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ABSTRACT

This study discusses a fully autonomous vertical flight aircraft ship landing procedure in pres-

ence of wind disturbances. The proposed study closely follows the established Navy helicopter

ship landing procedure wherein the pilot utilizes the ship as the visual reference for long-range

tracking; however, upon coming closer, the pilot follows a gyro-stabilized horizon bar installed on

most Navy ships to approach and land vertically independent of deck motions. This was accom-

plished by developing a unique vision system and a hybrid control system validating its perfor-

mance in simulations and flight tests.

The vision system serves the purpose of a pilot’s eye by obtaining the visual information re-

quired for a safe approach and landing. The vision system can be engaged from 250 meters away

from the landing pad, initially utilizing machine learning strategies to detect the ship for long-

range tracking and switches to a unique combination of classical computer vision techniques to

detect the horizon bar to precisely estimate the aircraft position and orientation relative to the bar

during the final approach and landing. The distance and attitude estimations were validated us-

ing the measurements from an accurate 3D motion capture system (VICON), which demonstrated

sub-centimeter and sub-degree accuracy.

Finally, a hybrid control system is developed to control the aircraft using the perceived visual

information. The hybrid control system is a combination of a non-linear controller and a Deep

Reinforcement Learning(RL) controller. The non-linear controller demonstrated robust tracking

capability even in presence of estimation noise and varying time delays between successive control

actions. The RL controller is developed exclusively for disturbance rejection. When conducted

flight testing in presence of 5 m/s wind, the RL controller shows a 100% reduction in drift and a 10

times faster rate of correction compared to a conventional control system. The vision and hybrid

control system was implemented on a quadrotor UAV and extensive flight tests were conducted to

demonstrate accurate tracking in challenging conditions and safe vertical landing on a sub-scale

ship platform undergoing 6 degrees of freedom deck motions.
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NOMENCLATURE

A Action Space

Aint Camera intrinsic matrix

at Action at time t

b Close-range controller constant

cu Corner position-column

cv Corner position-row

D Replay Buffer

d Deviation from target, meter

de(tk) Error difference between time tk and tk1

dtk Time difference between time tk and tk1

e(tk) Error at time tk

fx Focal length of camera in horizontal direction

fy Focal length of camera in vertical direction

KD Derivative gain

KI Integral gain

KP Proportional gain

L(φ,D) Mean squared Bellman error function

m Long-range controller constant

p Indicator to check whether a terminal state or not

Q(s, a) Q-value function

R Rotation matrix

Rbasic Basic rotation matrix
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Rt Cumulative Rewards

S State Space

s Scaling factor

st State at time t

t Translation vector

u Image pixel position-column

u0 Center of image-column

u(tk) Control law

v Image pixel position-row

v0 Center of image-row

V (s) Value function

x Forward relative distance, meter

y Sideward relative distance, meter

vx Forward relative speed, m/s

vy Sideward relative speed, m/s

α Relative yaw angle, rad

β Relative pitch angle, rad

γ Relative roll angle, rad

Γ Discount factor

θ Aircraft pitch angle, deg

µ Mean value

Π Policy Space

π Policy

π∗ Optimal policy

φ Q-value network parameter
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ρu Parameter to convert pixels to SI units-column

ρv Parameter to convert pixels to SI units-row

∇f(u, v) Image gradient
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1. INTRODUCTION AND LITERATURE REVIEW

1

Landing a helicopter on a small ship at rough sea states is an extremely challenging task due

to the small landing space, six degrees of freedom ship deck motions, limited visual references for

pilots, and lack of alternative landing spots. It’s a very difficult task even for a human pilot. To

date, many studies have focused on automating helicopter ship landing by utilizing a wide array

of sensors such as GPS, vision sensors, motion sensors, LIDAR, etc. This study investigates a

novel solution that falls under the category of a vision-based control system that does not use GPS

signals and thus ensures its functionality in GPS-denied/-spoofed environments.

Previous efforts toward autonomous ship landing involve a common process that is to estimate

or track ship deck motions first, and then control the aircraft attitude to match the ship motions

for landing. In order to extract the ship deck motion information, various methods have been

introduced such as tracking H landing marking [5], T landing marking [6], points dispersed on

the deck [7], lights [8], and infrared cooperated targets on a ship [9, 10]. These vision-based

methods have shown the limited capability for autonomous UAVs landing on ships undergoing

significant movements that represent rough sea conditions. Fundamentally, the method of visually

tracking deck movement is limited to vertical space where the deck can be captured. Hence is

not ideal for Vertical Take-Off and Landing (VTOL) capable Unmanned Aerial Vehicles (UAVs)

that approach a ship horizontally at low altitudes. In addition, the active control of the UAV to

accommodate complex deck movements can result in unstable UAV attitude dynamics. This is

even more dangerous if the aircraft is in close proximity to the moving deck, as even small control

errors can lead to catastrophic accidents due to the impact by the deck. Moreover, none of the

previous methods have been based on the Navy helicopter landing procedures, which have been

established for decades and have been successfully carried out by pilots. In fact, visually tracking

the moving landing deck is exactly the opposite of what Navy helicopter pilots are trained to do.

1The chapter has been adapted or reprinted from recent publications [1] [2] [3] [4].
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The present landing method is developed based on an in-depth understanding of the Navy

helicopter ship landing procedure, which is discussed in Refs. [11, 12]. Contrary to intuition, Navy

pilots are trained not to follow ship deck motions for two main reasons. The spatial disorientation

can occur when a pilot has no fixed, visible horizon to refer to, which is a critical element for

maintaining a proper sense of helicopter attitude independent of ship motions. The key visual

aid that helps pilots to land safely is a "horizon reference bar" shown in Fig. 1.1, which is gyro-

stabilized to indicate a perfect horizon regardless of ship motions and is widely used in most

modern Navies [13, 14]. Thus, pilots can land a helicopter by referencing the horizon bar without

responding to ship motions.

Figure 1.1: Horizon reference bar

Another factor is that constant changes in helicopter attitude to ship deck movement can lead

to unstable helicopter dynamics that pose a serious potential danger. The pilot attempts to steer

the helicopter in a stable manner, regardless of the ship’s roll or pitch, and then lands vertically.

It is also advisable to land quickly to prevent the ship’s deck from hitting the skid / wheel of the

helicopter landing gear causing rollover. This vertical landing has proven to be safe within the
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helicopter’s operational limits and is currently in practical use. The present technical approach

towards automating such a landing procedure consists of machine vision to obtain the relative

position and heading of the aircraft and a control system to execute the approach and landing

maneuvers.

As shown in Fig. 1.2, referring to the visual cue allows the UAV to approach horizontally

similar to the helicopter ship landing procedure. Therefore, it has a wider horizontal range and it

can be used for both approach and landing phase. However, the operating range for a platform-

motion-tracking approach is limited to the vertical space, and therefore, it can be used only for the

final landing phase and requires another method for approach. Therefore, the method presented in

this study is fundamentally different from previous UAV landing techniques and can be applied to

all types of VTOL aircraft.

Figure 1.2: Comparison of Previous Platform Motion Tracking with Present Visual Cue Tracking
Method [1] [2] [3]
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In the first half of the study, instead of the standard horizontal bar, a checkerboard pattern is

used as a visual cue which is easily distinguishable from its surroundings and also offers redun-

dancy with multiple corners that can be detected. Gain scheduled Proportional-Integral-Differential

(PID) controllers are configured to command UAV roll, pitch, yaw, and throttle controllers. When

the UAV moves to the landing point, multiple controller layers are activated depending on the rel-

ative distance from the landing platform. This allows you to approach, slow down if the UAV is

close to landing deck and move faster if the UAV is far away. It reaches near the landing site and

eventually performs the landing operation as a remote helicopter pilot does.

Later the visual cue was replaced by a miniature version of the horizon bar used in navy he-

licopter ship landing. The vision system also gets modified and is hybrid in nature with two

different methods, a machine learning object detection and a classical computer vision method,

each of which is designed to operate depending on the relative distance to the landing pad. In

the long-distance, the machine learning object detection method is applied to identify the landing

platform (the ship), and an image-based control is utilized in the autonomous flight control system.

In recent years, there have been many studies to develop algorithms that guarantee fast detection

as well as higher accuracy, which are essential to reliable UAV operations. Various algorithms and

architectures of Convolutional Neural Network (CNN), a class of deep neural networks, have been

proposed such as Region-based CNN (R-CNN) [15, 16, 17], Single Shot Detector (SSD) [18],

and You Look Only Once (YOLO) [19, 20, 21]. R-CNN is classified as a two-stage detector that

combines region-proposal algorithms with CNN to extract 2,000 regions via a selective search,

then classifies the selected regions on the image. Later, its variant Faster R-CNN is introduced

to improve the detection speed by replacing the slow selective region search process. Meanwhile,

SSD and YOLO are classified as a one-stage detector that regards object detection as a regression

problem by taking an input image and simultaneously learning the probability of an object class

and bounding box coordinates. According to the studies that compared the state-of-the-art algo-

rithms, YOLOv3 demonstrated faster detection performance than Faster R-CNN and SSD [21, 22].

Hence, the YOLOv3 algorithm is selected to train an object detector that is able to detect a ship and
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a horizon bar in real-time. It is not only visually tracking the object but that information is relayed

in real-time to the autonomous flight control system. Once the object is detected, it provides the

object position and its bounding box in the image to the autonomous flight control system. Even

though the actual relative distances are not estimated, the size of the object and its position in the

image are sufficient information to control a UAV to approach the ship from a long distance. The

verified maximum range is approximately 250 meters (820 feet) when the object occupies an area

of 1.8 x 1.8 meters (6 x 6 feet). Considering the range is proportional to the object’s occupying

area in the image, a typical small ship where the rear-side occupies 15 x 15 meters (50 x 50 feet)

area can be detected from 17.3 kilometers (9.3 nautical miles) away.

On the other hand, obtaining accurate relative position and orientation from a captured image is

crucial for the final approach and even more important for precise landing on the ship deck. Instead

of detecting an object as a whole using machine learning, computer vision techniques are applied

to extract particular points of interest. To name a few, edge and line detection [23, 24], corner de-

tection [25, 26], and contour detection [27] are previously applied to aircraft landing applications.

In the present system, the visual cue to track is a horizon bar that has a rectangular shape and green

color. To detect distinctive points on the bar, multiple processes such as image filtering, contour

detection, corner points detection, and screening are conducted in this order. From the detected

points in the 2D image, UAV relative positions and orientations are estimated using Perspective-n-

Point (PnP) method. The accuracy of the present vision system to sub-centimeter and sub-degree

levels have been previously demonstrated by the authors [1].

To demonstrate the safety of the vertical landing maneuver, which in this case is independent

of the ship motions, realistic ship motions are implemented on a six Degrees Of Freedom (DOF)

motion platform. The first ship motion case is from the Oliver Hazard Perry Class FFG Frigate

which is a small ship with a single landing deck. The ship motions at the sea state of 6 that refers

to a wave height of 4 to 6 meters with the wave direction of 60◦ are scaled down for the 1.22 x

1.22 meters (4 x 4 feet) platform and are provided in [5], which are also similar to measured ship

motion data presented in [28]. The second ship motion case is the FFG 7 Class ship motion limits
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which are 3◦ of pitch and 8◦ of roll as defined in the Naval Air Training and Operating Procedures

Standardization (NATOPS) [29]. The period of pitch and roll motions are selected as 10.1 seconds

and 6.5 seconds according to the study of typical small ship motions conducted by the Sandia

National Lab [30]. Vertical landings are conducted at random instances of deck motions.

By using the information provided by the vision system, the flight controller manipulates the

UAV to approach and land. To this end, various control systems that uses vision sensors without

GPS have been investigated in the literature, such as Proportional-Derivative (PD) control [31, 8],

a Proportional-Integral-Derivative (PID) control [32, 7], gain-scheduled PID control [1], Linear

Quadratic Regulator (LQR) [33, 34, 35], adaptive control [36, 37, 38], discrete-time nonlinear

model predictive control [39], and reinforcement learning based control [40]. In the present system,

a nonlinear control system with the Kalman filter is uniquely designed to operate accurately and

robustly in the presence of time delays and sensor noise. The Kalman filter reduces the noise in

estimation, however, small noise can be amplified when incorporated into the derivative controller

due to the numerical differentiation process. A novel nonlinear controller is developed on top of

the Kalman estimator to prevent the controller from responding to unrealistic estimations (or large

fluctuations). It multiplies the estimation difference by the probability of its occurrence that follows

a normal distribution. In this manner, the controller probabilistically perceives if the estimation is

physically possible or not and then determines how to respond with a control input.

