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ABSTRACT 

 

            Providing reliable and sustainable energy and water service faces multiple 

challenges, including increasing demand due to population growth and economic 

development, degradation of water resources, depletion of fossil energy resources as 

well as climate change. To mitigate climate change impacts, many countries have 

announced their Nationally Determined Contributions (NDC) in the Paris Agreement to 

reduce carbon dioxide (CO2) emissions. Water and energy systems are interdependent 

and have complex dynamic interactions with the socio-economic system and climate 

change. Policies and measures designed to increase the efficiency in one system might 

significantly affect the other. This dissertation developed an integrated model to simulate 

the interactions among socioeconomics, energy consumption, water use, water 

infrastructure, and receiving water systems, and to identify cost-effective solutions to 

meet the water and energy demands under different economic development pathways 

and climate futures. The dissertation includes two major parts. Part I developed and 

evaluated an integrated model to simulate the carbon-energy-water nexus in urbanized 

regions by integrating a computable general equilibrium (CGE) model and the System 

Dynamics and Water Environmental Model (SyDWEM), i.e., CGE-SyDWEM. The 

integrated model can be used to aid policymakers in energy, carbon, and water sectors to 

understand the complicated synergistic effects of proposed carbon mitigation strategies 

and water engineering measures on local/regional energy consumption, CO2 emissions, 

water resources balance, and water-environment change. Part II  improved the integrated 
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model in simulating agricultural water demand and evaluating agricultural adaptation 

strategies to climate change, including (1) improving the representation of the 

agricultural water demand module in CGE-SyDWEM by assessing several less data-

intensive reference evapotranspiration models for regional irrigation water demand 

estimation; (2) improving the seasonal weather forecasts for real-time regional crop 

modeling and irrigation scheduling; and (3) reducing the uncertainty in the estimation of 

Crop Water Stress Index (CWSI) which is used to develop water-stress-based deficit 

irrigation strategies for enhancing water use efficiency, thereby conserving water 

resources in agricultural production.  
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1.  INTRODUCTION  

 

            Providing reliable and sustainable energy and water services faces multiple 

challenges, including increasing demand due to population growth and economic 

development, degradation of water resources, depletion of fossil energy resources as 

well as climate change (Liu et al., 2016a; WWAP, 2014). It is estimated that in 2050, 

globally, there will be 9.7 billion people, and we need 55% more water, 50% more food, 

and 80% more energy, with 52% more carbon dioxide (CO2) emissions with no policy 

change (OECD, 2012). The situation is exacerbated in developing countries which are 

experiencing rapid urbanization. The shares of people living in urban areas are projected 

to increase from 55% in 2018 to 68% in 2050 globally, of which more than 90% of the 

increase will be from developing countries (UN, 2019). This rapid, often not well-

planned, urbanization usually results in high water and energy use, CO2 emission, and 

degradation of natural resources, bringing risks to local infrastructure, water, energy 

supply, and environmental safety (Dong and Liang, 2014; Gain and Giupponi, 2015; Qin 

et al., 2013). The ways and extent of local energy and water use also contribute to global 

climate change.    

            To mitigate climate change impacts, many countries have announced their 

Nationally Determined Contributions (NDC) in the Paris Agreement to reduce CO2 

emissions (UNFCCC, 2015). Water and energy systems are interdependent and have 

complex dynamic interactions with the socio-economic system and climate change. 

Policies and measures designed to increase the efficiency in one system might 
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significantly affect that in the other (Hussey and Pittock, 2012; Li, 2017; Rothausen and 

Conway, 2011). Strategies to mitigate carbon emissions can exert significant impacts on 

energy and socio-economic system and in turn alter the amount and structure of water 

uses in agricultural, domestic, and industrial sectors, as well as their geographic 

distribution. Water engineering measures to improve water quality and water use 

efficiency will be affected by the water use changes and may have trade-offs on energy 

use and CO2 emissions. To develop an integrated modeling framework which is able to 

represent the linkages between climate, and socio-economic, water, and energy systems 

is crucial to identify the cost-effective solutions to meet water and energy demands 

under different economic development pathways and climate futures.  

1.1. Available Models to Simulate Regional Climate, Energy, and Water Nexus  

            The impacts of CO2 mitigation strategies on long-term economic and energy use 

have been widely studied (Dai et al., 2011; Dong et al., 2015; Wang et al., 2015; Wu et 

al., 2016). In China, several studies found that the implementation of China’s NDC can 

reduce CO2 emissions and energy consumption, and have adverse effects on economic 

output and employment in energy- and carbon-intensive industries (Dai et al., 2011; 

Dong et al., 2015; Wang et al., 2015; Wu et al., 2016). Furthermore, its co-benefits on 

air pollution reduction (Dong et al., 2015) and health effects (Wu et al., 2017; Xie et al., 

2016) have gained much attention. Recently, some energy-water nexus studies have been 

carried out to analyze the impacts of CO2 mitigation strategies on energy use and water 

consumption in the power generation sector (Arent et al., 2014; Cameron et al., 2014; 

Chandel et al., 2011; Huang et al., 2017; Talati et al., 2016). These studies investigated 
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water saving and CO2 emission reduction under different CO2 mitigation strategies and 

indicated that these strategies may increase or decrease water consumption due to the 

wide range of water use intensity of low-carbon emissions technology choices (Kyle et 

al., 2013; Liu et al., 2015; Talati et al., 2016). Also, there are increasingly integrated 

modeling tools, considering the broader nexus of water, energy, and food systems for 

CO2 mitigation and climate adaptation purposes (Ermolieva et al., 2015; Howells et al., 

2013; Kraucunas et al., 2015; Martinez-Hernandez et al., 2017). CO2 mitigation 

strategies involving a carbon price can also promote the adjustment of industry structure 

to a low-carbon, high energy efficient one (Dong et al., 2015; Dong and Liang, 2014; 

Xing et al., 2011), which have extensive impacts on the water consumption and pollutant 

discharge in the economic system (Cooper and Sehlke, 2012). However, these cross-

sector feedbacks have not been fully considered in current water-energy nexus studies. 

In addition, a whole economics-wide assessment of the impacts of CO2 mitigation on 

water pollutant emission reduction is lacking. Some studies have assessed energy 

conservation and pollutant reduction using a technology-based bottom-up model in 

China’s pulp and paper (Wen et al., 2015) and steel sectors (Wang et al., 2017). There 

are few studies integrating energy use, CO2 emissions, economic and population growth, 

water resources stress and water quality change. An integrated model capturing the 

feedbacks among socio-economic, energy, and water systems is needed to help 

policymakers identify the possible co-benefits across these systems and formulate more 

effective policies and measures.  
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            Available energy models and water system models usually assess CO2 mitigation 

strategies and water engineering measures independently. In the energy sector, Long-

range Energy Alternatives Planning (LEAP) (Heaps, 2016) and The Integrated 

MARKAL-EFOM System (TIMES) (Loulou, 2005) have been used to predict long-term 

energy planning and CO2 mitigation strategies. Compared with these methods, the 

Computable General Equilibrium (CGE) model has been widely used to simulate the full 

range of the future economic system (e.g., industry output, domestic and international 

trade) and energy system (e.g., energy supply, consumption, and trade) (Cheng et al., 

2016; Dai et al., 2011, 2012; Dai et al., 2016; Dong et al., 2015; Xie et al., 2016). In the 

water sector, hydrodynamics and water quality models, such as the QUAL2E (Brown 

and Barnwell, 1987), Water Quality Analysis Simulation Program (WASP) (Ambrose, 

1987), MIKE 11 (DHI, 1993), and Environmental Fluid Dynamic Code (EFDC) 

(Hamrick, 2006), are suitable to evaluate the effects of engineering measures, such as 

increasing the volumetric wastewater treatments rate, upgrading the level of wastewater 

treatment, as well as increasing wastewater reuse and water transfer, on water quality 

improvement in rivers, lakes, reservoirs, and estuaries (Babbar, 2014; Doulgeris et al., 

2012; Liang et al., 2015; Liu et al., 2012; Ning et al., 2001; Paliwal et al., 2007; Privette 

and Smink, 2017; Quijano et al., 2017; Su et al., 2014; Yu et al., 2016).  

            Many integrated water management models, such as Water Evaluation And 

Planning (WEAP) (Hollermann et al., 2010; Illich, 2006; Li et al., 2015b; Yates et al., 

2005) and Elbe-DSS (de Kok et al., 2009; Hahn et al., 2009; Hermans and Hahn, 2007; 

Lautenbach et al., 2009), were developed to evaluate the effects of both socio-economic 
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and water engineering measures on water balance and water quality control. These 

integrated water models have been coupled with currently available energy models (e.g., 

the integration of LEAP and WEAP) to support planning for both water and energy 

systems (Howells et al., 2013; Purkey, 2011). Also, there are increasing integrated 

modeling tools, considering the broader nexus of water, energy, and food systems for 

carbon mitigation and climate adaptation purposes (Ermolieva et al., 2015; Howells et 

al., 2013; Kraucunas et al., 2015; Martinez-Hernandez et al., 2017).  

            However, the socio-economic components (e.g., population and economic 

growth) in these studies are regarded as external scenarios or using fixed-rate based on 

historical trends, and thus the feedbacks between different socio-economic components 

and between energy and water systems cannot be effectively captured (de Kok et al., 

2009; Lautenbach et al., 2009; Qin et al., 2013). The System Dynamics and Water 

Environmental Model (SyDWEM) (Qin et al., 2011) model developed in our previous 

studies provides a useful tool to understand the interactions among socioeconomic, water 

infrastructure, and receiving water systems by treating the socio-economic dynamics as 

an internal sub-module. The SyDWEM model has been successfully applied to a rapidly 

urbanizing coastal region (Qin et al., 2011, 2013). In this dissertation, a newly developed 

CGE model was integrated with the upgraded version of SyDWEM (CGE-SyDWEM), 

including an improved hydrological and water quality model and calculation of energy 

use/GHG emissions from the water sector, to simulate energy and water systems 

simultaneously and support decision-making regarding the management of energy and 

water resources under carbon mitigation strategies. To utilize the developed integrated 



 

6 

 

model/platform in regions with a higher proportion of agricultural industry, we improved 

the integrated model in simulating agricultural water demand and evaluating agricultural 

adaptation strategies to climate change.          

1.2. Objectives  

            The overarching scientific objective of this dissertation is to develop an 

integrated platform to simulate the interactions among socio-economics, energy 

consumption, water use, water infrastructure, and receiving water systems and to 

identify the cost-effective solutions to meet the water and energy demands under 

different economic development pathways and climate futures. The schematization of 

the nexus of climate, energy, and water at decision-relevant scales investigated in this 

dissertation and the objectives are illustrated in Figure 1.1.  

            Our specific scientific objectives include:  

            Objective 1: Evaluate the impact of CO2 mitigation strategies on local industrial 

water use and water-related pollutants discharge. 

            Objective 2: Develop and evaluate an integrated model (CGE-SyDWEM) to 

simulate the carbon-energy-water nexus in urbanized regions, which can be used to aid 

energy, carbon, and water policy makers to understand the complicated synergistic 

effects of proposed CO2 mitigation strategies and water engineering measures on 

local/regional energy consumption, CO2 emissions, water resources balance, water 

environment change; and to design more effective policies and measures to ensure 

energy and water security in the future.  
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            Objective 3: Evaluate the impact of proposed CO2 mitigation strategies and water 

engineering measures on both the direct and indirect greenhouse gas emissions from the 

sewer system, WWTPs, and receiving water systems.  

            Objective 4: Evaluate temperature- and radiation-based methods for estimating 

regional reference evapotranspiration under different climatic conditions. Analyze the 

controlling weather parameters of ET
0
 under different climatic conditions and improve 

the performance of selected models in arid, high wind conditions.  

            Objective 5: Derive an analytical expression for the Priestly-Taylor coefficient 

following the Penman-Monteith method and provide a calibration-free Priestley-Taylor 

coefficient for humid, arid, and arid/high wind climate, respectively.  

            Objective 6: Calibration and bias correction of seasonal weather forecasts for 

real-time regional crop modeling and irrigation scheduling by performing a bias 

correction statistical downscaling method.  

            Objective 7: Develop a novel, semi-empirical Crop Water Stress Index (CWSI) 

model based on the Priestly-Taylor equation and improve the representation of the non-

water stress boundary with the assumptions of free water surface, saturated water 

surface, and well-watered surface.  

            The above objectives were achieved through a combination of economic 

modeling, water quality modeling, integrated model development, and crop model 

simulations, as explained in detail in the next section. 
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Figure 1.1 Schematization of the nexus of climate, energy, and water at decision-

relevant scales investigated in this dissertation. 

 

1.3. Organization of Chapters  

            To achieve the abovementioned research objectives, seven tasks were proposed:  

            To accomplish objective 1, the CGE model coupled with a water withdrawals 

and pollutants discharge module was employed in Shenzhen, the fourth largest city in 
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China, in Chapter 2. This integrated model was used to evaluate whether carbon 

mitigation strategies, i.e., fulfill China’s NDC targets, would decrease or increase local 

industrial water use and water-related pollutants discharge. 

            To accomplish objective 2, the CGE model developed in Chapter 2 was 

integrated with SyDWEM, i.e., CGE-SyDWEM, to predict future energy use, CO2 

emissions, economic growth, local labor force migration and population growth, water 

resource stress, and water quality change at the watershed level in Chapter 3. CGE-

SyDWEM was calibrated and validated in a rapidly urbanizing catchment in Shenzhen. 

The effects of both the CO2 mitigation strategies and water engineering measures were 

evaluated using CGE-SyDWEM.  

            To accomplish objective 3, the CGE-SyDWEM developed in Chapter 3 was used 

to calculate the direct and indirect GHG emissions from integrated urban drainage 

systems, including sewer systems, WWTPs, and receiving water systems under long-

term urbanization process in Chapter 4. The relative contributions of GHG emissions 

from the sewer system, WWTPs system, and receiving water system from 2010 to 2025 

were quantified. The effects of CO2 mitigation strategies and water engineering 

measures on GHG emissions from the three systems were evaluated. 

            To accomplish objective 4, three temperature-based methods, i.e., Thornthwaite 

(Th_T), Blaney-Criddle (BC_T), and Hargreaves and Samani (HS_T), and five 

radiation-based methods, i.e., Makkink (Ma_R), Priestley-Taylor (PT_R), Jensen and 

Haise (1963) (JH_R), Turc (Tu_R), and Abtew (1996) (Ab_R), were selected to compare 

with the Food and Agriculture Organization Penman-Monteith (FAO-PM) method at 15 
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climatological stations (1961-2010) with various climatic regions including types of 

climate arid, semi-arid, and humid tropical in Texas, United States, in Chapter 5. Each 

method with its original parameters was compared with the FAO-PM estimates and then 

calibrated using an automatic optimization method. The model verification study was 

conducted in selected stations to analyze the ability of the model to predict long-term 

ET0 changes. Sensitivity analysis was then conducted to understand the structure of the 

model and quantify the contribution of each parameter to the variation of ET0. Based on 

the sensitivity analysis results, a calibration-free coefficient with monthly relative 

humidity (RH) as the only input was suggested to be multiplied with the HS_T or PT_R 

equations.  

            To accomplish objective 5, an analytical expression for the Priestly-Taylor 

coefficient was derived following the Penman-Monteith method in Chapter 6. A 

theoretical basis to the default value of 1.26 was provided and validated using a global 

gridded daily weather dataset at 0.25° spatial resolution (1948-2016). A calibration-free 

Priestley-Taylor coefficient for humid, arid, and arid/high wind climates was provided, 

respectively.  

            To accomplish objective 6, an improved downscaling method, namely bias 

correction or ‘nudging’ method, was used to produce 1-km gridded daily weather 

projections (maximum and minimum air temperatures and precipitation) over the 

contiguous United States (CONUS) from one representative NMME model, i.e., the 

Canadian Coupled Climate Model versions 4 (CanCM4) in Chapter 7. The seasonal 

weather forecast in real-time crop modeling was evaluated using a calibrated 
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CROPGRO-Cotton module of the Decision Support System for Agrotechnology 

Transfer (DSSAT) model at one experimental station in the semi-arid Texas Rolling 

Plains during the growing seasons of 2020.   

            To accomplish objective 7, in Chapter 8, three non-water stress boundary 

equations under the assumption of free water surface, saturated crop surface, and well-

watered crop surface were derived and compared. A new non-water stress boundary 

equation with the assumption of free water surface using a less data-intensive method 

was derived. The uncertainty of using the four models in calculating CWSI was 

evaluated using cotton field experiment data conducted during the 2020 growing season 

at Chillicothe Research Station in Texas Rolling Plain, Texas. 

            In Chapter 9, the outcomes of this dissertation are summarized, and the 

limitations and future work specific to each chapter are also provided.  
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2. CARBON MITIGATION IMPACT ON LOCAL INDUSTRIAL WATER USE AND 

POLLUTANT DISCHARGE* 

 

Carbon mitigation strategies have been developed without sufficient 

consideration of their impacts on the water system. This chapter evaluated whether 

carbon mitigation strategies would decrease or increase local industrial water use and 

water-related pollutants discharge using a Computable General Equilibrium (CGE) 

model coupled with a water withdrawal and pollutant discharge module. Shenzhen, the 

fourth largest city in China, was selected as the study area. To fulfill China’s Nationally 

Determined Contribution (NDC) targets, Shenzhen’s Gross Domestic Products (GDP) 

and welfare losses are projected to be 1.6% and 5.6% in 2030, respectively. The carbon 

abatement cost will increase from 56 USD/t CO2 in 2020 to 274 USD/t CO2 in 2030. 

Results reveal that carbon mitigation accelerates local industrial structure upgrading by 

restricting carbon-, energy-, and water-intensive industries, e.g., natural gas mining, non-

metal, agriculture, food production, and textile sectors. Accordingly, carbon mitigation 

improves energy use efficiency and decreases 55% of primary energy use by 2030. 

Meanwhile, it reduces 4% of total industrial water use and 2.2-2.4% of discharges of two 

major pollutants, i.e., CODCr and NH3-N. Carbon mitigation can also decrease petroleum 

(2.2%) and V-ArOH (0.8%) discharge but has negative impacts on discharge of most 

 

* Reprinted with permission from “General equilibrium analysis of cobenefits and trade-offs of carbon 

mitigation on local industrial water use and pollutants discharge in China” by Qiong Su, Han-Cheng 

Dai, Huan Chen, Yun Lin, Yang Xie, and Raghupathy Karthikeyan, 2019. Environmental Science 

&Technology, 53(3):1715-1724, Copyright [2021] by American Chemical Society. 
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heavy metal(loid)s pollutants (increased by -0.01% to 4.6%). These negative impacts are 

evaluated to be negligible on the environment. This chapter highlights the importance of 

considering the energy-water nexus for better-coordinated energy and water resources 

management at local and national levels. 

2.1. Introduction 

            With continuous population and economic growth, China has become one of the 

largest greenhouse gas emitters since 2006 (IEA, 2009). To mitigate climate change 

impacts, the Chinese government announced its NDC in the Paris Agreement to reduce 

CO2 emissions per unit of GDP by 60% to 65% by 2030 compared with the 2015 level 

(UNFCCC, 2015). The implementation of China’s NDC is supposed to improve energy 

use efficiency and accelerate industrial structure upgrading by decreasing the proportion 

of energy- and carbon-intensive industries (Dai et al., 2011; Wu et al., 2016). However, 

the industrial structure upgrading may also have significant impacts on water use and 

pollutant discharge in related industrial sectors, considering that energy and water are 

two basic inputs of industrial production (Jiang et al., 2014; Qin et al., 2013; Qin et al., 

2014). Given this context, modeling the impacts of China’s NDC on energy use, 

economic development, water use, and water-related pollutant discharges are crucial to 

design effective policies and measures for addressing energy and water issues.    

            Until now, most energy-water nexus studies of assessing the impacts of carbon 

mitigation strategies on water use still focus on a single industrial sector (Ackerman and 

Fisher, 2013; Khan et al., 2017; Zhang and Vesselinov, 2016) or two (Dodder et al., 

2012). Carbon mitigation tends to increase water consumption in the electric sector at 
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both regional (Talati et al., 2016) and national (Cameron et al., 2014) scales in the U.S. 

But the impacts have high uncertainty due to the choice of energy sources and the 

cooling system (Chandel et al., 2011; Clemmer et al., 2013; Macknick et al., 2012). For 

example, studies in China showed that carbon mitigation promoted renewable energy 

technologies and reduced water consumption in the power generation sector (Huang et 

al., 2017; Li et al., 2012). Recently, the multi-sector model, like MARKAL, was used to 

simulate the energy and water competition between thermoelectric power generation and 

transportation sectors in the U.S. under different carbon mitigation scenarios (Dodder et 

al., 2012). However, these studies are limited to capture the cross-sector interactions and 

feedbacks among economic, energy, and water systems, and therefore, they cannot 

provide an integrated view of how carbon mitigation strategies affect the economic 

output and water use in different industrial sectors.   

            On the other hand, the impacts of carbon mitigation strategies on water-related 

pollutant emissions have not been well evaluated. The co-benefits between energy use 

and pollutant emissions in the energy-water nexus have been identified using 

technology-based bottom-up approaches in China’s pulp and paper (Wen et al., 2015) 

and steel sectors (Wang et al., 2017). However, changes in energy and water use and 

pollutant emissions that may result from carbon mitigation are not quantitatively 

evaluated in these studies. In addition, sufficient regional details of sectoral water use 

and pollutant emission data are usually unavailable in developing countries like China.  

            To address these gaps, the impacts of China’s NDC on local industrial water use 

and water-related pollutants discharge were evaluated by coupling a CGE model with a 
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water withdrawal and pollutant discharge module. The industrial sectors considered here 

include primary (e.g., agriculture), secondary (e.g., manufacturing, mining, power 

generation, and construction, etc.), and tertiary industries (e.g., construction, 

transportation, and services). The CGE model can be used to simulate the interaction 

between macro-economy and environmental systems at regional or global scales. This 

integrated economic and water model can evaluate the impacts of carbon mitigation 

strategies on the economic, energy, and water systems. Also, the possible co-benefits or 

trade-offs across these systems can be identified to support the designing of effective 

policies and measures.  

Shenzhen was selected as the study area, and the reasons are: (1) it is a 

manifestation of China’s rapid urbanization process. Shenzhen is the first Special 

Economic Zone of China, and it has been experiencing rapid urbanization since 1978. 

The population in Shenzhen has increased from 0.33 million in 1978 to 13 million in 

2018, which increased almost 40 times. It had a total population of 0.7% of China and 

consumed nearly 4.3% petroleum and 3.1% natural gas in 2007 (2007 is the model 

simulation start year) (Table A1, Appendix A); (2) it has been chosen as a pilot city to 

perform China’s NDC, which is the first carbon mitigation practice in developing 

countries; (3) it has limited local water resources and environmental capacity and is 

challenged in fulfilling the national industrial water conservation and main pollutants 

discharge reduction targets (i.e., chemical oxygen demand, CODCr, and ammonia 

nitrogen, NH3-N) (Qin et al., 2011; Su et al., 2014) (Figure 2.1). Here, this chapter aims 

to (1) assess the impacts of China’s NDC on the total amount and intensity of energy use 
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and sectoral CO2 emissions; (2) evaluate the economic impacts in Shenzhen when 

China’s NDC targets are achieved in 2030; and (3) quantify the impacts of carbon 

mitigation on local industrial water use and water-related pollutant discharges. 

 

 

Figure 2.1 (a) Locations of Shenzhen and Shenzhen River estuary catchment and 

current/future water infrastructure; (b) water supply from different sources of 

Shenzhen (1990-2007); and (c) annual mean concentration of NH3-N at monitoring 

stations S01 (1985-2010). Eight temporary monitoring stations, including Buji 

(S01), Futian (S02), Hekou (S03), Mangrove Park (S04), Tsim Bei Tsui (S05), 

Dongjiaotou (S06), Sheung Pak Nai (S07), and Bay mouth (S08). 

 

2.2. Methodology 

2.2.1. Integrated Economic and Water Model 

            The integrated model includes 1) a city-level CGE model and 2) a water 

withdrawal and pollutants discharge module. As shown in Figure 2.2, the CGE model 

can be used to estimate CO2 emissions, energy use, macroeconomic impacts, e.g., GDP, 

government expenditure, warfare, import, and export, and detailed economic outputs for 
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each sector under different carbon mitigation scenarios. The economic outputs for each 

sector are the drivers of the water module so that the impacts of CO2 mitigation 

strategies on sectoral water use and water-related pollutant discharges can be estimated.  

 

 

Figure 2.2 Research framework. 

 

            The major assumptions of the model include: (1) activity output of each sector 

follows a nested constant elasticity of substitution production function; (2) carbon 

abatement cost is evenly distributed in all sectors; (3) rates of technology-induced water 

use intensity/pollutant discharge change in different industrial sectors are assumed the 

same during the prediction period; (4) non-point source pollution from the agriculture 

sector is not considered due to its relatively small amount compared with emissions from 

other industrial sectors; and (5) water pollutant loads from construction, transport, and 

services sector are considered domestic pollutant sources and not included in the 

calculation. 
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2.2.1.1. IMED|CGE model 

The CGE model can simulate the future economic system (e.g., industry output, 

domestic, and international trade) and capture the interactions and feedbacks among 

different industrial sectors, final consumers, and the rest of the world. The IMED|CGE 

(Integrated Model of Energy, Environment and Economy for Sustainable Development | 

Computable General Equilibrium) model used here has been widely used for assessing 

the economic and environmental impacts of China's CO2 mitigation strategies at city 

(Tian et al., 2016; Wu et al., 2016), provincial (Dong et al., 2015; Xie et al., 2016), and 

national levels (Dai et al., 2011; Dai et al., 2016). The version used in this dissertation is 

a single-region, recursive dynamic CGE model for Shenzhen City with 22 economic 

sectors (Table A2, Appendix A). The 2007 input-output table and 2007 energy balance 

tables of Shenzhen were used for the base year calibration. The model includes a 

production block, a market block with domestic, government, and household income and 

expenditure blocks, and international transactions, which is similar to the one-region 

version (Dai, 2012). The outputs for each sector follow a nested constant elasticity of 

substitution (CES) production function. Inputs include material commodities, energy 

commodities, labor, capital, and resources (including water use). More details can be 

found in Appendix A. 

2.2.1.2. Water Withdrawal and Pollutant Discharge Module 

            Once the economic outputs for each sector associated with different scenarios are 

known from CGE simulations, the effects of CO2 mitigation strategies on water use and 

water pollutants discharge can be estimated using equations (2.1) and (2.2).  
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𝑊𝑡 = ∑ 𝑊𝑡𝑖𝑖 = ∑ 𝑂𝑈𝑇𝑡𝑖 × 𝑊𝐼𝑡𝑖𝑖                                           (2.1) 

𝑃𝑡 = ∑ ∑ 𝑃𝑡𝑖𝑗𝑗𝑖 = ∑ ∑ 𝑂𝑈𝑇𝑡𝑖𝑗𝑖 ×  𝑃𝐼𝑡𝑖𝑗                                    (2.2) 

where t is the time (year); OUTti is the output of the ith industry sector (million dollars); 

Wt and Pt represent the total water withdrawal and pollutant discharge in year t; 𝑊𝑡𝑖 and 

𝑊𝐼𝑡𝑖 are the water withdrawals (million tons) and water intensity (water withdrawals per 

unit output, m3 per million dollar) of the ith industry sector, respectively. 𝑃𝑡𝑖𝑗 and 𝑃𝐼𝑡𝑖𝑗 

are pollutant discharge (tons) and pollutant discharge intensity (pollutant discharge per 

unit output, tons/million dollar) of the ith industry sector and the jth type of pollutants 

including CODCr, NH3-N, petroleum, volatile phenol (V-ArOH), lead (Pb), hexavalent 

chromium (Cr6+), mercury (Hg), cadmium (Cd), and Arsenic (As).  

2.2.1.2.1. Water Intensity in Different Sectors 

            Time-evolving water intensity (WI) values were applied (Qin et al., 2011) 

considering the relatively long-term historical changes because of technology 

improvement, as shown in equation (2.3).  

𝑊𝐼 (𝑡)𝑖 =  𝑊𝐼0𝑖 × exp (𝛼𝑖 × 𝑇)                                         (2.3) 

where WI0i is the water withdrawal per unit output (m3/million dollar) of the ith industry 

in the initial year (2014); T is year number since the initial year; 𝛼𝑖 is the exponential 

rate of water intensity of the ith industry; and 𝑒𝛼𝑖  is considered the water intensity 

change rate (WR) of the ith industry. Water use, or water withdrawal, is defined as the 

total amount of water removed from water resources. The term ‘water consumption’ 

used in this dissertation refers to water consumed, not available to be reused anymore.  
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            To reduce the source uncertainty, the four-year mean values of water use 

intensity in each industrial sector were used for the initial year (WI0i,) calculation and are 

detailed in Table A3, Appendix A. The rates of technology-induced water use intensity 

change in different industrial sectors (WR) were calibrated using regression analysis of 

the historical data during the period of 2000 and 2015, with R2 ranging from 0.78 to 0.98 

(except 0.53 in the agricultural sector) (Table A4, Appendix A). Though the agricultural 

sector had a low R2 due to its high variability over time, its impacts are negligible given 

that the water withdrawals from the agricultural sector only accounted for 4% of the total 

water withdrawal in 2015 in Shenzhen City.  

2.2.1.2.2. Pollutant Intensity in Different Sectors 

            A similar procedure was applied to calculate the pollutant intensity (PI) values of 

different pollutants in each sector, as shown in equation (2.4): 

𝑃𝐼 (𝑡)𝑖𝑗 =  𝑃𝐼0𝑖𝑗 × exp (𝛽𝑖 × 𝑇)                                              (2.4) 

where PI0ij are the jth pollutant discharges per unit output (m3/million dollar) of the ith 

industry in the initial year (2014); T is year number since the initial year;  𝛽𝑖  is the 

exponential rates of the pollutant discharge intensity of ith industry; and 𝑒𝛽𝑖  is 

considered the pollutant discharge intensity change rate (PR) of the ith industry.  

            The initial year pollutant intensity values for each industrial sector were collected 

from the survey of pollutant sources of Shenzhen (2011-2014) (HSECSM, 2011-2014) 

and the mean value and its standard deviation for each sector are provided in Tables A5 

and 6, Appendix A. The PR of CODCr was used to represent the technology-induced 

wastewater treatment improvement in different industrial sectors since it is the prime 
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water pollutant discharge control target in China. The PRs of CODCr were calibrated 

using regression analysis of the historical data during the period of 1996-2007 

(HSECSM, 1996-2007) with R2 ranging from 0.47 to 0.95 (Table A7, Appendix A). A 

national dataset (2002-2012) was used in sectors with insufficient data (NBS, 2012). 

Also, non-point source pollution from the agriculture sector is not considered due to its 

relatively small amount compared with emissions from other industrial sectors (Qin et 

al., 2014).  

2.2.2. Scenarios  

            Two scenarios, including Business as Usual (BaU) scenario and a Nationally 

Determined Contributions (NDC) scenario, were evaluated. The BaU scenario simulated 

the economic, energy, and water system change without implementing explicit carbon 

mitigation or water-saving policies. The future GDP and population growth rate were 

based on Qin et al. (2011) and the 13th Five-Year Plan for economic and social 

development of Shenzhen (SZMG, 2016) as detailed in Table 2.1. The annual mean 

growth rates of GDP and population were set at 9.10% and 0.57% between 2007 and 

2020, and 6.40% and 0.22% between 2020 and 2030, respectively. No CO2 emission 

intensity constraint was considered in the BaU scenario. By contrast, the NDC scenario 

had a constraint on the CO2 emission intensity of Shenzhen, which was set to decrease 

by 45% by 2020 and 65% by 2030 on the basis of the 2007 level, fulfilling China’s NDC 

commitment (UNFCCC, 2015). The other settings in the NDC scenario were the same as 

those in the BaU scenario. 
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Table 2.1 Configurations for the Two Scenarios. 

Scenarios GDP growth rate Population growth rate Emission constraints 

BaU 9.1% over 2007-2020; 

7.9% over 2007-2030 

0.57% over 2007-2020; 

0.42% over 2007-2030 

No emission 

constraints 

NDC 

Same as BaU Same as BaU 

Emission intensity 

reduced by 40% in 

2020 and 65% in 2030 

  

2.3. Results  

2.3.1. Energy Use and CO2 Emissions  

            Carbon mitigation substantially reduces the local CO2 emissions and energy use, 

i.e., by 67% and 55% by 2030 compared with the BaU scenario, respectively (Figure 

2.3). The total CO2 emissions and the primary energy use under the NDC scenario in 

2030 are projected to be 140.4 Mt and 0.30 EJ, respectively. The carbon intensity of 

Shenzhen in 2007 was 0.81 kg/USD, less than half of the mean value of China (1.7 

kg/USD). The carbon intensity shows a slightly increasing trend under the BaU scenario, 

but with the carbon emissions constraint, it will decrease by 39% by 2020 and 64% by 

2030, fulfilling the regional carbon intensity reduction target. In addition, the energy 

intensity decreases by 49% in 2030 under the NDC scenario, and the energy intensity 

reduction rate is much larger than the BaU scenario (decreases by 15%). When the 

constraint is imposed, carbon emission allowance becomes a scarce resource, and a 

carbon shadow price is generated endogenously in the CGE model. Carbon shadow price, 

or the carbon abatement cost, is considered the marginal cost to achieve the required 

emission reduction target (Su et al., 2018). It is an equilibrium price, which could 

balance the supply and demand of the carbon emission allowance. The supply of carbon 

emissions is represented by the future GDP and carbon intensity target, and the demand 
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is determined by the emissions requirement of different industrial sectors and households, 

which is influenced by the industrial output in different sectors and households’ income 

level, respectively. The carbon abatement cost is evenly distributed in all sectors and will 

increase from 56 USD/t CO2 in 2020 to 274 USD/t CO2 in 2030 because of more 

stringent carbon constraints and adverse endogenous factors such as few available low 

carbon technologies and higher renewable energy prices in Shenzhen. The carbon 

abatement cost increases the production prices of all sectors, which is dependent on the 

carbon intensity of each sector. On the demand side, consumers respond to the price 

changes and will accordingly adjust their activities to decrease the demand for energy- 

and carbon-intensive products as well as fossil energy.  

 

 

Figure 2.3 Variations in the (a) sectoral CO2 emissions and relative CO2 intensity, 

and (b) primary energy use and relative energy intensity under different scenarios. 
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            Among all sectors in Shenzhen, the transport, natural gas, residential, power 

generation, construction, services, and electronics sector are the main contributors to 

CO2 emissions and play an important role in achieving carbon mitigation targets. In 

2007, these seven major sectors accounted for about 82% of the total CO2 emissions, i.e., 

transport (25%), natural gas (14%), residential (10%), power generation (9%), 

construction (8%), services (8%), and electronics (8%) sectors (Figure 2.3a). Under the 

BaU scenario, the proportions of CO2 emissions from residential, services, and 

construction sectors will significantly increase, while those from natural gas, power 

generation, and electronics sectors are decreasing from 2007 to 2030. With carbon 

mitigation, CO2 emissions from most sectors are projected to be reduced by 53%-89% 

and their carbon intensity will decrease by 29%-88% by 2030 compared with the BaU 

scenario. The residential sector will decrease by the largest amount (70.5 Mt) in 2030, 

followed by transport (59.3Mt), services (36.1 Mt), and construction sectors (19.5 Mt). 

Accordingly, the transport sector contributes the largest CO2 emissions under NDC 

scenario, followed by services and power generation sectors. Unlike other sectors, the 

carbon intensity of the power generation sector has a very limited decrease of 1% in 

2030 under the NDC scenario. The reason is that the power generation sector has high 

reduction rate of autonomous carbon intensity since this sector can cut emissions 

through the adoption of renewable energy resources and efficient technologies even 

without the implementation of carbon mitigation strategies. For example, nuclear power 

accounts for 47% of the total energy source in the power generation sector in 2015 and 

non-fossil power contributes an increasingly higher proportion of the total power 



 

25 

 

generation. Even without the implementation of carbon mitigation, its carbon intensity 

decreases by 58% by 2030 relative to the 2007 level under the BaU scenario. 

2.3.2. Impacts on Macroeconomics and Industrial Outputs 

            The implementation of carbon mitigation has macroeconomic impacts on 

Shenzhen with all selected indicators decreasing since carbon emission is not a free 

product anymore under the NDC scenario (Figure 2.4a). Among these macroeconomic 

indicators, the export and import will be influenced the most, with a loss of 3.3% and 3.6% 

by 2020 and 11.2% and 8.8% by 2030, respectively. The consumption is projected to be 

reduced by 2.0% by 2020 and 5.6% by 2030. The GDP and government expenditure will 

be slightly affected by a reduction rate of 0.1%-1.6% from 2020 to 2030. For example, 

the GDP loss of Shenzhen is projected to be 0.2% in 2020 and 1.6% by 2030, equivalent 

to 0.6 and 8.0 billion USD loss relative to the BaU scenario. Compared with the study of 

Shanghai (Wu et al., 2016),  the GDP and welfare losses of Shenzhen are slightly lower 

to achieve China’s NDC commitment, e.g., the GDP and consumption loss of Shanghai 

were 1.7% and 5.6% in 2030, respectively. 

            In contrast, Shenzhen suffers more export losses than Shanghai. The reason is 

that the main export products of Shenzhen are labor-intensive products, such as textiles, 

clothes, and toys. Those labor-intensive sectors suffer more considerable economic 

output loss with the carbon mitigation constraints. As shown in Figure 2.4b, the sectoral 

outputs of some labor-intensive sectors will be significantly affected, e.g., the 

manufactured gas sector will suffer the most loss (90%) in 2030, followed by natural gas 

mining (68%), transport (41%), non-metal (30%), and agriculture (12%) sectors. Other 
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labor-intensive industries such as food production, textile, services, and construction 

sector also suffer noticeable output losses, ranging from 1% to 5%. To achieve the 

carbon mitigation target, industrial sectors with higher carbon and energy intensity rely 

on reducing production and therefore would suffer economic losses. The projected total 

economic output losses are larger in 2030 (4%) than in 2020 (1%) due to the higher 

carbon intensity mitigation rate. The transport sector is the most influenced one and 

contributes 64% of the total outputs loss. This is because, in the current model setting, 

the transport sector still relies on traditional gasoline combustion engines, which is 

vulnerable to the carbon cost. Shenzhen is home to the most famous electric vehicle 

manufacturer - Biyadi. Therefore, to further reduce the carbon intensity in the transport 

sector, the Shenzhen government should promote new energy automobiles, such as 

hybrid and electric vehicles.  

            Carbon mitigation is beneficial to certain industries, e.g., the outputs of power 

generation (6%), electronics (6%), and paper (4%) sectors will have a slight increase in 

2030. In addition to the higher reduction rate of autonomous carbon intensity in the 

power generation sector, carbon mitigation decreases the proportion of direct use of 

fossil fuel and increases the electrification rate in the whole economy. As a result, the 

production of the power generation sector will be expanded. Electronics and paper 

sectors are easier than other sectors to reduce the carbon intensity by adopting advanced 

technology and renewable energy resources, which is represented in the CGE model by 

the substitution of energy by capital. Meanwhile, their production efficiencies will be 

improved due to the lower carbon transformation.   
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Figure 2.4 Relative changes in (a) the selected macroeconomic indicators (b) the 

sectoral outputs (using a Logarithmic scale) between NDC and BaU scenarios in 

2020 and 2030.  

 

2.3.3. Impacts on Water Withdrawals 

            Carbon mitigation accelerates local industrial structure upgrading by restricting 

carbon and energy-intensive industries. Since many of those industries are also water-

intensive, it could be observed that carbon mitigation has co-benefits on local industrial 

water withdrawals. Under the BaU scenario, the total water withdrawals of Shenzhen 

will increase from 1,192 Mt in 2007 to 1,317 Mt in 2020 and to 1,252 Mt in 2030 

(Figure 2.5a). Although the economic output in 2030 is nearly four times that in 2007, 

the total water withdrawals only increase by 5%. The main reason is that water intensity 

will be gradually reduced due to the water-saving technology improvement, e.g., the 

total WI reduces by 51% (2020) and 79% (2030) compared to the 2007 level under the 

BaU scenario (Figure 2.5a). Carbon mitigation can further reduce total water 
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withdrawals by 1% in 2020 and 4% in 2030, approximately 14 Mt and 47 Mt per year, 

respectively.  

            As shown in Figure 2.5b, carbon mitigation has uneven impacts on sectoral water 

use. To reduce local water use, it is expected that industrial sectors with comparatively 

higher water use intensity appear in the co-benefits quadrant instead of in the worse-offs 

and trade-offs quadrants. The synergistic water-saving effect is observed in most 

industrial sectors, e.g., services, transport, natural gas mining, non-metal, agriculture, 

food production, and textile sectors, and such effect is enhanced in 2030 compared to 

2020 with more stringent carbon constraints. Compared to the sectors in the trade-offs 

quadrant, these sectors have higher WI, e.g., the mean water intensities (2011-2014) of 

natural gas mining, non-metal, agriculture, food production, and textile sectors were 4, 4, 

335, 3, 16 times of that in the electronics sector (Figure A1 and Table A3, Appendix A). 

The decreasing proportion of these water-intensive industries will improve total water 

use efficiency, i.e., total WI decrease by less than 1% in 2030 compared with the BaU 

scenario. The limited decrease is because of the expansion of the services sector, e.g., 

under the BaU scenario, its proportion in total output is projected to increase from 24% 

in 2007 to 67% in 2030; in the same periods, the share of water withdrawals from the 

services sector increases from 25% to 70% (Figure 2.5a). In addition, WI in the service 

sector is close to the total WI, e.g., its WI is 5% higher than the total WI in 2030. 

Accordingly, the diminution of these water-intensive industries has limited effect on the 

reduction of total water intensity. Services and transport sectors are the top two 

contributors to the reduction of both carbon emission and water use (Figure 2.5b), and it 
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is estimated that there is a high potential to reduce water use by improving water use 

efficiency in the services and transport sector, e.g., a 10% reduction of industrial water 

use is expected by 2020 compared with the level in 2010 with the use of water-saving 

devices in these two sectors (Qin et al., 2013). 

            The carbon-water conflict is found in certain industrial sectors, such as power 

generation, paper, and electronics sectors. Carbon mitigation promotes production in 

these sectors. Thus, more attention should be paid to reduce water use intensity in these 

sectors, especially the power generation sector in the worse-offs quadrant, which has 

higher water intensity (Figure 2.5b, Table A3). Under the NDC scenario, water 

withdrawals from the power generation sector are projected to be enhanced by 6% 

because of its production expansion. Such trade-offs in water use may be exacerbated if 

high water use intensity technologies are used to reduce carbon emissions in the power 

generation sector. Water use intensity of the power generation is dependent on the 

choices of the cooling system and renewable energy penetration (Chandel et al., 2011; 

Clemmer et al., 2013; Li et al., 2017). In the study area, increasing the proportion of 

nuclear power may have co-benefits in water use since seawater is used for cooling in 

nuclear power generation. A study in China’s nuclear power plants showed that the 

freshwater use in plants equipped with seawater closed-loop cooling technology was 

only 2% of traditional nuclear power plants (Lin and Chen, 2018). 
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Figure 2.5 (a) Variations in the annual sectoral water withdrawals and relative 

water intensity under different scenarios; and (b) the carbon emission change 

(NDC compared with the BaU scenario) versus water use change (NDC compared 

with the BaU scenario) in 2020 and 2030 (Bubble size indicates sectoral water use 

intensity). In quadrant 4 (grey area), sectors have no water use and energy use 

change because of relatively small outputs). 
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2.3.4. Impacts on Water Pollutant Discharges 

            As shown in Figure 2.6, carbon mitigation can reduce CODCr, NH3-N, petroleum, 

and V-ArOH discharges but slightly increase the discharges of heavy metal(loid)s, 

including Pb, Hg, Cd, and As. In 2030, the CODCr, NH3-N, petroleum, and V-ArOH 

discharges under the BaU scenario are estimated to be 1.9×104 t, 1.7×103 t, 10.1 t, and 

0.8 kg, respectively. Under the NDC scenario, the two main pollutants discharges will 

decrease by 2.2-2.4%, namely 431 t (CODCr) and 41 t (NH3-N). The decrease of these 

two pollutants is also attributed to the local industrial structure upgrading under the NDC 

scenario. Many of the carbon and energy-intensive industries have higher pollutant 

discharge intensities, e.g., the mean CODCr and NH3-N discharge intensities (2011-2014) 

of non-metal, food production, and textile sectors were 3, 4, 8 and 3, 4, 7 times that of 

the electronics sector (Table A5, Appendix A), respectively.  

            Carbon mitigation has trade-offs on heavy metal(loid)s discharges, e.g., the Pb, 

Cr, Hg, Cd, and As discharges will slightly increase by 0.43, -0.02, 0.03, 0.5, and 1.9 kg 

by 2030, respectively, corresponding to the increase rates of 2.0%, -0.01%, 4.3%, 3.8 %, 

and 4.6% of the BaU scenario. Unlike CODCr and NH3-N, heavy metal(loid)s discharges 

are dominated by particular industries. For example, under the BaU scenario, the metal 

sector discharges 61% of V-ArOH, 53% of Pb, and 94% of Cr; the electronic sector 

discharges 46% of Pb, 38% of Hg, 81% of Cd, and 43% of As; the power generation 

sector discharges 41% of Hg. Accordingly, these pollutants discharges are sensitive to 

the implementation of carbon mitigation strategies. Carbon mitigation promotes the 

productions in electronics and power generation sectors and therefore increases the 
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discharges of Pb, Cd, As, and Hg. The increased discharges of heavy metal(loid)s have 

limited impacts on the local water environment. The contributions of heavy metal(loid)s 

on the Water Pollution Index (WPI) of Shenzhen River was as high as 5% during the 

period of 1984-1997, but the heavy metal(loid)s discharges have been well controlled, 

and their effects on water environment became negligible since 1997 (Qin et al., 2011).  

Results show that the heavy metal(loid)s discharges will be decreased in 2030 relative to 

the 2007 level under both scenarios, e.g., Pb, Hg, Cd, and As discharges are projected to 

decrease by 49%, 97%, 56%, and 63% in 2030 under BaU scenario, respectively.   

            It should also be noted that the technology-induced reduction in pollutant 

discharge is larger than the reduction induced by industrial structural change. As shown 

in Figure 2.6, the textile and food production sectors are the top two contributors to 

CODCr and NH3-N discharges, accounting for about 27% and 28% (CODCr), and 24% 

and 30% (NH3-N) in 2020 under the BaU scenario, respectively. The pollutant intensity 

reduces much faster in the textile sector than in the food production sector due to the 

wastewater treatment technology improvement (Table A6, Appendix A). With similar 

increase rates of economic outputs during the period of 2020-2030, the textile sector 

reduces by 84% of pollutant emissions, but the food production sector increases by 43% 

and becomes the top emitters of CODCr and NH3-N in 2030 under both scenarios. 

Although carbon mitigation can reduce pollutant discharge in the food production sector 

by 5%, more effort should be made to improve cleaner technology.  
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Figure 2.6 Variations in the annual sectoral pollutant loadings under different 

scenarios. 

 

2.4. Discussion 

2.4.1. Sensitivity Analysis 

            Given that the long-term projections may involve considerable uncertainties, 

several additional scenarios were analyzed to gain a better understanding of how the 

water use and pollutant discharge may potentially change with a range of different key 
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factors. The uncertainties include (1) the assumption of future economic growth in the 

CGE model and (2) the calculation of future water withdrawals and pollutants discharge. 

The first uncertainty was assessed by adding two GDP growth rates scenarios to the 

CGE model, i.e., the annual average GDP over 2007-2030 increased from 7.9% to 9.1% 

or slowed down to 6.7%, corresponding to the 28% higher or 22% lower GDP in 2030 

than that in the BaU scenario. The energy use, CO2 emission, GDP loss, water demand, 

and pollutants discharge in 2030 under the GDP_high and GDP_low scenarios are 

compared with the values in the NDC scenario, and their relative change rates are shown 

in Table 2.2. The GDP and welfare losses are less sensitive to GDP growth rate changes 

than the energy use, CO2 emission, water demand, and water pollutants discharge. In 

addition, the impacts of the GDP growth rate changes in the energy use, CO2 emission, 

and water use are slightly larger than most of the water pollutant discharges except for 

Hg. Regarding the secondary uncertainty, 95% CI of WR and PR in each sector was 

calculated, and their impacts on total water use and pollutant discharges are also shown 

in Table 2.2. Water demand ranges between -17.0% and 29.7%, CODCr and NH3-N 

discharges range between -5.0% and 29.8%, petroleum discharge between -8.5% and 

9.6%, Pb, Cr, Cd, and As between -0.8% and 3.6, and V-ArOH and Pb between -41.6% 

and 190.4%. This indicates that V-ArOH and Pb discharge are very sensitive to 

technology improvement in wastewater treatment. Nevertheless, the projected V-ArOH 

and Pb discharge are only 0.56 and 0.42 kg under NDC scenario in 2030 so that the large 

variability of these two pollutants is not likely to have a significant influence on the 

results.   
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Table 2.2 Relative Changes from the Projected Values in 2030 under the NDC 

Scenario.  

