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ABSTRACT

Optical imaging through scattering media is a long-standing challenge with important applica-

tions ranging from observations through the turbulent atmosphere to imaging inside living tissues.

Low-order aberrations due to random fluctuations of refractive index can be overcome by adap-

tive optics and turbulence-free ghost imaging; while the problem becomes intractable for optically

opaque media in which strong light scattering scrambles the spatial information conveyed by light

fields. Inspired by the heterodyne detection of the beat signal of two lasers, we propose a compu-

tational imaging scheme based on time-domain information encoding and fast-Fourier-transform-

based information decoding that can realize non-invasive imaging through scattering media. The

feasibility of the original idea is tested by a preliminary experiment that realizes imaging through

scattering media by extracting the beat frequency of two lasers. The technique is further improved

by replacing the beat signal of two lasers with an intensity-modulated laser. Using cross-spectrum

detection of the modulation frequency and raster-scan measurement, we demonstrate that the im-

age of an object can be reconstructed not only through both static and dynamic diffusers but also

under extremely noisy environments, i.e., the light intensity is much lower than detector noise. To

overcome the speed limit due to raster scan, the computational imaging mechanism is further im-

proved to realize full-field imaging via space-time encoded pattern (STEP) illumination. We show

that the images of objects can be reconstructed from a 1D time series of light intensity measured by

a single-pixel photodetector. As a proof of concept, we experimentally demonstrate our technique

with ground glass diffusers and slices of chicken breast as the scattering media. Various aspects of

this technique, including resolution, penetration depth, imaging speed, and algorithm complexity,

are discussed.
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NOMENCLATURE

CW Continuous-wave

GOI Optical image intensifier

SHG Second-harmonic generation

OCT Optical coherence tomography

MFP Mean free path

TMFP Transport mean free path

CCD Charge-coupled device

SNR Signal-to-noise ratio

FFT Fast Fourier transform

SLM Spatial light modulator

OPC Optical phase conjugation

DOPC Digital optical phase conjugation

TM Transmission matrix

A ∗B Convolution of A and B

A ⋆ B Cross-correlation of A and B

DMD Digital micromirror device

VBW Video bandwidth

FWHM Full width at half maximum

GGD Ground glass diffuser

SD Stationary diffuser

DD Dynamic diffuser

STEP Space-time encoded pattern
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1. INTRODUCTION

As one may experience in a foggy morning, the visibility is reduced, making it hard to see

an object that could be seen without fog. Optical imaging is a prime means of investigating the

structure of matter in both microscopic and macroscopic scales, which benefits from a wide range

of light-matter interactions. The propagation of light field in a classical imaging system immersed

in a refractive-index homogeneous medium is well understood. The point-to-point mapping be-

tween the object plane and the image plane guarantees the formation of a clear image of the object.

However, the classical imaging system fails to produce clear images when light propagates through

inhomogeneous media, because the distortion of wavefront scrambles the original point-to-point

relationship, resulting in a random pattern on the image plane (see Fig. 1.1).

Optical observation through inhomogeneous media remains one of the most challenging prob-

lems in optics since the nonuniform microstructure in the media degrades the resolution and the

signal-to-noise ratio (SNR) of the observation [1, 2, 3, 4, 5, 6]. Optical turbulence is a result of

spatial and temporal fluctuations of fluid properties such as index of refraction and velocity [7].

Turbulence can perturb the wavefront generated by every single point source and thus smear the

classical optical image of an object, which is harmful to distant imaging and sensitive observa-

tion. The problem is addressed in a "turbulence-free" imaging scheme, in which second-order

optical coherence is measured via two spatially separated photodetectors to produce the image of

an object. The turbulence-free image can be obtained when the two different yet indistinguishable

two-photon amplitudes overlap and experience almost the same turbulence. In this case, the phase

variations due to turbulence cancel each other, making the observation immune to turbulence [7, 8].

The problem becomes intractable when light travels through highly disordered media, such

as turbid fluids and biological tissues [2, 4, 6]. Such media are usually considered as optically

opaque, in which the amplitudes of incident fields are dramatically attenuated, and the wave vectors

are mixed up after passing through the media. The direction of photon propagation can even be

randomized if the thickness of the medium and is larger than the transport mean free path (TMFP).
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Figure 1.1: Schematic of an classical imaging system without/with scattering media. a. For a
imaging system without scattering media, any radiation starting from a point on the object plane
will impinge at a unique point on the image plane. The point-to-point relationship is a result of
constructive–destructive interference. b. When a scattering medium blocks the direct view of
the object, the field from any point source on the object is scattered. The scattering changes the
propagation direction of the field and introduces random phases, which destroys the original point-
to-point relationship. Therefore, the image becomes a random pattern.
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As a result, the spatial information conveyed by light field is scrambled by strong light scattering,

leading to the degradation of spatial resolution and reduction of imaging depth.

In this dissertation, I present an experiment that inspires a new idea to investigating the prob-

lem of imaging through scattering media and a number of experiments that implement the idea

to realize the vision of looking through scattering media. In Chapter 2, some basic concepts of

imaging and scattering media are introduced, and a general theoretical description of the optical

imaging and scattering media is given. Chapter 3 presents the experimental results of high-order

coherence functions and spectral distributions of the laser as well as a theoretical analysis based

on the Scully-Lamb quantum theory of the laser. This experiment has inspired the later exper-

iments on imaging through scattering media. In Chapter 4, we propose a theoretical model of

imaging objects behind turbid media using an intensity-modulated continuous-wave (CW) laser

and cross-spectrum detection. Non-invasive imaging through both stationary and dynamic ground

glass diffusers is demonstrated experimentally with this method. In Chapter 5, a full-field imag-

ing method using space-time encoded pattern (STEP) illumination patterns is proposed and non-

invasive single-pixel imaging through ground glass diffusers and slices of chicken breast is demon-

strated experimentally. For the remainder of this chapter, some of the current modalities of imaging

through scattering media will be introduced.

1.1 Imaging modalities that reject scattered light

Over the past three decades, many innovative techniques to overcome this practical, yet fun-

damental, problem have been proposed. One approach is based on rejecting the scattered light

fields and using only the unscattered components. The idea is implemented by a variety of modern

techniques.

Spatial filtering is the most straightforward implementation which introduces some spatial light

filters, such as pinholes and collimating grids, to a conventional imaging system [9, 10]. It exploits

the fact that scattered light usually deviates from its initial propagation direction and are scattered

to higher spatial frequencies. Unfortunately, the imaging depth of this technique is very shallow

because of the exponential decay of ballistic photons, and the resolution is limited by the scattered
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photons of which the trajectories are parallel to the incident direction. Confocal imaging can

greatly reduce the negative effects of scattered light by scanning image pixels sequentially [11,

12, 13]. However, it also suffers from a shallow imaging depth due to the scattering of incident

light before focus. The imaging depth can be increased when a confocal system is combined with

multi-photon microscopy, which measures the fluorescence signal of multi-photon absorption in

fluorescent samples [14, 15, 16, 17]. In this case, sources with longer wavelengths are usually

used as excitation radiation, which is less scattered in many media, and only fluorescence signal is

collected.