While these approaches have been partially successful in solving the problem, they often have

two significant weaknesses that limit them to very specific situations. Firstly, the performance of

the PD/PID type controllers solely depends on the design of its gain parameters, which are typi-

cally difficult to fine-tune, especially in the simulator setting. PD/PID controllers have also limited

transient response capabilities. Moreover, PD/PID controllers are not robust against uncertainties

and disturbances such as wind gusts and parameter mismatches between the simulator model and

the real-world system model. Secondly, MPC and LQR approaches often require a very sophisti-

cated analytical model of the real-world UAV. Obtaining such a model can be very challenging in

practice. Moreover, for computational tractability, the design of the optimal control policies using
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these approaches is often limited to simplified settings such as linear policy and quadratic costs.

This often results in poor performance in the real world.

In this study a deep reinforcement learning (RL)-based control algorithm for autonomous

vision-based ship landing of UAVs is also proposed. Using the representation power of neural net-

works, RL provides an attractive model-free approach for developing nonlinear control algorithms

for high dimensional systems in an automated and computationally tractable way. We propose and

develop a clever modification of the standard off-the-shelf RL approach to adapt it to the vision-

based autonomous UAV landing problem and to make it robust against adversarial disturbances

in the environments such as wind gusts. Multiple previous works have developed RL algorithms

to address the autonomous landing of UAVs. RL-based high-precision, time-critical flight atti-

tude control that could operate in unpredictable and harsh environments is discussed in [41]. It

also discusses different policy gradient RL algorithms such as deep deterministic policy gradient

(DDPG), proximal policy optimization (PPO), and trust region policy optimization (TRPO). An

RL approach for UAV landing task on a moving platform using a variant of the DDPG algorithm

is discussed in [42]. An actor-critic RL framework used to fly a UAV by following designated

waypoints is presented in [43]. A variant of the DDPG algorithm is used to recover a UAV attitude

quickly from an out-of-trim flight state [44]. However, these works do not address the problem

of designing RL controllers that are robust against adversarial disturbances such as wind gusts.

We adapt the state-of-the-art RL algorithm called twin delayed DDPG (TD3) and use the idea of

domain randomization [45, 46] to make it robust. The disturbance rejection capability of the RL

controller is compared to the previously developed nonlinear control system with the Kalman filter

[47] through extensive simulations and flight tests. During flight testing, to verify the performance

of the RL controller, wind gusts from different directions are suddenly imposed while the UAV at-

tempts to approach and land on a sub-scale ship platform undergoing 6 degrees of freedom (DOF)

deck motions. The UAV used is Parrot ANAFI quad-rotor that streams live video to a base sta-

tion computer, which processes the image frames, generates control inputs, and then transmits the

control commands back to the UAV through WIFI.
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The following are the key contributions of this work.

• Automate Navy helicopter ship landing procedure for VTOL UAVs and verify the safety of

vertical landing while realistic and challenging ship motions present.

• Develop a state-of-the-art machine/deep learning based vision system that can identify and track

objects of interest (ship platform and horizon bar) in a long distance.

• Develop a nonlinear control system that can be effective for real-time autonomous flight in the

presence of time delay caused by the machine/deep learning based detection.

• Demonstrate a fast and reliable method to extract points of interest from an image by combining

classical computer vision and screening algorithms.

• Develop a novel nonlinear controller along with a probabilistic algorithm to prevent large incor-

rect control inputs due to non-physical estimations to enable robust and smooth tracking.

• Considering deck motions, UAV size, and safety margin, determine a safe landing boundary and

demonstrate the vertical landing accuracy via flight tests.

• Developed an RL-based control strategy that is robust against adversarial disturbances such as

wind gusts.

• Demonstrated the superior disturbance rejection capability of the RL-based controller when

strong wind gusts are suddenly imposed in different directions.

• Demonstrated the precise approach and landing on a sub-scale ship platform undergoing chal-

lenging 6-DOF deck motions using a novel approach that does not track deck movements.
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2. MACHINE VISION SYSTEM

1 The objective of the vision system is to provide the necessary visual information required in a

given situation for the control system. A helicopter pilot, from a far distance, identifies the ship and

sets its initial course and once getting closer to the ship, refers to gyro-stabilized horizon bar for

safe approach and landing irrespective of the deck motions. Hence in this study, different detection

strategies are developed depending on the distance. This chapter gives a detailed explanation on

how to detect different objects of interest and estimate the relative position and orientation of

the UAV and finally validate its accuracy. Throughout the study, a gimballed camera of the VTOL

UAV that can mechanically compensate for the roll and pitch motions of the UAV is used to capture

images.

2.1 Detection Methodologies

The detection methodologies are developed and configured according to how a Navy heli-

copter pilot perceives and acts during different situations while approaching and landing. From a

long-distance, the pilot visually confirms the ship’s location and sets the course and speed for the

approach. Once the helicopter comes closer to the ship, the horizon bar becomes visible and is

gyro-stabilized to indicate the true horizon independent of the ship’s motions. From that point, the

pilot stably controls the helicopter by referring to the horizon bar for a safe landing. The same set of

strategies are utilized for automating VTOL UAVs by taking advantage of state-of-the-art machine

learning-based object detection for long-range tracking and classical computer vision techniques

for close-range tracking.

Fig. 2.1 shows the primary and secondary objects of interest for detection between 0 to 250 m

away from the landing pad. Initially, the whole ship is used as a reference by the control system,

then the horizon bar is detected and finally, points on the horizon bar are used for precise estimation

of relative positions and orientations of the UAVs for a safe landing. If any of the primary target

1The chapter has been adapted or reprinted from recent publications [1] [2] [3] [4].
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Figure 2.1: Tracking object depending on distance [2] [3]

objects are not detected, the secondary objects are detected as a backup.

2.1.1 Machine Learning Based Object Detection

Machine learning-based object detectors are developed to detect the ship as a whole for long-

range and horizon bar for mid-range tracking. Classical computer vision may achieve the same task

however it requires explicit algorithms for detection which can be extremely complicated and chal-

lenging to capture every aspect of the object. On the other hand, machine learning object detectors

learn the characteristics of an object thoroughly using neural networks. The speed and accuracy of

such detectors can be significantly improved by using Graphics Processing Units (GPUs).

Developing an object detector involves three steps, which are, collecting images(data collec-

tion), labeling objects in the images(training set), and finally training the object detector. First,

2000 images of the ship platform and 1000 images of the horizon bar are collected by the UAV’s

onboard camera. To include various object figures in training sets, images are captured from differ-

ent perspectives and distances, and in varying lighting and weather conditions. Second, the object

in the collected images are labeled by drawing a bounding box around it and assigning the object

class name. This data is stored as pixel positions and the object identification number. Third, the

set of labeled images are used for training via a state-of-the-art machine learning technique.

To implement the machine learning object detection in a real-time flight system, computational

speed is the primary factor to consider. With the advancement of deep learning, several algorithms

have been developed for the purpose of fast detection as well as higher accuracy such as Region-

based CNN (R-CNN) [78, 79, 80], Single Shot Detector (SSD) [81], and You Look Only Once
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(YOLO) [82, 83, 84]. They commonly have the architecture of convolutional neural network

(CNN) which is a class of deep neural networks. According to the recent studies that compare the

processing time of fast detecting algorithms [22, 18, 21], YOLOv3 is faster than other algorithms

such as SSD and Faster R-CNN while having similar prediction accuracy. For this reason, the

YOLOv3 algorithm is selected for the system.

Figure 2.2: Ship platform detection process by YOLOv3 algorithm [2] [3]

The object detection task consists of object classification and localization. Typically, an object

detector is developed to detect multiple objects and classify them; however, in the present ap-

proach, two separate single object detectors are developed to detect the ship platform and horizon

bar, respectively. By doing so, each detector only needs to find a particular object in the image, and

the object class is automatically assigned without incurring the risk of false classification. Once it

detects an object, it returns the position of the object and the size of its rectangle bounding box in

the image. The position and size are used to determine approach course and speed, respectively.

Since the detection range is proportional to the area occupied by the detected object in the image,

during the early phases of approach the whole ship is detected to maximize the detection range.

As the UAV gets closer to the ship, it also detects the horizon bar which provides more specific

position and size information. Instead of having one object detector that identifies two objects
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(ship and horizon bar), two separate object detectors are developed for each object so that they do

not have to distinguish one object from the other. The control system takes the information from

the object detectors and takes the most appropriate control action in a given situation.

Figure 2.3: Long and mid-range real-time object detection result [2] [3]

The one-stage detector YOLOv3 regards the detection as a regression problem and uses a single

neural network. It analyzes the entire image to predict the object-bounding box. As shown in Fig.

2.2, the input image is divided into an N x N grid and each grid cell predicts bounding boxes with

a confidence score and class probability. To better detect the object in different sizes, it predicts

bounding boxes at three different scales, which helps to detect the object from a far distance. The
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predictions of developed detector are encoded as anN×N× [3∗(4+1+1)] tensor forN×N grid

cells, 3 different scales, 4 bounding box offsets, 1 object confidence score, and 1 class prediction.

The sequential procedures in a YOLOV3 object detector is shown in Fig. 2.2

The observed maximum ranges for detecting the ship platform and horizon bar are approxi-

mately 250m and 100m, respectively. The real-time detection at different distances is shown in

Fig. 2.3.

The maximum verified range for the machine learning-based detector is approximately 250

meters (820 feet) when tracking a 6 X 6 foot object (subscale ship platform). Because the detection

area is proportional to the occupied area of the object in the image, a typical small ship, with the

rear occupying an area of 50 X 50 feet, can be detected from a distance of 17.3 kilometers (9.3

nautical miles). This is 18 times greater than the distance to the Missed Approach Point (MAP),

a point at which the pilot must visually identify the ship. As soon as the target object has been

recognized, it provides the position of the object and its bounding box in the image to the control

system. Although the actual relative position and orientation are not estimated, the developed

control system achieves long-range autonomous flight using the size of the object and its position

in the image.

2.1.2 Classical Computer Vision

The modern machine learning-based approach has the advantage that detection visual cue from

afar. However, the training procedure in machine learning-based approach is non-deterministic,

meaning detection may fail for unknown reasons. For example, the model might identify other

objects as a visual cue, and the bounding box of the object might be larger or smaller than the

original size of the object. These faults are unacceptable for close-range tracking and precision

landing. In addition, the machine learning-based approach is computationally intensive, which can

lead to delays in the control system. Therefore, to develop a short-range vision system, classical

computer vision algorithms are used, which clearly indicate what needs to be done to detect and

execute in the shortest possible time.

Once the UAV is in close proximity to the ship platform, it must recognize the visual cue and
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then estimate the relative position and orientation for the final approach and landing. The visual

cue should be installed perpendicular to the landing pad and parallel to the UAV’s line of sight,

much like the horizon reference bar on a ship. At close range, robust detection and estimation

is achieved by combination of computer vision techniques and developed detection algorithms.

The image processing system first recognizes the desired points of interest and then estimates the

relative position and orientation. The visual cue need not have a particular shape as long as the

dimensions are known in advance. However, the unique characteristics that can be distinguished

from the environment are beneficial for detection. A number of different visual cues are tested to

validate the effective range and representative cases are shown in Fig.2.4

Figure 2.4: Available Representative Visual Cues [1] [3]

Among the candidate visual cues, checkerboard pattern visual cue is investigated first due to

its distinctive features and a redundant number of corners. A 4x4 checker pattern was chosen

for the study. Its geometry exhibits local image features such as distinctive edges, lines, and

corners which are greatly helpful in detection. From the experiments that utilize checkerboard

pattern visual cues, the effect of camera resolution and the size of squares in the checkerboard on

the detection range is studied. The built-in front camera of the UAV has mechanical pitch and

roll gimbals that compensate for the UAV’s pitch and roll movements and keep the camera level

with the horizon. This means that images recorded by the camera do not experience the effects

of pitch and roll. This reduces the complexity caused by rotational movements. However, the
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effect of yaw is reflected in the images, which is utilized to extract the heading of the UAV with

respect to the visual cue. The maximum resolution of the camera is 4k ultra-high definition, UHD

(4096 x 2160), and the highest resolution helps to increase the detection range. The size of the

squares on the checkerboard is the other factor that affects the detection range. As the size of the

square increases, so does the effective detection range. However, there is a trade-off between the

maximum effective range and the closest proximity to the visual cue, as with a larger square size,

the camera must be positioned further away for visual cue recognition. The effective range for

each case is found through experiments and are provided in Table 2.1.

Table 2.1: Valid Range for Varying Resolution & Square Size

.

Resolution 80 mm Square 120 mm Square
qHD(540p) 13 m 15.5 m
HD(720p) 14 m 17.5 m
FHD(1080p) 15 m 19 m
4K UHD(2160p) 17 m 25 m

According to the results, the size of the square was chosen to be 120mm because it can be

accurately detected from a distance of up to 25 meters and the size of the square is small enough

that it can be captured even when the visual cue is only is 1 meter away. Although a higher

resolution increases the effective range, it also increases the amount of data processed. Therefore,

HD 720p (1280 x 720) resolution was chosen taking into account the latency of the live streaming

and image processing for a relatively high band-width integrated vision-based feedback control

system as well as a good effective range. This visual cue was used in the first stage of development

of a vision-based autonomous ship landing system. Finally, a visual cue that closely mimics the

horizon reference bar on Navy ships is built and used for close range detection and pose estimation.

