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ABSTRACT

We introduce a new theoretical framework for optimizing second-order behaviors of

wireless networks as a core result of the dissertation. Unlike existing techniques for

network utility maximization, which only considers first-order statistics, this framework

models every random process by its mean and temporal variance. The inclusion of tem-

poral variance makes this framework well-suited for modeling various wireless channels.

Using this framework, we sharply characterize the second-order capacity region of wireless

access networks. We also propose a simple scheduling policy and prove that it can achieve

every interior point in the second-order capacity region.
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1. INTRODUCTION

Many emerging applications in the information-update system, such as industrial con-

nected and autonomous vehicles (CAVs), and Internet-of-Things (IoT), require the real-

time delivery of information. In those applications, the remote sensing problem has re-

cently attracted significant research interests due to its critical role. In remote sensing,

there are multiple sensors, i.e. Lidars in CAVs or temperature sensors of a machine in-

dustrial IoT, generating information updates about their respective surveillance fields and

sending these information updates to a control center. The control center then uses its

received information for real-time estimation of the current system state, so as to de-

termine the appropriate control actions. The control center needs to be able to make

accurate estimates of the system states at all times to ensure the safety and the efficiency

of the system. In another words, the performance of such applications is determined by

their ability to accurately estimate the real-time status of their respective information

sources, such as the route condition in CAVs, or temperature of a machine in industrial

IoT.

In our work, we study the problem of scheduling the transmissions of information up-

dates when the sensors and the control center communicate over a shared wireless band.

We notice two important features of remote sensing: First, because the surveillance fields

evolve with time, recent information updates are much more useful than stale ones. Sec-

ond, the control center may need multiple recent information updates to make an accurate

estimate, which is because the sensors and the surveillance fields are subject to noises,

and most estimation algorithms, even simple ones like linear extrapolation, require multi-

ple data points in the recent past. However, most existing network performance metrics,

ranging from traditional Quality-of-Service (QoS) metrics such as throughput, delay, and

jitter, to emerging ones like Timely-Throughput and Age-of-Information (AoI), fail to
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directly capture those features of the users’ estimation. Therefore, network algorithms

aiming at optimizing these network performance metrics may result in poor performance

for these emerging applications.

To address the need for such applications, we borrow the idea of a “confidence inter-

val” from statistics, and introduce a new metric called Confidence-in-Estimation (CiE).

In statistics, a small confidence interval means that the ground truth falls in a small

range around the estimate with a pre-specified probability, and therefore implies that the

estimate is accurate. We then aim to define CiE to reflect whether the network perfor-

mance of wireless information-update systems leads to small confidence intervals for the

end-user.

In our first work, we consider that each information source, generates information

updates periodically. The CiE of an information flow only depends on the number of

packets that are delivered on time in a window of the recent past. If the number of timely

deliveries in this window of the recent past is below a user-specified requirement, then

the resulting estimate will have a wide confidence interval, and we therefore say that this

flow suffers from a Loss-of-Confidence (LoC). Our goal is to minimize the system-wide

LoC in a wireless network with multiple flows, each with different user requirement and

channel reliability.

Using Brownian approximation and martingale theory, we show that the problem of

minimizing the system-wide LoC is equivalent to an optimization problem that involves two

sets of constraints: One set of constraints are related to the average of timely deliveries

of each flow, and another set of constraints are related to the temporal variance of timely

deliveries. The existence of constraints about the variance of timely deliveries makes this

problem significantly different from other Network-Utility-Maximization (NUM) problems

that only involve constraints about the average of variables, and hence cannot be solved

by most existing techniques for NUM problems.

We propose a simple online scheduling algorithm for this problem. We analytically
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prove that the timely deliveries under our scheduling algorithm satisfy both the constraints

on the average and those on the variance in the optimization problem. We also analytically

prove that our algorithm is near-optimal for the optimization problem in the sense that

its performance can be made arbitrarily close to a theoretical bound.

In the second work, we extend our model to even consider the freshness of an in-

formation update in CiE. We propose a model where each sensor sets a threshold for

the freshness of its information updates. At any given point of time, the instantaneous

estimation accuracy for the sensor’s surveillance field depends on the current quantity of

fresh information updates at the control center. Compared to Age-of-Information (AoI),

which is a popular metric that measures the freshness of the most recent information

update, our model can provide a richer characterization by considering both the quantity

and the freshness of data. We further address the challenge that sensors are located at

different locations and are monitoring different fields by explicitly considering that differ-

ent sensors can have different thresholds for freshness, different mappings between the

quantify of fresh data and the estimation accuracy, and different channel conditions.

In order to analyze this model, we first demonstrate that the quantify of fresh in-

formation updates that the control center has at a given time can be expresses as a

closed-form function involving the processes of update generations and update deliveries.

We then show that, similar to first work, by applying a Brownian approximation to the

update delivery process, the quantity of fresh information updates can be characterized as

a random variable whose distribution only depends on the mean and temporal variance of

the delivery process. Again, the dependency on temporal variances makes it infeasible to

apply traditional network optimization techniques that only consider the means of delivery

processes. To take temporal variances into account, we analytically establish the funda-

mental constraints on the means and variances of the delivery processes for all sensors,

given the limitations of the wireless bandwith and channel conditions. Thus, the problem

of the optimal wireless scheduling can be transformed into a constrained optimization
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problem of finding the optimal means and variances, subject to the constraints imposed

by the wireless channels.

After finding the optimal means and variances of the delivery processes, it remains to

develop a scheduling policy that actually achieves them. To this end, we also propose a

simple scheduling policy and theoretically prove that its resulting means and variances are

indeed the optimal ones. Thus, this scheduling policy is the one that enables the control

center to have the most accurate real-time estimation. An important and surprising

feature of our proposed scheduling policy is that it does not require any knowledge about

the freshness of each individual information update, despite the fact that the accuracy of

real-time estimation depends on data freshness.

For both works, we conduct comprehensive simulations to evaluate the performance

of our proposed scheduling policies. We compare our policies against two other state-

of-the-art policies, one of them is provably optimal in terms of timely-throughput, and

the other achieves an approximation bound in terms of Age-of-Information. Simulation

results show that our policies achieves much smaller LoC than these two policies.

Additionally, to verify the practicality of our assumptions about the confidence of

information-update flows, we conduct a case study in the first work on the real-time

estimation problem of linear Gaussian processes. We consider the scenario where there

are multiple sensors generating noisy measurements of their monitored processes, and an

estimator makes real-time estimation of all processes based on its received information.

We run simulations for this estimator and evaluate its resulting mean square error. The

result shows that our policy receives the best performance when compared to the other

two policies, in terms of the average mean square estimate error and the 95-percentile of

mean square estimate error. This result also demonstrates that the concept of CiE does

capture the performance of general information-update remote-estimation problems, and

provides more insights than AoI-based models in the reliability of estimate in more general

cases.
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In the third work, we further generalize our theory of the second-order framework.

This framework consists of the second-order models, that is, the means and the temporal

variances, of all random processes, including the channel qualities and packet deliveries

of wireless clients. The incorporation of temporal variances enables this framework to

better characterize stateful fading wireless channels, such as Gilber-Elliot channels, and

emerging performance metrics.

Using this framework, we sharply characterize the second-order capacity region of

wireless networks, which entails the set of means and temporal variances of packet de-

liveries that are feasible under the constraints of the second-order models of channel

qualities. As a result, the problem of optimizing emerging performance metrics is reduced

to one that finds the optimal means and temporal variances of packet deliveries within

the second-order capacity region. We also propose a simple scheduling policy and show

that it can achieve every interior point of the second-order capacity region.

To demonstrate the utility our framework, we apply it for an important open problem:

Finding the optimal scheduling policy to minimize system-wide AoI over Gilbert-Elliot

channels. We theoretically derive the closed-form expressions of the second-order models

for Gilbert-Elliot channels. We also show that the AoI of each wireless client can be

well-approximated by the mean and the temporal variance of its packet delivery process.

We compare the system-wide AoI of our scheduling policy against other policies from

recent studies on AoI minimization. Simulation results show that our policy achieves

a smaller system-wide AoI. These results are especially significant when one considers

that our policy is a generic second-order optimization policy, while the other policies are

tailor-made to minimize the system-wide AoI.

The rest of this proposal is as following order: The details of the first work and the

second work in Chapter 2 and Chapter 3 respectively. Chapter 4 is the third work. Chapter

5 reviews some related works. Finally, Chapter 6 is the conclusion and future work.
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2. SCHEDULING REAL-TIME INFORMATION-UPDATE FLOWS FOR THE

OPTIMAL CONFIDENCE IN ESTIMATION *

2.1 System Model

We extend the model in [3], which focuses on the short-term performance for wireless

networks with homogeneous links, to address the confidence in information flows estima-

tion in real-time wireless network where different wireless links can have different channel

qualities.

We consider a real-time wireless network that serves N clients. Time is slotted, and

the duration of one time slot is the amount of time needed by a whole bluetransmission,

including all overheads such as the transmission of poll packet or ACK. Hence, the AP

can transmit to at most one client at each time slot, and it has the instantaneous feed-

back information on whether the transmission is successful. We consider that wireless

transmissions are subject to effects of shadowing, multi-path, fading, interference, etc.,

and different clients experience different channel qualities as they are located at differ-

ent positions. Hence, we assume that each transmission for client i is successful with

probability pi .

We consider that each client is associated with a real-time information-update flow,

and use flow i to indicate the flow associated with client i . Specifically, we assume that

each real-time flow generates one packet periodically every τ slots, that is at time slots 1,

τ+1, 2τ+1, . . . . Each packet has a stringent delay bound of τ slots, and is removed from

the system if it cannot be delivered before its delay bound. In other words, each packet

in a real-time flow is only valid for transmission until the next packet arrives. We thereby

*Reprinted with permission from [2] D. Guo and I. Hou, "Scheduling Real-Time Information-Update
Flows for the Optimal Confidence in Estimation," in IEEE Journal on Selected Areas in Communications,
vol. 39, no. 5, pp. 1339-1351, May 2021, doi: 10.1109/JSAC.2021.3065093. Also, Reprinted with
permission from [1] D. Guo and I. Hou, "On the Credibility of Information Flows in Real-time Wireless
Networks," 2019 International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless
Networks (WiOPT), 2019, pp. 1-8, doi: 10.23919/WiOPT47501.2019.9144125.
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say that τ time slots form an interval. Packets arrive at the system at the beginning of

each interval, and have deadlines at the end of the interval.

We note that this model for real-time flows applies to many emerging wireless appli-

cations. For example, consider multi-user virtual reality (VR) or augmented reality (AR),

where an AP streams VR/AR contents to multiple VR/AR headsets. All headsets play

VR/AR contents at the same frame rates, and therefore they generate traffic at the same

frequency. Further, as the AP should always transmit the newest VR/AR content to a

headset, packets that fail to be delivered on time should be removed and replaced by

newer packets. Likewise, one can also consider industrial Internet of Things (IoT), where

an AP polls measurements from multiple sensors monitoring different locations. Sensors

have the same sampling frequency and therefore generate traffic at the same frequency.

Also, stale measurements should be dropped when a new measurement is generated.

An important feature of real-time application such as VR/AR and industrial IoT is

that each flow can typically tolerate a small amount of sporadic packet losses, but is very

sensitive to a burst of packet losses. For example, in industrial IoT, a controller can use

various estimation techniques to estimate the value of a lost sensor reading. However, the

accuracy of the estimate significantly degrades if there is a burst a packet losses. Further,

it is obvious that the accuracy of the estimate only depends on the deliveries of recent

sensor readings, and readings in the distant past have negligible effect on the estimation

accuracy. We thereby say that the Confidence-in-Estimation (CiE) of one information flow

relies on if its delivered packets enable the controller to make an accurate estimation.

The goal of this paper is to define and optimize the CiE for each information flow.

To capture the aforementioned feature of real-time applications, we assume that the

confidence of a real-time flow estimated status at a given point of time only depends

on the packet deliveries in the window of past T intervals. Specifically, let Xi(t) be

the total number of timely-deliveries for flow i in the first t intervals. We then have

Xi(t)−Xi(t−1) = 1 if a packet is delivered to client i in interval t, and Xi(t)−Xi(t−1) =
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0 if not. The number of timely-deliveries in the window of the last T intervals can then

be represented as Xi(t)−Xi(t − T ), and we assume that the CiE of flow i at the end of

interval t only depends on the value of Xi(t)−Xi(t − T ).

We assume that, to make an accurate estimate, each client i requires that there are

at least qiT packets being delivered in the past T intervals, i.e., Xi(t)−Xi(t−T ) ≥ qiT .

The value of qi depends on the context of the information flow. For example, a sensor

monitoring a high-frequency signal requires a larger qi than one that is monitoring a

low-frequency signal.

Due to the unreliable nature of wireless transmissions, it is obvious that it is not

possible to satisfy the requirements of all clients at all time. When the AP fails to deliver

qiT packets for a client i , then the estimation of current state of client i becomes less

accurate, and therefore we say that flow i loses confidence.

We now formally define the measure of Loss-of-Confidence (LoC). Suppose Xi(t)−

Xi(t − T ) < qiT for some i and t. Recall that every transmission for client i is suc-

cessful with probability pi . Hence, the AP would have needed to, on average, schedule

qiT−(Xi (t)−Xi (t−T ))
pi

more transmissions for client i to make Xi(t) − Xi(t − T ) = qiT .

We therefore define the unbiased shortage of client i at the end of interval t as θi(t) :=

max{qiT−(Xi (t)−Xi (t−T ))
pi

, 0}. At the end of each interval t, each client i suffers from a

LoC of C(θi(t)) based on its unbiased shortage, where C(·) is a strictly increasing, strictly

convex, and differentiable function with C(0) = 0 and C′(0) = 0.

This paper aims to evaluate the long-time average total LoC of all clients in the

system, which is written as lim
T→∞

T+T∑
t=T+1

N∑
i=1

C(θi (t))

T = lim
T→∞

T+T∑
t=T+1

N∑
i=1

C(
qi T

pi
−Xi (t)−Xi (t−T )

pi
)

T . It also

aims to propose an online scheduling policy∗ that minimizes the total LoC.
∗An online scheduling policy is a policy that determines which packet to transmit in each slot based

on all system parameters and the entire history.

8



2.2 The Formulation of the Optimization Problem

In this section, we derive some fundamental properties about the minimization of total

LoC. We then formulate an optimization problem.

Recall that Xi(t) is the total number of timely-deliveries for client i in the first t inter-

vals. Obviously, {Xi(1), Xi(2), . . . } is a sequence of random variables whose distribution

is determined by the employed packet scheduling policy. For simplicity, we only focus on

ergodic scheduling policies in this paper. Thus, the random variable {Xi(t)−Xi(t − T )}

can be modeled by a positive recurrent Markov chain. By the law of large numbers, we

can define X̄i := limt→∞
Xi (t)
t . Further, following the central limit theorem of Markov

chains [4], X̂i := limT→∞
Xi (T)−TX̄i√

T is a Gaussian random variable with mean 0 and

some finite variance, which we denote by σ2
i , with σi ≥ 0. Hence, we can approximate

Xi(t)−Xi(t−T ) as a Gaussian random variable with mean T X̄i and variance Tσ2
i when T

is reasonably large. Let Φ(x) represents the cumulative distribution function of a random

variable under standard normal distribution, then, under this approximation, we have that

the CDF of (Xi(t)−Xi(t − T ))− TX̄i) is Φ( x√
σ2
i T

).

The long-term average total LoC can now be re-written as below:

lim
T→∞

T+T∑
t=T+1

N∑
i=1

C(qiTpi −
Xi (t)−Xi (t−T )

pi
)

T

= lim
T→∞

N∑
i=1

E[C(
qiT

pi
−
Xi(T)−Xi(T− T )

pi
)]

≈ lim
T→∞

N∑
i=1

E[C(
qiT

pi
−
√
T X̂i + TX̄i

pi
)]

=

N∑
i=1

∫
z

C(

√
σ2
i T

p2
i

z −
(X̄i − qi)T

pi
)dΦ(z). (2.1)

The approximation step is from the above definitions of X̄i and X̂i . The last step is the

expectation formula under the law of the unconscious statistician.
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Let [X̄i ] and [σi ] be the vectors consisting of X̄i and σi for all 1 ≤ i ≤ N respectively.

Then, Eq. (2.1) can be viewed as has two sets of control variables: [X̄i ] and [σi ], since

their values are determined by the employed policy. Below, we derive the corresponding

constraints of these two sets of variables.