Time-gating offers another way to extract the ballistic light based on its propagation time in

transmission imaging systems, since ballistic photons always travel along the shortest path between

light source and detector. The temporal discrimination to separate ballistic photons is usually faster

than 1 ps. Such a detection speed has not been available in electronic detectors. As a consequence,

incoherent time-gating techniques that employ streak cameras [18, 19, 20], fast photodiodes, and

gated optical image intensifiers (GOIs) [21, 22] will inevitably collect snake photons and the reso-

lution is reduced accordingly. On the other hand, the fast temporal discrimination can be achieved

using some nonlinear optical correlation techniques, in which ultra-fast lasers are used, and the

time gate has the same duration as the pulsed lasers. The general scheme has three steps: 1. split-

ting the incident laser pulse into probe and reference beam; 2. let the probe beam pass through the

sample; 3. combining the two beams again in some nonlinear medium and measuring the expected

nonlinear effects to retrieve ballistic signals. Nonlinear optical time-gating has been implemented

with various nonlinear phenomena such as second-harmonic generation (SHG) [23, 24, 25], stim-

ulated Raman scattering [26, 27], parametric amplification [28, 29, 30, 31], and optical Kerr effect

[32, 33, 34, 35, 36], in which the ballistic signals are either sampled according to their relative de-

lays in time, or amplified when they are temporally or spatially overlapped with the reference beam

and trigger the nonlinear amplification mechanism. However, it should be noted that the require-

ment of using high-power lasers in nonlinear optical time-gating makes it unfriendly to biomedical

samples. Furthermore, images are typically obtained in a raster-scan manner with long integration
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time for each step, so the image acquisition time is usually unreasonably long.

The discrimination between ballistic and scattered light can also be achieved by coherence-

gated imaging techniques. Similar to time gating, a coherent source is split into a probe beam

and a reference beam in coherence-gated techniques. The ballistic component in the probe beam

can be identified since it remains coherence with the reference beam, while the scattered com-

ponent becomes incoherent after the scattering process. Coherence-gated imaging has been well

developed, and some have been commercialized. The most widely used coherence-gating tech-

nique is optical coherence tomography (OCT), for which the investigation began in the 1980s,

and was first named by Huang et al in 1991 [37]. Although there are many different implementa-

tions of coherence-gated imaging, they mainly fall into two categories: single-pixel scanning and

whole-field imaging. Furthermore, most coherence-gated techniques employ heterodyne detec-

tion to measure weak ballistic signals. For single-pixel scanning, heterodyne detection is usually

performed in the time domain since there is no spatial information at each step of the scan. On

the other hand, whole-field imaging, which can explore all the pixels in parallel, usually exploits

space-domain heterodyne detection to acquire the ballistic signals.

The earliest OCT was implemented by a single-pixel scanning approach. A typical OCT system

is consist of a low coherent source and a Michelson interferometer with a sample at the probe arm

[38], as shown in Fig. 1.2. The source field can be expressed by Ei = E (k, ω) ei(kz−ωt), where

E (k, ω) is the amplitude of field, k is the wave number, and ω is the angular frequency. The

sample is modeled to be multiple reflection layers immersed in a turbid medium. For the sake of

simplicity, we assume a 50/50 beam splitter is used, and the reflections in the sample occur at N

discrete layers, which can be expressed as

rS (zS) =
N∑

n=1

rSnδ (zS − zSn) (1.1)

where zS is the path length in the sample arm, and rSn is the reflectivity of the layer at location

zSn. All the path lengths are measured from the beam splitter. The electric field returning from the
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Figure 1.2: Schematic of a Michelson interferometer used in OCT. The incident light beam is
split into a reference (reflected) and a probe (transmitted) beam by the beamsplitter (BS). After
reflecting back from the sample, the probe beam and reference beam are combined to produce
interference, and the spatial information of the internal structure of the sample can be deduced.
Adapted from Page 71 of Ref. [38].

reference reflector is given by

ER =
Ei√
2
rRe

i2kzR (1.2)

and the electric field returning from the sample can be written as

ES =
Ei√
2

∫ ∞

−∞
rS (zS) e

i2kzSdzS (1.3)

=
Ei√
2

N∑
n=1

rSne
i2kzSn (1.4)

The returning fields interfere at the detector after passing through the beam splitter again, which is
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found to be

ID (k) =
1

2
|ER + ES|2 (1.5)

=
1

4
I (k)

(
RR +

N∑
n=1

RSn

)
+

1

2
I (k)

N∑
n=1

√
RRRSn cos [2k (zR − zSn)]

+
1

2
I (k)

N∑
n̸=m=1

√
RSnRSm cos [2k (zSn − zSm)] (1.6)

where I (k) = |E (k, ω)|2, RR = |rR|2 and RSn = |rSn|2. The first term in Eq. (1.6) is a DC com-

ponent which is independent of the path length. The second term is the cross-correlation between

the reflected sample beam and the reference beam, which contains the information of ballistic pho-

tons reflected by a layer at location zSn. This is the desired signal that can generate the image

of certain layers inside the sample. Therefore, scanning the reference arm allows the selection of

layers at different depths and produces depth-resolved images of the sample. The quality of the

three-dimensional images can be greatly improved by implementing the low coherence interfer-

ometry in a confocal microscope. The last term in Eq. (1.6) represents the autocorrelation between

different sample reflectors and should be eliminated to obtain high-quality images.

The principal drawback of single-pixel scanning is the long image acquisition time. A natural

way to overcome this limitation is using an array of detectors, such as a CCD camera, to perform

heterodyne detection in parallel and therefore speed up the acquisition rate. This enters the regime

of wide-field imaging. Unfortunately, this type of parallelism rejects the use of a confocal filter,

and largely increases the chance that scattered light will hit on the detector [1]. In addition, the

frame rate of CCD is much lower than the sample rate of single-pixel detectors, so they are not able

to perform sampling at high frequency to reduce low-frequency (1/f ) noise [1]. As a consequence,

the SNR is reduced, leading to a much lower penetration depth than that of single-pixel scanning

OCT.

In contrast to wide-field OCT, holography is a wide-field technique that fully exploits the spatial

heterodyne detection to provide a fast coherence-gated imaging method [39, 40]. In this case, the
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ballistic light will interfere with the reference beam, and the interference pattern will be recorded in

the hologram. The image can be reconstructed by illuminating the hologram with a read-out beam.