It has two green rectangles on a gray background with known dimensions and splits as shown in

the Fig. 2.5

Taking into account the characteristics of the installed horizon bar, the corner points of the
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Figure 2.5: Installed horizon bar [2] [3]

green rectangles are identified as the target to be detected. To ensure robust detection and esti-

mation in situations involving large UAV movements and different visibility conditions, the vision

system is set up to perform sequential image filtering, contour and corner detection, detected points

screening, and the estimation of position and orientation.

• Image Filtering

The initial approach involves applying a Hue-Saturation-Value (HSV) filter to sort out the green

rectangles. The HSV filter is preferred over Red-Green-Blue (RGB) because the RGB color space

is more sensitive to light conditions. To ensure the capture of the green rectangles in different

light conditions, the greater range of HSV (H: 35 - 85, S: 70 - 255, V: 90 - 255) is assigned;

however, this inevitably leads to the capture of unwanted portions. In the HSV filtered image, there

possibly exists small white patches outside the rectangles and black voids inside the rectangles.

The morphological opening technique is used to remove the white patches in the image. It first

erodes an image removing any small white patches and then dilates the eroded image to preserve

the original shape and size. Morphological closing is used to fill up small voids in those rectangles

by dilating an image first then eroding the dilated image. By performing these operations, the

rectangles are depicted as white regions on the black background. The watershed algorithm [48]

is exploited to obtain clear boundaries of the rectangles. The two reference areas are obtained by

eroding the processed image by 1% and dilating the processed image by 1%. The gap between the

two areas is assumed to contain the boundaries of the rectangles. The algorithm simultaneously

expands the area of the background and the rectangles toward each other until they meet at one
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pixel point. By connecting the points, clear boundaries of the rectangles are obtained. The images

of each step are shown in Fig. 2.6.

Figure 2.6: Image filtering process [2] [3]

• Contour and Corner Detection

Once the green rectangles are isolated by the image filtering, the detection of contours and cor-

ner points is conducted. Even after the filtering, directly implementing any pre-existing corner

detection algorithms is prone to detect some false corners. To detect the eight corners precisely,

the contours of the detected region are found and bounded in rectangles first. Thus, the size and

shape of the detected areas are very close to the green rectangles and the corners of those bounding

rectangles can be used as rough estimates of the actual corners. Second, the Förstner corner detec-

tion method is adopted to detect the corner points of the rectangles precisely based on the rough

corners obtained by contour detection [49]. The Förstner corner detection increases the accuracy
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by sub-pixel refinement process. It is based on the fact that an ideal corner is a single point that

tangent lines of the object cross perpendicular to each other as shown in Fig. 2.7. This way, false

corner detection can be avoided.

Figure 2.7: Förstner corner detection method [1] [3]

The pixel information around a corner is not perfectly clear. Therefore, an approximation

process for defining the corner position (cu, cv) is required and is expressed in Eq. (2.1).

(ĉu, ĉv) = arg min
cu,cv

∑
u,v∈N

([∇f(u, v)]T (u− cu, v − cv))2 (2.1)

The image gradient ∇f(u, v) at the image pixel position (u, v) is perpendicular to line from

(u, v) to corner position (cu, cv). In order to obtain (cu, cv), a least square estimation in a small

window chosen for each image. It cannot be a fixed window size because the UAV is always

moving towards the landing pad. The size of the detected region keeps increasing as it approaches

closer to the visual cue. Hence a variable window size which is a function of the width and height

is assigned as expressed in Eq. (2.2).

sw(w(tk), h(tk)) =
1

5
{w(tk)× h(tk)} (2.2)

sw(w(tk), h(tk)) is the window size at time tk where w(tk) and h(tk) are the width and height
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of bounding rectangles in pixels. The results of the contours and corners detection are shown in

Fig. 2.8.

Figure 2.8: Detection of contours and corners [2] [3]

• Detected Points Screening

The screening procedure is established to assure that no false corners are present. All the

corners are sorted in a particular order as shown in Fig. 2.9, which helps in finding the length and

slope of each side of the rectangles in the image. Even though they are not perfect rectangles in

the image, width 1, 2, 3, and 4 have similar lengths and slopes. The height 1, 2, 3, and 4 also have

similar lengths and slopes. A±10% tolerance level is set for the lengths and a±5% tolerance level

is set for the slopes.

2.1.3 Estimation of Relative Position and Orientation

The estimation is based on a single camera calibration method using a planar object [50, 51].

The geometric relation of the image and real-world coordinates is shown in Fig. 2.10.

A conventional pinhole camera model is used to derive the geometric relation. A 3D coordinate

system can be defined with respect to the visual cue and there is a 2D coordinate system associated

with the image frame. (X, Y, Z) is a point on the object described in the visual cue body-fixed

frame, and (u, v) is a corresponding point on the image frame (pixel position in the image). Each
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Figure 2.9: Detected corners in sorted order [2] [3]

Figure 2.10: Geometric relation of image and real-world coordinates [2] [3] [4]

rectangle in the visual cue is 48 X 16 centimeters. There is an 18.5 centimeters relative separation

between the two rectangles. The top left corner of the left rectangle is set to (0,0,0) and the 3-

D world coordinates of the remaining corners can be assigned according to the known dimension.

Since the object is planar, the Z-coordinate remains zero for all corners. The 2-D image coordinates

of the corners can be found in the image. The 3-D coordinates remain the same throughout the

flight while the 2-D image coordinates change from frame to frame. The relationship between the

image coordinates and the body-fixed coordinates in matrix form is described in Eq. (2.3).
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The equation is derived in a homogeneous coordinate system. In the homogeneous coordinate

system, the 2D image point (u, v) becomes a 3D vector (u, v, 1) and the 3D world coordinates

(X, Y, Z) become 4D vector (X, Y, Z, 1). The scaling factor s comes from transforming the ho-

mogeneous coordinates to cartesian coordinates. R is a 3 x 3 rotation matrix and t is a 3 x 1

translation vector. R matrix has the information about the camera orientation with respect to the

visual cue and t provides the information on how far the camera is from the particular (X, Y, Z)

point in the visual cue body-fixed frame. O1x3 is 1 x 3 zero matrix. The matrix which includes R,

t, O1x3, and 1 is called the camera extrinsic matrix, which varies from image to image. The matrix

A is called the camera intrinsic matrix and its components are shown in Eq. (2.4).

Aint =


1/ρu 0 u0

0 1/ρv v0

0 0 1



fx 0 0 0

0 fy 0 0

0 0 1 0

 (2.4)

1/ρu and 1/ρv are parameters that scale the image coordinates, which are in pixels to values in

the International System of Units (SI). u0 and v0 are the center position in the image plane. The first

matrix shifts the center of the image plane to the top left corner point. The second matrix contains

the information fx and fy, which are the focal lengths of the camera in the x and y directions,

respectively. The product of two matrices forms the unique camera intrinsic matrix and it can be

found using a camera calibration [52].

To determine the relative position and orientation of the camera, the PnP algorithm is applied

[53]. Given a set of n 3D coordinates of an object and its corresponding 2D projections on the

image, this algorithm solves Eq.(2.3) to obtain the rotation vectors R and the translation vectors
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t. There are 6 DOF for a camera, which are 3 DOF in rotation (roll, pitch, yaw) and 3 DOF in

translation (X, Y, Z). A minimum of 3 points are required to find a solution, but the solution is

not unique. There should be a minimum of 4 points to obtain a unique solution; however, it can

be more reliable and redundant when there are more points. An iterative method is used for the

PnP algorithm since it is robust for objects which consist of a planar surface. The iterative method

is based on Levenberg-Marquardt optimization [54, 55]. In this method, the function minimizes

re-projection error, which is the sum of squared distances between the observed image points (u, v)

and projected object points (X, Y, Z). By default, the iterative algorithm sets the initial value as

zero and then updates during each iteration.

The RANSAC method [56, 57] is used to find a rough initial guess for the extrinsic matrix

in an iterative approach. The RANSAC method identifies the outliers and removes them during

the calculation. The initial guess and inliers are fed into the iterative algorithm to have a more

accurate estimation. The solvePnP algorithm [52] returns a rotation and translation vector. The

rotation vector can be converted to the rotation matrix using the Rodrigues function. Thus, once

the rotation matrix (R) and translation vector (t) are obtained, −R−1t gives the relative distances

in 3D from the camera to the origin of the visual cue body-fixed frame.

The present estimation method is modified from the existing algorithm to take advantage of the

gimbal camera. Since the gimbal corrects for the roll and pitch motion of the UAV, the images only

reflect the yaw motion (heading angle) with respect to the visual cue. Thus, roll and pitch angles

computed by the image can be regarded as camera noise and gimbal correction errors. Therefore,

the roll and pitch angles are excluded from the position estimation. The basic and modified rotation

matrix are specified in Eqs. (2.5) and (2.6), respectively.

Rbasic =


cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ

sαcβ sαsβsγ − cαcγ sαsβcγ + cαsγ

−sβ cβsγ cβcγ

 (2.5)
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Rmodified =


cosα − sinα 0

sinα − cosα 0

0 0 1

 (2.6)


Xcam

Ycam

Zcam

 = −Rmodified
−1t (2.7)

In Eq. 2.5, the s and c stand for sine and cosine, respectively. α, β, and γ represent yaw, pitch,

and roll angles, respectively. Each row of the R matrix contributes to their respective coordinates

(X, Y, Z). By setting pitch and roll angle to zero, the modified rotation matrix is obtained from

the basic rotation matrix. Only the yaw angle remains which takes care of the relative heading

angle. The third row of the modified rotation matrix shows that the Z-coordinate is independent of

the yaw angle, α. Hence, the yaw angle has no contribution in the estimation of forward relative

distance (Z-coordinate) between the UAV and the visual cue. However, the sideward relative

distance (X-coordinate) and vertical relative distance (Y -coordinate) are heavily dependent on the

yaw angle. The camera position with respect to the visual cue is given in Eq. (2.7)

It was apparent from multiple experiments that the yaw angle estimation becomes noisy as the

camera gets farther away from the visual cue. Since the estimation is based on the number of

visual cue pixels in the image, the changes in pixels with distance results in the noise. Despite this

sensitivity issue, yaw estimation still shows a reasonable trend within the range that the forward

relative distance is accurately estimated. To utilize the yaw estimation trend, instead of directly

taking the noisy yaw angle estimation, a moving average filter is configured and the results are

shown in Fig. 2.11.

The red line denotes the yaw angle estimation results by the basic algorithm and the blue line

denotes the results after the moving average filter is applied. The moving average is calculated

using the history of the previous estimation data. A lower and upper bound are defined for the next

yaw angle estimation value with respect to the current average. Whenever the estimated yaw angle
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Figure 2.11: Effect of Moving Average Filter on Yaw[1] [3]

is out of the defined range, it rejects that value and takes an average value. In this way, the moving

averaging filter provides stable yaw estimation by tracking a trend in a further distance, and the

accuracy naturally increases as it gets closer to the visual cue due to having more pixel data in the

image.

However, the moving average filter requires multiple accumulated data to predict the current

estimation. Thus, a simple low pass filter is configured to reduce the noise level. One of the com-

monly used real-time data filters is Kalman Filter. Kalman filter predicts the current estimate by

taking into account the current measured value, the previous estimate, and the noise level in the

data. A single state Kalman filter was opted over other real-time filters because of the lesser number

of variables required while computation. Gaussian noise is assumed to be present in the measure-

ment data with a specified mean and variance. The underlying equations involved in estimating

the yaw are:
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CE = PE +KG× CM

KG = PrE × 1

PrE +RN

PrE = PE +QN

(2.8)

where CE is the current yaw estimate, PE is the previous yaw estimate, KG is the Kalman

Gain, CM is the current yaw measurement, PrE is the predicted probability estimate, RN is the

process noise covariance, and QN is the measurement noise covariance. RN and QN values are

experimental values found by analyzing different sets of yaw angle measurements and they are set

to 0.005 and 0.05, respectively.

2.1.4 Validation

The results obtained from the developed computer vision system are validated through position

and attitude measurements using a Vicon motion capture system shown in Fig. 2.12.

Figure 2.12: Experimental Setup in Vicon System [1] [3]

Vicon is a motion capture system widely used in the entertainment industry to track the motion

of people and other objects even up to sub-millimeter resolution. The Vicon system used for
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this study can capture images at 120Hz using eight 16-megapixel digital video cameras. Camera-

mounted strobes illuminate small, retro-reflective markers, which are identified and processed by

the imagers. The Vicon cameras track reflective markers on both the UAV and the visual cue to

obtain precise position and orientation data, which is then used as the ground truth for this study

to validate the computer vision system. The comparisons of the forward relative distance and

sideward relative distance are shown in Fig. 2.13 and 2.14, respectively.