Parameters GDP_high GDP_low Upper Lower 

Energy use 30.00% -23.10% - - 

CO2 emission 28.40% -22.30% - - 

GDP losses 9.90% -16.50% - - 

Welfare losses 4.09% -3.76% - - 

Water demand 27.90% -18.90% 29.70% -17.02% 

CODCr 25.00% -19.30% 29.76% -4.95% 

NH3-N 25.40% -19.60% 26.41% -4.44% 

Petroleum 24.80% -17.90% 9.61% -8.52% 

V-ArOH 25.80% -19.60% 117.18% -29.06% 

Pb 25.70% -22.70% 3.60% -0.77% 

Cr 25.50% -20.70% 2.07% -0.34% 

Hg 30.70% -27.50% 190.74% -41.55% 

Cd 24.90% -22.50% 0.57% -0.14% 

As 24.30% -23.00% 1.01% -0.12% 
‘ –‘  indicates not applicable. 

 

2.4.2. Policy Implications  

            Currently, the energy-water nexus has been given scant consideration in energy 

and water management in China. One possible reason is that policymaking related to 

energy and water are performed by different departments without fully understanding the 

each other’s needs. The integrated model developed in this study captures the cross-

sector interactions and feedbacks among economic, energy, and water systems, and thus 

it can be used to help policymakers identify the possible co-benefits or trade-offs across 

these systems and design effective policies and measures. The suggested strategies 

include: (1) mitigating the energy-water conflict. Carbon mitigation promotes the 

electrification rate in the whole economy and expands the production in the power 

generation sector. Due to its relatively higher water use intensity, trade-offs in water use 

in the power generation sector are observed. However, power plants may prefer to save 
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energy other than water under the current examination system (Lin and Chen, 2018). 

Therefore, incentive measures, such as allowances for water-saving and preferential 

taxes for power plants equipped with low water intensity technology, should be 

promoted to improve water use efficiency in power generation. In addition, to reduce the 

negative impacts of carbon mitigation on the heavy metal(loid)s discharges, the local 

government should close small-size plants which cannot satisfy the national discharge 

standards, particularly in sectors, such as chemical, metal produces, electronic, and 

power generation. Also, cleaner technologies should be promoted in both existing and 

new plants by setting pollutant discharge standards; (2) promoting the energy-water co-

benefits. The transport and services sectors are the top two contributors to the reduction 

of both CO2 emissions and water use. It should be noted that to fulfill the carbon 

mitigation target, the transport sector is projected to suffer significant economic losses, 

e.g., its economic output will be reduced by nearly 41% by 2030 compared with the BaU 

scenario. To reduce these economic losses, low-carbon transport policies, including 

speed control, an intelligent transport system, and mass transit systems improvement are 

suggested (Zhang et al., 2018). These two sectors also have lower levels of water-related 

pollutant emissions and high potential to reduce water use intensity, which implies that 

the local government should pay more attention to the utilization of water-saving 

technologies in these sectors.  

            Based on the analysis, more coordinated policies need to be designed to ensure 

water and energy security in the future, especially in the light of governmental reform 

that the carbon mitigation responsibility was moved into the newly founded Ministry of 
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Ecology and Environment in 2018. The chapter highlights the importance of integrated 

approaches in energy and water resources management. Although the current study 

focuses on a populated, developed megacity in southeast China, the framework could be 

applied at the city, region, and national scales, especially in areas with severe 

competition for energy and water resources. 
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3. MODELING THE CARBON-ENERGY-WATER NEXUS IN A RAPIDLY 

URBANIZING CATCHMENT2 

 

            Energy and water systems are interdependent and have complex dynamic 

interactions with the socio-economic system and climate change. Few tools exist to aid 

decision-making regarding the management of water and energy resources at the 

watershed level. In this chapter, the CGE model developed in Chapter 2 was integrated 

with the upgraded version of SyDWEM (CGE-SyDWEM) to simultaneously simulate 

energy and water systems and support decision-making regarding the management of 

energy and water resources and carbon reduction policy. The integrated model was 

tested in the Shenzhen River estuary catchment, which is located in the most urbanized 

area of Shenzhen, China. The effects of both the CO2 mitigation strategies and the water 

engineering measures were evaluated. CO2 mitigation strategies have the potential to 

reduce 46% CO2 emissions and 41% energy use in 2025 compared with the reference 

scenario. CO2 mitigation strategies are also found to be effective in promoting industrial 

structure adjustment by decreasing the output of energy- and water-intensive industries. 

Accordingly, it can alleviate local water stress and improve water environment, 

including a 4.1% reduction in both domestic water use and pollutant emissions, a 16.8% 

water demand reduction in the labor-intensive industry sector, and 4.2% and 4.4% 

 

2  Reprint with permission from “Modeling the carbon-energy-water nexus in a rapidly urbanizing 

catchment: A general equilibrium assessment.” by Qiong Su, Han-Cheng Dai, Yun Lin, Huan Chen, and 

Raghupathy Karthikeyan, 2018. Journal of of Environmental Management 225: 93-103, Copyright [2021] 

by Elsevier. 
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decreases in BOD5 and NH3-N loads in all industrial sectors, respectively. It is necessary 

to implement water engineering measures to further alleviate water resource stress and 

improve water quality. Using this integrated model, planners from water and energy 

sectors could examine the cross-sectoral feedbacks, especially the impacts of CO2 

mitigation strategies on water demand and pollutant discharges as well as water quality 

change in the receiving waters. 

3.1. Introduction 

To ensure energy and water security as well as the adaptation to climate change, 

the Chinese government has implemented a series of policies and measures for CO2 

mitigation, energy and water-saving, and pollutant emission reductions. Recently, the 

NDC in the Paris Agreement was announced to reduce CO2 emission intensity (CO2 

emissions per unit of GDP) by 60% to 65% by 2030 on the basis of the 2005 level 

(UNFCCC, 2015). At the same time, the 13th Five-Year Plan for economic and social 

development (NPC, 2016) proposed that energy and water use efficiency (energy and 

water use per unit of GDP) should be improved by 30% and 18% in 2020, respectively, 

compared with the 2015 level. In addition, two main water pollutant control targets were 

set to improve surface water quality, including a 10% reduction of industrial chemical 

oxygen demand (CODCr) and ammonia nitrogen (NH3-N) discharge in 2020 compared 

with the 2015 level. Water and energy systems are interdependent, and thus policies and 

measures designed to increase efficiency in one system may significantly affect another 

(Hussey and Pittock, 2012; Li, 2017; Rothausen and Conway, 2011). To aid decision-

makers to meet these goals efficiently, there is a need to integrate CO2 mitigation 
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strategies with water resources management. The integrated approach helps better 

understand the links between energy and water systems and their dynamic interactions 

with socio-economic development and CO2 emissions.  

            In this chapter, the CGE model developed in Chapter 2 was integrated with the 

upgraded version of SyDWEM (CGE-SyDWEM) to simulate energy and water systems 

simultaneously and support decision-making regarding the management of energy and 

water resources and carbon reduction policy. The boundary of this study is the Shenzhen 

River estuary and its associated watershed, i.e., the Shenzhen River estuary catchment. It 

is located in the most urbanized area of Shenzhen (Figure 2.1). It borders Shenzhen to 

the north and Hong Kong to the south. It is adjacent to Dapeng Bay to the east and the 

Pearl River Estuary to the west. Deep Bay is a half-enclosed and shallow bay with a total 

area of 115 km2 and an average depth of 2.9 m. The bay can be divided into an inner bay 

and an outer bay from head to mouth. Shenzhen River, with a total length of 14 km, is 

influenced by the irregular, mixed semidiurnal tide of the South China Sea. The tidal 

flow can reach the upstream of the Shenzhen River. This area has a mild, subtropical 

maritime climate with a mean annual temperature of 22.4°C and precipitation of 1,933 

mm, of which 78% falls in wet periods (from April to September). With rapid economic 

and population growth, the Shenzhen River estuary catchment faces challenges in 

meeting the increased water and energy demand.  

The specific objectives of this chapter are to (1) examine the performance of the 

integrated CGE-SyDWEM in simulating the interactions among socio-economic, 

energy, carbon, and water environmental systems; (2) evaluate CO2 mitigation strategies 
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on local labor force migration and population growth; (3) evaluate the co-benefit of CO2 

mitigation strategies on water use saving and pollutant emission reduction; and (4) 

assess if current water engineering measures can satisfy water demand, water pollutant 

reduction, and environmental targets. 

3.2. Methodology 

3.2.1. Integrated CGE-SyDWEM Model 

            Figure 3.1 illustrates the conceptual integration of the CGE model and SyDWEM 

model. The energy-water system in the rapidly urbanizing catchment is a complex 

system, including socio-economic, energy, water infrastructure, and receiving water 

systems. The CGE model is used to simulate city-level socio-economic and energy 

system changes under CO2 mitigation strategies. SyDWEM is used to simulate the sub-

catchment level of socio-economic, water infrastructure, and receiving water systems. 

The two models are integrated through the socio-economic system. For example, the 

CGE model predicts city-level industrial output change under CO2 mitigation strategies, 

and then the SyDWEM model translates these changes into sub-catchment levels. Both 

models considered 22 sectors, and SyDWEM further classifies them into five main 

sectors, including primary industry, i.e., agriculture, labor-intensive industry, e.g., 

textiles and paper products, technology-intensive industry, e.g., electronic equipment 

and machinery, capital-intensive industry, e.g., new material and energy industry, and 

tertiary industry, e.g., service industry. In order to unify the database of the two models, 

the relative change of industrial structure was used to integrate the two models. Also, the 

two models share the same inputs, such as labor and capital (Figure 3.2). 
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Figure 3.1 Conceptual integration of computable general equilibrium (CGE) and 

System Dynamics and Water Environmental Model (SyDWEM). 

 

            The interactions and feedbacks among different systems include: (1) CO2 

mitigation strategies affect the socio-economic system, e.g., economic outputs in 

different industrial sectors, and energy system, e.g., CO2 emissions and energy use; (2) 

economic outputs of different industrial sectors influence sub-catchment level gross 

regional product (GRP) change and labor force demand. Here, GRP is similar to GDP, 

but for regional analysis; (3) sub-catchment level socio-economic change affects water 

demand, and wastewater generation from domestic and industrial activities; (4) the 

spatial distribution of wastewater is simulated by the sewer and WWTPs systems, which 

are linked with water quality model; (5) wastewater can be further treated and reclaimed, 
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and becomes an important source of water supply system; (6) water supply system 

supports population and economic development; and (7) the implementation of water 

engineering measures (e.g., wastewater treatment, reuse, and water supply) might lead to 

additional energy use and CO2 emissions. If the change is small compared with the 

overall energy use and CO2 emissions in the study area, this feedback might be 

negligible. Using the integrated model, energy planners can evaluate the proposed CO2 

mitigation strategies on water demand and pollution emissions. Water planners can 

better understand the rapid socio-economic development and provide effective support 

for population and economic growth. Also, water engineering measures impacts on 

energy use and CO2 emissions can be evaluated by energy planners.  

 

 

Figure 3.2 Data flow in the CGE-SyDWEM. 
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            Understanding the spatial and temporal scale differences is important in model 

coupling. For spatial scales, socio-economic and energy systems are developed at the 

administrative district level; sewer and WWTPs systems are based on their service areas; 

water supply and receiving water systems are considered at watershed levels. For 

temporal scales, socio-economic and energy systems are projected at an annual step; 

water demand and supply, sewer and WWTPs system are simulated daily; receiving 

water module is set to seconds to capture the dynamic variations of flow and water 

quality in the river and estuary. The annual and daily data could be downscaled to 

seconds for model coupling.  

            The major assumptions of the integrated model include: (1) GRP, population, 

water demand, and pollutant generation are assumed uniformly distributed in the built-

up area of the catchment; (2) water level and water quality of the open boundary in the 

hydrological water quality model are assumed not to change in the future; and (4) water 

pollutant loads from tertiary industry are assumed to be included in the domestic sector. 

3.2.2. SyDWEM 

            SyDWEM was developed to describe the socio-economic, water infrastructure, 

and the change of receiving water system in the Shenzhen River catchment during 1990-

2020 (Qin et al., 2011, 2013). The model is upgraded to meet the requirements of this 

study in the following five aspects: (1) simulation period was extended to the year 2025. 

Results of labor productivity for each industry in 2025 have been compared with the data 

in Japan (JPC, 2016) and Hong Kong (Census and Statistics Department of Hong Kong, 

2016) to guarantee the projection for each industry falling in a reasonable range; (2) 
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previous industrial structure was considered as a decision variable, and its effect on GRP 

and population growth was evaluated using scenario analysis. In the updated SyDWEM, 

industrial structure is predicted by the CGE model and treated as an inner-module of the 

integrated model; (3) Nanshan District and associated sub-catchments in the Shenzhen 

Estuary are added. The estimated parameter values for GRP growth of Nanshan District 

are shown in Table B1, Appendix B; (4) two additional water quality parameters (i.e., 

BOD5 and NH3-N) are incorporated into the updated model; and (5) river/estuary water 

quality model has been upgraded to a two-dimensional (2D) model from a one-

dimensional model. The details of the input parameter values for the upgraded 

SyDWEM can be found in Table B2, Appendix B. The main components and functions 

for each module are described as follows: 

            (1) Population/GRP module: Population is determined by the projection of birth, 

death, and labor force migration. Labor force migration dominates the population growth 

in rapidly urbanizing areas and is interacted with economic growth. Subcatchment level 

GRP is calculated based on the Cobb-Douglas production function (Qin et al., 2011). 

Labor force and net investment are the two main drivers of future GRP growth. Future 

net investment is based on local planning. Future labor force demand is determined by 

the projected changes in labor productivity and industry structure. SyDWEM can 

simulate GRP and population growth at both administrative and sub-catchment scales.  

            (2) Water demand/pollutant generation module: Domestic and industrial water 

demand and BOD5 and NH3-N generation are predicted in this module. Water demand 

and pollutant generation from all sectors are based on population growth, economic 
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development, water use efficiency, pollutant loads per capita, pollutant loads per GRP, 

and the projected changes in the industrial structure.   

            (3) Water supply module: Water supply capacity is based on the calculation of 

local groundwater and surface water resources, available reclaimed wastewater, and 

available water transferred from other catchments. Local groundwater and surface water 

resources are estimated from the groundwater resources development rate and rainwater 

collection ability in the reservoirs at the upstream of the Shenzhen River, respectively. 

Available reclaimed wastewater and transferred water from other catchments are based 

on the reclaimed wastewater reuse ratio and water transfer quota, respectively, which is 

in accordance with the local water resources plan.  

            (4) Sewer and WWTPs module: Wastewater discharged into the receiving water 

includes wastewater linked to the sewer system and treated by WWTPs, untreated 

wastewater assumed to discharge into the nearby river, and part of the effluent of 

WWTPs, which may be reused and back to the water supply module. For example, 

policymakers can adjust the reclaimed wastewater reuse ratio to provide more water for 

residential or industrial reuse. The efficiency of wastewater treatment infrastructure 

influences the amount of wastewater and pollutant discharged into the receiving water 

and the amount of wastewater reused in industries and domestic activities.   

            (5) Receiving water module: Environmental Fluid Dynamic Code (EFDC) 

(Hamrick, 2006) is employed to simulate hydrodynamics and water quality changes in 

the Shenzhen River estuary. Since the estuary is very shallow, unstratified, and well-

mixed, a two-dimensional depth-averaged tidal flow model is developed. The model 
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contains 2382 active grid cells covering the entire Shenzhen River estuary. Grid sizes 

vary with the distance from the river, i.e., comparatively smaller cells are near the river 

mouth (around 100*100m), and larger cells are in the mouth of the bay (around 

250*250m). The open boundary is located in the southwest of Deep Bay (Chiwan). 

Water level for the open boundary is obtained from the tide table of the South China Sea. 

The upstream boundary discharge was obtained from the measurements by Hu (2007). 

The BOD5 and NH3-N are taken as representative variables of water quality. The EFDC 

model runs at a time step of 10s with a cold start of 15 days to obtain initial conditions 

and another 15 days for result analysis.  

3.2.3. Model Calibration and Validation 

            Observed data from 1990 and 2001 for GRP, population, and water demand are 

used for model calibration, and data from 2002 and 2009 are used for model validation. 

Parameters required for the EFDC of the Shenzhen River estuary have been calibrated in 

our previous study (Su et al., 2014). Simulated wastewater and pollutant discharges in 

2004 were used for water quality model inputs. The model was validated using water 

quality data obtained in the water sampling monitoring during 17–18 and 25–26, Oct 

2004. Eight temporary stations were established (Figure 2.1). Water level, BOD5, and 

NH3-N at the three stations, including S03 (at the river mouth), S05 (at the inner bay), 

and S06 (at the outer bay), were chosen to compare with measured data. 

            Maximum relative error (M) and normalized standard error (E) are used to 

evaluate model performance. The M and E are calculated using equations (3.1) and (3.2).  

𝑀 = 𝑚𝑎𝑥⌈(𝑆𝑖 − 𝑀𝑖)/𝑀𝑖⌉                                              (3.1) 
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                                              (3.2) 

where, Si is the i th simulated value; Mi is the corresponding measured value; and n is the 

number of measurements. 

            The receiving water module performance is evaluated via correlation coefficient 

(r) defined as follows: 
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where Si is the ith simulated value; Mi is the corresponding measured value; n is the 

number of data; and 𝑆̄ and 𝑀̄ are the simulated and measured averages, respectively. The 

value of r ranges from -1 to 1. In general, a value greater than 0.7 suggests a good 

agreement in model prediction. 

            Validations of GRP, population, and water consumption from 2002 to 2009 are 

shown in Figure 3.3. M for GRP, population, and water consumption in different 

districts/towns range from 0.0% to 9.8%, and E ranges from 1.0% to 2.6%. The 

correlation coefficients for water level, BOD5, and NH3-N at the three stations (S03, S05, 

S06) range from 0.92 to 0.97, 0.67 to 0.84, and 0.65 to 0.73, respectively (Figure 3.4). 

The validation results indicate that the updated SyDWEM model can simulate the 

relationship among GRP, population, water demand, and wastewater treatment as well as 

spatial and temporal variation of hydrodynamics and water quality in the Shenzhen 

River estuary. 
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Figure 3.3 Comparison of simulated and measured GRP, population, and water 

consumption from 2002 to 2009. 

 

 

Figure 3.4 Comparison of simulated and measured water level, BOD5, and NH3-N 

in October 2004. 
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3.2.4. Scenarios 

            Four scenarios, including C0E0, C1E0, C0E1, and C1E1, were set up to address 

the research questions (Table 3.1). C0E0 is a reference scenario that simulates the socio-

economic, energy, and water system change without implementing CO2 mitigation 

strategies or engineering measures. Future economic and population growth of Shenzhen 

in the CGE model was based on the results from the previous version of SyDWEM (Qin 

et al., 2011) and was provided in Chapter 2 Table 2.1. The capacity and technology of 

water infrastructure system in 2009 will persist between 2010 and 2025. The C1E0 

scenario evaluates the effects of CO2 mitigation strategies. This scenario differs from the 

reference scenario only in that it includes a constraint on CO2 emissions. A carbon cap is 

set so that the CO2 emission intensity of Shenzhen will be reduced by 45% by 2020 and 

65% by 2030 compared with the 2007 level, which is consistent with China’s newly 

announced NDC.  

            The C0E1 scenario evaluates the effects of engineering measures on future water 

resource stress and water quality change in the catchment. The development of the 

socio-economic system in the future is the same as C0E0, and there is no CO2 emission 

intensity constraint. Table 3.2 lists water engineering measures assessed in this study, 

including three categories: (1) improving water use efficiency (M1, M2); (2) increasing 

water supply capacity (M3, M4); and (3) increasing the efficiency of wastewater 

infrastructure system (M5, M6). These measures are based on the water infrastructure 

planning of Shenzhen (SZUPLRB, 2003), and sensitivity analysis and possible range of 



 

51 

 

each measure have been analyzed in our previous study (Qin et al., 2013) and are 

summarized in Table 3.2.  

 

Table 3.1 Configurations for the Four Scenarios. 

Scenarios Emission constraints Engineering measures 

C0E0 
No constraints 

No engineering measures upgraded 

in 2025 

C1E0 Emission intensity reduced by 

40% in 2020 and 65% in 2030 

Same as C0E0 

C0E1 Same as C0E0 Engineering measures upgraded 

C1E1 Same as C1E0 Same as C0E1 

 

Table 3.2 Summary of Water Engineering Measures  

Measures/decision parameters The possible % increase 

relative to C0E0 

M1: Industrial water recycling technology upgrade 10% 

M2: Decreasing pipeline leakage 5% 

M3: Increasing water transfer  20% 

M4: Increase reclaimed wastewater reuse 10% 

M5: Improving volumetric wastewater treatment rate Increase to 90% 

M6: Pollutants removal rate of WWTPs Increase to 80% (NH3-N) 

and 90% (BOD5) 

 

3.3. Results  

3.3.1. Energy Consumption and CO2 Emissions 

            Total primary energy consumption under C0E0 will increase to 0.46 EJ by 2025, 

which is more than twice that in 2007 (Figure 3.5a). However, under the C1E0 scenario, 

the primary energy consumption shows a decreasing trend during 2015-2020, and then 

slight increases to 0.17 EJ in 2025, which is only 41% of that in the reference scenario. 

The energy intensity in terms of GRP improves at an average annual increase rate of 
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9.1% in the C1E0 scenario, fulfilling the 30% regional improvement target during 2015-

2020. 

            The trend of CO2 emissions under C0E0 is in alignment with the primary energy 

consumption, showing significant growth from 69.7 million tons (Mt) in 2007 to 317.9 

Mt in 2025 (Figure 3.5b), equivalent to an annual growth rate of 9.5% and 8.0% for the 

periods of 2015-2020 and 2020-2025, respectively. However, with the CO2 emission 

intensity constraint, the CO2 emissions show a decreasing trend after 2015. Carbon 

mitigation strategies have the potential to reduce CO2 emissions by 172.9 Mt (46%) by 

2025, compared with the reference scenario. The carbon intensity (CO2 emissions per 

GRP) by 2025 will decrease to 58% of the 2007 level, fulfilling the regional NDC target.  

            The CO2 mitigation strategies could substantially reduce energy use and CO2 

emissions and improve energy use efficiency and carbon intensity. The main reason is 

that with the CO2 emission intensity constraint under the C1E0 scenario, carbon 

emission allowance becomes a scarce resource and has a carbon shadow price that could 

be regarded as the marginal mitigation cost of carbon reduction. The carbon price is an 

equilibrium price that could balance the supply and demand of the carbon emission 

allowance. The supply of carbon emissions is implied by the carbon intensity target and 

future GDP, whereas the demand of the carbon emissions is represented by the 

emissions required by different industrial sectors and households, which is affected by 

the industrial output and income level. The carbon price will increase the production 

prices of all sectors depending on its carbon intensity. On the demand side, consumers 

will adjust their activities to lower the demand for energy- and carbon-intensive 
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products. As a result, the output of some typical energy- and carbon-intensive industries 

such as textile, food production, chemicals, and non-metal will be greatly reduced 

because of the comparatively high carbon emissions, leading to the industrial structure 

change (Table B3, Appendix B). For example, compared with C0E0, the proportion of 

labor-intensive and technology-intensive industries decreases by 4% and 2%, 

respectively, and the proportion of capital-intensive industries increases by 5%.   

 

 

Figure 3.5 Annual variation of (a) total primary energy consumption, (b) CO2 

emission, (c) GRP (with its growth rates), and (d) labor force (with its growth rates) 

in Shenzhen under the reference scenario (C0E0) and CO2 mitigation scenario 

(C1E0). 

 

3.3.2. GRP and Labor Force 

            CO2 mitigation strategies will slightly decrease GRP and labor force migration in 

the catchment due to the change of industrial structure. Because capital-intensive 

industries have higher labor productivity than the other two industries, e.g., labor 

productivity of capital-intensive industries is 17 and 5 times of that in technology-
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intensive and capital-intensive industries, and thus the total labor productivity improves 

by 3.6% by 2025 with the increased proportion of capital-intensive industries (Table B4, 

Appendix B). Less labor force is required to maintain the same GRP growth rate. Under 

C0E0, it is projected that GRP will increase from 229.6 billion Yuan by 2010 to 818.0 

billion Yuan by 2025 (Figure 3.5c). GRP grows very quickly at the early stage of 

urbanization (1990-2000) with an annual growth rate of 19%, but its growth rate will 

slow down after 2007 to a nearly constant rate around 8.0% later on. The relatively slow 

growth rate of GRP after 2007 is mainly attributed to the decreasing return of capital in 

all administrative areas (PGSZM, 2008). The GRP variation curve under the C1E0 

scenario nearly overlaps that under C0E0, and the GRP losses compared with C0E0 by 

2025 are 0.7%.  

            Labor force migration is the primary determinant of the population growth of 

Shenzhen, and the migration population accounted for nearly 70% of the total population 

in 2016. The projected labor force demand under C0E0 increases from 3.12 million in 

2007 to 3.85 million in 2025, with an average annual growth rate of 1.2% (Figure 3.5d). 

This average annual growth rate is much smaller than that in the early stage of 

urbanization (nearly 10% during 1990-2000) due to the slower economic growth rate 

and improved labor productivity. Under C1E0, the projected labor force demand grows 

at a lower annual average growth rate of 0.9% (Figure 3.5d). Compared with C0E0, the 

projected labor force demand decreases by 0.16 million. Constant birth rate and death 

rates are assumed during 2010-2025, and the projected population decreases by 0.19 

million compared with C0E0.  
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3.3.3. Stress on Water Resources 

            Water demand under the reference scenario will grow continuously between 

2010 and 2025, increasing from 2.38 to 4.08 million m3/d (Figure 3.6a). However, there 

will be a slight increase in the potential water supply due to the limited increase in 

reclaimed wastewater reuse for residential and economic activities. Here the water 

shortage index (WSI) is used, which is defined as the ratio of water demand to potential 

water supply, to determine the degree of local water stress (Qin et al., 2013), with values 

greater than one indicating the condition of severe water limitation. Given that the 

growth of water demand is much greater than the potential water supply, WSI increases 

quickly to be greater than one after 2015 and reaches as high as 1.46 by 2025 (Figure 

3.6b), implying that the study area will suffer severe water deficit in the near future. 

            By implementing water engineering measures (C0E1), the total water demand 

will be reduced by 8.1%, and WSI will decrease by 30.7% by 2025 compared with C0E0 

(Figure 3.6a,b). Since the WSI value under C0E1 will be close to one when approaching 

the year 2025 (Figure 3.6b), the water demand and water supply will be nearly in 

balance even if employing engineering measures alone. With CO2 mitigation strategies 

(C1E0), the total water demand by 2025 is expected to decrease by 0.8% relative to 

C0E0, including a 4.2×104 m3/d reduction (4.1%) in the residential sector and a 4.7×104 

m3/d reduction (16.8%) in labor-intensive industries. However, water demand from 

capital-intensive industries will increase by 13.9%, and its proportions in sectoral water 

demand increase from 11% in 2010 to 13% (C0E0) and 15% (C1E0) by 2025, 

respectively (Figure 3.6c, d, and e). With the combined effects of engineering measures 
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and CO2 mitigation strategies, the total water demand by 2025 will be reduced by 12.2% 

relative to C0E0, and it will be balanced by the water supply.  

 

 

Figure 3.6 Annual variations of (a) total Water demand, (b) WSI and sectoral water 

demand under different scenarios including (c) current situation (2010) (d) C0E0 

(2025) and (e) C1E0 (2025). 

 

3.3.4. Water Quality Change 

            The current water infrastructure systems cannot provide sufficient service to 

collect and treat all wastewater. Figure 3.7 shows that under the reference scenario, total 

BOD5 and NH3-N generations from residential and industrial sectors increase by 38.5% 
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and 27.2% from 2010 to 2025. As a result, the projected BOD5 and NH3-N discharges 

into the river grow greatly from 2010 to 2025 under C0E0, with a total increase of 

37.9% and 27.5% in 2025, respectively. CO2 mitigation strategies (C1E0) have co-

benefit on pollutant generation reduction (Figure 3.7c, d), i.e., both BOD5 and NH3-N 

generations by 2025 will decrease by 4.2% and 4.4% compared with C0E0, including a 

6.8 t/d (4.1%) and 2.9 t/d (4.1%) decrease in residential sector and a 3.4 t/d (6.8%) and 

0.5 t/d (4.7%) decrease in secondary industry, respectively. Water engineering measures 

can further reduce pollutant discharges. Specifically, the projected BOD5 and NH3-N 

discharges under the C0E1 scenario are reduced by 50.1% and 53.5% in 2025 compared 

with C0E0, respectively. The combined effects of CO2 mitigation strategies and 

engineering measures on pollutant discharge evaluated via the C1E1 scenario show that 

the total BOD5 and NH3-N discharges will decrease to 34.2 t/d and 10.9 t/d by 2025, 

respectively, corresponding to reduction rates of 29.2% and 39.0% based on 2010 level.  
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Figure 3.7 Annual variations of BOD5 loading/discharge (a and c) and NH3-N 

loading/discharge (b and d) from 2010 to 2025 under different scenarios. 

 

            Figures 3.8 and 3.9 show the temporal and spatial water quality variation in the 

Shenzhen River estuary under different scenarios. Water quality varies greatly at each 

station due to the combined effects of the tide and wastewater discharge. At stations S03 

and S05, NH3-N concentration shows a slightly decreasing trend under C0E0. However, 
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water quality continues to worsen at all other stations from 2010 to 2025, with the 

average concentration ranges of BOD5 and NH3-N in 2025 being 1.1-32.3 mg/L and 1.0-

13.1mg/L, respectively.  

            Under C1E0, water quality is slightly improved at all the four stations relative to 

C0E0, i.e., the BOD5 and NH3-N concentrations at S01, S03, S05, and S06 decrease by 

0.7-2.7% and 1.3-5.2%, respectively. Without considering flood or ebb tide, the 

maximum concentrations of BOD5 and NH3-N occur at S01, where most of the untreated 

wastewater in the study area is discharged into the river. With engineering measures 

(C0E1), the projected BOD5 and NH3-N discharges reduce by 29.0% and 38.8% by 2025 

compared with 2010 (Figure 3.8c and d). Thus water quality will be substantially 

improved between 2010 and 2025. With integrated measures, the average BOD5 and 

NH3-N concentrations at S01 (where the water quality was impaired the worst) will 

decrease to 13.4 mg/L and 6.0 mg/L in 2025, only 45% and 46% of the 2010 level, 

respectively. As shown in Figure 3.9, except for some cross-sections in the middle reach 

of the river, water quality in Shenzhen River Estuary will satisfy the water quality level 

suggested by Hu (2007) and Su et al. (2014) to eliminate the malodorous-black 

phenomenon in the river, with average BOD5 concentration lower than 10 mg/L and 

NH3-N concentration lower than 6 mg/L.   
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Figure 3.8 Variations of (a) BOD5 concentration and (b) NH3-N concentration 

under different scenarios from 2010 to 2025 at four stations: (a) S01-Buji; (b) S03-

Hekou; (c) S05-Tsim Bei Tsui; and (d) S06-Dongjiaotou (n=337). 



 

61 

 

 

Figure 3.9 Spatial distribution of BOD5 and NH3-N concentration during ebb slack 

and flood slack under different scenarios in 2025. 

 

3.4. Discussion 

3.4.1. Effects of CO2 Mitigation Strategies on Water Use 

            The co-benefits of carbon mitigation strategies on water demand and pollutant 

discharge can be captured using the integrated model through the bridge of industrial 

structure change. For instance, by comparing C0E0 and C1E0 scenarios, the effects of 

CO2 mitigation strategies on water saving could be evaluated. Compared with C0E0, 

economic growth in C1E0 decreases slightly since carbon emissions are not free of 
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charge anymore. However, it could promote industrial structure adjustment leading to a 

decreasing proportion of energy- and carbon-intensive industries in the economic 

system. Since many of those industries are water-intensive, such industrial adjustment 

has co-benefits for the water system. First, it significantly reduces water demand and 

pollutant discharge from the domestic sector. The reduction of the labor-intensive 

industry is beneficial to the acceleration of total labor productivity since its productivity 

is comparatively lower than other industries. Hence, the projected population growth 

under the C1E0 scenario decreases by 4.1% compared with C0E0. The residential sector 

represents the most significant portion of water demand and pollutant discharge, which 

accounts for 39% (Fig. 3d), 79% (BOD5), and 91% (NH3-N) in 2010 under C0E0. 

            The effects of CO2 mitigation strategies on residential water demand and 

pollutant discharge reduction are significant to satisfy future water demand and local 

water environment standards. Second, it has co-benefits by reducing secondary industry 

water demand and pollutant generation from labor-intensive and technology-intensive 

industries. Compared with technology- and capital-intensive industries, the labor-

intensive industry has lower water use efficiency and higher pollutant discharge 

intensity. For example, the projected water use efficiency of the labor-intensive industry 

is 27% and 96% of technology-intensive and capital-intensive industries in 2025 (Table 

B4, Appendix B), respectively. Also, the BOD5 load and NH3-N load per GRP of the 

labor-intensive industry are the highest in the three types of industries, e.g., its BOD5 

load and NH3-N load per GRP is 4 and 6 times of that in capital-intensive industries, 

respectively (Table B5, Appendix B). Therefore, industrial upgrades away from labor-
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intensive to capital-intensive industries could help to save water and reduce water 

pollutant discharges. However, it should be noted that water demand from some capital-

intensive industries, e.g., electricity production and supply, are expected to increase by 

14% compared with C0E0 by 2025, which implies that more attention should be paid to 

water-saving technologies in these industries.   

3.4.2. Effects of Engineering Measures 

            Water engineering measures can greatly alleviate water resource stress and 

improve water quality. The effects of engineering strategies are evaluated by comparison 

of C0E0 and C0E1 scenarios. The current water infrastructure systems cannot secure 

future adequacy of water resources and protect water environment based on the 

simulations in the reference scenario. From the water demand side, engineering 

measures can improve water use efficiency, e.g., water use efficiency increases by 16% 

compared with C0E0, as shown in Table B5, Appendix B, by upgrading industrial water 

recycling technology and decreasing pipeline leakage. From the water supply side, 

engineering measures can increase the potential water supply by increasing water 

transfer quota and wastewater reuse. The water demand and water supply will be nearly 

in balance even if employing engineering measures alone. However, this balance is very 

uncertain after 2025 because it is strongly dependent on the available quota of water 

transferred from other catchments, the increase of reclaimed wastewater reuse, and the 

improvement of water use efficiency (Qin et al., 2013). 

            Furthermore, engineering measures can significantly reduce pollutant discharge 

and improve water quality by building new WWTPs and improving wastewater 
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treatment capacity and efficiency of the current WWTPs. According to Shenzhen 

municipal wastewater system planning, three new WWTPs will be built and equipped 

with tertiary treatment technology with 80% and 90% of NH3-N and BOD5 removal 

rates, respectively (PGSZM, 2008; Qin et al., 2014). Engineering measures are more 

efficient in reducing NH3-N load than BOD5 load, which is attributed to the relatively 

lower removal efficiencies for nutrients in the existing WWTPs. For example, the 

average NH3-N and BOD5 removal rates of current WWTPs are 60% and 80%, 

respectively (PGSZM, 2008; Qin et al., 2014). NH3-N loads reduction still has high 

potential considering the increasing need of using reclaimed wastewater as a potential 

water resource. However, engineering measures alone cannot meet the water quality 

improvement target of the study area.   

3.4.3. Sensitivity Analysis 

            Uncertainties associated with all integrated models include (1) uncertainty in the 

assumptions of the socio-economic system in the CGE model; (2) uncertainty in the 

estimation of future water demand and pollutant discharge, which is associated with both 

parameters calibration in the SyDWEM model and the engineering measures settings; 

and (3) uncertainty in the performance of water quality model. The first uncertainty was 

analyzed by adding two additional GRP growth rates scenarios to the CGE model, i.e., a 

higher (10.4%) and a lower annual growth rate (7.7%), and the resulting industrial 

structure changes and investment changes are fed into the SyDWEM model leading to 

the changes in energy use, GRP loss, labor force, water demand, and water quality 

change (Table 3.3). As shown in Table 3.3, energy use, labor force migration, and WSI 
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are more sensitive to GRP changes than water quality change and GRP losses. For the 

secondary uncertainty, the calibration of labor productivity, water use efficiency, and 

pollutant loading in each industry have been analyzed in our previous study (Qin et al., 

2011). The predicted GRP, population, and water demand in different districts/towns 

have been validated with census data. Also, the sensitivity of each engineering measure 

on water demand and water quality change has been assessed (Qin et al., 2013). The 

major findings from our previous simulations are as follows. First, increasing water 

transfer (M3) can significantly alleviate water shortage but has no effects on water 

quality, e.g., with a 0-20% increase of M3, the water shortage index decreases by 0-15%. 

Second, measures aimed at increasing the efficiency of wastewater infrastructure system 

(M5 and M6) can significantly improve water quality in the river but have no impacts on 

water shortage alleviation, e.g., with 0-10% increase of M5 and M6, water quality (e.g., 

Chemical Oxygen Demand, CODCr) at S01 decreases by 0-30% (M5) and 0-23% (M6), 

respectively. Third, some measures are sensitive to both water demand and water quality 

change, e.g., water use efficiency increase (M1 and M2) and reclaimed wastewater reuse 

(M4) can alleviate water shortages but can also decrease water quality (Qin et al., 2013). 

For example, with water use efficiency and M4 increase by 0-20% and 0-10%, water 

shortage index decreases by 0-10% and 0-2%, and CODCr at S01 increases by 0-8% and 

0-9%, respectively. Furthermore, their aggregated effects were analyzed by adding two 

additional engineering measures scenarios, i.e., En_high and En_low, with M1 and M3-

M6 increase or decrease 5%, and M2 increase or decrease 2.5% at 2025 compared with 

C1E1, respectively (Table 3.3). Water quality changes are more sensitive to engineering 
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measures than WSI, and BOD5 concentration is more sensitive than NH3-N. In terms of 

the uncertainty of the water quality module, two sets of water quality data obtained from 

water sampling monitoring were used for model calibration and validation. The results 

show that the water quality model can well capture the spatial and temporal variation of 

hydrodynamics and water quality in the Shenzhen River estuary.  

 

Table 3.3 Changes from Values in C1E1 in 2025 under Sensitivity Analysis (%).  

Scenarios Energy 

use 

GRP 

loss 

Labor 

force  

WSI BOD5 

loads 

NH3-N 

loads 

BOD5
a
 NH3-N a 

S1. 

GRP_high 

23.9 5.1 12.1 12.1 12.8 12.5 4.1 5.6 

S2: 

GRP_low 

-17. -4.5 12.7 -11.5 -11.0 -11.0 -3.2 -4.8 

S3: 

EN_high 

0 0 0 -11.7 -47.2 -36.1 -44.6 -29.4 

S4: 

EN_low 

0 0 0 14.5 46.7 35.9 40.4 26.1 

Note: a  represents average water quality at water quality station S01 in 2025. 

 

3.4.4. Policy Implications 

            The aggregated effects of both CO2 mitigation strategies and engineering 

measures are evaluated by the C1E1 scenario. The results show that a low-carbon, high-

efficiency water and energy use economy and better water environment are potentially 

achievable. The CGE-SyDWEM integrated model can capture the linkages among 

socioeconomic, energy use, CO2 emissions, water resource supply and depletion, as well 

as changes in the water system and is proved to be capable in analyzing the long-term 

scenario of rapid urbanization process. The integrated systems presented in this Chapter 

can be used to aid energy planners to understand the effects of proposed CO2 mitigation 
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strategies on energy use efficiency and its co-benefits of water use saving and pollution 

emission reduction. It can also aid water planners in analyzing if current water 

engineering measures can support future water security under proposed CO2 mitigation 

strategies and socio-economic development. Based on this integrated model, decision-

makers across different sectors can consult with each other to design more effective 

policies and measures to achieve national targets. It also implies that labor-intensive 

industries should pay more attention to cleaner technologies to reduce energy and water 

demand as well as pollutant discharge. To promote the use of cleaner technologies, 

economic incentives such as water tariff adjustment, emissions trading are encouraged 

(Qin et al., 2014; Su et al., 2009). The local government should also promote water-

saving appliances in public and household utilities to reduce residential water demand 

and seawater cooling in the electricity production and supply industry.  
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4. ESTIMATION OF GREENHOUSE GAS EMISSIONS FROM INTEGRATED 

URBAN DRAINAGE SYSTEMS 

 

            Although significant efforts have been made to better understand Greenhouse 

Gas (GHG) emissions in individual sub-systems of an integrated urban drainage system, 

including sewer, Wastewater Treatment Plants (WWTPs), and receiving water systems, 

the relative contributions of individual components are still poorly understood. GHG 

emissions from all these sub-systems have not yet been considered in an integrated 

manner, leading to considerable uncertainties in the GHG emission estimation of urban 

drainage systems. In this chapter, a submodule aiming to calculate both the direct and 

indirect GHG emissions from an integrated urban drainage system is added into the 

CGE-SyDWEM model developed in Chapter 3. The newly updated CGE-SyDWEM 

model is used to provide a comprehensive evaluation of both the direct and the indirect 

GHG emissions from wastewater treatment with the consideration of both carbon 

mitigation strategies and water engineering measures.  

4.1. Introduction 

            WWTPs have been recognized as one of the largest energy consumers and GHG 

emitters in urban systems (IPCC, 2014, 2021). The treatment of domestic wastewater 

alone accounted for 3% of global electricity use and 2% of global carbon dioxide 

equivalent (CO2-eq) GHG emissions (IPCC, 2014; Li et al., 2015a; McCarty et al., 

2011). WWTPs are also major non-CO2 GHG emitters, e.g., methane (CH4) and nitrous 

oxide (N2O), accounting for 4.6-5.2% of global non-CO2 GHG emissions from 2005 to 
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2030 (USEPA, 2012). The shares of global energy use and GHG emissions from 

WWTPs are expected to increase in the future due to rapid urbanization and stricter 

water quality standards enforced in developing countries (Li et al., 2015a; USEPA, 

2012). For instance, China has been experiencing rapid urbanization since 1978, and the 

percentage of its population living in urban areas increased from 18% in 1978 to 60% in 

2019 (UN, 2019). This rapid and not well-planned urbanization results in high water use 

and wastewater discharge, causing risk to local water environmental safety (Dong and 

Liang, 2014; Gain and Giupponi, 2015; Qin et al., 2013). From 2000 to 2017, 

wastewater discharge in China increased from 110 to 192 million m3/d, and its treatment 

capacity increased from 27 to 157 million m3/d. At the same time, the energy use by 

wastewater treatment industry grew very fast, with an annual growth rate of 6% from 

2008 to 2016 (Niu et al., 2019). To reduce water pollutants discharge and improve water 

quality, the Chinese government has planned to upgrade WWTPs treatment technologies 

(NPC, 2016), which will further increase energy use and GHG emissions from 

wastewater treatment industry. The increasing GHG emissions from wastewater 

treatment may affect China’s Nationally Determined Contributions (NDC) targets to 

reduce the CO2 emission intensity (CO2 emissions per unit of GDP) by 60% to 65% by 

2030 on the basis of the 2005 level (UNFCCC, 2015) as well as the long-term climate 

goal of carbon neutral by 2060. Therefore, understanding the energy use and GHG 

emissions from wastewater treatment plants and their dynamic interactions with socio-

economic and water environmental systems in a long-term urbanization process can 
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assist decision-makers to meet water quality improvement and carbon mitigation targets 

more efficiently.  

            GHG emissions occur throughout the process of wastewater collection, 

treatment, and discharge, including (1) direct GHG emissions from the sewer, WWTPs, 

and receiving water systems; (2) indirect GHG emissions through electricity use by the 

sewer and WWTPs systems; and (3) indirect external GHG emissions, i.e., embodied 

GHG emissions in all materials and resources used outside the WWTPs boundary, e.g., 

the chemical use in the wastewater treatment process, maintenance of WWTPs 

machinery, and administration. Figure 4.1 illustrates GHG emissions from integrated 

urban drainage systems and their dynamic interactions with the socio-economic system. 

As shown in Figure 4.1, carbon mitigation strategies affect the economic outputs of 

different industrial sectors and the demand of local labor force, and the associated water 

demand and wastewater generation from industrial and domestic activities will be 

changed accordingly. Carbon mitigation strategies may also affect the CO2 emission 

intensity in different industrial sectors and influence indirect GHG emissions due to 

energy consumption, chemical use, maintenance, and administration during the 

wastewater treatment process. The sewer system collects wastewater from domestic and 

industrial sectors, which is then pumped and transferred to WWTPs. GHG emissions in 

these two systems are affected by wastewater quantity, pollutant loading, and wastewater 

treatment technologies. The treated wastewater is then discharged into nearby water 

bodies or reused for irrigation and industrial purposes. Receiving water bodies may also 

receive pollutant loads from untreated wastewater discharge that exceeding the capacity 
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of the sewer system and non-point pollutants from agricultural production, which can 

change water quality in the receiving water bodies and associated GHG emissions.  

 

 

Figure 4.1 Greenhouse gas emissions from integrated urban drainage systems and 

their interactions with the socio-economic system. 

 

            Until now, carbon-energy-water nexus studies in wastewater treatment focused 

on assessing GHG emissions in an individual component of the integrated urban 

drainage system, e.g., sewer system, WWTPs, or receiving water bodies. Direct GHG 

emissions from sewer systems occur during the anaerobic and aerobic biological 

processes of sewer sediments, including emissions of CH4 (Guisasola et al., 2008; 

Gutierrez et al., 2014; Liu et al., 2016b) and CO2 (Jin et al., 2019), but few studies 

evaluated its N2O emissions (Mannina et al., 2018). Direct GHG emissions from 

WWTPs include CO2, CH4, and N2O emissions during the pre-treatment, biological 
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treatment, and disinfection, as well as sludge processing and disposal. Although direct 

CO2 emission from WWTPs is considered as a biogenic origin and therefore is excluded 

in the GHG accounting suggested by IPCC (2006), studies show that 10-20% of the CO2 

emission from wastewater can be attributed to fossil origin (Bao et al., 2016; Griffith et 

al., 2009). The direct on-site CH4 and N2O emissions from WWTPs have gained 

increasing attention recently. However, the reported emission factors (EFs), defined as 

the amount of GHG emissions per unit of influent load in terms of chemical oxygen 

demand (CODCr) and total nitrogen (TN), show considerable variations. For example, 

the EFs of CH4 have been found ranging among 0.0005-0.063 kg CH4/kg CODCr (Bao et 

al., 2016; Daelman et al., 2012; Liu et al., 2014; Wang et al., 2011; Yoshida et al., 2014). 

The reported EFs of N2O varies among 0.003-0.026 kg N2O/kg TN, and in some cases, 

the values are even higher than 0.1 kg N2O/kg TN in both lab-scale and full-scale 

WWTPs (Ahn et al., 2010; Bao et al., 2016; Foley et al., 2010; Kampschreur et al., 

2009), which were contrasted with the fixed emission factors (i.e., 0.005 kg N2O/kg TN) 

suggested by IPCC (2006). These variations in measured EFs can be attributed to the 

differences in treatment technology, capacity, and influent/effluent wastewater quality 

(Mannina et al., 2016; Niu et al., 2019). Direct GHG emissions from a receiving water 

system occur during the biological processes of the receiving water. Beaulieu et al. 

(2011) reported that N2O emissions from river and stream networks could contribute 

10% of global anthropogenic N2O emissions. Musenze et al. (2014) quantified CH4 and 

N2O emissions in a sub-tropical estuary in Australia and found that N2O was the 
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dominant emitted pollutant and positively correlated with NOx (oxidized nitrogen, e.g., 

NO3
-1) concentration.                                       

            Indirect GHG emissions stemming from energy consumption in the wastewater 

treatment process have been widely studied. Wastewater treatment is considered the 

most energy-intensive process throughout the water sector (Kim and Chen, 2018), and 

its emissions of GHG depends on electricity intensity (defined as the electricity use per 

unit of treated wastewater, kWh/m3) and carbon intensity of electricity generation 

(defined as the CO2 emissions per electricity use, kg CO2-eq/kWh). Typical electricity 

intensity varies from 0.06 to 1.5 kWh/m3 and sometimes can be as high as 3.18 kWh/m3 

(Englehardt et al., 2016; Smith et al., 2018; Wang et al., 2016). The large uncertainties in 

the reported electricity intensity can be attributed to the variations in treatment 

technology, WWTPs capacity, and influent/effluent water quality (Wang et al., 2016). 

Therefore, the field monitoring of electricity use at different treatment stages is usually 

suggested to improve the accuracy of GHG emissions stemming from electricity 

consumption. In addition, the electricity use from wastewater collection and discharge 

are seldom considered in previous studies due to data unavailability (Liao et al., 2020). 

The carbon intensity of electricity generation is closely related to the local electric power 

sector’s fuel mix, which can be affected by the implementation of carbon mitigation 

strategies (Xiong et al., 2019). However, few studies have looked at the potential of 

carbon mitigation strategies for GHG emissions reduction from wastewater treatment.  

            Indirect external GHG emissions generated from all materials and resources used 

outside the WWTPs boundary are usually evaluated using life cycle assessment (LCA) 
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(Racoviceanu et al., 2007). Liao et al. (2020) used a hybrid life cycle analysis (HLCA) 

and estimated that the indirect GHG emissions from materials use accounted for 5-15% 

of the total WWTPs emissions, which have been overlooked in previous studies.   

            Despite the significant progress that has been made to improve the understanding 

of GHG emissions in individual sub-systems, the relative contributions of individual 

components in integrated urban drainage systems are still poorly understood. An 

integrated platform that can capture the cross-sector interactions and feedbacks among 

social-economic, sewer, WWTPs, and receiving water systems will enable a better 

understanding of the role of the wastewater sector in global GHG emissions. The 

specific objectives in this chapter therefore are to (1) quantify the relative contributions 

of GHG emissions from the sewer, WWTPs, and receiving water systems during 2010-

2025 in an integrated manner; (2) assess the impacts of China’s NDC on local GHG 

emissions from the integrated urban drainage system; and (3) evaluate the impacts of 

upgraded water engineering measures on energy use and GHG emissions.  