We first derive the constraints on [X̄i ]. Previous work [5] has shown that, under any

work-conserving policy†, we have, for all t,

E[

N∑
i=1

Xi(t)−Xi(t − 1)

pi
] = τ − I{1,2,...,N}, (2.2)

and

E[
∑
i∈S

Xi(t)−Xi(t − 1)

pi
] ≤ τ − IS, (2.3)

for any subset S ⊆ {1, 2, . . . N}, where IS is called the idle time and has been shown to

be a well-defined constant under all work-conversing policies. Therefore, we have

N∑
i=1

X̄i
pi

= τ − I{1,2,...,N}, (2.4)

and

∑
i∈S

X̄i
pi
≤ τ − IS,∀S ⊆ {1, 2, . . . N}. (2.5)

We further assume that, similar to the total resource pooling condition, the constraint∑
i∈S

X̄i
pi
≤ τ − IS is not tight and can be ignored when S is not {1, 2, . . . N}.

Now, we derive the constraint of [σi ]. By (2.2), the sequence of random variables

{
∑N
i=1

Xi (t)
pi
− t(τ − I{1,2,...,N})|t = 1, 2, . . . } is a martingale. By the martingale central

limit theorem [6], X̂TOT := limT→∞

∑N
i=1

Xi (T)

pi
−T(τ−I{1,2,...N})√
T = limT→∞

∑N
i=1

Xi (T)

pi
−T(

∑N
i=1

X̄i
pi

)
√
T

†A scheduling policy is called work-conserving if it always schedules a transmission when there is at
least one packet available for transmission.
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is a Gaussian random variable with mean 0, and its variance is

σ2
TOT := lim

T→∞

1

T
[

T∑
t=1

(

N∑
i=1

Xi(t)−Xi(t − 1)

pi
)2]

− (τ − I{1,2,...N})2, (2.6)

whose value depends on the employed scheduling policy.

Recall that X̂i := limT→∞
Xi (T)−TX̄i√

T is a Gaussian random variable with variance σ2
i .

Hence, we have X̂TOT =
∑N
i=1

X̂i
pi
, and the variance of X̂ipi is (σipi )

2. By Cauchy-Schwarz

Inequality, we have:

( N∑
i=1

σi
pi

)2
=
( N∑
i=1

√
V ar(

X̂i
pi

)
)2

=

N∑
i=1

V ar(
X̂i
pi

) + 2

N∑
l=1

N∑
m=l+1

√
V ar(

X̂l
pl

)V ar(
X̂m
pm

)

≥
N∑
i=1

V ar(
X̂i
pi

) + 2

N∑
l=1

N∑
m=l+1

Cov(
X̂l
pl
,
X̂m
pm

)

=V ar(

N∑
i=1

X̂i
pi

) = σ2
TOT , (2.7)

where V ar(X) denotes the variance of X and Cov(X, Y ) denotes the covariance.

Although the value of σTOT may be different for different scheduling policies, we first

consider the special case of minimizing the total LoC when σTOT is given and fixed. By
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(2.1), (2.4), and (2.7), the optimization problem can be written as:

Min L =

N∑
i=1

∫
z

C(

√
σ2
i T

p2
i

z −
(X̄i − qi)T

pi
)dΦ(z) (2.8)

s.t.

N∑
i=1

X̄i
pi

= τ − I{1,2,...N} (2.9)

N∑
i=1

σi
pi
≥ σTOT . (2.10)

Theorem 1. Let [X̄i
∗
] and [σ∗i ] be the optimal solution to (2.8) – (2.10). Then X̄i

∗
=

(
τ−I{1,2,...N}

N −
∑N
j=1

qj
Npj

+ qi
pi

)pi , and σ∗i = σTOT
N pi , for all 1 ≤ i ≤ N.

Proof. Since C(·) is a convex function, we have:

L =

N∑
i=1

∫
z

C(

√
σ2
i T

p2
i

z −
(X̄i − qi)T

pi
)dΦ(z)

≥ N
∫
z

C(
1

N

N∑
i=1

(

√
σ2
i T

p2
i

z −
(X̄i − qi)T

pi
))dΦ(z)

≥ N
∫
z

C(
1

N
(σTOT

√
Tz −

N∑
i=1

(X̄i − qi)T
pi

))dΦ(z),

with equality occurs when X̄∗i
pi
− qi

pi
=

X̄∗j
pj
− qj

pj
and σ∗i

pi
=

σ∗j
pj

for any i , j ∈ {1, 2, . . . N}. By

(2.9) and (2.10), we have X̄i
∗

= (
τ−I{1,2,...N}

N −
∑N
i=1

qi
Npi

+ qi
pi

)pi and σ∗i = σTOT
N pi .

Theorem 1 establishes the optimal {X̄i} and {σi} that minimizes the total LoC when

σTOT is given and fixed. Obviously, smaller σTOT leads to smaller total LoC. Therefore,

we seek to solve the optimization problem below, which aims to minimizing σTOT while
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satisfying the results of Theorem 1:

Min σ2
TOT : = lim

T→∞

1

T
[

T∑
t=1

(

N∑
i=1

Xi(t)−Xi(t − 1)

pi
)2]− (τ − I{1,2,...N})2 (2.11)

s.t.X̄i = X̄∗i ,∀1 ≤ i ≤ N (2.12)

σi =
σTOT
N

pi , ∀1 ≤ i ≤ N, (2.13)

where X̄∗i := (
τ−I{1,2,...N}

N −
∑N
j=1

qj
pjN

+ qi
pi

)pi .

We note that the problem (2.11) – (2.13) involves both a constraint on the average

of Xi(t) (2.12) and a constraint on the variance of Xi(t) (2.13) for each i . Most existing

studies on network utility maximization (NUM) problem only addresses constraints on the

average of decision variables, and therefore cannot be applied to solve (2.11) – (2.13).

In fact, no stationary randomized policies can optimally solve (2.11) – (2.13). In the

following sections, we will establish the surprising result that there exists a simple online

scheduling policy that is near-optimal for the problem (2.11) – (2.13).

2.3 An online scheduling policy

In this section, we propose a simple online scheduling policy for the problem (2.11) –

(2.13). We first provide a brief outline of the construction of our algorithm. First, we

remove the constraint on variance (2.13) and focus on the following optimization problem:

Min lim
T→∞

1

T
[

T∑
t=1

(

N∑
i=1

Xi(t)−Xi(t − 1)

pi
)2]

− (τ − I{1,2,...N})2 (2.14)

s.t.X̄i = X̄∗i ,∀1 ≤ i ≤ N. (2.15)

Obviously, this optimization problem is a lower bound to the original problem (2.11) –

(2.13). It is also a standard NUM problem that only involves a constraint on the average
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of Xi(t) for each i . We can therefore derive a near-optimal online scheduling algorithm

using the Drift-Plus-Penalty approach [7]. We further demonstrate the surprising result

that, due to the specific choice of our Lyapunov function, our algorithm also satisfies the

constraint on variance (2.13). Therefore, our algorithm is near-optimal to the original

problem (2.11) – (2.13).

We now introduce some notations that are necessary for the design and analysis of

our algorithm. Let di(t) :=
X̄∗i t
pi
− Xi (t)

pi
be the deficit of client i in interval t. Obviously,

we have X̄i := limt→∞
Xi (t)
t = X̄∗i if and only if limt→∞

di (t)
t = 0. We also define

∆di(t) := di(t + 1)− di(t) =
X̄∗i
pi
− Xi (t+1)−Xi (t)

pi
and D(t) :=

∑N
i=1 di (t)
N .

We consider the Lyapunov function L(t) = 1
2

∑N
i=1[di(t) − D(t)]2. The drift of the

Lyapunov function is ∆L(t) := E[L(t + 1)− L(t)|[di(t)]].

Given [di(t)], we have, under any scheduling policy,

∆L(t) = E[L(t + 1)− L(t)]

=E
[1

2

N∑
i=1

(
di(t + 1)−D(t + 1)

)2 −
1

2

N∑
i=1

(
di(t)−D(t)

)2]
=E
[1

2

N∑
i=1

(
di(t)−D(t) + ∆di(t)−

∑N
i=1 ∆di(t)

N

)2]
− E

[1

2

N∑
i=1

(
di(t)−D(t)

)2]
=E
[1

2

N∑
i=1

(
∆di(t)−

∑N
i=1 ∆di(t)

N

)2]
+

N∑
i=1

E
[
∆di(t)

](
di(t)−D(t)

)
− E

[∑N
i=1 ∆di(t)

N

] N∑
i=1

(
di(t)−D(t)

)
≤β +

N∑
i=1

E
[
∆di(t)

](
di(t)−D(t)

)
, (2.16)
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where β is a bounded positive number. The last inequality holds since ∆di(t) is bounded

by X̄∗i −1

pi
≤ ∆di(t) ≤

X̄∗i
pi

and
∑N
i=1 di(t) = ND(t).

Our scheduling algorithm is based on the Drift-Plus-Penalty approach [7]. Let

B(t) :=

N∑
i=1

E
[
∆di(t)

](
di(t)−D(t)

)
+ εE[(

N∑
i=1

Xi(t + 1)−Xi(t)
pi

)2], (2.17)

where ε is a positive number whose value can be arbitrary determined by the system

designer. We then have

∆L(t) + εE[(

N∑
i=1

Xi(t + 1)−Xi(t)
pi

)2] ≤ β + B(t). (2.18)

We aim to design an online scheduling algorithm that minimizes B(t). Note that the

value of B(t) depends on the scheduling decisions on all time slots within the interval t,

which consists of τ time slots. Minimizing an objective function over a finite horizon of

τ time slots typically requires the usage of dynamic programming. However, we will show

that there exists a simple online scheduling algorithm that minimizes B(t).

Our algorithm is called the Minimum-Drift-and-Variance-First (MDVF) policy. Under

the MDVF policy, the AP calculates the value of ei(t) := ε 1
pi
− di(t) at the beginning

of each interval t. In each time slot within the interval, the AP finds the undelivered

packet with the smallest ei(t) and transmits that packet, as long as there is at least one

packet to be transmitted. Alg. 1 provides a detailed description of the algorithm, where

we streamline some of the steps to simplify the implementation.

We now show that the MDVF policy indeed minimizes B(t).

Lemma 1. The MDVF policy minimizes B(t).

Proof. We prove this lemma by induction. First, we consider the optimal scheduling
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Algorithm 1: The MDVF Policy

Initialization: t = 0, di = 0,∀i ;
while each new interval do

for each i do
ei = ε 1

pi
− di ;

di = di +
X̄∗i
pi
;

end
Sort all flows such that e1(t) ≤ e2(t) ≤ . . . ;
i = 1; for each time slot do

Transmit packet i ;
if transmission is successful then

di = di − 1
pi
;

i = i + 1;
end

end
t = t + 1;

end

decision in the last time slot of the interval. At this time, some packets have already been

delivered in the previous τ − 1 slots, and we use V to denote the set of clients whose

packets have already been delivered. As this is the last time slot of the interval, the

scheduling decision of the AP only consists of choosing one client u /∈ V and transmitting

its packet. Given V and u, we will calculate the value of
∑N
i=1 E

[
∆di(t)

](
di(t)−D(t)

)
+

εE[(
∑N
i=1

Xi (t+1)−Xi (t)
pi

)2].

For this chosen client u, its packet will be delivered, that is, Xu(t + 1)− Xu(t) = 1,

with probability pu, and Xu(t + 1)−Xu(t) = 0, with probability 1− pu. Hence, we have

E[∆du(t)] = X̄u−pu
pu

.

On the other hand, for each client i ∈ V , its packet has already been delivered. We

have Xv (t)−Xv (t − 1) = 1 and E[∆di(t)] = X̄i−1
pi

.

Finally, for each client i /∈ V ∪ {u}, its packet will not be delivered, and we have

Xi(t)−Xi(t − 1) = 0 and E[∆di(t)] = X̄i
pi
.
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We now have, given V and u,

N∑
i=1

E
[
∆di(t)

]
[di(t)−D(t)] + εE[(

N∑
i=1

Xi(t + 1)−Xi(t)
pi

)2]

=
X̄u − pu
pu

[du(t)−D(t)] +
∑
i∈V

X̄i − 1

pi
[di(t)−D(t)]

+
∑

i /∈V ∪{u}

X̄i
pi

[di(t)−D(t)] + ε[pu
(∑
i∈V

1

pi
+

1

pu

)2
+ (1− pu)

(∑
i∈V

1

pi

)2
]

= ε
1

pu
− du(t) + λ(V ), (2.19)

where λ(V ) := D(t) +
∑N
i=1

X̄i
pi

[di(t)−D(t)]−
∑
i∈V

1
pi

[di(t)−D(t)] + ε[
(∑

i∈V
1
pi

)2
+

2
(∑

i∈V
1
pi

)
] is the same regardless of the choice of u. Therefore, it is clear that an

optimal scheduling algorithm that minimizes B(t) will schedule the undelivered packet u

with the smallest ε 1
pu
− du(t) in the last time slot.

Now, assume that, starting from the (s + 1)-th time slot in an interval, scheduling

the undelivered packet with the smallest ε 1
pu
− du(t) in each of the remaining time slot is

optimal. We will show that, even in the s-th time slot, scheduling the undelivered packet

with the smallest ε 1
pu
− du(t) is optimal.

We prove this claim by contradiction. Let u∗ be the undelivered packet with the

smallest ε 1
pu
− du(t) in time slot s. If the claim is false, then the optimal scheduling

algorithm, which we denote by A, would schedule another undelivered packet u′ 6= u∗

in time slot s, and the value of B(t) under A is strictly smaller than any policy that

schedules u∗ in the s-th time slot. By the induction hypothesis, A begins to schedule the

undelivered packet with the smallest ε 1
pu
− du(t) starting from the (s + 1)-th time slot.

As u∗ is not scheduled by A is the s-th time slot, A needs to schedule u∗ in the (s+ 1)-th

time slot. In summary, A schedules u′ in the s-th time slot, and u∗ in the (s + 1)-th time

slot.

Now, we can construct another algorithm B by simply swapping the transmissions in
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the s-th time slot and the (s+ 1)-th time slot. In other words, B schedules u∗ in the s-th

time slot, u′ in the (s + 1)-th time slot, and then follows A starting from the (s + 2)-th

time slot. Obviously, the value of B(t) under A and B is the same, which results in a

contradiction.

We have established that, even in the s-th time slot, scheduling the undelivered packet

with the smallest ε 1
pu
− du(t) is optimal. By induction, scheduling the undelivered packet

with the smallest ε 1
pu
−du(t) in each time slot is optimal, and MDVF minimizes B(t).

2.4 Performance Analysis of the MDVF policy

We now study the performance of the MDVF policy. We will demonstrate the surpris-

ing result that the MDVF policy satisfies both constraints on mean (2.12) and variance

(2.13), and the value of σ2
TOT under the MDVF policy can be made arbitrary close to

a lower bound. Throughout this section, we use ·|η to denote the value of · under a

scheduling policy η. For example, ∆L(t)|MDVF denotes the value of ∆L(t) under the

MDVF policy.

We first establish the following property.

Theorem 2. Under the MDVF policy, the Markov process with state vector {di(t)−D(t)}

is positive recurrent.