The wavelength of the read-out beam is different from the source such that scattered light can be

eliminated by a filter. Early holography employed photographic film as the recording medium, so

the image reconstruction must be completed after the film is chemically processed. Later research

has developed real-time methods to perform holographic recording and image reconstruction. One

approach is using a CCD camera to record the hologram and reconstructing the image computa-

tionally with the knowledge of the reference beam [41, 42, 43, 44, 45]. Digital holography provides

more flexibility in image processing since it is done numerically. However, the limitation is also

obvious: the scattered light background may saturate the camera and must be subtracted. Another

approach is to replace the photographic film with a photorefractive crystal [46]. Light interaction

with a photorefractive crystal will lead to optically induced change of refraction index and form

a dynamic interference pattern throughout the material, which can be used to record a real-time

hologram [47, 48, 49, 50, 51, 52]. Similar to conventional holography, the original image can be

read out by a laser at different wavelength from the source, and the scattered light background can

be filtered before the reconstructed image is recorded. Compared to digital holography, photore-

fractive holography has the potential to remove the scattered light background and enhance the

dynamic range for the weak signal detection. Nevertheless, the interaction of the read-out beam

with the photorefractive material introduces an additional source of noise that is detrimental to the

image reconstruction [1].

1.2 Imaging modalities that exploit scattered light

The concept of separating ballistic light fundamentally rejects the majority of photons that

could potentially contribute to image an object hidden behind turbid media. This is the main

reason that all imaging modalities based on extracting ballistic light suffer from a low SNR and

shallow penetration depth. Early experiment using holographic imaging [53] had demonstrated

that scattering by stationary media does not erase the spatial information carried by light fields

[54]; while the apparent random speckle pattern formed by scattered light is essentially determin-
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istic, and the optical information can be retrieved. The possibility of reconstructing images from

scattered light stimulates a lot of efforts in solving this “inverse problem”.

The first demonstration of coherent control of scattered light is dating back to 2007, when

Vellekoop and Mosk realized focusing light through a scattering layer in their seminal paper [55].

They constructed a feedback mechanism with a spatial light modulator (SLM) and a CCD camera,

which can modify thousands of local phases of the incident wavefront according to the measured

intensity speckle at the target plane. The incident wavefront is iteratively optimized at every pixel

of the SLM such that the wavefront of scattered light can produce constructive interference at

the target location and form a well-defined focus. This work marks the invention of wavefront

shaping, which plays an important role in manipulating the light field in complex media [4]. Recent

developments in wavefront shaping are all based on this feedback paradigm [56, 57, 58, 59, 60, 61,

62] with more options on the phase control algorithms [63].

Although wavefront shaping has allowed high controllability of light fields in turbid media, the

control is highly dependent on the specific medium used in one measurement. Working on a new

medium requires the restart of the optimization process with an unknown initial state, making it

very difficult to achieve real-time manipulation with electronic feedback and computer-controlled

SLM [64]. Optical phase conjugation (OPC) is a technique that can reverse the propagation direc-

tion of the light field and keep the wavefront unchanged [65]. When the conjugated field propagates

through the scattering medium in the reverse direction, the scattering process is reversed in time,

and the incident wavefront is recovered. The idea of phase conjugation can be illustrated by com-

paring the properties of the light field reflected by a regular mirror with a phase conjugate reflector,

as shown in Fig 1.3. Assume the incident light is a plane wave given by

E (x, y, z;ω) = E (x, y, z) eikze−iωt (1.7)

where E (x, y, z) is the real amplitude function of the field. After passing through a scattering
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medium, the transmitted field can be written as

ET (x, y, z;ω) = E (x, y, z) eikz+φ(x,y,z)e−iωt (1.8)

where φ (x, y, z) is the phase factor describing the distortion of wavefront due to scattering. If the

output light is reflected by a regular plane mirror, the reflected field will be

ER (x, y, z;ω) = RE (x, y, z) e−ikz+φ(x,y,z)e−iωt (1.9)

where R is the reflectivity of the mirror. After passing through the same medium again, the output

light is found to be

E ′
R (x, y, z;ω) = RE (x, y, z) e−ikz+2φ(x,y,z)e−iωt (1.10)

which indicates the distortion of wavefront originate from the medium is doubled in this case.

Figure 1.3: Schematic of an optical wavefront reflected by a regular mirror and a phase-conjugate
reflector. a. A wave reflected by a regular mirror passes through again a complex media. The
distortion of wavefront due to scattering is accumulated. b. For a phase conjugate reflector, the
phase of the reflected wavefront is conjugated, and the distortion of wavefront is offset after the
wavefront passes through the scattering medium again. Adapted from Page 136 of Ref. [65].
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On the other hand, if the mirror is replaced by a phase conjugate reflector, the reflected field

becomes

EPC (x, y, z;ω) = R′E (x, y, z) e−ikz−φ(x,y,z)e−iωt (1.11)

where R′ is the reflectivity of the conjugate reflector and the field passing through again the

medium becomes

E ′
PC (x, y, z;ω) = R′E (x, y, z) e−ikze−iωt (1.12)

which shows the distortion of the wavefront due to the scattering medium can be eliminated. We

call the wave described by Eq. (1.11) “phase conjugate wave".

Depending on whether the propagation direction of the phase conjugate wave is the same as

the input wave, OPC can be either in a forward configuration (the same propagation direction)

or a backward configuration (the opposite propagation direction). Phase conjugate is usually im-

plemented via nonlinear optical processes, such as four-wave mixing, stimulated scattering, and

stimulated emission. One can interpret OPC as being an analog to real-time holography. Under

this scenario, three interacting waves are sent into a nonlinear optical material. The refraction in-

dex will be changed due to the interaction of pump waves (two of the three) and form a dynamic

“diffraction pattern" (variation of refraction index). The third beam, known as the signal wave,

will be diffracted by the pattern and read out the phase conjugate wave. OPC has been employed

to reverse the scattering process and retrieve an image through turbid media [53, 66].

The requirements of nonlinear materials, specific wavelengths, and high-power lasers make

conventional OPC unpractical in many cases. A digital version of OPC (DOPC) is enabled by

the invention of SLM, which can overcome some of the drawbacks of its analog counterpart. The

basic scheme is to let a signal wave and a reference beam shine on the medium and record the

transmitted wave by a camera [67] (see Fig 1.4). The camera has to be matched pixel-to-pixel to a

SLM located in the conjugate plane via a beam splitter. Then the pattern recorded on the camera

is displayed on the SLM such that the reference beam can be diffracted on the pattern and produce

phase conjugate wave emitting in the opposite direction of the signal beam. Recently, DOPC
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Figure 1.4: Principle of digital optical phase conjugation. a. The interference pattern between
a reference signal and an input signal to be phase conjugated is recorded by a CCD camera. b.
The recorded interference pattern is displayed on a SLM, on which the same reference wave is
diffracted to generate phase conjugate wave. Adapted from Ref. [67].

has been successfully implemented in optical focusing and imaging through scattering layers and

living tissues [67, 68, 69, 70, 71, 72, 73, 74, 75, 76].