4.2. Methodology 

4.2.1. GHG Emissions Calculation 

            GHG emissions considered in this study include (1) direct emissions from the 

sewer (i.e., CO2 and CH4 emissions from sewer sediment deposition), WWTPs (i.e., 

CO2, CH4, and NO2), and receiving water systems (NO2); (2) indirect internal emissions 

from electricity consumption during the collection and four wastewater treatment stages, 

i.e., pre-treatment, biological treatment, disinfection, and sludge treatment; and (3) 

indirect external emissions from chemicals use, repair and maintenance of WWTPs’ 
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machinery, and administration. Since the treated wastewater in the study area is usually 

discharged into nearby water bodies, the energy consumption from wastewater discharge 

is neglected. Emission factors for direct GHG emissions were obtained by averaging 

available field studies in China to reduce bias. In addition, the EFs for WWTPs 

emissions consider the differences in wastewater treatment technologies. These 

technologies include Anaerobic-Anoxic-Oxic (A2/O), Oxidation Ditch (OD), Anaerobic-

Oxic (AO), and Sequencing Batch Reactors (SBR), which are the most widely used 

technologies in China (Zhang et al., 2016). The direct GHG emissions were collected 

from on-site WWTPs operation data in the study area (Liao et al., 2020).  

4.2.1.1. Direct GHG Emissions from Sewer System 

            CO2 and CH4 emissions from sewer sediment deposition is estimated by using 

sediment deposition rate and the length of sewer pipe as: 

𝐸𝑡𝑖
𝐷𝑆 = 𝛼𝑖 × 𝐿𝑡 × 𝐸𝐹𝑖

𝐷𝑆                                                 (4.1) 

where t is the time (year);  𝛼𝑖  is the 100-year global warming potential (GWP) 

coefficients used to convert to CO2-eq GHG emissions, i.e., CO2 =1, N2O=298, and CH4 

=25 (IPCC, 2006); Lt is the length of the sewer pipe in year t;  𝐸𝑡𝑖
𝐷𝑆 is the ith type direct 

CO2-eq GHG emissions from sewer sediment (kg CO2-eq/year); and 𝐸𝐹𝑖
𝐷𝑆 is the ith type 

sewer sediment emission factor (kg CH4/year/km length of sewer system). Here 𝐸𝐹𝑖
𝐷𝑆 

for CH4 and CO2 were adopted from a field study in Xi’an, China (Jin et al., 2019). The 

averaged EFs for CH4 and CO2 with sub-main and main sewer lengths higher than 1 km 

are used (Table C1, Appendix C). The emissions from wastewater decomposition are 

neglected in the sewer system. 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/global-warming-potential
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4.2.1.2. Direct GHG Emissions from WWTPs System 

            Once the pollutant loads removed by WWTPs under different scenarios are 

gained from CGE-SyDWEM simulations, the direct CO2, N2O, and CH4 emissions and 

total CO2-eq GHG emissions from individual WWTP can be estimated by using 

equations (4.2) and (4.3).  

𝐸𝑡
𝐷𝑂 = ∑ 𝛼𝑖𝐸𝐹𝑡𝑖

𝐷𝑂
𝑖                                                     (4.2) 

𝐸𝐹𝑡𝑖
𝐷𝑂 = 𝑃𝑡𝑖 × 𝐸𝐹𝑖

𝐷𝑂                                                (4.3) 

where Pti and 𝐸𝐹𝑖
𝐷𝑂 are the pollutant loads (kg) removed in year t and emission factors 

(GHG emissions per unit of pollutant treated) of the three types GHGs, respectively. In 

the calculation, 10% of the direct CO2 emission is considered from fuel origin. The CH4 

emission is associated with organic matter decomposition in the anaerobic consideration. 

The 𝐸𝐹𝑡𝑖
𝐷𝑂of CO2 and CH4 are in the units of kg CO2/kg CODremoved and kg CH4/kg 

CODremoved, respectively (Table 4.1). Although the complete production mechanism of 

N2O in WWTPs is not fully understood, it is found that the N2O emission is associated 

with nitrogen removal, e.g., aerobic ammonium and nitrate oxidations. Here the N2O 

emission factor (kg NO2/kg TNremoved) was obtained from recent field studies in China 

(Table 4.1). 
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Table 4.1 GHG Emission Factors of Different Treatment Technologies in WWTPs 

from Recent Field Studies in China (mean ± standard deviation). 

Technology CO2
* N2O CH4 

kg CO2/kg CODremoved kg N2O/kg TNremoved kg CH4/kg CODremoved 

A2O 0.0424 ± 0.0261 0.0020 ± 0.0006 0.0016 ± 0.0003 

OD  0.0550 ± 0.0410 0.0028 ± 0.0011 0.0057 ± 0.0050 

Average 0.0517 ± 0.0322 0.0027 ± 0.0013 0.0038 ± 0.0033 

Note: *10% of CO2 is considered from fossil origin. More detailed data is provided in 

Table C2, Appendix C. 

 

4.2.1.3. Direct GHG Emissions from Receiving Water System 

            The N2O emission from receiving water bodies is related to the direct 

denitrification of NO3
-1 (Beaulieu et al., 2011). The ratios of N2O emission to NO3

-1 

inputs are reported to range from 0.1 to 1% (Beaulieu et al., 2008; Cole and Caraco, 

2001). Here, a global mean value of 0.9% of the N2O/NO3
-1 ratio is used (Beaulieu et al., 

2011). The annual NO3
-1 loads in the receiving water bodies are simulated by the water 

quality module in the CGE-SyDWEM, including sources from the effluent of WWTPs, 

direct discharge of untreated wastewater, and non-point pollutants caused by agricultural 

production. The non-point pollutants induced by runoff are not included since this work 

focuses on only the human-induced GHG emissions from wastewater treatment. 

4.2.1.4. Indirect Internal GHG Emissions caused by Electricity Consumption 

            Electricity consumption ( 𝐸𝐿𝑡
𝐼𝐼 ) and associated GHG emissions ( 𝐸𝑡

𝐼𝐼 ) from 

wastewater collection (pumping), and four treatment stages are calculated using 

equations (4.4) and (4.5) as:   

𝐸𝐿𝑡
𝐼𝐼 = ∑ ∑ 𝐸𝐿𝑡𝑗𝑘

𝐼𝐼
𝑘𝑗 = ∑ ∑ 𝑊𝑊𝑡𝑘𝑘𝑗 ×  𝐸𝐿𝑗𝑘

𝐺                                     (4.4) 

𝐸𝑡
𝐼𝐼 = ∑ ∑ 𝐸𝑡𝑘𝑗

𝐼𝐼
𝑘𝑗 = ∑ ∑ 𝐸𝐿𝑡𝑗𝑘

𝐼𝐼
𝑘𝑗 ×  𝐸𝐹𝑡

𝐺                                      (4.5) 
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where 𝐸𝐿𝑡𝑗𝑘
𝐼𝐼  and  𝐸𝑡𝑗𝑘

𝐼𝐼  represent the electricity consumption and associated CO2 

emissions during the jth stage, including pumping, pre-treatment, bio-treatment, 

disinfection, and sludge treatment, and the kth type of treatment technologies including 

A2O, OD, biological filter (BF), and Anaerobic-Anoxic-Oxic-Membrane Bio-Reactor 

(AAO-MBR); 𝑊𝑊𝑡𝑘  is the wastewater collected and treated using the kth type of 

treatment technologies in year t (m3); 𝐸𝐿𝑗𝑘
𝐺  is the electricity intensity of the  jth stage and 

the kth type of treatment technologies (kWh/m3); and 𝐸𝐹𝑡
𝐺  is the carbon intensity of 

electricity generation in year t (kg CO2/kWh). 30% of Shenzhen City’s electricity is 

supplied locally, whereas the remaining portion is imported from the Southern Power 

Grid of China. 𝐸𝐹𝑡
𝐺 of the local electricity sector is simulated by CGE-SyDWEM, which 

can be affected by the implementation of carbon mitigation strategies. For the imported 

electricity, time-evolving 𝐸𝐹𝑡
𝐺 values are used considering the historical electric power 

sector’s fuel mix change in China (IEA, 2015). Also, the EFG of Southern Power Grid in 

2013 (0.556 kg/kWh) is used as the base year for the imported electricity (Qu et al., 

2017). An annual decreasing rate of 1% is used to calculate the future EFG of the 

imported electricity based on the study of electricity fuel structures change in China 

during 2020-2030 (Xiong et al., 2019). In addition, the EFG of the imported electricity is 

assumed not to be affected by the implementation of local carbon mitigation strategies.  

            To reduce the uncertainty of various data sources, the mean electricity intensity 

of the existing WWTPs of Shenzhen City is used (Table 4.2). According to the local 

sewage and WWTPs planning (SZUPLRB, 2011), currently, there are 44 pumping 
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stations in the study area with an average serving area of 8.8 km2. The mean value for 

pumping 1 m3 of wastewater is 0.0384 kWh.  

 

Table 4.2 Electricity Intensity of Four Treatment Stages using Different Treatment 

Technologies in WWTPs System.   

Technology Electricity intensity (kWh/m3) 

Pre- Bio- Disinfection Sludge Total 

A2O 0.061±0.021 0.157±0.027 0.019±0.008 0.034±0.014 0.272±0.045 

OD 

 

ditch 

0.069±0.001 0.175±0.092 0.014±0.001 0.031±0.008 0.286±0.112 

BF 0.077±0.007 0.156±0.015 0.036±0.003 0.034±0.033 0.302±0.009 

AAO-MBR 0.145±0.007 0.582±0.013 0.023±0.009 0.028±0.002 0.776±0.042 

Sources: Activity data from 18 WWTPs of Shenzhen (Liao et al., 2020); Sewage and 

WWTPs system plan of Shenzhen (2011-2020) (SZUPLRB, 2011). The number of 

WWTPs with different technologies including A2O (n=14), OD (n=2), BF (n=2), and 

AAO-MBR (n=2). 
 

4.2.1.5. Indirect External GHG Emissions 

            Once the CO2 emission intensity of different industrial sectors and the amount of 

wastewater treated by WWTPs under different scenarios are gained from CGE-

SyDWEM simulations, the indirect external GHG emissions from the final demand of 

WWTPs materials’ use can be calculated as: 

𝐸𝑡
𝐼𝐸 = ∑ ∑ 𝐸𝑡𝑘𝑛

𝐼𝐸
𝑛𝑘 = ∑ ∑ 𝐷𝑡𝑘𝑛

𝐼𝐸 × 𝐶𝐼𝑡𝑛
𝐼𝐸

𝑛𝑘                                 (4.6) 

where 𝐸𝑡𝑘𝑛
𝐼𝐸  and 𝐷𝑡𝑘𝑛

𝐼𝐸   represent the life cycle GHG emissions (kg CO2) and final demand 

of WWTPs (RMB) from the nth sector using the kth type of treatment technologies in 

year t; 𝐶𝐼𝑡𝑛
𝐼𝐸  is the CO2 emissions intensity from the nth sector in year t (kg CO2/103 

RMB), which is simulated by the CGE model. The chemicals use, repair, and 

maintenance of WWTPs’ machinery, and administration refer to the chemical, 
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machinery, and service sectors, respectively, in the CGE model. 𝐷𝑡𝑘𝑛
𝐼𝐸  can be calculated 

as: 

𝐷𝑡𝑘𝑚𝑛
𝐼𝐸 = 𝑊𝑊𝑡𝑘 × 𝐶𝑜𝑠𝑡𝑛𝑘

𝐼𝐸                                            (4.7) 

where 𝐶𝑜𝑠𝑡𝑛𝑘
𝐼𝐸  is the input cost to treat per unit of wastewater from the nth sector using kth 

type of treatment technologies (RMB/103 m3) (Table 4.3). 

 

Table 4.3 Chemical Cost, Maintenance Cost, and Administrative Cost per Unit of 

Wastewater Treated Using Different Technologies (RMB/103m3) (2015 price). 

Technology Chemical Maintenance Administrative Total 

A2O 41.48±17.86 82.50±28.57 64.01±16.28 187.99±62.71 

OD 53.33±43.88 98.80±26.50 46.46±10.15 198.59±80.53 

BF 49.78±22.37 61.06±29.05 54.45±23.27 165.29±74.69 

AAO-MBR 62.37±38.27 137.45±10.48 140.67±24.35 340.49±73.10 

Sources: Activity data from 18 WWTPs of Shenzhen (Liao et al., 2020); Sewage and 

WWTPs system plan of Shenzhen (2011-2020) (SZUPLRB, 2011). The number of 

WWTPs with different technologies including A2O (n=14), OD (n=2), BF (n=2), and 

AAO-MBR (n=2). 

 

4.2.2. Scenarios  

Here, two scenarios are evaluated, including Business as Usual (BaU) and 

Nationally Determined Contributions (NDC) scenarios (Table 4.4). The BaU scenario 

simulates GHG emissions changes with upgraded water infrastructure systems in 2025 

without the implementation of explicit carbon mitigation strategies. The upgraded water 

infrastructure systems were set to make sure that the water quality in the receiving water 

bodies can satisfy the local water quality improvement target, which is detailed in Table 

3.2, Chapter 3. There is no CO2 emission intensity constraint in the BaU scenario. The 

NDC scenario simulates the impacts of carbon mitigation on local GHG emissions from 



 

81 

 

the integrated urban drainage system. This scenario differs from the BaU scenario in that 

it includes a constraint on CO2 emissions intensity, i.e., the emission intensity needs to 

be reduced by 40% by 2020 and 65% by 2030, to fulfill China’s NDC commitment 

(Table 4.4). 

 

Table 4.4 Configurations of Scenarios. 

Scenarios Emission constraints Engineering measures 

BaU 

No constraints 

Upgraded engineering measures to 

satisfy water quality standards in 

2025 

NDC Emission intensity reduced by 

40% in 2020 and 65% in 2030 

Same as BaU 

 

4.3. Results 

4.3.1. Direct GHG Emissions  

            Direct GHG emissions under the BaU scenario would grow continuously 

between 2007 and 2025, increasing from 21 to 36 kt per year (Figure 4.2a). However, 

the direct GHG emissions intensity (CO2-eq emission/m3 wastewater) would reduce by 

15% by 2025 compared to the 2007 level under the BaU scenario (Figure 4.5a). The 

main reason is that the projected WWTPs influent concentrations will be gradually 

reduced with socio-economic development. As shown in Figure 4.2b-d, the total 

wastewater treated in 2025 (2.9 Mt/day) is twice that in 2007 (1.4 Mt/day), but CODCr 

and TN treated only increase by 50% and 36%, respectively. With continued industrial 

structure change, the proportions of wastewater from service and residential sectors are 

increasing, and they have relatively lower pollutant intensities than other sectors (Su et 
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al., 2018). Accordingly, the influent concentrations of CODCr and TN show decreasing 

trends (Figure C1, Appendix C).  

            Carbon mitigation can reduce direct GHG emissions from wastewater treatment 

by decreasing wastewater generation and pollutant discharge. Carbon mitigation 

accelerates local industrial structure upgrading by restricting carbon- and energy-

intensive industries. Since many of these industries are also labor- and water-intensive, 

carbon mitigation is beneficial for reducing wastewater generation and water-related 

pollutants discharge. Compared with the BaU scenario, carbon mitigation can reduce 

total treated wastewater by 1% (0.3 Mt/d) and total CODCr and TN generation, i.e., 

treated and discharged, by 4.2% (21.1 t/d) and 4.4% (3.4 t/d), respectively (Figure 4.1c-

f). Accordingly, carbon mitigation can contribute to reductions in direct GHG emissions 

by 4% by 2025, approximately 1.5 kt per year, and direct GHG emissions intensity by 

3% by 2025. 

            WWTPs system contributes the largest direct GHG emissions (78%), followed 

by receiving water (15%) and sewer systems (7%) in 2007 (Figure 4.1a). With improved 

water engineering measures, pollutant discharges into the river show a decreasing trend 

during 2007-2025 (Figure 4.1e and f). Therefore, the proportions of direct GHG 

emissions from receiving water will decrease to 7% by 2025 under both BaU and NDC 

scenarios. Among all three types of GHGs, N2O accounts for 53-58% of total direct 

CO2-eq GHG emissions, followed by CH4 (40-44%) and CO2 (2-3%) during 2007-2025 

under both scenarios.   
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Figure 4.2 Annual variations of (a) direct CO2-eq GHG emissions in different 

systems and relative direct GHG emission intensity, (b) direct GHG emissions by 

types and total wastewater treated, (c) CODCr treated, (d) TN treated, (e) CODCr 

discharge, and (f) TN discharge under BaU and NDC scenarios.  

 

4.3.2. Electricity-related GHG Emissions  

            On average, 0.32 kWh of electricity is required to treat 1 m3 of wastewater 

(Figure 4.3a). Among all wastewater collection and treatment processes, biological 
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treatment consumes the largest amount of electricity, accounting for 49% of the total 

electricity use, followed by pre-treatment (21%), pumping (12%), sludge treatment 

(10%), and disinfection (8%). Under the BaU scenario, the total electricity consumption 

will increase from 170 MWh in 2007 to 349 MWh by 2025 (by 105%), which is in 

alignment with the trend of total wastewater treatment. Carbon mitigation can slightly 

reduce electricity consumption by slowing down wastewater generation and water-

related pollutant discharges from industrial and domestic sectors.  

            The projected indirect GHG emissions stemming from electricity consumption 

show a relatively stable growth rate (1.7% annually) during 2007-2025 under the BaU 

scenario (Figure 4.3a), increasing from 104 kt in 2007 to 141 kt by 2025, which is much 

slower than the increase of total wastewater treated (4.0% annually). The reason is that 

the local electricity sector has a high reduction rate of autonomous GHG emission 

intensity, since its emissions can be reduced through the use of renewable energy 

resources and efficient technologies even without the implementation of carbon 

mitigation strategies (Su et al., 2019). As shown in Figure 4.3b, its GHG emission 

intensity decreases by 33% by 2025 relative to the 2007 level under the BaU scenario. 

When the carbon intensity constraint is imposed, carbon abatement cost is generated 

endogenously, which is the equilibrium price to balance the supply and demand of the 

carbon emission allowance (Su et al., 2018). The carbon abatement cost is evenly 

distributed in all industrial sectors and is projected to increase from 56 to 274 USD/t 

CO2 from 2020 through 2030 due to higher carbon constraints and adverse endogenous 

factors, such as increased clean energy prices and less availability of low carbon 
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technologies in Shenzhen City. The carbon emission supply is implied by future GDP 

and carbon emission intensity target, and the demand is determined by the emissions 

from different industrial sectors and households. The carbon abatement cost will 

increase the production prices of all sectors, which is dependent on their carbon emission 

intensities. On the demand side, in response to the price change, consumers will adjust 

their activities to lower the demand for energy- and carbon-intensive products. As a 

result, carbon emissions from energy- and carbon-intensive industries sectors will be 

greatly reduced. Under the NDC scenario, carbon emission intensity from most 

industrial sectors will decrease by 20%-83% by 2025 compared with the BaU scenario. 

Unlike these sectors, the carbon intensity of the electric power sector shows a limited 

decrease (1%) by 2025 under the NDC scenario since the local electric power sector can 

cut emissions through the adoption of non-fossil power, such as nuclear power. In 2007, 

the GHG emission intensity from the local electricity sector was 0.50 kg/kWh, which 

was much lower than the imported electricity (0.66 kg/kWh) and the national average 

(0.84 kg/kWh). Since the imported electricity from South Power Grid accounts for about 

70% of the total electricity use, a further decrease in GHG emission intensity is expected 

if carbon mitigation strategies are applied in other regions in China, especially in the 

South Power Grid.  
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Figure 4.3 Annual variations of (a) electricity consumption and electricity intensity 

and (b) electricity consumption-induced indirect GHG emissions and relative GHG 

intensity under BaU and NDC scenarios during 2007-2025. 

 

4.3.3. Indirect External GHG Emissions 

            Carbon mitigation substantially reduces the indirect external GHG emissions, 

i.e., by 72% (9.8 kt) by 2025 under the NDC scenario relative to the BaU scenario 

(Figure 4.4). Chemical use contributes the largest portion of total reductions, i.e., 82% 

(8.0 kt), followed by administrative (14%) and maintenance (4%). Under the BaU 

scenario, chemical use in WWTPs accounts for 61-67% of indirect external GHG 

emissions, and it grows very quickly during 2007-2025, which increases from 2.9 kt in 

2007 to 9.1 kt by 2025. The reason is that emission intensity from the chemical sector 

continues to increase throughout the period under the BaU scenario. Hence, chemical 

use from WWTPs plays an important role in reducing indirect external GHG emissions 

from wastewater treatment. Note that the chemical sector is an energy- and carbon-

intensive sector, with a carbon intensity of 3.5 and 8.4 times that in the machinery 
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(maintenance) and service (administrative) sectors in 2007, respectively (Table C3, 

Appendix C). To meet the carbon mitigation target, the chemical sector relies on 

minimizing its production, and therefore it suffers economic losses and contributes the 

largest reductions.  

 

 

Figure 4.4 Annual variations of indirect external GHG emissions and relative GHG 

emission intensity from chemical use, maintenance, and administrative of WWTPs 

under BaU and NDC scenarios during 2007-2025.  

 

            On the contrary, carbon mitigation is beneficial to the machinery sector, since it 

can reduce its carbon intensity by adopting low carbon technology, which is represented 

in the CGE model by the substitution of energy by capital. Accordingly, the machinery 
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sector improves production efficiency with low carbon transformation, and therefore, it 

is affected the least under carbon mitigation. Under the NDC scenario, maintenance of 

WWTPs contributes more than half of the indirect external GHG emissions (57%) by 

2025, while the share of the chemical sector reduces to 29%. The indirect external GHG 

emissions have been overlooked in previous studies. Liao et al. (2020) estimated that the 

indirect external GHG emissions accounted for 5-15% of total GHG emissions from 

WWTPs, depending on the wastewater treatment technologies used.  

4.3.4. Integrated Urban Drainage System GHG Emissions  

            Figure 4.5 shows the annual variations of total GHG emissions and GHG 

emission intensity under BaU and NDC scenarios during 1990-2025. The trend of GHG 

emissions under the BaU scenario is in alignment with socio-economic development and 

wastewater treatment capacity increase, showing a significant increase from 5.1 (95% 

CI: 4.8-5.5) kt in 1990 to 129.2 (95% CI: 95.9-162.5) kt in 2007 to 190.7 (95% CI: 

144.8-236.6) kt in 2025, equivalent to an annual growth rate of 12.2% and 2.0% for the 

periods of 1990-2006 and 2007-2025, respectively. GHG emission intensity shows a 

decreasing trend. CO2-eq emissions from the treatment of 1 m3 wastewater is estimated 

to be 0.30 (95% CI: 0.22-0.38) kg in 1990, which will decrease to 0.25 (95% CI: 0.18-

0.32) kg in 2007 and to 0.16 (95% CI: 0.11-0.21) kg by 2025. Liao et al. (2020) 

estimated that the GHG emission intensity of wastewater treatment in Shenzhen City 

was about 0.3 kg/m3 in 2015, larger than our estimations. The reason is that a national 

average GHG emission intensity (0.861 kg/kWh) was used, which significantly 

overestimated the electricity-induced GHG emissions. 
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Figure 4.5 Annual variations of (a) total GHG emissions and (b) GHG emission 

intensity from the integrated urban drainage systems under BaU and NDC 

scenarios during 1990-2025. Shading indicates the 95% confidential interval. 

 

            Figure 4.6a illustrates the wastewater flow and GHG emissions in individual 

systems under the BaU scenario in 2025. 89% of GHG emissions from the integrated 

urban drainage system are from WWTPs (direct emissions: 17%; indirect due to 

electricity use: 65%; and indirect external: 7%), 10% from sewer system (direct 

emissions: 1%; pumping: 9%) and 1% from receiving water system (direct emission). 

The indirect GHG emissions due to electricity use contribute 74% of total emissions, 

including biological treatment process (36%), followed by pre-treatment (15%), 

pumping (9%), sludge treatment (8%), and disinfection (6%). 
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Figure 4.6 (a) Wastewater flow and GHG emissions in individual systems under 

BaU scenario, (b) comparisons of direct and indirect GHG emissions under BaU 

scenario, and (c) the difference in GHG emissions between NDC and BaU in 2025. 

 

            Carbon mitigation can reduce the total GHG emissions by 6.6% by 2025 under 

the NDC scenario compared with the BaU scenario (Figure 4.5), including 5.1% from 

external GHG emissions, 0.8% from direct GHG emissions, and 0.7% from indirect 

GHG emissions due to electricity use. Compared with the BaU scenario, the GHG 
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emission intensity under the NDC scenario decreases by 5.8% in 2025 (Figure 4.5b). 

Carbon mitigation strategies have limited impacts on promoting the adjustment of the 

local electricity sector’s fuel mix since its emissions can be reduced mainly by using 

renewable energy resources. Given that 70% of the electricity use is purchased from 

other regions, a scenario with consideration of carbon mitigation is implemented in other 

regions of China and was analyzed later to gain a better understanding of how electricity 

fuel structure transformation may potentially change the electricity induced GHG 

emissions from integrated urban drainage systems.  

4.4. Discussion 

4.4.1. Sensitivity Analysis 

            The sensitivities of GHG emissions and GHG intensity to each engineering 

measure and imported electricity’s fuel mix are revealed in Figure 4.7. The electricity 

fuel structure transformation can significantly reduce GHG emissions from the 

integrated urban systems and improve GHG emission intensity. For example, with a 0-

10% GHG intensity reduction in the imported electricity, both the total GHG emissions 

and GHG intensity decrease by 29%. Measures aimed at improving the efficiency of 

wastewater infrastructure systems show negative effects on GHG emissions. For 

example, with a 0-10% increase of volumetric wastewater treatment rate, GHG 

emissions increase by 0-10.4%, but the GHG emissions intensity of wastewater 

treatment shows little change. Increasing the pollutants removal rate of WWTPs can 

slightly increase GHG emissions assuming that the same treatment technologies are used. 

For instance, with a 0-10% increase of CODCr and TN removal rate of the WWTPs, 
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GHG emissions increase only by 0-0.9% and 0-0.7%, respectively. In order to improve 

the treatment efficiency of current WWTPs, Anaerobic-Anoxic-Oxic-Membrane Bio-

Reactor (AAO-MBR) is usually suggested (Krzeminski et al., 2012). In fact, two newly 

built WWTPs in Shenzhen City have already been equipped with AAO-MBR, and the 

operational data of these two WWTPs were used for scenario analysis to evaluate the 

impact of the updated WWTPs technology on GHG emissions from wastewater 

treatment.  

 

 

Figure 4.7 Sensitivities of (a) volumetric wastewater treatment rate increase; (b) 

CODCr and (c) TN removal rate increase of WWTPs; and (d) GHG intensity 

reduction of imported electricity on total GHG emissions and GHG emission 

intensity under the NDC scenario in 2025.  
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            Given that considerable uncertainties may exist in the long-term projections, 

several additional scenarios are examined. The major uncertainties are from (1) the 

assumptions of the socio-economic system in the CGE model; (2) the assumptions of 

future engineering measures, and (3) variations in the imported electricity’s fuel mix. 

The first uncertainty is assessed by examining two additional scenarios of GDP growth 

rates in the CGE model, i.e., a higher (10.4%) and a lower annual average rate (7.7%) 

over 2007-2025, corresponding to 22% higher or 18% lower GDP in 2025 than that in 

the BaU scenario. As shown in Figure 4.8, total GHG emissions increase by 15% 

(GDP_High) or decrease by 12% (GDP_Low) compared with the NDC scenario in 2025. 

Regarding the secondary uncertainty, two additional scenarios of engineering measures 

are analyzed, i.e., En_low and En_high. En_low assumes that the capacity and 

technology of the water infrastructure system will keep at the 2009 level, and there is no 

upgrade during the period of 2010-2025. The GHG emissions under the En_low scenario 

decreases slightly compared with the NDC scenario, but the projected water quality 

change in the receiving water cannot meet the water quality improvement target of the 

study area. The En_high scenario evaluates the effects of using AAO-MBR technology 

on total GHG emissions with the assumption that all WWTPs in the catchment are 

equipped with AAO-MBR between 1990 and 2025. AAO-MBR is an energy- and 

carbon-intensive technology, consuming a large amount of energy (0.81 kWh/m3 

wastewater) and has high GHG emission intensity (0.37, 95% CI: 0.32-0.42 kg CO2-

eq/m3), 2.2 times that in the NDC scenario by 2025. It is found that the projected GHG 

emission under the En_high scenario is as high as 413.5 (95% CI: 354.9-472.1) kt by 



 

94 

 

2025, which increases by 132% compared with the NDC scenario. The third uncertainty 

is evaluated by setting a scenario (NDC_all) assuming that carbon mitigation strategies 

are implemented in other regions of China. A 10% reduction of the carbon intensity of 

the imported electricity is assumed during the period of 2014-2025. Under the NDC_all 

scenario, GHG emissions from wastewater treatment reach peak emissions (145.4, 95% 

CI: 106.7-145.4 kt) by 2015 and gradually decreases to 126.3 (95% CI: 94.1-158.5) kt in 

2025. Furthermore, the aggregated effects of En_high and NDC_all scenarios (i.e., 

En_NDC_all) indicate that electricity fuel structure transformation can offset the 

increased GHG emissions induced by the improved treatment technology, i.e., AAO-

MBR. 

 

 

Figure 4.8 Annual variations of (a) total GHG emissions and (b) GHG emission 

intensity from the integrated urban drainage systems under different scenarios 

during 1990-2025. Shading indicates the 95% confidential interval. 

 

 



 

95 

 

4.4.2. Policy Implications  

The carbon-energy-water nexus has not received much attention in water and 

energy management in China. The main reason is that the current objective of the 

wastewater industry is still the removal of nutrients and other contaminants to improve 

the water environment. Considering the projected increasing trend of wastewater 

generation under both the BaU and NDC scenarios, the potential contribution of the 

wastewater industry to meet the goals of China’s NDC commitment is significant. The 

GHG emissions from wastewater treatment are projected to increase in most scenarios, 

especially under the En_high scenario with all WWTPs equipped with AAO-MBR 

technology. By reducing the carbon intensity of the electricity sector is the most 

effective method to minimize the GHG emissions from wastewater treatment. 64% 

(NDC_all)-88% (En_high) of the GHG emissions from the wastewater industry can be 

attributed to electricity use. Although both the local and the imported electricity have 

relatively lower CO2 intensities than other regions of China (Qu et al., 2017), there is a 

significant potential to further reduce their CO2 intensities compared with the levels in 

other countries (IEA, 2015).  Carbon mitigation strategies involving a carbon price can 

promote the adjustment of the electric power sector’s fuel mix to a low-carbon, high-

energy efficient one (Dong et al., 2015; Dong and Liang, 2014; Xing et al., 2011). 

However, simulation studies suggest that carbon mitigation strategies have limited 

effects in further reducing the carbon intensity of the local electricity sector, but the 

reduction is expected if carbon mitigation is applied in the imported electricity and other 

regions of China. Despite the high energy use and CO2 emission of AAO/MBR, it is an 
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attractive technology to the water engineering planners because (1) it has high pollutant 

removal efficiency and can satisfy the high effluent standard required to improve 

reclaimed wastewater reuse; (2) China’s policy to improve the environment quality and 

local water resources stress are the main driving forces of using AAO/MBR (Liao et al., 

2020). To reduce direct GHG emissions, aeration tanks equipped with existing WWTPs 

would be an easy choice to capture direct emissions. There are also some emerging 

carbon capture and storage (CCS) technologies that could be integrated with wastewater 

treatment, such as microbial electrolytic carbon capture (MECC), microbial 

electrosynthesis (MES), microalgae cultivation, and constructed wetland. These 

technologies have the potential to contribute to negative emissions with added benefits 

on water environment protection. 

4.4.3. Limitations 

            In this chapter, the CGE-SyDWEM model is used to provide a comprehensive 

evaluation of both the direct and the indirect GHG emissions from integrated urban 

drainage systems with consideration of carbon mitigation strategies and water 

engineering measures. The superiorities of CGE-SyDWEM in the quantification of GHG 

emissions from the integrated system are: (1) improving the GHG emissions 

quantification by including the indirect external emissions, i.e., embodied emissions in 

all materials and resources used outside the WWTPs boundary and direct emissions from 

receiving water bodies; and (2) evaluating the potential of carbon mitigation strategies 

on GHG emissions reduction from wastewater treatment. The impacts of carbon 

mitigation on wastewater generation and pollutant discharge, the energy intensity of 
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electricity generation, and embodied GHG emissions in all materials and resources used 

outside the WWTPs boundary are evaluated. The collection of wastewater is related to 

the topography and distances of wastewater transfer. Pan et al. (2011) reported that the 

electricity use for wastewater pumping in Changzhou, China, was about 0.03 and 0.1 

kWh/m3 for medium and large WWTPs, respectively, and the shares of electricity use 

for wastewater pumping can be as high as 20% of the total electricity use. The constant 

value (0.0384 kWh/m3) used in this study may overestimate or underestimate the 

electricity use from pumping. In addition, constant electricity intensity is used for the 

same WWTPs technology due to the data limitation. Studies show that small-scale 

WWTPs may have lower electricity intensity than large-scale WWTPs (Singh et al., 

2012). Therefore, the estimation of electricity use in wastewater treatment can be 

improved by taking into account the spatial distributions of water infrastructure systems.   
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5. SELECTION AND IMPLEMENTATION OF REFERENCE 

EVAPOTRANSPIRATION METHODS FOR ESTIMATION OF REGIONAL 

IRRIGATION WATER DEMAND 

 

            The selection and implementation of reference evapotranspiration (ET0) methods 

are vital for estimating irrigation water demand for long-term water resources 

management, especially in areas with limited weather data. A major limitation of 

regional ET0 estimation is that the constant parameters in these methods usually cannot 

assure the same reliability under different climatic regions. However, the controlling 

parameters of ETo under different climatic conditions and how they are related to the 

structures of the temperature- and radiation-based methods have not been adequately 

addressed yet. Here, eight commonly used methods were selected, including three 

temperature-based methods, i.e., Thornthwaite (Th_T), Blaney-Criddle (BC_T), and 

Hargreaves and Samani (HS_T), and five radiation-based methods, i.e., Makkink 

(Ma_R), Priestley-Taylor (PT_R), Jensen and Haise (JH_R), Turc (Tu_R), and Abtew 

(Ab_R), for the estimation of the ET0 values which were then compared with estimated 

using these methods with the values estimated using the reference method of the 

Penman-Monteith equation in various climate types, including humid, subhumid, semi-

arid, and arid, in Texas, United States, using 50 years (1961-2010) of monthly 

meteorological data from 15 climatological stations. Results indicated that the HS_T 

method was the best empirical method for estimating ETo and is recommended for 

regional analysis if reliable wind speed and relative humidity data are not available. 
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However, calibration is suggested in regions with dry and consistently windy conditions. 

The impact of each climatic variable on the seasonal and spatial variations of ET0 was 

further quantified using non-dimensional relative sensitivity coefficients. The radiative 

component is the driving factor of ET0, accounting for 51%-84% of the variability in 

ET0. To accurately reflect the impact of aerodynamic components on the ET0 estimation 

under dry and windy conditions, a calibration-free coefficient (𝑐 = 1.47 − 0.0067𝑅𝐻) 

with monthly relative humidity (RH) as the only input was found, which should be 

multiplied with the HS_T or PT_R equations. By doing so, the accuracy of ET0 under 

dry and windy conditions considerably improved compared with local calibration 

methods.  

5.1. Introduction 

An accurate estimation of ET0 is important for irrigation water management, 

water balance studies, and hydrological and crop modeling, which is particularly true 

given the increasing global irrigation water demand (IWD) owing to growing food 

demand, higher global mean temperature, and changing precipitation patterns (Florke et 

al., 2018; Haddeland et al., 2014). The most common method for irrigation water 

estimation is the crop coefficient approach, i.e., adjusting ET0 by crop coefficients 

(Allen, 1998; Doorenbos and Pruitt, 1976). When required meteorological data are 

available, the Food and Agriculture Organization (FAO) Penman-Monteith equation 

(FAO-PM) (Allen, 1998) is the recommended standard method for ET0 estimation, 

because it is more physically based and can be applied globally without local calibration. 

However, the FAO-PM method requires a full set of reliable weather data, including 
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solar radiation, air temperature, relative humidity, and wind speed, which are usually 

absent or incomplete in many regions. Therefore, less data-intensive methods, e.g., 

mass-transfer (Hanasaki et al., 2008; Robock et al., 1995), radiation-based (Doll and 

Siebert, 2002; Rost et al., 2008), and temperature-based methods (Wisser et al., 2008) 

are still widely used in regional and global IWD studies. Selection of ET0 methods is one 

of the major sources of uncertainty in regional and global IWD projections. 

Current approaches used for ET0 estimation are based on (1) empirical 

relationships, (2) water budget, (3) mass transfer, (4) temperature, (5) radiation, and (6) 

physical-based combination methods, e.g., Penman (1948) and FAO-PM method (Allen, 

1998). Empirical methods, e.g., multiple regression analysis (Kohler et al., 1955), are not 

suitable for regional and global studies because the variables selected as predictors in the 

models vary with the empirical method used and thereby could be problematic when 

applying the same empirical model from one place to another. The water budget 

methods, e.g., Guitjens (1982), are rarely used in practice due to the difficulty and error 

accumulation in measuring the required variables, such as deep percolation, subsurface 

flow, and capillary rise. The mass transfer methods are attractive in estimating the 

evaporation of free-water bodies, e.g., lakes and reservoirs (Singh and Xu, 1997), but 

less robust for vegetated surfaces than temperature-and radiation-based methods 

(Valipour et al., 2017; Xu and Singh, 2002). The use of temperature- and radiation-based 

methods for ET0 estimation in regional IWD has two major advantages: (1) easily 

accessible weather dataset owing to only temperature or radiation-related data required 

as input; and (2) acceptable accuracy, which was confirmed under various climatic 
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conditions including humid, subhumid, semi-arid, arid, and high altitude conditions by 

many studies in which the ET0 values estimated using temperature- and radiation-based 

methods were verified against the lysimeter observations or the estimation using the 

reference method (FAO-PM) (Djaman et al., 2019; Liu et al., 2017).  

The performance of various temperature- and radiation-based methods used for 

ET0 estimation have been extensively evaluated either at point level or in a specific 

climate (Amatya et al., 1995; Azhar and Perera, 2011; Djaman et al., 2019; Nandagiri 

and Kovoor, 2006; Trajkovic and Kolakovic, 2009; Xu and Singh, 2002; Xu et al., 

2013). The temperature-based methods like Th_T (Thornthwaite, 1948), HS_T 

(Hargreaves and Samani, 1985), and BC_T (Blaney and Criddle, 1950), and the 

radiation-based ones like PT_R (Priestley and Taylor, 1972), Ma_R (Makkink, 1957), 

and Tu_R (Turc, 1961) are the most commonly used approaches for cross-comparisons 

(Xu and Singh, 2000, 2001). It has been widely appreciated that the constant parameters 

in these methods cannot guarantee the same reliability in different climatic regions. In 

humid climates, radiation-based methods usually perform better than the temperature-

based methods, but both of these two methods can provide reasonable estimations 

(Amatya et al., 1995; Azhar and Perera, 2011; Djaman et al., 2019; Nandagiri and 

Kovoor, 2006; Trajkovic and Kolakovic, 2009; Xu and Singh, 2002; Xu et al., 2013). In 

a warmer and drier climate, the aerodynamic component, which is primarily affected by 

wind speed and relative humidity, becomes more important (Matsoukas et al., 2011), and 

the warm air advection from unirrigated areas often contributes extra sensible heat 

energy for evapotranspiration. The advection of sensible heat energy could be reflected 
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in the temperature-based methods by changing temperature, but the radiation-based 

methods are not able to adequately compensate for the advection effect and thus are not 

suggested for semi-arid or arid conditions (Didari and Ahmadi, 2019). For example, the 

temperature-based methods, e.g., HS_T and BC_T (Allen and Pruitt, 1986), were 

reported to have better performance than the radiation-based methods in sub-humid 

(Nandagiri and Kovoor, 2006) and semi-arid climates (Bakhtiari et al., 2011; Er-Raki et 

al., 2010; Gao et al., 2017; Nandagiri and Kovoor, 2006; Tabari, 2010). However, 

inconsistent results were reported in other studies. For example, in an arid climate with 

light wind conditions in Aksu, China, Gao et al. (2017) reported that the radiation-based 

method, i.e., the PT_R method shows the best performance, followed by HS_T, Ma_R, 

Tu_R, BC_T. In a warm, humid climate with moderate to strong wind, Tabari (2010) 

found that the temperature-based method (HS_T) performed better than the radiation-

based methods, including Turc_R, PT_R, and Mk_R. Moreover, the ET0 estimation in 

more arid and strong wind conditions usually showed higher uncertainties, and the 

performance did not improve significantly even after local calibration (Akhavan et al., 

2018; Didari and Ahmadi, 2019; Valipour et al., 2017). These studies suggest that the 

relative contributions of the weather parameters on the ET0 variation may be different 

under various climate conditions, leading to inconsistent conclusions regarding the 

performance of different methods.  

However, what the controlling weather parameters of ETo under different 

climatic conditions are and how they relate to the structures of the temperature- and 

radiation-based methods have not been adequately addressed in previous studies. The 
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deficiencies in understanding the controlling parameters hinder the effort of applying the 

less data-intensive methods to predict regional or global irrigation water demand. 

Herein, eight commonly used methods are selected, including three temperature-based 

methods, i.e., Thornthwaite (Th_T), Blaney-Criddle (BC_T), and Hargreaves and 

Samani (HS_T), and five radiation-based methods, i.e., Makkink (Ma_R), Priestley-

Taylor (PT_R), Jensen and Haise (JH_R), Turc (Tu_R), and Abtew (Ab_R), for 

evaluation by comparing them with the reference method (i.e., FAO-PM) for various 

climate types, including arid, semi-arid, and humid tropical in Texas, United States, 

using measurements from 15 climatological stations. The objectives of this study were to 

(1) evaluate the performances of the selected methods with the default, local calibration 

values for regional ETo analysis; (2) identify the controlling weather parameters in the 

ETo estimation under different climatic conditions; and (3) improve the performance of 

the selected methods in arid, strong wind conditions through adequate consideration of 

the aerodynamic component.   

5.2. Methodology 

Theoretical details of the reference method, i.e., FAO-PM, and the selected eight 

ET0 methods are described first. Second, the following analysis is performed to evaluate 

the performance of the selected methods: (1) the ET0 values estimated using the eight 

selected methods with default constant parameters are compared with the FAO-PM 

estimates and then calibrated with an automatic optimization method; (2) the model 

verification is conducted at the chosen stations to assess the model ability to predict a 

long-term ET0; and (3) the regional average of parameter values used for each method is 
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evaluated. Third, sensitivity analysis is conducted to understand the model structure and 

quantify the contributions of meteorological parameters to ET0 variations. Last, a 

simplified method is developed based on the sensitivity analysis results to improve the 

performance of the selected methods in arid and strong wind climate conditions. 

            The FAO-PM ET0  estimation requires high-quality meteorological data (Table 

5.1). Elevation is also needed to calculate the psychrometric constant. The eight ET0 

methods ingest much fewer inputs than does the FAO-PM method. For example, the 

temperature-based methods only require temperature as input, and other parameters, e.g., 

daytime length and extraterrestrial radiation (Ra), are available from standard tables. The 

time step, input data, and definition associated with each ET0 method vary widely. Given 

the nonlinear nature of ET0, the use of daily metalogical data can lead to more accurate 

estimation than using monthly averages. Nevertheless, daily metalogical data show high 

uncertainty, since its quality control is more difficult than that of monthly data. 

Therefore, monthly data is suggested when analyzing long-term trends (Vicente-Serrano 

et al., 2014). For model comparison, consistent definitions of parameters, time steps 

(monthly), and units are used.  
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Table 5.1 Input Data Required by Different Methods. 

Methods  

Elevation 

 

Temperature Radiation Relative 

humidity 

Wind 

speed Max Min Mean  

FAO-PM √ √ √ √ √ √ √ 

Th_T    √ Daytime length   

BC_T    √ Daytime length   

HS_T  √ √ √ Ra   

Ma_R √   √ √   

PT_R √   √ √   

JH_R    √ √   

Tu_R     √ √  

Ab_R  √   √   

 

5.2.1. FAO-PM Method 

            The original Penman-Monteith method contains two processes that affect the 

potential evapotranspiration from a vegetated surface, as shown in equation (5.1). The 

first process is related to climatic parameters, that determine the evaporative demand 

ET*, i.e., evaporation from free water surface. ET* includes equilibrium evaporation 

(ETeq) (equation 5.2) and evaporation determined by vapor pressure deficit (ETD) 

(equation 5.3). The second process is related to vegetation characteristics, i.e., canopy 

resistance, 𝑟𝑠 , which represents the obstacles of water vapor transfer between crop 

surface and reference height. ET* depends on available energy (A), vapor pressure deficit 

(D), and aerodynamic resistance (𝑟𝑎 ), which are driven by four climatic variables, 

including solar radiation, relative humidity, wind speed, and air temperature. Crop 

surface can also affect A and 𝑟𝑎, e.g., crop physical characteristics may influence A by 

regulating albedo, and crop height and roughness may affect 𝑟𝑎.  
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λ𝐸𝑇𝑃𝑀= 
λ𝐸𝑇∗

1+
𝛾

𝛾+∆
×

𝑟𝑠
𝑟𝑎

=

∆

∆+𝛾
𝐴+

𝜌𝐶𝑝𝐷

(∆+𝛾)𝑟𝑎

1+
𝛾

𝛾+∆
×

𝑟𝑠
𝑟𝑎

=

∆

∆+𝛾
(𝑅𝑛−𝐺)+

𝜌𝐶𝑝 (𝑒𝑠−𝑒𝑎)

(∆+𝛾)𝑟𝑎

1+
𝛾

𝛾+∆ 
×

𝑟𝑠
𝑟𝑎

=
𝐸𝑇𝑒𝑞 + 

∆+𝛾

𝛾
 𝐸𝑇𝐷 

1+
𝛾

𝛾+∆ 
×

𝑟𝑠
𝑟𝑎

          (5.1) 

λ𝐸𝑇𝑒𝑞 =
∆

∆+𝛾
 
𝑅𝑛−𝐺

λ
                                                    (5.2) 

λ𝐸𝑇𝐷 =
𝜌𝐶𝑝 (𝑒𝑠−𝑒𝑎)

𝛾×𝑟𝑎
                                                    (5.3) 

where ETPM is the potential evapotranspiration from well-watered vegetated surfaces 

(mm d-1); ET* is the potential evaporation from free water surfaces (mm d-1); 𝜆 is the 

latent heat of vaporization of water (MJ kg-1); 𝐴 = 𝑅𝑛 –  𝐺, where Rn is the net radiation 

at the crop surface (MJ m-2 d-1), and G is the soil heat flux (MJ m-2 d-1); 𝐷 = 𝑒𝑠 − 𝑒𝑎, in 

which es and ea are the saturation and actual vapor pressure (kPa), respectively; 𝑟𝑎 is the 

aerodynamic resistance (s m-1); 𝑟𝑠 is the surface resistance (s m-1); Δ is the slope of vapor 

pressure curve (kPa oC-1); γ is the psychrometric constant (kPa oC-1); 𝜌𝑎 is the mean air 

density under constant pressure (kg m-3); and 𝐶𝑝 is the specific heat of moist air (1.013 

kJ kg -1 oC-1). Detailed calculations of each parameter can be found in Appendix D.  

            To reduce the impact of crop surface, a hypothetial reference grass surface is 

used by the FAO-PM method (Allen, 1998) with an assumed grass height of 0.12 m, an 

albedo of 0.23, and a fixed surface resistance (𝑟𝑠= 70 s m-1). Equation (5.1) can be 

rewritten as: 

𝐸𝑇0 =  
0.408∆(𝑅𝑛 – G)+𝛾

900

𝑇𝑎+273
𝑈2 (𝑒𝑠−𝑒𝑎,)

∆+𝛾 (1+0.34𝑈2 )
                                         (5.4) 

where  𝐸𝑇0  is the reference evapotranspiration (mm d-1); T and  𝑈2  are the mean air 

temperature (oC) and wind speed (m s-1) measured at 2 m height, respectively; 𝑟𝑎 =

208/𝑈2, 
𝑟𝑠

𝑟𝑎
= 0.34𝑈2, and 

𝜌𝑎𝐶𝑝 

𝑟𝑎
= 𝛾

900

𝑇𝑎+273
𝑈2.  
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            With the use of reference surface, the FAO-PM method depends only on climatic 

variables, i.e., the available energy (A or Rn if G is small for daily analysis), the vapor 

pressure deficit (D), and aerodynamic resistance (𝑟𝑎). Therefore, the change in ET0 can 

be attributed to the changes in A, D, and 𝑟𝑎 . To better understand the relative 

contributions of A, D and 𝑟𝑎 to the dynamics of ET0 under different climate conditions, 

the non-dimensional relative sensitivity coefficients, i.e., 𝑆𝐴, 𝑆𝐷, and 𝑆𝑟𝑎
, are calculated 

as below (Beven, 1979; McCuen, 1974; Rana and Katerji, 1998): 

𝑆𝐴 =
𝜕(λ𝐸𝑇0)

𝜕𝐴
 

𝐴

 𝐸𝑇0
=

1

1+
𝜌𝐶𝑝𝐷

𝑟𝑎∆𝐴

=
1

1+𝛾
900

𝑇𝑎+273
𝑈2

𝐷

∆𝐴

                                         (5.5)                                  

         𝑆𝐷 =
𝜕(λ𝐸𝑇0)

𝜕𝐷
 

𝐷

 𝐸𝑇0
=

1

1+
𝑟𝑎∆𝐴

𝜌𝐶𝑝𝐷

=
1

1+
𝐷

∆𝐴 𝛾
900

𝑇𝑎+273
𝑈2

= 1 − 𝑆𝐴                           (5.6) 

𝑆𝑟𝑎
=

𝜕(λ𝐸𝑇0)

𝜕𝑟𝑎
 

𝑟𝑎

 𝐸𝑇0
= 𝑆𝐴 −

1

1+
𝛾

𝛾+∆
∗

𝑟𝑠
𝑟𝑎

= 𝑆𝐴 −
1

1+
𝛾

𝛾+∆
∗0.34𝑈2

                         (5.7) 

            Since 𝑟𝑎 =208/𝑈2, the relative contributions of 𝑈2 on the dynamics of ET0 can be 

evaluated as: 

𝑆𝑈2
=

𝜕(𝐸𝑇0)

𝜕𝑟𝑎
 
𝜕(𝑟𝑎)

𝜕𝑈2

𝑈2

 𝐸𝑇0
=  −𝑆𝑟𝑎

                                      (5.8) 

            Temperature is highly correlated with solar radiation and vapor pressure deficit. 