Proof. We prove this theorem by establishing an upper bound of ∆L(t)|MDVF. To simplify

notations, we let Ω be the policy that schedules the undelivered packet with the maximum

value of di(t). We also sort all clients such that d1(t) ≥ d2(t) ≥ · · · ≥ dN(t). Then Ω

will only transmit a packet for client i if, for each j < i , the packet for flow j has already

been delivered. This is equivalent to the largest-debt-first policy in [5], and we have, for
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all 1 ≤ j ≤ N:

j∑
i=1

E[∆di(t)]|Ω =

j∑
i=1

X̄∗i
pi
− E[

j∑
i=1

Xi(t + 1)−Xi(t)
pi

]|Ω

=

j∑
i=1

X̄∗i
pi
− (τ − I{1,2,...,j}). (2.20)

By (2.4), we have
∑N
i=1 E[∆di(t)]|Ω = 0. Further, as we assume that (2.5) is not tight

when S 6= {1, 2, . . . , N}, there exists a positive number δ > 0 such that
∑j
i=1 E[∆di(t)]|Ω ≤

−δ for all 1 ≤ j ≤ N − 1. We now have

N∑
i=1

E[∆di(t)]
(
di(t)−D(t)

)
|Ω

=

N∑
i=1

E[∆di(t)]
(
di(t)− di+1(t) + di+1(t)

− di+2(t) + · · · − dN(t) + dN(t)−D(t)
)
|Ω

=

N∑
i=1

E[∆di(t)]
(
dN(t)−D(t)

)
|Ω

+

j∑
i=1

N−1∑
j=1

E[∆di(t)]
(
dj(t)− dj+1(t)

)
|Ω

≤− δ
N−1∑
j=1

(
dj(t)− dj+1(t)

)
= −δ

(
d1(t)− dN(t)

)
. (2.21)

Next, we study ∆L(t)|MDVF. By Lemma 1, the MDVF policy minimizes B(t). Hence,
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we have

∆L(t)|MDVF + εE[(

N∑
i=1

Xi(t + 1)−Xi(t)
pi

)2]|MDVF

≤β + B(t)|MDVF
(
By (2.18)

)
≤β + B(t)|Ω

≤β + εE[(

N∑
i=1

Xi(t + 1)−Xi(t)
pi

)2]|Ω

− δ
(
d1(t)− dN(t)

) (
By (2.17) and (2.21)

)
(2.22)

Since 0 ≤ Xi(t + 1)−Xi(t) ≤ 1, there exists some constant M such that

∆L(t)|MDVF ≤ −δ
(
d1(t)− dN(t)

)
+M. (2.23)

Recall that we have sorted all clients such that d1(t) ≥ d2(t) ≥ . . . . Hence,
(
d1(t)−

dN(t)
)
≥ 0 and

(
d1(t)− dN(t)

)
≥ |di(t)−D(t)|, for all i . We have

∆L(t)|MDVF < −δ, if |di(t)−D(t)| > M
δ + 1, for some i ,

and

∆L(t)|MDVF ≤ M, otherwise. (2.24)

By the Foster-Lyapunov Theorem, the Markov process with state vector {di(t)−D(t)}

is positive recurrent.

Now we are able to show that the MDVF policy satisfies both constraints (2.12) and

(2.13).

Corollary 1. X̄i |MDVF = X̄∗i and σi |MDVF = σTOT |MDV F
N pi , ∀i .
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Proof. Recall that di(t) :=
X̄∗i t
pi
− Xi (t)

pi
and D(t) :=

∑N
i=1 di (t)
N . By (2.4), we have:

lim
T→∞

D(T)|MDVF
T

= lim
T→∞

∑N
i=1 di(T)|MDVF

NT

=
1

N

N∑
i=1

lim
T→∞

TX̄∗i −Xi(T)|MDVF
piT

=
1

N

N∑
i=1

X̄∗i
pi
−

1

N

N∑
i=1

X̄i(T)|MDVF
pi

=
τ − I{1,2,...N}

N
−
τ − I{1,2,...N}

N
= 0. (2.25)

By Theorem 2, the vector {di(t) −D(t)}|MDVF converges to a steady state distri-

bution as t →∞. Hence, both limT→∞
di (T)−D(T)

T |MDVF and limT→∞
di (T)−D(T)√

T |MDVF

converge to 0 in probability. We then have

lim
T→∞

di(T)|MDVF
T

=
X̄∗i
pi
−
X̄i |MDVF

pi

= lim
T→∞

D(T)|MDVF
T

= 0, (2.26)

and hence X̄i |MDVF= X̄∗i .

Next, we study σi |MDVF. Recall that σ2
i is the variance of X̂i := limT→∞

Xi (T)−TX̄i√
T .

We then have:

lim
T→∞

di(T)|MDVF√
T

= lim
T→∞

TX̄∗i −Xi(T)|MDVF

pi
√
T

= −
X̂i |MDVF

pi
,

since X̄i |MDVF= X̄∗i . This shows that the variance of limT→∞
di (T)|MDVF√

T is σ2
i |MDVF

p2
i

.
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Also, recall that σ2
TOT is the variance of X̂TOT =

∑N
i=1

X̂i
pi
. We have

lim
T→∞

D(T)|MDVF√
T

= lim
T→∞

∑N
i=1 di(T)|MDVF

N
√
T

= lim
T→∞

N∑
i=1

TX̄∗i −Xi(T)|MDVF

Npi
√
T

= −
N∑
i=1

X̂i |MDVF
Npi

,

and the variance of limT→∞
D(T)|MDVF√

T is σ2
TOT |MDVF

N2 . As limT→∞
di (T)−D(T)√

T |MDVF

converges to 0 in probability, we have σi |MDVF = σTOT |MDVF
N pi .

We have shown that the MDVF policy satisfies both constraints (2.12) and (2.13).

We now show that the value of σ2
TOT |MDVF can be made arbitrarily close to a theoretical

lower bound.

Consider the problem (2.14) – (2.15), which ignores the constraint on variance (2.13).

Since this problem only involves a constraint on mean, there exists a stationary randomized

policy that is optimal, which we denote by ω. Obviously, σ2
TOT |ω is a lower bound of the

problem (2.11) – (2.13). We have the following theorem.

Theorem 3. σ2
TOT |MDVF ≤ σ2

TOT |ω + β
ε .

Proof. Since ω is a stationary randomized policy that satisfies (2.15), we have E[∆di(t)]|ω =

0, for all i and t. By (2.17), we have

B(t)|ω = εE[(

N∑
i=1

Xi(t + 1)−Xi(t)
pi

)2]|ω = εσ2
TOT |ω.

Now, recall that the MDVF policy minimizes B(t). Hence, for every t, we have

∆L(t)|MDVF + εE[(

N∑
i=1

Xi(t)−Xi(t − 1)

pi
)2]|MDVF

≤B(t)|MDVF + β

≤B(t)|ω + β = εσ2
TOT |ω + β.
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Summing the above inequality over t = 1 to t = T, and then divide both sides by T yields

E[L(T+ 1)]− E[L(0)]

T
|MDVF + εσ2

TOT |MDVF

≤εσ2
TOT |ω + β. (2.27)

By Theorem 2, we have limT→∞
E[L(T+1)]−E[L(0)]

T |MDVF= 0, and hence σ2
TOT |MDVF ≤

σ2
TOT |ω + β

ε .

We note that Theorem 3 holds for all ε, which is a constant that can be arbitrarily

chosen by the system designer. By choosing a large ε, one can make σ2
TOT |MDVF

arbitrarily close to the lower bound σ2
TOT |ω. Combining Theorem 1 that gives the form

of optimal solutions and Corollary 1 that shows the MDVF policy satisfies both constraints

(2.12) and (2.13), the MDVF policy solves the optimization problem (2.11), (2.12) and

(2.13).

2.5 Simulation Results

We present our simulation results in this section. We have implemented and tested

our policy and two other state-of-the-art policies in ns-2. All simulations are conducted

using the 802.11 MAC protocol with 54Mbps data rate. Simulations show that the time

needed to transmit a packet and to receive an ACK is about 0.5ms. The duration of an

interval is chosen to be 10ms, or, equivalently, 20 time slots. We evaluate the simulation

for LoC in two convex functions: one is chosen to be C(θi(t)) := ( θi (t)T )2, which we call

the quadratic LoC function, and the other is C(θi(t)) := e(
θi (t)

T
) − 1, which we call the

exponential LoC function. We note that both functions normalize θi(t) by T . Recall that

θi(t) is the unbiased shortage accumulated in last T intervals. Hence, θi (t)T can be thought

of as the average unbiased shortage occurred in the last T intervals. By normalization,

we are able to compare the LoC across different T . All results presented in this section

are the average of 1000 runs.
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(a) The high-timely-throughput system (b) The low-timely-throughput system

Figure 2.1: The convergence of emax(t) − emin(t) in (a) The high-timely-throughput
system. (b) The low-timely-throughput system.

We compare our MDVF policy against two other policies. The first policy is the largest

debt first (LDF) policy in [5, 8]. In each interval t, the LDF policy sorts all clients in

descending order of qi t −Xi(t), and transmits packets according to this ordering. It has

been shown that LDF guarantees to deliver a long-term average timely-throughput of qi

to each client i , as long as it is feasible to do so. The second policy is a Max-Weight

type of policy that aims to reduce the total age-of-information (AoI) in the network while

guaranteeing some average timely-throughput policy [9]. We call this policy MW-AoI.

Although the problem of minimizing AoI remains an open problem, it has been shown

that the MW-AoI policy is 4-optimal in terms of AoI.

As for the network topology, we consider two different settings. In the first setting,

there are 12 wireless clients. The channel reliability of client i is set to be pi = 0.9−0.05i .

We set qi = 0.85 for the first 6 clients and qi = 0.75 for the last 6 clients. We call this

setting the high-timely-throughput system. In the second setting, there are 18 clients

with pi = 1 − 0.05i . We set qi = 0.35 for all 18 clients. We call this setting the

low-timely-throughput system.
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2.5.1 The Impact of ε

Our MDVF policy makes scheduling decisions based on the value of ei(t) := ε 1
pi
−di(t)

for each flow i , where ε is a parameter determined by the system. Theorem. 3 has

shown that σ2
TOT |MDVF ≤ σ2

TOT |ω+ β
ε . Therefore, larger ε leads to better steady-state

performance. On the other hand, [10], [11] and [12] have shown that larger ε may lead

to longer convergence time. In this section, we investigate the convergence speed of the

MDVF policy under different values of ε.

Recall that our MDVF policy sorts all flows by their ei(t) and schedules packets

according to the ordering in each interval t. Hence, when the system reaches steady-state,

all flows should have roughly the same ei(t). Based on this observation, we evaluate

the convergence speed of the MDVF policy as follows: In each simulation run and at

each interval t, we find the flow with the largest ei(t) =: emax(t) and the flow with the

smallest ei(t) =: emin(t). We then use emax(t)−emin(t) as the indicator of convergence.

Obviously, a small value of emax(t)− emin(t) implies that the values of ei(t) are roughly

the same for all flows. We then calculate the average of emax(t) − emin(t) over 1000

simulation runs for all t.

Simulation results for different values of ε and for both the low-timely-throughput

system and the high-timely-throughput system are shown in Fig. 2.1. Not surprisingly,

it can be easily observed that, while emax(t) − emin(t) converges to a small value for

all settings, larger ε leads to longer convergence time. It can also be observed that the

convergence speed of the setting with ε = 5 is reasonably fast. By setting ε = 5, both

the high-timly-throughput system and the low-timely-throughput system converge in less

than 0.5 second. Hence, in the sequel, we choose ε = 5 for our MDVF policy.

2.5.2 The Approximation Accuracy in T

Throughout the paper, we assume the CLT approximation of Markov chain that

Xi(t) − Xi(t − T ) can be approximated as a Gaussian random variable with mean T X̄i
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(a) The high-timely-throughput system (b) The low-timely-throughput system

Figure 2.2: The convergence of σipi in (a) The high-timely-throughput system. (b) The
low-timely-throughput system.

and variance Tσ2
i when T reasonably large as the duration of the window. Hence, in this

section, we evaluate how large T needs to be for this approximation under our MDVF

policy.

Recall the Corollary. 1, σi |MDV Fpi
should have roughly the same value as σTOT |MDV F

N .

Although σTOT |MDV F is a near-optimal variable determined by the value of ε, the values

of σi
pi

should converge across all clients to a same value when ε is fixed. Therefore,

we design simulations in both the high-timely-throughput system and the low-timely-

throughput system as follows: In each simulation run, t is set to be 500, and we obtain

Xi(500 + T ) − Xi(500) for each client i , where T is set to be increasing in increments

of 5, i.e.1, 6, 11, 16, . . . , 151. Consequently, we collect 1000 samples over all simulation

runs, then calculate the value of σipi for all T .

Results are shown in Fig. 2.2. We plot the curve of client 1, 4, 8 and 12 for the

high-timely-throughput system in Fig. 2.2a, and the curve of client 1, 5, 9, 13 and 17 for

the low-timely-throughput system in Fig. 2.2b. The results show that, when T becomes

larger, the values of σipi converge to the same value across clients. It can also be observed,

the convergence speed is reasonably fast that, values converge from dramatic gaps into

reasonably small gaps among clients after T = 20, and they keep converging slowly and
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(a) T = 10 (b) T = 20 (c) T = 30

Figure 2.3: Two LoC Functions in the past second of high-timely-throughput system: (a)
T = 10. (b) T = 20. (c) T = 30.

stably along with T .

2.5.3 Performance Comparison

We now present our simulation results that evaluate the LoC performance of the three

policies, namely, our MDVF policy, the LDF policy, and the MW-AoI policy. We set ε = 5

and test the three cases for T = 10, T = 20, and T = 30. For each simulation run, we

record the total LoC incurred in the past second for up to 10 seconds.

Simulation results of the LoC in two system are shown in Fig. 2.3 and Fig. 2.4. Since

LoC can only be defined after the system has run for T intervals, the first data point is

at time 2 second, which is the total LoC incurred between time 1 second and 2 second.

The figures clearly show that our MDVF policy achieves the smallest LoC in all settings,

including both the high-timely-throughput system and the low-timely-throughput system,

both the quadratic LoC function and the exponential LoC function, and the three different

choices of T .

A very surprising result is that the MW-AoI policy has higher LoC than the LDF policy,

even though the LDF policy only considers long-term average timely-throughput while
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(a) T = 10 (b) T = 20 (c) T = 30

Figure 2.4: Two LoC Functions in the past second of low-timely-throughput system: (a)
T = 10. (b) T = 20. (c) T = 30.

the MW-AoI policy considers short-term fluctuations in the form of Age-of-Information.

The reason is that the MW-AoI policy focuses on optimizing AoI, which only depends

on the time of the most recent packet delivery. However, many estimation techniques

require more than the most recent data to make an accurate estimation. Even basic

techniques like linear extrapolation needs at least two data points to make an estimate.

This simulation result highlights that AoI may fail to completely capture the reliability

of estimation. On the other hand, the LDF policy only aims to optimize the long-term

average timely-throughputs and ignores temporal variance. This leads it to also have

suboptimal total LoC.

Some interesting observations can be made by comparing the performance of the

MDVF policy between different values of T . We note that the LoC of the MDVF policy

decreases as T becomes larger. Under our settings, the computed value of X̄∗i is always

larger than qi for each i . Therefore, we have
θi (t)
T → 0 as T →∞. Our simulation results

indeed demonstrate such trends.
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2.6 A Case Study of Real-Time State Estimation

An important motivation of this work is emerging applications that require real-time

state estimation, such as industrial IoT and VR. From an end user’s perspective, the

perceived performance is the user’s ability to make accurate estimation. In order to

demonstrate the practical value of our proposed metric, LoC, and our proposed policy,

MDVF, this section studies the problem of sensing and estimating several independent

linear Gaussian processes, where the performance of a flow is determined by the mean

square error (MSE) of the resulting estimation.

2.6.1 Overview of the Sensing and Estimation Problem

Consider a system with one estimator and N wireless sensors. Each sensor is mon-

itoring an independent linear Gaussian process. We number the sensors and stochastic

process so that sensor i is monitoring process i . Further, we denote zi ,t as the value of

process i in interval t. The stochastic process i evolves according to the recursion:

zi ,t+1 = zi ,t + wi ,t , (2.28)

where {wi ,1, wi ,2, . . . } is a sequence of i.i.d Gaussian random variables with mean 0 and

variance Wi . We also call wi ,t the Process Noise (PN).

In each interval t, each sensor i obtains a noisy measurement of the value of process

i . The value of the measurement is denoted by mi ,t , and we assume that:

mi ,t = zi ,t + ri ,t , (2.29)

where {ri ,1, ri ,2 . . . } is a sequence of i.i.d Gaussian random variables with mean 0 and

variance Ri . We call mi ,t the actual measurement or observation under noise, and ri ,t the

Measurement Noise (MN).

The network model is the same as that in Section 2.1. In each interval t, each
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sensor i generates a packet containing the value of mi ,t and the timestamp t. The

packet is discarded either when it is successfully delivered to the estimator or when the

sensor generates a newer packet. The estimator, which is also the AP, schedules all

transmissions. Thus, the estimator has access to the value of mi ,t if and only if a packet

is delivered for sensor i in interval t.