Figure 2.13: Validation of Forward Distance Estimation

The validation of the estimation method as well as the developed algorithm is implemented with

a checkered visual cue with 9 corners. The detection method varies depending on the selection of

visual cues, however, the estimation method that calculates the relative position and angle is same

for any kind of visual cue. Moving average filter is used in the validation data which is later

replaced with the Kalman filter. A comparison of the forward relative distances and the lateral

relative distances is shown in Fig. 2.13 and 2.14, respectively.

The blue, red, and green lines denote the Vicon measurements, baseline algorithm estimations,
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Figure 2.14: Validation of Sideward Distance Estimation[1] [3]

and estimations from the present improved algorithm, respectively. As seen from the figure, the

baseline and the improved algorithms have no difference when it comes to the forward relative

distance estimation, and both these methods can obtain the same level of accuracy as the Vicon

measurements. The sideward distance estimation by the baseline algorithm has fluctuations; how-

ever, the improved algorithm shows smooth results due to the moving average filter. The maximum

error in sideward distance estimation is one centimeter, when compared to the Vicon result. The

comparisons of the vertical relative distance and relative yaw angle are as shown in Fig. 2.15 and

2.15, respectively.
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Figure 2.15: Validation of Vertical Distance Estimation[1] [3]

Figure 2.16: Validation of Yaw Angle Estimation[1] [3]
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In both vertical relative distance and relative yaw angle comparison, the improved algorithm

yields smooth estimation results. The maximum error in the vertical relative distance is below

one centimeter and the maximum error in the relative yaw angle is one degree. Through the Vicon

experiments, the ability of the present computer vision system to detect the visual cue and precisely

estimate the position and orientation is demonstrated.
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3. CONTROL SYSTEM

1 This chapter includes a detailed description of the control system that has been used for the

autonomous ship landing procedure is discussed. First, a conventional gain-scheduled controller

was developed to test the concept, and then a non-linear conventional controller was developed

for better long-range tracking and accurate landing. Finally, a Reinforcement Learning based con-

trol strategy is developed for superior disturbance rejection and accurate landing. All the control

systems are comprehensively validated extensively simulated in the Gazebo simulation program

before flight tests.

3.1 Gain-scheduled Control Strategy

As an initial step towards implementing the novel autonomous ship landing method in practice,

a simple gain-scheduled conventional control system is designed to approach and land following a

checkerboard pattern visual cue installed on the ship platform as shown in Fig.2.4.The vision-based

controller will form the outer-loop of a cascaded feedback control system where the inner-loop will

handle the basic attitude stability of the aircraft as well as generates the required pitch, roll, heave

and yaw rates as demanded by the outer-loop. Proportional integral derivative (PID) controllers

with scheduled gains are designed to achieve a realistic flight dynamic behavior as well as precise

tracking and landing of the VTOL UAV. The standard form of the PID controller is represented in

Eq. (3.1).

u(t) = KP e(t) +KI

∫ τ

0

e(τ)dτ +KD
d

dt
e(t) (3.1)

e(t) denotes an error between a setpoint and relative position data with respect to the visual

cue. Since the positions and heading angle are computed from the vision system, disturbances and

noises are already included. The update rate of the outer loop of the closed-loop feedback control

system is 0.1 seconds including the detection, estimation, and live-streaming through the computer

1The chapter has been adapted or reprinted from recent publications [1] [2] [3] [4].
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vision system. KP , KI , and KD gains are tuned based on the effect of each parameter as shown in

Table 3.1.

Table 3.1: Effect of KP , KI , and KD

Characteristic Increase KP Increase KI Increase KD

Rise Time Decrease Small Decrease Small Decrease
Overshoot Increase Increase Decrease

Settling Time Small Increase Increase Decrease
Steady-state Decrease Large Decrease Minor Change

Stability Degrade Degrade Improve

The different sets of gains are scheduled based on relative positioning data to control the behav-

ior of a UAV as desired. It allows the UAV to fly at high-speed when it is relatively far away from

the visual cue and then slow down the relative speed for cautious tracking when it gets closer to the

landing point. The flight mode selector is also configured in order to adapt the UAV movements to

the flight conditions and enhance safety. The states are the relative positions in three dimensions

and the heading angle of the UAV with respect to the visual cue obtained from the computer vision

system. The control inputs are pitch, roll, yaw, and throttle commands. Each control magnitude

ranges from -100 to 100 as a percentage of the total input. The outputs are UAV attitude and raw

images from the camera. The UAV attitude consists of roll angle φ, pitch angle θ, and yaw angle

ψ.

3.1.1 Simulations

The objective is to verify every aspect of the vision-based flight control system under different

scenarios and to demonstrate that extreme accuracy can be achieved by adopting this novel method

of tracking a visual cue installed parallel to a UAV approach course instead of tracking a landing

platform.

In the present study, the entire coding is done in the Python programming language and a realis-
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tic robot simulation program, Gazebo [58], is used to simulate the physical and visual surroundings

of a UAV as shown in Fig. 3.1.

Figure 3.1: Simulated UAV and Moving Platform in Gazebo Simulation Program [1] [3]

The simulated UAV model has the same dimensions, mass moments of inertia, gimbal camera,

and flight mechanism as the physical UAV, Parrot Anafi. The simulation also implements a moving

vehicle that carries the visual cue and landing platform as shown in Fig. 3.1. As determined by

vision system experiments, the visual cue has a checkerboard pattern consists of 4 x 4 squares

with a side length of 120 mm each, and the landing platform size is 3 x 3 ft. These characteristics

remain the same throughout simulations and flight tests.

The simulations are conducted in the same way as the actual flight tests including live-streaming,

real-time vision processing, and feedback control loop. First, the simulated UAV is connected via

WIFI to the base station computer. Once the UAV takes off, the images from the simulated camera

are streamed to the computer. The images are processed one by one to obtain the relative position

and heading information, which is utilized by the feedback controller running on the computer to

generate the control inputs. Then, the computed control inputs are sent back to the UAV via the

WIFI connection. This one cycle from streaming to sending commands back to the UAV takes 0.1

seconds. This simulated system, once verified, can be directly applied to a real flight test by simply
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switching an IP address from simulated UAV to physical UAV. The following simulation results

show the tracking capability and landing accuracy in detail.

3.1.1.1 Landing Accuracy

To demonstrate the tracking and landing accuracy of the present vertical-visual-cue based

method, multiple simulations are conducted with different landing thresholds and varying the speed

of the moving platform. The final landing locations from 100 independent simulations are plotted

in Fig. 3.2.

Figure 3.2: Landing Points with Landing Threshold of 25 x 25cm(left), 15 x 15cm(center), and 5
x 5 cm(right)[1] [3]

The green line depicts the landing pad and each mark denotes the landing point for different

speeds of the moving platform. Note that landing anywhere within the 25 x 25 cm area can be

regarded as a safe landing considering the UAV size. The present vision-based control system

achieves precise landing within a 5 x 5 cm landing threshold for all platform speeds. When the

platform is moving at 8.5 m/s, it requires the UAV to fly close to its maximum speed but it still

can make accurate landings. The dispersion of landing points in the figure can be attributed to the

assigned landing threshold. The time history of relative distance for each landing case is shown in

Fig. 3.3.

Each line denotes the relative distance between the UAV and landing pad center at different
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Figure 3.3: Relative Distance with Landing Threshold of 25 x 25cm(left), 15 x 15cm(center), and
5 x 5 cm(right)[1] [3]

platform speeds. By the time the UAV starts tracking after take-off, the platform is already accel-

erating forward up to its designated speed. Thus, the relative distance increases at the beginning of

the tracking phase. Also, it takes more time to land as the landing threshold is made smaller. The

average time to achieve a landing threshold in each case is specified in Table 3.2.

Table 3.2: Average Time to Achieve Landing Threshold

Vehicle Speed 5x5cm 15x15cm 25x25cm
0.5m/s 15.3s 4.6s 3.3s
2.0m/s 25.6s 7.0s 6.8s
4.0m/s 26.9s 13.8s 10.3s
6.0m/s 28.6s 16.4s 16.2s
8.5m/s 35.2s 23.0s 22.9s

In conclusion, the landing accuracy depends on an assigned landing threshold. The present

system can achieve a precise landing, however, there is a trade-off between the time and landing

accuracy. Thus, the landing threshold should be selected based on the priority of a mission, which

could be accuracy or time. In the following simulations, the medium landing threshold of 15 x 15

cm is applied.
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3.2 Nonlinear Control System

The sequential steps involved in the vision-based control system are live-streaming the video

from UAV’s onboard camera to an external base-station computer, image processing, feedback

controller generating the control inputs, and transmitting the control inputs back to the UAV. The

processing time is considerably affected by the type of detection method engaged in the vision sys-

tem. The average time to complete one cycle is 0.5 seconds when the machine learning detection

is engaged and 0.03 seconds when the detection of the rectangle corner points is engaged. In order

to cope with the time delay as well as potential sensor and estimation noise, nonlinear controllers,

which can adapt to different situations are developed. Particularly, five different flight modes are

configured according to the situations perceived by the vision system as shown in Fig. 3.4.

In the case that the computer vision system provides estimated positioning data based on corner

points detection at a close distance, mode 1 triggers vertical landing command upon the satisfac-

tion of landing condition and mode 2 makes the UAV approach the designated landing point by

engaging the probabilistic nonlinear control system. At a long distance where the corner points

detection is unavailable, the machine learning-based vision system provides the object area and

location in the image at a long distance. In this case, the exponential nonlinear control system is

primarily engaged with mode 3 if the horizon bar is detected. If not, mode 4 is engaged based

on ship platform detection. It is designed to utilize previously fed data when no vision data is

available, which is activated by mode 5.

3.2.1 Long-range Tracking Controller

In the long-range where the entire landing platform is detected as a whole, the information pro-

vided by the vision system is the platform size and position in the camera view. The flight control

system in this region deals with a relatively slow update rate that is 0.5 seconds on average. When

the update rate is fast enough, the discrete system that receives sensor data at each update time

can be a good approximation to the continuous system. Thus, integral and derivative controllers
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Figure 3.4: Flowchart showing vision-based control system [2] [3]

can be configured by using the summation and difference of error. However, the summation and

difference are not good approximations for integral and derivative controllers when the update rate

is slow. Hence, the nonlinear controller is designed to achieve the control task in the presence of

the slow update rate by applying the nonlinear exponential gain KP{e(tk)} as shown in Eq. (3.2).
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e(tk) = r(tk)− c

u(tk) = KP

{
e(tk)

}
× e(tk)

=
−m(eae(tk) − d)× e(tk) (e(tk) < 0)

m(eae(tk) − d)× e(tk) (e(tk) ≥ 0)

(3.2)

In Eq. (3.2), e(tk) denotes the error at time tk, r(t) is the relative position at time tk, and c is the

setpoint. The control law, u(tk), has exponential term in the nonlinear gain KP{e(tk)} to decay

control magnitude exponentially near zero error. The constants m, a, c, and d selected for the ship

platform and bar tracking are provided in Table 3.3.

Table 3.3: Selected constants for nonlinear exponential controller

Flight Mode Controller m a c d

Ship Platform Tracking
pitch 0.008 0 5000 0
roll 1.2 0.0158 640 1

heave 3.0 0.0108 360 1

Bar Tracking
pitch 0.004 0 3400 0
roll 1.0 0.0158 640 1

heave 5.0 0.0108 360 1

The desired object size, the image center position in the horizontal direction, and the image

center position in the vertical direction are the setpoints for the pitch, roll, and heave controllers,

respectively. Unlike the roll and heave controllers, the pitch controller with the assigned parameters

returns to a linear proportional controller, which is sufficient to approach the ship in the long-range.

There is also a yaw controller that can control the heading angle to set the approach course. It is

designed as a nonlinear probabilistic control system, which is the same as the close-range tracking

yaw controller and detailed in the following section. The only difference is that a magnetometer
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is used to read the current heading in the long-range and the vision system provides the estimated

heading angle during close-range tracking. The nonlinear roll control input is shown in Fig. 3.5.

Figure 3.5: Exponential nonlinear roll control input [2] [3]

Depending on the constant value a, the rate of change of control magnitude varies. In the roll

controller case, constant a is selected as 0.0158. The maximum and minimum control magnitudes

are limited to 100 and -100, respectively. Even though it utilizes only the error at time t, it can min-

imize the overshoot around the setpoint where the error is zero by decaying quickly. On contrary,

it yields a large control magnitude as the error becomes larger.

In the case of a slow update rate, the nonlinear controller is able to achieve stable setpoint track-

ing. The effect of the nonlinear roll controller is compared to the conventional linear proportional

controller and PID controller as shown in Fig. 3.6.

It demonstrates that the nonlinear controller can prevent the system from overshooting the

setpoint. However, the linear proportional controller cannot stabilize the oscillations because it

computes the control input by multiplying the error with a fixed gain value. Even the linear PID

controller is not able to stabilize the oscillations in an effective fashion due to the slow update rate.