In the FAO-PM method, both ∆ and 𝐷 are functions of mean temperature. Therefore, the 

relative sensitivity coefficient of T is derived as: 

𝑆𝑇 =
𝜕(𝐸𝑇0)

𝜕𝑇

𝑇

 𝐸𝑇0
= 𝑇[

𝑟𝑎𝐴 

𝑟𝑎∆𝐴+𝜌𝐶𝑝𝐷
−  

1

∆+𝐶𝑝(1+
𝑟𝑠
𝑟𝑎

)
]

𝜕∆

𝜕𝑇
+ 𝑇

𝜌𝐶𝑝 

𝑟𝑎∆𝐴+𝜌𝐶𝑝𝐷

𝜕𝐷

𝜕𝑇
               (5.9) 
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𝜕∆

𝜕𝑇
 and 

𝜕𝐷

𝜕𝑇
 can be found in Appendix D. As shown in equations (5.5-5.9),  𝑆𝐴, 𝑆𝐷 , 

𝑆𝑟𝑎
, 𝑆𝑢2

 and 𝑆𝑇 depend on all the parameters, including available energy, vapor pressure 

deficit, wind speed, and temperature.  

5.2.2. Temperature- and Radiation-based Methods 

            Most temperature-based methods are developed based on the empirical 

relationships of air temperature or day length with field measurements (Table 5.2). 

Typical temperature-based methods can be formulated as equations (5.10) or (5.11) (Xu 

and Singh, 2001): 

𝐸𝑇0 = c𝑇𝑛                                                              (5.10) 

𝐸𝑇0 = 𝑐1𝑝(𝑐2T + 𝑐3)ℎ                                                (5.11) 

where T is the mean air temperature; p is the daytime length; h is a humidity term; and n, 

c, c1, c2, and c3 are constants. Th_T method has a form similar to equation (5.10), and 

BC_T and HS_T show a similar form as equation (5.11). The Thornthwatite method 

correlates mean temperature with ET0 based on water balance. Rs can be estimated by Ra 

using the terms in the Hargreaves and Samani method, i.e., 𝑅𝑠 = 𝛼𝑅𝑎(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)
1

2, 

where 𝛼 is an adjustment coefficient (0.16 for interior locations or 0.19) (Allen, 1998). 

The temperature difference (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) is related to cloudiness and relative humidity. 

The daytime length in the Blaney and Criddle method is an indicator of solar radiation. 

The constants in each method are usually subject to recalibration against the FAO-PM 

estimates when the temperature-based methods are used in different locations. 

            Radiation-based methods are based on the energy balance equation using net (Rn)   
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or solar radiation (Rs) as the primary parameter (Jensen et al., 1990). The available 

energy for evapotranspiration includes Rn, G, and sensible energy (H). H may be 

increased or decreased due to the advection effect when strong winds provide significant 

heating or cooling to the reference surface. This advection of sensible heat energy is 

treated in the PM method by introducing an aerodynamic term. However, radiation-

based methods cannot adequately compensate for the advection effect, since they assume 

the relative contribution of solar radiation to ET0 is a constant, i.e., SA in equation (5.5). 

Radiation-based methods can be formulated as:  

                  𝐸𝑇0 =
1

𝑆𝐴 
 (𝐸𝑇𝑒𝑞 ) =

1

𝑆𝐴 
 

∆

∆+𝛾
 
𝑅𝑛−𝐺

λ
                                           (5.12) 

where SA represents the relative contribution of available energy to ET0, with the wind 

having a negligible effect, i.e., 𝑆𝑟𝑎
= 0 . It is similar to the decoupling coefficient 

introduced by Jarvis and McNaughton (1986) to analyze the relative contribution of 

solar radiation and aerodynamic terms to the evapotranspiration process. By replacing 

1

𝑆𝐴 
 = 1.26, equation (5.12) is transferred to the Priestley-Taylor method (equation 5.17 

in Table 5.2). It also indicates that solar radiation accounts for 79.4% (𝑆𝐴 =
1

1.26
) of the 

ET0 variation in the PT_R method. The Makkink, Jensen-Haise, Turc, and Abtew 

methods use Rs instead of Rn, since Rs can be linearly associated with Rn with G=0 and 

an albedo of 0.23. The Ma_R method can be considered as a special form of equation 

(5.12) when disregarding the aerodynamic term and compensating with two empirical 

coefficients (equation 5.16 in Table 5.2). 
∆

∆+𝛾
 is a function of temperature with given 

atmospheric pressure, and therefore, it can be replaced with different forms related to 
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temperature, e.g., T+3 in Jensen-Haise, 
𝑇

𝑇+15
 in Turc, and Tmax in Abtew method. 

Because of the empirical character, the default values in each method usually represent 

certain climatic conditions, and as a consequence, calibration is usually required when 

applying radiation-based methods in different climatic regions. 

 

Table 5.2 Summary of Selected Models with Default Constant Values.   

Method Equation No. Generalized equation Parameters 

Th_T 5.13 

𝐸𝑇0 = 𝛼 (10
𝑇

𝐼
)

𝑛

 

𝐼 = ∑(0.2𝑇𝑖)
1.514

12

𝑖=1

 

𝑛 = 6.75 × 10−7𝐼3 − 7.71 × 10−5𝐼2

+ 1.7912 × 10−2𝐼 + 0.4923 

𝛼 = 16 

BC_T 5.14 𝐸𝑇0 = 𝑘𝑝(0.46𝑇 + 8.13) k = 1 

HS_T 5.15 𝐸𝑇0 = 𝛼(𝑇 + 17.8)𝑅𝑎(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)
1
2 𝛼 = 0.0023 

Ma_R 5.16 𝐸𝑇0 = 𝛼
∆

∆ + 𝛾
 
𝑅𝑠

λ
+  𝛽 

𝛼 = 0.61 

𝛽 = −0.12 

PT_R 5.17 𝐸𝑇0 = 𝛼
∆

∆ + 𝛾
 
𝑅𝑛 − 𝐺

λ
 𝛼 = 1.26 

JH_R 5.18 𝐸𝑇0 = 𝛼(𝑇 + 3)
𝑅𝑠

λ
 𝛼 = 0.025 

Tu_R 5.19 
𝐸𝑇0 = 𝛼(𝑅𝑠 + 50)

𝑚𝑇

𝑇 + 15
 

m=1 for RH≥50; m=1+
50−𝑅𝐻

70
 for RH<50 

 

𝛼 = 0.0133 

Ab_R 5.20 𝐸𝑇0 =
1

𝐾

𝑅𝑠𝑇𝑚𝑎𝑥

λ
 K = 56°C 

Note: I is the annual heat index, varying among 0-160; Ti is the ith monthly mean 

temperature (°C). The Th_T method is based on a standard month of 30 days and 12-

hour sunlight per day and is adjusted by the length of day (For T<0°C, ET0=0,); k 

depends on sunshine hours, daytime wind estimates, and minimum relative humidity and 

varies among 0.5-1.2; p is the mean daily percentage of annual daytime hours; Tmax and 

Tmin are the maximum and minimum air temperature (°C), respectively; RH is the 

average relative humidity (%); and other parameters have the same definition as in 

equations (5.1-5.5).  
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5.2.3. Model Evaluation 

            Root-mean-square error (RMSE) and relative error (RE) are used to evaluate the 

model performances, as shown in equations (5.21) and (5.22): 

𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑖−𝐸𝑇0𝑖)2𝑛

𝑖=1

𝑛
                                         (5.21) 

RE (%) =  
(𝑋𝑖−𝐸𝑇0𝑖)

𝐸𝑇0𝑖
× 100                                      (5.22) 

where 𝑋𝑖 and 𝐸𝑇0𝑖 are the ith calculated ETo using the selected method and the FAO-PM 

method, respectively, and n is the sample number of sample observations. The method 

with the best performance should have RMSE and RE values equal to 0. Here, an RE 

of ±20% is used as an arbitrary measurement of the acceptance of each model.  

            The monthly ET0 values calculated with each model are correlated with the 

FAO-PM estimates using linear regression:  

𝑌 =  𝑎𝑋 +  𝑏                                                         (5.23) 

where Y represents FAO-PM ET0, and X is the ET0 calculated in each model; a and b are 

the slope and intercept, respectively. The best method has the highest model coefficient 

of determination (R2), with a close to 1 and b close to 0. To better compare model 

performance, the intercept was set as 0, and the corresponding slope and R2 were 

recalculated.  

            An automatic optimization method was used to obtain the best parameters 

involved in each method, suggested by Singh and Xu (1997). Optimization of the model 

parameters can be obtained by minimizing the residual sum of squares (RSS), as shown 

in equation (5.24): 
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𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑅𝑆𝑆 = ∑ (𝑋𝑖 − 𝐸𝑇0𝑖)2𝑛
𝑖=1                                    (5.24) 

            The criteria used in selecting ET0 methods for regional analysis are described as 

follows: (1) it can be used to accurately estimate ET0 under different climatic and 

locations; (2) it can capture both the peak and seasonal variations of ET0; (3) if the 

original default parameter in a method overestimates/underestimates in a specific 

climate, then the error should be systematic and correctable; (4) it can be used to 

evaluate the long-term variation of ET0; and (5) for methods that satisfy all the criteria, 

the one with fewer inputs is selected. 

5.2.4. Study Area 

            Texas has the largest cropland area in the United States, located in the south-

central region and borders with the Gulf of Mexico to the southeast 

(https://www.ers.usda.gov/data-products/major-land-uses/major-land-uses/#Cropland). 

As shown in Figure 5.1, there are ten climate divisions in Texas 

(https://texas.resiliencesystem.org/texas-climate-divisions), including humid subtropical 

(Cfa), semi-arid (BSh and BSk), and arid (BWh and BWk) conditions based on the 

Köppen-Geiger classification (Beck et al., 2018). Most of the cropland is in semi-arid 

regions, e.g., High Plains (region 1) and Rolling Plains (region 2), which have dry, high 

radiation, and windy environment.  

            The monthly averages of meteorological data between 1961 and 2010 from total 

15 stations covering most of the ten regions were downloaded from Climate Date Online 

provided by National Oceanic and Atmospheric Administration 

(https://www.ncdc.noaa.gov/cdo-web/). To reduce the calculation uncertainty, solar 

https://www.ers.usda.gov/data-products/major-land-uses/major-land-uses/#Cropland
https://texas.resiliencesystem.org/texas-climate-divisions
https://www.ncdc.noaa.gov/cdo-web/
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radiation data, including Rs and Ra, were obtained from direct radiation measurement, 

which was downloaded from the National solar radiation database 

(https://rredc.nrel.gov/solar/old_data/nsrdb/). Rn was calculated according to Allen 

(1998). Wind speeds from climate stations are generally measured at a 10 m height, and 

they were converted to 2 m wind speeds using the method suggested by (Allen, 1998).  

 

 

Figure 5.1 Geographical locations of selected stations and climatic regions in Texas, 

United States. (The climate classifications were adopted from Beck et al., 2018, and 

region 10 and part of region 9 at southeast corner should belong to humid 

subtropical climate. These errors are due to the resolution of the dataset used in 

Beck et al., 2018).  

 

The annual means of main meteorological variables during 1961-2010 are shown 

in Table 5.3, and their seasonal and annual variations were detailed in Figure D1, 

https://rredc.nrel.gov/solar/old_data/nsrdb/
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Appendix D. Here, three seasons were identified, i.e., warm season (May through Sep.), 

transition season (March, April, and October), and cool season (Jan, Feb, Nov, and 

Dec.), based on air temperature variation. The warm season is of particular interest since 

this is the growing season with high irrigation requirements. Moderate to strong 

advection are observed in both arid and humid climates (wind speed among 3-5 m s-1), 

and the wind speed has no apparent seasonal variation (Figure D1, Appendix D).  

 

Table 5.3 General Information and Monthly Average of the Main Climatic 

Variables of Selected Stations in Texas, United States (1961-2010). 

Climate 

region Stations  

Elevation 

(m) 

Temperature (oC) Wind  

(m/s) 

RH 

(%) 

Rs 

(MJ m-2d-1) Max Min Mean 

Semi-arid climate 

1 S1 1098 21.35 6.59 13.85 4.47 56.39 18.27 

1 S2 988 23.11 8.51 15.72 4.01 55.75 18.52 

1 S3 871 25.02 10.09 17.50 3.74 53.70 19.21 

2 S4 534 24.44 11.74 18.00 3.79 59.09 18.24 

6 S9 582 25.58 11.32 18.39 3.34 59.50 18.41 

Arid climate 

5 S8 1194 25.26 10.34 17.89 2.69 40.24 20.63 

Subhumid subtropical climate 

2 S5 314 24.02 10.84 17.36 3.87 63.22 17.44 

3 S6 155 25.39 13.32 19.30 3.53 67.69 17.34 

7 S10 189 25.02 12.85 18.76 3.27 63.34 17.67 

7 S12 242 26.45 14.70 20.47 2.96 66.99 17.39 

Humid subtropical climate 

4 S7 96 25.39 13.17 19.16 2.26 73.65 16.53 

7 S11 13 27.26 17.01 22.05 4.00 76.10 16.66 

8 S13 7 25.47 15.30 20.28 3.04 78.13 16.23 

8 S14 32 26.63 15.67 21.01 3.25 75.21 16.48 

10 S15 6 28.28 18.49 23.24 3.64 76.39 17.08 

Note: Monthly RHmean is used for climatic classification, with arid (<45%), semi-arid 

(45%-55%), sub-humid (55%-70%), humid (70%-85%), and very humid (>85%) (Allen, 

1998).  
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5.3. Results 

5.3.1. Comparison of Each Method with Original Constant Values 

            Using the original constant values in each method to different locations leads to 

large errors in estimating monthly ET0, with the highest average RMSE of all methods in 

arid climate (0.62-2.66 mm d-1), followed by semi-arid (0.78-1.62 mm d-1), subhumid 

(0.56-1.52 mm d-1), and humid (0.34-1.14 mm d-1) climates (Tables 5.4 and 5.5). When 

concerning the mean RMSE of all 15 stations, the best method is HS_T (0.64 mm d-1), 

followed by Tu_R (0.76), Ab_R (0.82), PT_R (0.90), JH_R (1.03), BC_T (1.05), Ma_R 

(1.37), and Th_T (1.68). HS_T is the only method showing comparable reliability across 

all climate types, i.e., the RE of annual mean ET0 at all stations was within ±20%.  Also, 

it had the lowest RMSE at one station in arid and semi-arid regions and five stations in 

humid regions (Table 5.4). One possible explanation is that (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)
1

2 in the HS_R 

method was highly correlated with relative humidity (R2= 0.96 with RH ≥50%, n=7738), 

in which 𝑇𝑚𝑖𝑛 was used to approximate dew point temperature (Tdew). In arid regions, 

assuming 𝑇𝑚𝑖𝑛 ≈ 𝑇𝑑𝑒𝑤  would lead to an overestimation of 𝑇𝑑𝑒𝑤 , since the difference 

between 𝑇𝑚𝑖𝑛 and  𝑇𝑑𝑒𝑤 increases with higher vapor pressure deficit (Jensen et al., 1997). 

Therefore, an underestimation of (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)
1

2 would be expected in arid and semi-

arid climates, as illustrated in the underestimation of  (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)
1

2 when RH <50% 

(Figure D2, Appendix D). However, the mean temperature is also used in HS_T, which 

is computed as the average of Tmax and Tmin. If Tmin is assumed overestimated, then the 

mean temperature will increase, which can slightly compensate for the underestimation 
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of  (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)
1

2 . Hence, the HS_T method shows comparable reliability across 

different climate types. The three radiation-based methods, i.e., PT_R, Tu_R, and Ab_R, 

worked quite well for annual ET0 estimates in humid climates, but ET0 was substantially 

underestimated in arid and semi-arid climates, e.g., by 14-18% in warm, 19-31% in 

transition, 43-48% in cool seasons (Table D1 and D2, Appendix D). The Tu_R method 

performed well in arid climate (Table 5.5), since an adjustment was made when RH<50. 

For methods originally developed in a relatively dry environment, e.g., BC_T and JH_R, 

they also underestimated by 7% and 12% the mean annual ET0 in arid and semi-arid 

regions but significantly overestimated ET0 in humid regions. Ma_R method had high R2, 

but systematically underestimated at all stations, indicating that the default value was too 

small. Of all the methods evaluated, the Th_T method performed the poorest in 

estimating monthly ET0, but it still showed acceptable accuracy.  

            The peak and seasonal variations of mean monthly ET0 from all methods were 

compared with the FAO-PM estimates, which is further illustrated in Figure 5.2. HS_T, 

PT_R, and Ab_R well simulated the peak and warm season ET0 across all the stations 

with RE within ±20%. All methods captured the warm season ET0 variations, except 

that the BC_T and JH_T methods overestimated ET0 under very humid conditions. JH_R 

overestimated peak values at all stations, ranging between 5% (S1) and 43% (S13). 

Overall, both the temperature- and radiation-based methods better performed in the 

warm season than in the transition and cold seasons. HS_T showed less seasonal 

difference than did other methods.  
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Table 5.4 Regression Relationships (Y=mx) between FAO-PM ETo and the 

Temperature-based Methods using Original Constant Values.  

Stations 

Thornthwaite_T Blaney-Criddle_T Hargreaves and Samani_T 

S R2 E S R2 E S R2 E 

Semi-arid climate      

S1 1.82 0.74 2.27 1.11 0.84 0.77 1.17 0.94 0.83 

S2 1.69 0.71 2.28 1.09 0.79 0.80 1.16 0.94 0.82 

S3 1.67 0.72 2.41 1.13 0.76 0.95 1.17 0.94 0.90 

S4 1.47 0.73 1.94 1.03 0.80 0.70 1.16 0.93 0.81 

S9 1.45 0.73 1.88 1.01 0.74 0.74 1.07 0.94 0.54 

Arid climate  

S8 1.73 0.66 2.66 1.17 0.74 1.10 1.20 0.91 1.09 

Subhumid subtropical climate      

S5 1.37 0.78 1.67 0.99 0.75 0.78 1.09 0.93 0.63 

S6 1.21 0.78 1.37 0.92 0.67 0.94 1.05 0.92 0.51 

S10 1.33 0.69 1.67 0.94 0.59 0.94 1.09 0.87 0.69 

S12 1.16 0.74 1.36 0.87 0.69 0.99 1.03 0.94 0.39 

Humid subtropical climate 

S7 1.06 0.76 1.05 0.74 0.76 1.41 0.86 0.97 0.66 

S11 1.04 0.71 1.21 0.80 0.59 1.31 0.99 0.91 0.37 

S13 1.00 0.73 1.11 0.71 0.76 1.57 0.90 0.95 0.49 

S14 1.05 0.73 1.18 0.77 0.65 1.36 0.94 0.94 0.42 

S15 1.01 0.76 1.16 0.80 0.42 1.33 1.02 0.88 0.39 

Arid  1.73 0.66 2.66 1.17 0.74 1.10 1.20 0.91 1.09 

Semi-arid 1.62 0.73 2.16 1.07 0.79 0.79 1.15 0.94 0.78 

Subhumid  1.27 0.75 1.52 0.93 0.68 0.91 1.07 0.92 0.56 

Humid 1.03 0.74 1.14 0.76 0.64 1.40 0.94 0.93 0.47 

All regions 1.34 0.73 1.68 0.94 0.70 1.05 1.06 0.93 0.64 

Note: Bold and italic values indicate the method with the best performance.  
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Table 5.5 Regression Relationships (Y=mx) between FAO-PM ETo and the 

Radiation-based Methods using Original Constant Values. 

Stations  

Makkink_R Priestley and 

Taylor_R 
Jensen-Haise_R Turc_R Abtew_R 

S R2 E S R2 E S R2 E S R2 E S R2 E 

Semi-arid climate            

S1 1.52 0.93 1.67 1.29 0.87 1.27 1.12 0.85 1.10 1.32 0.91 1.29 1.30 0.91 1.27 

S2 1.51 0.94 1.71 1.28 0.86 1.29 1.07 0.84 1.06 1.28 0.94 1.18 1.28 0.90 1.21 

S3 1.55 0.95 1.92 1.32 0.87 1.45 1.06 0.88 0.95 1.28 0.95 1.21 1.25 0.93 1.20 

S4 1.51 0.94 1.69 1.25 0.88 1.17 0.99 0.88 0.90 1.26 0.94 1.09 1.23 0.91 1.08 

S9 1.47 0.95 1.59 1.21 0.88 1.05 0.97 0.89 0.85 1.23 0.95 0.97 1.17 0.93 0.88 

Arid climate 

S8 1.48 0.96 1.83 1.36 0.86 1.63 1.02 0.87 0.99 1.07 0.95 0.62 1.21 0.91 1.15 

Subhumid subtropical climate            

S5 1.51 0.93 1.61 1.23 0.89 1.05 0.98 0.90 0.86 1.25 0.93 1.06 1.20 0.93 0.94 

S6 1.43 0.94 1.40 1.13 0.91 0.75 0.90 0.91 0.92 1.18 0.93 0.80 1.13 0.94 0.72 

S10 1.44 0.92 1.44 1.17 0.85 0.96 0.93 0.86 1.01 1.19 0.92 0.85 1.16 0.89 0.89 

S12 1.38 0.96 1.24 1.08 0.92 0.59 0.87 0.90 1.01 1.14 0.96 0.61 1.10 0.93 0.62 

Humid subtropical climate 

S7 1.23 0.97 0.71 0.94 0.94 0.46 0.79 0.91 1.20 1.01 0.97 0.24 0.98 0.94 0.44 

S11 1.34 0.93 1.08 1.01 0.90 0.51 0.82 0.88 1.13 1.08 0.94 0.44 1.08 0.91 0.56 

S13 1.22 0.96 0.69 0.92 0.93 0.51 0.77 0.90 1.24 0.99 0.97 0.23 1.01 0.92 0.44 

S14 1.32 0.94 0.98 1.00 0.92 0.47 0.82 0.90 1.12 1.06 0.95 0.38 1.05 0.92 0.50 

S15 1.33 0.96 1.07 1.00 0.94 0.38 0.81 0.93 1.18 1.08 0.96 0.39 1.06 0.94 0.44 

Arid  1.48 0.96 1.83 1.36 0.86 1.63 1.02 0.87 0.99 1.07 0.95 0.62 1.73 0.66 2.66 

Semi-arid 1.51 0.94 1.72 1.27 0.87 1.25 1.04 0.87 0.97 1.27 0.94 1.15 1.62 0.73 2.16 

Subhumid  1.44 0.94 1.42 1.15 0.89 0.84 0.92 0.89 0.95 1.19 0.94 0.83 1.27 0.75 1.52 

Humid 1.29 0.95 0.91 0.97 0.93 0.47 0.80 0.90 1.17 1.04 0.96 0.34 1.03 0.74 1.14 

All regions 1.42 0.95 1.37 1.15 0.89 0.90 0.93 0.89 1.03 1.16 0.94 0.76 1.15 0.92 0.82 

Note: Bold and italic values indicate the method with the best performance.  
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Figure 5.2 Comparison of mean monthly ET0 simulated by different models using 

the original constants. 
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5.3.2. Calibration of Constant Values 

            The values of recalibrated parameters for each station and method are shown in 

Tables 5.6 and 5.7. Expected differences are found at different stations for the same 

method. The differences between climate regions were larger than that between stations 

in the same climate regions, and, in general, higher parameters values were observed in 

more arid climates, indicating that relative humidity significantly affected the parameters. 

Spatial variabilities of the parameters in the subhumid subtropical and semi-arid climates 

were significant.  

            All the methods performed better after calibration with the mean annual RE kept 

within 10% except the Th_T and JH_R methods (Figure 5.3). The Ma_R method 

performed the best (with the lowest RMSE) at most stations after calibration, followed 

by the Tu_R and HS_T methods (Figure D2, Tables D3, and D4, Appendix D). The 

great improvement of the Ma_R method is attributed to the two empirical coefficients 

used, which can be easily adjusted to reflect the impact of both radiative and 

aerodynamic components on ET0 changes. One drawback is that the Ma_R method 

should be properly calibrated using local weather data, which limits its use in regional 

analysis. After calibration, the radiation-based methods, e.g., PT_R, JH_R, and Ab_R, 

still show large underestimation in arid and semi-arid climates, which indicate the 

relative contribution of solar radiation to ET0 is not a constant. Moreover, the 

underestimation is more significant during cool and transition seasons, suggesting that 

the radiative components play a less role in driving changes in ET0 in a relatively cold 

environment. 
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Table 5.6 Comparison of the Temperature-based Methods Parameters before and 

after Calibration. 

Stations 
Thornthwaite_T Blaney-Criddle_T Hargreaves and Samani_T 

Original Calibrated Original Calibrated Original Calibrated 

Semi-arid climate     

S1 c=16 25.27±0.70 k=1 1.09±0.01 a=0.0023 0.0027±0.0000 

S2  23.94±0.70  1.07±0.01  0.0026±0.0000 

S3  23.81±0.67  1.10±0.01  0.0027±0.0000 

S4  20.97±0.58  1.01±0.01+  0.0026±0.0000 

S9  20.84±0.56  0.99±0.01+  0.0024±0.0000 

Average  22.97  1.05  0.0026 

Arid climate 

S8  24.16±0.75  1.14±0.01  0.0027±0.0000 

Subhumid subtropical 

S5  19.88±0.51  0.96±0.01  0.0025±0.0000 

S6  17.74±0.43  0.89±0.01  0.0024±0.0000 

S10  18.89±0.54  0.91±0.01  0.0025±0.0000 

S12  16.82±0.43  0.85±0.01  0.0023±0.0000+ 

Average  18.33  0.90  0.0024 

Humid subtropical 

S7  15.62±0.38+  0.73±0.01  0.0020±0.0000 
S11  15.23±0.37  0.77±0.01  0.0023±0.0000+ 

S13  14.68±0.37  0.70±0.01  0.0021±0.0000 

S14  15.28±0.38  0.76±0.01  0.0021±0.0000 

S15  14.71±0.32  0.78±0.01  0.0023±0.0000+ 

Average  15.10  0.75  0.0022 

All stations mean  19.18  0.92  0.0024 

Note: (1) + indicates the original value lies in the 95% confidence interval of the 

parameter values. (2) underline means there is a significant difference from the 

regionally mean value, i.e., the mean value does not lie in the 95% confidence interval of 

the parameter for that station. 
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Table 5.7 Comparison of the Radiation-based Methods Parameters before and after 

Calibration. 
Stati

ons 

Makkink_R Priestley Taylor_R Jensen-Haise_R Turc_R Abtew_R 

O C O C O C O C O C 

Arid or semi-arid area 

S1 a=0.61 

a=0.86±0.02; 

b=0.14±0.10 

1.26 

1.58±0.02 

0.025 0.027±

0.000 

0.0133 0.0172±0

.0002 

56 

 44.1±0.6 

S2 b=-0.12 

a=0.86±0.02; 

b=0.17±0.10 

 

1.56±0.02 

 0.026±

0.000 

 0.0169±0

.0002 

 

45.2±0.6 

S3  

a=0.93±0.02; 

b=-0.11±0.10 

 

1.62±0.02 

 0.026±

0.000 

 0.0169±0

.0001 

 

45.6±0.5 

S4  

a=0.86±0.02; 

b=0.10±0.10* 

 

1.53±0.02 

 0.024±

0.000 

 0.0166±0

.0001 

 

46.5±0.5 

S9  

a=0.87±0.02; 

b=-0.06±0.09* 

 

1.50±0.02 

 0.024±

0.000 

 0.0162±0

.0001 

 

48.7±0.5 

Average a=0.88; b=0.04  1.56  0.025  0.0167  46.0 

S8  a=0.91±0.01; 

b=-0.22±0.09 

 

1.67±0.02 

 0.025±

0.000+ 

 0.0142±0

.0001 

 

47.4±0.5 

Subhumid subtropical         

S5  

a=0.89±0.02; 

b=-0.05±0.10* 

 

1.51±0.02 

 0.024±

0.000 

 0.0165±0

.0001 

 

47.8±0.5 

S6  

a=0.85±0.02; 

b=-0.11±0.09 

 

1.40±0.02 

 0.022±

0.000 

 0.0156±0

.0001 

 

50.4±0.5 

S10  

a=0.81±0.02; 

b=0.19±0.10 

 

1.43±0.02 

 0.022±

0.000 

 0.0156±0

.0001 

 

49.6±0.6 

S12  

a=0.79±0.01; 

b=0.11±0.07 

 

1.34±0.01 

 0.021±

0.000 

 0.0151±0

.0001 

 

51.5±0.5 

Average a=0.84; b=0.04  1.42  0.022  0.0157  49.8 

Humid subtropical 

S7  

a=0.70±0.01; 

b=0.12±0.05 

 

1.18±0.01 

 0.019±

0.000 

 0.0133±0

.0001+ 

 

57.6±0.5 

S11 
 

a=0.71±0.01; 

b=0.38±0.08 

 

1.25±0.01+ 

 0.020±

0.000 

 0.0143±0

.0001 

 

52.9±0.5 

S13  

a=0.67±0.01; 

b=0.24±0.05 

 

1.15±0.01 

 0.019±

0.000 

 0.0131±0

.0001 

 

56.5±0.6+ 

S14  

a=0.73±0.01; 

b=0.19±0.07 

 

1.24±0.01 

 0.020±

0.000 

 0.0141±0

.0001 

 

54.0±0.5 

S15  

a=0.75±0.01; 

b=0.16±0.07 

 

1.24±0.01 

 0.020±

0.000 

 0.0142±0

.0001 

 

53.3±0.4 

Average a=0.71; b=0.06  1.21  0.020  0.0138  54.9 

All regions 

mean 

a=0.81; b=0.08  1.41  0.023  0.0153  50.0 

 Note: O indicates original parameters, and C indicates calibrated parameters.  
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Figure 5.3 Comparison of mean monthly potential evapotranspiration simulated by 

different methods using the calibrated constant values. 
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5.3.3. Method Verification 

     The method verification was carried out at three stations, i.e., S3, S6, and S14, 

representing different climatic conditions. The split record method was used to analyze 

the sensitivity of the parameters to model performance (Klemes, 1986; Singh and Xu, 

1997). The data set was split into two periods, i.e., 1961-1990 and 1991-2010. The eight 

selected methods were calibrated separately for these two periods. The calibrated 

parameters for one period were used as the prediction of the other period. The purpose 

was to test the method's ability to the monthly prediction of ET0 for an independent 

period. As shown in Figure 5.4, the performance of the method in estimating ET0 in an 

independent period was acceptable, except for the Th_T method. For the months with 

higher ET0 (April to September), the relative errors were all within ±20%. In contrast, 

the radiation-based methods had high relative errors, which was close to -40% in cool 

months. In general, once the method was calibrated using historical data of a station, it 

can be used to predict ET0 in the future for the same station with sufficient confidence.  
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Figure 5.4 Relative errors of mean monthly reference evapotranspiration estimates 

of each model at three stations. The top panel shows the simulation from 1991 to 

2010, and the bottom panel shows the simulation from 1961 to 1990.  

 

5.3.4. Regionalization  

     The calibrated regional average of parameter values for the eight models was 

used for ET0 estimation at the fifteen stations. Figure 5.5 shows a comparison of using 

one set of parameters for all climates (one region) and two different sets of parameters 

(two regions), including one for arid/semi-arid climates (stations in climate division 1 

and 5, Figure 5.1) and one for humid/subhumid climates (stations in other climate 

divisions, Figure 5.1). It is obvious that more accurate estimates can be obtained if 

calibration can be done for each climate type, and the lowest mean relative error was 

observed when three regions were considered, including humid climate, subhumid, and 
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arid/semi-arid climates, as shown in Figure D3, Appendix D. Even with the calibrated 

mean of all stations (one region), the HS_T (a=0.024) and Ma_R (a= 0.81, and b=0.09) 

methods can produce acceptable levels of confidence in all climates types in all seasons. 

Tu_R worked well for regional analysis in humid, subhumid, and warm seasons in arid 

and semi-arid climates. All calibrated methods showed better performance in the warm 

season than in the transition and cool seasons for regional analysis, and larger errors 

were found under dry and windy conditions. Generally, air temperature measurements 

are more reliable than the other three parameters required by the FAO-PM method. 

Moreover, the default value of the HS_R method is more stable than the Ma_R method. 

Taken together, the Hargreaves-Samani (HS_T) method is recommended for regional 

analysis if reliable wind speed and relative humidity data are not available. Calibration 

with the FAO-PM method is suggested in regions with dry and consistently windy 

conditions. 
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Figure 5.5 Relative error of mean monthly reference evapotranspiration estimates 

of each model using regional average parameters in (a) humid (b) subhumid and (c) 

semiarid/arid climates from 1961 to 2010. Boxplots show the 25th, 50 th, 75th 

percentiles, and extremes. Shading is the relative error within 20%. One region 

indicates that the parameters are the same for (a), (b), and (c), and two regions 

indicate that (a) and (b) use the same parameters and (c) uses another parameter.  
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5.4. Discussion 

5.4.1. Sensitivity Analysis  

            The contributions of available energy (A), vapor pressure deficit (D), and 

aerodynamic resistance (𝑟𝑎) to the variations of ET0 at each station in different seasons 

are shown in Figure 5.6. The available energy is the driving factor of ET0, accounting for 

51%-84% of the variability in ET0 (Figure 5.6a). The contribution of available energy to 

ET0 varies greatly in different climate regions, and the seasonality difference is more 

significant than the spatial differences. In warm season, available energy accounted for 

84%, 77%, 72%, and 73% of the variability in ET0 in humid, subhumid, semiarid, and 

arid climates, respectively. The contributions of available energy to ET0 were smaller 

during the cool season as compared with the warm season in all climates, e.g., 68% 

(humid), 58% (subhumid), 51% (semiarid), and 57% (arid), indicating that a general 

increase in SA when air temperature increases. Remember that the PT_R method assumes 

𝑆𝐴 = 79.4% , 𝑆𝐷 = 1 − 𝑆𝐴 = 20.6% , and Sra= 0. With this assumption, the radiative 

component was about four times the aerodynamic component. As shown in Figure 5.6b, 

the vapor pressure deficit had relatively higher impacts on the ET0 variation in more dry 

regions and cool seasons, e.g., 𝑆𝐷  was 27-28% in the warm season in semiarid and arid 

climates and can be as high as 43-49% in the cool season in subhumid, semiarid, and 

arid climates. Hence, methods linking ET0 with the available energy performed well in 

the warm season in humid and subhumid climates, and local calibration was usually 

required under other conditions.  
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            The assumption of the aerodynamic resistance impacts on ET0 variations was 

equal to zero, i.e., Sra= 0, which is invalid for most stations, leading to the 

underestimation in most methods even after calibration, especially in the semi-arid and 

arid climates under strong wind conditions. The effect of wind on ET0 is not unique due 

to the differences in the interaction of wind with other climatic factors under different 

climate conditions. The energy, heat, and vapor transfer rate of the grass reference 

surface and the surrounding environment are more similar in humid and subhumid 

climates than in semiarid and arid climates. Accordingly, the effect of regional advection 

on ET0 was usually minor under humid conditions. For example, 𝑆𝑟𝑎
 in humid climate 

was only 4%, 3%, and -2% in warm, transition, and cool seasons, respectively. The 

negative value in 𝑆𝑟𝑎
 indicated that increasing 𝑟𝑎  (or decreasing wind speed) led to a 

reduction in 𝐸𝑇0. As shown in Figure 5.6c, wind speed had negative impacts on ET0 in 

warm and transition seasons in humid climates due to cool air advection, and the impacts 

were slightly enhanced with increased wind speed. However, drier air generally had a 

higher vapor pressure gradient. In addition, wind speed affected the sensible heat 

transfer from the vast dry, unirrigated area and contributed part of the energy required 

for evapotranspiration through warm air advection. Hence, 𝑆𝑟𝑎
 in arid climate showed 

consistently high values (10%-16%) in all seasons even under moderate wind conditions. 

In semiarid climate, 𝑆𝑟𝑎
 can keep at 4%-6% in warm and transition seasons and rise to 

12% in the cool season under strong wind conditions.  
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Figure 5.6 Variations of sensitivity coefficients for monthly potential 

evapotranspiration for (a) available energy (A), (b) vapor pressure deficit (D), and 

aerodynamic resistance (𝒓𝒂) at each station from 1961 to 2010. Boxplots show the 

25th, 50 th, 75th percentiles, and extremes. 

 



 

131 

 

            Sensitivity analysis of SA and Su2 to changes in meteorological variables was 

performed by increasing or decreasing an individual variable while holding the other 

variables constant (Figures 5.7 and 5.8). The ranges of different variables were selected 

according to their maximum and minimum values recorded during the period of 1961–

2010 in the study area. An exponential relationship between mean air temperature and 

available energy was developed, i.e., 𝐴 = 3.4635e0.0509T , using the data during the 

period of 1961–2010 with R2 = 0.81. Based on the mean air temperature and relative 

humidity, four climate regions were classified, including humid/cold, humid/warm, 

dry/cold, and dry/warm. SA was sensitive to RH, mean temperature, and wind speed. Su2 

was more sensitive to RH and wind speed within 0-4 m/s. Stronger wind conditions 

(U2>4 m/s) did not necessarily lead to an increase in the wind speed impact on Su2 

variations. The equilibrium or quasi-equilibrium evaporation condition, i.e., Su2=0, 

existed within RH between 65% and 75%, and RH under the equilibrium condition 

showed a decreasing trend with the increase of air temperature (Figure 5.8). At 20℃, the 

relative humid under equilibrium or quasi-equilibrium evaporation condition (RH*) was 

about 70%, which is consistent with the value (𝑅𝐻∗ = 70% ± 6%, n=437) calculated by 

selecting the weather variable during 1961-2010 that satisfied the equilibrium or quasi-

equilibrium evaporation condition, i.e., 𝑆𝑟𝑎
 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 0. With 𝑅𝐻∗ = 70%, T= 20℃, 

and U2=2 m/s, a SA value of 0.8 was obtained from Figure 5.7, which is the same as the 

value suggested by McNaughton and Jarvis (1983) to analyze the relative effects of the 

radiative component on the evapotranspiration process with advection having the least 

effect. 
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Figure 5.7 Variations of sensitivity coefficient of available energy to the reference 

evapotranspiration under different climate conditions. 

 

 

Figure 5.8 Variations of the sensitivity coefficient of wind speed to the reference 

evapotranspiration (Su2) under different climate conditions. Note Su2= -Sra. 
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5.4.2. Temperature Impacts on ET0 Variations  

            In the FAO-PM method, mean air temperature has an indirect impact on ET0, 

considering temperature affects the slope of the vapor pressure curve and the vapor 

pressure deficit. As shown in Figure 5.9, temperature is very sensitive to ETo variations, 

and a 10% increase in temperature can lead to about a 13-14% increase in ET0 in the 

warm season, 9-12% in the transition season, and 5-9% in the cool season. The relative 

sensitivity coefficient of temperature on ET variation has a significant positive linear 

trend of 0.05/℃, with R2= 0.99. Results indicated that the temperature impact on ET0 

variations would be intensified in a warming climate, resulting in greater atmospheric 

demand.   
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Figure 5.9 Sensitivity coefficients for the monthly reference evapotranspiration for 

mean temperature at each station from 1961 to 2010. Boxplots show the 25th, 50 th, 

75th percentiles, and extremes. 

 

5.4.3. Adjustment for Dry and Windy Conditions 

            Since HS_T is the best method selected for regional analysis and PT_R is the 

most theoretically based radiative method, these two methods were adjusted to improve 

their performance under arid, high wind conditions. The impact of vapor pressure deficit 

change on the 𝐸𝑇0  can be estimated by assuming there were no changes in other 

parameters, then  𝐸𝑇𝑎𝑑𝑗𝑢𝑠𝑡 = 𝐸𝑇0 [1 + (𝑆𝐷)
𝐷−𝐷∗

𝐷∗ ], where 𝐷∗ is the vapor pressure deficit 
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under the equilibrium condition. Since vapor pressure deficit can be calculated by (1-

RH)  𝑒𝑠 . The term 
𝐷−𝐷∗

𝐷∗  can be approximated by 
𝑅𝐻∗−𝑅𝐻

100−𝑅𝐻∗  assuming that there is little 

change in the mean temperature under the two conditions. 𝑅𝐻∗ is the relative humidity at 

the equilibrium value in percentage. Then, one gets 𝐸𝑇𝑎𝑑𝑗𝑢𝑠𝑡 = 𝐸𝑇0 [1 + (𝑆𝐷)
𝑅𝐻∗−𝑅𝐻

100−𝑅𝐻∗]. 

Under the equilibrium condition, 𝑆𝐷 = 1 − 𝑆𝐴 =0.2, 𝑅𝐻∗ = 70%,  then 𝐸𝑇𝑎𝑑𝑗𝑢𝑠𝑡 =

𝐸𝑇0 [1.47 − 0.0067𝑅𝐻]. Under strong wind conditions (u>3 m/s), the impact of wind 

effect on 𝑆𝐷  can be approximated as 
𝜕(𝑆𝐷)

𝜕Ω
 
𝜕(Ω)

𝜕𝑈2

𝑈2

𝑆𝐷
= (−1)(𝑆𝐴

2 − 𝑆𝐴)
1

(1−𝑆𝐴)
 = 𝑆𝐴 , then 

𝐸𝑇𝑎𝑑𝑗𝑢𝑠𝑡 = 𝐸𝑇0 [1 + (𝑆𝐷)(1 + 𝑆𝐴)
𝑅𝐻∗−𝑅𝐻

1−𝑅𝐻∗ ] = 𝐸𝑇0 [1.84 − 0.012𝑅𝐻]. 

            Figure 5.10 shows the results of using adjustment coefficient for strong wind 

conditions 𝑐 = 1.84 − 0.012𝑅𝐻 . Both methods showed better performance than the 

local calibration and original methods, especially for the stations under dry and strong 

windy conditions, including S1, S2, S3, and S9. It was noted that S8 (the station with the 

lowest RH, i.e., 40%) had a relatively higher RMSE (0.82 mm/d) than the local 

calibration method (0.66 mm/d). Considering that S8 had light to moderate wind (2.7 ± 

0.6 m/s), the adjustment coefficient without the correction for strong wind conditions, 

i.e.,  𝑐 = 1.47 − 0.0067𝑅𝐻, was also tested, and the RMSE was reduced to 0.40 mm/d.  
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Figure 5.10 Comparison of mean monthly RMSE of ET0 using (a) HS_T and (b) 

PT_R at 15 stations with the default method, calibrated method, and adjusted 

method. 

 

5.5. Conclusions  

            In this chapter, the eight commonly used ET0 methods were selected, including 

three temperature-based methods, i.e., Thornthwaite, Blaney-Criddle, and Hargreaves 

and Samani, and five radiation-based methods, i.e., Makkink, Priestley-Taylor, Jensen 

and Haise, Turc, and Abtew, to compare with the FAO-PM reference method in humid, 

subhumid, with various climatic types including arid, semi-arid, and humid tropical in 
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Texas, United States using 50 years (1961-2010) monthly meteorological data from 15 

climatological stations. The impact of each climatic variable on the seasonal and spatial 

variations of ET0 were further quantified to help understand the model structure and 

improve its performance under dry and windy conditions. The major findings of this 

study are: (1) HS_T is the most accurate empirical method used to estimate ETo with the 

default value and is suggested for regional analysis; (2) radiative component is the 

driving factor of ET0, accounting for 51%-84% of the variability in ET0; and (3) to 

correctly reflect the impact of aerodynamic components on the ET0 estimation under dry 

and windy conditions, a calibration-free coefficient (𝑐 = 1.47 − 0.0067𝑅𝐻) with only 

month relative humid (RH) as input is suggested to multiply the HS_T and PT_R 

equations and improved accuracy was obtained compared with the local calibration 

methods. This study has implications for understanding the ET0 variation under a 

changing climate.    

 



 

138 

 

6. A CALIBRATION-FREE PRIESTLEY-TAYLOR METHOD FOR REFERENCE 

EVAPOTRANSPIRATION ESTIMATION 

 

            The Priestley-Taylor (PT) method represents the equilibrium rate of potential 

evapotranspiration (PET) from an extensive water surface or well-watered crop surface 

without considering the impact of advection. It has been widely applied in hydrological 

and crop models to calculate the atmospheric demand for water or reference 

evapotranspiration (ET0). However, the current use of the default value of PT coefficient  

(𝑖. 𝑒., α = 1.26) cannot assure reliability under different climatic regions without local 

calibration using the Penman-Monteith mothed. In addition, the spatial and temporal 

evolution of the PT coefficient at a global scale and how meteorological variables affect 

its change have not been elucidated in previous studies. In this chapter, an analytical 

expression for the PT coefficient (PTa) is derived following the Penman-Monteith 

method, i.e., 𝑃𝑇𝑎 =
1

𝑆𝐴
 (1 + 𝑆𝑈2

), where SA represents the radiative component impact 

on ET0 and 𝑆𝑈2
 is wind speed impact on ET0. The daily Princeton Global Forcing (PGF) 

dataset with a spatial resolution of 0.25° by 0.25° and temporal coverage from 1948-

2016 was used to validate the derived PT coefficient, indicating that using PTa well 

simulates the spatial distribution and temporal variations of global reference 

evapotranspiration. The global mean PTa from 1948 to 2016 was 1.37, with a temporal 

standard deviation of 0.02 and a spatial standard deviation of 0.42. Under equilibrium 

conditions, PTa, however, was very close to the default value, i.e.,1.26 ± 0.04. The use of 

the simplified PT coefficients with relative humidity (RH, in fraction) as the only input 
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under slight to moderate ( 𝑃𝑇𝑎 = 1.87 − 0.87𝑅𝐻 ) and strong wind ( 𝑃𝑇𝑎 = 2.35 −

1.55𝑅𝐻) conditions also showed good performance. The radiative component is the 

driving factor of ETo changes and tends to be intensified in a warming climate. Although 

aerodynamic components show reinforced impacts on global reference 

evapotranspiration, the widely declined wind speed slightly counteracts the ET0 increase 

caused by the increased radiative components. 

6.1. Introduction 

     The Priestley-Taylor (PT) method represents the equilibrium rate of potential 

evapotranspiration (PET) from an extensive water surface or well-watered crop surface 

without considering the impact of advection. The PT method has been widely used in 

hydrological models, e.g., Soil and Water Assessment Tool (SWAT) (Arnold et al., 2012) 

and Soil Water Atmosphere Plant (SWAP) (van Dam et al., 2008), representing the 

upper limit of evapotranspiration (ET). The PT method has numerous applications in 

crop models to estimate reference ET (ET0) and irrigation water demand by multiplying 

crop coefficients (Constantin et al., 2015; Deryng et al., 2011; Dzotsi et al., 2015; 

Hoogenboom et al., 2019; Jones et al., 2003; Keating et al., 2003). The PT coefficient 

( α = 1.26 ) represents the ratio of potential evapotranspiration to equilibrium 

evaporation (the radiative term of the Penman method), which is obtained by averaging 

several field measurements over vegetated and water surfaces (Priestley and Taylor, 

1972). The default value has been adopted in many crop models, e.g., Aqyield 

(Constantin et al., 2015), DSSAT (Hoogenboom et al., 2019; Jones et al., 2003), 

PEGASUS (Deryng et al., 2011), and SALUS (Dzotsi et al., 2015), and global PET 
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products like the Priestly-Taylor Jet Propulsion Laboratory algorithm (PT-JPL) (Fisher 

et al., 2008). A changing PT coefficient is also used. For example, in APSIM, α ranges 

from 0.3 at 0°C to 2.1 at 55°, while α = 1.1 is for temperature between 6 and 35.6°C 

(Keating et al., 2003). The Global Land Evaporation Amsterdam Model (GLEAM) 

(Miralles et al., 2011) assumes that the PT coefficient varies with land cover. Kimball et 

al. (2019) compared actual ET from 29 maize models and indicated that ET0 estimation 

was one of the major sources of uncertainties in estimating irrigation water demand.  