The goal of the estimator is to find the best estimate of the current value zi ,t of each

process i based on all the packets that it has received so far. LetMt
i be the set of sensor

readings, along with their timestamps that have been delivered to the estimator on or

before interval t. Let ẑi ,t be the best estimate of zi ,t and Σi ,t be the Mean Square Error

(MSE) of the best estimate, with observation up to interval t. We then have:

ẑi ,t = E[zi ,t |Mt
i ] (2.30)

Σi ,t = E[(zi ,t − ẑi ,t)2|Mt
i ]. (2.31)

When all packets are successfully delivered on time, it is well-known that Kalman Filter

[13][14][15], a recursive algorithm that calculates ẑi ,t and Σi ,t simultaneously, yields the

best estimate of the underlying Gaussian linear processes. In our system, some packets

may be dropped due to deadline violation, which leads to some missing samples. This

scenario has been discussed in [16] and [17], where a variation of Kalman Filter has been

proposed and proved to be optimal. Alg. 2 summarizes the variation of Kalman Filter.

2.6.2 Simulation of the Estimation Problem

MSE captures the error variance that occurred in the estimate process. Thus it shows

the accuracy of the estimate. We design the simulation to see the performance of MSE

of three policies. For all policies, we collect the average MSE and 95 percentile MSE of

all clients in the past second for 10 seconds in total. The simulation result is based on

the average of 1000 runs.
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Algorithm 2: Kalman Filter Recursion Rule with Missing Samples
Result: The ẑi ,t and Σi ,t based onMt

i .
Initialization: ẑi ,t , Σi ,t , when t = 0;
while each new interval do

for each i do
if mi ,t+1 is not delivered then

ẑi ,t+1 = ẑi ,t ;
Σi ,t+1 = Σi ,t +Wi ;

else
ẑi ,t+1 = ẑi ,t +

Σi ,t+1(mi ,t+1−ẑi ,t)
(Σi ,t+1+Ri )

;

Σi ,t+1 =
(Σi ,t+Wi )Ri

(Σi ,t+Wi+Ri )
;

end
end
t = t + 1;

end

(a) The 12-process system (b) The 18-process system

Figure 2.5: The average MSE and 95 percentile MSE result.
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An important challenge of this simulation is to make the MSEs of different processes

comparable to each other. In this simulation, we set Wi = qi = pi for each process

and Ri = 20 for all i . This setting is chosen based on the following two reasons. First,

suppose each sensor i delivers one packet every 1
qi

intervals periodically, and therefore

delivers qiT packets in every T intervals, then it can be shown that all processes have the

same MSE. Second, consider the case that each sensor i delivers one packet every 1
qi−δpi

intervals. In this case, the unbiased shortage of all sensors are δT . It can be shown that,

under this case, all processes still have the same steady-state MSE. In summary, setting

Wi = qi = pi for each process and Ri = 20 for all i ensures that the MSEs between

different processes are comparable. The exact calculations for the MSEs are shown in

Appendix A.

We consider two different systems in our simulations. The first system has 12 pro-

cesses and is called the 12-process system. The values of pi are {0.5, 0.47, 0.45, 0.43, 0.4, 0.37,

0.35, 0.33, 0.3, 0.27, 0.25, 0.23}. The second system has 18 processes and is called the

18-process system. The values of pi are {0.3, 0.29, 0.28, 0.27, 0.26, 0.25, 0.24, 0.23, 0.22,

0.21, 0.20, 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13}.

The simulation results are shown in Fig 2.5. In the 12-process system, all three policies

have roughly the same average MSE, but our MDVF policy has a smaller 95-percentile

MSE. In the 18-process system, our MDVF policy and the LDF policy have almost identical

performance, and both of them perform better than the MW-AoI policy, both in terms of

average MSE and 95-percentile MSE. In our network model, whenever a process delivers

a packet of measurement data, the AoI of that process drops to zero. However, since

the measurement is noisy, the delivery of one single packet is not sufficient to make an

accurate estimation. Instead, the estimator needs to have multiple recent measurements

to make an accurate estimation. This is why our MDVF policy performs better than the

MW-AoI policy.

This simulation result demonstrates that our MDVF policy indeed provides superior
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performance for real-time estimation applications. It also suggests that AoI-based solu-

tions may not be sufficient to capture the reliability of estimation when considering many

estimate techniques.

2.7 Conclusion

We have studied the problem of minimizing the total Loss-of-Confidence (LoC) in real-

time wireless networks, where the LoC of each flow only depends on the timely deliveries

in a window of the recent past. We have shown that, unlike most existing network

utility maximization (NUM) problem, the problem of minimizing total LoC requires the

precise control of the temporal variance of timely deliveries. To solve this problem, we

have proposed a simple online algorithm called the MDVF policy, and have proved that the

MDVF policy is near-optimal. Simulation results have demonstrated that the MDVF policy

outperforms other state-of-the-art policies. Further, we have studied the application of

real-time estimation of multiple independent linear Gaussian processes, where an estimator

aims to make the best estimate of the current states based on all the measurements that

it has received. We evaluate the performance of our policy and others by their resulting

estimation error. Simulation results show that our MDVF policy achieves both the smallest

average estimation error as well as the smallest 95-percentile of estimation error. This

case study suggests that AoI solutions may fail to capture the performance for real-time

remote estimation problems.
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3. OPTIMAL WIRELESS SCHEDULING FOR REMOTE SENSING THROUGH

BROWNIAN APPROXIMATION*

3.1 System Model

We consider the following network model: there is one Access Point (AP) and multiple

flows, numbered as 1, 2, 3, . . . , N, each of which is monitoring an independent and time-

varying stochastic field. Time is slotted and denoted by t = 1, 2, 3, . . . . Each flow i

generates one time-stamped information update about its monitored field every mi slots.

The AP schedules all transmissions. When the AP schedules a flow i to transmit, the AP

first sends a POLL packet to flow i , and, upon receiving the POLL packet, flow i sends

one of its information updates to the AP. The duration of a time slot is hence chosen

to be sufficient for the transmission of one POLL packet and one information update,

along with any necessary overheads. The AP then uses all the information updates that

it has ever received to estimate the current status of each monitored field. We further

consider the effects of shadowing, multi-paths, fading, and interference by assuming that

each transmission for flow i is successful, that is, a status update is received after sending

a POLL packet, with probability pi .

Since the AP needs to make real-time estimation about each stochastic field, the

performance of the network should be measured by the accuracy of the estimation. We

need a model to express the accuracy of the estimation in terms of network behaviors. Our

model is based on two observations of most estimation problems: First, recent information

is much more useful than stale information; Second, the more recent information that

the AP has, the more accurate its estimation can be. Hence, we model the accuracy of

the estimation by assuming that it depends on the number of recent information updates

*Reprinted with permission from [18] D. Guo, P. -C. Hsieh and I. -H. Hou, "Optimal Wireless Schedul-
ing for Remote Sensing through Brownian Approximation," IEEE INFOCOM 2021 - IEEE Conference on
Computer Communications, 2021, pp. 1-10, doi: 10.1109/INFOCOM42981.2021.9488785.
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that the AP has received. Compared to Age-of-Information (AoI), which measures the

performance based on the freshness of the most recent data, our model offers a richer

characterization as it considers both the freshness of data and the quantity of fresh data.

Specifically, we assume that each information update generated by flow i is only useful

to the AP’s estimation algorithm for Ti time slots. Afterwards, the information update

becomes stale and is no longer useful. Thus, at time slot t, only information updates

generated after time slot t − Ti are useful. We use Ui(t) to denote the number of useful

packets that the AP has received from flow i at time t. For example, Fig. 3.1 illustrates

the packet arrivals and deliveries histogram of a flow with Ti = 15. At time 40, only

information updates generated after time 25 are useful, and hence we have Ui(40) = 2.

Note that while packet 1 was delivered after time 25, it was generated before time 25

and hence is not useful at time 40.

Figure 3.1: An Example for Useful Packets and Deliveries.

In order to make an accurate estimation of the stochastic field of flow i at time t, the

AP needs to have a sufficient number of useful information updates. This requirement is

described by a threshold qi , and we say that the AP needs at least qiTi useful information

updates, that is, Ui(t) ≥ qiTi , to make an accurate estimation. If Ui(t) < qiTi at some

time t, then the estimation is inaccurate and results in a large confidence interval. In

this case, we say that the AP suffers from a Loss-of-Confidence (LoC) of Ci(qiTi −

Ui(t)) at time t, where Ci(·) is a strictly increasing, convex and differentiable function

over [0,+∞) with Ci(0) = 0 and C′i (0) = 0. The goal of this paper is to minimize
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the long-time average LoC for the entire system of all flows, which can be written as

limk→∞

∑N
i=1

∑k+Ti
t=Ti+1 Ci (qiTi−Ui (t))

k .

The optimization of total average LoC consists of two parts: First, the AP decides

which flow to schedule in each time slot; Second, upon receiving a POLL message, the

flow decides which information update to respond. For the second part, it can be shown

that the Last-In-First-Out (LIFO) strategy, where the flow always responds with the

newest undelivered information update, is optimal. Intuitively, the newest information

update is the one that will remain useful for the longest time, and hence sending it is

optimal. Recent work [19] has shown that LIFO-type strategy is optimal or near-optimal

for AoI-related metrics in the queueing system under different service time. While LoC

is not AoI-related, similar arguments can be used to establish the optimality of LIFO for

LoC.

3.2 Fundamental Properties for LIFO Systems

To optimize the long-term average LoC problem, the first challenge is to model the

behavior of the useful delivery. In this section, we derive a closed form expression for

Ui(t). This derivation is built on the assumption of LIFO strategy when the flow selects

the information update in its buffer to transmit.

Let ai(t) be the indicator function that flow i generates a new information update at

time t, and xi(t) be the indicator function that flow i successfully transmits a packet at

time t. Recall that flow i generates a new information update every mi time slots. If

flow i generates the first information update at time oi with 0 ≤ oi < mi , then we have

ai(t) = 1 if and only if t−oi is a multiple of mi . If flow i is scheduled to transmit at time

t, then we have xi(t) = 1 with probability pi , since the channel reliability of flow i is pi .

Let Ai(t) =
∑t
τ=0 ai(t) and Xi(t) =

∑t
τ=0 xi(t) be the accumulated number of arrivals

and deliveries, respectively.

We also define ui(τ, t) be the indicator function that flow i successfully delivers an
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information update at time τ that will remain useful until at least time t. For example,

in Fig. 3.1, there are deliveries at times 27, 31, and 35, but the delivery at time 27 will

not be useful at time 40. Thus, we have ui(27, 40) = 0 and ui(31, 40) = ui(35, 40) = 1.

By this definition of ui(τ, t), we have Ui(t) =
∑t
τ=t−Ti+1 ui(τ, t).

Theorem 4. For any t > Ti ,

Ui(t) =

t∑
τ=t−Ti+1

xi(τ)

− sup
t−Ti+1≤s≤t

[

s∑
τ=t−Ti+1

xi(τ)−
s∑

τ=t−Ti+1

ai(τ)]+ (3.1)

Proof. We first show that:

d∑
τ=t−Ti+1

ui(τ, t)

=

d∑
τ=t−Ti+1

xi(τ)− sup
t−Ti+1≤s≤d

[

s∑
τ=t−Ti+1

xi(τ)

−
s∑

τ=t−Ti+1

ai(τ)]+, (3.2)

for any t − Ti + 1 ≤ d ≤ t by induction.

First, consider the case d = t − Ti + 1. Any updates generated before time d will

become stale by time t. Hence, flow i can deliver an update at time d that will remain

useful at time t, and hence have ui(d, t) = 1, only if both of the following conditions are

satisfied: flow i generates an update at time d , that is, ai(d) = 1, and flow i delivers an

update at time d , that is, xi(d) = 1. Hence, When d = t − Ti + 1, (3.2) holds.

Next, suppose (3.2) holds when d = k , we then consider the case when d = k+ 1. At

time k + 1, ui(k + 1, t) = 1 only if the following two conditions are satisfied: First, there

is one successful delivery at time k+ 1, that is xi(k+ 1) = 1; Second, there is at least one

undelivered update that will be useful at time t. Since only information updates after time
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t − Ti will be useful at time t, the number of useful updates that flow i has generated

on or before time k + 1 is
∑k+1
τ=t−Ti+1 ai(τ). Before time k + 1, flow i has delivered∑k

τ=t−Ti+1 ui(τ, t) information updates. Hence, the number of undelivered updates that

will be useful at time t is
∑k+1
τ=t−Ti+1 ai(τ) −

∑k
τ=t−Ti+1 ui(τ, t). In summary, we have

ui(k + 1, t) = min{xi(k),
∑k+1
τ=t−Ti+1 ai(τ)−

∑k
τ=t−Ti+1 ui(τ, t)}.

We now derive
∑k+1
τ=t−Ti+1 ui(τ, t) from the induction hypothesis.

k+1∑
τ=t−Ti+1

ui(τ, t) =

k∑
τ=t−Ti+1

ui(τ, t) + ui(k + 1, t)

= min{xi(k + 1) +

k∑
τ=t−Ti+1

ui(τ, t),

k+1∑
τ=t−Ti+1

ai(τ)}

= min{
k+1∑

τ=t−Ti+1

xi(τ)− sup
t−Ti+1≤s≤k

[

s∑
τ=t−Ti+1

xi(τ)−
s∑

τ=t−Ti+1

ai(τ)]+,

k+1∑
τ=t−Ti+1

ai(τ)}

=

k+1∑
τ=t−Ti+1

xi(τ)−max{ sup
t−Ti+1≤s≤k

[

s∑
τ=t−Ti+1

xi(τ)

−
s∑

τ=t−Ti+1

ai(τ)]+,

k+1∑
τ=t−Ti+1

xi(τ)−
k+1∑

τ=t−Ti+1

ai(τ)}

=

k+1∑
τ=t−Ti+1

xi(τ)− sup
t−Ti+1≤s≤k+1

[

s∑
τ=t−Ti+1

xi(τ −
s∑

τ=t−Ti+1

ai(τ)]+ (3.3)

Hence, by induction, (3.2) holds for any t − Ti + 1 ≤ d ≤ t. Since Ui(t) =∑t
τ=t−Ti+1 ui(τ, t), the theorem holds.

3.3 Reflected Brownian Motion Approximation

Thm. 4 has shown that Ui(t) can be explicitly expressed as a function of the update

arrival and delivery processes, {ai(τ)} and {xi(τ)}. In this section, we further show that,

if the employed scheduling policy is ergodic, then Ui(t) can be approximated by a random

variable whose distribution can be expressed in closed-form.
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We first study the approximation of the accumulated number of update deliver-

ies, Xi(t) :=
∑t
τ=1 xi(τ). Under any ergodic scheduling policy, the delivery process

{xi(1), xi(2), . . . } can be modeled as a positive recurrent Markov chain with finite states.

By the Law of Large Numbers, the limit X̄i := limt→∞
Xi (t)
t exists. Further, by the central

limit theorem of Markov chains [4], X̂i := limt→∞
Xi (t)−tX̄i√

t
is a Gaussian random variable

with mean 0 and some finite variance, which we denote by σ2
i with σi ≥ 0. Hence, we

can approximate Xi(t) − Xi(t − Ti) =
∑t
τ=t−Ti+1 xi(τ) as a Gaussain random variable

with mean Ti X̄i and variance Tiσ2
i for any sufficiently large Ti . Such an approximation is

called a Brownian motion process, and we denote it by Xi(t) ≈ BM(X̄i , σ
2
i ).

Next, we consider the random process Yi(t) := Ai(t)−Xi(t). Recall that Ai(t) is the

accumulated number of update arrivals and that flow i generates one update every mi

slots. Thus, we have b Timi c ≤ Ai(t)−Ai(t−Ti) ≤ d
Ti
mi
e, for any t and Ti . Yi(t)−Yi(t−Ti) =

[Ai(t)−Ai(t−Ti)]− [Xi(t)−Xi(t−Ti)] can then be approximated by a Gaussian random

variable with mean Ti( 1
mi
− X̄i) and variance Tiσ2

i for any sufficiently large Ti . We express

this approximation by saying Yi(t) ≈ BM( 1
mi
− X̄i , σ2

i ).

From Thm. 4, we have Ui(t) = [Ai(t)− Ai(t − Ti)]− [Yi(t)− Yi(t − Ti)] +

supt−Ti+1≤s≤t [Yi(s)− Yi(t − Ti)]+. When we fix d and apply the approximation Yi(t) ≈

BM( 1
mi
− X̄i , σ2

i ), the random process Yi(t + d) − Yi(d) can still be approximated by

BM( 1
mi
− X̄i , σ2

i ), and the random process Qi(t) := Yi(t + d)− Yi(d)− sup0≤s≤t [Yi(s +

d)− Yi(d)]+ is called a reflected Brownian process and is denoted by RBM( 1
mi
− X̄i , σ2

i ).