As mentioned previously, although the field in complex media is scrambled due to multiple

scattering and the transmitted field seems to be random upon phase, propagation and polarization,

the process is deterministic: the input wave is precisely mapped to the output wave by the scattering

matrix, a well-known concept in the transport theory of mesoscopic system [5]. A scattering matrix

is comprised of reflection and transmission matrices (TM) which can be written as [5]

S =

 r t′

t r′

 (1.13)

where the diagonal block matrices contain the reflection amplitudes for incoming waves from

the left (r) and the right (r′) of the medium, respectively. The off-diagonal matrices contain the

transmission amplitudes for scattering from left to right (t) and from right to left (t′). With the
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knowledge of a scattering matrix, it is possible to enable a complete description of scattering in

complex media and calculate input optical information from the output fields. Particularly, one can

reconstruct the incident field from the transmitted field provided the TM is fully understood.

The monochromatic TM of a scattering layer was first measured by a common-path interfer-

ometry and a full-field four-phase method [77]. Optical focusing through the opaque medium was

also demonstrated. The measured TM was further used to deliver images through an opaque layer

[78]. In addition, the TM method was employed to overcome the diffraction limit of a conven-

tional imaging system [79]. A 5-fold enhancement of the resolution was achieved by exploiting

the multiple scattering in turbid media. Despite all that, the measurement of the TM is challenging

to perform because of the large number of degree of freedom, the small size of optical channels

(up to diffraction-limited spot size), and the requirements of accessing both amplitude and phase

information by means of holographic or interferometric technique. Later, a more elegant method

was proposed to measure the TM of a scattering medium taking advantage of wavefront shaping

and an iterative algorithm of point optimization [80]. The success of the measurement was further

verified by the generation of multiple foci through the complex medium. The combination of TM

and wavefront shaping also enables enhanced nonlinear imaging through scattering media [81].

Besides acquiring the full knowledge of the TM, the information of the incident optical field can

be retrieved by exploiting a unique correlation property of the scattered light field: the scattered

wavefront will rotate without change in shape when the incident wavefront also rotates by the

same angle. This effect is known as the angular memory effect, which was first proposed in the

mesoscopic transport theory of disordered medium [82] and subsequently generalized to the optical

field in scattering media [82]. A physical picture of the angular memory effect is illustrated in Fig.

1.5 [6]. The incident wavefront is tilted by an angle ∆θ. When the scattering medium is thin

enough, the sub-sources on the transmitted wavefront will retain the same relative phase due to the

tilt, resulting in an overall tilt by the same angle. As a result, the transmitted field projected on the

detection plane at distance d will be shifted by ∆s = ∆θ ·d. This indicates that the speckle pattern

at the detection plane is unchanged except for a small transversal shift. The effective range of the
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Figure 1.5: Principle of the optical angular memory effect. A tile of the incident wavefront at angle
∆θ leads to the same tile on the scattered wavefront, but the shape of the scattered wavefront keeps
unchanged. As a result, the speckle pattern at the screen shifts by a distance ∆s. Adapted from
Ref. [6].

angular memory effect is given by [83]

C (|∆θ| , L) =
(

k |∆θ|L
sinh (k |∆θ|L)

)2

(1.14)

in which k is the wavenumber of the incident light, and L is the thickness of the medium. In

transmission geometry, a measurable effect can only be observed for a complex medium with

thickness less than a few tens of micrometers, according to Eq. (1.14), which limits the application

of this configuration to thin media.

Recent studies taking advantage of the angular memory effect have enabled non-invasive imag-

ing through scattering layers with angular scans of coherent laser [83] and single-shot measurement

of incoherent sources [84, 85, 86]. The scheme is further developed to image moving objects be-

hind scattering media [87]. All the techniques use the fact that the autocorrelation of the speckle is

nearly a delta function, and the measured intensity is a convolution of the object and the speckle.
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Therefore, the autocorrelation of the measured is essentially equal to the autocorrelation of the

object. The image of the object can be reconstructed from the autocorrelation by some phase-

retrieval algorithms [88, 89]. Memory effect has also be combined with OPC to implement optical

focusing through complex media [90]. The chief advantage of these techniques is that they do not

depend on the detailed knowledge of the scattering events in the media. Nevertheless, they share

some common shortcomings: (i) the memory-effect range restricts this approach to thin scattering

layers; (ii) the small single speckle grain requires a high-resolution camera to resolve; (iii) the

iterative phase-retrieval algorithm suffers from falling into local optimal solutions.

1.3 Other imaging modalities

Many other techniques have addressed the problem of imaging through scattering media from

different perspectives. One simple method exploits the fact that the input optical information is

degraded in space but largely retained in time. Therefore, if one can embed a time-domain “tag”

into the incident light and extracts this tag in the transmitted light, an image of objects with a

high contrast of reflectivity can be obtained by scanning the object pixel by pixel. This idea has

been realized by polarization modulation [91, 92, 93], in which the polarization of the source is

modulated to rotate at certain frequency such as the polarization analyzer can generate a sinusoidal

component of the transmitted light, and the modulation frequency is acquired by performing fast

Fourier transform (FFT) to the recorded signal at every pixel. Since the reflectivity of the object is

position-dependent, the spectral intensities of the modulation frequency of all the scanning points

will jointly produce an image of the object. This method is also used to generate a full-field im-

age through scattering media provided the object is self-illuminated with sinusoidally modulated

intensity [94]. More recently, using a 2D optical frequency comb, real-time frequency-encoded

spatiotemporal focusing and imaging through scattering media is achieved for ground glass dif-

fusers and living tissues [95].

Similar insight has been transplanted to ultrasound-assisted optical imaging. Unlike optical

waves, ultrasound waves can propagate through scattering media without obvious distortion up to

1-100 mm in depth [6]. The penetration depth can be translated to optical waves via two types of
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ultrasound-light interactions: the frequency shift of the optical waves due to ultrasound-induced

refractive index grating and the generation of ultrasound via thermal expansion of the media due to

the absorption of optical energy. The two mechanisms have led to the development of ultrasound-

modulated optical tomography [96, 97] and photo-acoustic tomography [96, 98], which are inten-

sively used in biomedical imaging. More recently, speckle-encoded ultrasound-modulated light

correlation has been implemented to image fluorescent objects through dynamic scattering media

[99]. However, the main disadvantage of using ultrasound is the reduced imaging resolution. For

commonly used ultrasound in 1-50 MHz, the resolution is 20-1000 µm, which is far above the

optical diffraction limit. Higher frequency may improve the resolution, but also suffers from great

attenuation in scattering media.
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2. THEORETICAL DESCRIPTION OF OPTICAL IMAGING THROUGH SCATTERING

MEDIUM

In this chapter, we introduce some basic concepts of imaging and scattering media, and develop

a general formulation for imaging systems with scattering media.