            Numerical field observations and analytical expressions have reported that the 

PT coefficient is very close to 1.26 under wet or well-watered grass surface conditions 

(Davies and Allen, 1973; Eichinger et al., 1996; Parlange and Katul, 1992). Jarvis and 

McNaughton (1986) introduced the decoupling coefficient (Ω), which was equal to α-1, 

to analyze the relative contribution of solar radiation and aerodynamic terms to the 

evapotranspiration process, with Ω=0.8 (α=1.25) on average (McNaughton and Jarvis, 

1983). Eichinger et al. (1996) derived an analytical expression of α using Bowen ratio 

and found that α = 1.26, which was insensitive to small variations in temperature or 

humidity. Field obversions from irrigated grass suggested that the value of a was 

typically ranging from 1.20 to 1.27 in the absence of advection under different climate 

types (Katerji et al., 1990; Pereira, 2004). 

            On the other hand, Lhomme (1997) used the closed-box model of the convective 

boundary layer and demonstrated that α was a function of atmosphere conditions and 

aerodynamic resistance rather than a constant. He also reported that α = 1 for saturated 

surface surrounded by water and α = 1.3 for saturated grass surrounded by well-watered 
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grass. In semi-arid or arid regions, as the wet surface requirement, i.e., the surface is 

extensive and continually saturated, usually cannot be satisfied, the aerodynamic 

component is relatively important (Matsoukas et al., 2011), and warm air advection from 

unirrigated areas often contribute sensible heat energy to evapotranspiration. 

Consequently, the use of the default value usually underestimates the ET0 calculation in 

sub-humid (Nandagiri and Kovoor, 2006), semi-arid (Bakhtiari et al., 2011; Er-Raki et 

al., 2010; Gao et al., 2017; Nandagiri and Kovoor, 2006; Tabari, 2010) and arid (Didari 

and Ahmadi, 2019) climates, since it does not adequately consider the aerodynamic term. 

Although local calibration with the Food and Agriculture Organization (FAO) Penman-

Monteith mothed (FAO-PM) is usually suggested, the reported values after calibration 

always show significant spatial and seasonal variability. For example, Shiri et al. (2019) 

reported that the calibrated PT coefficient ranged between 1.01-1.13, 1.25-1.78, and 

1.18-1.75 in humid, semi-arid, and arid climates, respectively, according to the 

evaluation on 29 weather stations in Iran. A recent global calibration of the PT 

coefficient, which used monthly weather data from 1948 to 2006 at 0.5◦ horizontal 

resolution, showed that the global PT coefficient ranged from 0.52 to 2.96, with a mean 

value of 1.26 (Aschonitis et al., 2017). Therefore, a calibration-free PT method for ET0 

estimation is of special interest given its ubiquitous use in global PET products, 

hydrological, and crop models which use the PT method for ET0 estimation. In addition, 

the spatial and temporal evolutions of the PT coefficient at global scales and how 

meteorological variables affect its change have not been elucidated in previous studies.  
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     The objectives of this study aimed to (1) derive an analytical expression for the 

PT coefficient based on the Penman-Monteith method; (2) reveal the spatial and 

temporal evolutions of the PT coefficient at global scales; and (3) provide a simplified 

calibration-free PT coefficient with relative humidity as the only input. The daily 

Princeton Global forcing (PGF) dataset with a spatial resolution of 0.25° and temporal 

coverage from 1948-2016 was used to validate the derived PT coefficient and 

characterize its spatial and temporal variations. 

6.2. Methodology  

6.2.1. Derivation of the Priestley-Taylor Method Following the Penman-Monteith 

Method 

            The original Penman-Monteith method can be rearranged as:  

         𝐸𝑇𝑃𝑀 =
1

λ
 

∆

∆+𝛾 
 𝐴+ 

𝛾

𝛾+∆
  

 𝜌𝑎𝐶𝑝𝐷

𝛾𝑟𝑎

1+
𝛾

𝛾+∆
×

𝑟𝑠
𝑟𝑎

                                                    (6.1) 

where  𝐸𝑇𝑃𝑀  is the potential evapotranspiration from well-watered vegetated surfaces 

(mm d-1); 𝜆 is the latent heat of vaporization of water (MJ kg-1); A = 𝑅𝑛 –  𝐺, where Rn is 

the net radiation at the crop surface (MJ m-2 d-1), and G is the soil heat flux (MJ m-2 d-1); 

D = 𝑒𝑠 − 𝑒𝑎 , in which es and ea are the saturation and actual vapor pressure (kPa), 

respectively; 𝑟𝑎 is the aerodynamic resistance (s m-1); 𝑟𝑠 is the surface resistance (s m-1); 

Δ is the slope of vapor pressure curve (kPa oC-1); γ is the psychrometric constant (kPa oC-

1); 𝜌𝑎 is the mean air density under constant pressure (kg m-3); and 𝐶𝑝 is the specific heat 

of moist air (1.013 kJ kg -1 oC-1). Detailed calculations of each parameter can be found in 

Appendix D.  
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            As shown in equation (6.1), two processes affect potential evapotranspiration 

from a vegetated surface. The first process is related to the climatic parameters, 

determining the evaporative demand 𝐸𝑇∗, i.e., evaporation from free water surface or 

saturated crop surface.  𝐸𝑇∗ is calculated based on the combination of energy balance 

and water vapor transfer, where ETeq represents the equilibrium evaporation, mm/d, and 

ETD is the aerodynamic terms determined by D and 𝑟𝑎. 

𝐸𝑇𝑃𝑀 =
𝐸𝑇∗

1+
𝛾

𝛾+∆
×

𝑟𝑠
𝑟𝑎

=  
𝐸𝑇𝑒𝑞 + 

𝛾

∆+𝛾
 𝐸𝑇𝐷 

1+
𝛾

𝛾+∆ 
×

𝑟𝑠
𝑟𝑎

      with 𝐸𝑇𝑒𝑞 =
1

λ

∆

∆+𝛾
𝐴  and 𝐸𝑇𝐷 =

𝜌𝐶𝑝𝐷 

λ𝛾𝑟𝑎
       (6.2) 

            The second process is related to vegetation characteristics, i.e., canopy resistance, 

𝑟𝑠, which represents the obstacles of water vapor transfer between the surface and the 

reference height. The term 
1

1+
𝛾

𝛾+∆
×

𝑟𝑠
𝑟𝑎

  is defined as the decoupling coefficient (Ω) 

introduced by Jarvis and McNaughton (1986). Equation (6.1) can be rewritten as: 

𝐸𝑇𝑃𝑀 = Ω × 𝐸𝑇∗ = Ω × 𝐸𝑇𝑒𝑞 + (1 − Ω) × 𝐸𝑇𝐷     with Ω=
1

1+
𝛾

𝛾+∆
×

𝑟𝑠
𝑟𝑎

          (6.3) 

            Crop surfaces can both affect A and 𝑟𝑎, e.g., the crop physical characteristics may 

influence A by regulating albedo and crop height and roughness may affect 𝑟𝑎 , 

respectively. A hypothetical reference grass surface is used to reduce the impact of crop 

surface in the FAO-PM method. The reference grass has a height of 0.12 m, an albedo of 

0.23, and a fixed surface resistance (𝑟𝑠= 70 s m-1). Equation (6.1) can be rewritten as the 

FAO-PM method: 

𝐸𝑇0 =  
0.408∆(𝑅𝑛 – G)+𝛾

900

𝑇+273
𝑈2 (𝑒𝑠−𝑒𝑎)

∆+𝛾 (1+0.34𝑈2 )
                                              (6.4) 
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where  𝐸𝑇0  is the reference evapotranspiration (mm d-1); T and  𝑈2  are the mean air 

temperature (oC) and wind speed (m s-1) measured at 2 m height, respectively; 𝑟𝑎 =

208/𝑈2, 
𝑟𝑠

𝑟𝑎
= 0.34𝑈2, and 

𝜌𝑎𝐶𝑝 

𝑟𝑎
= 𝛾

900

𝑇𝑎+273
𝑈2.  

6.2.2. Sensitivity of Different Terms in the FAO-PM Method 

     In general,  𝐸𝑇0 can be written as: 

𝐸𝑇0 = 𝑓(𝑝1, 𝑝2, 𝑝3, … 𝑝𝑛)                                                         (6.5) 

where 𝑝𝑛 is the nth model parameter. Then, the change in 𝐸𝑇0 can be attributed to the 

change in each parameter: 

𝐸𝑇0 + ∆𝐸𝑇0 = 𝑓(𝑝1 + ∆𝑝1, 𝑝2 + ∆𝑝2, 𝑝3 + ∆𝑝3, … 𝑝𝑛 + ∆𝑝𝑛)               (6.6)         

Applying Taylor’s theorem in equation (6.6) and ignoring the second-order terms, we 

can get:  

∆𝐸𝑇0 =
𝜕(𝐸𝑇0)

𝜕𝑝1
 ∆𝑝1 +

𝜕(𝐸𝑇0)

𝜕𝑝2
 ∆𝑝2  +

𝜕(𝐸𝑇0)

𝜕𝑝3
 ∆𝑝3 + ⋯

𝜕(𝐸𝑇0)

𝜕𝑝𝑛
 ∆𝑝𝑛                 (6.7) 

The impact of changes in one parameter, e.g., 𝑝𝑖 , on 𝐸𝑇0 changes can be estimated by 

assuming no changes in other parameters. Then 

∆𝐸𝑇0

 𝐸𝑇0
=

𝜕(𝐸𝑇0)

𝜕𝑝𝑖

∆𝑝𝑖

 𝐸𝑇0
= (

𝜕(𝐸𝑇0)

𝜕𝑝𝑖
 

𝑝𝑖

 𝐸𝑇0
)

∆𝑝𝑖

𝑝𝑖
=  𝑆𝑖

∆𝑝𝑖

𝑝𝑖
     with 𝑆𝑖 = 

𝜕(𝐸𝑇0)

𝜕𝑝𝑖
 

𝑝𝑖

 𝐸𝑇0
             (6.8) 

where  𝑆𝑖  is defined as the non-dimensional relative sensitivity coefficient (McCuen, 

1974). Si can be used to evaluate the relative contributions of weather parameters on the 

dynamics of ET0, e.g., 𝑆𝑖 =0.1 means that a 10% increase in 𝑝𝑖 leads to a 1% increase in 

ET0. The negative value of Si indicates that increasing 𝑝𝑖 leads to a decrease in ET0. The 
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sensitivity analysis of Penman and Penman-Monteith methods has already been provided 

(Beven, 1979; McCuen, 1974; Rana and Katerji, 1998). Here, the sensitivity coefficients 

of A, D, and 𝑟𝑎 were evaluated based on the FAO-PM method as:   

𝑆𝐴 =
𝜕(𝐸𝑇0)

𝜕𝐴
 

𝐴

 𝐸𝑇0
=

1

1+
𝜌𝐶𝑝𝐷

𝑟𝑎∆𝐴

=
1

1+ 
𝛾

∆ 
 

900

𝑇+273
𝑈2

𝐷

𝐴

                                           (6.9)                            

         𝑆𝐷 =
𝜕(𝐸𝑇0)

𝜕𝐷
 

𝐷

 𝐸𝑇0
=

1

1+
𝑟𝑎∆𝐴

𝜌𝐶𝑝𝐷

=
1

1+
𝐷

∆𝐴 𝛾
900

𝑇+273
𝑈2

= 1 − 𝑆𝐴                        (6.10) 

𝑆𝑟𝑎
=

𝜕(𝐸𝑇0)

𝜕𝑟𝑎

𝑟𝑎

 𝐸𝑇0
 = 𝑆𝐴 −

1

1+
𝛾

𝛾+∆
∗

𝑟𝑠
𝑟𝑎

= 𝑆𝐴 − Ω                                     (6.11) 

     Since 𝑟𝑎 =208/𝑈2, the relative contributions of 𝑈2 on the dynamics of ET0 can be 

evaluated as: 

𝑆𝑈2
=

𝜕(𝐸𝑇0)

𝜕𝑟𝑎
 
𝜕(𝑟𝑎)

𝜕𝑈2

𝑈2

 𝐸𝑇0
=  −𝑆𝑟𝑎

=  Ω − 𝑆𝐴                                       (6.12) 

     As shown in Eq. (6.3-6.7), 𝑆𝐴, 𝑆𝐷 ,  𝑆𝑟𝑎
and  𝑆𝑢2

 depend on all the parameters, 

including the available energy, vapor pressure deficit, wind speed, and temperature.  

6.2.3. Equilibrium Rate of Potential Evapotranspiration 

     The PT method estimates ET0 based on the concept of equilibrium evaporation 

as:  

𝐸𝑇𝑃𝑇 = 𝛼 𝐸𝑇𝑒𝑞 = 𝛼 
∆

∆+𝛾
 
𝑅𝑛−𝐺

λ
                                       (6.13) 

where 𝐸𝑇𝑃𝑇 is the reference evapotranspiration calculated using the PT method (mm d-

1);  𝛼 is the PT coefficient. To derive 𝐸𝑇𝑃𝑇 from the FAO-PM method, we assume that 

the surface is extensive and continually saturated, and evapotranspiration is independent 
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of the aerodynamic component, i.e., 
∂λ𝐸𝑇𝑃𝑀

∂𝑟𝑎
= 0. Imposing this condition in equation 

(6.1), we get the “critical resistance”, 𝛾*:  

∂λ𝐸𝑇𝑃𝑀

∂𝑟𝑎
=  

∆𝛾𝐴𝑟𝑠−𝜌𝑎𝐶𝑝𝐷(∆+𝛾)

[𝑟𝑎(∆+𝛾)+𝑟𝑠𝛾]2 = 0 ≫ 𝑟𝑠 =
𝜌𝑎𝐶𝑝𝐷(∆+𝛾)

∆𝛾𝐴
 = 𝛾*                       (6.14) 

            Equation (6.1) can now be rewritten as:  

𝐸𝑇𝑃𝑀= 
∆

∆+𝛾
 
𝑅𝑛−𝐺

λ
 
1+

𝛾

𝛾+∆ 

𝛾∗

𝑟𝑎

1+
𝛾

𝛾+∆ 

𝑟𝑠
𝑟𝑎

                                       (6.15)  

            Under saturated grass conditions, rs is close to 0. Replacing 𝛾* using equation 

(6.14), the FAO-PM method can be approximated as:  

𝐸𝑇𝑃𝑀 = (1 +
𝜌𝐶𝑝𝐷

𝑟𝑎∆𝐴
)

∆

∆+𝛾
 
𝑅𝑛−𝐺

λ
=

1

𝑆𝐴

∆

∆+𝛾
 
𝑅𝑛−𝐺

λ
    or  𝐸𝑇𝑃𝑀 =

1

𝑆𝐴
 𝐸𝑇𝑒𝑞          (6.16) 

            When wind effect is considered, equation (6.16) can be replaced by a more 

general form (ET_PT_Su) as: 

𝐸𝑇𝑃𝑀 =
1

𝑆𝐴
 

∆

∆+𝛾
 
𝑅𝑛−𝐺

λ
 (1 + 𝑆𝑈2

)     or   𝐸𝑇𝑃𝑀 =
(1+𝑆𝑈2)

𝑆𝐴
 𝐸𝑇𝑒𝑞               (6.17)  

where the new PT coefficient (PTa) can be expressed as: 

𝑃𝑇𝑎 =
1

𝑆𝐴
 (1 + 𝑆𝑈2

) =
1

𝑆𝐴
 (1 +  Ω − 𝑆𝐴)                                   (6.18) 

            With the assumption of  
∂λ𝐸𝑇𝑃𝑀

∂𝑟𝑎
= 0, we can get 𝑆𝑟𝑎

= 0, and then 𝑆𝐴  = Ω , 

equation (6.16) can be replaced with the saturated or well-watered grass conditions as: 

                    𝐸𝑇𝑃𝑀 =
1

Ω

∆

∆+𝛾
 
𝑅𝑛−𝐺

λ
                                                   (6.19) 
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     Equation (6.19) represents potential evaporation at equilibrium, and it is only 

valid for equilibrium or quasi-equilibrium evaporation, a condition that the evaporative 

surface is close to saturated state and wind effect is independent of evapotranspiration. 

Equation (6.19) is the same as the potential evaporation equation at equilibrium derived 

by Lhomme (1997) using a convective boundary layer model. However, in arid or semi-

arid regions, the actual environment cannot satisfy the wet surface assumption, and thus 

there is a departure of the actual saturation deficit from the equilibrium condition (𝐷∗).  

Based on equation (6.8), the impact of saturation deficit change on 𝐸𝑇0 can be estimated 

by assuming no changes in other parameters. Then, equation (6.19) becomes: 

𝐸𝑇𝑃𝑀 =
1

Ω

∆

∆+𝛾
 
𝑅𝑛−𝐺

λ
 [1 + (1 − Ω)

𝐷−𝐷∗

𝐷∗ ]    with 𝑆𝐷 = 1 − Ω                   (6.20) 

where 𝐷∗  is the vapor pressure deficit under the equilibrium condition. Since vapor 

pressure deficit can be calculated by (1-RH) 𝑒𝑠, the term 
𝐷−𝐷∗

𝐷∗  can be approximated by 

𝑅𝐻∗−𝑅𝐻

1−𝑅𝐻∗  , assuming that there is little change in the mean temperature under the two 

conditions. 𝑅𝐻∗ is the relative humidity at the equilibrium in the unit of fraction. Then, 

equation (6.20) becomes: 

𝐸𝑇𝑃𝑀 =
[1+(1−Ω)

𝑅𝐻∗−𝑅𝐻

1−𝑅𝐻∗  ]

Ω

∆

∆+𝛾
 
𝑅𝑛−𝐺

λ
                                          (6.21) 

            Under high wind conditions, the impact of wind effect on  𝑆𝐷  can be 

approximated as: 

𝜕(𝑆𝐷)

𝜕Ω
 
𝜕(Ω)

𝜕𝑈2

𝑈2

𝑆𝐷
= (−1)(Ω2 − Ω)

1

(1−Ω)
 = Ω                                    (6.22) 
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with              
𝜕(Ω)

𝜕𝑈2
𝑈2 = (−1)

𝛾

𝛾+∆ 
0.34

(1+
𝛾

𝛾+∆ 
0.34𝑈2)2

=Ω2 − Ω                                      (6.23)           

            In regions with high wind conditions, equation (6.20) becomes: 

𝐸𝑇𝑃𝑀 =
 [1+(1−Ω2)

𝑅𝐻∗−𝑅𝐻

1−𝑅𝐻∗  ]

Ω

∆

∆+𝛾
 
𝑅𝑛−𝐺

λ
                                  (6.24)      

6.2.4. Data 

            Available global grid weather datasets can be categorized into three types, 

including interpolated datasets based on ground observations, reanalysis datasets by 

merging observation with model outputs, and satellite-based observations. In this study, 

the daily Princeton Global forcing (PGF) dataset with a spatial resolution of 0.25° and 

temporal coverage from 1948-2016 was used (http://hydrology.princeton.edu/data/pgf/). 

The PGF dataset was generated by merging several observational datasets, e.g., NASA 

Langley monthly surface radiation budget, Climate Research Unit Time-Series (CRU-

TS), Global Precipitation Climatology Project (GPCP), and Tropical Rainfall 

Measurement Mission (TRMM) (Sheffield et al., 2006). The dataset includes daily 

weather parameters such as solar radiation, wind speed at 10 m height, maximum, 

minimum, and mean air temperature, specific humidity, and air pressure. Wind speed 

was converted to 2 m wind speeds following the method suggested by (Allen, 1998). 

Specific humidity was used to calculate actual vapor pressure following equation (E1) in 

Appendix E.  

 

 

http://hydrology.princeton.edu/data/pgf/
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6.2.5. Statistical Analysis  

            Trend significance testing of the monthly series of ET0 and major meteorological 

parameters was based on a Mann-Kendall significance test with a significance level p at 

0.05 (Kendall, 1955; Mann, 1945). The Mann-Kendall significance test is a 

nonparametric test and does not assume normality of data, which is popular in trend 

significance tests in climatologic and hydrologic time series (Pascolini-Campbell et al., 

2021; Vicente-Serrano et al., 2014). An advantage of this method is that it is insensitive 

to abrupt changes, i.e., a small and consistent change has a higher coefficient than a 

more significant and abrupt change. In addition, the Theil-Sen estimator was used to 

identify the magnitude of the rates of changes (Sen, 1968; Theil, 1950). Regression 

analysis was also used to identify the relationship between ETo (dependent variable) and 

other variables (independent variable), i.e., 𝑦 =  𝑎𝑥 +  𝑏 . The slope (a) and intercept 

(b) and were obtained using a least-square fit.  

            The relative error (RE) was used to evaluate the model performances, as shown 

in equations (6.25): 

RE (%) =  
(𝑋𝑖−𝐸𝑇0𝑖)

𝐸𝑇0𝑖
× 100                                      (6.25) 

where 𝑋𝑖  and 𝐸𝑇0𝑖  are the ith calculated ETo using the selected methods, e.g., the PT 

method and ET_PT_Su method, and the FAO-PM method, respectively. 
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6.3. Results  

6.3.1. Comparison of Reference Evapotranspiration by Different Methods 

            The global long-term mean ETo calculated using the FAO-PM method for 1948-

2016 was 1066 mm yr-1 (temporal standard deviation of 15 mm yr-1), comparable to the 

studies from a global monthly ETo product at 0.5° using the FAO-PM, PT, and 

Hargreaves-Samani methods for the period of 1950-2000 (1092-1219 mm yr-1) 

(Aschonitis et al., 2017), the Climate Research Unit (CRU) Time-Series (TS) Version 

4.03 (CRU_TS4.03) PET dataset (1901-2018) derived from gridded stations at 0.5° 

spatial resolution (Harris et al., 2020), the Moderate Resolution Imaging 

Spectroradiometer (MODIS)/Terra Net (MOD16) PET dataset (2001-2020) 8-day ETo at 

0.5°, and an hourly PET product using the ERA5-Land reanalysis data (1981–2019) 

(Singer et al., 2021). The estimated geographical patterns agreed well with the hourly 

PET product from Singer et al. (2021), characterized by ET0 hotspots located in the 

deserts of Northern Africa, Western Asia, and Western Australia (Figure 6.1a). 

However, the PT method greatly underestimated ET0 in these regions (Figure 6.1b) due 

to the assumption that the radiative component and aerodynamic component account for 

79.4% (𝑆𝐴 =
1

1.26
) and 20.6% of the ET0 variations, respectively. On average, the PT 

method underestimated ETo by 6% (1000 ± 15 mm yr-1) when compared to the FAO 

PM method.                                   

            The theoretical PT coefficient (hereafter ET-PT-Su) can significantly improve 

the performance of the original PT method, given that it showed high consistency with 

the FAO-PM method (Figure 6.1c). The global long-term mean ETo calculated using the 
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ET_PT_Su method was 1038 ± 14 mm yr-1, with less than 3% underestimation, smaller 

than using the PT method. The latitudinal profile showed that the highest ETo was at low 

latitudes (~20° to 30°N and S) and declined steeply towards both the pole and equator 

(FAO-PM method) (Figure 6.1d). The ET_PT_Su showed a similar pattern as the FAO-

PM method, only with a slight underestimation at low latitudes (~20° to 30°N and S). 

Nevertheless, the PT method overestimated ETo in the inner tropic (<10°N and <15°S) 

and mid-high latitude (>45°N and >50°S) but underestimated ETo at low-latitudes (~10° 

to 30°N and 20° to 30°S). The longitudinal differences were comparatively small in the 

PT method as expected since the PT method only considers the variation of available 

energy. The relative error (%) of mean annual ET0 derived by the PT and ET_PT_Su 

methods was compared with the FAO-PM method (Figure 6.1e-f). The PT method 

showed a large positive relative error (20%-50%) in Canada, Russia, Europe, southern 

China, Amazonia, and Central Africa and large negative relative error in Northern 

Africa, Western Asia, and Western Australia (-30%-50%). In contrast, the relative errors 

between the ET_PT_Su method and the FAO-PM method were less than ±10% over the 

entire continental domain, again suggesting that it matched well with the FAO-PM 

method. 

 

 



 

152 

 

 

Figure 6.1 Comparison of reference evapotranspiration using different methods. 

Mean annual reference evapotranspiration using (a) FAO-PM method (ET0), (b) 

Priestley-Taylor method (ET_PT), and (c) adjusted Priestley-Taylor (ET_PT_Su, 

newly developed in this study); and (d) latitudinal profiles of ETo. Color lines 

indicate the mean value per degree latitude for ETo from the three different 

methods. Shading denotes the standard deviation. Relative errors (%) of mean 

annual ET0 for (e) Priestley-Taylor method (ET_PT) and (f) adjusted Priestley-

Taylor (ET_PT_Su) relative to the FAO-PM method (ET0). Antarctica is excluded 

since there is no available PGF data over there. 

 

6.3.2. Trends in Reference Evapotranspiration  

            The seasonal cycle characteristics of long-term ET0 (1948-2016) are shown in 

Figure 6.2a. Both the PT and ET_PT_Su methods captured the seasonality of ET0 using 

the FAO-PM method, all of which peaked in July. The ET_PT_Su method performed 

better than the PT method in all months except in July. Although the ET_PT_Su method 
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(versus the FAO-PM method) showed much smaller relative errors in July compared to 

that of the PT method (Figure E1-E3, Appendix E), the large positive and negative 

deviations from the FAO-PM method shown in the ET0 estimation using the PT method 

seemed compensate each other in July, leading to the smaller discrepancy between the 

PT method and the FAO-PM method than that for the ET_PT_Su method in this month. 

The long-term annual mean ET0 is removed from the time series by subtracting the mean 

ET0 from 1948 to 2016. The mean annual variability of ET0 (FAO-PM) increased from 

1948 to 2016 with a significant positive annual rate of 0.57 mm yr-1, corresponding to an 

increase of 0.5% per decade above the global mean (Figure 6.2b and c). The mean 

annual variability of ET0 using the ET_PT_Su method was very similar to the FAO-PM 

method (0.55 mm yr-1). In contrast, the PT method showed a more significant increase 

(0.70 mm yr-1), since it only treats the radiative component impact on ET0 trends (SA). 

As such, the difference between the FAO-PM method and the PT method can be 

attributed to the impact of the aerodynamic component, i.e., the combined effect of SD 

and Sra. As shown in Figure 6.3, SA can explain 96% of the variance in ET0 using the PT 

method (R2=0.96), and Sra alone explained 86% when using the FAO-PM method 

(R2=0.86). Of the 0.57 mm yr-1 trend of global mean ET0 from 1948 to 2016, the 

radiative component contributed to 0.70 mm yr-1, but the aerodynamic component 

compensated for the expected increase in ET0 by -0.13 mm yr-1,  

            The Mann-Kendal trend tests on monthly ET0 annual variations for the three 

methods are detailed in Figures E4-6, Appendix E. The percentages of the global land 

with positive and negative trends are summarized in Figure E7, Appendix E. Positive 
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trends were dominant in all months (60% globally on average), with 20% of trends were 

statistically significant (p<0.05). The increasing trends were more significant from April 

to October, with a mean percentage of 71%. More regions showed negative trends from 

May to October (23%) than other months (14%), but regions with significant negative 

trends did not show seasonal variability (5% ± 1%). Therefore, there was a general 

increase in global ETo from 1948 to 2016, particularly in warm seasons with relatively 

high ET0. Several hotspots were also observed. For example, Sub-Sahara Africa showed 

consistent positive trends in all seasons, and the increasing rate from March to April can 

be as high as 0.6 mm per month. From March to June, Europe, northern China, Western 

and Central Asia, and the western United States also presented significant increasing 

trends (0.4 mm month-1). On the contrary, the Amazonia region showed consistent 

negative trends through all seasons, and the decreasing rate can be as high as 0.6 mm per 

month in warm seasons. Northern Australia exhibited a significant decreasing trend in 

warm seasons. The annual trends of each month simulated by the ET_PT_Su method 

geographically agreed well with the FAO-PM method, but the increasing trend simulated 

by the PT method was stronger and more prevalent.  
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Figure 6.2 Trends in the reference evapotranspiration using different methods. (a) 

Long-term mean (1948-2016) seasonal cycle of ETo; (b) the trends in global mean 

ETo with long-term mean removed (1948-2016); (c) time series of global mean ETo 

(excluding Antarctica); and the trends in global mean ETo with long-term mean 

removed for the time periods of (e) 1948-1990 and (f) 1990-2016. 
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Figure 6.3 Linear regressions of ETo and the sensitivity coefficient. (a) The PT 

method and sensitivity coefficient of available energy and (b) the FAO-PM method 

and sensitivity coefficient of wind speed (or aerodynamic resistant). The latitudinal 

means from 1948 to 2016 were used for regression. Each grid cell is an independent 

scatter point.  

 

            The ET0 estimated using the FAO-PM method and ET-PT-Su method both 

displayed little variations from 1948 to 1990. As such, the studying time period was split 

into two sub-periods, i.e.,1948 to 1990 (Figure 6.2e) and 1990-2016 (Figure 6.2f). From 

1948 to 1990, the radiative component alone resulted in a 0.62 mm yr-1 increase of 

global mean ET0, but the increase was offset by the aerodynamic component variation (-

0.53 mm yr-1), leading to a relatively low increasing rate of 0.09 mm yr-1. A positive 

linear trend (1.39 mm yr-1) was observed from 1990 to 2016, corresponding to an 

increase of 2.2% per decade above the global mean during this period. As shown in 

Table 6.1, of the 1.39 mm yr-1 from 1990 to 2016, the radiative component accounted for 

60% (0.83 mm yr-1 from the PT method), while the aerodynamic component contributed 

by 40% (0.55 mm yr-1). Therefore, the main driver of the global mean ET0 trend from 

1948 to 2016 is the radiative component, while the aerodynamic component 
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counteracted the increase from 1948 to 1990 and accelerated the increase from 1990-

2016.  

            Under equilibrium or quasi-equilibrium evaporation conditions, wind speed has a 

limited impact on ETo variation, and 𝑆𝑈2
= 0. However, increasing wind speed may 

increase (decrease) ETo in dry (humid) climate regions. Hence, the trends of ET0 under 

different climatic regimes are further analyzed in Figure 6.4. The climatic regime was 

classified based on the mean annual RH from 1948 to 2016 (Figure E8, Appendix E). 

The RH at the equilibrium or quasi-equilibrium evaporation condition ( 𝑅𝐻∗ ) was 

calculated by averaging the RH from 1948 to 2016 that can satisfy 𝑆𝑈2
≈ 0. Then, one 

gets  𝑅𝐻∗ = 70% ± 6%. Based on RH at the equilibrium condition (64%-76%), three 

regimes, i.e., RH≤64%, 64%<RH<76%, and RH≥76%, were divided, accounting for 

36%, 35%, and 29% of the global land surface (exclude the Antarctic), respectively. As 

shown in Figure 6.4a,  the ET0 long-term means and trends using the ET_PT_Su method 

matched well with the FAO-PM method in all three RH regimes, with slight 

underestimation (by 1-4%). However, the PT method significantly underestimated global 

ET0 (by 24%) in the drier climate regime (RH≤64%) and overestimated it in the other 

two regimes (10-21%). From 1948 to 1990, the drier climate regime (RH≤64%) and the 

region with equilibrium RH (64%<RH<76%) showed a similar increasing rate (0.16 mm 

yr-1), but a decreasing trend was observed in the humid regime (-0.08 mm yr-1), derived 

by the aerodynamic component (accounted for 56%) (Table 6.1). From 1990 to 2016, the 

increasing trend rates were significantly reinforced in humid (RH≥76%, 0.89 mm yr-1) 
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and drier climate regimes (RH≤64%, 1.94 mm yr-1), while in the region with equilibrium 

RH (64%<RH<76%), the trend rate kept stable.  

 

 

Figure 6.4 Annual variations and trends in the reference evapotranspiration in 

different RH regimes. (a) Long-term mean (1948-2016) seasonal cycle of ETo; (b) 

the trends in global mean ETo with long-term mean removed (1948-2016); (c) time 

series of global mean ETo (excluding Antarctica); and the trends in global mean 

ETo with long-term mean removed for time periods of (e) 1948-1990 and (f) 1990-

2016. 
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Table 6.1 ET0 Long-term Means and Trends under Different RH Regimes. 

Regimes  

1948-1990 1990-2016 

Mean 

(mm) 

Trends 

(mm yr-1) 

Trends_R 

(mm yr-1) 

%R 

(%) 

Mean 

(mm) 

Trends 

(mm yr-1) 

Trends_R 

(mm yr-1) 

%R 

(%) 

RH≤64% 1595 0.16 1.05 54 1625 1.94 0.98 51 

64% <RH<76% 719 0.16 0.55 59 739 0.16 0.55 59 

RH≥76 793 -0.08 0.16 44 811 0.89 0.81 91 

Global 1057 0.09 0.62 54 1082 1.38 0.83 60 

Note: Trends-R means that the ET0 trends if only the radiative component is considered. 

%R indicates the proportion of the ET0 trends that can be explained by the radiative 

component. The mean and trends values are based on the FAO-PM method.   

 

6.3.3. Theoretical PT Coefficient  

            The global long-term mean (1948-2016) theoretical PT coefficient (PTa) is 1.37 

with a temporal standard deviation of 0.02 and a spatial standard deviation of 0.42 

(Figure 6.5a). Our results also demonstrated that the PTa value was 1.26 ± 0.04 under 

equilibrium conditions, i.e., 𝑆𝑟𝑎
≈ 0. The procedure of PTa calculation is similar to that 

of RH at the equilibrium condition, i.e., 𝑅𝐻∗ = 70% ± 6% . The long-term mean 

seasonal variations of PTa of the Northern Hemisphere (NH) and the Southern 

Hemisphere (SH) are shown in Figure 6.5b. Global averaged PTa from April to August 

showed very similar values (1.18) in NH, since the effect of the radiative component on 

ETo was dominated in warm seasons. The monthly-specific variations of PTa are detailed 

in Figure E9, Appendix E.  

            The spatial variation of annual mean PTa (Figure 6.5c) resembled that of the 

calibrated PT coefficient using the FAO PM method (Aschonitis et al., 2017), despite 

using different temporal and spatial resolutions and focusing on different periods in our 

study from theirs. In addition to the latitudinal profiles of annual mean PTa, the inner 
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tropic (<10°N and <15°S) and mid-high latitude (>45°N and >50°N) showed low PTa 

values (less than 1.26) (Figure 6.5d). In addition, the inner tropic regions exhibited the 

least variability compared to higher latitude regions. The reason is that the radiative 

component accounted for more than 90% of the ET0 variation, i.e., SA >0.9, and the wind 

effect showed little impact on ET0 in hot, and humid climatic types (Figure 6.5e and f). 

In addition, wind speed is usually less than 2 m s-1. Hence, e.g., 𝑆𝑈2
 is nearly zero in the 

inner tropic regions (Figure 6.5g and h). The low value in the mid-high latitude is due to 

the negative value of 𝑆𝑈2
 under cold and windy conditions (Figure 6.5h). The highest 

PTa value was observed in cold, humid, and windy climatic regions, e.g., the mid-high 

latitude in SH (>50°S). In the low latitude (~15° to 30°N and 20° to 35°S), the mean PTa 

was relatively stable latitudinally but showed high longitudinally variability due to the 

highly variable RH (Figure E10, Appendix E).  
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Figure 6.5 The theoretical PT coefficient (PTa) and sensitivity coefficients of 

available energy (SA) and wind speed (SU2) for ET0. (a) Annual global mean PTa 

and standard deviation; (b) long-term mean (1948-2016) seasonal cycle of PTa; 

long-term mean (1948-2016) global distributions of (c) PTa; (e) SA; and (g) SU2; and 

latitudinal profiles of (d) PTa; (f) SA; and (h) SU2. Shading in (d), (f), and (h) denotes 

standard deviations, and the black dotted lines mark the mean values. Antarctica is 

excluded since there is no available PGF data.  
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            The changes in ETo can be attributed to the changes in available energy (SA), 

vapor pressure deficit (SD = 1- SA), and aerodynamic resistance (Sra). In the PT method, 

SA = 79.4%, SD  = 1- SA = 20.6%, and Sra = -Su2= 0. With these assumptions, the radiative 

component contribution to ET0 is about four times the aerodynamic component. The 

latitudinal profile showed that SA was the highest at the equator (92%) and declined 

poleward (Figure 6.5f). At around 30°N and S, the SA value can satisfy the assumptions 

in the PT method. The latitudinal profiles of SA and air temperature (Figure E10, 

Appendix E) presented a highly positive correlation (R2=0.99), indicating a strong 

increase in SA as air temperature increases. Overall, available energy is the driving factor 

of global ET0 variations from 1948 to 2016, accounting for 57% ± 26% of the variability 

in ET0 (Figure 6.5f). The result is consistent with the estimated global means shown in 

Table 6.1. Also, the seasonal variations were more significant than the spatial variations. 

As shown in Figure 6.6, SA in warm seasons in Northern Hemisphere was higher than 

76%, even in the high latitude (>60 °N), while in cold seasons, e.g., November and 

December, SA  can be lower than 50% in the low-latitude regions (~20° to 30°N and S).  

            The seasonal impact of aerodynamic resistance (-SU2) on ET0 is shown in Figure 

6.7. The negative values in SU2 indicated that the increasing wind speed (or decreasing 

aerodynamic resistance) could result in a reduction in 𝐸𝑇0. The wind effect on ET0 was 

not monotonous due to the varying interactions of wind with different climatic factors, 

e.g., temperature and relative humidity. In warm, arid climate regions, e.g., Northern 

Africa, Western Asia, and Western Australia, SU2 showed consistently high values (18-

30%) in all seasons. This is because the drier air over these regions generally has a 
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higher vapor pressure gradient. Moreover, wind speed can modulate the sensible heat 

transfer from the vast dry, unirrigated areas and contributes part of the energy required 

for evapotranspiration through warm air advection. In humid climates, the energy, heat, 

and vapor transfer rates over grass reference surfaces and their surrounding environment 

are more similar to each other than in semiarid and arid climates. Hence, PTa can be 

simplified to 𝑃𝑇𝑎 =
1

𝛺
= 1 +

𝛾

𝛾+∆ 

𝑟𝑠

𝑟𝑎
= 1 +

𝛾

𝛾+∆ 
 (0.34𝑈2) , which is dependent only on 

temperature and wind speed. As 
𝛾

𝛾+∆ 
 varies from 0.45 at 10°C and 0.26 at 25°C, the 

corresponding calculated PTa  was from 1.18 (25°C) to 1.32 (10°C), with the assumption 

of 𝑈2 =2 m s-1. Therefore, in warm seasons in humid climates, wind speed showed 

negative impacts on ET0 under moderate wind speed, e.g., in southern China or the 

eastern United States, SU2 was usually within -6%. In mid-high latitude regions (>45°N 

and >50°S), SU2 showed consistently negative values due to cold, humidity, and windy 

climates. 
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Figure 6.6 Monthly mean of sensitivity coefficients of available energy (SA) on 

reference evapotranspiration from 1948 to 2016. 

  

 

 

Figure 6.7 Monthly mean of sensitivity coefficients of wind speed SU2 (-Sra) on 

reference evapotranspiration from 1948 to 2016. 
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6.3.4. Validation of PT Coefficients under Different Climate Conditions  

            The relative humidity at the equilibrium condition, i.e., 𝑅𝐻∗ = 70%, was used to 

obtain the simplified PT coefficients based on equations (6.21) and (6.24). Simplified 

forms for all climatic types with light to moderate winds were derived using equation 

(6.21), i.e., PTa=1.87-0.87 RH (1). The simplified form with strong winds was obtained 

using equation (6.24), i.e., PTa=2.35-1.55 RH (2). Three scenarios were set to evaluate 

the performance of these two simplified forms. Scenario 1 (ET1) applies form (1) for all 

wind conditions, scenario 2 (ET2) applies form (2) for all wind conditions, and Scenario 

3 (ET3) applies form (1) when U2 ≤2.0 m s-1, and form (2) when U2 >2.0 m s-1. By doing 

this, the underestimation (overestimation) was expected in ET1 (ET2). As shown in 

Figure 6.8, the three adjusted PT methods captured the mean geographical patterns of 

ET0 compared with the FAO-PM method, and the relative errors were within 20%. As 

expected, the global mean ET0 calculated using ET1 (ET2) was underestimated by 1% 

(overestimated by 3%). A slight overestimation was observed in ET3 (by 1%). ET3 also 

performed better than ET1 and ET2 in simulating global mean ETo trends. However, 

these three methods all overestimated ETo from May to July (Figure 6.9). Taken 

together, the general forms of PT coefficients under different climatic types are 

summarized in Table 6.2. Depending on the weather data availability and climatic 

conditions, different forms of the PT coefficients can be used. The use of simplified PT 

coefficients with relative humidity as the only input can improve the performance of the 

PT method in areas with limited weather data. 
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Figure 6.8 Comparison of reference evapotranspiration using the adjusted PT 

methods. Mean annual reference evapotranspiration using (a) ET1, (b) ET2, and (c) 

ET3; relative error (%) of (d) ET1, (e) ET2, and (f) ET3 compared with the FAO-

PM method; and (g) latitudinal profiles of mean annual ETo. Antarctica is excluded 

since there is no available PGF data over there. 
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Figure 6.9 Trends in the reference evapotranspiration using the adjusted PT 

methods. (a) Time series of global mean ETo (excluding Antarctica); (b) long-term 

mean (1948-2016) seasonal cycle; and (c) the trends in global mean ETo with long-

term mean removed (1948-2016). 

 

Table 6.2 Priestley-Taylor Coefficients for Different Climatic Types and Required 

Weather Data. 
Priestley-Taylor 

 coefficient 

Range of 𝛼 Applications Weather data 

required   
(1 +  𝛺 − 𝑆𝐴)

𝑆𝐴
  

 The general form for all climatic types  same as PM 

method  

1

𝛺
 

 General form in a humid climate same as PM 

method 

1.26  Equilibrium evaporation from well-watered 

grass surface (humid, light to moderate wind) 

- 

1.87 − 0.87𝑅𝐻 (1-1.87) Simplified form for all climatic types with 

light to moderate winds (U2 ≤2.0 m s-1) 

monthly mean RH 

in fraction  

2.35 − 1.55𝑅𝐻 (0.8-2.35) Simplified form for all climatic types regions 

with strong wind (U2 >2.0 m s-1) 

monthly mean RH 

in fraction 
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6.4. Discussion  

6.4.1. Sensitivity Analysis 

            Sensitivity analysis of SA and Su2 to changes in air temperature, RH, and wind 

speed was performed. Since each year showed a similar pattern, the daily data at each 

grid in 2015 was illustrated (Figure 6.10). Regression analysis on SA and Su2 against air 

temperature, RH, and wind speed was also conducted (Figure E11, Appendix E). 

Temperature can explain 41% of the variance of SA from 1948 to 2016 (R2=0.41). When 

air temperature was higher than 20℃, Su2 was more sensitive to RH, which explained 42% 

of the variance of Su2. Variations of the theoretical PT coefficient to changes in air 

temperature, RH, and wind speed were displayed in Figure 6.11, which can be used to 

guide the selection of an appropriate PT coefficient for regional use.  

 

 

 

Figure 6.10 Variations of SA and Su2 to changes in meteorological variables. Daily 

data in 2015 is illustrated. 
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Figure 6.11 Variations of the theoretical PT coefficient to changes in meteorological 

variables. Daily data in 2015 is illustrated. 

 

6.4.2. Trends in SA, Su2, and PTa 

            The theoretical PTa derived in this study, i.e., 𝑃𝑇𝑎 =
1

𝑆𝐴
 (1 +  𝑆𝑈2

), well captured 

the temporal variations and spatial distributions of global ETo, as well as its long-term 

trends, indicating the reliability and robustness of this method. With PTa rewritten as 

𝑃𝑇𝑎 =
1

𝑆𝐴
 (𝑆𝐴 + 𝑆𝐷 + 𝑆𝑈2

) , the reciprocal of PTa, i.e., 
𝑆𝐴

𝑆𝐴+𝑆𝐷+𝑆𝑈2

 , could be a useful 

coefficient to evaluate the relative contribution of the radiative component to the ET0 

changes. Given that the global mean PTa from 1948-2016 was 1.37, the radiative 

component contributed to 73% of the ET0 changes during this period. In previous 

studies, the estimations of the relative contribution of radiative or aerodynamic in 
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driving ETo changes were inconsistent with each other and showed opposite conclusions 

(Matsoukas et al., 2011; Vicente-Serrano et al., 2014; Wang et al., 2012). The theoretical 

PTa derived in this study provides a possible way to resolve this important issue. It is 

noted that wind effect was independent of evapotranspiration saturated under 

equilibrium or quasi-equilibrium evaporation, i.e., 𝑆𝑈2
=0. Therefore, PTa can be 

simplized to 
𝑆𝐴

𝑆𝐴+𝑆𝐷+𝑆𝑈2

 =
𝑆𝐴

𝑆𝐴+𝑆𝐷+0
= 𝑆𝐴, which indicates that SA represents the relative 

contribution of the radiative component to ETo under equilibrium or quasi-equilibrium 

evaporation, the same as the decoupling coefficient (Ω) suggested by Jarvis and 

McNaughton (1986). Moreover, the trends of PTa can be used to determine if the relative 

contribution of the radiative or aerodynamic component is changing or not in a warming 

climate. A negative (positive) trend of PTa indicates that the radiative component would 

contribute more (less) to ET0 changes. As shown in Figure 6.12, the relative contribution 

of the radiative component to ET0 variation did not show a clear trend at global scales 

from 1948 to 2016. Although there are some regions, e.g., regions with mid-high latitude 

(>30°N and >30°S), showing significant increasing or decreasing trends in cold seasons, 

these trends were not statistically significant in most regions. For example, the area 

fraction of regions with positive trends (45% ± 8%) on average was slightly larger than 

with negative trends (42% ± 6%), and more regions showed positive trends (53% ± 3%) 

from June to October than in other months (40% ± 3%, Figure 6.13). However, the area 

fraction of regions with statistically significant trends was much smaller and showed an 

opposite pattern, i.e., more negative trends (9% ± 3%) in all months than the positive 

trends (6% ± 1%), particularly from April to September. Most of the significant 
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decreasing trends were shown in Northern Africa, indicating that the proportion of 

radiative components in driving ETo has been increasing in this region over the past 

several decades. This is mainly due to the decreasing trend of Su2 (Figure E13, Appendix 

E), driven by the decreasing wind speed in this region (Figure E14, Appendix E).  

            The significance of monthly SA and Sra (-Su2) trends were further evaluated using 

the Mann-Kendal trend test to determine if the radiative component and aerodynamic 

component impacts on global reference evapotranspiration would increase or decrease in 

a warming climate (Figure 6.13, Figures E12 and 13 in Appendix E). The regions with 

positive trends of SA were dominant in all months, accounting for 59% ± 13% of total 

global land surface area, with 36% ± 10% of the regions passing the statistical 

significance test (p<0.05). In addition, the SA increasing trends were more pronounced in 

warm seasons, showing similar patterns as the ETo changes (Figure E7). The increasing 

trend of SA indicated that the radiative component impact on ETo variation was 

reinforced, particularly in warm seasons. The positive trends of Su2 were also dominant 

in all months (50% ± 11%), but the trends with statistical significance were only 6% ± 

8% (p<0.05). Considering the widely declining wind speed, an increase of Su2 would lead 

to a reduced ET0. Although both radiative and aerodynamic components showed 

reinforced impacts on global reference evapotranspiration, the widely declining wind 

speed slightly compensated for the expected increases driven by the increased 

contribution of the radiative components to ET0 increases in a warming climate.  
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Figure 6.12 Mann-Kendal annual trend tests of monthly PT coefficient (PTa) from 

1948 to 2016. Black dots indicate statistically significant (p<0.05), and shading is the 

Theil-Sen slope. 

 

 

Figure 6.13 Area fractions of global land surface with positive trends and negative 

trends as well as the trends with statistically significant (p<0.05) for PTa, SA, and Su2 

from 1948 to 2016.  
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6.5. Conclusions  

          In this chapter, an analytical expression for the PT coefficient was derived, i.e., 

𝑃𝑇𝑎 =
1

𝑆𝐴
 (1 + 𝑆𝑈2

),  following the FAO-PM method using the daily Princeton Global 

Forcing (PGF) dataset with a spatial resolution of 0.25° and temporal coverage from 

1948-2016. PTa well captures the temporal and spatial distribution of global ETo as well 

as its long-term trends. PTa was 1.26 ± 0.04  under equilibrium conditions. The PT 

coefficients were further simplified with relative humidity as the only input under slight 

to moderate wind (𝑃𝑇𝑎 = 1.87 − 0.87𝑅𝐻) and strong wind (𝑃𝑇𝑎 = 2.35 − 1.55𝑅𝐻), 

both of which showed improved performance compared with the original PT method. 

The radiative component is the driving factor of the ETo changes, and it is controlled by 

the changes in air temperature. Our finding shows implications of understanding the 

roles of the radiative and aerodynamic components in the ET0 changes. The major 

uncertainty in this study is from the variations of the gridded weather dataset used, 

which may affect the magnitudes and spatial distributions of ETo, ETo trends, SA, Su2, 

and the PT coefficient at global scales. However, the dataset uncertainties are limited, 

and thus the reliability and robustness of the theoretical PT coefficient derived in this 

study are high.  
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7. CALIBRATION AND BIAS CORRECTION OF SEASONAL WEATHER 

FORECASTS FOR REAL-TIME REGIONAL CROP MODELING 

 

            Reliable monthly and seasonal weather forecasts at regional and local scales are 

essential for decision-making in irrigation management and predicting future crop 

production, especially in water-stressed regions with declining water resources. 