However, as seen from Fig. 3.6, the nonlinear controller has some steady-state error. Consider-

ing the long distances at which the nonlinear controller is engaged, the steady-state error is not an
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Figure 3.6: Effect of exponential nonlinear Controller [2] [3]

issue because this is not the final error of the entire approach and landing maneuver, but the initial

error for the corner tracking system, which takes over the control at close distances. Therefore,

it is more imperative to control the aircraft stably than to achieve the minimum steady-state error

while the UAV is approaching from a long distance.

3.2.2 Close-range Tracking Controller

At close range, when the vision system can reliably detect the corners of the rectangles on

the visual cue, the vision-based controller utilizes the estimated relative position and orientation

data to yield control inputs. The average update rate is 0.03 seconds, which is significantly faster

than the machine learning object detection that is applied at long distances. Having integral and

derivative controllers along with the proportional controller enables precise tracking. Even though

the estimation provides accurate position and orientation data with sub-centimeter and sub-degree

error, a small error difference between subsequent time steps can yield large and noisy control

magnitude since it depends on the difference in error divided by the small update rate of 0.03

seconds. To take advantage of the derivative controller with minimum noise, the Kalman filter and

nonlinear derivative controller are designed.

A single state Kalman filter is applied with the unity feedback, which means that it does not

require the prediction from the model. This model-free estimator reduces the noise, however, it
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uses error difference values for estimation. Therefore, it will be affected by incorrect and unrealis-

tic error difference values that may occur from time to time. To reject this intermittent unrealistic

estimation effectively, a novel nonlinear derivative controller with linear proportional and integral

controllers is designed by utilizing the normal distribution concept as described in Eq. (3.3).

de(tk) =e(tk)− e(tk−1)

u(tk) =KP e(tk) +KI

k∑
k=1

e(tk)dtk +KD

{
de(tk)

}de(tk)
dtk

(3.3)

de(tk) is an error difference between time tk and tk−1, and u(tk) is a control law that has linear

proportional and integral terms as well as the nonlinear derivative term. KP and KI are constant

proportional and integral gains, and KD{de(tk)} is the nonlinear derivative gain that is a function

of error difference, de(tk), as specified in Eq. (3.4).

f(x) =
1√

2πσ2
e−0.5

(x−µ)2

σ2

KD

{
de(tk)

}
= be−0.5

(de(tk)−µ)
2

σ2

(3.4)

f(x) is the probability density function that forms a normal distribution. σ denotes the standard

deviation and µ denotes the mean value. The area under the function indicates the probability that

a certain range of deviation occurs. The probabilistic nonlinear derivative controller is constructed

by taking the exponential term from the probability density function and multiplying constant b

that determines the control magnitude. Based on the observation of aircraft movement, σ is deter-

mined as 0.04, which means the distance that the aircraft can move during 0.03 seconds has a 68.2

percent chance of being within 4 cm and a 95.4 percent chance of being within 8 cm. When b is 1

and µ is 0, the probabilistic nonlinear derivative controller computes derivative gains as shown in

Fig. 3.7.

Depending on the error difference, de(tk), the corresponding nonlinear derivative gain, KD, is

selected and multiplied by the derivative term de(tk)/dtk. If the estimated error difference is too
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Figure 3.7: Probabilistic nonlinear derivative controller gain [2] [3]

high (or unrealistic), then it takes a small KD value to significantly minimize the control input.

In this way, the controller does not respond to the large noise in the error data, which can trigger

undesired and unstable maneuvers. Also, the magnitude of gain can vary according to the selection

of constant b in Eq. (3.4). The effects of the Kalman filter and the probabilistic nonlinear controller

are shown in Fig. 3.8.

Red circles denote the control magnitude of the linear derivative controller without the Kalman

filter. The high noise that occurs in the range of 0 to 10 seconds are due to the derivative term,

de(tk)/dtk. This term is sensitive because the error is divided by a small dtk, which has an average

value of 0.03 seconds. Thus, even a small error in estimation can be magnified in the derivative

controller. The green line is the result after applying the Kalman filter to the linear derivative

controller. The noise is reduced, however, it still yields large control inputs in response to the

incorrect estimation values. The blue line shows the control inputs generated by the probabilistic

nonlinear controller with the Kalman filter and these inputs are relatively small and insensitive to

the large unrealistic error differences. At the 6.5 second mark, the error difference de has a large
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Figure 3.8: Effect of Kalman filter and probabilistic nonlinear derivative controller [2] [3]

value caused by incorrect estimation. In this case, the linear derivative controller with the Kalman

filter reduced the magnitude to some extent but it is still affected by that particular spurious error

value. However, the probabilistic nonlinear controller with the Kalman filter is able to screen out

the wrong value, thereby minimizing the effect of incorrect error estimation. The finally selected

gains through extensive flight tests and simulations are specified in Table 3.4.

Table 3.4: Selected gains for nonlinear controllers

Mode Controller KP KI KD

b µ σ

Corner Points Tracking
pitch 7.5 0.05 4.5 0.02 0.04
roll 7.5 0.01 8.5 0 0.04

heave 15 0.01 7 0 0.02
yaw 5.5 0.05 1.75 0 5
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3.3 Reinforcement Learning Control Strategy

Designing a conventional feedback control system requires a detailed model of the underlying

system and computationally expensive procedures for finding a control policy that can achieve the

desired objectives. Adaptive control approaches [59, 60, 61] can learn a control policy without the

explicit system models. However, they require approximations of the uncertainties that can oc-

cur, and this approximation adds additional parameters that make the algorithm more complicated.

The more advanced way of finding the optimal control strategy is by learning approaches. Online

learning methods [62, 63] can learn the flight dynamics in real-time. However, their control capa-

bilities are limited to the situations they experienced during the training/learning session, thus any

inexperienced events can degrade the performance. There are also offline learning methods such

as supervised learning [64, 65] and reinforcement learning [41, 44, 66]. The supervised learning

method requires a large number of states and action data to learn the proper control strategy for

different scenarios. It is difficult to obtain such a large amount of quality data and the capability of

the method cannot surpass the training set’s control quality since it learns from the provided data.

We propose an RL-based control strategy for VTOL UAVs.

3.3.1 Reinforcement Learning Overview

Reinforcement Learning is a very intuitive state-of-the-art machine learning-based approach

for finding the optimal control policy for an unknown dynamical system. In this approach, an

agent interacts with an environment to learn the best action for any given state. After executing

each action, the agent receives a reward and the system evolves to the next state. The primary

objective of the agent is to learn the optimal policy that can maximize the cumulative rewards.

Mathematically, a policy π ∈ Π is a function that maps state s ∈ S to an action a ∈ A, where Π

is the policy space, S is the state space, and A is the action space. The transition probability model

P (st+1 | st, at) determines the dynamics of the system. At each timestep, policy π determines an

action to be taken and the agent receives a reward r(st, at) from the environment. The policy can

be stochastic π(a, s) (probability of taking action a in state s) as well as deterministic π(s). The
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agent tries to maximize the cumulative discounted reward Rt(s) =
∑T

i=t Γ(i−t)r(si, ai) of state

s from time t to T . The T can be finite value (finite horizon episodes) or infinite value (infinite

horizon episodes). The parameter Γ is know as discount factor that determines the importance

of future rewards. The two other important terms in RL formulation is the value function V π and

action-value function or Q-functionQπ. Value function is the expectation of discounted cumulative

reward for a state s, defined as V π(s) = Eπ[Rt(s) | s]. The optimal policy π∗ can be expressed as

one which maximizes the value function, π∗(s) = arg maxπ V
π(s).

3.3.2 Algorithm Selection

Robotic problems in general are associated with continuous state space and continuous action

space. With the advancement in deep neural networks over the years, combining RL with deep

learning shows impressive learning results. A deep version of Q-learning (DQN) algorithms has

been successful in playing video games [67, 68]. Two key features of DQN are the experience re-

play and a target network. The experience replay stores prior experience (s, a, r, s′, a′) in a buffer

and randomly select one for updating Q-value network. Target network helps in target remaining

unchanged during several gradient updates. However, DQN algorithms were not successful in con-

tinuous action-continuous states space. Policy gradient algorithms are more useful in continuous

action-continuous states space problems. Deep deterministic policy gradient (DDPG) algorithm

[69] can operate over continuous action and state spaces and it uses experience replay and slow-

learning neural networks of the double Q learning. Particularly for the control of a UAV, DDPG has

demonstrated its successful implementations [44]. In this study, an improved version of DDPG,

twin delayed DDPG (TD3) [70, 71], is selected as the RL algorithm.

TD3 learns two Q-functions Qφ1 and Qφ2 by mean square Bellman error minimization. It adds

clipped noise to actions that make the policy difficult to extract the Q-functions. The target action

is obtained as described in Eq. (3.5).

a′(s′) = clip(πθtarg(s
′) + clip(ε,−c, c), alow, ahigh), ε ∼ N(0, σ) (3.5)
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πθtarg(s
′) is the target policy and alow < a < ahigh is the valid action range. This is known as

target policy smoothing which essentially serves as regularizer for the algorithm. TD3 updates

the policy less frequently than the Q-functions. Both Q-functions use the same target y(r, s′, p) (p

indicates whether state s′ is terminal state or not) which is the calculated using the smaller Q-value

among the two Q-functions as given in Eq. (3.6).

y(r, s′p) = r + Γ(1− p) min
i=1,2

Qφtarg,i(s
′, a′(s′)) (3.6)

The two Q-functions are then optimized by using the following two loss functions (mean

squared Bellman error function) given in Eqs. (3.7) and (3.8).

L(φ1, D) = E[(Qφ1(s, a)− y(r, s′, p))2 | (s, a, r, s′, p) ∼ D] (3.7)

L(φ2, D) = E[(Qφ2(s, a)− y(r, s′, p))2 | (s, a, r, s′, p) ∼ D] (3.8)

φ1 and φ2 are network parameters and D is the replay buffer.

3.3.3 Training Procedure

The objective of the RL control strategy is for the UAV to stably hover and fly as desired against

sudden wind gusts. To obtain an RL control policy that is effective in such a challenging condition,

training is conducted in a realistic Gazebo simulation environment along with the precise UAV

model as shown in Fig. 3.9.

During the training session, an agent takes some set of actions in an environment to achieve

a particular task. The agent is a UAV that decides actions based on the rewards by using neural

networks. The quality of those actions is quantified by user-defined rewards that are assigned in

the environment and the better sets of actions to achieve the task will acquire higher cumulative

rewards. A particular period that the agent takes for a set of actions by the RL control policy is

called an episode. As the episode continues, the control policy keeps getting updated according to

an RL algorithm and the cumulative rewards will be converged to a certain value.
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Figure 3.9: Schematic showing the training process for reinforcement learning [3] [4]

To develop a successful RL control strategy, there are key requirements which are: (1) a precise

model of the agent, (2) a realistic simulation engine, (3) an appropriate selection of states, (4)

careful reward engineering, and (5) a powerful RL algorithm.

First, a commercial off-the-shelf (COTS) quadrotor UAV, Parrot Anafi, is used for this study.

Along with the physical UAV, the precise UAV model(agent) that can be used in the Gazebo simu-

lation is provided. Second, Gazebo is a realistic simulation engine that is widely used for robotics

applications. It has closely simulated the real flight dynamics. The agent can communicate with

the simulation engine using a framework called Olympe. Olympe allows the control of UAV and

access to its sensors through python scripts.

3.3.3.1 Action Space

The UAV has four different control actions: Roll, Pitch, Yaw, and Heave. It is observed in the

simulation that roll and pitch actions were heavily influenced by the wind as compared to the yaw

and heave actions. Hence the roll and pitch actions are chosen to be part of the action space. It is
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worth noting that for the given UAV, the roll and pitch actions are independent of each other. Roll

action only makes the UAV move right and left, while pitch action only makes it move forward

and backward. Taking advantage of this uncoupled behavior, it is decided to split the 2-D action

space into two 1-D action spaces. Two independent RL models were trained for roll and pitch

controllers, respectively. This not only helps in reducing the dimension of the action space but

also reduces the dimension of the state space used for the independent models. The splitting of the

two controllers helps in reducing the complexity of the policy network and hence resulted in faster

training and better convergence.

3.3.3.2 State Space

As mentioned earlier, the mission objective of the UAV is to achieve a target point and hover

at that position in the presence of wind. So the position of the UAV is an obvious choice as a

state. Since the action space is 1-D, the position state is also 1-D that is the position along the

respective action axis for each controller. The roll controller objective is to achieve a certain target

on the roll axis and maintain that position without considering the pitch motion. Similarly, for the

pitch controller, the objective is to maintain a position on the pitch axis independent of the roll

motion. Also, velocities are included as states, which can take an action quickly responding to

velocity changes before the drift becomes large. Finally, the history of position and velocity are

also selected as states for both roll and pitch controllers, which allows determining actions based

on current states and trends.

To verify the effect of selected states, three different sets of states as shown in Table 3.5 are

modeled for pitch control and roll control individually and applied for learning.

