. Reimers and I. Gurevych, “Optimal hyperparameters for deep lstm-networks for se-

quence labeling tasks,” arXiv preprint arXiv:1707.06799, 2017.

130

[85] A. Aghaebrahimian and M. Cieliebak, “Hyperparameter tuning for deep learning in natural

language processing,” in 4th swiss text analytics conference (swisstext 2019), winterthur,

june 18-19 2019, Swisstext, 2019.

[86] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer,

“Deep contextualized word representations,” arXiv preprint arXiv:1802.05365, 2018.

[87] N. Reimers and I. Gurevych, “Alternative weighting schemes for elmo embeddings,” arXiv

preprint arXiv:1904.02954, 2019.

[88] X. Ma and E. Hovy, “End-to-end sequence labeling via bi-directional lstm-cnns-crf,” arXiv

preprint arXiv:1603.01354, 2016.

[89] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer, “Neural architec-

tures for named entity recognition,” arXiv preprint arXiv:1603.01360, 2016.

[90] N. Reimers and I. Gurevych, “Reporting Score Distributions Makes a Difference: Perfor-

mance Study of LSTM-networks for Sequence Tagging,” in Proceedings of the 2017 Con-

ference on Empirical Methods in Natural Language Processing (EMNLP), (Copenhagen,

Denmark), pp. 338–348, 09 2017.

[91] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer, “Neural architec-

tures for named entity recognition,” arXiv preprint arXiv:1603.01360, 2016.

[92] F. Boscoe, “The science and art of geocoding: tips for improving match rates and handling

unmatched cases in analysis,” in Geocoding Health Data: The Use of Geographic Codes

in Cancer Prevention and Control, Research and Practice, pp. 95–110, CRC Press: Boca

Raton, FL, 2008.

[93] G. Rushton, M. P. Armstrong, J. Gittler, B. R. Greene, C. E. Pavlik, M. M. West, and D. L.

Zimmerman, “Geocoding in cancer research: a review,” American journal of preventive

medicine, vol. 30, no. 2, pp. S16–S24, 2006.

131

[94] X. Chen, S. Xiang, C.-L. Liu, and C.-H. Pan, “Vehicle detection in satellite images by hybrid

deep convolutional neural networks,” IEEE Geoscience and remote sensing letters, vol. 11,

no. 10, pp. 1797–1801, 2014.

[95] T.-B. Xu, G.-L. Cheng, J. Yang, and C.-L. Liu, “Fast aircraft detection using end-to-end

fully convolutional network,” in Digital Signal Processing (DSP), 2016 IEEE International

Conference on, pp. 139–143, IEEE, 2016.

[96] F. Chen, R. Ren, T. Van de Voorde, W. Xu, G. Zhou, and Y. Zhou, “Fast automatic airport

detection in remote sensing images using convolutional neural networks,” Remote Sensing,

vol. 10, no. 3, p. 443, 2018.

[97] E. Delmelle, W. Tang, M. Zheng, Y. Lan, and C. Owusu, “Geocoding fundamentals and

associated challenges,” in Geospatial Data Science Techniques and Applications, pp. 57–

78, CRC Press, 2017.

[98] A. Schultz, K. Beyer, and G. Rushton, “Using ZIP R© codes as geocodes in cancer research,”

in Geocoding Health Data, pp. 37–67, CRC Press, nov 2007.

[99] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate

object detection and semantic segmentation,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 580–587, 2014.

[100] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on computer

vision, pp. 1440–1448, 2015.

[101] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional net-

works for visual recognition,” in European conference on computer vision, pp. 346–361,

Springer, 2014.

[102] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–

778, 2016.

132

[103] D. L. Zimmerman and J. Li, “The effects of local street network characteristics on the posi-

tional accuracy of automated geocoding for geographic health studies,” International jour-

nal of health geographics, vol. 9, no. 1, p. 10, 2010.

[104] D. L. Zimmerman, X. Fang, S. Mazumdar, and G. Rushton, “Modeling the probability distri-

bution of positional errors incurred by residential address geocoding,” International Journal

of Health Geographics, vol. 6, no. 1, p. 1, 2007.