2.1 Electromagnetic wave in vacuum

We begin with a review of the classical electromagnetic theory of light, as most of work in

this dissertation can be well understood within the frame of classical theory. The set of Maxwell

equations is the foundation of classical electromagnetic theory. Heinrich Hertz conducted a series

of experiments between 1886 and 1889 that conclusively proved the existence of the electromag-

netic radiation predicted by Maxwell equations. These experiments also demonstrated that light

is a form of electromagnetic radiation. Maxwell’s equations in source-free vacuum have the form

[100]

∇×E +
∂B

∂t
= 0, (2.1)

∇×H − ∂D

∂t
= 0, (2.2)

∇ ·D = 0, (2.3)

∇ ·B = 0, (2.4)

with the constitutive relations

D = ϵ0E, (2.5)

B = µ0H , (2.6)

where the electric (magnetic) field E (H) is connected to electric displacement D (magnetic

induction H) by free-space electric permittivity ϵ0 (magnetic permeability µ0). Eq. (2.1) and (2.2)

are coupled partial differential equations describing the time evolution of E (r, t) and B (r, t). Eq.
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(2.3) and Eq. (2.4) set the initial conditions for the source-free vacuum. This can be more explicit

if we take the divergence of Eq. (2.1) and (2.2):

∂

∂t
(∇ ·B) = 0, (2.7)

∂

∂t
(∇ ·D) = 0, (2.8)

which imply that the fields are divergence-free all the time if they are divergence-free at t = 0 as

indicating by (2.3) and Eq. (2.4).

The electric and magnetic fields also obey a vector form of wave equation independently. To

see this, substitute Eq. (2.2) into the curl of Eq. (2.1) and use the vector identity

∇× (∇× a) = ∇ (∇ · a)−∇2a (2.9)

as well as Eq. (2.3). The result is

∇2E − 1

c2
∂2E

∂t2
= 0, (2.10)

where c ≡ 1/
√
ϵ0µ0 is the speed of light in vaccum. Similarly, substituting Eq. (2.1) into the curl

of Eq. (2.2) will yield the wave equation for magnetic field

∇2H − 1

c2
∂2H

∂t2
= 0. (2.11)

As we can see, each Cartesian component of E (r, t) and H (r, t) satisfies a scalar wave equation

of the same structure, which is given by

∇2u− 1

c2
∂2u

∂t2
= 0, (2.12)

where u (r, t) is an arbitrary function of space and time. Now, suppose u (r, t) can be expressed
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in Fourier integral representation

u (r, t) =
1

2π

∫ +∞

−∞
u (r, ω) e−iωtdω (2.13)

where

u (r, ω) =

∫ +∞

−∞
u (r, t) eiωtdω (2.14)

is the inverse transform. Substituting Eq. (2.13) into Eq. (2.12), it is easy to find the well-known

Helmholtz equation for u (r, ω)

∇2u (r, ω) + k2u (r, ω) = 0 (2.15)

where k = ω/c is the wave number. According to Eq. (2.13), a general solution of Eq. (2.15)

gives a general solution of the wave equation (Eq. (2.12)). Using Fourier representation allows

us to understand the behavior of a single frequency component U (r, ω) by which the behavior

of u (r, t) can be determined according to Eq. (2.13). A possible solution of Eq. (2.15) is the

monochromatic plane wave with a single frequency ω0, which is given by

u (r, ω) = ukδ (ω − ω0) e
ik·r, (2.16)

where uk is the complex amplitude associated with mode k. Therefore, we have a general solution

of the wave equation (Eq. (2.12))

u (r, t) = uke
i(k·r−ω0t) + c.c. (2.17)

in which c.c. stands for the complex conjugate. With the convention that the real parts of complex

quantities are the physical fields, we can write the electric and magnetic fields as

E (r, t) = Eke
i(k·r−ω0t) (2.18)
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H (r, t) = Hke
i(k·r−ωt) (2.19)

where Ek and Hk are constant vectors. Due to the linear nature of Maxwell equations, any linear

superposition of the plane-wave solution (Eq. (2.18) and Eq. (2.19)) is also a solution of the wave

equation (Eq. (2.10) and Eq. (2.11)). The linearity also allows the decomposition of a complex

radiation field into a linear superposition of elementary solutions of the wave equations.

There remains some restrictions for E (r, t) and H (r, t) to satisfy Maxwell equations. It

follows from the divergence equations (Eq. (2.3) and Eq. (2.4)) that

k ·E = 0 (2.20)

k ·H = 0 (2.21)

which indicate both the electric and magnetic fields are perpendicular to the direction of propaga-

tion. Let us denote k = kk̂ where k̂ is a unit vector. The curl equations further require that

cB (r, t) = k̂ ×E (r, t) (2.22)

which implies the vectors
(
k̂,E,B

)
form a right-handed orthogonal system. It follows directly

from Eq. (2.22) that

|E| = c |B| (2.23)

2.2 Linear system

Figure 2.1: A linear system diagram. u (x, y) is the input, and v (x, y) is the output. Adapted from
Page 7 of Ref. [101].
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An optical imaging systems is often modeled as a linear system in which a given input is

mapped to a unique output [101, 102]. Consider a system shown in Fig. 2.1, where u (x, y) is the

input signal and v (x, y) is the output signal. The input-output mapping can be written as

v (x, y) = Ôu (x, y) (2.24)

where Ô is an operator denoting the operation imposed on the input by the system. The system is

called linear if the following equation is obeyed for any input u1 (x, y) and u2 (x, y)

Ô [c1u1 (x, y) + c2u2 (x, y)] = c1Ôu1 (x, y) + c2Ôu2 (x, y) (2.25)

where c1 and c2 are complex constants. Using the delta function, u (x, y) can be expressed as

u (x, y) =

∫∫ ∞

−∞
u (x1, y1) δ (x− x1, y − y1) dx1dy2 (2.26)

It follows that the output can be written as

v (x, y) = Ôu (x, y)

=

∫∫ ∞

−∞
u (x1, y1) Ô [δ (x− x1, y − y1)] dx1dy2

=

∫∫ ∞

−∞
u (x1, y1)h (x, y;x1, y1) dx1dy2 (2.27)

in which

h (x, y;x1, y1) ≡ Ô [δ (x− x1, y − y1)] (2.28)

is the impulse response of the system characterizing the response of the system to point sources

(delta function). Eq. (2.27) is known as the superposition integral, which implies that the output

corresponding to a given input is determined once the impulse response is known. In the context

of optics, the impulse response is usually called point-spread function.