When X̄i > 1
mi
, Qi(t) has a stationary distribution of an exponential variable with mean

σ2
i

2(X̄i− 1
mi

)
[20], and we say Qi(t) ∼ EXP (

2(X̄i− 1
mi

)

σ2
i

). When X̄i < 1
mi
, Chen and Yao [21]

propose to approximate Qi(t) by a Brownian motion process Qi(t) ≈ BM( 1
mi
− X̄i , σ2

i ).

In this case, when t is fixed, Qi(t) is approximated by a Gaussian random variable with

mean Ti( 1
mi
− X̄i) and variance Tiσ2

i , denoted by N (Ti(
1
mi
− X̄i), Tiσ2

i ).

We note that Ui(t) ∼ [Ai(t)−Ai(t −Ti)]−Qi(Ti). Thus, we can approximate Ui(t)
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as the following:

Ui(t) ≈


Ti
mi
− EXP (

2(X̄i − 1
mi

)

σ2
i

), i f X̄i >
1

mi

Ti
mi
−N (Ti(

1

mi
− X̄i), Tiσ2

i ), i f X̄i <
1

mi

(3.4)

3.4 Optimization Problem Formulation

Section 3.3 has shown that the distribution of Ui(t) can be approximated by a random

variable whose distribution depends on the mean and variance of the delivery process,

that is, X̄i and σi . Thus, the problem of minimizing the total long-term average LoC

can be viewed as an optimization problem of choosing the optimal [X̄1, X̄2, . . . , X̄N ] and

[σ1, σ2, . . . , σN ]. In this section, we first establish the fundamental constraints of [X̄i ]

and [σi ]. We then formulate the problem as an optimization problem and discuss finding

the optimal [X̄i ] and [σi ].

3.4.1 System Constraints

We first discuss the constraints on [X̄i ]. Hou and Kumar [5] has shown that, under

any work-conserving policy that schedules a transmission in each time slot, we have for

all t:

E[

N∑
i=1

Xi(t)−Xi(t − 1)

pi
] = 1. (3.5)

Thus, we have, under any work-conserving and ergodic scheduling policies,

N∑
i=1

X̄i
pi

= 1. (3.6)
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.

Next, we derive the constraint for σ2
i .

By (3.5), the sequence of {
∑N
i=1

Xi (t)
pi
− t|t = 1, 2, . . . } is a martingale. By the

martingale central limit theorem [6], X̂TOT := limk→∞

∑N
i=1

Xi (k)

pi
−k

√
k

is a Gaussian random

variable with mean 0 and variance

σ2
[X̄i ]

:= lim
k→∞

1

k
[

k∑
t=1

(

N∑
i=1

Xi(t)−Xi(t − 1)

pi
)2]− 1. (3.7)

Suppose the AP schedules a transmission for flow j in slot t, then Xj(t)− Xj(t − 1)

equals 1 with probability pj and equals 0 with probability 1−pj . Further, Xi(t)−Xi(t−1) =

0 for all other flows i 6= j . Hence,
∑N
i=1

Xi (t)−Xi (t−1)
pi

equals 1
pj

with probability pj , and

equals 0 with probability 1−pj . Further, let γi(t) be the probability that the system sched-

ules flow i in slot t. Then we can derive that limk→∞
1
k [
∑k
t=1(

∑N
i=1

Xi (t)−Xi (t−1)
pi

)2] =

limk→∞
1
k [
∑k
t=1

∑N
i=1 γi(t)

1
pi

]. Note that, since every transmission for flow i is successful

with probability pi , we have limk→∞

∑k
t=1 γi (t)
k = X̄i

pi
. Therefore, (3.7) can be written as:

σ2
[X̄i ]

=

N∑
i=1

X̄i

p2
i

− 1. (3.8)

Recall the definition of X̂i := limt→∞
Xi (t)−tX̄i√

t
, we have X̂TOT =

∑N
i=1

X̂i
pi
, and the
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variance of X̂ipi is (σipi )
2. By Cauchy-Schwarz Inequality, we have:

( N∑
i=1

σi
pi

)2
=
( N∑
i=1

√
V ar(

X̂i
pi

)
)2

=

N∑
i=1

V ar(
X̂i
pi

) + 2

N∑
l=1

N∑
m=l+1

√
V ar(

X̂l
pl

)V ar(
X̂m
pm

)

≥
N∑
i=1

V ar(
X̂i
pi

) + 2

N∑
l=1

N∑
m=l+1

Cov(
X̂l
pl
,
X̂m
pm

)

=V ar(

N∑
i=1

X̂i
pi

) = σ2
[X̄i ]
, (3.9)

where V ar(X) denotes the variance of X and Cov(X, Y ) denotes the covariance. Thus,

we have the constraint for σi as:

n∑
i

σi
pi
≥ σ[X̄i ]

=

√√√√ n∑
i

X̄i

p2
i

− 1. (3.10)

3.4.2 Optimization Problem Formulation

From (3.4), the distribution Ui(t) is very different in two different regimes, the regime

X̄i >
1
mi

and the regime X̄i < 1
mi
. When X̄i > 1

mi
, then the rate of delivery is larger

than the rate of update arrival. Hence, we say that the system operates in the under-

sampled regime when X̄i > 1
mi

for all i . Conversely, we say that the system operates in

the over-sampled regime when X̄i < 1
mi

for all i .

We first discuss the under-sampled regime. From (3.6), we know that it is possible

to operate in the under-sampled regime if and only if
∑N
i=1

1
pimi

< 1. In this case, Ui(t)

is approximated by Ti
mi
− EXP (

2(X̄i− 1
mi

)

σ2
i

). Let Θλ(z) := 1 − e−λz be the Cumulative
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Distribution Function (CDF) of an exponential variable with mean 1
λ . Then we have

lim
k→∞

∑N
i=1

∑k+Ti
t=Ti+1 Ci(qiTi − Ui(t))

k
(3.11)

= lim
k→∞

N∑
i=1

E[Ci(qiTi − Ui(t))] (3.12)

=

N∑
i=1

E[Ci(qiTi −
Ti
mi

+ EXP (
2(X̄i − 1

mi
)

σ2
i

))] (3.13)

=

N∑
i=1

∫
z

Ci(z − (
1

mi
− qi)Ti)dΘ 2(X̄i−

1
mi

)

σ2
i

(z). (3.14)

The problem of minimizing the total LoC in the under-sampled regime is to find [X̄i ]

and [σi ] that minimize (3.14), subject to (3.6) and (3.10).

Next, we discuss the over-sampled regime, which can happen when
∑N
i=1

1
pimi

> 1.

In this case, Ui(t) is approximated by Ti
mi
− N (Ti(

1
mi
− X̄i), Tiσ2

i ). Let φ(z) represents

the CDF of a random variable under standard Normal distribution, then the CDF of

{Ûi(t)− Ti X̄i} is φ( z√
Tiσ

2
i

). Then we have:

lim
k→∞

∑N
i=1

∑k+Ti
t=Ti+1 Ci(qiTi − Ui(t))

k
(3.15)

= lim
k→∞

N∑
i=1

E[Ci(qiTi − Ui(t))] (3.16)

=

N∑
i=1

E[Ci(qiTi − Ti X̄i + Ti X̄i −N (Ti X̄i , Tiσ
2
i ))] (3.17)

=

N∑
i=1

∫
z

Ci(
√
Tiσ

2
i z − (X̄i − qi)Ti)dφ(z). (3.18)

The problem of minimizing the total LoC in the over-sampled regime is to find [X̄i ]

and [σi ] that minimize (3.18), subject to (3.6) and (3.10).
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3.4.3 Obtaining the Optimal Solution

A challenge in finding the optimal [X̄i ] and [σi ] is that the objective functions (3.14)

and (3.18) both involve integrals. We propose using the Monte Carlo Method (MCM) [22]

to address this challenge. For the under-sampled regime, since the rate λi of EXP (λi)

of each flow i involves both the control variables X̄i and σi , we further convert (3.14)

into the following form to obtain EXP (1):

N∑
i=1

∫
z

Ci(z − (
1

mi
− qi)Ti)dΘ 2(X̄i−

1
mi

)

σ2
i

(z)

=

N∑
i=1

∫
y

Ci(
yσ2

i

2(X̄i − 1
mi

)
− (

1

mi
− qi)Ti)dΘ1(y), (3.19)

where y =
2(X̄i− 1

mi
)

σ2
i

z . Then we can apply the Monte Carlo Method and generate K

random numbers using the exponential distribution with rate 1 for each 1 ≤ i ≤ N, which

are denoted by yi ,1, yi ,2, . . . , yi ,K . The objective function (3.19) can then be approximated

by
∑N
i=1

1
K

∑K
k=1 Ci(

yi ,kσ
2
i

2(X̄i− 1
mi

)
−( 1

mi
− qi)Ti), and the problem of minimizing the total LoC

can be written as

Min

N∑
i=1

1

K

K∑
k=1

Ci(
yi ,kσ

2
i

2(X̄i − 1
mi

)
− (

1

mi
− qi)Ti) (3.20)

s.t.

N∑
i=1

X̄i
pi

= 1 (3.21)

N∑
i=1

σi
pi
≥ σ[X̄i ]

=

√√√√ N∑
i=1

X̄i

p2
i

− 1 (3.22)

X̄i ≥ 0 and σi ≥ 0, ∀i . (3.23)

The above problem is a well-defined optimization problem, and we can apply standard

techniques to find the optimal [X̄i ] and [σi ].
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Similarly, for the over-sampled regime, we generate K random numbers using the Nor-

mal distributionN (0, 1) for each 1 ≤ i ≤ N, which are denoted again by zi ,1, zi ,2, . . . , zi ,K .

Then we approximate (3.18) by
∑N
i=1

1
K

∑K
k=1 Ci(

√
Tiσ

2
i zi ,k−(X̄i − qi)Ti). The problem

of minimizing the total LoC can be written as

Min

N∑
i=1

1

K

K∑
k=1

Ci(
√
Tiσ

2
i zi ,k − (X̄i − qi)Ti) (3.24)

s.t.

N∑
i=1

X̄i
pi

= 1 (3.25)

N∑
i=1

σi
pi
≥ σ[X̄i ]

=

√√√√ N∑
i=1

X̄i

p2
i

− 1 (3.26)

X̄i ≥ 0 and σi ≥ 0, ∀i . (3.27)

3.5 Online Scheduling Policy

Section 3.4 has shown how to find the optimal [X̄i ] and [σi ] to minimize the total

LoC. Let [X̄∗i ] and [σ∗i ] be the optimal solution. It remains to find a scheduling policy that

ensures that the mean and the variance of the update delivery process Xi(t) are indeed

X̄∗i and σ∗2i . In this section, we propose such an online scheduling policy.

We first introduce some notations before we propose and analyze our policy. Let

di(t) := tX̄i
∗−Xi (t)
pi

denote the deficit of flow i in slot t. Consequently, we define ∆di(t) :=

di(t + 1)− di(t) =
X̄∗i
pi
− Xi (t+1)−Xi (t)

pi
as the change of the deficit in a slot.

We are now ready to propose our policy, which is called Variance-Weighted-Deficit-

First (VWDF) policy. The VWDF policy assigns a weight of vi := pi
σ∗i

to each flow i .

In each time slot t, the VWDF policy schedules the client with the largest vidi(t) for

transmission.

Let D(t) :=
∑N

i=1 di (t)∑N
i=1 1/vi

be the weighted average of vidi(t). We first establish the

following theorem.
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Theorem 5. Under VWDF policy, the Markov process with state vector {vidi(t)−D(t)}

is positive recurrent.

Proof. By the design of our VWDF policy, at the beginning of each time slot t, the flow

with largest vidi(t) will be transmitted at this slot. We use rt to represent the flow that

has the largest vidi(t) at time t, hence this flow rt has vrtdrt (t) ≥ vidi(t) for all i . Since

a transmission for flow rt is successful with probability prt , we have ∆drt (t) =
X̄∗rt
prt
− 1

prt

with probability prt and ∆drt (t) =
X̄∗rt
prt

with probability 1− prt . For all other flows i 6= rt ,

∆di(t) =
X̄∗i
pi
. Then we have the expectation as E[∆drt (t)] =

X̄∗rt
prt
−1 and E[∆di(t)] =

X̄∗i
pi

for i 6= rt . This also gives:

N∑
i=1

E[∆di(t)] =

N∑
i=1

X̄∗i
pi
− 1 = 0. (3.28)

Similarly, let ∆D(t) := D(t + 1)−D(t). Following the above result, we also have:

E[∆D(t)] = E[

∑N
i=1(di(t + 1)− di(t))∑N

i=1
1
vi

] = 0. (3.29)

Define the Lyapunov function L(t) = 1
2

∑N
i=1

1
vi

(vidi(t) − D(t))2, and we have the

derivation for the Lyapunov drift when given the state at t:
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∆L(t) = E[L(t + 1)− L(t)]

= E[
1

2

N∑
i=1

1

vi
(vidi(t + 1)−D(t + 1))2 −

1

2

N∑
i=1

1

vi
(vidi(t)−D(t))2]

≤ β + E[

N∑
i=1

1

vi
(vidi(t)−D(t)(vi∆di(t)− ∆D(t)))]

= β + E[

N∑
i=1

vidi(t)∆di(t)−
N∑
i=1

D(t)∆di(t)]

− E[∆D(t)

N∑
i=1

di(t)− ∆D(t)

N∑
i=1

di(t)] (3.30)

where β is a bounded positive number, and (3.30) is from the definition of D(t).

Since we have E[∆drt (t)] =
X̄∗rt
prt
− 1, E[∆di(t)] =

X̄∗i
pi

for i 6= rt ,
∑N
i=1 E[∆di(t)] = 0,

and E[∆di(t)] = 0, we further have:

∆L(t) ≤ β +

N∑
i=1

X̄∗i
pi

(
vidi(t)− vrtdrt (t)

)
. (3.31)

By the design of VWDF policy, vrtdrt (t) ≥ vidi(t), for all i 6= rt . Suppose, at time

t, max1≤i≤N |vidi(t) − D(t)| > δ, for some positive δ. Then, there exists a flow i ′t with

vi ′tdi ′t (t) − vrtdrt (t) < −δ, and hence ∆L(t) < β − δ
X̄∗
i ′t
pi ′t

. By choosing δ to be larger

than 2βpi
X̄∗i

, we have ∆L(t) < −β if max1≤i≤N |vidi(t)−D(t)| > δ. Therefore, by Foster-

Lyapunov Theorem, we have {vidi(t)−D(t)} is positive recurrent.

Since the Markov process {vidi(t) − D(t)} is positive recurrent, it has a stationary

distribution. Hence, limk→∞
vidi (k)−D(k)

k → 0, and limk→∞
vidi (k)−D(k)√

k
→ 0, for all i .
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Moreover,

lim
k→∞

D(k)

k
= lim
k→∞

∑N
i=1

kX̄∗i −Xi (k)

pi

k
∑N
i=1

1
vi

= lim
k→∞

∑N
i=1

X̄∗i
pi
−
∑N
i=1

Xi (k)
kpi∑N

i=1
1
vi

= 0. (3.32)

Then, we have the following:

lim
k→∞

vidi(k)

k
= lim
k→∞

vi
kX̄∗i −Xi(k)

kpi

= vi
X̄∗i
pi
− vi lim

k→∞

Xi(k)

kpi
= 0, (3.33)

and hence, X̄i = X̄∗i .

Next, recall the definition X̂i := limk→∞
Xi (k)−kX̄i√

k
and X̂TOT := limk→∞

∑N
i=1

Xi (k)

pi
−k

√
k

.

Hence, we have:

lim
k→∞

vidi(k)√
k

= lim
k→∞

vi(kX̄
∗
i −Xi(k))

pi
√
k

= −
vi
pi
X̂i , (3.34)

and

lim
k→∞

D(k)√
k

= lim
k→∞

∑N
i=1 di(k)

√
k
∑N
i=1

1
vi

= lim
k→∞

∑N
i=1

kX̄∗i
pi
−
∑N
i=1

Xi (k)
pi√

k
∑N
i=1

1
vi

= − lim
k→∞

∑N
i=1

Xi (k)
pi
− k

√
k
∑N
i=1

1
vi

= −
X̂TOT∑N
i=1

1
vi

. (3.35)

By definition, the variance of (3.34) is v
2
i

p2
i

σ2
i =

σ2
i

σ∗2i
and the variance of (3.35) is

σ2
[X̄i ]

(
∑N

i=1
1
vi

)2
=

σ2
[X̄i ]

(
∑N

i=1

σ∗
i
pi

)2
. Since [X∗i ] and [σ∗i ] is the optimal solution to the optimization problem of

minimizing either (3.14) or (3.18), subject to (3.6) and (3.10) and the objective function
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is increasing in [σ∗i ], we have
∑N
i=1

σ∗i
pi

= σ[X̄i ]
, and the variance of (3.35) is 1. As (3.34)

and (3.35) have the same variance, we have σi = σ∗i , for all i .