[105] D. Roongpiboonsopit and H. A. Karimi, “Quality assessment of online street and rooftop

geocoding services,” Cartography and Geographic Information Science, vol. 37, no. 4,

pp. 301–318, 2010.

[106] G. McKenzie and K. Janowicz, “Where is also about time: A location-distortion model to

improve reverse geocoding using behavior-driven temporal semantic signatures,” Comput-

ers, Environment and Urban Systems, vol. 54, pp. 1–13, 2015.

[107] J. S. Brownstein, C. Cassa, I. S. Kohane, and K. D. Mandl, “Reverse geocoding: concerns

about patient confidentiality in the display of geospatial health data,” in AMIA Annual Sym-

posium Proceedings, vol. 2005, p. 905, American Medical Informatics Association, 2005.

[108] A. Podor, “Usability study on different visualization methods of crime maps.,” International

Journal of Geoinformatics, vol. 11, no. 4, 2015.

[109] C. Zhang, Z. Yin, P. Gao, and S. Prasad, “A visual analytics approach to exploration of

hotels in overlaid drive-time polygons of attractions,” in International Symposium on Web

and Wireless Geographical Information Systems, pp. 28–40, Springer, 2019.

[110] S. Tiwari, S. Kaushik, P. Jagwani, and S. Tiwari, “A survey on lbs: system architecture,

trends and broad research areas,” in International Workshop on Databases in Networked

Information Systems, pp. 223–241, Springer, 2011.

[111] M. Lv, L. Chen, Z. Xu, Y. Li, and G. Chen, “The discovery of personally semantic places

based on trajectory data mining,” Neurocomputing, vol. 173, pp. 1142–1153, 2016.

133

[112] Y. Tawk, P. Tomé, C. Botteron, Y. Stebler, and P.-A. Farine, “Implementation and perfor-

mance of a gps/ins tightly coupled assisted pll architecture using mems inertial sensors,”

Sensors (Basel, Switzerland), vol. 14, no. 2, p. 3768—3796, 2014.

[113] P. A. Zandbergen, “Accuracy of iphone locations: A comparison of assisted gps, wifi and

cellular positioning,” Transactions in GIS, vol. 13, no. s1, pp. 5–25, 2009.

[114] R. K. Huang and P. Piemonte, “Context-based reverse geocoding,” July 29 2014. US Patent

8,792,917.

[115] B. Yan, K. Janowicz, G. Mai, and S. Gao, “From itdl to place2vec–reasoning about place

type similarity and relatedness by learning embeddings from augmented spatial contexts,”

Proceedings of SIGSPATIAL, vol. 17, pp. 7–10, 2017.

[116] O. Kounadi, T. J. Lampoltshammer, M. Leitner, and T. Heistracher, “Accuracy and privacy

aspects in free online reverse geocoding services,” Cartography and Geographic Informa-

tion Science, vol. 40, no. 2, pp. 140–153, 2013.

[117] D. L. Zimmerman, G. Rushton, M. P. Armstrong, J. Gittler, B. R. Greene, C. E. Pavlik, and

M. M. West, Geocoding health data: the use of geographic codes in cancer prevention and

control, research and practice. CRC Press, 2007.

[118] M. J. Egenhofer and R. D. Franzosa, “Point-set topological spatial relations,” International

Journal of Geographical Information System, vol. 5, no. 2, pp. 161–174, 1991.

[119] D. W. Goldberg, J. P. Wilson, and M. G. Cockburn, “Toward quantitative geocode accu-

racy metrics,” in ninth international symposium on spatial accuracy assessment in natural

resources and environmental sciences, pp. 329–32, 2010.

[120] R. Rogers, J. Lombardo, Z. Mednieks, and B. Meike, Android application development:

Programming with the Google SDK. O’Reilly Media, Inc., 2009.

[121] P. A. Zandbergen, “Positional accuracy of spatial data: Non-normal distributions and a cri-

tique of the national standard for spatial data accuracy,” Transactions in GIS, vol. 12, no. 1,

pp. 103–130, 2008.