A linear system is said to be shift-invariant (or space-invariant) if its impulse response depends
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only on the transversal distance (x− x1) and (y − y1). In such a system, any translation of the

input results in the same translation of the output, and the impulse response can be written as

h (x, y;x1, y1) = h (x− x1, y − y1) (2.29)

Substituting Eq. (2.29) back into Eq. (2.27), we have

v (x, y) =

∫∫ ∞

−∞
u (x1, y1)h (x− x1, y − y1) dx1dy2

=

∫∫ ∞

−∞
h (ξ, η)u (x− ξ, y − η) dξdη (2.30)

in which the second line can be reached by a change of variables ξ = x− x1 and η = y − y1. The

right-hand side of Eq. (2.30) is exactly a 2D convolution of h (x, y) and u (x, y), which is often

expressed symbolically as

v (x, y) = h (x, y) ∗ u (x, y) (2.31)

Now, if we take the Fourier transform of both sides of Eq. (2.31) and apply the convolution

theorem, we end up with a simple relation between the spectra of the system output and input

V (fx, fy) = H (fx, fy)U (fx, fy) (2.32)

where

H (fx, fy) =

∫∫ ∞

−∞
h (ξ, η) e−i2π(fxξ+fyη)dξdη (2.33)

is the transfer function of the system. The transfer function provides a frequency-domain descrip-

tion of the effects of the system on the input. Note that the computationally expensive convolution

operation in Eq. (2.31) is replaced by a simple multiplication in Eq. (2.33). The output in space-

domain can then be obtained by the inverse Fourier transform of V (fx, fy)

v (x, y) =

∫∫ ∞

−∞
V (fx, fy) e

i2π(xfx+yfy)dfxdfy (2.34)
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Frequency-domain representation of the input-output relation with transfer function makes

it very simple to deal with a shift-invariant linear system consists of shift-invariant linear sub-

systems, which is usually the case in an experimental setup of optics. Let’s consider such a system

with two sub-systems, as shown in Fig. 2.2. The output v1 (x, y) of the sub-system 1 is the input

of the sub-system 2. Using Eq. (2.31), the final output (output of sub-system 2) can be obtained as

v2 (x, y) = h2 (x, y) ∗ v1 (x, y)

= h2 (x, y) ∗ [h1 (x, y) ∗ u (x, y)] (2.35)

and the frequency-domain representation is given by

V2 (fx, fy) = H2 (fx, fy)H1 (fx, fy)U (fx, fy) (2.36)

Eq. (2.36) shows that the effects of the whole system on the input u can be broken into successive

operations of the sub-systems on the input u in frequency-domain, which greatly simplifies the

description of complex systems.

Figure 2.2: A linear system with two sub-systems.

2.3 Field propagation in optical imaging system

In this section, we are going to discuss the propagation of electromagnetic radiation in free

space [103, 100]. Specifically, we are interested in determining the profile of E (r, t) on a trans-
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verse plane of z = c from a given distribution of the field E (r0, t0) on a plane of z0 = 0. We

assume that the distance between the receiver plane z = c and the emitter plane z0 = 0 is arbitrary,

and only one polarization direction is considered.

The monochromatic plane-wave solution of source-free Maxwell equations given by Eq. (2.18)

cannot exist in nature because it fills all the space. However, the principle of linear superposition

allows us to synthesize solutions that do not extend infinitely in any direction. Real sources can

only generate these kinds of waves, which are called wave packets. Using Eq. (2.18) as basis

functions, the fields of an electromagnetic wave packet have a general form of

E (r, t) =
1

(2π)3

∫
d3kE (k) exp {i (k · r − ωt)} (2.37)

where E (k) is the complex amplitude of the mode k and ω = ck is the associated frequency.

Similarly, E (r0, t0) can be written as

E (r0, t0) =

∫
d3kE (k)uk (r0, t0) (2.38)

where uk (r0, t0) is a solution of the Helmholtz equation (Eq.(2.15)) under certain boundary con-

ditions, and the factor of 1/ (2π)3 is omitted for the sake of simplicity. In principle, we can find a

field propagator (or Green’s function) that propagates each mode from one point r0 on the plane

z0 = 0 to another point r on the receiver plane z = c, and the observed field is given by

E (r, t) =

∫
d3kE (k) g (k, r − r0, t− t0)uk (r0, t0)

=

∫
d3kE (k, r0, t0) g (k, r − r0, t− t0) (2.39)

where E (k, r0, t0) = E (k)uk (r0, t0). For typical optical imaging setups, the propagation of the

fields from the object plane to the image plane may be decomposed into propagation in N steps.
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In these cases, the field at the final receiver plane can be expressed by

E (r, t) =

∫
d3kE (k, r0, t0) g1 (k, r1 − r0, t1 − t0)

× g2 (k, r2 − r1, t2 − t1)× · · · × gN (k, r − rN−1, t− tN−1) (2.40)

where N denotes the number of steps. For certain optical imaging setups, it is more convenient to

write Eq. (2.39) as

E (ρ, z, t) =

∫
d3kE (k;ρ0, z0, t0) g (k;ρ− ρ0, z − z0, t− t0) (2.41)

where ρ and z are the coordinates in the transverse plane and longitudinal plane, respectively.

Figure 2.3: Schematic of free-space Fresnel diffraction. ρ0 is the aperture plane and ρz is the
receiver plane. The field on each point of the ρz plane is a superposition of all the sub-fields
propagating from the ρ0 plane. Adapted from Page 48 of Ref. [100].

To understand the concept of field propagator, let’s evaluate g (k;ρ, z, t) for the free-space

Fresnel diffraction as an example. As shown in Fig. 2.3, the field travels freely from an aperture

A of finite size in the plane ρ0 to the receiver plane ρz. According to Huygens-Fresnel principle,

E (ρz, z, t) is a superposition of the secondary spherical wavefront that emitted from each point on
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the ρ0 plane

E (ρz, z, t) =

∫
d3kE (k)

∫
dρ0Ã (ρ0)

exp {i (kr − ωt)}
r

(2.42)

in which we have set z0 = 0 and t0 = 0, and Ã (ρ0) is the complex amplitude describing the

relative distribution of the field on the plane ρ0. The integration over ρ0 is due to the superstition

of the wavefront. Comparing Eq. (2.42) with Eq. (2.41), we can find the field propagator as

g (k;ρz, z, t) =

∫
dρ0Ã (ρ0)

exp {i (kr − ωt)}
r

(2.43)

In the near-field paraxial approximation where |ρz − ρ0|
2 ≪ z2, r can be approximated by its

first-order expansion

r =

√
z2 + |ρz − ρ0|

2 ≈ z

(
1 +

|ρz − ρ0|
2

2z2

)
(2.44)

Therefore, g (k;ρz, z, t) can be written as

g (k;ρz, z, t) =
ei

ω
c
z−iωt

z

∫
dρ0Ã (ρ0) e

i ω
2cz

|ρz−ρ0|
2

=
ei

ω
c
z−iωt

z

∫
dρ0Ã (ρ0)G

(
ρz − ρ0,

ω

cz

)
(2.45)

where we have defined the Fresnel phase factor

G (α, β) = exp

{
iβ |α|2

2

}
(2.46)

G (α, β) has some properties that are very useful in calculating the field propagator g (k;ρz, z, t).