In summary, we have:

Theorem 6. Under the VWDF policy, X̄i = X̄∗i and σi = σ∗i , for all i . �

Since [X̄∗i ] and [σ∗i ] are the optimal vectors that minimize system-wide total LoC under

the Brownian approximation, Theorem 6 implies that the VWDF policy is the optimal

scheduling policy. We note that the VWDF policy makes scheduling decisions only based

on the deficit of each flow. In particular, the VWDF policy does not keep track of the

number of undelivered useful updates that each flow has. Such a feature makes it very

easy to implement the VWDF policy. It is also surprising that the VWDF policy is able

to minimize the total LoC, which depends on the number of useful information updates,

without any knowledge about the usefulness of individual updates.

3.6 Simulation Results

We present our simulation results in this section. We have tested our VWDF policy

and compared it with with two other state-of-the-art policies in NS-2 simulation. All

simulations are performed under 802.11 MAC protocol with 54Mbps data rate. Simula-

tions show that the time needed for the AP to schedule a transmission and receive an

information update is 813µs. All results presented in this paper are average in 100 runs.

We compare our VWDF policy against two other policies. The first policy is the

Largest Debt First (LDF) policy from [5], [8], which schedules the flow withe largest

qi t−Xi(t) in each time slot. The main difference between the LDF policy and our VWDF

policy is that the LDF policy does not weigh the deficit of each flow by its variance. The

second policy is a policy aiming to minimize AoI under some throughput constraints [23].

Under our model, the policy schedules the flow with the largest sum of qi t − Xi(t) and

AoI in each time slot. Hence, we call this policy MW-AoI in the following simulations. In

all policies, each flow sends status updates using LIFO.
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In our simulations, there are eight wireless flows, which are divided into two groups.

The first four flows are in the first group with Ci(qiTi−Ui(t)) = (qiTi−Ui(t))2. The other

four flows are in the second group with Ci(qiTi −Ui(t)) = eqiTi−Ui (t)− (qiTi −Ui(t))−1.

We evaluate the performance under four scenarios operating in very different regimes:

1. Over-sampled and heavily-loaded system: This setting has X̄i < 1
mi
, for all i , and∑N

i=1
qi
pi

= 1. Specifically, we choose [pi ] = [0.65, 0.65, 0.7, 0.7, 0.75, 0.75, 0.8, 0.8],

[qi ] = [0.13, 0.065, 0.14, 0.07, 0.075, 0.075, 0.08, 0.08], [mi ] = [5, 5, 5, 5, 8, 8, 8, 8],

and [Ti ] = [200, 200, 200, 200, 500, 500, 500, 500].

2. Over-sampled and over-loaded system: This setting has X̄i < 1
mi
, for all i ,

and
∑N
i=1

qi
pi

= 1.1 > 1. Specifically, we choose [pi ] and [mi ] to be the same

as the first system, [qi ] = [0.1625, 0.0975, 0.14, 0.07, 0.075, 0.075, 0.08, 0.08], and

[Ti ] = [400, 400, 400, 400, 300, 300, 300, 300].

3. Over-sampled and under-loaded system: This setting has X̄i < 1
mi
, for all i , and∑N

i=1
qi
pi

= 0.95 < 1. Specifically, we choose [pi ] and [mi ] to be the same as the first

system, but different [qi ] = [0.0975, 0.065, 0.14, 0.07, 0.075, 0.075, 0.08, 0.08], and

[Ti ] = [400, 400, 400, 400, 300, 300, 300, 300].

4. Under-sampled system: This setting has X̄i > 1
mi
, for all i . Specifically, we choose

pi = 0.52, qi = 0.0625, mi = 16, and Ti = 400, for all i .

For all these four systems, we evaluate the average total LoC incurred in every 100

time slots. We also plot the target optimal value obtained by solving the optimization

problems. Moreover, to evaluate whether our VWDF converges to the desirable X̄∗i and

σ∗i , we also evaluate the total deviation from the desirable values, namely, 1
N

∑N
i=1 |

X̄i−X̄∗i
X̄∗i
|

and 1
N

∑N
i=1 |

σi−σ∗i
σ∗i
|.

The simulation results for the four systems are shown in Fig. 3.2, 3.3, 3.4, and 3.5.

It can be observed that our VWDF policy achieves the smallest total LoC among all
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(a) The Total LoC

(b) The Total Error from X̄∗i in Percentage (c) The Total Error from σ∗i in Percentage

Figure 3.2: The over-sampled and heavily-loaded system.

three evaluated policies in all systems. The total LoC of VWDF is also very close to the

target optimal value. Moreover, it can be observed that the empirical values of X̄i and

σi converge to the target values X̄∗i and σ∗i typically within 500 time slots, which, under

our network setting, is less than 0.5 second. These result suggest that VWDF not only

has good performance but also fast convergence rate.
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(a) The Total LoC

(b) The Total Error from X̄∗i in Percentage (c) The Total Error from σ∗i in Percentage.

Figure 3.3: The over-sampled and over-loaded system.

(a) The Total LoC

(b) The Total Error from X̄∗i in Percentage (c) The Total Error from σ∗i in Percentage

Figure 3.4: The over-sampled and under-loaded system.
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(a) The Total LoC

(b) The Total Error from X̄∗i in Percentage (c) The Total Error from σ∗i in Percentage

Figure 3.5: The Under-sampled System.

Next, we evaluate the performance of VWDF under different queueing disciplines. In

addition to LIFO, we also evaluate two other queueing discipline. The first one is First-

In-First-Out (FIFO), where each flow sends the oldest undelivered status update every

time it receives a POLL message. The second is a variation of FIFO where each flow

drops status updates that have become stale, and sends the oldest useful status update

every time it receives a POLL message. This discipline, which we call FIFO-useful-only,

is effectively the same as the Earliest-Deadline-First (EDF) policy.

We evaluate these queueing discipline under the four systems describe above. The

results are shown in Fig. 3.6. Clearly, LIFO significantly outperforms the other two

queueing discipline. It is well-known that the EDF policy is optimal when the goal is to

maximize the number of timely deliveries in real-time wireless networks. The result that

FIFO-useful-only performs so poorly also highlight that there are fundamental differences
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(a) The over-sampled and heavily-loaded system (b) The over-sampled and over-loaded system

(c) The over-sampled and under-loaded system (d) The under-sampled system

Figure 3.6: The LoC of Three Buffer Strategies.

between real-time wireless networks and information update systems.

3.7 Conclusion

We have studied a remote sensing problem and built a model to catch the estimation

accuracy when the control center needs to make a estimation of current status then

make a appropriate decision. This model considers both the freshness of the information

update and the quantity requirements of real-time wireless flows. Through Brownian

motion approximation, we approximate the process of the fresh information update as a

Reflected Brownian motion. Moreover, the model of the real-time estimation accuracy

is described as an optimization problem with the constrains in the averages and temporal

variances of the delivery process. We then propose a simple online scheduling policy

that employs the optimal averages and variances to achieve the optimal system-wide
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performance. We also perform comprehensive simulations to show that our scheduling

policy converges fast to the optimal averages and variances and outperforms the other two

state-of-the-art policies: the LDF policy and the MW-AoI policy. Moreover, our policy

does not require any knowledge about the freshness of each information update, and is

shown to successfully capture the estimation performance depends on data freshness.

Additionally, simulations are also ran for the comparison of different buffer strategies:

LIFO, FIFO and FIFO-useful-only, which proves the intuition of our work to choose LIFO.
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4. OPTIMAL WIRELESS SCHEDULING FOR REMOTE SENSING THROUGH

BROWNIAN APPROXIMATION

4.1 System Model for Second-Order Wireless Network Optimization

We begin by describing a generic network optimization problem. Consider a wireless

system where one AP serves N clients, numbered as {1, 2, . . . , N}. Time is slotted and

denoted by t = 1, 2, 3, . . . . We consider the ON-OFF channel model where the AP can

schedule a client for transmission if and only if the channel for the client is ON. Let Xi(t)

be the indicator function that the channel for client i is ON at time t. We assume that

the sequence {Xi(1), Xi(2), . . . } is governed by a stochastic positive-recurrent Markov

process with finite states. In each time slot, if there is at least one client having an

ON channel, then the AP selects a client with an ON channel and transmits a packet

to it. Let Zi(t) be the indicator function that client i receives a packet at time t.

The empirical performance of client i is modeled as a function of the entire sequence

{Zi(1), Zi(2), . . . }. We note that the performance model is very general and covers

virtually all existing network performance metrics, including both traditional ones like

throughput and emerging ones like AoI. The network optimization problem is to find a

scheduling policy that maximizes the total performance of the network.

Solving this generic network optimization problem is difficult because it requires solving

an N-dimensional Markov decision process. As a result, except for a few special cases,

there remains no tractable optimal solutions for many emerging network performance

metrics like AoI. To circumvent this challenge, we propose capturing each random process

by its second-order model, namely, its mean and temporal variance.

We first define the second-order model for channels. With a slight abuse of notations,

let XS(t) := max{Xi(t)|i ∈ S} be the indicator function that at least one client in S has

an ON channel at time t. Since all channels are governed by stochastic positive-recurrent
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Markov processes, we can define the mean of XS as

mS := lim
T→∞

∑T
t=1XS(t)

T
, (4.1)

and the temporal variance of XS as

v2
S := E[( lim

T→∞

∑T
t=1XS(t)− TmS√

T
)2]. (4.2)

The second-order channel model is then expressed as the collection of the means and

temporal variances of all XS, namely, {(mS, v2
S)|S ⊆ {1, 2, . . . , N}}.

The second-order model for packet deliveries is defined similarly. Assuming that the

AP’s scheduling policy is ergodic, we can define the mean and the temporal variance of

Zi as

µi := lim
T→∞

∑T
t=1 Zi(t)

T
, σ2
i := E[( lim

T→∞

∑T
t=1 Zi(t)− Tµi√

T
)2]. (4.3)

The second-order delivery model is {(µi , σ2
i )|1 ≤ i ≤ N}. The performance a client i is

modeled as a function of (µi , σ
2
i ), which we denote by Fi(µi , σ2

i ).

Since clients want to have large means and small variances for their delivery processes,

we define the second-order capacity region of a network as follows:

Definition 1 (Second-order capacity region). Given a second-order channel model

{(mS, v2
S)|S ⊆ {1, 2, . . . , N}}, the second-order capacity region is the set of all

{(µi , σ2
i )|1 ≤ i ≤ N} such that there exists a scheduling policy under which

limT→∞

∑T
t=1 Zi (t)
T = µi and E[(limT→∞

∑T
t=1 Zi (t)−Tµi√

T
)2] ≤ σ2

i ,∀i . �

The second-order network optimization problem entails finding the scheduling policy

that maximizes
∑N
i=1 Fi(µi , σ

2
i ).
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GoodBad

pi

qi

1 − pi1 − qi

Figure 4.1: The Gilbert-Elliot Model

4.2 The Second-Order Model for AoI Optimization over Gilbert-Elliot Channels

To demonstrate the utility of our second-order models, we derive the second-order

models for an important, but unsolved, problem: the optimization of AoI over Gilbert-

Elliot channels.

4.2.1 The Second-Order Model of Gilbert-Elliot Channels

In Gilbert-Elliot channels [24, 25], the channel for each client i is modeled as a two-

state Markov process, as shown in Fig. 4.1. The channel is ON if it is in the good (G)

state, and is OFF if it is in the bad (B) state. The transition probabilities from G to B

and from B to G are pi and qi , respectively. The channels are independent from each

other.

We now show the second-order model of Gilbert-Elliot channels.
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Theorem 7. Under the Gilbert-Elliot channels, for all S,

mS =1−
∏
i∈S

pi
pi + qi

, (4.4)

v2
S =2

∞∑
k=1

(∏
i∈S

Gi(k + 1)−
∏
i∈S

pi
pi + qi

)∏
i∈S

pi
pi + qi

+
∏
i∈S

pi
pi + qi

− (
∏
i∈S

pi
pi + qi

)2, (4.5)

where Gi(k) = pi
pi+qi

+ qi
pi+qi

(1− pi − qi)k−1.

Proof. Let Yi(t) := 1−Xi(t) be the indicator function that client i has an OFF channel

at time t. Let YS(t) := 1−XS(t) be the indicator function that all clients in the subset S

have OFF channels at time t. Hence, we have YS(t) =
∏
i∈S Yi(t). Suppose the Markov

process of each channel is in the steady-state at time t, then we have P rob(Yi(t) = 1) =

pi
pi+qi

. Hence, E[YS(t)] =
∏
i∈S

pi
pi+qi

and E[XS(t)] = 1 − E[YS(t)] = 1 −
∏
i∈S

pi
pi+qi

.

This establishes (4.4).

Next, we establish (4.5). We have (
∑T
t=1XS(t) − TmS)2 = (

∑T
t=1 YS(t) − T (1 −

mS))2. By the Markov central limit theorem, we can calculate v2
S by assuming that the

Markov process of each channel is in the steady-state at time 1 and using the following

formula:

v2
S = V ar(YS(1)) + 2

∞∑
k=1

Cov(YS(1), YS(1 + k)). (4.6)

Since YS(1) is a Bernoulli random variable with mean
∏
i∈S

pi
pi+qi

, we have

V ar(YS(1)) =
∏
i∈S

pi
pi + qi

− (
∏
i∈S

pi
pi + qi

)2. (4.7)
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Let Gi(k) = P rob(Yi(k) = 1|Yi(1) = 1). Then,

E[YS(1)YS(1 + k)]

=P rob(YS(1 + k) = 1|YS(1) = 1)× P rob(YS(1) = 1)

=P rob(Yi(1 + k) = 1,∀i ∈ S|Yi(1) = 1,∀i ∈ S)
∏
i∈S

pi
pi + qi

=
∏
i∈S

Gi(k + 1)
∏
i∈S

pi
pi + qi

, (4.8)

and

Cov(YS(1), YS(1 + k))

=E[YS(1)YS(1 + k)]− E[YS(1)]E[YS(1 + k)]

=
(∏
i∈S

Gi(k + 1)−
∏
i∈S

pi
pi + qi

)∏
i∈S

pi
pi + qi

(4.9)

Combining (4.7) and (4.9) establishes (4.5).

It remains to find the closed-form expression of Gi(k). We have

Gi(k) = P rob(Yi(k) = 1|Yi(1) = 1)

=Gi(k − 1)(1− qi) + (1− Gi(k − 1))pi

=pi + (1− pi − qi)Gi(k − 1), (4.10)

if k > 1, and Gi(k) = 1, if k = 1. Solving this recursive equation yields Gi(k) =

pi
pi+qi

+ qi
pi+qi

(1− pi − qi)k−1. This completes the proof.

When pi +qi = 1, the Gilbert-Elliot channel reduces to the i.i.d. channel model where

Xi(t) = 1 with probability qi , independent from any prior events. By replacing pi = 1−qi ,

we obtain the second-order model of i.i.d. channels as below:
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Corollary 2. Under the i.i.d. channels with P rob(Xi(t) = 1) = qi ,

mS = 1−
∏
i∈S

(1− qi), v2
S =

∏
i∈S

(1− qi)−
∏
i∈S

(1− qi)2, (4.11)

for all S. �

4.2.2 The Second-Order Model of AoI Optimization

Age-of-Information (AoI) has been proposed to model the performance of real-time

remote sensing applications, where a controller is obtaining status updates from a number

of sensors. In a nutshell, the AoI corresponding to a sensor at a given time is defined as

the age of the newest information update that it has ever delivered to the controller. In

terms of our network model, the AP is the controller and each client is a sensor.

Similar to the case studied in [26], we consider that each sensor i generates new

updates by a Bernoulli random process. In each time slot t, sensor i generates a new

update with probability λi , independent from any prior events. To minimize AoI, each

sensor only keeps the most recent update in its memory, and it transmits the most recent

update whenever it is scheduled for transmission. In other words, a sensor discards all

its prior updates every time it generates a new update. The prior work [26] considers

that the controller knows when each sensor generates a new update. In this paper, we

further address the issue that the controller only knows λi but not the exact times at

which sensors generate new updates. Hence, we assume that the scheduling decision is

independent from update generations.