Table 3.5: Models with different sets of states

Model No. Model 1 Model 2 Model 3

States for pitch control [x]t [x, vx, vy]t [(x, vx, vy)]t−i where i = 0 to 5

States for roll control [y]t [y, vx, vy]t [(y, vx, vy)]t−i where i = 0 to 5
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x and y are the deviations along the x-axis and the y-axis, respectively. vx and vy are the

velocities along the x-axis and the y-axis, respectively. t is the current time, thus model 3 is also

taking five previous deviations and velocities as states.

3.3.4 Domain Randomization

In most of robotics design, one of the difficult problem is how to make your model transfer to

the real world. Due to the sample inefficiency of deep RL algorithms and the cost of data collection

on real robots, we often need to train models in a simulator which theoretically provides an infinite

amount of data. However, the reality gap between the simulator and the physical world often leads

to failure when working with physical robots. The gap is caused by an inconsistency between

physical parameters and by incorrect physical modeling. In this case, we need to model different

kinds of wind so as to make it robust. Also the estimation error and delays caused in the vision

system should be taken into consideration to make it more close to the real scenario.

During the training, the simulation engine imposes four different kinds of wind conditions:

zero wind, constant magnitude wind (-10 m/s to 10 m/s), sudden wind magnitude change (-10

m/s to 10 m/s magnitude change), and a sinusoidal wind (amplitude of 5 m/s and time periods

of 10 secs, 20 secs, 30 secs, 40 secs and 50 secs). These four different conditions were applied

among different episodes. The idea here is that this makes the agent learn proper control actions

for various wind scenarios. This is known as domain randomization and it has been an active area

of research in RL [72]. It is observed that headwind affects the forward drift and crosswind affects

the sideward drift. Hence crosswinds are applied for roll controller training and headwinds are

applied for pitch controller training.

The estimation of relative distances and velocities from the vision system is prone to errors

depending on how far the camera is located from the visual cue. Hence state randomization is

included during the training. An addition Gaussian zero-mean noise is added randomly to each

state estimation whose variance depends on the relative distance from the target point. And on top

of this, the delays between each time-step are also randomized. For the vision system, there is a

delay of 0.04s to 0.1s between two frames, and that information is encoded during the training.
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3.3.4.1 Reward Function

Reward functions are very important in the RL framework. A proper design of the reward func-

tion can yield a better convergence rate and good performance in the testing phase. A normalized

reward function is opted here, which penalizes every action based on the deviation from the target

point as well as the action values and change in successive action values. The reward function is

carefully designed to represent the control objective in numbers as shown in Eq. (3.9).

Reward =



−(1/20)× |adiff | − (1/10)× |a| if |d| ≤ 0.1

−2× |d| − (1/20)× |adiff | − (1/10)× |a| if 0.1 ≤ |d| ≤ 0.4

−1 if 0.4 ≤ |d| ≤ 4

−(Tmax − Tinside) if |d| > 2

(3.9)

d denotes the deviation along the x-axis for the pitch control case and the deviation along the

y-axis for the roll control case. adiff is the difference in current action value and average of past 5

action value and a is the current action value. Tmax is the maximum episode time and Tinside is the

time that the UAV stays within 2 meters from the hovering point. Thus, it can accumulate higher

rewards (less negative) as it stays closer to the point. In other words, it will get more penalties as

it deviates from the point. One episode ends if the deviation is greater than 2 meters and a new

episode is started. Thus, the reward written by the time factor, −(Tmax − Tinside), is acquired only

once in the unsuccessful case. The idea here is that rather than exploring unnecessary states, it is

better to give the future cumulative rewards in one step. This helps in maintaining the consistency

of episodic rewards. In each episode, the UAV is spawned at a random position near the origin.

Apart from the other common RL control strategies, the episode does not end even though the UAV

achieves the target position. Instead, it is designed to continue maintaining the position until the

end of the episode time, which can allow sufficient time to learn the proper control actions.

Successful training is heavily dependent on the selection of an RL algorithm. One of the

modern policy gradient algorithms, TD3 is used for the study. The applied hyper-parameters that
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control the learning process are given in Table 3.6.

Table 3.6: Selected hyper-parameters for training

Gamma 0.99 policy delay 2

learning rate 0.0001 target policy noise 0.2

buffer size 100000 target noise clip 0.5

3.3.4.2 Convergence

The training convergences of pitch and roll control cases are shown in Figs. 3.10 and 3.11,

respectively.

Figure 3.10: Training convergence of different models for the pitch control case [3] [4]

In both the pitch and roll control cases, model 3 converges to the higher accumulated reward

value and learns faster than the other models on average. It demonstrates that taking previous

positions and velocities as states is helpful, which is designed based on the intuition that neural

networks can decode the wind gust information from those states. The obtained control policy is

used in the simulations and flight tests.
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Figure 3.11: Training convergence of different models for the roll control case [3] [4]

The system used for training is LENOVO Legion Y740-15IRH, which is composed of Intel(R)

Core(TM) i7-9750H CPU @ 2.60GHz, 2592 Mhz, 6 Cores, and 12 Logical Processors. It features

an integrated NVIDIA GeForce GTX 1660 Ti 6GB Graphics and 8GB of LPDDR4 memory with

a 128-bit interface. The Ubuntu 18.04 OS with Nvidia driver version 440 and CUDA version 10.2

are used. The same system is used for flight simulations and testing.

3.4 Simulation Results

In order to verify the disturbance rejection capability of RL controller in challenging situations,

different wind conditions are simulated in the simulation engine and are compare with a PID con-

troller while the UAV is hovering. The sideward and forward drifts as well as the control inputs are

compared here. In the next steps, wind conditions are imposed on the UAV while it is landing on a

stationary platform as well as moving platform. The performance of the RL controller is compared

with the previously developed nonlinear PID-based feedback control system with the Kalman filter

based of the forward and sideward drift throughout the flight till landing. The simulated UAV and

Gazebo simulation program is shown in Fig. 3.12.
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Figure 3.12: Simulated UAV (agent) and Gazebo simulation environment [3] [4]

3.4.1 Case-1: Hovering in absence of wind

The UAV is hovering and there are no wind or any kind of disturbance imposed in this case.

The control magnitude and UAV is recorded for 40s of flight. As can be seen from the figures

3.13a and 3.14a, there is almost zero deviation just like the PID. The RL control magnitudes are

also similar to PID control magnitudes shown in 3.13b and 3.14b.

(a) Forward drift (b) Pitch control magnitude

Figure 3.13: Forward drift and Pitch magnitude for case-1
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(a) Forward drift (b) Pitch control magnitude

Figure 3.14: Sideward drift and Roll magnitude for case-1

3.4.2 Case-2: Hovering at sudden cross wind gust

In this case, a sudden 5m/s cross wind (90◦) with respect to heading of UAV) is applied at 8

second mark and its stays the same for next 16 seconds. After that the wind goes back to zero. The

wind function used here is a step function which instantaneously changes from 0 to 5 at 8 seconds

and then back to zero at 24 seconds.

(a) Forward drift (b) Pitch control magnitude

Figure 3.15: Forward drift and Pitch magnitude for case-2
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(a) Forward drift (b) Pitch control magnitude

Figure 3.16: Sideward drift and Roll magnitude for case-2

The instantaneous change in wind caused 3 times lesser sideward drift in RL controller case

than the PID controller. And also the RL immediately corrected the drift in mere 2 seconds while

the PID controller couldn’t do it in next 16 seconds. The roll control magnitudes also shoots up

when the wind is applied. The forward drift and pitch controller magnitudes are similar to case-1.

3.4.3 Case-3: Hovering at sudden head wind gust

In this case, a sudden 5m/s head wind (0◦) with respect to heading of UAV) is applied at 8

second mark and its stays the same for next 16 seconds. After that the wind goes back to zero. The

wind function used here is a step function which instantaneously changes from 0 to 5 at 8 seconds

and then back to zero at 24 seconds.

The instantaneous change in wind caused 3 times lesser forward drift in RL controller case

than the PID controller. And also the RL immediately corrected the drift in mere 2 seconds while

the PID controller couldn’t do it in next 16 seconds. The pitch control magnitudes also shoots up

when the wind is applied. The sideward drift and roll controller magnitudes are similar to case-1.
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(a) Forward drift (b) Pitch control magnitude

Figure 3.17: Forward drift and Pitch magnitude for case-3

(a) Forward drift (b) Pitch control magnitude

Figure 3.18: Sideward drift and Roll magnitude for case-3

3.4.4 Case-4: Hovering at sinusoidal cross wind

The UAV is hovering the presence of sinusoidal cross wind (90◦) which has an amplitude of

5m/s and a time period of 20 seconds. The wind is present throughout the flight. The total flight

time is 80 seconds.

The maximum sideward drift in RL controller is less than 20 cm and it is 10 times smaller than

the sideward drift happening in the PID controller. The RL roll control magnitude as well as PID
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(a) Forward drift (b) Pitch control magnitude

Figure 3.19: Forward drift and Pitch magnitude for case-4

(a) Forward drift (b) Pitch control magnitude

Figure 3.20: Sideward drift and Roll magnitude for case-4

roll control magnitude follows a sinusoidal pattern just like the sinusoidal wind. The sinusoidal

pattern in the control magnitude has a time period around 20 seconds which is same for the wind

pattern. The forward drift and pitch controller magnitudes are similar to case-1.

3.4.5 Case-5: Hovering at sinusoidal head wind

The UAV is hovering the presence of sinusoidal cross wind (0◦) which has an amplitude of

5m/s and a time period of 20 seconds. The wind is present throughout the flight. The total flight
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time is 80 seconds.

(a) Forward drift (b) Pitch control magnitude

Figure 3.21: Forward drift and Pitch magnitude for case-5

(a) Forward drift (b) Pitch control magnitude

Figure 3.22: Sideward drift and Roll magnitude for case-5

The maximum forward drift in RL controller is less than 20 cm and it is 10 times smaller than

the forward drift happening in the PID controller. The RL pitch control magnitude as well as PID

pitch control magnitude follows a sinusoidal pattern just like the sinusoidal wind. The sinusoidal

pattern in the control magnitude has a time period around 20 seconds which is same for the wind

pattern. The forward drift and pitch controller magnitudes are similar to case-1.
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3.4.6 Case-6: Hovering at sinusoidal wind in varying direction

The UAV is hovering the presence of sinusoidal wind which has an amplitude of 5m/s and a

time period of 20 seconds. The wind changes its direction from 0◦ to 360◦ in every 40 seconds.

The wind is present throughout the flight. The total flight time is 80 seconds.

(a) Forward drift (b) Pitch control magnitude

Figure 3.23: Forward drift and Pitch magnitude for case-6

(a) Forward drift (b) Pitch control magnitude

Figure 3.24: Sideward drift and Roll magnitude for case-6
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The maximum forward drift and sideward drift in RL controller is less than 20 cm and it is

10 times smaller than the forward drift and sideward drift happening in the PID controller. The

RL pitch and roll control magnitude as well as PID pitch and roll control magnitude follows a

sinusoidal pattern just like the sinusoidal wind. The sinusoidal pattern in the control magnitude

has a time period around 20 seconds which is same for the wind pattern.

3.4.7 Case-7: Landing on a stationary platform

The developed vision system is used for the estimation of state in this case. The non-linear

controller is configured for the landing on a stationary platform in the absence of wind. The non-

linear controller is compared with RL controller in absence and presence of wind.

(a) Forward drift (b) Sideward drift

Figure 3.25: Forward drift and Sideward drift for landing on stationary platform in absence of wind

From Fig.3.25a and Fig. 3.25bshows RL controller makes landing much faster than the PID

controller. Fig. 3.26a and Fig. 3.26b shows PID was not able to make the landing while RL

controller easily makes the landing.

Fig. 3.27a and Fig. 3.27b shows that RL controller comfortably makes landing in all kinds of

wind scenarios

59



(a) Forward drift (b) Sideward drift

Figure 3.26: Forward drift and Sideward drift for landing on stationary platform in presence of
wind

(a) Forward drift (b) Sideward drift

Figure 3.27: Forward drift and Sideward drift for landing on stationary platform in different wind
scenarios
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4. FLIGHT TESTING

1 Extensive flight tests are carried out to demonstrate the novel autonomous ship landing

methodology in practice. The specific objectives are to prove the safety of a vertical landing,

regardless of platform movement, and to demonstrate the tracking ability and precision of the

landing. This chapter divides the flight testing into three sections based on the objectives and

each section includes detailed results obtained from the implementation of gain-scheduled PID

control system, nonlinear control system, and deep reinforcement learning-based control system.

Throughout the flight tests, the quad rotor UAV that has a gimballed camera has been used. How-

ever, the visual cue and the landing platform have progressed during the course of the project. In

the earlier phase of flight testing, a checkerboard pattern visual cue is used along with a landing

platform that has a fixed landing pad. Later, the horizon bar visual cue is structured to the ship

platform that has a motion deck. Regardless of visual cues, platforms and control systems, au-

tonomous flight shares the same process as shown in Fig. 4.1. It has a built-in (on-board) internal

loop autopilot that controls the speed of each propeller to achieve the commanded inputs generated

by the outer loop’s vision-based control system(off-board).