134

[122] D. T. Bui, C. T. Tran, B. Pradhan, I. Revhaug, and R. Seidu, “igeotrans – a novel ios applica-

tion for gps positioning in geosciences,” Geocarto International, vol. 30, no. 2, pp. 202–217,

2015.

[123] H. Zade, M. Drouhard, B. Chinh, L. Gan, and C. Aragon, “Conceptualizing disagreement

in qualitative coding,” in Proceedings of the 2018 CHI Conference on Human Factors in

Computing Systems, pp. 1–11, 2018.

[124] C. Zhang, Y. Chen, J. Yang, and Z. Yin, “An association rule based approach to reducing

visual clutter in parallel sets,” Visual Informatics, vol. 3, no. 1, pp. 48–57, 2019.

[125] W. Niu, Z. Liu, and J. Caverlee, “On local expert discovery via geo-located crowds, queries,

and candidates,” ACM Transactions on Spatial Algorithms and Systems (TSAS), vol. 2, no. 4,

p. 14, 2016.

[126] M. Yassine, D. Beauchemin, F. Laviolette, and L. Lamontagne, “Leveraging subword em-

beddings for multinational address parsing,” in 2020 6th IEEE Congress on Information

Science and Technology (CiSt), pp. 353–360, IEEE, 2021.

135

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Research Motivation
	Problem Statement
	Contributions of the Work
	Outline of the Dissertation

	Benchmarks for Geocoding Parsing, Matching, and Ranking Approaches
	Introduction and Related Work
	Benchmark Overview
	Benchmark Goal
	Benchmark Architecture
	Benchmark Configuration

	Address Error Injector
	Benchmark for Geocoding Matching Process
	Blocking Fields Selection
	Fuzzy Matching Approaches Evaluation
	Fuzzy Matching Approaches
	Data and Evaluation Metrics
	Evaluation Procedures and Results

	Matching Logic Evaluation
	Data and Evaluation Metrics
	Evaluation Procedures and Results

	Benchmark for Geocoding Ranking Process
	Evaluated Ranking Approaches
	Per-attribute Score Ranking
	Term Frequency-based Ranking
	Classification-based Ranking
	Hybrid Ranking

	Data and Evaluation Metrics
	Evaluation Procedures and Results

	Benchmark for Geocoding Parsing Process
	Evaluated Address Parsing Approaches
	Statistic-based Address Parsing
	Neural Network-based Address Parsing

	Data and Evaluation Metrics
	Evaluation Procedures and Results
	Performance of the Statistical-based Address Parsing
	Performance of the Neural Network-based Address Parsing

	Conclusions

	A Deep Learning Approach for Rooftop Geocoding
	Introduction
	Related Work
	Limitations of Current Geocoding Methods
	Street Geocoding
	Address Polygon Geocoding
	Address Point Geocoding

	Advances in Object Detection

	Workflow Formalization
	Searching Zone
	Fuzzy Searching Zone

	Building Detection and Centroid Extraction
	Model Setup and Data Training
	Building Detection and Centroid Extraction

	Centroid Candidate Selection
	Candidate Validation
	Candidate Selection

	Experiments and Results
	Experimental Setup
	Results and Discussions
	Match Rate
	Overall Spatial Accuracy
	Spatial Accuracy for Different Land-use Types
	Sources of Uncertainty and Limitations

	Conclusions

	A Probabilistic Approach for Improving Reverse Geocoding Output
	Introduction
	Related Work
	Workflow Formalization
	Reference Datasets
	K-Nearest Search
	Spatial Topology Validation

	Weight-based Quantification for Reverse Geocoding
	Quantification for K- Nearest Search
	Quantification for Spatial Topology Validation
	Quantification for Candidate Fusion

	Input Uncertainty Propagation
	Input GPS Uncertainty Statistical Surface
	Input GPS Uncertainty Propagation

	Experiments and Results
	Experimental Setup
	Results and Discussions
	Correctness of the First Candidate
	Agreement of Candidate Ranking
	Impact of GPS Uncertainty

	Conclusions

	SUMMARY AND FUTURE WORK
	Summary
	Future Work
	Geocoding
	Reverse geocoding

	REFERENCES