Let Ai(n) := min{τ |
∑τ
t=1 Zi(t) = n} be the time of the n-th delivery for client i ,

and let Bi(n) := Ai(n + 1) − Ai(n) be the time between the n-th and the (n + 1)-th

deliveries. Since scheduling decisions are independent from update generations, we have

the following:

Lemma 2. If {Bi(0), Bi(1), . . . } is independent from the update generation processes of
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sensor i , then the long-term average AoI of sensor i is

AoI i =
E[B2

i ]

2E[Bi ]
+

1

λi
−

1

2
, (4.12)

where E[B2
i ] := limm→∞

∑m
n=1Bi(n)2/m and E[Bi ] := limm→∞

∑m
n=1Bi(n)/m.

Proof. This lemma can be established by combining techniques in the proof of Proposition

2 in [26] and the fact that Bi(n) is independent from update generations. The complete

proof is omitted due to space limitation.

We aim to express AoI i as a function of the second-order delivery model of client

i , (µi , σ
2
i ). Since there can be multiple sequences of {Zi(1), Zi(2), . . . } with the same

(µi , σ
2
i ), we will derive AoI i with respect to a second-order reference delivery process as

defined below.

Let BMµi ,σ
2
i
(t) be a Brownian motion random process with mean µi and variance σ2

i .

An important property of the Brownian motion random process is that for any t1 < t2,

BMµi ,σ
2
i
(t1) − BMµi ,σ

2
i
(t2) is a Gaussian random variable with mean (t2 − t1)µi and

variance (t2 − t1)σ2
i . Our goal is to define a sequence {Z′i (1), Z′i (2), . . . } such that∑t

τ=1 Z
′
i (τ) ≈ BMµi ,σ

2
i
(t).

Definition 2. Given (µi , σ
2
i ), the second-order reference delivery process, denoted by

{Z′i (1), Z′i (2), . . . } is defined to be

Z′i (t) =

 1 if BMµi ,σ
2
i
(t)− BMµi ,σ

2
i
(t−) ≥ 1,

0 else,
(4.13)

where t− := max{τ |τ < t, Z′i (τ) = 1}. �

We now derive AoI i with respect to the sequence {Z′i (1), Z′i (2), . . . }. Consider the

time between the n-th and the (n+ 1)-th deliveries, which is denoted by Bi(n), under the

sequence {Z′i (1), Z′i (2), . . . }. From (4.13), Bi(n) can be approximated by the amount of
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time needed for the Brownian motion random process to increase by 1, which is equivalent

to the first-hitting time for a fixed level 1 and we denote it by Hi . It has been shown

that the the first-hitting time for a fixed level 1 follows the inverse Gaussian distribution

IG( 1
µi
, 1
σ2
i

) [27, 28]. Hence, we have E[Hi ] = 1/µi and E[H2
i ] = σ2

i /µ
3
i + 1/µ2

i . We now

have

AoI i =
E[B2

i ]

2E[Bi ]
+

1

λi
−

1

2

≈
E[H2

i ]

2E[Hi ]
+

1

λi
−

1

2
=

1

2
(
σ2
i

µ2
i

+
1

µi
) +

1

λi
−

1

2
. (4.14)

4.2.3 Model Validation

We now verify whether the second-order model provides a good approximation of AoI

over Gilbert-Elliot channels. We consider a system with only one client (sensor). The AP

(controller) schedules the client for transmission whenever the client has an ON channel.

Hence, we have µ1 = m{1} and σ2
1 = v2

{1}. Given, p1, q1, and λ1, we can combine (4.4),

(4.5), and (4.14) to obtain a theoretical approximation of the AoI. We note that (4.5)

involves a summation of infinite terms
∑∞
k=1(G1(k)− p1

p1+q1
). Since G1(k) converges to

p1

p1+q1
exponentially fast, we replace this term with

∑100
k=1(G1(k)− p1

p1+q1
) when calculating

v2
{1}.

We evaluate the accuracy of the theoretical AoI over a wide range of (p1, q1, λ1). For

each (p1, q1, λ1), we obtain the empirical AoI by simulation the system for 1000 runs,

where each run contains 50,000 time slots. The results are shown in Fig. 4.2. It can be

observed that the theoretical AoI is always almost identical to the empirical AoI under all

settings. The largest difference between theoretical and empirical AoI among all evaluated

case is only 0.00558.
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Figure 4.2: Model Validation For A Single Client.

4.3 An Outer Bound of the Second-Order Capacity Region

In this section, we derive a necessary condition for the second-order delivery model

{(µi , σ2
i )|1 ≤ i ≤ N} to be in the second-order capacity region.

Theorem 8. Given a second-order channel model {(mS, v2
S)|S ⊆ {1, 2, . . . , N}}, a second-

order delivery model {(µi , σ2
i )|1 ≤ i ≤ N} can be in the second-order capacity region only
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if

∑
i∈S

µi ≤ mS,∀S ⊆ {1, 2, . . . , N}, (4.15)

N∑
i=1

µi = m{1,2,...,N}, (4.16)

N∑
i=1

√
σ2
i ≥

√
v2
{1,2,...,N}, (4.17)

µi ≥ 0,∀i . (4.18)

Proof. We first establish (4.15). The AP can transmit a packet to a client i at time t

only if the client has an ON channel, that is, Xi(t) = 1. Moreover, the AP can transmit

to at most one client in each time slot. Hence, we have
∑
i∈S Zi(t) ≤ XS(t) under any

scheduling policy. This gives us

∑
i∈S

µi = lim
T→∞

∑
i∈S
∑T
t=1 Zi(t)

T

≤ lim
T→∞

∑T
t=1XS(t)

T
= mS,∀S ⊆ {1, 2, . . . , N}. (4.19)

We can similarly establish (4.16) by noting that
∑N
i=1 Zi(t) = X{1,2,...,N}(t), since

the AP always transmits one packet as long as at least one client has an ON channel.

Finally, we establish (4.17). Let X̂S be the random variable limT→∞

∑T
t=1 XS(t)−TmS√

T

and Ẑi be the random variable limT→∞

∑T
t=1 Zi (t)−Tµi√

T
. Since

∑N
i=1 Zi(t) = X{1,2,...,N}(t)
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and (4.16), we have
∑N
i=1 Ẑi = X̂{1,2,...,N}. We then have

(

N∑
i=1

√
σ2
i )2 = (

N∑
i=1

√
E[Ẑ2

i ])2

=

N∑
i=1

E[Ẑ2
i ] +

∑
i 6=j

√
E[Ẑ2

i ]E[Ẑ2
j ]

≥
N∑
i=1

E[Ẑ2
i ] +

∑
i 6=j

E[Ẑi Ẑj ] (Cauchy-Schwarz inequality)

=E[(

N∑
i=1

Ẑi)
2] = E[X̂2

{1,2,...,N}] = v2
{1,2,...,N}. (4.20)

This completes the proof.

4.4 Scheduling Policy with Tight Inner Bound

In this section, we derive a sufficient condition for the second-order delivery model

{(µi , σ2
i )|1 ≤ i ≤ N} to be in the second-order capacity region. We also propose a simple

scheduling policy that delivers the desirable second-order delivery models as long as they

satisfy the sufficient condition. We state the sufficient condition as follows:

Theorem 9. Given a second-order channel model {(mS, v2
S)|S ⊆ {1, 2, . . . , N}}, a second-

order delivery model {(µi , σ2
i )|1 ≤ i ≤ N} is in the second-order capacity region if

∑
i∈S

µi < mS,∀S ( {1, 2, . . . , N}, (4.21)

N∑
i=1

µi = m{1,2,...,N}, (4.22)

N∑
i=1

√
σ2
i ≥

√
v2
{1,2,...,N}, (4.23)

µi ≥ 0, σ2
i > 0∀i . (4.24)

Before proving Theorem 9, we first discuss its implications. Comparing the conditions
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in Theorems 8 and 9, we note that the only difference is that the sufficient condition

requires strict inequality for (4.15) for all proper subsets. Hence, the sufficient condition

describes an inner bound that is almost tight except on some boundaries.

We prove Theorem 9 by proposing a scheduling that achieves every point in the

inner bound. Given {(µi , σ2
i )|1 ≤ i ≤ N}, define the deficit of a client i at time t as

di(t) = tµi −
∑t
τ=1 Zi(τ). In each time slot t, the AP chooses the client with the largest

di(t − 1)/
√
σ2
i among those with ON channels and transmits a packet to the chosen

client. We call this scheduling policy the variance-weighted-deficit (VWD) policy.

We now analyze the performance of the VWD policy. LetD(t) :=
∑N
i=1 di(t)/

∑N
i=1

√
σ2
i .

We then have

∆di(t) := di(t)− di(t − 1) = µi − Zi(t), (4.25)

∆D(t) := D(t)−D(t − 1)

=

∑N
i=1 µi −

∑N
i=1 Zi(t)∑N

i=1

√
σ2
i

=
m{1,2,...,N} −X{1,2,...,N}(t)∑N

i=1

√
σ2
i

. (4.26)

Consider the Lyapunov function L(t) := 1
2

∑N
i=1

√
σ2
i

(
di (t)√
σ2
i

−D(t)
)2
. Let Ht be the
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system history up to time t. We can derive the expected one-step Lyapunov drift as

∆(L(t)) := E[L(t)− L(t − 1)|Ht−1]

=E[
1

2

N∑
i=1

√
σ2
i

(di(t)√
σ2
i

−D(t))
)2

−
1

2

N∑
i=1

√
σ2
i

(di(t − 1)√
σ2
i

−D(t − 1)
)2
|Ht−1]

=E[

N∑
i=1

√
σ2
i

(di(t − 1)√
σ2
i

−D(t − 1)
)(∆di(t)√

σ2
i

− ∆D(t)
)

+
1

2

N∑
i=1

√
σ2
i

(∆di(t)√
σ2
i

− ∆D(t))
)2
|Ht−1]

≤B + E[

N∑
i=1

(di(t − 1)√
σ2
i

−D(t − 1)
)

∆di(t)

−
N∑
i=1

√
σ2
i

(di(t − 1)√
σ2
i

−D(t − 1)
)

∆D(t)|Ht−1]

=B + E[

N∑
i=1

(di(t − 1)√
σ2
i

−D(t − 1)
)

∆di(t)|Ht−1], (4.27)

where B is a bounded constant. The last two steps follow because ∆di(t) and ∆D(t) are

bounded and because
∑N
i=1 di(t − 1) =

∑N
i=1

√
σ2
i D(t − 1).

The VWD policy schedules the client with the largest di(t − 1)/
√
σ2
i , which is also

the client with the largest di(t − 1)/
√
σ2
i − D(t − 1), among those with ON channels.

Hence, under the VWD policy, the system can be modeled as a Markov process whose

state consists of the channel states and di(t − 1)/
√
σ2
i −D(t − 1) of all clients. Further,

the VWD policy is the policy that minimizes E[
∑N
i=1

(
di (t−1)√

σ2
i

− D(t − 1)
)

∆di(t)|Ht−1]

for all t. We first show that the Markov process is positive-recurrent.

Lemma 3. Assume that (4.21) – (4.24) are satisfied. Then, under the VWD policy,

the system-wide Markov process, whose state consists of the channel states and di(t −

68



1)/
√
σ2
i −D(t − 1) of all clients, is positive-recurrent.

Proof. Due to (4.21), we can define

δ := min{mS −
∑
i∈S

µi |S ( {1, 2, . . . , N}} > 0. (4.28)

Further, since the channel of each client follows a positive-recurrent Markov process with

finite states, there exists a finite number T such that

TmS −
δ

2
≤ E[

τ+T∑
t=τ+1

XS(t)|Hτ ] ≤ TmS +
δ

2
, (4.29)

for any Hτ .

Let LV (t) and ∆dVi (t) be the values of L(t) and di(t) under the VWD policy. From

(4.27), we can bound the T-step Lyapunov drift by

E[LV (τ + T)− LV (τ)|Hτ ]

≤BT+ E[

τ+T∑
t=τ+1

N∑
i=1

(di(t − 1)√
σ2
i

−D(t − 1)
)

∆dVi (t)|Hτ ]

≤BT+ E[

τ+T∑
t=τ+1

N∑
i=1

(di(t − 1)√
σ2
i

−D(t − 1)
)

∆dηi (t)|Hτ ]

≤A+ E[

N∑
i=1

(di(τ)√
σ2
i

−D(τ)
)

(

τ+T∑
t=τ+1

∆dηi (t))|Hτ ], (4.30)

for any other scheduling policy η, where dηi (t) is the value of di(t) under η and A is a

bounded constant. The last inequality follows because T, |di(t)− di(τ)|, and ∆di(t) are

all bounded for all t ∈ [τ + 1, τ + T].

We now consider the scheduling policy η that schedules the flow with the largest

di(τ)/
√
σ2
i among those with ON channels in all time slots t ∈ [τ + 1, τ + T].

Without loss of generality, we assume that d1(τ)/
√
σ2

1 ≥ d2(τ)/
√
σ2

2 ≥ . . . . Under
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η, a client i will be scheduled in time slot t if it has an ON channel and all clients in

{1, 2, . . . , i−1} have OFF channels, that is, X{1,2,...i}(t) = 1 and X{1,2,...i−1}(t) = 0. We

hence have
∑τ+T
t=τ+1 Zi(t) =

∑τ+T
t=τ+1X{1,2,...i}(t)−

∑τ+T
t=τ+1X{1,2,...i−1}(t). Therefore,

E[

N∑
i=1

(di(τ)√
σ2
i

−D(τ)
)

(

τ+T∑
t=τ+1

∆dηi (t))|Hτ ]

=E[

N−1∑
i=1

(di(τ)√
σ2
i

−
di+1(τ)√
σ2
i+1

)
(T

i∑
j=1

µj

−
τ+T∑
t=τ+1

X{1,2,...,i}(t)) +
(dN(τ)√

σ2
N

−D(τ)
)

× (T
N∑
j=1

µj −
τ+T∑
t=τ+1

X{1,2,...,N}(t))|Hτ ]

≤
N−1∑
i=1

(di(τ)√
σ2
i

−
di+1(τ)√
σ2
i+1

)
(−δ/2) +

(dN(τ)√
σ2
N

−D(τ)
)

(−δ/2)

=
(d1(τ)√

σ2
1

−D(τ)
)

(−δ/2), (4.31)

where the inequality holds due to (4.22), (4.28), and (4.29).

Combining (4.30) and (4.31), and we have

E[LV (τ + T)− LV (τ)|Hτ ] < −δ, (4.32)

if maxi

(
di (τ)√
σ2
i

−D(τ)
)
> 2(A/δ + 1), and

E[LV (τ + T)− LV (τ)|Hτ ] ≤ A, (4.33)

if maxi

(
di (τ)√
σ2
i

−D(τ)
)
≤ 2(A/δ + 1). Recall that

∑
i

(
di (τ−1)√

σ2
i

−D(τ − 1)
)

= 0 and the

channel of each client follows a Markov process with finite states. Hence, all states of the

system with maxi

(
di (τ)√
σ2
i

− D(τ)
)
≤ 2(A/δ + 1) belong to a finite set of states. By the
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Foster-Lyapunov Theorem, the system-wide Markov process is positive-recurrent.

We now show that the VWD policy delivers all desirable second-order delivery models

that satisfy the sufficient conditions (4.21) – (4.24), and thereby establishing Theorem 9.

Theorem 10. Assume that (4.21) – (4.24) are satisfied. Then, under the VWD policy,

limT→∞

∑T
t=1 Zi (t)
T = µi and E[(limT→∞

∑T
t=1 Zi (t)−Tµi√

T
)2] ≤ σ2

i ,∀i .

Proof. Since the system-wide Markov process is positive recurrent under the VWD policy,

we have:

lim
T→∞

di(T )/
√
σ2
i −D(T )

T
→ 0,∀i , (4.34)

lim
T→∞

di(T )/
√
σ2
i −D(T )
√
T

→ 0,∀i . (4.35)

First, we show that limT→∞

∑T
t=1 Zi (t)
T = µi ,∀i . Recall that di(t) = tµi−

∑t
τ=1 Zi(τ)

and D(t) =
∑N
i=1 di(t)/

∑N
i=1

√
σ2
i . By (4.22), we have:

lim
T→∞

D(T )

T
= lim
T→∞

∑N
i=1 Tµi −

∑T
t=1

∑N
i=1 Zi(t)

T
∑N
i=1

√
σ2
i

= lim
T→∞

Tm{1,2,...,N} −
∑T
t=1X{1,2,...,N}

T
∑N
i=1

√
σ2
i

= 0. (4.36)

Hence, by (4.34), we have limT→∞
di (T )
T = µi − limT→∞

∑T
t=1 Zi (t)
T = 0, for all i .