Figure 4.1: Process of autonomous flight system[1] [2] [3]

1The chapter has been adapted or reprinted from recent publications [1] [2] [3] [4].
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The UAV is controlled by a Python script that runs on an external base station computer. The

external computer communicates with the UAV through the WIFI connection. The UAV transmits

raw images captured by the onboard camera to the computer in real-time. Then, the computer

processes the images to provide perceived visual information. The image resolution used is 1280

x 720p and this affects the effective range for detection and estimation. Once the perceived vi-

sual information is fed into the feedback controller, it yields the corresponding command inputs

which are roll, pitch, throttle (heave), and yaw. The commands are sent back to the UAV and

then the embedded inner-loop autopilot controls the rotating speed of each propeller to achieve the

commanded inputs.

The system used for processing is LENOVO Legion Y740-15IRH, which is composed of In-

tel(R) Core(TM) i7-9750H CPU @ 2.60GHz, 6 Cores, and 12 Logical Processors. It features an

integrated NVIDIA GeForce GTX 1660 Ti 6GB Graphics and 8GB of LPDDR4 memory with a

128-bit interface. The Ubuntu 18.04 with Nvidia driver version 440 and CUDA version 10.2 are

used. The WIFI communication is established by an external TP-LINK TL-WN722N Wireless

N150 High Gain USB Adapter.

4.1 Experimental Setup

To simulate the 6 DOF motions of the ship deck, a Servos and Simulation Inc Generic Motion

System (model 710-6-500-220) with a 1.22 x 1.22 meters (4 × 4 feet) landing deck as shown in

Fig. 4.2. The ranges of roll, pitch, and yaw are ± 13◦, ± 15◦, and ± 16◦, respectively. The ranges

of surge, sway, and heave are ± 1.02 meters, ± 1.02 meters, and ± 0.64 meters, respectively.

A sub-scale ship platform is constructed including the horizon bar and motion deck as shown in

Fig. 4.3. The width, height, and length of the ship platform are 5 ft, 5 ft, and 10 ft, respectively. The

horizon bar always indicates a perfect horizon, and the motion deck has its own 6 DOF motions in

addition to the forward translational motion, which is similar to what would be experienced on a

real ship. This setup has been used for the nonlinear control system and RL-based control system.

In addition, as shown in Fig. 4.4, a drum fan is installed for generating the wind gust to

demonstrate the disturbance rejection capability of the developed RL control strategy. The fan
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Figure 4.2: Servos and Simulation Inc. 6 DOF motion system with 1.22 x 1.22 meters(4 × 4 feet)
Landing Deck [2] [3]

Figure 4.3: Constructed ship platform with horizon bar and motion deck [2] [3]

could generate a wind gust with a maximum speed of 5 m/s in any direction relative to the UAV

heading and flight path.

4.2 Ship Motions and Vertical Landing Safety

In order to demonstrate that it is safe to land vertically without matching the UAV attitude

dynamics to platform motion, landing tests are conducted while the 6 DOF platform is simulating
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(a) Diagonal wind testing setup (b) Crosswind testing setup

Figure 4.4: Disturbance rejection experimental setup [3] [4]

two challenging ship motions. The first prescribed motion is the Oliver Hazard Perry Class frigate

at the sea state of 6 and a wave direction of 60° introduced by Sanchez-Lopez, Jose Luis, et al.

[5]. The frigate is 136 meters long and 14 meters wide and has a single flight deck. Sea state 6

is defined by the World Meteorological Organization (WMO) as a very rough condition that has

a wave height of 4 to 6 meters [73]. While the platform is undergoing this complicated motion,

vertical landings are executed at random time instances as shown in Fig. 4.5.

Solid red, blue, and green lines denote continuous angular (pitch, roll, and yaw) and linear

(surge, sway and heave) motions of the 6 DOF platform. 50 landing tests are conducted in total

and the motion of the platform at the time of each successful landing are depicted as dots. The

randomly distributed landing timings demonstrate the vertical landing is safe at any moment of the

Oliver Hazard Perry Class FFG frigate ship motions under the given conditions.

The second prescribed motion is the Navy helicopter ship landing limits defined by NATOPS.

In the case of the FFG 7 Class Ships which the Oliver Hazard Perry frigate belongs to, the ship

motion limits for landing are set as ± 8° of roll and ± 3° of pitch. Even though the limits are

defined by the maximum roll and pitch magnitudes, the frequency of the motion is also a crucial

factor for the motions. According to the report for a similar size ship (length: 152.4 m, width: 15.2

m) motions conducted by the Sandia National Laboratory [30], the roll period is 10.1 seconds and

the pitch period is 6.5 seconds as shown in Table 4.1.
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Figure 4.5: Oliver Hazard Perry class frigate motion and vertical landing moments [2] [3]

The maximum pitch and roll magnitude with the reported periods are applied to the platform

and 50 vertical landings are conducted at random moments as shown in Fig. 4.6.

Solid red and blue lines denote continuous pitch and roll motions of the 6 DOF platform. The

dots are the motions at the time of successful landings. The randomly distributed landing timings
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Table 4.1: Typical ship characteristics by Sandia National Lab report

Ship Type Length Width Roll Period Pitch Period
(m) (m) (secs) (secs)

Destroyer 152.4 15.2 10.1 6.5
Aircraft Carrier 304.8 38.1 15.8 8.8

Figure 4.6: Motions of helicopter ship landing limits and vertical landing moments [2] [3]

demonstrate the vertical landings are safe independent of the motion as long as it is within the

operational limits.

4.3 Tracking Capability and Landing Accuracy

The tracking capability and landing accuracy of the developed vision-based autonomous flight

control system are verified in challenging situations such as random initial positions, maximum

distance of 250 meters, realistic ship motions, communication latency, sensor noise, low visibility,

and windy conditions. In this fully autonomous vision-based system, GPS and a magnetometer are

used only to log positions and heading angles and not for control. During flight testing, the landing

pad is mimicking the ship deck motions that are introduced in the previous section.
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First, flight tests are conducted to verify the maximum range and smooth transition between

flight modes. The trajectories are logged as shown in Fig. 4.7.

Figure 4.7: Trajectories of long-range tracking [2] [3]

The initial positions are widely distributed and the maximum distance between the UAV and

ship platform is approximately 250 meters. During flights, the flight modes are switched from the

ship platform/bar tracking to the corners tracking depending on the distance. The results demon-

strate stable long-range tracking capability in the presence of wind up to 3 m/s. The time history

of control inputs for a representative case is shown in Fig. 4.8.

It shows the control inputs, distances, and heading angle after take-off until the execution of

vertical landing. Each line denotes pitch, roll, heave, and yaw control inputs described as per-

centages that range from -100 to 100 and generated based on forward, sideward, vertical relative

distance, and relative heading angle, respectively. Zero control input means neutral control in-

put that maintains current UAV pose such as pitch, roll, altitude, and heading. While the UAV

approaches the ship platform from 250 meters away, the vision-based flight control system effec-
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Figure 4.8: Control inputs, distances, and heading angle during long-range tracking in time [2] [3]

tively flies the UAV by smoothly switching between the flight modes from the machine learning

object tracking for ship platform and horizon bar to the rectangle corner points tracking, depending

on the relative distance.
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Second, flight tests are conducted to verify the robust tracking while the ship platform is moving

in different courses with its own 6 DOF motions. The three representative trajectories are shown

in Fig. 4.9.

Figure 4.9: Trajectories of moving ship tracking [2] [3]

Red squares denote the trajectory of the ship platform and blue lines denote the trajectory of

the UAV. It shows robust tracking while the ship platform is moving in straight, S-pattern, and 90◦

turn. The control inputs for S-pattern moving platform tracking are shown in Fig. 4.10.

It shows the control inputs, distances, and heading angle after take-off until execution of verti-

cal landing while the UAV is tracking the ship platform moving in an S-pattern. The pitch control

input is generated to approach the ship platform that varies its speed from 0 to 4.5 m/s (10 mph).

Since the ship platform changes the course abruptly up to 130◦, the relative sideward distance and

heading also change to a great extent. Accordingly, the corresponding roll and yaw control inputs

change aggressively to achieve zero relative sideward distance and heading. Vertical landings are

conducted once the UAV flies into the 0.35 x 0.35 meters landing threshold while the ship platform

is in motion. The different flight test cases are shown in the video [74].
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Figure 4.10: Control inputs, distances, and heading angle of moving ship tracking in time [2] [3]

4.4 Disturbance rejection for diagonal wind gust case

Flight tests are conducted to demonstrate the disturbance rejection capability of the RL con-

trol strategy when the wind gust is suddenly imposed. During flight testing, the fan generates a

70



5 m/s wind gust at an angle of 45 degrees with respect to UAV heading while the UAV tries to

autonomously approach and land on the ship platform. The performances of the developed non-

linear PID-based feedback control system with the Kalman filter and the deep RL control strategy

are compared based on the sideward drift. The control inputs and the sideward drift using the RL

control strategy are also examined. The sideward drift while using the nonlinear PID control and

the RL control for the diagonal wind gust case is shown in Fig. 4.11.

Figure 4.11: Sideward drift for the 5 m/s diagonal wind gust case [3] [4]

The flight tests using the nonlinear PID control experience more than 2 meters of sideward drift

and fail to land on the landing deck. However, the RL control strategy demonstrates less than 1.5

meters of sideward drift and successfully lands on the deck repeatedly.

The relative distances and control inputs of successful RL control strategy are shown in Fig.

4.12. RL controller demonstrates robust tracking by rejecting the diagonal wind gust effectively

from about 6 meters distance from the landing deck. Also, it keeps the sideward drift below 1

meter during approach and landing by actively commanding the roll control inputs of high mag-
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nitude and frequency. The trained control policy yields control inputs by deep neural networks

that consider the current and 5 previous positions and velocities. Therefore, for an RL controller,

it is not possible to explicitly correlate the relationship between the states and actions. However,

the flight tests clearly demonstrated that the RL control effectively rejected the disturbance while

approaching and landing.

(a) Forward relative distances and pitch control inputs(b) Sideward relative distances and roll control inputs

Figure 4.12: Disturbance rejection of reinforcement learning control for the 5 m/s diagonal wind
gust case [4] [3]

4.5 Disturbance rejection for crosswind gust case

Flight tests are also conducted to demonstrate the disturbance rejection capability of the de-

veloped RL control strategy in a more challenging condition. During these flight tests, the fan is

installed perpendicular to the approach course so that it experiences a sudden 5 m/s crosswind gust

while approaching and landing on the ship platform. The performance of the deep RL-based con-

trol strategy is compared with the nonlinear PID and Kalman filter-based feedback control system

in terms of the sideward drift and control inputs. The sideward drift of the nonlinear PID control

and RL control in the sudden crosswind case is shown in Fig. 4.13.

This sudden crosswind affects the sideward drift in both cases. The nonlinear PID control fails
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Figure 4.13: Sideward drift for the 5 m/s crosswind gust case [3] [4]

to reject the disturbance quickly enough, and therefore, the UAV loses the visual cue at approxi-

mately 8.5 seconds. On the other hand, the RL control keeps the sideward drift below 1.5 meters

and successfully lands on the deck repeatedly.

The relative distances and control inputs of the RL control strategy are shown in Fig. 4.14. The

RL controller demonstrates robust tracking by rejecting the crosswind gust effectively at 6 meters

distance from the landing deck. It has a limited effect on forward drift but a distinguishable effect

on sideward drift due to the direction of the wind. The pitch control inputs are mainly commanded

to move forward in such a wind condition and the roll control inputs are commanded to minimized

the sideward drift caused by the wind gust. It kept the sideward drift below 1.3 meters during the

approach and landing phases.
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(a) Forward relative distances and pitch control inputs(b) Sideward relative distances and roll control inputs

Figure 4.14: Disturbance rejection of reinforcement learning control the 5 m/s crosswind gust case
[3] [4]

4.6 Landing Accuracy

In the cases of landings on the sub-scale ship platform, the safe landing boundary is set by a 35 x

35 centimeters square from the deck center considering the UAV size, landing deck size, and safety

margin. Therefore, once the UAV reaches the landing boundary the controller commands vertical

landing while the deck is in motion. The final landing points are collected from the multiple flight

tests of tracking a ship in long distance with random initial positions, different initial heading

angles, and different weather conditions. As shown in Fig. 4.15, they are distributed randomly

within the set landing boundary.