Currently, global and regional climate models that provide intra-seasonal and seasonal 

weather predictions are limited. The North American Multi-Model Ensemble (NMME) 

is an experimental real-time seasonal forecast system, which provides 12-month daily 

global weather forecasts at 1º spatial resolution (roughly 110 km at the equator) based on 

ensemble simulations of several state-of-the-art coupled general circulation models. 

However, the coarse resolution of the NMME dataset limits its use in driving regional 

and local crop models because of the increased bias and uncertainties associated with 

applying large-scale information at the regional scales. To overcome this issue, an 

improved downscaling method, namely bias-corrected or ‘nudging’ method, was used to 

produce 1-km gridded daily weather projections (maximum and minimum air 

temperatures and precipitation) over the contiguous United States (CONUS) from one 

representative NMME model, i.e., the Canadian Coupled Climate Model versions 4 

(CanCM4). Additionally, the arithmetic means of three NMME model ensembles, 

including CanCM4, the Community Climate System Model version 4 (CCSM4), and the 

Goddard Earth Observing System Model version 5 (GEOS-5) were calculated and 

incorporated into comparisons with the downscaling results.  
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            The recently-released Daily Surface Weather and Climatological Summaries 

(DAYMET, version 4), a 1-km grid spacing dataset created by interpolating and 

extrapolating ground-based observations through statistical modeling techniques, was 

used for calibration of the downscaled hindcast predictions of CanCM4 for 1982-2010. 

Furthermore, the reliability of the downscaled CanCM4 forecasts for its usage in local 

crop modeling was evaluated at various lead times using a calibrated CSM-CROPGRO-

Cotton module of the Decision Support System for Agrotechnology Transfer (DSSAT) 

model at an experimental station (i.e., Chillicothe) in the semi-arid Texas Rolling Plains 

during the 2020 cotton growing seasons. Results indicated that the post-processing of 

projected data like downscaling of the raw NMME outputs was required before using the 

data for seasonal irrigation management and crop yield prediction. Our study suggested 

that the downscaling approach used in this study could considerably improve the 

performance of CanCM4 in driving regional modeling, and the extent of improvement 

could vary with time and location. The high-resolution seasonal weather forecasts 

generated in this study ensured robust and reliable regional or local crop yield prediction 

over the CONUS region.  

7.1. Introduction 

            Reliable short-term and seasonal weather forecasts at regional and local scales 

are essential for decision-making in irrigation management and predicting future crop 

production, especially in water-stressed regions with declining water resources. The 

short-term climate projections, e.g., the Global Forecast System (GFS), and long-term 

climate projections, e.g., Global Climate Models (GCMs), have been widely 
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investigated. However, current uses of global and regional climate models to provide 

intra-seasonal and seasonal weather predictions are still limited. The North American 

Multi-Model Ensemble (NMME) is an experimental real-time seasonal forecast system, 

which provides 12-month daily global weather forecasts at 1º spatial resolution based on 

ensemble simulations of several state-of-the-art coupled general circulation models, 

including Community Climate System Model, version 4 (CCSM4) (Danabasoglu et al., 

2012), Canadian Coupled Global Climate Model, version 3 (CanCM3) and version 4 

(CanCM4) (Merryfield et al., 2013), Goddard Earth Observing System (GEOS-5) 

(Vernieres et al., 2012), Climate Forecast System, version 2 (CFSv2-2011) (Saha et al., 

2006), and Global Environmental Multiscale/Nucleus for European Modeling of the 

Ocean (GEM/NEMO) (Aumont et al., 2015). However, the coarse resolution of the 

NMME dataset is always accompanied by increased bias and uncertainties when 

applying it to the regional scales, which usually limits its use in driving regional and 

local real-time crop models (Barbero et al., 2017; Barnston and Tippett, 2017; 

Narapusetty et al., 2018; Yazdandoost et al., 2020).  

            The limitation of the use of the NMME data is illustrated in Figure 7.1. The 

maximum temperature (Tmax) and minimum temperature (Tmin) simulated by CanCM4 

were overall overestimated in July 2019 compared with observations from the Daily 

Surface Weather and Climatological Summaries version 4 (DAYMET). Precipitation 

also exhibited considerable bias compared with the observation, particularly over the 

eastern United States, with many observed details not captured in CanCM4.  
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Figure 7.1 Comparison of (a) monthly mean maximum temperature, (b) monthly 

mean minimum temperature, and (c) monthly total precipitation from NMME 

dataset (simulated by CanCM4 at 1º spatial resolution) and observations from 

DAYMET at 1 km spatial resolution in July 2019. 

 

            Dynamic and statistical downscaling are the two most commonly used 

techniques to downscale climate model outputs to the regional scale for use in 

agricultural impact studies (Gebrechorkos et al., 2019; Gutmann et al., 2012). Dynamic 

downscaling requires inputs from GCMs to set up boundary and initial conditions, which 

can explicitly resolve the convective rainfall process. However, dynamic downscaling is 

computationally expensive and the downscaled data can still have bias and uncertainty 

from the systematic errors inherent to the use of boundary conditions from GCMs, which 
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limit its application in local and regional impact analysis and adaptation studies (Adachi 

and Tomita, 2020). In contrast, statistical downscaling is simple, fast, and effective, and 

it requires less computational time and expense. Therefore, it is widely used in local and 

regional crop modeling (Hawkins et al., 2013; Jones and Thornton, 2013) and water 

management (Madadgar et al., 2016; Yazdandoost et al., 2020). 

            Typical statistical downscaling includes two steps: (1) to develop a 

transformation function to represent a statistical relationship between large- and local-

scale weather variables using historical data; and (2) to apply the transformation function 

onto future large-scale outputs to derive future downscaled data. The commonly used 

statistical downscaling approaches include the delta method, e.g., delta addition and 

changing factor (Navarro-Racines et al., 2020), bias correction (or nudging), e.g., 

correction only for mean bias (Huntingford et al., 2005; Ines and Hansen, 2006) or 

corrections for both mean and variance (Hawkins et al., 2013; Ho et al., 2012), quantile 

mapping (Kaini et al., 2020), and multiple linear regression (Gebrechorkos et al., 2019). 

Figure 7.2 illustrates example procedures of the four typical methods, including (a) Delta 

addition (only mean is corrected) (Figure 7.2a); (b) Delta correction (corrected for 

variance) (Figure 7.2b); (c) Quantile mapping (Figure 7.2c); and (d) Proposed method 

(both mean and variance are corrected, Figure 7.2d) (Hawkins et al., 2013; Ho et al., 

2012).   
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Figure 7.2 Schematic diagrams showing different downscaling methods: (a) delta 

addition; (b) delta correction; (c) quantile mapping; and (d) proposed method. (a)-

(c) are adapted from https://rcmes.jpl.nasa.gov/content/statistical-downscaling.  

 

            This chapter aimed to improve the skill of seasonal weather forecasts of the 

CanCM4 GCM, for real-time regional crop modeling over the CONUS by performing 

bias-corrected statistical downscaling. The specific objectives were to (1) perform an 

improved bias-corrected downscaling on the original outputs of  Tmax, Tmin, precipitation, 

and solar radiation from CanCM4; (2) compare the performance of the downscaled 

CanCM4 forecast with the ensemble means of multiple models, including CanCM4, 

CCSM4, and GEOS-5; (3) evaluate the reliability of the downscaled CanCM4 forecasts 

at different lead times (0-5 month lead); and (4) test the downscaled CanCM4 seasonal 

forecasts in real-time crop modeling using a calibrated CSM-CROPGRO-Cotton module 

of the Decision Support System for Agrotechnology Transfer (DSSAT) model at an 

experimental station in the semi-arid Texas Rolling Plains during the 2020 cotton 

growing season.   

https://rcmes.jpl.nasa.gov/content/statistical-downscaling
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7.2. Methodology  

7.2.1. Downscaling Method  

            The improved bias correction downscaling method with both mean and 

variability correction (Hawkins et al., 2013; Ho et al., 2012) was used to produce daily 

weather data at a 1-km resolution from CanCM4 seasonal forecasts. The major 

assumptions of this method include: (1) stationarity between small-scale and large-scale 

dynamics, which means that the same relationship holds good when relating future 

simulations to future observations, and (2) present-day small-scale and large-scale 

weather data have the same shape of distributions, but with different means and variance. 

As such, the future small-scale weather data can be calculated as:  

𝑀(𝑡) = 𝑂𝑟𝑒𝑓 +
𝜎𝑂,𝑟𝑒𝑓

𝜎𝑀,𝑟𝑒𝑓
(𝑀𝑓𝑢𝑡(𝑡) − 𝑀𝑟𝑒𝑓)                                       (7.1) 

where M(t) is the Tmax, Tmin, and precipitation at the field location (1-km resolution) at 

time t; 𝑀𝑓𝑢𝑡(𝑡) is the seasonal forecasts by CanCM4 at time t; σO,ref and σM,ref represent 

the standard deviations of the monthly observations and the CanCM4 outputs in the 

reference period, respectively; and 𝑂𝑟𝑒𝑓  and 𝑀𝑟𝑒𝑓  are the means of the monthly 

observations and the CanCM4 outputs, respectively. Since weather variables have a 

strong seasonal cycle, the calibration was performed for each month individually. 

7.2.2. Data 

            The daily seasonal forecast data was obtained from the NMME forecasting 

system. NMME is an experimental real-time seasonal forecast system, which provides 

daily global weather forecasts with an 11-month lead time at 1º spatial resolution 
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(approximately 110 km at the equator) with 10 ensemble simulations using several state-

of-the-art coupled GCMs. In the NMME dataset, CESM1, CanCM3, and CanCM4 

GCMs provide all the four weather variables required for crop modeling, i.e., Tmax, Tmin, 

precipitation, and solar radiation, but currently, only CanCM4 has a long-term coverage 

of dataset accessible for a reliable calibration (https://www.ncei.noaa.gov/data/north-

american-multi-model-ensemble/access/cancm4/). Therefore, the hindcast predictions 

(1982-2010) of CanCM4 were used to calibrate the downscale parameters. In addition, 

for real-time weather forecasts, the multi-model means of CCSM4, GEOS-5, and 

CanCM4 were calculated and compared with the downscaled data. The CCSM4 and 

GEOS-5 models were selected because they get updated and have the same time and 

spatial resolution as CanCM4. Solar radiation is not simulated in CCSM4 and GEOS-5. 

Hence, solar radiation was derived based on Tmax, Tmin, and extraterrestrial solar radiation 

(Ra). 

            DAYMET, version 4 (https://daymet.ornl.gov/) data, which is available at 1-km 

grid-level over the CONUS (1982-2019), was used as the reference database for the 

calibration and validation of the downscaling results. DAYMET provides long-term, 

continuous daily weather variables (e.g., Tmax, Tmin, precipitation, solar radiation, and 

vapor pressure, etc.) by interpolating and extrapolating ground-based observations, 

which has been widely applied in agricultural research areas.  

7.2.3. Crop Growth Simulation Model 

            Texas has the largest cropland acreage in the United States. The agricultural 

production of Texas contributed about $24 billion in 2015, which is crucial to the local 

https://www.ncei.noaa.gov/data/north-american-multi-model-ensemble/access/cancm4/
https://www.ncei.noaa.gov/data/north-american-multi-model-ensemble/access/cancm4/
https://daymet.ornl.gov/
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economy (Gleaton and Robinson, 2016). Texas Rolling Plains (TRP) region accounted 

for 13% of Texas cotton. Since the TRP region is a semi-arid area with a relatively low 

annual rainfall of about 460-700 mm (18 to 28 in), cotton production over TRP is highly 

dependent on irrigation water from the underlying Seymour Aquifer. However, irrigated 

agriculture here is facing many challenges, including a reduction in well capacities and 

increased irrigation water demand due to the projected warmer and drier summers in the 

future (Modala et al., 2017; Nielsen-Gammon et al., 2020). Therefore, reliable seasonal 

weather forecasts can help develop efficient irrigation management strategies for 

sustaining crop production in this region.  

            To test the reliability of the downscaled seasonal weather forecasts in real-time 

crop modeling, a calibrated CSM-CROPGRO-Cotton module of the Decision Support 

System for Agrotechnology Transfer (DSSAT) model (Hoogenboom et al., 2019; Jones 

et al., 2003) was applied to a cotton field at the Texas A&M AgriLife Research Station 

at Chillicothe in the TPR region (34.25°N, 99.52°W, elevation 447 m) during the cotton 

growing season of 2020 (May-October). The DSSAT CSM-CROPGRO-Cotton module 

was previously calibrated and validated by Adhikari et al. (2017) using the 

measurements of 2011-2015 at the same site, with an average percent error in seed 

cotton yield prediction of -10.1% and -1.0% for the calibration and validation, 

respectively. 

            The evaluated CSM-CROPGRO-Cotton model was used to predict cotton water 

use and yield using the historical data (i.e., preceding to the growing season) and the 

forecasted seasonal weather data (i.e., downscaled data) with 0-5 month lead time. The 
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minimum weather data inputs required for the crop model included daily Tmax and Tmin 

(°C), precipitation (mm), and solar radiation (MJ m-2). Historical weather data from an 

on-site weather station at Chillicothe was used for validation of the downscaled data. 

Missing weather data was filled with the data recorded at a nearby West Texas Mesonet 

weather station (Mesonet, 2021) and a National Climatic Data Center (NCDC) weather 

station. In DSSAT, crop growth was simulated with the assumptions of no water and 

fertilizer stresses. 

7.2.4. Real-time Weather Forecasts Generation 

            The seasonal weather forecast generation workflow using the multi-model mean 

and downscaling methods is illustrated in Figure 7.3. For the multi-model mean method, 

the arithmetic means of the raw model outputs (30 ensembles) of Tmax, Tmin, and 

precipitation were calculated at every grid with daily frequency and at 1º×1º spatial 

resolution. For the downscale method, the 1º×1º data was first interpolated to 1 km×1 

km using bilinear interpolation, which was then bias-corrected using the downscaling 

parameters derived in Section 7.2.1 to get the final downscaled weather forecast data at a 

1 km resolution. The real-time solar radiation was calculated as (Allen, 1998): 

𝑅𝑠 = 0.16√(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) 𝑅𝑎                                         (7.2) 

where 𝑅𝑎 is the extraterrestrial radiation, MJ m-2 d-1. An adjustment coefficient of 0.16 is 

suggested for interior regions, while 0.19 is suggested for coastal regions.  

            For real-time crop modeling, the seasonal forecast weather file is updated 

monthly, and the forecasted data is replaced by the newly available real-time weather 
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data as the growing season progresses and thereby ensuring a more reliable prediction of 

crop yield and irrigation water requirement. The historical weather data started several 

months before the planting date, ensuring the start-up of the DSSAT model, and 

historical data was obtained from three sources: 1) Mesonet data 

(http://www.mesonet.ttu.edu/meteograms/), 2) National Climatic Data Center (NCDC) 

data (https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/), and 3) North American 

Regional Reanalysis (NARR) data (ftp.cdc.noaa.gov/Datasets/NARR/Dailies/monolevel/). 

 

 

Figure 7.3 Schematic showing weather data inputs and processing. 

 

 

 

http://www.mesonet.ttu.edu/meteograms/
https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/
ftp://ftp.cdc.noaa.gov/Datasets/NARR/Dailies/monolevel/
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7.2.5. Model Evaluation 

            Root-mean-square error (RMSE) and relative error (RE) were used to evaluate 

the model performance, and they were estimated as per equations (7.3) and (7.4): 

𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑖−𝑋0𝑖)2𝑛

𝑖=1

𝑛
                                                 (7.3) 

RE (%) =  
(𝑋𝑖−𝑋0𝑖)

𝐸𝑇0𝑖
× 100                                            (7.4) 

where 𝑋𝑖 and 𝑋0𝑖 are the ith calculated data using the predicted weather variable using 

different methods and observations from DAYMET or field data, respectively, and n is 

the number of observations. The best method has RMSE and RE values equal to 0.  

7.3. Results and Discussion 

7.3.1. Downscaling Method Evaluation for the Reference Period  

            The hindcast of the raw CanCM4 output greatly overestimated Tmax in most 

regions compared with the DAYMET observations (Figure 7.4a,b). The most significant 

overestimation was found around the Rocky Mountains (by 50%, Figure 7.4d), followed 

by Kansas, Nebraska, and Iowa (by 40%). Underestimation was found in the Great Lake 

regions (by 50%), Washington (by -20%), California (by 20%), and Florida (<10%). 

From seasonal variation (Figure 7.4e), it was found that the raw CanCM4 output 

overestimated Tmax from June to September by as high as 5 ºC. Significant 

overestimation was also noticed for Tmin (Figure 7.5a-d), with a consistent overestimation 

of around 3 ºC throughout the season (Figure 7.5e). The overestimation of Tmin by the 

CanCM4 was more significant in the northern regions (by 50%) than in the southern 

regions (by 20-30%, Figure 7.5d).  
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            Precipitation from the original hindcast of CanCM4 showed pronounced 

differences over short distances in regions with complex topography, such as the Rocky 

Mountains and the Appalachian Mountains (Figure 7.6). The reason for this trend is that 

the orographic and inversion processes can lead to substantial differences in seasonal 

weather variability. Excepting overestimation in the northwestern United States (by 

50%), most regions showed large negative deviations from the observations. The 

underestimation was pronounced during the growing season, with an average of around 

30 mm per month (Figure 7.6e).  

 

 

Figure 7.4 Comparison of hindcast predictions of mean maximum temperature in 

the growing season (May to October) using different methods. Long-term (1982-

2010) seasonal mean Tmax using (a) observed data from DAYMET; (b) CanCM4 

data; (c) downscaled CanCM4 data; (d) relative errors (%) of CanCM4 data 

relative to the observed data; and (e) their mean seasonal variations.  
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Figure 7.5 Comparison of hindcast predictions of mean minimum temperature in 

the growing season (May to October) using different methods. Long-term (1982-

2010) seasonal mean Tmin using (a) observed data from DAYMET; (b) CanCM4 

data; (c) downscaled CanCM4; (d) relative errors (%) of CanCM4 data relative to 

the observed data; and (e) their mean seasonal variations.  
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Figure 7.6 Comparison of hindcast predictions of the total precipitation in the 

growing season (May to October) using different methods. Long-term (1982-2010) 

mean total seasonal precipitation from (a) observed data from DAYMET; (b) 

CanCM4 data; (c) downscaled CanCM4; (d) relative errors (%) of CanCM4 data 

relative to the observed data; and (e) their mean seasonal variations.  

 

            Together, Tmax and precipitation from the raw CanCM4 outputs showed more 

significant errors in the growing season. Therefore, the post-processing of the raw 

CanCM4 outputs was required before using them in seasonal irrigation management and 

crop yield prediction. As shown in Figures 7.4 to 7.6, the downscaled CanCM4 output 

captured the long-term mean (1982-2010) of the observations very well. The calibration 

parameters used to downscale the raw CanCM4 outputs of Tmax, Tmin, and precipitation at 

1 km resolution are documented in NetCDF files, which can be easily applied in other 

studies. The spatial distribution of these parameters is also detailed in Figures F1-3, 

Appendix F.  
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7.3.2. Downscaling Method Versus Multi-Model Mean 

            To test the seasonal forecast ability at the regional scale, the grid-level 

comparisons of Tmax, Tmin, and total precipitation for the 2019 growing season (August 

was not included due to data unavailability from the NMME forecasts) of the 

downscaled CanCM4 and multi-model mean forecasts were compared with the 

observations from DAYMET (Figures 7.7-7.9). The seasonal mean Tmax in 2019 was 

23.8 ± 6.2℃ . The downscaled CanCM4 forecast showed high consistency with the 

observations, with a seasonal mean of 24.1 ± 5.7 ℃. On average, the downscaled method 

overestimated seasonal mean Tmax in 2019 by 1.2% compared with the observations. 

Most of the positive deviation was found in the western regions, except for California, 

and most of the negative deviation (within 10%) was found in the eastern regions 

(Figure 7.7e). The relative error for each month is further detailed in Figure F4, 

Appendix F. The multi-model mean forecast showed a large positive deviation (about 2 

℃) in most regions (Figure 7.7f), which can also be inferred in the latitudinal profiles 

(Figure 7.7d).  

            The overestimation in Tmin in the multi-model mean forecast was more 

pronounced (Figure 7.8), with an averaged positive deviation of 2.6 ℃ compared to the 

observation (10.6 ± 5.9 ℃). The seasonal mean Tmin from the downscaled forecast was 

10.4 ± 5.3 ℃, with less than 2% underestimation (0.2 ℃) compared with observation, 

much smaller than using the multi-model mean (23%). The relative error of the seasonal 

and monthly mean Tmin of the downscaled method showed a similar pattern as Tmax 

forecast, and the monthly comparison is detailed in Figure F5, Appendix F.  



 

190 

 

            The seasonal total precipitation in 2019 was 309 ± 282 mm (Note that August 

was not included due to data being unavailable from the NMME forecast) (Figure 7.9). 

Precipitation from the downscaled CanCM4 forecast (336 ± 292 mm) well captured the 

geographical patterns of observations, with a slight overestimation by 9% on average 

(Figure 7.9e). The latitudinal profiles of seasonal total precipitation also matched the 

observation well, except for a 50 mm overestimation from 35° to 40°N (Figure 7.9d). 

However, the downscaled CanCM4 forecasts at local scales exhibited high variability, 

and a significant overestimation in the western regions. This overestimation was also 

found in the multi-model mean forecast (Figure 7.9f). On average, the seasonal 

precipitation prediction from the multi-model mean (254 ± 192 mm) was underestimated 

by 18% relative to the observations, with a more significant underestimation in 

September and October (Figure F6, Appendix F).  
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Figure 7.7 Comparison of mean maximum temperature forecast in the growing 

season (May to October) in 2019 using different methods. Seasonal mean Tmax using 

(a) observed data from DAYMET; (b) downscaled CanCM4; (c) multi-model 

mean; (d) latitudinal profiles of seasonal mean Tmax. Color lines indicate the mean 

value per degree latitude for Tmax from the three different methods. Shading 

denotes the standard deviation and relative errors (%) of seasonal mean Tmax of (e) 

downscaled CanCM4 and (f) multi-model mean relative to the observation. Note 

that August data is not included due to non-availability. 
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Figure 7.8 Comparison of mean minimum temperature forecast in the growing 

season (May to October) in 2019 using different methods. Seasonal mean Tmin using 

(a) observed data from DAYMET; (b) downscaled CanCM4 data; (c) multi-model 

mean; (d) latitudinal profiles of seasonal mean Tmin.. Color lines indicate the mean 

value per degree latitude for Tmin from the three different methods. Shading 

denotes the standard deviation and relative errors (%) of seasonal mean Tmin of (e) 

Downscaled CanCM4 and (f) multi-model mean relative to the observation. Note 

that August data is not included due to non-availability.  
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Figure 7.9 Comparison of total precipitation forecast in the growing season (May to 

October) in 2019 using different methods. Seasonal mean Tmin using (a) observed 

data from DAYMET; (b) downscaled CanCM4 data; (c) multi-model mean; (d) 

latitudinal profiles of seasonal precipitation. Color lines indicate the mean value per 

degree latitude for precipitation from the three different methods. Shading denotes 

the standard deviation and Relative errors (%) of seasonal precipitation of (e) 

downscaled CanCM4 and (f) multi-model mean relative to the observation. Note 

that August data is not included due to non-availability. 

 

            Figures 7.7 to 7.9 revealed that the downscaled CanCM4 data exhibited better 

performance than the multi-model mean in the forecast of Tmax, Tmin, and precipitation at 

a regional scale and hence this data could be possibly used in regional real-time crop 

modeling with careful attention to the relatively high variability of the downscaled 

precipitation forecast at local scales. 
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7.3.3. Predictions at Different Lead Times  

            In order to investigate the reliability of the downscaling method at different lead 

times, predictions with 0 to 5-month lead times were examined. The growing season of 

cotton in the TRP region usually begins from the planting date in May and continues to 

October, suggesting a lead time of 5 months. Here, the predictions in June 2019 at 

different lead times were taken as an example (Figure 7.10). For Tmax and Tmin, the 

downscaling signature can be persistent for a relatively long lead time, as much as 5 

months. However, the downscaling signature for precipitation diminished quickly as the 

lead time increased, which was found primarily in warm seasons (Figure F7, Appendix 

F). This is because the influence of initial conditions decayed with a longer simulation 

time (Lavers et al., 2009). In contrast, precipitation in cold months like December 

showed better performance (Figure 7.11), which is consistent with other studies 

(Narapusetty et al., 2018; Yazdandoost et al., 2020). Therefore, the decline of the 

downscaling signature in precipitation was not evident in cold seasons (Figure 7.11).  
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Figure 7.10 Mean maximum/minimum temperature and total precipitation 

predictions for June 2019 at different lead times using the downscaled method. 

 

 

Figure 7.11 Monthly total precipitation predictions for December 2019 at different 

lead times using the downscaled method. 

 

7.3.4. Cross-validation at Local Scale 

            To test the forecast skill of the downscaling method at a local scale, cross-

validation for both the hindcast and forecast periods was performed at the Chillicothe 

station (Figure 7.12). During the hindcast period, the downscaling method significantly 

improved the forecast skill of the raw CanCM4 output. The RMSE of the Tmax, Tmin, and 

seasonal precipitation reduced from 6.3 ºC, 4.1 ºC, and 290 mm (the downscaled 

CanCM4) to 2.2 ºC, 1.6 ºC, and 203 mm (the raw CanCM4), respectively. The 
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precipitation forecasts showed higher variability than did Tmax and Tmin. Daily forecasts 

of Tmax and Tmin, and monthly forecasts of precipitation in 2019 are illustrated in Figure 

7.13. Daily Tmax and Tmin forecasts exhibited high prediction skills (R2=0.72 for Tmax and 

R2=0.71 for Tmin), while the precipitation in this year was forecasted with poor skill.  

 

 

Figure 7.12 Comparison of monthly mean (a) Tmax and (b) Tmin, and seasonal total 

precipitation for the reference period (1982-2010) using DAYMET (Observation), 

CanCM4, and downscaled CanCM4 data at the Chillicothe station. 
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Figure 7.13 Comparison of daily (a) (b) Tmax, (c)(d) Tmin, and (e) monthly 

precipitation from DAYMET (Observation), CanCM4, and downscaled CanCM4 

in 2019 at the Chillicothe station. Note that the black bar in (e) represents field 

observation of rainfall. March and August data were unavailable.   

 

7.3.5. Test for Crop Modeling 

            To test the usability of high-resolution seasonal weather forecasts generated in 

this study in local crop modeling, the yield prediction for the 2020 growing season at 

lead 0 month using different methods at the Chillicothe station was compared (Figure 
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7.14). The accumulated precipitation of the downscaled forecasts in the 2020 growing 

season exhibited good performance compared with the field observation, but both the 

raw CanCM4 output and multi-model mean methods significantly underestimated the 

accumulated precipitation by 49% and 43%, respectively (Figure 7.14a). The 

downscaling method also showed the best performance in Tmax and Tmin, compared with 

the other two methods (Figure 7.14b, c). The mean Tmax and Tmin forecasted using the 

downscaling method showed a slight underestimation (about 1-2%) compared with field 

observations, while appreciable overestimation was found using the raw model outputs 

and multi-model mean. With the use of multi-model mean, the relative errors of Tmax and 

Tmin reduced from 27-30% (CanCM4) to 15-25% (Multi-model mean).  

            Seed cotton yields predicted by the three methods were reasonable in the 2020 

growing season, with RE within 7-15% relative to the field observations (Figure 7.14d). 

The downscaling method predicted the irrigation amount closer to the field observations, 

while the irrigation amounts predicted by the raw CanCM4 and the multi-model mean 

were more than twice the observations (Figure 7.14e). The unrealistic high irrigation 

amounts predicted in the latter two methods were likely due to the underestimation of 

the rainfall and increased crop evapotranspiration due to air temperature overestimation.   
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Figure 7.14 Comparisons of 2020 growing season prediction at the Chillicothe 

station using different weather datasets (lead 0m). (a) Accumulated precipitation; 

(b) Tmax; (c) Tmin; (d) seed cotton yield; and (e) seasonal irrigation.  

 

            The real-time prediction at different lead times using the downscaling method 

and multi-model mean were further examined (Figure 7.15). The downscaled method 

exhibited better forecast skills in the season precipitation, irrigation demand, and seed 

cotton yield than using the multi-model mean. At the beginning of the season in May 

2020 (lead 5-month), the downscaling method also provided reasonable rainfall, yield, 
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and seasonal irrigation forecasts, within relative errors of 14%-18%. As time proceeds, 

the prediction would be expected closer to the observations. However, irrigation demand 

predicted by using the downscaling method showed relatively large variability due to the 

combined effect of rainfall and temperature predictions, but the variation was still much 

less significant than that of the multi-model mean.  

 

 

Figure 7.15 Comparisons of (a) seasonal precipitation, (b) seed cotton yield, and (c) 

seasonal irrigation predictions using the downscaled and multi-model methods in 

the 2020 growing season at the Chillicothe station at different lead times.  
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7.4. Conclusions  

            In this chapter, an improved bias-corrected downscaling method was applied 

with both mean and variance correction to generate a 1-km grid-level daily weather 

projection (maximum and minimum air temperatures, and precipitation) over the 

CONUS using a representative NMME dataset, namely CanCM4. The usability of 

downscaled seasonal weather forecasts at a regional scale and real-time crop modeling at 

a local scale were evaluated by comparing with the raw CanCM4 outputs and the multi-

model mean of three NMME models (i.e., CCSM4, GEOS-5, and CanCM4). The major 

findings include: (1) the post-processing like proper downscaling of the raw NMME 

outputs was required before applying them in seasonal irrigation management and crop 

yield prediction; (2) the bias correction downscaling method significantly improved the 

performance of the CanCM4 outputs and overperformed the multi-model mean, but its 

performance on precipitation prediction varied with time and location; and (3) the high-

resolution seasonal weather forecasts generated in this study ensured robust and reliable 

predictions of regional or local crop yields over the CONUS region. 
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8. REDUCING THE UNCERTAINTY IN CROP WATER STRESS INDEX (CWSI) 

MODELS FOR IRRIGATION SCHEDULING 

 

            Improving deficit irrigation management in water-stressed regions requires an 

accurate estimation of crop water stress. The Crop Water Stress Index (CWSI), 

determined both empirically and theoretically, has been widely used to indicate crop 

water stress and schedule irrigation. However, the non-water stress boundary in the 

original theoretical CWSI model, derived with the assumption of evaporation from a free 

water surface, cannot accurately represent potential evapotranspiration from a crop 

surface. Here, we improved the representation of the non-water stress boundary by 

including the calculation of canopy resistance (rc) over a saturated crop surface (CWSI-

PEc) or a well-watered crop surface (CWSI-PET). In addition, to reduce intensive use of 

inputs as required in the theoretical models, a novel, semi-empirical CWSI model based 

on the Priestly-Taylor equation (CWSI-PT) was developed. The CWSI calculated by the 

original model and three newly developed models in this study were evaluated against a 

soil moisture-based water stress coefficient simulated using a calibrated CROPGRO-

Cotton module of the Decision Support System for Agrotechnology Transfer (DSSAT) 

Cropping System Model (CSM) at Chillicothe in the Texas Rolling Plains during the 

2020 cotton growing season. Results indicated that the CWSI-PET model outperformed 

the other three methods with less variability and uncertainty. The CWSI-PT model 

provided CWSI estimates comparable to the other three models, but with less input 

requirement. Errors were noted when applying the four CWSI methods in the field with 
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a low percentage of canopy coverage. The water deficit index (WDI), a modification of 

CWSI, with the consideration of normalized difference vegetation index (NDVI) was 

then suggested to improve the model performance with incomplete canopy coverage.  

8.1. Introduction 

            Irrigation water demand accounts for nearly 70% of global anthropogenic 

freshwater demand (FAO, 2016), and it is by far the largest water use sector in the 

world. Irrigated agriculture is fundamental to global food security. From 1961 to 2018, 

global irrigated agriculture has doubled and increased to 22% of the total cropland in 

2018, contributing to about 40% of global food production (FAO, 2018). At the same 

time, availability of water resources for irrigated agriculture faces multiple challenges, 

including growing food demand, increasing global mean temperature, and changing 

precipitation patterns under climate changes, as well as competition from domestic and 

industrial users due to population growth, rising standard of living, and economic 

development (Florke et al., 2018; Haddeland et al., 2014). The situation is exacerbated in 

semi-arid regions which are experiencing a decline in water supplies. Regulated deficit 

irrigation can conserve water resources and optimize production, and it has been widely 

investigated as a sustainable strategy to meet these challenges. The development and 

optimization of deficit irrigation requires a better understanding of crop responses under 

water stress. Therefore, developing tools that enable an accurate estimation of crop water 

stress is critical for deficit irrigation management. 

            The traditional methods for crop water stress monitoring include soil water 

measurement (González-Dugo et al., 2006), soil water balance method (Osroosh et al., 
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2016), and plant-based method, e.g., sap flow measurement (Han et al., 2018), direct 

measurement of leaf water potential (Bellvert et al., 2016; Zarco-Tejada et al., 2012), 

and stomatal conductance (Agam et al., 2013; Ballester et al., 2013). Soil water 

measurement is time-consuming. In addition, single or several point measurements 

usually cannot reflect the overall status of the field. The soil water balance approach is 

an indirect estimation of soil moisture status by calculating crop evapotranspiration, 

rainfall, runoff, and irrigation amount. It has a relatively high uncertainty due to the 

accumulation of measurement errors, and therefore requires calibration with actual soil 

moisture measurements. Plant-based approaches can provide reliable measurements, but 

they are also time-consuming and unsuitable for automation (Ihuoma and Madramootoo, 

2017). 

            The Crop Water Stress Index (CWSI), which uses the canopy-to-air temperature 

difference to quantify the crop water stress, has been widely used to indicate crop water 

status and schedule irrigation. Two CWSI methods have been previously adopted and 

evaluated, i.e., an empirical method first introduced by Idso et al. (1981) and a 

theoretical method developed by Jackson et al. (1981). Both methods require the 

calculation of a non-water stress baseline and an upper boundary representing the 

canopy-to-air temperature difference for a well-watered crop surface with full 

transpiration and a dry crop surface with non-transpiration conditions. The empirical 

method uses invariant lower and upper boundaries by developing a linear relationship 

between canopy-to-air temperature difference and the vapor pressure deficit (Idso et al., 

1981). The empirical method requires less data inputs, but high uncertainty exists due to 
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the constant baselines used. Since the baselines are dependent on weather variables, e.g., 

solar radiation and wind speed, substantial errors were reported when constant baselines 

were used in different climate conditions (Gonzalez-Dugo et al., 2014; Payero and 

Irmak, 2006) or even in the same field (Gonzalez-Dugo et al., 2014). Compared to the 

empirical method, the theoretical method is derived based on the energy balance 

equation and thereby shows more stability under different climate conditions (Han et al., 

2018; Jackson et al., 1988; O'Shaughnessy et al., 2012). However, the non-water stress 

boundary in the original theoretical CWSI model is derived with the assumption of 

evaporation from a free water surface, which cannot accurately represent potential 

evapotranspiration from a crop surface. The major uncertainty of the CWSI method is 

the determination of non-water stress boundary, which could be attributed to the use of 

different aerodynamic resistance (ra) and crop resistance (rc) (Agam et al., 2013; Han et 

al., 2018). For example, seasonal average ra was recommended by several studies 

(Clawson et al., 1989; Han et al., 2018; Jalalifarahani et al., 1993). Also, daily value of 

ra and rc, calculated using the FAO Penman-Monteith method (Allen, 1998), was 

suggested by O'Shaughnessy et al. (2012).   

            Here, the representation of the non-water stress boundary was improved by 

including the calculation of canopy resistance (rc) over a saturated crop surface (CWSI-

PEc) or a well-watered crop surface (CWSI-PET). In addition, to reduce the intensive 

input requirement as in the theoretical models, a novel, semi-empirical CWSI model 

based on the Priestly-Taylor equation (CWSI-PT) was developed. The specific 

objectives were therefore to (1) compare three non-water stress boundary equations 
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under the assumption of free water surface, saturated crop surface, and well-watered 

crop surface; (2) derive a new non-water stress boundary equation with the assumption 

of free water surface using a less data-intensive method, i.e., Priestly-Taylor equation; 

and (3) evaluate the uncertainty of the four models. 

8.2. Methodology  

8.2.1. Crop Water Stress Index (CWSI) Calculation 

            CWSI is defined as: 

 𝐶𝑊𝑆𝐼 =
(𝑇𝑐−𝑇𝑎) − (𝑇𝑐−𝑇𝑎)𝐿

(𝑇𝑐−𝑇𝑎)𝑈 − (𝑇𝑐−𝑇𝑎)𝐿
                                                     (8.1) 

where 𝑇𝑐 is the canopy temperature, oC; 𝑇𝑎 is the air temperature, oC;  (𝑇𝑐 − 𝑇𝑎)𝑈 is the 

upper boundary of (𝑇𝑐 − 𝑇𝑎), representing dry surface condition; and  (𝑇𝑐 − 𝑇𝑎)𝐿 is the 

lower boundary of (𝑇𝑐 − 𝑇𝑎), representing the non-water-stressed baselines.  

            Based on the energy balance equation, the net radiation flux at a crop canopy 

surface is calculated as:  

𝑅𝑛 = 𝐺 + 𝐻 + 𝜆𝐸                                               (8.2) 

where 𝑅𝑛  is net radiation flux, MJ m-2 d-1; G is soil heat flux, MJ m-2 d-1; H is the 

sensible heat flux, MJ m-2 d-1; and 𝜆𝐸 is latent heat flux, MJ m-2 d-1; and  𝜆 is the latent 

heat of vaporization, MJ kg-1. 

            The sensible heat flux can be expressed as: 

𝐻 =
𝜌𝐶𝑝(𝑇𝑐−𝑇𝑎)

𝑟𝑎
                                                           (8.3) 

            The latent heat flux can be expressed as:  
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λE =
ρCp(ec

∗−ea)

γ(ra+rc)
                                                           (8.4) 

where 𝜌 is the density of air approximated as a function of air temperature and pressure, 

kg m−3; 𝐶𝑝 is the specific heat of moist air, 1.013 kJ kg -1 oC-1; γ is the psychrometric 

constant, kPa oC-1; 𝑒𝑐
∗ is the saturation vapor pressure at the canopy temperature Tc, kPa; 

ea is the actual vapor pressure of the air, kPa;  𝑟𝑎 is the aerodynamic resistance, s m−1; 

and  𝑟𝑐 is the canopy resistance, s m−1.  

            If the temperature difference between canopy and air is not large, the slope of 

saturation vapor pressure curve at the canopy surface can be approximated as (Eichinger 

et al., 1996): 

∆=
𝑑𝑒∗

𝑑𝑇
|

𝑇𝑐

≈
(𝑒𝑐

∗−𝑒𝑎
∗)

(𝑇𝑐−𝑇𝑎)
                                               (8.5) 

where 𝛥 is the slope of saturation vapor pressure, kPa oC-1; and  𝑒𝑎
∗  is the saturation 

vapor pressure of the air, kPa. 

            Substituting (3), (4), and (5) to (1), one obtains:  

𝑇𝑐 − 𝑇𝑎 =
𝑟𝑎

𝜌𝐶𝑝

𝛾(1+
𝑟𝑐
𝑟𝑎

)

∆+𝛾(1+
𝑟𝑐
𝑟𝑎

)
(𝑅𝑛 − 𝐺) −

𝑒𝑎
∗−𝑒𝑎

∆+𝛾(1+
𝑟𝑐
𝑟𝑎

)
                             (8.6) 

8.2.2. Derivation of the Upper and Lower Boundary  

            The upper boundary of (𝑇𝑐 − 𝑇𝑎) is found by assuming the latent heat flux H as 

zero, which represents evapotranspiration from a completely dry surface. Then equation 

(8.6) becomes:  



 

208 

 

(𝑇𝑐 − 𝑇𝑎)𝑈 =
𝑟𝑎(𝑅𝑛−𝐺)

𝜌𝐶𝑝
                                      (8.7) 

            Soil heat flux can be considered as 0 for daily analysis. For hourly or shorter 

duration calculations, G =0.1 Rn during the daylight period, and G=0.5 Rn during the 

nighttime period.  

            The lower boundary of (𝑇𝑐 − 𝑇𝑎)  is a non-water stressed baseline, which 

represents a fully transporting crop. (𝑇𝑐 − 𝑇𝑎)𝐿 is derived based on different assumptions, 

i.e., free water surface, saturated crop surface, and well-watered crop surface. Figure 8.1 

shows the aerodynamic resistance (ra) and canopy resistance (rc) in different non-water 

stress baseline models, which was adapted from Katerji and Rana (2011). Here, the 

representation of the non-water stress boundary was improved by including the 

calculation of canopy resistance (rc) over a saturated crop surface (CWSI-PEc) or a well-

watered crop surface (CWSI-PET). In addition, to reduce the intensive inputs as required 

in the theoretical models, a novel, semi-empirical CWSI model based on the Priestly-

Taylor equation (CWSI-PT) was also developed. 
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Figure 8.1 Schematic representation of aerodynamic resistance (ra) and canopy 

resistance (rc) in different non-water stress baseline models. r0 is the crop structure 

resistance, and rs is the stomatal resistance. After Katerji and Rana (2011). 

 

            CWSI_PE (Potential evaporation from free water surface) represents evaporation 

from a free water surface or on the crop surface with 100% relative humidity. This 

variable is only theoretical, and it allows the calculation of canopy to air temperature 

differences due to the evaporation demand of the atmosphere. It is suitable to calculate 

the air/surface temperature difference for large surfaces of water bodies (e.g., lakes, seas, 

and oceans), saturated soil, or crop surface with all the hypotheses being met (Figure 

8.1). With the assumption of free water surface, and the canopy resistance rc =0, 

equation (8.6) becomes:  

(𝑇𝑐 − 𝑇𝑎)𝐿 =
𝑟𝑎

𝜌𝐶𝑝

𝛾

∆+𝛾
(𝑅𝑛 − 𝐺) −

𝑒𝑎
∗−𝑒𝑎

∆+𝛾
                                      (8.8) 
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            The aerodynamic resistance ra can be calculated as (Allen, 1998): 

𝑟𝑎 =
𝑙𝑛 [

𝑍𝑢−𝑑

𝑍𝑜𝑚
] 𝑙𝑛[

𝑍𝑒−𝑑

𝑍𝑜𝑣
]

(0.41)2𝑈𝑍
                       (8.9) 

where Zu and Ze are the respective heights for wind speed and humidity measurements 

(here, 𝑍𝑢= 2 m, 𝑍𝑒 = 2 m);  d is the zero-plane displacement height, at which the wind 

speed is considered as zero, d=0.67 hc; Zom is the roughness height governing the 

momentum transfer, Zom=0.123 hc; 𝑍𝑜𝑣 is the roughness height governing heat and vapor 

transfer, Zov=0.0123 hc; the value 0.41 is the von Kármán constant; UZ is the wind speed 

at 2-m height, and hc is the mean crop height.   

            CWSI-Pec (Potential crop evaporation) represents evaporation from a crop 

surface having all surfaces (including leaves, stems, and soil) saturated. Therefore, there 

is no biological control of evaporation, i.e., rs =0, but the water vapor transfer is still 

resistant to the crop structure (ro). As such, equation (8.6) becomes:   

(𝑇𝑐 − 𝑇𝑎)𝐿 =
𝑟𝑎

𝜌𝐶𝑝

𝛾(1+
𝑟𝑜
𝑟𝑎

)

∆+𝛾(1+
𝑟0
𝑟𝑎

)
(𝑅𝑛 − 𝐺) −

𝑒𝑎
∗−𝑒𝑎

∆+𝛾(1+
𝑟0
𝑟𝑎

)
                       (8.10) 

where r0 is the crop structure resistance. Mean values of r0 for different crops with 

various heights and climate conditions can be found in Katerji and Rana (2011). 

            CWSI-PET (Crop evapotranspiration) represents evapotranspiration from a well-

watered crop surface. No saturation can be found on the evaporative surfaces, and 

equation (8.11) is used here: 
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(𝑇𝑐 − 𝑇𝑎)𝐿 =
𝑟𝑎

𝜌𝐶𝑝

𝛾(1+
𝑟𝑐
𝑟𝑎

)

∆+𝛾(1+
𝑟𝑐
𝑟𝑎

)
(𝑅𝑛 − 𝐺) −

𝑒𝑎
∗−𝑒𝑎

∆+𝛾(1+
𝑟𝑐
𝑟𝑎

)
         with     𝑟𝑐 =

𝑟𝑠
∗

𝐿𝐴𝐼𝑎𝑐𝑡𝑖𝑣𝑒
         (8.11) 

where 𝑟𝑠
∗  is the stomatal resistance of a well-illuminated leaf, the value for cotton is 

about 237.5 (Evenson and Rose, 1976). 𝐿𝐴𝐼𝑎𝑐𝑡𝑖𝑣𝑒  is the active leaf area index (LAI), 

which is about 0.5 LAI (Allen, 1998). LAI of cotton under well-irrigated, non-nutrient 

limitation is obtained from (Bezerra et al., 2015). 

8.2.3. Lower Boundary Derived from the Priestley-Taylor Method 

            Assuming that a uniform, saturated surface, similar to CWSI-PE, the ratio of the 

sensible heat flux to the latent heat flux is the Bowen ratio (B):  

𝐵 =
𝐻

λ𝐸
=

𝜌𝐶𝑝(𝑇𝑐−𝑇𝑎)

𝑟𝑎
𝜌𝐶𝑝(𝑒𝑐

∗−𝑒𝑎)

𝛾(𝑟𝑎+𝑟𝑐)
 

=  𝛾
(𝑇𝑐−𝑇𝑎)

(𝑒𝑐
∗−𝑒𝑎)

                with          rc=0             (8.12) 

            Priestley and Taylor (1972) suggested a more straightforward form of the 

Penman method (Penman, 1948) by recognizing that the first term in the equation is 

larger than the second term by a factor of about 4.  

λ𝐸 = 𝛼
Δ

Δ+𝛾
(𝑅𝑛 − 𝐺)         (8.13) 

where 𝛼 is the PT coefficient.  

            Bowen ratio can be expressed using the PT equation as:  

B =
1−𝛼

𝛾

Δ+𝛾

𝛼
𝛾

Δ+𝛾

                                                         (8.14) 

            Combing equations (8.5), (8.12), and (8.14), one gets:  
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(𝑇𝑐 − 𝑇𝑎)𝐿 =
𝑒𝑎

∗−𝑒𝑎
𝛾𝐶

1−𝐶
−∆

                                                (8.15) 

where 

𝐶 = 𝛼
𝛥

𝛥+𝛾
             (8.16) 

8.2.4. Water Stress Based on Soil Water Balance   

            The water stress coefficient (Ks) is related to CWSI as: 

𝐶𝑊𝑆𝐼 =  1 − 𝐾𝑠                                              (8.17) 

             Ks can be calculated as (Allen, 1998): 

𝐾𝑠 =
𝑇𝐴𝑊−𝐷𝑟

𝑇𝐴𝑊−𝑅𝐴𝑊
                                             (8.18) 

where Dr is the root zone depletion in mm, TAW is the total available soil water in the 

root zone in mm, and RAW is the readily available water in mm.  

            Soil water content was simulated using a calibrated CSM-CROPGRO-Cotton 

module of the Decision Support System for Agrotechnology Transfer (DSSAT) model 

(Hoogenboom et al., 2019; Jones et al., 2003). The DSSAT CSM-CROPGRO-Cotton 

module was previously calibrated and validated by Adhikari et al. (2017) using the 

measured data (2011-2015) at the study site, with an average percent error in seed cotton 

yield prediction of -10.1% and -1.0% during the calibration and validation periods. The 

minimum weather data required for the crop model includes daily Tmax and Tmin (°C), 

precipitation (mm), and solar radiation (MJ m-2), which was obtained from an on-site 

weather station.   
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8.2.5. Field Experiment and Data Collection 

            A field experiment was conducted at the Chillicothe Research Station in Texas 

Rolling Plain, Texas, USA (34.25°N, 99.52°W, elevation 447 m) to evaluate the 

performance of the four CWSI methods (Figure 8.2). Cotton (Pyhtogen 350) was planted 

on 15 June 2020 with a seeding rate of 4 seeds per ft (40 in rows). Half of the area 

covered by the center pivot system was utilized for this study, which was divided into 

pie slices, with each occupying 1/12th of the total area (Figure 8.1c). The broad and even 

spacing of all treatments allowed for a robust analysis of trends across different levels of 

water stresses. The experiment was laid out in a randomized complete block design, with 

three replications of four irrigation scheduling treatments (90%, 60%, 30%, and 0% ET 

replacements), representing different water stress. During the growing season, irrigation 

amount was applied based on the reference evapotranspiration and the growth stage-

based crop coefficients developed by (Ko et al., 2009) for cotton, which was further 

multiplied by percent ET replacement treatment values (e.g., 0.60 for 60% ET 

replacements, Table 8.1). Reference evapotranspiration was calculated using the 

Penman-Monteith method (Allen, 1998). Irrigation water was applied weekly as 

prescribed by the treatments. 
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Figure 8.2 Experimental plot plans at the Chillicothe research station. (a) Location 

of the Chillicothe Research Station; (b) sensor platform setup; and (c) experimental 

layout on half of a two-tower pivot. 