Next, we show that E[(limT→∞

∑T
t=1 Zi (t)−Tµi√

T
)2] ≤ σ2

i ,∀i . We have, by (4.23),

E[( lim
T→∞

D(T )√
T

)2] =
v2
{1,2,...,N}

(
∑N
i=1

√
σ2
i )2
≤ 1, (4.37)
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and, hence,

E[( lim
T→∞

∑T
t=1 Zi(t)− Tµi√

T
)2] = E[( lim

T→∞

di(T )√
T

)2]

=σ2
i E[( lim

T→∞

D(T )√
T

)2] ≤ σ2
i . (4.38)
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(c) N = 20 Clients.

Figure 4.3: Total Uniformly Weighed Empirical Age of Information (AoI) Averaged Over
1000 Runs.

We conclude this section by discussing how to leverage Theorems 9 and 10 to solve

the second-order network optimization problem. Recall that the performance of a client

i is modeled by Fi(µi , σ2
i ). For example, when the goal is to minimize total AoI, we can

define Fi(µi , σ2
i ) = −1

2 (
σ2
i

µ2
i

+ 1
µi

)− 1
λi

+ 1
2 . Hence, the second-order optimization problem

can be written as the following:

max

N∑
i=1

Fi(µi , σ
2
i ) (4.39)

s.t. (4.21) – (4.24). (4.40)
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The condition (4.21) involves strict inequalities, which cannot be used by standard

optimization solvers. We change (4.21) to
∑
i∈S µi ≤ mS − δ, where δ is a small positive

number. After the change, the optimization problem can be directly solved by standard

solvers to find the optimal {µi , σ2
i |1 ≤ i ≤ N}. After finding the optimal {µi , σ2

i |1 ≤ i ≤

N}, one can use the VWD policy to attain the optimal network performance.

4.5 Simulation Results

In this section, we present the simulation results for the proposed scheduler VWD.

The objective is to minimize the total weighted AoI,
∑
i αiAoI i , where αi is the weight

of client i . The system model is the one discussed in Section 4.2. Each client has a

Gilbert-Elliot channel with transition probabilities pi and qi . In each time slot, each client

i generates a new packet with probability λi . VWD is evaluated against three recent

scheduling policies on this problem. We provide a description of each policy, along with

modifications needed to fit the testing setting.

• Whittle index policy: This policy is based on the Whittle index policy in [29].

Under our setting, the policy calculates an index for ON clients based on their AoIs

as Wi(t) =
AoI2

i (t)

2 − AoIi (t)
2 + AoIi (t)

qi/(pi+qi )
, and then schedules the ON client with the

largest index. [29] has shown that Wi(t) is indeed the Whittle index of a client

when the channel is i.i.d., i.e., pi + qi = 1, and λi = 1.

• Stationary randomized policy: This policy calculates a weight µi for each client.

In each time slot, it randomly picks an ON client, with the probability of picking i

being proportional to µi . In the setting of [26], it has been shown that, when µi

is properly chosen, this policy achieves an approximation ratio of four in terms of

total weighted AoI. In our setting, we choose µi to be the optimal µi from solving

(4.39).

• Max weight policy [26]: This policy schedules the ON client with the largest
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(AoIi(t)− zi(t))/µi . In the setting of [26], zi(t) is the time since client i generates

the latest packet. It has been shown that the total weighted AoI under this policy is

no larger than that under the stationary randomized policy, and therefore this policy

also achieves an approximation ratio of four. In our setting, the AP does not know

when each client generates a new packet. Hence, we choose zi(t) to be 1
λi
, which

is the expected time since client i generates the latest packet.
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(b) N = 10 Clients.
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(c) N = 20 Clients.

Figure 4.4: Total Uniformly Weighed Empirical Age of Information (AoI) Averaged Over
1000 Runs.
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Figure 4.5: Mean Convergence of Two Randomly Selected Clients.
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Figure 4.6: Variance Convergence of Two Randomly Selected Clients.

We consider three different systems, each with 5 clients, 10 clients, and 20 clients,

respectively. For each system, pi and qi are randomly chosen from the range (0.05, 0.95),

and {λi} is randomly chosen from ( 0.1
N ,

1
N ). After determining the values of pi , qi and λi ,

we generate 1000 independent traces of channels and packet arrivals. The performance

of each policy is the average over these 1000 independent traces. We consider both the

unweighted case, i.e., αi ≡ 1,∀i , and the weighted case. In addition to the evaluated

policies, we also include the numerical solutions from solving the problem (4.39), which

is referred to as the Theoretical AoI.

4.5.1 Empirical AoI Performance With Equal AoI Weights

Fig. 4.3 shows the average total AoI for different network sizes N = {5, 10, 20} when

αi ≡ 1. It can be observed that VWD achieves the smallest total AoI in all systems,

with max weight performing virtually the same as VWD when N = 5. VWD’s superiority

becomes more significant as N increases. It can also be observed that the empirical AoI

under VWD is very close to the theoretical AoI based on the solution to (4.39), and the

difference decreases as N increases. The differences between the empirical AoI under

VWD and the theoretical one are 10.7%, 7.8%, and 6.1% for N = 5, 10, 20, respectively.

To understand why VWD performs much better than the other three policies, we

evaluate the total empirical variance under each policy. Specifically, let di(t) be the total
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number of packet deliveries for client i from time 1 to time t. The empirical variance of a

client i at time t is defined as the variance of di (t)√
t

across all 1000 independent runs. The

total empirical variance is then the sum of the empirical variances of all clients. Fig. 4.4

shows that VWD has much smaller variances than the other three policies. The ability to

properly control variance enables VWD to achieve small AoIs.
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Figure 4.7: Total Weighted Empirical Age of Information (AoI) Averaged Over 1000

Runs.

We also evaluate the convergence time of VWD. For each system, we randomly select

two clients and plot their empirical means, i.e., the average of di (t)t across all independent

runs, and empirical variances. Since the objective is to minimize the unweighted sum of

AoIs, the optimal solution to (4.39) has µi = µj and σ2
i = σ2

j for all i 6= j . We call the

optimal µi and σ2
i obtained from solving (4.39) the theoretical mean and the theoretical

variance, respectively. The results are shown in Figs. 4.5 and 4.6. It can be observed that

both the empirical means and the empirical variances of clients indeed converge to their

respective theoretical values. The empirical means converges to the theoretical ones very

fast. On the other hand, it takes up to 355 slots for the empirical variances to be within

0.001 from the theoretical variances. This convergence time may be the reason why the

empirical AoI is larger than the theoretical one.
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4.5.2 Weighed Total AoI Evaluation

We now present the results for the weighted AoI. The weights α1, α2, . . . are ran-

domly chosen from the range (1, 5) and independently from each other. All other param-

eters are the same as in the unweighted case. Fig. 4.7 shows results for network sizes

N = {5, 10, 20}. VWD still outperforms other policies for all tested systems. Similar

to the unweighted case, it can be observed that the superiority of VWD becomes more

significant, and the gap between VWD and theoretical AoI becomes smaller, with more

clients in the system.

4.6 Conclusion

In this paper, we presented a theoretical second-order framework for wireless network

optimization. This framework captures the behaviors of all random processes by their

second-order models, namely, their means and temporal variances. We analytically estab-

lished a simple expression of the second-order capacity region of wireless networks. A new

scheduling policy, VWD, was proposed and proved to achieve every interior point of the

second-order capacity region. The framework utility is demonstrated by applying it to the

problem of AoI optimization over Gilbert-Elliot channels. We derived closed-form expres-

sions of second-order models for both Gilbert-Elliot channels and AoIs, and formulated

the problem of minimizing weighted total AoI as an optimization problem over the means

and temporal variances of delivery processes. The solution of this optimization problem

can then be used as parameters for VWD. Simulation results show that VWD achieves

much smaller weighted total AoI than other policies.
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5. RELATED WORK

Information update systems have gained a lot of research interests in the recent years,

as many emerging wireless applications require real-time status updates. One state-of-the-

art performance metric is Age-of-Information (AoI), which focuses on the elapsed time of

last delivery. There have been a lot of studies on the optimizaiton of AoI. For the wireless

information-update system, Kadota et.al have built the model of AoI optimization problem

in [23] when considering unreliable channel and multiple information flows. Both Hsu et.al

in [30] and Kadota et.al in [26] have recently proposed the scheduling algorithm when

considering random arrivals to minimize the average age. Zheng, Zhou and Niu [31] model

the estimation error along timeliness and propose the Urgency of Information (UoI) as a

new performance metric that can be viewed as the non-linear AoI problems. Some work of

AoI has research the remote estimation problem. Sun, Polyanskiy and Uysal-Biyikoglu [32]

show that, under signal-independent sampling policies, the minimization of mean square

sampling error problem can be written as the minimization problem of AoI when sampling

the Wiener process. One further work is shown for the Gauss-Markov process sampling

in [33]. Li, Li and Hou [34] analyze different sampling behavior and propose a guideline

for AoI minimizing policy in general sampling and remote estimation problems. Yin et al.

[35] introduce the concept of Effective AoI to capture the proactive information update

and timely information delivery under some user‘s request pattern. Tsai and Wang [36]

propose a framework for controller side AoI problem and sensor side remote estimation

problem under random 2-way delay. Some extended area are also researched with AoI,

such as [37] in vehicular network, [38] in multi-hops wireless network, and [39] for link-

scheduling optimization in wireless system. However, all AoI-related works only focus on

the information from the last delivery. On the contrary, our work considers not only the

freshness of the information but also the quantity of fresh information updates.
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There have been many works on scheduling in wireless networks for minimizing AoI.

In [40], the Tripathi and Moharir schedule over multiple orthogonal channels and propose

Max-Age Matching and Iterative Max-Age Scheduling, which they show to be asymptoti-

cally optimal. Hsu, Modiano and Duan [41] studied the problem of scheduling updates for

multiple clients where the updates arrive i.i.d. Bernoulli, and formulate the Markov deci-

sion process (MDP) and prove structural results and finite-state approximations. In [29],

Hsu follows up this work by showing that a Whittle index policy can achieve near optimal

performance with much lower complexity. Sun et al. [42] studied scheduling for multiple

flows over multiple servers, and show that maximum age first (MAF)-type policies are

nearly optimal for i.i.d. servers. In [43], Talak, Karaman and Modiano study scheduling a

set of links in a wireless network under general interference constraints. The optimization

of AoI and timely-throughput were studied in [9, 44]. All of these works assume i.i.d

channels.

Another related performance metric is timely-throughput, which is defined as the

long-term average of timely deliveries. Hou, Borkar and Kumar [5] first propose a frame-

based model for the real-time wireless networks and captures the delay constraints of

wireless flows. Under this model, the performance of each flow is determined by its

timely-throughput, which is the long-term average number of timely deliveries. Jaramillo,

Srikant, and Ying [45] have studied wireless flows with heterogeneous delay and timely-

throughput requirements. Kang et. al.[46] have studied the performance of timely-

throughputs in ad hoc wireless networks with stochastic packet arrivals. Meko and Seid

[47] have proposed a randomized scheduling algorithm for real-time flows. Zhang et.

al. [48] have studied timely-throughputs in heterogeneous cellular networks with mobile

nodes. Lashgari and Avestimehr [49] have looked for the additive gap of maximal timely

throughput in a relaxed problem under the time-varying channel states. Tsanikidis and

Ghaderi [50] recently propose a randomized policy to improve the deliver ratio in the

frame-based model. Chen and Huang [51] derive a Markov Decision Process solution
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for optimizing the timely-throughput and quantify the improvement when applying the

predictive scheduling policy. An important limitation of these studies is that they only

consider the long-term average of timely deliveries and ignore short-term fluctuations.

Capturing short-term fluctuations is in particular relevant to information update systems.

Singh, Hou and Kumar [52] study the fluctuation of the timely-throughput. Hou [3],

and Guo and Hou [1] consider systems where the instantaneous performance of a flow

depends on the number of recent timely deliveries, and propose scheduling policies that

aim to optimize the system. These two studies are most relevant to this work, but they

rely on a frame-based structure where all flows generate packets at the same time and

each flow can only store the most recent packet.

There have been a limited number of works on Markov channel and source models

related to AoI. In the recent work [53], Pan et al. study scheduling a single source

and choosing between a Gilbert-Elliott channel and a deterministic lower rate channel.

Buyukates and Ulukus [54] study the age-optimal policy for a system where the server is

a Gilbert-Elliott model and one where the sampler follows a Gilbert-Elliott model. In [55],

Nguyen et al. analyze the Peak Age of Information (PAoI) of a two-state Markov channel

with differing cases of channel state information (CSI) knowledge. Kam et al. [56] study

the remote estimation of a Markov source, and they propose effective age metrics that

capture the estimation error. Our work differs in that we focus on scheduling for multiple

clients from a single AP over parallel non-i.i.d. channels.

There have been some recent efforts on studying short-term performance through

Brownian motion approximation [57, 58, 59, 18], but each of them is limited to a specific

channel model and a specific application.
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6. CONCLUSION

In the first work, we have studied the problem of minimizing the total Loss-of-

Confidence (LoC) in real-time wireless networks with heterogeneous links quality, where

the LoC of each flow only depends on the timely deliveries in a window of the recent past.

In the second work, we have studied a remote sensing problem and built a model that

considers both the freshness of the information update and the quantity requirements of

real-time wireless flows.

In the third work, we generalized and presented a theoretical second-order framework

for wireless network optimization. This framework captures the behaviors of all random

processes by their second-order models, namely, their means and temporal variances. A

new scheduling policy, VWD, was proposed and proved to achieve every interior point

of the second-order capacity region. The framework utility is demonstrated by applying

it to the problem of AoI optimization over Gilbert-Elliot channels. We derived closed-

form expressions of second-order models for both Gilbert-Elliot channels and AoIs, and

formulated the problem of minimizing weighted total AoI as an optimization problem over

the means and temporal variances of delivery processes. The solution of this optimization

problem can then be used as parameters for VWD. Simulation results show that VWD

achieves much smaller weighted total AoI than other policies.
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APPENDIX A

The Steady-State MSE of Real-Time Flows with Periodic Deliveries

In this section, we consider the real-time estimation problem as described in Section

2.6. We calculate the MSE of a real-time flow when the corresponding sensor i delivers

one packet every 1
qi−δpi intervals periodically.

Let t0 be the first interval in which sensor i delivers a packet. Sensor i therefore

delivers one packet in each of the intervals t0, t0 + 1
qi−δpi , t0 + 2 1

qi−δpi , . . . . Recall that

Σi ,t is the MSE of sensor i in interval t. We then define the steady-state MSE of sensor

i as Σi := limk→∞Σi ,t0+k 1
qi−δpi

.

To calculate Σi , we note that, by Alg. 2, we have:

Σi ,t0+k 1
qi−δpi

=(Σi ,t0+k 1
qi−δpi

−1 +Wi)Ri/(Σi ,t0+k 1
qi−δpi

−1 +Wi + Ri),

since there is a packet delivery in interval t0 + k 1
qi−δpi . In addition, we also have

Σi ,t0+k 1
qi−δpi

−1 = Σi ,t0+k 1
qi−δpi

−2 +Wi

= Σi ,t0+k 1
qi−δpi

−3 + 2Wi

. . .

= Σi ,t0+(k−1) 1
qi−δpi

+ (
1

qi − δpi
− 1)Wi .

Combining these two equations and setting Wi = pi = qi and Ri = 20, as used in Section
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2.6, yield

Σi = lim
k→∞

Σi ,t0+k 1
qi−δpi

= lim
k→∞

20(Σi ,t0+(k−1) 1
qi−δpi

+ Wi
1−δ )

(Σi ,t0+(k−1) 1
qi−δpi

+ Wi
1−δ + 20)

=
20(Σi + Wi

1−δ )

(Σi + Wi
1−δ + 20)

,

and hence

Σi =
− 1

1−δ +
√

1
(1−δ)2 + 80

1−δ

2
,

for all i . In particular, when δ = 0, we have Σi = 4. This justifies the simulation settings

in Section 2.6.
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