We list these properties as follows:

G∗ (α, β) = G (α,−β) (2.47)

G (α, β1 + β2) = G (α, β1)G (α, β2) (2.48)
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G (α1 +α2, β) = G (α1, β)G (α2, β) e
iβα1·α2 (2.49)∫

dαG (α, β) eiγ·α =
2πi

β
G

(
γ,− 1

β

)
(2.50)

Eq. (2.47) ∼ (2.49) are straightforward to show, and a proof of Eq. (2.50) is provided in Appendix

A.

The above field propagator is calculated directly from the plane ρ0 to the plane ρz. What if

we insert a plane ρ1 in between and calculate g (k;ρz, z, t) in two steps? This is equivalent to

two successive Fresnel diffraction over distance z1 (from ρ0 to ρ1) and z2 (from ρ1 to ρz), and the

result should be the same propagator as that of the direct calculation discussed previously

g (k;ρz, z, t) = C2 e
iω
c
(z1+z2)−iω(t1+t2)

z1z2

∫∫
dρ1dρ0Ã (ρ0)G

(
ρ1 − ρ0,

ω

cz1

)
G

(
ρz − ρ1,

ω

cz2

)
(2.51)

= C
ei

ω
c
z−iωt

z

∫
dρ0Ã (ρ0)G

(
ρz − ρ0,

ω

cz

)
(2.52)

where C is a normalization constant. Note that

G

(
ρ1 − ρ0,

ω

cz1

)
G

(
ρz − ρ1,

ω

cz2

)
= G

(
ρ1,

ω

cz1

)
G

(
ρ0,

ω

cz1

)
e
−i ω

cz1
ρ1·ρ0G

(
ρz,

ω

cz2

)
G

(
ρ1,

ω

cz2

)
e
−i ω

cz2
ρ·ρ1

= G

(
ρ0,

ω

cz1

)
G

(
ρz,

ω

cz2

)
G

(
ρ1,

ω

c

(
1

z1
+

1

z2

))
exp

{
−i

ω

c

(
ρ0

z1
+

ρz

z2

)
· ρ1

}
(2.53)

We evaluate the integral in Eq. (2.51) as follows:

C2 e
iω
c
(z1+z2)

z1z2

∫
dρ1

∫
dρ0Ã (ρ0)G

(
ρ1 − ρ0,

ω

cz1

)
G

(
ρz − ρ1,

ω

cz2

)
= C2 e

iω
c
(z1+z2)

z1z2

∫
dρ0Ã (ρ0)G

(
ρ0,

ω

cz1

)
G

(
ρz,

ω

cz2

)
(2.54)

×
∫

dρ1G

(
ρ1,

ω

c

(
1

z1
+

1

z2

))
exp

{
−i

ω

c

(
ρ0

z1
+

ρz

z2

)
· ρ1

}
(2.55)
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where the integration over ρ1 is evaluated to be

∫
dρ1G

(
ρ1,

ω

c

(
1

z1
+

1

z2

))
exp

{
−i

ω

c

(
ρ0

z1
+

ρz

z2

)
· ρ1

}

=i
2π

ω
c

(
1
z1
+ 1

z2

)G
ω

c

∣∣∣∣ρ0

z1
+

ρz

z2

∣∣∣∣ ,− 1

ω
c

(
1
z1
+ 1

z2

)


=
i2πc

ω

z1z2
z1 + z2

G

(
ρ0,−

ω

c

z2
z1 (z1 + z2)

)
G

(
ρz,−

ω

c

z1
z2 (z1 + z2)

)
exp

{
−i

ω

c

ρ0 · ρz

z1 + z2

}
(2.56)

On substituting Eq. (2.56) back into Eq. (2.54) and using the relations

G

(
ρ0,

ω

cz1

)
G

(
ρ0,−

ω

c

z2
z1 (z1 + z2)

)
= G

(
ρ0,

ω

c (z1 + z2)

)
(2.57)

G

(
ρz,

ω

cz2

)
G

(
ρz,−

ω

c

z1
z2 (z1 + z2)

)
= G

(
ρz,

ω

c (z1 + z2)

)
(2.58)

we obtain

g (k;ρz, z, t) = C2 i2πc

ω

ei
ω
c
(z1+z2)−iω(t1+t2)

z1 + z2

∫
dρ0Ã (ρ0)G

(
ρ0,

ω

c (z1 + z2)

)
×G

(
ρz,

ω

c (z1 + z2)

)
exp

{
−i

ω

c

ρ0 · ρz

z1 + z2

}
(2.59)

= C2 i2πc

ω

ei
ω
c
(z1+z2)−iω(t1+t2)

z1 + z2

∫
dρ0Ã (ρ0)G

(
ρz − ρ0,

ω

c (z1 + z2)

)
= C2 i2πc

ω

ei
ω
c
z−iωt

z

∫
dρ0Ã (ρ0)G

(
ρz − ρ0,

ω

cz

)
(2.60)

which results from the two-step propagation. Comparing Eq. (2.60) with the result of one-step

propagation (Eq. (2.52)), we can find the normalization constant C = −iω/2πc. Therefore, the

normalized field propagator for free-space Fresnel diffraction is

g (k;ρz, z, t) =
−iω

2πc

ei
ω
c
z

z

∫
dρ0Ã (ρ0)G

(
ρz − ρ0,

ω

cz

)
(2.61)
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Figure 2.4: Schematic of a classical imaging system without scattering medium. Adapted from
Page 54 of Ref. [100].