 

            Hourly meteorology was obtained at a nearby weather station, including air 

temperature, relative humidity, solar radiation, and wind speed. Hourly data from 11:00 

to 14: 00 was used to estimate CWSI. Canopy temperature was measured by SI-121-SS 

an infrared radiometer (Apogee Instruments, Logan, UT), which is capable of making 

non-contact surface temperature measurements of the crop canopy. NDVI, a spectral 

index that is highly correlated with cotton crop biomass (Gutierrez et al., 2012), was 
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determined using measurements made by S2-412-SS spectral sensors (Apogee 

Instruments, Logan, UT). The system included an AtlasLink GNSS device (Hemisphere, 

Scottsdale, AZ), allowing assignment of plot ID information to the data based on 

geolocation information of the system within the field. A CR1000X datalogger 

(Campbell Scientific, Logan, UT) was used to store and export data wirelessly. Sensor 

systems were placed on platforms mounted in the trusses of the pivot. The canopy 

temperature and NDVI sensors faced downward at a 45º angle. 

 

Table 8.1 Development Stages and Basal Crop Coefficient Kcb of Seed Cotton (Ko et 

al., 2009). 

DAP Date Development stage  Kcb 

7 6/22/2020 Seeding 0.40 

8-45 7/30/2020 1st square  0.45 

46-65 8/19/2020 1st bloom 0.80 

66-86 9/9/2020 Max bloom  1.08 

87-110 10/3/2020 1st open 1.23 

111-125 111-125 25% open  1.25 

126-133 126-133 50% open 1.05 

134-151 134-151 95% open  0.60 

152-162 152-162 Pick 0.1 

Note: DAP, days after planting. 

 

 

8.2.6. Model Comparison  

            The differences between the CWSI calculated using the four models and soil 

water balance method were evaluated by the root-mean-square error (RMSE) and the 

mean bias difference (MBD), as shown in equations (8.18) and (8.19): 

𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑖−𝑌0𝑖)2𝑛

𝑖=1

𝑛
                                            (8.18) 

MBD =  
∑ (𝑋𝑖−𝑌0𝑖)𝑛

𝑖=1

𝑛
                                            (8.19) 
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where 𝑋𝑖 and 𝑌0𝑖 are the ith calculated CWSI using the soil water balance methods and 

the four CWSI models, respectively; and n is the number of observations. The best 

method has RMSE and MBD values equal to 0.  

8.3. Results and Discussion  

8.3.1. Canopy Cover during the Growing Season 

            In the experiment, plot-specific NDVI cannot be collected while the pivot was 

stationary (multiple plots must be covered) or watering (the entire field cannot be 

watered in the hours surrounding solar noon). Therefore, weekly “dry runs” of the pivot 

were made to measure NDVI, as well as the canopy temperature, in the hours 

surrounding solar noon in the time between watering events. The relationships between 

canopy cover and NDVI were developed based on measurements in the 2021 growing 

season. Canopy cover and height measurements were collected using UAV flights on 

four dry run days of July 8, July 31, Aug 22, and Aug 26, 2021. A least-square fit was 

used to identify the relationship between canopy cover and NDVI, showing Percent 

canopy cover = 0.933 + 0.109* NDVI with R2=0.68 (sample size n=60). The canopy 

cover for each treatment in the 2020 cotton growing season is shown in Figure 8.3. Five 

measurements for each ET replacement in 2020 were made on July 20, 2020 (Day 35), 

Aug 6 (Day 52), Aug 19 (Day 65), Aug 27 (Day 73), and Sep 9 (Day 85).   

The canopy coverage measured in all treatments was larger than 0.31 (the 

minimum value was from the 30% ET replacement plot on Day 35). The 90% ET 

replacement showed more canopy coverage value throughout the growing season, 

followed by the 60% ET replacement. However, the 30% ET showed a slightly lower 
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NDVI value than the 0% ET replacement. The reason for this is that irrigation was 

similar in these two treatments due to the relatively large amount of rainfall received 

during the growing season. At the end of the season, the 90% ET replacement had the 

largest seed cotton yield (2879 ± 525 kg ha-1), followed by 60% ET replacement (1877 ± 

525 kg ha-1). The 0% ET replacement had 33% more yield (1585 ± 189 kg ha-1) than the 

30% replacement (1195 ± 309 kg ha-1).  

 

 

Figure 8.3 Canopy cover changes through the growing season in 2020. 

 

 8.3.2. Comparison of CWSI Using the Four Models 

            To test the differences in the three replications of the four irrigation scheduling 

treatments, CWSI calculated using the original method (CSWSI_PE) was examined at 

different plots with various ET replacements (Figure 8.4). The CWSI differences were 

more considerable when the canopy coverage was small, e.g., the standard deviation of 

all four treatments ranged from 0.11 to 0.17 at Day 35 and 0.02 to 0.07 at Day 85, 

respectively. The three plots of the 90% ET replacement showed stable performance 
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after Day 52 (standard deviation within 0.05). The deviations can be attributed to the 

influence of surrounding plots and the difference in the soil texture. Although much of 

the field is Grandfield fine sandy loam soil, the top right of block 3 is primarily Tipton 

loam soil and the left of block 1 is clay soil. The soil texture influences water holding 

capacity in the soil, leading to different responses of CWSI to the same treatment.  

 

 

Figure 8.4 Crop water stress comparison using the original method (CWSI_PE) at 

three plots for each ET replacement. Plot numbers are the same as Figure 8.2.  
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            Figure 8.5 shows the daily CWSI values calculated by the four models and 

DSSAT simulation for different irrigation treatments. The CWSI_PT model provided 

CWSI estimates comparable to the original CWSI model (CWSI_PE) with lower input 

requirements, e.g., relative humidity and wind speed were not required. These two 

methods also showed similar RMSE and MBD (Table 8.2). In the case of 90% ET 

replacement, the well-water case, i.e., the values of the CWSI-PET model, were 

relatively stable (around zero) when the soil between crop rows was not visible to the 

temperature sensor mounted on the phenotyping system (shortly after 50 days of 

planting). However, the other three methods varied within a range of 0.2-0.5 from Day 

52 to Day 65, with high RMSE for the 90% ET replacement (Table 8.2). This indicated 

that the CWSI-PET model better represented the non-water stress boundary. 

            Another advantage of using the CWSI-PET method can also be highlighted by 

comparing the canopy-to-air temperature differences of the four ET replacements 

(Figure 8.6). Stable temperature differences under 0%/30% (around 6.3 ºC), 60% (1.7 

ºC), and 90% (-0.7 ºC) ET replacements were found from 50 days after planting. The 

CWSI-PET methods exhibited more stable performance, while the simulations of CWSI 

values for the other three methods showed decreasing trends (Figure 8.5). The canopy-

to-air temperature differences for the four ET replacements showed similar values, 

which were around 12.5 ºC at Day 35, indicating high water stress. For example, in the 

case of 90% ET replacement, the well-water case, the CWSI values simulated by the soil 

water balance method (DSSAT) still showed water stress around Day 30-35. The reason 

is that the canopy coverage was relatively low, and the temperature measured under a 
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partially covered field was a composite temperature of the canopy and soil surface. 

When the surface cover was sparse, soil temperature dominated the composite 

temperature measurements. Therefore, the direct use of the crop water stress method in 

partial crop conditions can lead to substantial errors. 

 

 

Figure 8.5 Comparison of CWSI values using the four CWSI models and the 

DSSAT simulation under different ET replacements. The blue arrow indicates 

rainfall, and the green arrow indicates irrigation.  

 

Table 8.2 Seasonal Error Estimates for CWSI using the Four Models as compared 

against the DSSAT Simulation. 

Model 
0% ET 30% ET 60% ET 90% ET All treatments 

RMSE MBD RMSE MBD RMSE MBD RMSE MBD RMSE MBD 

CWSI_PE 0.39 0.20 0.39 0.22 0.18 -0.02 0.23 -0.17 0.31 0.06 

CWSI_PEc 0.40 0.23 0.40 0.25 0.18 0.02 0.19 -0.13 0.31 0.09 

CWSI_PET 0.43 0.20 0.45 0.22 0.23 -0.02 0.04 -0.17 0.33 0.06 

CWSI_PT 0.39 0.21 0.38 0.23 0.16 -0.01 0.27 -0.17 0.32 0.07 
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Figure 8.6 Canopy to air temperature differences through the growing season in 

2020. 

 

            Since the data obtained in the 2020 growing season was very limited (only five 

days), it was difficult to perform a sufficient and comprehensive evaluation as 

continuous measurements were not available. The daily CWSI simulation using DSSAT 

showed that crop water stress varied greatly due to rainfall or irrigation events, as 

illustrated in the sudden decrease in CWSI in all four treatments (Figure 8.5). Therefore, 

valid CWSI values from the 0% and 30% ET replacements usually cannot be guaranteed. 

For example, the CWSI value simulated by DSSAT for all four treatments on Day 85 

was zero, indicating no water stress. Therefore, more frequent measurements are 

required to avoid the influence of rainfall.      

 

8.3.3. Relationship with Crop Yield 

            The seasonal averaged CWSI (Day 35 excluded) using the four CWSI models 

was also compared against water stress calculated using DSSAT (Table 8.3). The 
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averaged CWSI values were used to develop a yield-CWSI linear relationship, as shown 

in Figure 8.7. All models well captured the yield decrease caused by the elevated crop 

water stress, with R2 ranging from 0.85 to 0.87. However, the yield decreasing trends 

(slopes) were considerably different, depending on the method. The slope of the CWSI-

PET method was close to the slope of the DSSAT simulation. However, the CWSI_PE, 

CWSI_PEc, and CWSI_PT methods had similar slopes but were much higher than the 

DSSAT simulation. The high slopes of these three methods were mainly due to the 

underestimation of the lower boundary conditions, i.e., the non-water stress boundary.  

 

 

Figure 8.7 Relationships between the seasonal averaged CWSIs and seed cotton 

yield. Line colors represent the same method as the symbol color.  
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Table 8.3 Seasonal Averaged CWSI using the Four CWSI Models and the DSSAT 

Simulation under Different ET Replacements. 

ET % CWSI_PE CWSI_PEc CWSI_PET CWSI_PT DSSAT 

ET_0 0.41 0.38 0.30 0.40 0.45 

ET_30 0.41 0.38 0.30 0.40 0.45 

ET_60 0.26 0.23 0.12 0.25 0.17 

ET_90 0.17 0.13 0.00 0.17 0.02 

 

8.4.4. Improved Method under Low Canopy Coverage 

           The direct use of the crop water stress method before full canopy closure can 

incur substantial errors due to the influence of soil heat flux. To overcome this 

weakness, Moran et al. (1994) developed a water deficit index (WDI), a modification of 

CWSI, in which the impact of soil heat flux was considered using a linear mixing model 

of soil and canopy temperature (Figure G1, Appendix G). Colaizzi et al. (2003) used the 

WDI to trigger irrigation for cotton under high-frequency sprinkler irrigation. In this 

study, the crop water stress under the four ET replacements in the 2020 growing season 

was recalculated using the WDI method following Moran et al. (1994) (detailed in 

Appendix G). As shown in Figure 8.8a, WDI under the 0% and 30% ET replacements 

was more stable with the consideration of canopy cover. However, the values of WDI 

for 60% and 90% ET replacements on Day 35, with the lowest canopy coverage, still 

showed similar water stress as those of the 0% and 30% ET replacements. The reason is 

that the conditions favoring free evaporation from the soil surface did not exist for a very 

long period when the surface cover was sparse. Frequent irrigation was required to allow 

free evaporation from the soil. Our preliminary data in 2021 with nearly bare soil surface 

showed a relatively stable WDI trend under irrigated conditions (Figure G2, Appendix 
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G). The average WDI value (0.49) during a 2-week continuous hourly measurement 

(averaging hourly data of 11:00, 12:00, 13:00, and 14:00h) was similar to the WDI 

values obtained under no water stress conditions (Figure 8.8a). The relationship between 

the seasonal average WDI and observed seed cotton yield is shown in Figure 8.8b. 

According to the yield-CWSI linear relationship, the seed cotton yield under no water 

stress was obtained as 4296 kg/ha, which was close to the DSSAT yield simulation when 

assuming there were no water and fertilizer stresses with a relative error of less than 2%. 

These results lead us to conclude that WDI, a modified CWSI method that accounts for 

canopy coverage, can be reliably used as an indicator for precision deficit irrigation 

management.  

 

 

Figure 8.8 (a) Water deficit index (WDI) variation under different water 

management regimes as a function of time and (b) the relationship between 

seasonal average WDI and seed yield cotton during the 2020 growing season at 

Chillicothe, TX. 
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8.5. Conclusions  

            In this chapter, the representation of the non-water stress boundary was improved 

by including the calculation of canopy resistance (rc) over a well-watered crop surface 

(CWSI-PET). In addition, to reduce the intensive inputs as required in the theoretical 

models, a novel, semi-empirical CWSI model based on the Priestly-Taylor equation 

(CWSI-PT) was developed, which showed comparable performance to the other three 

models.  

Since substantial errors were noted when the field had a low percentage of 

canopy coverage for all the four CWSI methods, the water deficit index (WDI), a 

modification of CWSI, with the consideration of normalized difference vegetation index 

(NDVI), was suggested to improve the model performance when canopy coverage is 

incomplete. Preliminary examination shows that WDI can be a reliable indicator of 

precision deficit irrigation management. 
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9. CONCLUSIONS 

 

9.1. Outcomes 

            In 2050, globally, there will be 9.7 billion people, and we need 55% more water, 

50% more food, and 80% more energy, with 52% more CO2 emissions with no policy 

change (OECD, 2012). The situation is exacerbated in developing countries which are 

experiencing rapid urbanization processes. To mitigate climate change impacts, many 

countries have announced their Nationally Determined Contributions (NDC) in the Paris 

Agreement to reduce CO2 emissions. Water and energy systems are interdependent and 

have complex dynamic interactions with the socio-economic system and climate change. 

Policies and measures designed to increase the efficiency in one system might 

significantly affect that in the other. Therefore, accurate simulation of the dynamic 

interactions among socio-economic, energy, and water environmental systems is critical 

to cope with the growing energy and freshwater consumption and greenhouse gas 

emissions, particularly under long-term urbanization. However, these cross-sector 

feedbacks have not been fully considered in current water-energy nexus studies. The 

integrated model developed in this dissertation improved the understanding of the 

interactions among socioeconomics, energy consumption, water use, water 

infrastructure, and receiving water systems, which can be used to identify the cost-

effective solutions to meet the water and energy demands under different economic 

development pathways and climate futures. 
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            The dissertation includes two major parts: Part I includes the integration of CGE 

and SyDWEM model, i.e., CGE-SyDWEM, and evaluation of its ability in simulating 

the carbon-energy-water nexus in urbanized regions. The integrated model can be used 

to aid policymakers from energy, carbon, and water sectors to understand the 

complicated synergistic effects of proposed carbon mitigation strategies and water 

engineering measures on local/regional energy consumption, CO2 emissions, water 

resources balance, and water-environment change and to design more effective policies 

and measures to ensure energy and water security in future. Chapter 2 showed that the 

integrated systems could be used to aid energy planners in understanding the effects of 

the proposed CO2 mitigation strategies on energy use efficiency and its co-benefits and 

trade-offs on saving water use and reducing pollutant emissions. In Chapter 3, a CGE-

based integrated model (CGE-SyDWEM) for energy, carbon, and water management in 

a rapidly urbanizing catchment was developed in order to simulate the dynamic 

interactions among the socio-economic, energy, water environment systems. Sensitivity 

experiments showed that the integrated model was able to assess the effects of proposed 

CO2 mitigation strategies and water-engineering measures on future energy use, carbon 

emissions, economic and population growth, and water resources stress, as well as water 

quality change at a watershed level. With this integrated model, decision-makers across 

different sectors can consult with each other and design more effective policies and 

measures to achieve the national water and energy management targets. The aggregated 

effects of both CO2 mitigation strategies and engineering measures show that a low-

carbon, high-efficiency water, and energy use economy and better water environment are 
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potentially achievable. In Chapter 4, the relative contributions of GHG emissions from 

the sewer, WWTPs, and receiving water systems were quantified using the integrated 

model. The result enables a better understanding of the role of the wastewater sector in 

global GHG emissions reduction. 

            Part II  improved the integrated model in simulating irrigation water demand and 

agricultural adaptation strategies to climate change. The selection and implementation of 

reference evapotranspiration (ET0) methods are vital for estimating irrigation water 

demand for long-term water resources management, especially in areas with limited 

weather data. In Chapters 5, the representation of the irrigation water demand module in 

CGE-SyDWEM was improved by assessing several less data-intensive reference 

evapotranspiration (ET0) models used for regional irrigation water demand estimation. In 

Chapter 6, an analytical expression for the PT coefficient (PTa) is derived following the 

Penman-Monteith method, i.e., 𝑃𝑇𝑎 =
1

𝑆𝐴
 (1 +  𝑆𝑈2

), where SA represents the impact of 

the radiative component on ET0 and 𝑆𝑈2
 is the impact of wind speed on ET0. The new 

Priestley-Taylor coefficients can be easily applied to existing hydrological and crop 

models to improve ETo estimation performance. In Chapter 7, the seasonal forecast from 

one representative NMME model, i.e., the Canadian Coupled Climate Model versions 4 

(CanCM4) was calibrated and bias-corrected from one representative NMME model, 

i.e., the Canadian Coupled Climate Model versions 4 (CanCM4). The high-resolution 

seasonal weather forecasts generated in this study ensured robust and reliable regional or 

local crop yield prediction over the CONUS region. In Chapter 8, a novel, semi-

empirical method to calculate crop water stress was derived, which can be used to 
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develop water-stress-based deficit irrigation strategies for enhancing water use efficiency 

and thereby conserving water resources in agricultural production. 

9.2. Limitations and Future Work  

            This integrated model facilitates communications among different planners and 

policymakers and enables a better understanding of the carbon-energy-water nexus. 

Although the current study focuses on a rapidly urbanizing catchment in southeast 

China, the framework could be generalized to other urbanizing catchments, especially in 

developing countries also with rapid population and economic change. The domain of 

analysis and the choice of sub-modules could have regional variations. For example, in 

regions with a higher proportion of agriculture industry, the sub-modules for irrigation 

water demand should be improved based on the results reported in Chapters 5-8. In 

addition, the emphasis of this dissertation is to capture the cross-sector interactions and 

feedbacks and to provide an integrated view of the impacts of carbon mitigation 

strategies on all industrial sectors in the economic system. Therefore, the impacts of 

using different technologies on the carbon-energy-water interactions in a single sector 

are not simulated yet, which limits its application in single sector planning. This 

limitation could be improved in the future with the availability of detailed sector data, 

which is still challenging in developing countries normally with insufficient data 

collections and accessibility.  

            In Chapter 2, the effects of carbon mitigation on pollutants discharge in 

construction, transport, and services sectors are not considered yet, mainly due to the 

lack of data. In China, the water pollutant discharges from these three sectors are 
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assumed to be related to residential activities and thereby were not reported separately. 

Considering the projected economic output decrease in these sectors with carbon 

mitigation, the co-benefits on the water pollutant discharge may be underestimated.  

            In Chapter 3, how water policy could affect energy consumption and carbon 

control target is also relevant, but not considered in this dissertation. The Chinese 

government has raised targets on total water consumption and water intensity in terms of 

GDP, which has co-benefits or trade-offs with carbon mitigation targets and deserves 

further quantitative evaluation.  

            In Chapter 4, the calculation of the direct GHG emission from the sewer system 

caused by sediment deposition using constant CH4 and CO2 emission factors is due to 

the lack of field measurements. The emission factors are found to be related to pipeline 

size and length, as well as water quality. Therefore, the average EFs for CH4 and CO2 

with sewer length higher than 1 km used in the calculation may have high uncertainty. 

            In Chapter 5, agrometeorological stations are located in the cropped areas, and 

weather data are typically measured at 2 m above an extensive surface of grass or short 

crop. However, the meteorological data used in the study were from the weather stations 

of the National Oceanic and Atmospheric Administration in the U.S., likely leading to 

bias in later calculations and comparisons. 

            In Chapter 6, the major uncertainty is also from the variations of the gridded 

weather dataset used, which may affect the magnitudes and spatial distributions of ETo, 

ETo trends, SA, Su2, and the PT coefficient at the global scale. 
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            In Chapter 7, only one model from the NMME was selected for the real-time 

seasonal weather forecast.  It is interesting to use all the available models in the NMME 

dataset and then compare the performance of individual models. The precipitation 

forecast still shows high variability.  

            In Chapter 8, to validate the method in estimating crop water stress index, the 

hourly field data of canopy temperature covering the whole growing season is expected. 

From the first season experiment, only five days' data were collected due to technical 

problems during field measurements. Therefore, the current analysis only focused on the 

comparison of the four lower boundary models. Nevertheless, the validation can still be 

performed using any published field measurements in the future.  
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APPENDIX A 

SUPPLEMENTARY DATA OF CHAPTER 2 

 

Table A1 Selected Indicators of Shenzhen and Their Percentages in China in 2007.  

Indicator Value % of China  

Population (million) 9.12 0.7% 

GDP (billion US$) 86.4 2.4% 

GDP per capita (US$) 9464 351% 

Import (billion US$) 66.1 7.0% 

Export (billion US$) 96.3 7.9% 

Coal consumption (PJ) 148.6 0.3% 

Petroleum consumption (PJ) 579.9 4.1% 

Natural gas consumption (PJ) 83.6 3.1% 

Water consumption (billion ton) 18.0 0.7% 

Sources: China Statistical Yearbook, 2008; China Energy Statistical Yearbook 2008 

(2007 price). 

 

Table A2 Sector Classification of the CGE Model. 

No. Sector No. Sector 

1 Agriculture 12 Transport equipment 

2 Extraction of natural gas 13 Machinery 

3 Other Mining 14 Electronic equipment 

4 Textiles and clothing 15 Other manufacturing 

5 Paper and paper products 16 Waste manufacturing 

6 Food production 17 Water supply 

7 Textiles 18 Electricity production and 

supply 

8 Chemicals 19 Manufactured gas 

9 Non-metal products 20 Construction 

10 Metal smelting and pressing 21 Transport 

11 Metal products 22 Service 

 

 

 

 



 

269 

 

Table A3 Average Water Intensity (2011-2014) in Different Sectors (mean ± 

standard deviation; n=4). 

No. Sector Water use intensity  

t/104 RMB (1990s) 

Time period  

1 Agriculture 1099.80 ± 374.42 2000-2015 a 

2 Extraction of natural gasd 14.20  2012b 

3 Other mining 12.73 2014b 

4 Textiles and clothing  54.60 ± 2.76 2011-2014 

5 Paper and paper products 6.01 ± 1.94 2011-2014 

6 Food production 10.47 ± 2.14 2011-2014 

7 Petrol oil  0.71 2012b 

8 Chemicals 3.81 ± 0.85 2011-2014 

9 Non-metal products 11.80 ± 4.35 2011-2014 

10 Metal smelting and 

pressing 

6.49 ± 2.83 2011-2014 

11 Metal products 14.25 ± 1.67 2011-2014 

12 Transport equipment 7.06 ± 6.12 2011-2014 

13 Machinery 3.49 ± 0.73 2011-2014 

14 Electronic equipment 3.28 ± 0.10 2011-2014 

15 Other manufacturing 4.73 ± 1.59 2011-2014 

16 Waste manufacturing 2.50 ± 3.22 2011-2013c 

17 Water supply 7.20 2011b 

18 Electricity production 

and supply 

24.88 ± 4.36 2011-2014 

19 Manufactured gasd 33.43 2012b 

20 Construction 6.60 ± 0.44 2011-2014 

21 Transport  7.84 ± 0.40 2011-2014 

22 Service 7.84 ± 0.40 2011-2014 

Note: a n = 16; b n = 1; c n = 1; d data from national average. National Bureau of Statics of 

China, China statistical yearbook 2012. Beijing, China: China Statistics Press; 2012.  

  

Table A4 Estimated Parameter Values for Water Use Intensity. 
Industry type 𝛼 WR Lower 95% 

(WR) 

Upper 95% 

(WR) 

R2 Time 

period 

Primary industry  0.066** 1.069 1.029 1.109 0.531 2000-2015 

Secondary 

industry*  
-0.082** 0.914 

0.915 0.927 0.982 2000-2015 

Tertiary industry -0.078** 0.925 0.910 0.940 0.908 2003-2015 

Construction sector  -0.110** 0.896 0.862 0.931 0.779 2003-2015 

Note: *Shenzhen’s total water withdrawal includes primary industry, secondary industry 

(construction sector is calculated separately), Tertiary industry, residential sector and 

environment and ecosystems water use. ** indicate significance at the 1% confidence 

level. WR= 𝑒𝛼𝑖 is considered the water intensity change rate (WR) of the ith industry.  
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Table A5 Average Major Pollutant Discharge Intensity (2011-2014) in Different 

Sectors. (mean value ± standard deviation, n=4) Units: RMB (in 1990 Price). 
No. CODCr (t/billion) NH3-N (t/billion) Petroleum (t/billion) V-ArOH (kg/billion) 

2 c 10.19 0.31 0.128 0.002 

3 95.55 a 2.04 a - - 

4 236.03 ± 23.42 17.75 ± 3.72 0.016 ± 0.008 - 

5 42.96 ± 12.11 3.76 ± 0.81 0.004 ± 0.002 - 

6 112.4 ± 46.26 10.14 ± 5.02 0.001 ± 0.000 - 

7 2.97 1.21 - - 

8 28.57 ± 14.49 1.60 ± 1.07 0.019 ± 0.010 0.120 a 

9 75.20 ± 53.02 6.76 ± 2.57 0.002 ± 0.001 - 

10 62.43 ± 27.92 4.31 ± 1.39 0.183 ± 0.043 - 

11 111.17 ± 36.63 8.14 ± 1.80 0.068 ± 0.023 0.020 a 

12 39.79 ± 8.36 4.12 ± 1.42 0.002 ± 0.003 - 

13 24.34 ± 4.64 2.07 ± 0.64 0.014 ± 0.009 - 

14 29.28 ± 1.47 2.37 ± 0.24 0.003 ± 0.001 - 

15 34.32 ± 16.61 2.74 ± 0.86 0.142 ± 0.050 0.010 a 

16 3.19 ± 1.41 b 0.22 ± 0.18 b - - 

17 39.38 a 4.73 a - - 

18 49.44 ± 18.12 5.69 ± 1.98 0.0002 ± 0.0000 - 

19 c 5.87 a 2.06 a 0.0166 a 0.003 a 

Note: a n = 1; b n = 3; c data from the national average. National Bureau of Statics of 

China, China statistical yearbook 2012. Beijing, China: China Statistics Press; 2012.  
* Petroleum has three years data. 
 

Table A6 Average Heavy Metal(loid)s Discharge Intensity (2011-2014) in Different 

Sectors. (mean value ± standard deviation, n=4) Units: RMB (in 1990 Price). 
No. Pb (kg/billion) Cr6+ (kg/billion) Hg (kg/billion) Cd (kg/billion) As (kg/billion) 

5 - 0.04 ± 0.08 - - - 

8 0.06 ± 0.00 0.01 ± 0.00 - 0.011 a 0.12 a 

10 - 0.28 ± 0.15 - - - 

11 0.47 ± 0.02 8.13 ± 2.42 0.002 ± 0.000 0.096 a - 

12 - 0.14 - - - 

13 0.13 ± 0.03 0.04 ± 0.02 0.11 ± 0.01 0.004 ± 0.003 0.0004 a 

14 0.11 ± 0.09 0.07 ± 0.02 0.01 ± 0.02 0.064 ± 0.034 0.24 ± 0.06 

15 0.06 ± 0.00 0.81 ± 0.62 0.13 ± 0.22 0.010 a 0.13 a 

18 - - 1.05 ± 0.21 - - 

Note: a n = 1. National Bureau of Statics of China, China statistical yearbook 2012. 

Beijing, China: China Statistics Press; 2012.   
* Pb, Cr6+, Hg, Cd, and As have three years data. 
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Table A7 Estimated parameter values for pollutant intensity. 
No. β PR Lower 95% (PR) Upper 95% (PR) R2 Time period 

2 -0.203*** 0.817 0.718 0.929 0.623 2002-2011 a 

3 -0.227 0.561 0.394 1.612 0.064 2002-2011 a 

4 -0.228*** 0.796 0.709 0.895 0.655 1996-2007 

5 -0.418*** 0.658 0.606 0.715 0.945 2002-2011 a 

6 0.005 1.005 0.954 1.059 0.005 1996-2007 

7 -0.167*** 0.846 0.815 0.879 0.930 2002-2011 a 

8 -0.195*** 0.823 0.755 0.896 0.775 1996-2007 

9 -0.091 0.913 0.708 1.176 0.061 1996-2007 

10 0.152 1.164 0.853 1.589 0.137 1996, 1999-2007 

11 -0.028 0.972 0.876 1.079 0.035 1996-2007 

12 -0.195*** 0.823 0.755 0.896 0.775 2002-2011 a 

13 -0.356*** 0.700 0.640 0.766 0.913 2002-2011 a 

14 -0.049 0.952 0.883 1.027 0.173 1996-2007 

15 -0.272*** 0.762 0.667 0.870 0.674 1996-2007 

16 -0.045 0.956 0.689 1.327 0.751 2002, 2010-2011 a 

17 0.149 1.161 0.810 1.663 0.102 2002-2011 a 

18 -0.370*** 0.691 0.636 0.749 0.931 1996-2000; 2005-2007 

19 -0.427*** 0.653 0.450 0.946 0.467 2002-2011 a 

Note: a data from the national dataset. National Bureau of Statics of China, China 

statistical yearbook 2003-2012. Beijing, China: China Statistics Press; 2003-2012. Other 

data from Shenzhen Environmental quality report. Human Settlements & Environment 

Commission of Shenzhen Municipality, Report on the environmental state in Shenzhen 

City, Shenzhen, China. 1996-2007.  
b PR= 𝑒𝛽𝑖  is considered the pollutant intensity change rate (PR) of the ith industry. 
***,**,* indicates significance at the 1%, 5% and 10% confidence level, respectively. For 

those p-value is higher than 10% confidence level, we assume PR=1, which means a 

constant PR is used.  

 



 

272 

 

 

Figure A1 The carbon emission change rate (NDC compared with the BaU 

scenario) versus water use change rate (NDC compared with the BaU scenario). 

(Bubble size indicates water use intensity). 

 

 

            The appendix provides a technical description of the CGE model. This CGE 

model is based upon the model structure of Dai (2012). We follow the CGE framework 

of Dai (2012) and build a one-region dynamic CGE model to study the NDC issue for 

Shenzhen. 

     A.1 Production 

            Each producer maximizes profit subject to the production technology. Activity 

output of each sector follows a nested constant elasticity of substitution (CES) 
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production function. Each sector has two types of production functions; one uses the 

existing capital stock, and another uses new investment (Masui et al., 2011). The 

difference between these two subsectors is the efficiency and mobility of capital among 

the sectors. Inputs are categorized into material commodities, energy commodities, land, 

labor, capital, and resource. 

     The producer maximizes its profit by choosing its output level and inputs use, 

depending on their relative prices as well as its technology. The producer's problem can 

be expressed as: 

             𝑚𝑎𝑥: 𝜋𝑗 = 𝑝𝑗 ⋅ 𝑍𝑗 − (∑ 𝑝𝑖
𝑁
𝑖=1 ⋅ 𝑋𝑖,𝑗 + ∑ 𝜔𝑓

𝐹
𝑓=1 ⋅ 𝑉𝑓,𝑗)              Equation (A1)             

subject to (s.t.):  

𝑍𝑗 = 𝜐𝑗[𝑋1,𝑗 , 𝑋2,𝑗 ,⋅⋅⋅, 𝑋𝑁,𝑗; 𝑉1,𝑗 ⋅⋅⋅, 𝑉𝑓,𝑗]              Equation (A2)             

where 𝜋𝑗  is the profit of 𝑗 -th producers; 𝑍𝑗  is the output of 𝑗 -th sector; 𝑋𝑖,𝑗  is the 

intermediate inputs of 𝑖-th goods in 𝑗 -th sector, 𝑉𝑓,𝑗 is the 𝑓-th primary factor inputs in 

𝑗-th sector; 𝑝𝑗 is the price of the 𝑗-th composite commodity; 𝜔𝑓 is the 𝑓-th factor price; 

and 𝜐𝑗 is the share parameter in the CES production function. 

     A.2 Basic sectors 

    For the basic production functions, activity output is determined by a fixed 

coefficient aggregation of non-energy and energy intermediate commodities, and 

primary factors (Figure A2). The composite of non-energy inputs takes the Leontief 

form. Energy and the value added bundle are nested by energy inputs and valued added 
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bundle, respectively. The value added bundle is a CES function of primary factors, 

capital, and labor. The composite of energy inputs is a CES aggregation of electricity 

and fossil fuels. Fossil fuels are further disaggregated into coal, gas, and oil. 

 

 

Figure A2 Production tree of basic sectors. 𝝈 is the elasticity of substitution for 

inputs.  

 

            There are four levels in the above production tree. At each level, a virtual firm is 

assumed to maximize the corresponding profit subject to the production technology. At 

the top-level, the output is a Leontief function of the quantities of value-added and 

aggregate energy input and aggregate intermediate input, associated with process GHG 

emissions: 
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𝑚𝑎𝑥: 𝜋𝑗
𝑧 = 𝑝𝑗

𝑧 ⋅ 𝑄𝑗 − (𝑝𝑗
𝑣𝑎𝑒 ⋅ 𝑄𝑉𝐴𝐸𝑗 + 𝑝𝑗

𝑖𝑛𝑡𝑎 ⋅ 𝑄𝐼𝑁𝑇𝐴𝑗 + 𝑝
𝑔ℎ𝑔

⋅ 𝑄𝐺𝐻𝐺𝑗,𝑎𝑐𝑡,𝑔ℎ𝑔)  

Equation (A3) 

s.t. 

𝑄𝑗 = 𝑚𝑖𝑛(
𝑄𝑉𝐴𝐸𝑗

𝑞𝑣𝑎𝑒𝑗
,

𝑄𝐼𝑁𝑇𝐴𝑗

𝑞𝑖𝑛𝑡𝑎𝑗
,

𝑄𝐺𝐻𝐺𝑗,𝑎𝑐𝑡,𝑔ℎ𝑔

𝑞𝑔ℎ𝑔𝑗,𝑎𝑐𝑡,𝑔ℎ𝑔
)                      Equation (A4) 

where 𝜋𝑗
𝑧  is the profit of the 𝑗-th firm producing gross domestic output 𝑄𝑗  at the top 

level; 𝑄𝑗  is the gross domestic output of the 𝑗-th firm; 𝑄𝑉𝐴𝐸𝑗  is the value added and 

energy composite input; 𝑄𝐼𝑁𝑇𝐴𝑗 is the composite intermediate input; 𝑄𝐺𝐻𝐺𝑗,𝑎𝑐𝑡,𝑔ℎ𝑔 is 

the process emissions of GHGs per unit of output; 𝑝𝑗
𝑧 is the price of 𝑗 -th gross domestic 

output; 𝑝𝑗
𝑣𝑎𝑒 is the price of composite goods of factor and energy; 𝑝𝑗

𝑖𝑛𝑡𝑎 is the price of 

composite intermediate goods; 𝑝
𝑔ℎ𝑔

 is the GHG emission price; 𝑞𝑣𝑎𝑒𝑗is the technical 

coefficient transforming the composite amounts of value added and energy inputs to 𝑄𝑗; 

𝑞𝑖𝑛𝑡𝑎𝑗 is the technical coefficient transforming the composite amounts of non-energy 

intermediate inputs to 𝑄𝑗; and 𝑞𝑔ℎ𝑔𝑗,𝑎𝑐𝑡,𝑔ℎ𝑔 is the technical coefficient transforming the 

process GHG emissions to 𝑄𝑗.  

    At the second level of the production tree, there are two virtual firms with profit-

maximization problems. First, composite value added and energy input take CES the 

functional form with aggregation of value added input and total energy input: 

𝑚𝑎𝑥: 𝜋𝑗
𝑣𝑎𝑒 = 𝑝𝑗

𝑣𝑎𝑒 ⋅ 𝑄𝑉𝐴𝐸𝑗 − (𝑝𝑗
𝑣𝑎 ⋅ 𝑄𝑉𝐴𝑗 + 𝑝𝑗

𝑓𝑒
⋅ 𝑄𝐹𝐸𝑗)        Equation (A5) 

s.t. 
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𝑄𝑉𝐴𝐸𝑗 = 𝛼𝑗
𝑣𝑎𝑒 ⋅ (𝛿𝑗

𝑣𝑎𝑒 ⋅ 𝑄𝑉𝐴
𝑗

−𝜌𝑟,𝑗
𝑣𝑎𝑒

+ (1 − 𝛿𝑗
𝑣𝑎𝑒) ⋅ 𝑄𝐹𝐸

𝑗

−𝜌𝑗
𝑣𝑎𝑒

)

−1

𝜌𝑗
𝑣𝑎𝑒

    Equation (A6) 

    Second, aggregate non-energy intermediate input is defined as Leontief function 

of disaggregated intermediate input: 

𝑚𝑎𝑥: 𝜋𝑗
𝑖𝑛𝑡𝑎 = 𝑝𝑗

𝑖𝑛𝑡𝑎 ⋅ 𝑄𝐼𝑁𝑇𝐴𝑗 − (∑ 𝑝𝑗
𝑞

𝑖 ⋅ 𝑄𝐼𝑁𝑇𝑖,𝑗)          Equation (A7) 

s.t. 

𝑄𝐼𝑁𝑇𝐴𝑗 = 𝑚𝑖𝑛(
𝑄𝐼𝑁𝑇𝑖,𝑗

𝑞𝑖𝑛𝑡𝑖,𝑗
)                                 Equation (A8) 

Where 𝜋𝑗
𝑣𝑎𝑒  is the profit of 𝑗-th firm producing composite input of value added and 

energy; 𝜋𝑗
𝑖𝑛𝑡𝑎 is the profit of 𝑗-th firm producing composite intermediate input; 𝑄𝑉𝐴𝑗is 

the aggregate value added input; 𝑄𝐹𝐸𝑗  is the aggregate energy input (electricity and 

fossil energy); 𝑄𝐼𝑁𝑇𝑖,𝑗  is the 𝑖 -th non-energy inputs in 𝑗-th firm; 𝑝𝑗
𝑣𝑎  is the price of 

composite value added input; 𝑝𝑗
𝑓𝑒

is the price of the composite energy input (including 

electricity and fossil fuel); 𝑝𝑗
𝑞

 is the price of the 𝑖 -th composite goods; 𝑞𝑖𝑛𝑡𝑖,𝑗 is the 

amounts of each input required per unit of composite intermediate input; 𝛼𝑗
𝑣𝑎𝑒is the shift 

(or efficiency) parameter in the CES function; 𝛿𝑗
𝑣𝑎𝑒  is the CES share parameter, 0 ≤

𝛿𝑗
𝑣𝑎𝑒 ≤ 1, ∑ 𝛿𝑗

𝑣𝑎𝑒
𝑗 = 1; 𝜌𝑗

𝑣𝑎𝑒 is the CES substitution parameter, in which the elasticity of 

substitution between value added and energy, 𝜎, equals 
1

(1+𝜌)
; and 𝜎𝑗

𝑣𝑎𝑒is the elasticity of 

substitution between value added bundle and energy. 
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    At the third level of the production tree, there are two virtual firms with profit-

maximization problems as well. First, composite value added input is CES aggregation 

of capital and labor input: 

𝑚𝑎𝑥: 𝜋𝑗
𝑣𝑎 = 𝑝𝑗

𝑣𝑎 ⋅ 𝑄𝑉𝐴𝑗 − (𝑝𝑙 ⋅ 𝑄𝐿𝐴𝐵𝑗 + 𝑝𝑘𝑗 ⋅ 𝑄𝐶𝐴𝑃𝑗)        Equation (A9) 

s.t. 

𝑄𝑉𝐴𝑗 = 𝛼𝑗
𝑣𝑎 ⋅ (𝛿𝑗

𝑐𝑎𝑝
⋅ 𝑄𝐶𝐴𝑃

𝑗

−𝜌𝑗
𝑣𝑎

+ 𝛿𝑗
𝑙𝑎𝑏 ⋅ 𝑄𝐿𝐴𝐵

𝑗

−𝜌𝑗
𝑣𝑎

)

−1

𝜌𝑗
𝑣𝑎

           Equation (A10) 

     And composite energy input is CES aggregation of electricity input and fossil 

fuel input: 

𝑚𝑎𝑥: 𝜋𝑗
𝑓𝑒

= 𝑝𝑗
𝑓𝑒

⋅ 𝑄𝐹𝐸𝑗 − (𝑝"ele"
𝑞

⋅ 𝑄𝐸𝐿𝐸𝑗 + 𝑝𝑗
𝑓𝑜𝑠

⋅ 𝑄𝐹𝑂𝑆𝑗)       Equation (A11) 

s.t. 

𝑄𝐹𝐸𝑗 = 𝛼𝑗
𝑓𝑒

⋅ (𝛿𝑗
𝑒𝑙𝑒 ⋅ 𝑄𝐸𝐿𝐸

𝑗

−𝜌𝑗
𝑓𝑒

+ (1 − 𝛿𝑗
𝑒𝑙𝑒) ⋅ 𝑄𝐹𝑂𝑆

𝑗

−𝜌𝑗
𝑓𝑒

)

−1

𝜌
𝑗
𝑓𝑒

       Equation (A12) 

where 𝜋𝑗
𝑣𝑎 is the profit of 𝑗-th firm producing composite input of value added; 𝜋𝑗

𝑓𝑒
 is the 

profit of 𝑗 -th firm producing composite input of energy; 𝑄𝐶𝐴𝑃𝑗  is the capital input 

required per unit of value added input; 𝑄𝐿𝐴𝐵𝑗  is the labor input required per unit of 

value added input; 𝑄𝐸𝐿𝐸𝑗  is the electricity input required for per unit of composite 

energy input; 𝑄𝐹𝑂𝑆𝑗is the composite fossil fuel input required for per unit of composite 

energy input; 𝑝𝑙 is the labor wage; 𝑝𝑘𝑗  is the capital price in 𝑗-th sector; 𝑝"ele"
𝑞

 is the 

price of the composite goods of electricity; 𝑝𝑗
𝑓𝑜𝑠

 is the price of composite fossil fuel 



 

278 

 

input in 𝑗-th sector; 𝛼𝑗
𝑓𝑒

 is the shift (or efficiency) parameter in the CES function; 𝛿𝑗
𝑓𝑒

, 

𝛿𝑗
𝑐𝑎𝑝

, 𝛿𝑗
𝑙𝑎𝑏  are CES share parameters, 0 ≤ 𝛿𝑗

∗ ≤ 1 , ∑ 𝛿𝑗
∗

𝑖 = 1 ; 𝜌𝑗
𝑓𝑒

 is the CES 

substitution parameter, in which the elasticity of substitution between electricity and 

composite fossil fuel, 𝜎, equals 
1

(1+𝜌)
; 𝜎𝑗

𝑣𝑎 is the elasticity of substitution between capital 

and labor; and 𝜎𝑗
𝑣𝑎𝑒 is the elasticity of substitution between electricity and fossil fuel. 

    At the fourth level of the production function, composite fossil fuel is CES 

aggregation of coal, crude oil, natural gas, coke, petrol oil, and manufactured gas: 

𝑚𝑎𝑥: 𝜋𝑗
𝑓𝑜𝑠

= 𝑝𝑗
𝑓𝑜𝑠

⋅ 𝑄𝐹𝑂𝑆𝑗 − (∑ 𝑝𝑓𝑜𝑠
𝑞

𝑓𝑜𝑠 ⋅ 𝑄𝐹𝐹𝑓𝑜𝑠,𝑗)          Equation (A13) 

s.t. 

𝑄𝐹𝑂𝑆𝑗 = 𝛼𝑗
𝑓𝑓

⋅ (∑ 𝛿𝑗
𝑓𝑓

𝑓𝑜𝑠 ⋅ 𝑄𝐹𝐹
𝑓𝑜𝑠,𝑗

−𝜌𝑗
𝑓𝑓

)

−1

𝜌
𝑗
𝑓𝑓

                   Equation (A14) 

where 𝜋𝑗
𝑓𝑜𝑠

 is the profit of 𝑗-th firm producing composite input of fossil fuel; 𝑄𝐹𝐹𝑓𝑜𝑠,𝑗 is 

the CES shift (or efficiency) parameter; 𝑝𝑓𝑜𝑠
𝑞

is the price of fossil fuel input; 𝛼𝑗
𝑓𝑓

 is the 

shift (or efficiency) parameter in the CES function; 𝛿𝑗
𝑓𝑓

is the CES share parameter, 0 ≤ 

𝛿𝑗
𝑓𝑓

 ≤ 1, ∑ 𝛿𝑗
𝑓𝑓

𝑖 = 1; 𝜌𝑗
𝑓𝑓

is the CES substitution parameter, in which the elasticity of 

substitution among fossil fuels, 𝜎, equals 
1

(1+𝜌)
; and 𝜎𝑗

𝑓𝑓
is the elasticity of substitution 

among fossil fuels. 
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     A.3 Energy transformation sector 

    Energy transformation sectors include gas production and supply, petroleum and 

nuclear fuel processing, and coking. The energy bundle is linked at the top level in order 

to maintain the first-law of thermal efficiency of the conversion of primary energy to the 

secondary energy (Figure A3). Functions at other levels are the same as the basic 

sectors. 

 

 

Figure A3 Production tree of energy transformation sectors. 𝝈 is the elasticity of 

substitution for inputs. 

 

     Thus the problem is expressed as: 

𝑚𝑎𝑥: 𝜋𝑟,𝑗
𝑧 = 𝑝𝑗

𝑧 ⋅ 𝑍𝑗 − (𝑝𝑗
𝑣𝑎𝑒 ⋅ 𝑄𝑉𝐴𝐸𝑗 + 𝑝𝑗

𝑓𝑒
⋅ 𝑄𝐹𝐸𝑗 + 𝑝𝑗

𝑖𝑛𝑡𝑎 ⋅ 𝑄𝐼𝑁𝑇𝐴𝑗 + 𝑝
𝑔ℎ𝑔

⋅

𝑄𝐺𝐻𝐺𝑗,𝑎𝑐𝑡,𝑔ℎ𝑔)                                          Equation (A15) 
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s.t. 

𝑄𝑗 = 𝑚𝑖𝑛(
𝑄𝑉𝐴𝐸𝑗

𝑞𝑣𝑎𝑒𝑗
,

𝑄𝐹𝐸𝑗

𝑞𝑓𝑒𝑗
,

𝑄𝐼𝑁𝑇𝐴𝑗

𝑞𝑖𝑛𝑡𝑎𝑗
,

𝑄𝐺𝐻𝐺𝑗,𝑎𝑐𝑡,𝑔ℎ𝑔

𝑞𝑔ℎ𝑔𝑗,𝑎𝑐𝑡,𝑔ℎ𝑔
)                 Equation (A16) 

where 𝑄𝐹𝐸𝑗 is the aggregate energy input (electricity and fossil energy) and 𝑞𝑓𝑒𝑗 is the 

technical coefficient transforming aggregate energy inputs to 𝑄𝑗. 

     A.4 Household Consumption 

    Household and government are final consumers. The representative household 

endows primary factors to the firms and receives income from the rental of primary 

factors (labor and capital), rents from fixed factors (land and natural resources) and 

lump-sum transfer from the government (e.g., carbon tax revenue of government). The 

income is then used for either investment or final consumption. The objective of 

household consumption is to maximize utility by choosing levels of consumption goods 

following the Cobb-Douglas preferences, subject to commodity prices and budget 

constraints. The agent's problem is expressed as: 

𝑚𝑎𝑥: 𝜇ℎ[𝑋1
𝑝

,⋅⋅⋅, 𝑥𝑖
𝑝

] = 𝐴𝑝 ⋅ ∏ (𝑁
𝑖=1 𝑋𝑖

𝑝
)𝛼𝑖

𝑝

                       Equation (A17) 

s.t. 

𝐸𝐻 = ∑ 𝑝𝑗
𝑞

𝑖 ⋅ 𝑋𝑖
𝑝

= ∑ 𝜔𝑓
𝐹
𝑓=1 ⋅ 𝑉𝑓 + ∑ 𝑝𝑙𝑑𝑗 ⋅ 𝑄𝐿𝐴𝑁𝐷𝑗 + ∑ 𝑝𝑗

𝑟𝑒𝑠
𝑟𝑒𝑠,𝑗 ⋅ 𝑄𝑅𝐸𝑆𝑗 +

𝑇𝑐𝑎𝑏 − 𝑇𝑑 − 𝑆
𝑝

                                                              Equation (A18) 

𝑇𝑐𝑎𝑏 = 𝑝𝑔ℎ𝑔"CO2" ⋅ 𝑇𝐸𝑀𝑆"CO2"                            Equation (A19) 

𝑇𝑑 = 𝜏𝑑 ⋅ ∑ 𝜔𝑓𝑓 ⋅ 𝑉𝑓                           Equation (A20) 
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𝑆
𝑝

= 𝑠𝑟
𝑝

⋅ ∑ 𝜔𝑓𝑓 ⋅ 𝑉𝑓                           Equation (A21) 

where 𝜇ℎ is the utility function of households; 𝐸𝐻 is the household expenditure; 𝑋𝑖
𝑝
 is 

the household consumption of 𝑖-th commodity; 𝑉𝑓 is the 𝑓-th primary factor endowment 

by household; 𝑄𝐿𝐴𝑁𝐷𝑗  is the 𝑗 -th land use; 𝑝𝑙𝑑  is the price of land; 𝑄𝑅𝐸𝑆𝑗  is the 

quantity of resource; 𝑝𝑗
𝑟𝑒𝑠 is the shadow price of resource; 𝑆

𝑝
 is the household savings; 

𝑇𝐸𝑀𝑆"CO2" is the CO2 emissions; 𝑝𝑔ℎ𝑔"CO2" is the carbon price; 𝑇𝑑  is the direct tax; 𝜏𝑑  

is the direct tax rate; 𝑠𝑟
𝑝

 is the average propensity to save by the household; 𝜔𝑓 is the 

Price of the 𝑓-th primary factor; 𝐴
𝑝

 is the scaling parameter in Cobb-Douglas function; 

and 𝛼𝑖
𝑝
 is the share parameter in Cobb-Douglas function, 0 ≤ 𝛼𝑖

𝑝
 ≤ 1, ∑ 𝛼𝑖

𝑝
𝑖 = 1. 