The final landing points are also collected from the multiple flight tests of tracking a ship that

is dynamically moving in forward, S-pattern, and 90◦ turn. They are distributed within the set

landing threshold as shown in Fig. 4.16.
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Figure 4.15: Landing points on pad of long-Range tracking [2] [3]

Figure 4.16: Landing points on pad of moving ship platform [2] [3]

The final landing points are also collected from the multiple flight tests of tracking a ship in

the presence of wind gust where reinforcement learning control strategy is implemented. While
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approaching and landing, 5 m/s diagonal wind (45◦) and cross-wind (90◦) are suddenly imposed

by a drum fan as shown in Fig. 4.4 of the experimental setup section. They are distributed within

the set landing threshold as shown in Fig. 54.17.

Figure 4.17: Landing points on the deck for the different wind gust flight test cases [3] [4]
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5. SUMMARY AND CONCLUSIONS

1 The goal of this study is to improve the tracking and disturbance rejection capability of a

VTOL UAV while attempting to land on a ship deck by closely following the Navy helicopter ship

approach and landing procedure. The automation has been achieved by using a single onboard

camera without using GPS. The developed autonomous ship landing system consists of a hybrid

machine vision system and a robust control system. The machine vision system is developed

while taking advantage of state-of-the-art machine learning for long range tracking and classical

computer vision techniques for precise estimation and landing. The control system is developed

to generate situation-adaptive control inputs by introducing the idea of nonlinear gain variation

and a probabilistic approach to limit the impact of incorrect estimations and later made robust to

different kinds of disturbances by introduction of deep reinforcement learning strategy.

Extensive simulations and multiple flight tests were systematically conducted to verify the

tracking and disturbance rejection capability as well as the landing accuracy. The successfully

trained control policy was directly implemented on a quadrotor UAV and flight tests were con-

ducted. UAVs land vertically regardless of ship movement, much like a Navy helicopter lands on a

ship. Over 100 landing tests are successfully performed on a mobile deck that mimics the realistic

and challenging movement of a ship with 6 degrees of freedom. The machine learning object de-

tector begins identifying the 1.8 x 1.8 meters (6 x 6 feet) ship platform from 0.25 kilometers away.

The classical computer vision techniques allows precise landing with sub-centimeter accuracy.

The unique nonlinear control system demonstrates robust tracking capability during a wide range

of realistic scenarios such as random initial positions, complicated ship motions, communication

latency and sensor noise. The developed RL control demonstrated superior disturbance rejection

capability compared to a nonlinear PID control system. The RL control strategy was made robust

by introducing different wind scenarios and modelling the sensor noises and latency issues while

training.

1The chapter has been adapted or reprinted from recent publications [1] [2] [3] [4].
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Some of the key takeaways from this study are enumerated below.

1. The proposed VTOL UAV vertical landing approach, which is agnostic to the ship deck

motions, was verified as a safe way of landing. This was demonstrated through multiple

flight tests using a sub-scale landing platform mimicking challenging ship motions derived

from the NATOPS helicopter ship landing operational limits and Sandia National Laboratory

report (roll: ±8, pitch: ±3, roll period: 6.5 secs, pitch period: 10.1 secs).

2. The long-range vision system developed based on the state-of-the-art machine learning algo-

rithm YOLOv3 demonstrated a 10 times greater detection range than the classical computer

vision systems. The control system successfully utilized the detected object position and

relative size as states for long-range tracking.

3. The biggest challenge to implement the machine learning based object detection on the real-

time autonomous flight was the time delay. To cope with the time delay issue, a long-range

controller was constructed that responded less sensitively to errors around the setpoint and

aggressively to large errors, using an exponential variation of feedback gain with error. This

approach enabled the UAV to stay in the appropriate flight course while approaching the ship

platform.

4. The developed close-range vision system that combined the classical computer vision tech-

niques and screening algorithms guaranteed fast and reliable detection of the visual cue

and demonstrated precise relative position and orientation estimation. The update rate was

approximately 15 times faster than the machine learning vision system and therefore, the

control system was able to control the UAV more precisely using faster feedback.

5. Even after going through the configured Kalman estimator, large/false estimation error can

still occur from time to time. To prevent responding to such non-physical estimations, the

probabilistic nonlinear controller was developed. It probabilistically perceives if the estima-

tion is physically possible or not, based on the normal distribution curve and known UAV
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characteristics. Multiplying the estimation value by its probability can effectively reject re-

sponding to false estimations. By this approach, the controller never generated abrupt large

control inputs even when the vision system provided inaccurate estimations. This greatly

improved the robustness of tracking.

6. The roll and pitch control policies are individually trained by the RL algorithm. Using

this approach, the control action taken by the deep neural networks was set as only one

action (pitch or roll), which significantly reduced the training time and converged to higher

a cumulative reward at a faster rate. This was only possible because roll and pitch control

are uncoupled for a quad-rotor UAV.

7. The optimal set of states were identified by comparisons of different models. Out of the

three models analyzed, the model which used the history of position and velocity as states

has the best mean episodic reward convergence.

8. The normalized negative reward function that yields a value between -1 and 0 was finally

derived after multiple attempts with different reward functions. Also, it was designed to

receive a high negative reward only if the UAV drifts out of the boundary that is 2 meters

away from the setpoint. It was learned that even a high reward value for successful action

and a wide range of rewards could overestimate the actions taken and thus the training could

fail. The successful training was heavily dependent on the reward function design.

9. To learn the proper actions by the RL algorithm, various kinds of wind conditions were

imposed as the training episodes continued. The sensor noises and latency issues are also

modelled whole training. This was done as a part of domain randomization. The final trained

control policy obtained robust flight capability in challenging conditions.

10. In comparison with the nonlinear PID control system, the RL control demonstrated superior

disturbance rejection capability, which reduced lateral drift by 100% at a 10 times faster rate.

This is a crucial improvement that can ensure a safe approach and landing at the proximity
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of the ship where the airflow is highly turbulent and unpredictable.

11. The landing accuracy depends on the pre-defined landing threshold. The accuracy can be

increased by setting a smaller threshold. Considering the UAV and landing pad size, the

appropriate landing threshold of 0.35 x 0.35 meters was set and the UAV successfully landed

within this area every time during the 100+ flight experiments. The precise landing capability

of the RL control strategy in 5 m/s of sudden wind gusts was also verified through the flight

tests.

The results demonstrate conclusively the feasibility of this novel autonomous approach and

landing strategy for VTOL UAVs, which is inspired by the Navy helicopter ship landing. This is

a significant accomplishment since there are no known efforts in the literature, which focused on

automating the real helicopter ship landing procedure. The results also demonstrate the capability

of the deep RL control strategy for autonomous ship approach and landing for VTOL UAVs in

the presence of disturbances such as wind gusts. The study showed that this RL-based methodol-

ogy, if further developed, has the potential to significantly improve aircraft survivability in highly

challenging and unpredictable ship landing situations.

5.1 Challenges and Further Study

First and foremost, the automation of ship landing should be developed with its unique charac-

teristics in mind. This is a comprehensive task that requires not only landing on a moving platform

with 6DOF movements, but also following established procedures such as horizontal approach,

visual identification, and vertical landing without following deck movements. The perturbations to

aircraft dynamics induced by the unsteady wake from the ship super-structure should also be con-

sidered. Through the research, the overwhelming capabilities of the proposed method compared to

typical moving deck tracking methods have been demonstrated in terms of safety, accuracy, sim-

plicity, compatibility and operational efficiency. However, there exists technical areas that can be

improved as detailed below.

Current vision systems can recognize visual cues and estimate relative positions and heading
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of the UAV at close range very accurately, but you need to know the dimensions of the visual cues

and camera specifications in advance. This vision system can be used for a variety of visual cues.

However, if you want to use another visual clue, you need to change the parameters in the vision

algorithm. Therefore, it is advisable to use additional sensors such as light detection and distance

(LIDAR), radio detection and distance (RADAR), and infrared cameras. Lidar systems are useful

in close proximity because you don’t need to know the specific size and shape of a visual clue. In

addition, recent advances have introduced several COTS Lidar systems that can be conveniently

integrated into aircraft systems. To measure the relative distance, directional RADAR systems that

transmit a short radio pulse with very high pulse power can also be used. Infrared cameras that

use infrared (IR) radiation are effective at night or in poor visibility. Maritime VTOL-enabled

aircraft such as the SH / MH60, AW159, and V22 are equipped with a Forward Looking Infrared

(FLIR) system that provides visual information and distance to the target. Therefore, the use of

infrared camera sensors can be integrated into existing helicopters without the need for additional

sensors. Therefore, it is expected that the fusion of the current digital camera, Lidar, RADAR, and

the thermal camera can expand its operational capability and reliability.

The developed machine learning-based vision system demonstrated excellent detection of a

target ship in the long distance. Even though the YOLOv3 algorithm was carefully selected due to

its fast detection rate and good accuracy; however, its performance was not compared with other

algorithms. Therefore, a more systematic study on detection algorithms in such a ship landing

environment is recommended. The detection accuracy of machine/deep learning-based vision al-

gorithms surpassed the accuracy of human eyes in 2015 and the error was recorded as only 2.25%

in 2017. Since then, new algorithms have been developed to increase the detection speed while

maintaining the accuracy level. They typically measure the speed of detection from a recorded

video, thus the rate is evaluated based on how fast it can detect an object of interest once the image

frame is given. However, they still cause latency issues when integrated into the real-time flight

control system. Therefore, in order to identify the best algorithm, it is recommended to compare

the speed and accuracy of algorithms through flight testing. If the current machine learning based
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detection feedback rate of 0.5 seconds can be reduced to below 0.1 seconds, more rigorous control

strategies can be constructed to enhance the flight performance in the long distance.

It is very powerful to use the state-of-the-art deep reinforcement learning control strategy at a

close distance from the ship where the state feedback from the vision system is fast. It can quickly

respond to a sudden wind gust, thus the drift can be minimized better than other conventional con-

trol systems. Also, this is an area where fast and accurate control is important, thus machines can

perform better than human pilots by design. Even though the control policy obtained by train-

ing with TD3 algorithm with selected states and reward engineering demonstrated the improved

disturbance rejection capability compared to the nonlinear PID control system, more extensive

studies on deep reinforcement learning control algorithms, states, and rewards are recommended.

Proximal Policy Optimization (PPO), Trust Region Policy Optimization (TRPO), Soft Actor-Critic

(SAC), and Deep Deterministic Policy Gradient (DDPG) are some of the recommended candidate

algorithms worth trying for training. The current states are selected as positions and velocities

including their 5 previous values. However, the effect of taking the specific number of previous

data as states is not fully investigated, thus the number of previous data can be optimized during

further studies. Also, the other sets of states can be analyzed to identify the states that can obtain

a more effective control policy. After going through multiple trial and error processes, the current

reward function was developed. Nevertheless, It is expected that the current reward function could

be improved if the rewards are designed more distinctively to achieve the control task.

Also there is research being done on combining RL and conventional controller. RL shows

great potential in rejecting disturbances but it was never trained to track a moving platform. The

RL and conventional controller can work together to achieve landing on moving platform in highly

turbulent environments.The control system can be modified for obstacle avoidance and path plan-

ning. Currently the UAV is asked to move in a straight line to the target but this is not ideal in all

cases. Hence path planning can be considered for future research.
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It is recommended to take a different control strategy in the long-distance since it requires

comprehensive decision making to set an approach course due to several factors such as weather

condition, ship course, air and sea traffic, and so on. This is an area that the experienced pilot’s

decision-making ability is more important than quickly controlling an aircraft to achieve certain

setpoints. Moreover, it is nearly impossible to develop an explicit algorithm that can take into

account all possible scenarios. Thus, imitation learning-based control strategy can be a good ap-

proach for developing high-level control policies that encode the skills of human professionals.

A well-trained control policy behaves like an experienced pilot because this can be obtained by

learning from expert demonstrations in certain situations. Although the current experimental setup

simulated ship landing environment closely, it could be improved for larger-scale flight tests. It is

recommended to replace the current quadrotor UAV with a small helicopter UAV. The same au-

tonomous ship landing system can be implemented with minimum modifications. Since the small

helicopter UAV has similar configurations as existing helicopters such as rotors, landing gear, and

center of gravity position, the testing results can be appropriately scaled for full-size helicopter

ship landings. Thus, the effect of deck motions (magnitude and frequency) and wind gusts on

full-size helicopters can be estimated by considering the differences in vehicle inertial properties

and blade tip speeds. Once a small helicopter UAV successfully lands on a ship deck in properly

scaled motions, there will be more confidence to implement the system on a full-size helicopter at

sea.

To conclude, the application of developed novel autonomous vision-based approach and land-

ing method can be extended broadly since it demonstrated successful landings in one of the most

difficult moving platform landing cases, which is ship landing. Possible applications are landing

on stationary and moving platforms such as cars, tanks, trains, submarines, and aircraft. It is also

able to achieve precise approach and landing in GPS-denied environments such as inside a tunnel,

inside a building, under a bridge or forest canopy, etc.. Moreover, the same autonomous flight
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method can also be applied to other purposes such as air refueling, vertical replenishment, and

so forth with some modifications. It is expected that the novel autonomous ship landing method

and the results of this study are expected to have potential for use in a variety of areas beyond the

originally intended use.
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