     A.5 Government 

    The government is assumed to collect taxes, including direct tax on household 

income, ad valorem production tax (indirect tax) on gross domestic output, ad valorem 

import tariff on imports, and carbon tax. Based on a Cobb-Douglas demand function, the 

government spends its revenue on public services which are provided to the whole 

society and on the goods and services which are provided to the households free of 

charge or at low prices. The model assumes that the revenue from carbon tax is recycled 

to the representative agent as a lump-sum transfer. 

𝑚𝑎𝑥: 𝜇𝑔[𝑥1
𝑔

,⋅⋅⋅, 𝑥𝑖
𝑔

] = 𝐴𝑔 ⋅ ∏ (𝑁
𝑖=1 𝑥𝑖

𝑔
)𝛼𝑖

𝑔

     Equation (A22) 

s.t. 

∑ 𝑝𝑟,𝑖𝑖 ⋅ 𝑥𝑟,𝑖
𝑔

= 𝑇𝑟
𝑑 + ∑ 𝑇𝑟,𝑗

𝑧
𝑗 + ∑ 𝑇𝑟,𝑗

𝑚
𝑗 − 𝑆𝑔                  Equation (A23) 
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𝑇𝑟,𝑗
𝑧 = 𝜏𝑟,𝑗

𝑧 ⋅ 𝑝𝑟,𝑗 ⋅ 𝑍𝑟,𝑗                   Equation (A24) 

𝑇𝑟,𝑖
𝑚 = 𝜏𝑟,𝑖

𝑚 ⋅ 𝑝𝑚𝑟,𝑖 ⋅ 𝑀𝑟,𝑖                  Equation (A25) 

𝑆𝑟
𝑔

= 𝑠𝑟𝑟
𝑔

⋅ (𝑇𝑟
𝑑 + ∑ 𝑇𝑟,𝑗

𝑧
𝑗 + ∑ 𝑇𝑟,𝑗

𝑚
𝑗 )             Equation (A26) 

where 𝜇𝑔 is the utility function of government; 𝑥𝑖
𝑔

 is the government consumption of i-th 

commodity; 𝑆𝑔  is the government savings; 𝑇𝑗
𝑧  is the production tax on the j-th 

commodity; 𝑇𝑗
𝑚 is the import tariff on the j-th commodity; 𝜏𝑗

𝑧 is the production tax rate 

on the j-th commodity; 𝜏𝑖
𝑚 is the import tariff rate on the i-th commodity; 𝑠𝑟

𝑔
 is the 

average propensity to save by the government; 𝑍𝑗 is the gross domestic output of the j-th 

commodity; 𝑀𝑖 is the import of the i-th commodity; 𝑝𝑚𝑖 is the price of the i-th imported 

commodity; 𝐴𝑔 is the scaling parameter in Cobb-Douglas function; and 𝛼𝑖
𝑔

is the share 

parameter in Cobb-Douglas function, 0 ≤ 𝛼𝑖
𝑔

 ≤ 1, ∑ 𝛼𝑖
𝑔

𝑖 = 1. 

     A.6 Investment and savings 

    Investment is an important part of final demand. In the CGE model, a virtual 

agent receives all the savings from the household, government and the external sector to 

purchase goods for domestic investment. The virtual investment agent is assumed to 

maximize the utility based on a Cobb-Douglas demand function subject to its (virtual) 

income constraint. Mathematically, the investment problems can be described as 

follows: 

𝑚𝑎𝑥: 𝜇𝑣[𝑥1
𝑣,⋅⋅⋅, 𝑥𝑖

𝑣] = 𝐴𝑣 ⋅ ∏ (𝑁
𝑖=1 𝑥𝑖

𝑣)𝛼𝑖
𝑣
                   Equation (A27) 

s.t. 
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∑ 𝑝𝑟,𝑖𝑖 ⋅ 𝑥𝑟,𝑖
𝑣 = 𝑆𝑟

𝑝
+ 𝑆𝑟

𝑔
+ 𝜀 ⋅ 𝑆𝑟

𝑓
                         Equation (A28) 

where 𝜇𝑣 is the utility of virtual investment agent; 𝑆𝑓 is the current account deficits in 

foreign currency terms (or alternatively foreign savings); 𝜀 is the exchange rate; 𝑥𝑖
𝑣 is the 

demand for the 𝑖-th investment goods; 𝐴𝑣  is the scaling parameter in Cobb-Douglas 

function; and 𝛼𝑖
𝑣 is the share parameter in Cobb-Douglas function, 0 ≤ 𝛼𝑖

𝑣 ≤ 1, ∑ 𝛼𝑖
𝑣

𝑖 =

1. 

     A.7 International transaction 

    The CGE model is a small open economy model that includes the interaction of 

commodity trade with the rest of the world. This model assumes the small open 

economy specifications, meaning that such an economy is small enough for its policies 

not to alter world prices or incomes. The implicit implication from the small-country 

assumption is that export and import prices are exogenously given for the economy. In 

this study, future international prices are fixed to be the same level for non-energy 

commodities whereas increase by 3% yearly for energy commodities compared to the 

2005 level.  

     Two types of price variables are distinguished. One is export prices in terms of 

the domestic currency 𝑝𝑖
𝑒 and import prices as 𝑝𝑖

𝑚; and the other is prices in terms of the 

foreign currency 𝑝𝑖
𝑊𝑒 and 𝑝𝑖

𝑊𝑚. They are linked with each other as follows: 

𝑝𝑖
𝑒 = 𝜀 ⋅ 𝑝𝑖

𝑊𝑒                                  Equation (A29) 

𝑝𝑖
𝑚 = 𝜀 ⋅ 𝑝𝑖

𝑊𝑚                                Equation (A30) 
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    Furthermore, we assume that the economy faces balance of payments constraints, 

which is described with export and import prices in foreign currency terms: 

∑ 𝑝𝑖
𝑊𝑒

𝑖 ⋅ 𝐸𝑟,𝑖 + 𝑆𝑟
𝑓

= ∑ 𝑝𝑖
𝑊𝑚

𝑖 ⋅ 𝑀𝑖               Equation (A31) 

where 𝐸𝑖 is the export of 𝑖-th commodity; 𝑀𝑖 is the import of 𝑖-th commodity; 𝑝𝑖
𝑊𝑒 is the 

export price in terms of foreign currency; 𝑝𝑖
𝑒 is the export price in terms of domestic 

currency; 𝑝𝑖
𝑊𝑚 is the import price in terms of foreign currency; and 𝑝𝑖

𝑚 is the import 

price in terms of domestic currency. 

    Substitution between imports and domestic goods. 

     The Armington assumption is adopted, that is, the domestic and imported goods 

are imperfectly substitutable for each other. This implies that households and firms do 

not directly consume or use imported goods but instead a so-called “Armington 

composite goods,” which is made up of imported and locally produced goods. 

     In the CGE model, the Armington composite goods at this level is created by 

virtual firms which maximize their profits by choosing a proper combination of imported 

and locally produced goods. The solution of their profit-maximization problem leads to 

their input demands for imported and domestic goods, which depend on the 

corresponding relative prices domestic and imported goods. Mathematically, this 

problem can be expressed as: 

𝑚𝑎𝑥: 𝜋𝑖
𝑚𝑑 = 𝑝𝑖

𝑚𝑑 ⋅ 𝑄𝑖
𝑚𝑑 − [(1 + 𝜏𝑖

𝑚) ⋅ 𝑝𝑚 ⋅ 𝑀𝑖 + 𝑝𝑖
𝑑 ⋅ 𝐷𝑖

𝑑]          Equation (A32) 

s.t. 
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𝑄𝑖
𝑚𝑑 = 𝛼𝑖

𝑚𝑑 ⋅ (𝛿𝑖
𝑚 ⋅ 𝑀𝑖

−𝜌𝑖
𝑚𝑑

+ 𝛿𝑗
𝑑 ⋅ 𝐷𝑖

−𝜌𝑖
𝑚𝑑

)

−1

𝜌𝑗
𝑚𝑑

               Equation (A33) 

where 𝜋𝑖
𝑚𝑑 is the profit of the firm producing the 𝑖-th Armington composite goods of 

import and locally produced goods; 𝑄𝑖
𝑚𝑑  is the 𝑖  -th Armington composite goods of 

import and locally produced goods; 𝐷𝑖
𝑑  is the 𝑖-th locally produced goods; 𝑝𝑖

𝑚𝑑  is the 

Armington price of the i-th imported and locally produced goods; 𝑝𝑖
𝑑 is the price of the 𝑖 

-th locally produced goods; 𝜏𝑖
𝑚 is the import tariff rate on the 𝑖-th commodity; 𝛼𝑖

𝑚𝑑 is 

the shift (or efficiency) parameter in the Armington composite goods production 

function; 𝛿𝑖
𝑚, 𝛿𝑗

𝑑  are the input share parameters in the Armington composite goods 

production function (0 ≤  𝛿𝑖
𝑚  ≤  1, 0 ≤  𝛿𝑗

𝑑  ≤  1, 𝛿𝑖
𝑚 + 𝛿𝑖

𝑑 = 1), and 𝜌𝑖
𝑚𝑑 is the CES 

substitution parameter, in which the elasticity of substitution between imported and 

domestic goods, 𝜎, equals 
1

(1+𝜌)
. 

     A.8 Transformation between Exports and Domestic Goods 

    On the supply side, the produced commodities are distributed to the international 

market and local market by a two-level nested constant elasticity of transformation 

function. Similar to the treatment of import, a virtual firm transforms the gross domestic 

output into exports and domestic goods as follows: 

𝑚𝑎𝑥: 𝜋𝑖
𝑑𝑥 = (𝑝𝑖

𝑒 ⋅ 𝐸𝑖 + 𝑝𝑖
𝑑𝑑 ⋅ 𝐷𝑖

𝑠) − (1 + 𝜏𝑖
𝑧) ⋅ 𝑝𝑖

𝑧 ⋅ 𝑄𝑖
𝑑𝑥         Equation (A34) 

s.t. 

𝑄𝑖
𝑑𝑥 = 𝛼𝑖

𝑑𝑥 ⋅ (𝛿𝑖
𝑒 ⋅ 𝐸𝑖

𝜌𝑟,𝑖𝑑𝑥
+ 𝛿𝑖

𝑑 ⋅ 𝐷𝑖
𝑠𝜌𝑖

𝑑𝑥

)

1

𝜌𝑖
𝑑𝑥

            Equation (A35) 
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where 𝜋𝑖
𝑑𝑥 is the profit of the firm engaged in the 𝑖-th transformation; 𝑄𝑖

𝑑𝑥is the gross 

domestic output of the 𝑖-th goods; 𝐷𝑖
𝑠 is the 𝑖-th goods supplied to domestic market; 𝑝𝑖

𝑧 

is the price of the 𝑖-th gross domestic output; 𝑝𝑖
𝑑𝑑 is the price of domestically supplied 

goods; 𝜏𝑖
𝑧  is the production tax rate on the 𝑖 -th commodity; 𝛼𝑖

𝑑𝑥  is the shift (or 

efficiency) parameter in the transformation function; 𝛿𝑖
𝑒, 𝛿𝑟,𝑗

𝑑  are share parameters in the 

transformation function (0 ≤  𝛿𝑖
𝑒  ≤  1, 0 ≤  𝛿𝑗

𝑑  ≤  1, 𝛿𝑖
𝑒 + 𝛿𝑖

𝑑 = 1 ); and 𝜌𝑖
𝑑𝑥  is the 

transformation elasticity parameter, in which the elasticity of substitution between 

imported and domestic goods, equals 
1

𝜌−1
. 

     A.9 Market Clearance Conditions 

    The above sections describe the behavior of economic agents, such as the 

households, firms, government, investment agents, and the interactions with the rest of 

the world. The final step is to impose the market-clearing conditions to all commodities 

and factor markets as follows: 

𝑄𝑖 = 𝑥𝑖
𝑝

+ 𝑥𝑖
𝑔

+ 𝑥𝑖
𝑣 + ∑ 𝑥𝑖,𝑗𝑗                       Equation (A36) 

∑ 𝑣𝑓,𝑗𝑗 = 𝑉𝑓                                    Equation (A37) 

     A.10 Macro Closure 

    In a CGE model, the issue of macro closure is the choice of exogenous variables 

among all variables in the model, mainly including investment and saving macro 

closure, and current account balance macro closure. In this model, investment is 
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exogenously assumed. In addition, the foreign exchange rate is fixed, and thus the 

balance of payment is an endogenous variable. 
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APPENDIX B 

SYDWEM CALIBRATION AND VALIDATION 

 

Table B1 Estimated Parameter Values for GRP Growth Model.  

Administrative area  c bL bK R2 

Luohu District 0.0425 0.200 0.880 0.801 

Futian District 0.0475 0.170 0.615 0.641 

Nanshan District 0.0528 0.200 0.800 0.793 

Buji Town 0.0399 0.150 0.619 0.746 

 

 

Table B2 Input Parameter Values of SyDWEM (Shenzhen Statistic Bureau, 1982-

2009). 

Parameters Unit 
Values 

1990 2009 

Net investment 

Billion Yuan 

(in 1990 

price) 

  

- Luohu District 1.8 3.4 

- Futian District 1.4 8.8 

-Nanshan District  2.5 18.6 

- Buji Town 1.5 7.0 

Retail price indexes      %  100 230 

Depreciation rate  % 6 6 

The ratio of population to number of labors % 65 76 

Average birth rate  ‰ 2.76 2.67 

Average death rate  ‰ 1.11 0.33 

Water consumption per capita L/d 178 243 

BOD5 generation per capita  g/d 36.0 36.0 

NH3-N generation per capita g/d 11.1 11.1 

BOD5 per unit GRP of different industries  

t/billion 

Yuan 

  

-Labour intensive secondary industry 575.4 575.4 

-Technology intensive secondary industry 42.0 42.0 

-Capital intensive secondary industry 134.4 134.4 

Note: a Ratio of reclaimed wastewater to water consumption.  
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Table B2 Input Parameter Values of SyDWEM Continued (Shenzhen Statistic 

Bureau, 1982-2009). 

 

Parameters Unit 
Values 

1990 2009 

NH3-N per unit GRP of different industries 

t/billion 

Yuan 

  

-Labour intensive secondary industry 62.2 62.2 

-Technology intensive secondary industry 6.7 6.7 

-Capital intensive secondary industry 10.4 10.4 

Water transfer quota M m3/d    0.26     2.65 

a Reclaimed wastewater reuse ratio % 0 5 

The ratio of wastewater generation to water 

consumption 

% 90 90 

Volumetric wastewater treatment rate 

% 

  

-Binhe WWTP service area 43 85 

-Luofang WWTP service area 51 87 

-Caopu WWTP service area 0 45 

-Nanshan WWTP service area 43 79 

BOD5 removal rate in different WWTPs 

% 

  

-Binhe WWTP service area 60 80 

-Luofeng WWTP service area 60 80 

-Caopu WWTP service area 0 80 

-Nanshan WWTP service area  60 80 

NH3-N removal rate in different WWTPs 

% 

  

-Binhe WWTP service area 48 48 

-Luofeng WWTP service area 75 75 

-Caopu WWTP service area 0 20 

-Nanshan WWTP service area  20 20 
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Table B3 Industrial Structure of Different Administrative Areas in 2025. 

Administrative 

area 

 

GRP proportion of primary, 

secondary, and tertiary 

industries  

Proportion of labor, technology, 

and capital-intensive secondary 

industries 

C0E0/C0E1 C1E0/C1E1 C0E0/C0E1 C1E0/C1E1 
Total (2007) 0.05;41.72;58.23 0.05;41.72;58.23 18.39;62.44;19.17 18.39;62.44;19.17 

Total (2025) 0.00;16.58;83.42 0.00;17.00;83.00 22.46;31.52;46.02 18.67;29.95;51.38 

Luohu District (2025) 0.01;5.85;94.14 0.01;6.34;93.65 73.57;14.79;11.64 67.54;19.54;12.92 

Futian District (2025) 0.00;7.39;92.61 0.00;7.88;92.12 24.83;39.90;35.27 8.12;52.70;39.18 

Nanshan District (2025) 0.00;22.08;77.91 0.00;22.49;77.51 5.82;36.79;58.79 3.98;30.72;65.30 

Buji Town (2025) 0.01;22.67;77.32 0.01;23.07;76.92 78.40;9.84;11.76 73.94;13.00;13.06 

 

 
Table B4 Labor Productivity, Water Use Efficiency, and Pollutant Load per GRP 

in 2010 and 2025 (in 1990 Price).  

Scenario 

Labor productivity 

(Yuan) 

Water use efficiency 

(Yuan/m3) 

BOD5 loading per GRP 

ton/billion Yuan 

NH3-N loading per 

GRP 

ton/billion Yuan 

2010 2025 2010 2025 2010 2025 2010 2025 

C0E0 68,588 212,750 444 734 58.7 33.44 6.4 3.4 

C0E1 68,588 212,750 458 853 58.7 33.44 6.4 3.4 

C1E0 73,050 220,350 419 726 56.5 32.15 6.0 3.2 

C1E1 73,050 220,350 454 965 56.5 32.15 6.0 3.2 

 
 

Table B5 Labor Productivity, Water Use Efficiency of Different Industries under 

C0E0 in 2010 and 2025 (in 1990 Price). 

Type of industry 

Labor productivity 

(Yuan per capita) 

Water use 

efficiency 

(Yuan/m3) 

BOD5 loading  

per GRP  

(ton/billion 

Yuan) 

NH3-N loading per GRP 

(ton/billion Yuan) 

2010 2025 2010 2025 2010  2025 2010 2025 

Primary industry 23,489 23489 7 9 - - - - 

Secondary 89,177 376,349 320 531 157.8 163.3 17.6 18.0 

     -labor 25,211 63,797 169 300 575.4 575.4 62.2 62.2 

     -Technology 63,601 207,086 617 1106 42.0 42.0 6.7 6.7 

     -Capital 240,436 1071,100 175 312 134.4 134.4 10.4 10.4 

Tertiary industry 59,792 232,158   606 882 - - - - 

According to the estimation by Qin et al. (2014), the pollutant load from primary 

industry (agriculture) is much smaller compared to other industries in Shenzhen, e.g., the 

COD load from agriculture is estimated to account for only 0.1% of total pollutant load 

in 2009. Thus, it was omitted in the study. Water pollutant loads from tertiary industry 

are included in the estimation of domestic pollutant generation. 
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APPENDIX C 

SUPPLEMENTARY DATA OF CHAPTER 4 

 

 

Figure C1 Relative change of mean WWTPs influent concentrations of (a) CODCr 

and (b) TN compared with the 2007 level under BaU and NDC scenarios.  
 

Table C1 Methane and CO2 Emissions from Sub-main and Main Sewer Systems. 

Types  Sewer types (kg/km/day) 

Sub-main sewer Main sewer 

CH4 11.01±0.22 13.21±0.20 

CO2 21.97±0.021 26.55±0.50 
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Table C2 Emission Factors in This Study 

Emission factor  Values  Technologies Reference Study area 

CO2
* 0.017 A/O Bao et al. (2016) Beijing 

kgCO2 /kg 

CODremoved 

0.076 A/O Bao et al. (2015) Beijing 

 0.032 A2/O Yan et al. (2014) Beijing 

 0.064 A2O Bao et al. (2015) Beijing 

 0.023 Reversed 

A2/O 

Yan et al. (2014) Beijing 

 0.084 OD Bao et al. (2015) Beijing 

 0.026 OD Yan et al. (2014) Beijing 

 0.035 SBR Bao et al. (2016) Beijing 

 0.108 SBR Bao et al. (2015) Beijing 

Average:  0.0517 ± 0.0322 

N2O 0.00270 A/O Bao et al. (2016) Beijing 

kg N2O /kg 

TNremoved 

0.00158 A2/O Ren et al. (2013) Qingdao 

 0.00230 Reversed 

A2/O 

Yan et al. (2014) Beijing 

 0.00145 Reversed 

A2/O 

Ren et al. (2013) Qingdao 

 0.00200 OD Ren et al. (2013) Qingdao 

 0.00360 OD Yan et al. (2014) Beijing 

 0.00515 SBR Bao et al. (2016) Beijing 

Average 0.00268 ± 0.0013 

CH4 emissions 0.00196 A/O Bao et al. (2016) Beijing 

kg CH4/kg 

CODremoved 

0.00144 A2/O Ren et al. (2013) Qingdao 

 0.00146 Reversed 

A2/O 

Ren et al. (2013) Qingdao 

 0.00930 OD Ren et al. (2013) Qingdao 

 0.00217 OD Li et al. (2016) Xi’an 

 0.00670 SBR Bao et al. (2016) Beijing 

Average 0.00384 ± 0.0033 
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Table C3 CO2 Emissions Intensity from Chemicals, Machinery, and Service 

Industrial Sectors under BaU and NDC scenarios in Shenzhen (kg CO2-eq/103 

RMB) (in 1990 Price). 

Scenario Sector 2007 2010 2011 2012 2015 2020 2025 

BaU Chemicals 345.1 402.0 409.2 418.5 448.1 504.4 562.2 

Machinery 99.0 120.8 127.9 131.9 145.2 173.2 205.3 

Service 41.2 48.1 49.1 50.4 54.1 60.5 67.7 

NDC Chemicals 345.1 402.0 409.2 418.5 448.1 112.4 94.4 

Machinery 99.0 120.8 127.9 131.9 145.2 132.8 127.2 

Service 41.2 48.1 49.1 50.4 54.1 41.0 37.0 
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APPENDIX D 

EQUATIONS AND SUPPLEMENTARY DATA OF CHAPTER 5  

 

            Latent heat of vaporization (λ): 

      λ = 2.501 − (2.361 × 10−3) × 𝑇                        Equation (D1)             

where 𝜆 is the latent heat of vaporization of water, MJ/kg; and T (oC) is the mean air 

temperature.  

            Saturation vapor pressure (𝑒𝑠 ): 

𝑒𝑠 =  0.611 exp (
17.27 × 𝑇

𝑇 + 237.3
) 

       𝑒𝑠 ̅̅ ̅ = [0.611 exp (
17.27×𝑇𝑚𝑎𝑥

𝑇𝑚𝑎𝑥+237.3
) + 0.611 exp (

17.27×𝑇𝑚𝑖𝑛

𝑇𝑚𝑖𝑛+237.3
)] /2              Equation (D2)           

where Tmax and Tmin are the maximum and minimum air temperature (°C), respectively; 

es is the saturation vapor pressure, kPa; and  𝑒𝑠 ̅̅ ̅ is the mean saturation vapor pressure for 

a day, week, or month. 

            Actual vapor pressure (𝑒𝑎 ): 

       𝑒𝑎 = 𝑒𝑠 × RH/100                           Equation (D3)  

where ea is the actual vapor pressure, kPa, respectively; and RH is the relative 

humidity, %. 

            Vapor pressure deficit (D): 

𝐷 = 𝑒𝑠 − 𝑒𝑎 = (1 − 𝑅𝐻/100)𝑒𝑠                      Equation (D4)   
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where D is the vapor pressure deficit, kPa.                                         

            Slope of vapor pressure curve (Δ): 

   𝛥 =
4098×𝑒𝑠 

(𝑇+237.3)2 =
2504exp (

17.27×𝑇
𝑇+237.3

)

(𝑇+237.3)2                              Equation (D5) 

            Psychrometric constant (γ): 

𝛾 =
𝐶𝑝𝑃

𝜀𝜆
                                                   Equation (D6) 

     𝑝 = 101.3 × (
293−0.0065𝑧

293
)5.26                                      Equation (D7) 

where γ is the psychrometric constant, kPa oC-1; 𝐶𝑝  is the specific heat of moist air, 

1.013×10-3 MJ kg -1 oC-1; 𝜀  is the ratio of molecular weight of water and dry air, 

i.e.,18.02/28.97=0.622; and  𝑝 is the atmospheric pressure (kPa) at elevation z (m). 

            Net shortwave radiation (Rns): 

      𝑅𝑛𝑠 = (1 − α)𝑅𝑠                                      Equation (D8) 

where 𝑅𝑛𝑠 is the net shortwave radiation, MJ m-2 d-1; 𝑅𝑠 is the incoming solar radiation, 

MJ m-2 d-1; and α is albedo, which is 0.23 for the hypothetical reference grass. If the 

incoming solar radiation is not available, then it can be calculated using Equation (D9): 

            Incoming solar radiation (Rs): 

      𝑅𝑠 = (0.25 + 0.5 𝑛/𝑁)𝑅𝑎                             Equation (D9)   

where n is the actual duration of sunshine (hour); N is the maximum possible duration of  

daylight hours; n/N is the relative sunshine duration; 𝑅𝑎 is the extraterrestrial radiation,  
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MJ m-2 d-1.  

            Net longwave radiation (Rnl): 

   𝑅𝑛𝑙 = σ (
𝑇𝑚𝑖𝑛

4 +𝑇𝑚𝑎𝑥
4

2
) (0.34 − 0.14 × √𝑒𝑎)(1.35 ×

𝑅𝑠

𝑅𝑠𝑜
− 0.35)         Equation (D10) 

where 𝑅𝑛𝑙 is the net outgoing longwave radiation, MJ m-2 d-1; σ is the Stefan-Boltzmann 

constant, 4.903×10-9 MJ K-4 m-2 d-1; and 𝑅𝑠𝑜 is the short-wave radiation, MJ m-2 d-1. 

            Net radiation (Rn): 

   𝑅𝑛 = 𝑅𝑛𝑠 − 𝑅𝑛𝑙                                       Equation (D11) 

            For month soil heat flux (G), the equation suggested by Allen (1998) is as 

follows: 

 𝐺 = 0.14 × (𝑇𝑖 − 𝑇𝑖−1)                            Equation (D12) 

where G is the monthly soil heat flux, MJ m-2 d-1; and  𝑇𝑖  and 𝑇𝑖−1 are the mean air 

temperature at month i and i-1, respectively.  

            Wind profile relationship: 

𝑢2 = 𝑢ℎ
4.87

𝑙𝑛(67.8ℎ−5.42)
                              Equation (D13) 

where 𝑢2  is the wind speed at 2m above the ground, m/s; and 𝑢ℎ  is the wind speed 

measured at h m above the ground, m/s.  

            Sensitivity coefficients of temperature: 

𝜕𝑒𝑠

𝜕𝑇
=

2504exp (
17.27×𝑇
𝑇+237.3

)

(𝑇+237.3)2 = ∆                                   Equation (D14) 
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𝜕∆

𝜕𝑇
=

𝜕∆

𝜕𝑒𝑠
 
𝜕𝑒𝑠

𝜕𝑇
=

4098

(𝑇+237.3)2  
𝜕𝑒𝑠

𝜕𝑇
=

4098∆

(𝑇+237.3)2                  Equation (D15) 

𝜕𝐷

𝜕𝑇
=

𝜕𝐷

𝜕𝑒𝑠
 
𝜕𝑒𝑠

𝜕𝑇
= (1 − 𝑅𝐻)∆                             Equation (D16) 

 

Table D1 Relative Error (%) of the Temperature-based Methods compared with 

FAO-PM Simulation in Warm, Transition, and Cool Seasons using Default Values. 

Stations 

Thornthwaite_T Blaney-Criddle_T Hargreaves and Samani_T 

W T C W T C W T 

Semi-arid climate     

S1 -33 -65 -87 -8 -11 8 -11 -18 

S2 -29 -63 -84 -6 -10 9 -10 -17 

S3 -28 -61 -82 -11 -12 10 -12 -16 

S4 -19 -56 -80 -2 -2 16 -11 -14 

S9 -18 -54 -79 -1 1 22 -4 -6 

Arid climate 

S8 -29 -65 -82 -13 -18 11 -13 -22 

Subhumid subtropical climate     

S5 -16 -54 -81 0 8 31 -7 -6 

S6 -5 -45 -74 7 20 45 -4 1 

S10 -10 -49 -75 6 12 33 -6 -5 

S12 1 -40 -69 12 21 43 -3 3 

Humid subtropical climate 

S7 9 -35 -63 30 39 76 16 21 

S11 14 -27 -58 23 31 54 1 5 

S13 17 -30 -58 36 44 76 10 14 

S14 12 -31 -61 25 35 62 6 11 

S15 18 -21 -49 19 31 63 -4 4 

Semi-arid -25 -60 -82 -6 -7 13 -10 -14 

Subhumid  -8 -47 -75 6 15 38 -5 -2 

Humid 14 -29 -58 27 36 66 6 11 

All regions -10 -48 -72 6 10 36 -4 -5 

Note: W means warm season; T means transition season; C means cool season; and 

relative error within ±20%  are bold. Blue color means the relative error of all the 

stations is within ±20%. 
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Table D2 Relative Error (%) of the Radiation-based Methods compared with FAO-

PM Simulation in Warm, Transition, and Cool Seasons using Default Values. 

Stations  

Makkink_R Priestley and 

Taylor_R 

Jensen-Haise_R Turc_R Abtew_R 

W T C W T C W T C W T C W T C 

Semi-arid climate            

S1 -32 -35 -41 -16 -30 -46 0 -31 -60 -20 -27 -57 -17 -35 -55 

S2 -32 -36 -40 -15 -30 -45 5 -25 -52 -19 -24 -44 -14 -31 -49 

S3 -34 -35 -38 -18 -30 -42 4 -19 -43 -20 -20 -34 -15 -27 -43 

S4 -32 -33 -39 -14 -26 -41 10 -14 -41 -18 -20 -33 -13 -27 -46 

S9 -31 -32 -36 -12 -23 -36 12 -10 -36 -17 -17 -28 -9 -22 -42 

Arid climate 

S8 -31 -34 -32 -20 -34 -41 8 -19 -38 -6 -7 -24 -11 -28 -40 

Subhumid subtropical climate            

S5 -32 -32 -38 -13 -22 -39 11 -13 -44 -18 -18 -36 -11 -25 -46 

S6 -29 -28 -33 -7 -15 -29 19 -2 -29 -14 -11 -21 -6 -19 -37 

S10 -28 -30 -38 -8 -19 -37 19 -6 -34 -13 -14 -26 -7 -22 -42 

S12 -26 -27 -33 -2 -12 -27 24 3 -22 -10 -11 -17 -4 -16 -33 

Humid subtropical climate 

S7 -18 -19 -25 11 -1 -16 36 11 -16 0 1 -7 7 -7 -27 

S11 -23 -26 -34 6 -6 -21 31 11 -13 -6 -7 -13 -1 -13 -30 

S13 -17 -19 -26 14 1 -14 39 16 -11 2 2 -5 5 -9 -27 

S14 -22 -24 -30 6 -5 -18 31 11 -13 -5 -5 -9 1 -12 -28 

S15 -24 -25 -30 5 -3 -13 32 17 -3 -5 -7 -7 -1 -10 -23 

Semi-arid -32 -34 -39 -15 -28 -42 6 -20 -46 -19 -22 -39 -14 -28 -47 

Subhumid  -29 -29 -36 -8 -17 -33 18 -5 -32 -14 -14 -25 -7 -21 -40 

Humid -21 -23 -29 8 -3 -16 34 13 -11 -3 -3 -8 2 -10 -27 

All regions -28 -30 -35 -7 -18 -31 18 -6 -31 -12 -13 -24 -7 -21 -38 

Note: W means warm season; T means transition season; C means cool season; and 

relative error within ±20% is bold. Blue color means the relative error of all the stations 

is within ±20%. 
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Table D3 Regression Relationships (Y=ax) between Reference Evapotranspiration 

of FAO-PM and the Temperature-based Methods using Calibrated Values.  

Stations 

Thornthwaite_T Blaney-

Criddle_T 

Hargreaves and 

Samani_T 
S R2 E S R2 E S R2 E 

Semi-arid climate      

S1 1.12 0.74 1.56 1.02 0.84 0.68 1.01 0.94 0.53 

S2 1.13 0.71 1.68 1.02 0.79 0.74 1.01 0.93 0.52 

S3 1.12 0.72 1.76 1.02 0.76 0.81 1.01 0.94 0.52 

S4 1.12 0.73 1.6 1.02 0.8 0.69 1.01 0.93 0.5 

S9 1.11 0.73 1.55 1.02 0.74 0.73 1.01 0.94 0.47 

Arid climate 

S8 1.15 0.66 2 1.03 0.74 0.87 1.01 0.91 0.66 

Subhumid subtropical climate      

S5 1.1 0.78 1.43 1.03 0.75 0.76 1.01 0.93 0.53 

S6 1.09 0.78 1.31 1.03 0.67 0.76 1.01 0.92 0.48 

S10 1.13 0.69 1.54 1.03 0.59 0.83 1.02 0.87 0.62 

S12 1.1 0.74 1.34 1.02 0.69 0.64 1.01 0.94 0.38 

Humid subtropical climate 

S7 1.09 0.76 1.05 1.02 0.76 0.49 1 0.97 0.24 

S11 1.09 0.71 1.19 1.02 0.59 0.58 1.01 0.91 0.37 

S13 1.1 0.73 1.06 1.02 0.76 0.44 1.01 0.95 0.28 

S14 1.1 0.93 1.16 1.02 0.65 0.56 1.01 0.94 0.31 

S15 1.07 0.75 1.11 1.02 0.42 0.63 1.01 0.88 0.39 

Semi-arid 1.12 0.73 1.63 1.02 0.79 0.73 1.01 0.94 0.51 

Subhumid  1.11 0.75 1.41 1.03 0.68 0.75 1.01 0.92 0.50 

Humid 1.09 0.78 1.11 1.02 0.64 0.54 1.01 0.93 0.32 

All regions 1.11 0.74 1.42 1.02 0.70 0.68 1.01 0.93 0.45 

Note: S means slope and E means root mean square error (RMSE) (mm d-1). 
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Table D4 Regression Relationships (Y=ax) between Reference Evapotranspiration 

of FAO-PM and the Temperature-based Methods using Calibrated Values.  

Stations  

Makkink_R Priestley and 

Taylor_R 

Jensen-Haise_R Turc_R Abtew_R 

W T C W T C W T C W T C W T C 

Semi-arid climate            

S1 1.01 0.93 0.51 1.03 0.87 0.84 1.02 0.85 1.06 1.02 0.91 1.01 0.93 0.51 1.03 

S2 1.01 0.94 0.48 1.03 0.86 0.88 1.05 0.84 1.05 1.01 0.94 1.01 0.94 0.48 1.03 

S3 1.01 0.94 0.48 1.03 0.87 0.85 1.03 0.88 0.94 1.01 0.96 1.01 0.94 0.48 1.03 

S4 1.01 0.93 0.47 1.03 0.88 0.78 1.03 0.88 0.88 1.01 0.94 1.01 0.93 0.47 1.03 

S9 1.01 0.95 0.43 1.02 0.88 0.73 1.03 0.89 0.81 1.01 0.95 1.01 0.95 0.43 1.02 

Arid climate 

S8 1.01 0.96 0.41 1.03 0.86 0.92 1.03 0.87 0.99 1.01 0.96 1.01 0.96 0.41 1.03 

Subhumid subtropical climate            

S5 1.01 0.93 0.53 1.03 0.89 0.74 1.03 0.9 0.82 1.01 0.93 1.01 0.93 0.53 1.03 

S6 1.01 0.93 0.46 1.02 0.91 0.6 1.02 0.91 0.68 1.01 0.93 1.01 0.93 0.46 1.02 

S10 1.01 0.92 0.49 1.03 0.85 0.81 1.04 0.86 0.86 1.01 0.93 1.01 0.92 0.49 1.03 

S12 1.01 0.96 0.33 1.01 0.92 0.53 1.02 0.9 0.64 1.01 0.96 1.01 0.96 0.33 1.01 

Humid subtropical climate 

S7 1.00 0.97 0.22 1.01 0.94 0.38 1.02 0.91 0.53 1.00 0.97 1.00 0.97 0.22 1.01 

S11 1.01 0.93 0.33 1.02 0.90 0.51 1.02 0.88 0.59 1.01 0.94 1.01 0.93 0.33 1.02 

S13 1.00 0.97 0.21 1.01 0.93 0.38 1.02 0.90 0.51 1.00 0.97 1.00 0.97 0.21 1.01 

S14 1.01 0.94 0.31 1.01 0.92 0.46 1.01 0.90 0.57 1.01 0.95 1.01 0.94 0.31 1.01 

S15 1.00 0.96 0.27 1.01 0.94 0.38 1.01 0.93 0.46 1.00 0.96 1.00 0.96 0.27 1.01 

Semi-arid 1.01 0.94 0.47 1.03 0.87 0.82 1.03 0.87 0.95 1.01 0.94 1.01 0.94 0.47 1.03 

Subhumid  1.01 0.94 0.45 1.02 0.89 0.67 1.03 0.89 0.75 1.01 0.94 1.01 0.94 0.45 1.02 

Humid 1.00 0.95 0.27 1.01 0.93 0.42 1.02 0.90 0.53 1.00 0.96 1.00 0.95 0.27 1.01 

All regions 1.01 0.94 0.40 1.02 0.89 0.65 1.03 0.89 0.76 1.01 0.95 1.01 0.94 0.40 1.02 

Note: S means slope and E means root mean square error (RMSE) (mm d-1). 
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Figure D1 Seasonal and annual variation of (a) Rs, (b) vapor pressure deficit 

(VPD), (c) wind speed, and (d) mean temperature at each station from 1961 to 2010. 

Boxplots show the 25th, 50th, 75th percentiles, and extremes. 
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Figure D2 Model with least RMSE for each station with calibrated constant values. 

Red lines represent the fitted linear function. 
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Figure D3 Relative error of the mean monthly reference evapotranspiration 

estimates of each model using regional average parameters at each station from 

1961 to 2010 (Three climatic regions). 



 

304 

 

APPENDIX E 

SUPPLEMENTARY DATA OF CHAPTER 6 

 

            Actual vapor pressure (ea): 

       𝑒𝑎 =
𝑞𝑃

𝜀
                                               Equation (E1)  

where ea is the actual vapor pressure, kPa; q is the specific humidity, g/g; 𝜀 is the ratio of 

molecular weight of water and dry air, i.e.,18.02/28.97=0.622; and 𝑝 is the atmospheric 

pressure (kPa) at elevation z (m). 

            Relative humidity (%): 

RH = 𝑒𝑎 /𝑒𝑠 × 100                                Equation (E2) 

where es is the saturated vapor pressure, kPa. 
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Figure E1 Mean monthly ET0 using FAO-PM method from 1948 to 2016.  

 

 

 
 

Figure E2 Relative error (%) of mean monthly ET0 using Priestley-Taylor method 

compared with FAO-PM method from 1948 to 2016. 
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Figure E3 Relative error (%) of mean monthly ET0 using the adjusted Priestley-

Taylor method (ET_PT_Su) compared with FAO-PM method from 1948 to 2016. 

 

 

 
 

Figure E4 Mann-Kendal trend test of monthly ET0 using FAO-PM method from 

1948 to 2016. Black dots indicate significance at p=0.05 level, and shading is the 

Theil-Sen slope in the unit of mm/day.  
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Figure E5 Mann-Kendal trend test of monthly ET0 using Priestley-Taylor method 

from 1948 to 2016. Black dots indicate significance at p=0.05 level, and shading is 

the Theil-Sen slope in the unit of mm/day.  

 

 

 
Figure E6 Mann-Kendal trend test of monthly ET0 using the adjusted Priestley-

Taylor method (ET_PT_Su) from 1948 to 2016. Black dots indicate significance at 

p=0.05 level, and shading is the Theil-Sen slope in the unit of mm/day. 
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Figure E7 Percentage of global land surface with positive and negative trends of 

reference evapotranspiration estimated using FAO-PM, ET_PT, and ET_PT_Su 

methods. Trends with significance at p=0.05 level from 1948 to 2016.  

 

 

 

Figure E8 Mean monthly relative humidity (%) from 1948 to 2016. 
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Figure E9 Monthly mean theoretical PT coefficient from 1948 to 2016. 

 

 

 

 
Figure E10 Latitudinal profiles of ETo from 1948 to 2016. Shading denotes the 

standard deviation among the latitudinal ET0. Antarctica is excluded since the PGF 

data did not report values in Antarctica. 
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Figure E11 Linear regression of SA and Su2 against air temperature, RH, and wind 

speed. Daily data in 2015 was used.  

 

 

 
Figure E12 Mann-Kendal trend test of the monthly SA from 1948 to 2016. Black 

dots indicate significance at p=0.05 level, and shading is the Theil-Sen slope. 
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Figure E13 Mann-Kendal trend test of the monthly Sra (-SU2) from 1948 to 2016. 

Black dots indicate significance at p=0.05 level, and shading is the Theil-Sen slope. 

 

 

 
Figure E14 Mann-Kendal trend test of the monthly wind speed from 1948 to 2016. 

Black dots indicate significance at p=0.05 level, and shading is the Theil-Sen slope. 
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APPENDIX F 

SUPPLEMENTARY DATA OF CHAPTER 7 

 

            Extraterrestrial radiation, 𝑅𝑎, can be calculated as: 

         𝑅𝑎 =
24(60)

𝜋
𝐺𝑠𝑜𝑑𝑟[𝜔𝑠𝑠𝑖𝑛(𝜑)𝑠𝑖𝑛(𝛿) + 𝑐𝑜𝑠(𝜑)𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝜔𝑠)]          (Equation F1) 

where 𝐺𝑠𝑜 is the solar constant=0.0820 MJ m-2 min-1; 𝑑𝑟 is the relative distance of the 

sun from the earth; 𝛿 is the declination, i.e., the difference between the magnetic north 

and the true north; 𝜔𝑠 is the sunset hour angle in radians for latitude <55o; and 𝜑 is the 

latitude in radians (1 radian= 
𝜋

180
degrees, negative for southern latitudes). 

𝑑𝑟 = 1.0 + 0.033cos (
2𝜋

365
 𝐽)                        (Equation F2) 

𝛿 = 0.409𝑠𝑖𝑛 (
2𝜋

365
 𝐽 − 1.39)             (Equation F3)      

where J is the Julian day between 1 (1 January) and 365 or 366 (31 December).  

            The sunset hour angle in radians for latitude <55o, 𝜔𝑠 can be calculated as: 

𝜔𝑠  = 𝑎𝑟𝑐cos [− tan(𝜑) × tan(𝛿)      (Equation F4) 
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Figure F1 Calibrated parameters of Tmax for downscaling method. a= 
𝝈𝑶,𝒓𝒆𝒇

𝝈𝑴,𝒓𝒆𝒇
, and b= 

𝑶𝒓𝒆𝒇 −
𝝈𝑶,𝒓𝒆𝒇

𝝈𝑴,𝒓𝒆𝒇
𝑴𝒓𝒆𝒇. 
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Figure F2 Calibrated parameters of Tmin for downscaling method. a= 
𝝈𝑶,𝒓𝒆𝒇

𝝈𝑴,𝒓𝒆𝒇
, and b= 

𝑶𝒓𝒆𝒇 −
𝝈𝑶,𝒓𝒆𝒇

𝝈𝑴,𝒓𝒆𝒇
𝑴𝒓𝒆𝒇. 
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Figure F3 Calibrated parameters of precipitation for downscaling method. a= 
𝝈𝑶,𝒓𝒆𝒇

𝝈𝑴,𝒓𝒆𝒇
, and b= 𝑶𝒓𝒆𝒇 −

𝝈𝑶,𝒓𝒆𝒇

𝝈𝑴,𝒓𝒆𝒇
𝑴𝒓𝒆𝒇. 
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Figure F4 Relative error (%) of the monthly mean maximum temperature of 

downscaled CanCM4 relative to DAYMET in 2019. Blank indicates that data is 

unavailable.  

 

 

Figure F5 Relative error (%) of the monthly mean minimum temperature 

downscaled CanCM4 relative to DAYMET in 2019. Blank indicates that data is 

unavailable. 
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Figure F6 Relative error (%) of the monthly total precipitation downscaled 

CanCM4 relative to DAYMET in 2019. Blank indicates that data is unavailable. 
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Figure F7 Precipitation prediction of the downscaled method at different lead times 

in 2019. Blank indicates that data is unavailable.  
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APPENDIX G 

SUPPLEMENTARY DATA OF CHAPTER 8 

 

 

Figure G1 Illustration of different boundary conditions using the WDI method. 

 

            Adjusted water stress index or water deficit index (WDI) for low canopy 

coverage can be calculated as:  

 

𝑊𝐷𝐼 =
(𝑇𝑐−𝑇𝑎) − (𝑇𝑐−𝑇𝑎)𝑝𝑈

(𝑇𝑠−𝑇𝑎)𝑝𝑈 − (𝑇𝑐−𝑇𝑎)𝑝𝐿
                     Equation (G1) 

 

(𝑇𝑐 − 𝑇𝑎)𝑝𝑈 = 𝑝(𝑇𝑐 − 𝑇𝑎)𝑈 + (1 − 𝑝)(𝑇𝑠 − 𝑇𝑎)𝑈         Equation (G2) 

(𝑇𝑐 − 𝑇𝑎)𝑝𝐿 = 𝑝(𝑇𝑐 − 𝑇𝑎)𝐿 + (1 − 𝑝)(𝑇𝑠 − 𝑇𝑎)𝐿              Equation (G3) 

            For full-cover, well-watered vegetation, the lower boundary  (𝑇𝑐 − 𝑇𝑎)𝐿 is 

calculated as:  
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(𝑇𝑐 − 𝑇𝑎)𝐿 =
𝑟𝑎

𝜌𝐶𝑝

𝛾(1+
𝑟𝑐_𝑚𝑖𝑛

𝑟𝑎
)

∆+𝛾(1+
𝑟𝑐_𝑚𝑖𝑛

𝑟𝑎
)

(𝑅𝑛 − 𝐺) −
𝑒𝑎

∗−𝑒𝑎

∆+𝛾(1+
𝑟𝑐_𝑚𝑖𝑛

𝑟𝑎
)
                  Equation (G4) 

            For full-cover, vegetation with no available water, the upper boundary  (𝑇𝑐 −

𝑇𝑎)𝑈 can be calculated as: 

(𝑇𝑐 − 𝑇𝑎)𝑈 =
𝑟𝑎

𝜌𝐶𝑝

𝛾(1+
𝑟𝑐_𝑚𝑎𝑥

𝑟𝑎
)

∆+𝛾(1+
𝑟𝑐_𝑚𝑎𝑥

𝑟𝑎
)

(𝑅𝑛 − 𝐺) −
𝑒𝑎

∗−𝑒𝑎

∆+𝛾(1+
𝑟𝑐_𝑚𝑎𝑥

𝑟𝑎
)
            Equation (G5) 

where 𝑟𝑐_𝑚𝑖𝑛 and 𝑟𝑐_𝑚𝑎𝑥 are the maximum and minimum canopy resistance (𝑟𝑐); 𝑇𝑐 is the 

canopy temperature (oC); 𝑇𝑎  is the air temperature from the local sensor (oC);  (𝑇𝑐 −

𝑇𝑎)𝑈  is the upper boundary of (𝑇𝑐 − 𝑇𝑎)  for full-cover vegetation with no available 

water, representing dry surface condition; (𝑇𝑐 − 𝑇𝑎)𝐿 is the lower boundary of (𝑇𝑐 − 𝑇𝑎) 

for full-cover, well-water vegetation, representing non-water-stressed baselines.  

            For saturated bare soil, r
c
 =0  (the case of a free water surface). The lower 

boundary  (𝑇𝑠 − 𝑇𝑎)𝐿 is: 

(𝑇𝑠 − 𝑇𝑎)𝐿 =
𝑟𝑎

𝜌𝐶𝑝

𝛾

∆+𝛾
(𝑅𝑛 − 𝐺) −

𝑒𝑎
∗−𝑒𝑎

∆+𝛾
                           Equation (G6) 

            For dry bare soil, r
c
 =∞, the lower boundary  (𝑇𝑠 − 𝑇𝑎)𝑢 is described as:  

(𝑇𝑠 − 𝑇𝑎)𝑈 =
𝑟𝑎(𝑅𝑛−𝐺)

𝜌𝐶𝑝
                                   Equation (G7) 

Adjust R
n
 and G for saturated and bare soil conditions.  
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Table G1 Major Parameters to Calculate the Four boundaries. 

Parameters (Tc − Ta)L (Tc − Ta)U (Ts − Ta)L (Ts − Ta)U 

Albedo 0.23 0.23 0.16 0.23 

LAI at Full cover 4 4 - - 

Maximum height (m) 1.2  1.2  
  

Rn  (MJ m-2 d-1) 0.77 Rs 0.77 Rs 0.84 Rs 0.77 Rs 

G (MJ m-2 d-1) 0.1 Rn 0.1 Rn 0.3 Rn 0.3 Rn 

Canopy resistance (m s-1) 25 1000 - - 

Aerodynamic resistance (m s-1) 26.12

𝑈𝑍
 

26.12

𝑈𝑍
 53 53 

Note: Albedo values for dry and wet soil are from [Fontes, Adan Fimbres,1996. Soil 

albedo in relation to soil color, moisture, and roughness. The University of Arizona] 

Soli types are fine-loamy, mixed, superactive, thermic Typic Haplustalfs, TX. 

 

 

Figure G2 WDI test in irrigation field with bare soil in 2021.  

 

 