2.4 A classical optical imaging system without scattering medium

Now, we are ready to analyze a classical optical imaging system without scattering medium

[100]. As illustrated in Fig. 2.4 , an object is either illuminated by an external light source or

self-luminous. A thin lens is placed at a distance so from the object to produce an image of which

the location is determined by the Gaussian thin lens equation

1

so
+

1

si
=

1

f
(2.62)

in which si is the distance between the lens and the image plane and f is the focal length. As

discussed in Section 2.3, the field at the image plane can be expressed by

E (ρi, zi, t) =

∫
d3kE (k;ρo, 0, 0) g (k;ρi, zi, t) (2.63)

where E (k;ρo, 0, 0) is the complex amplitude of mode k in the object plane and g (k;ρi, zi, t) is

the field propagator. For the sake of simplicity, we assume that the frequency of the field ω = ck

is constant and only one polarization direction is considered. Based on the experimental setup, the
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field propagator is found to be

g (k;ρi, zi) = g (k;ρi, so + si)

=

∫
dρo

∫
dρlÃ (ρo)

[
−iω

2πc

ei
ω
c
so

so
G

(
ρl − ρo,

ω

cso

)]
×G

(
ρl,−

ω

cf

)[
−iω

2πc

ei
ω
c
si

si
G

(
ρi − ρl,

ω

csi

)]
(2.64)

in which Ã (ρo) is the complex amplitude of the field distribution in the object plane, and ρo, ρl

and ρi are position vectors in the planes of object, lens, and image, respectively. Using Eq. (2.48)

and (2.49), we can obtain

g (k;ρi, so + si) =

(
−iω

2πc

)2
ei

ω
c
(so+si)

sosi
G

(
ρi,

ω

csi

)∫
dρoÃ (ρo)G

(
ρo,

ω

cso

)
×
∫

dρlG

[
ρl,

ω

c

(
1

so
+

1

si
− 1

f

)]
e
−iω

c

(
ρo
so

+
ρi
si

)
·ρl

=
−ω2ei

ω
c
(so+si)

(2πc)2 sosi
G

(
ρi,

ω

csi

)∫
dρoÃ (ρo)G

(
ρo,

ω

cso

)∫
dρle

−iω
c

(
ρo
so

+
ρi
si

)
·ρl

(2.65)

where we use Eq. (2.62) to reach the last step. If the radius of the imaging lens R is infinite

(R → ∞), it is straightforward to find the last integral to be

∫ ∞

−∞
dρle

iω
c

(
ρo
so

+
ρi
si

)
·ρl = δ

[
ω

soc

(
ρo +

ρi

m

)]
(2.66)

where m = si/so is the magnification of the imaging system. Eq. (2.66) implies that a perfect

point-to-point mapping between the object and its image can be achieved when the size of the lens

is infinite. In this case, an image of infinite high resolution is produced. In practice, however, a

lens has a finite size, and one can never obtain a perfect point-to-point mapping. For lens with

finite radius R, the last integral in Eq. (2.65) can be evaluated using the integral representation of
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Bessel function (Appendix B):

∫
dρle

iω
c

(
ρo
so

+
ρi
si

)
·ρl =

∫ R

0

ρldρl

∫ 2π

0

e−i ω
cso

|ρo+
ρi
m |ρl cos θdθ

=
2πR2J1 (x)

x
(2.67)

with

x =
Rω

soc

∣∣∣ρo +
ρi

m

∣∣∣
where J1 (x) is the first-order Bessel function of the first kind. In this case, the point-to-point

relationship is degraded to a point-to-spot relationship, and the δ-function is replaced by the well-

known point-spread function given by

somb (x) =
2J1 (x)

x
(2.68)

2.5 Optical imaging system with scattering medium: a general formulation

As discussed in Section 2.4, for a perfect optical imaging system, any radiation starting from

a point on the object plane will impinge at a unique point on the image plane. The point-to-point

relationship is a result of constructive-destructive interference and guarantees the formation of

a clear image. For a practical imaging system, the point-to-point relationship becomes a point-

to-spot relationship. The limitation of the finite size of the imaging lens leads to an incomplete

constructive-destructive inference, but an image can still be produced since the relative phase of the

fields emitted from any two points on the object is preserved. However, things become completely

different when a scattering medium blocks the direct view of the object, as shown in Fig. 2.5.

The field from any point source on the object is scattered before it reaches the image plane. The

scattering changes the propagation direction of the field and introduces random phases, which

randomizes the original point-to-point relationship. Therefore, the image turns to a random pattern.

Here we give a general formulation of imaging through scattering medium. Without the loss of

generality, a scattering medium is inserted in between the object and the imaging lens with focal
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Figure 2.5: Schematic of a classical imaging system with scattering medium.

length f in the simple imaging system shown in Fig. 2.5. The distance s2 and s3 satisfies the

relation 1/s2 +1/s3 = 1/f . According to the discussion in Section 2.4, the field propagator of the

system can be written as

g (k;ρi, zi) =

(
−iω

2πc

)3
ei

ω
c
(s1+s2+s3)

s1s2s3

∫
dρo

∫
dρm

∫
dρlÃ (ρo)G

(
ρm − ρo,

ω

cs1

)
R̃ (ρm)

×G

(
ρl − ρm,

ω

cs2

)
G

(
ρl,−

ω

cf

)
G

(
ρi − ρl,

ω

cs3

)
=

(
−iω

2πc

)3
ei

ω
c
(s1+s2+s3)

s1s2s3

∫
dρoG

(
ρo,

ω

cs1

)
×
∫

dρmR (ρm)G

[
ρm,

ω

c

(
1

s1
+

1

s2

)]
e
−i ω

cs1
ρm·ρo

×
∫

dρlG

[
ρl,

ω

c

(
1

s2
+

1

s3
− 1
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+
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=

(
−iω

2πc

)3
ei

ω
c
(s1+s2+s3)

s1s2s3

∫
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∫

dρmR (ρm)G

[
ρm,

ω

c

(
1

s1
+
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where we introduce a complex function

R̃ (ρm) = R (ρm) e
iφ(ρm) (2.70)

to describe the amplitude and phase of the scattered field due to the scattering center at position ρm.

In general, R̃ (ρm) does not have a analytical expression and is related to the statistical properties

of the scattering centers in the medium, so the integral over ρm in Eq. (2.69) cannot be carried out

analytically. The random phase factor eiφ(ρm) scrambles the relative phase information between

any two points in the object plane, resulting in a random pattern in the image plane.

The above example, although being simple, has provided a good illustration of the key idea

why it is impossible to obtain an image of the object directly with an optical imaging system: it

is the randomization of phase information that prevents the fields from producing a constructive-

destructive inference that “reproduces” the object in the image plane.

2.6 Macroscopic characterization of a scattering medium

In practice, scattering media mainly fall into two categories: scattering volume and scattering

surface. Biological tissues, fog, and turbid liquid are common scattering volumes. They can usu-

ally be modeled as 3D “containers” filled with matters that can absorb and scatter light. Although

absorption may add another dimension of challenge for imaging through scattering media, it is

beyond our scope, and we will not discuss absorption throughout the rest of this dissertation.

To elucidate the challenges associated with imaging through scattering media, it is essential to

understand the way that light propagates in the media. Light traveling through scattering volume

mainly falls into three components: ballistic (unscattered) photon, snake photon, and diffuse (scat-

tered) photon [1, 2]. Ballistic photon is not scattered but continues to propagate along its original

direction. It preserves all the information of the object as if there is no scattering medium, and thus

can produce images of the object with diffraction-limited resolution. The intensity of the ballistic
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component of incident light is given by

I = I0e
−µsl (2.71)

where I0 is the intensity of the incident light, µs is the scattering coefficient of the medium, and

l is the propagation distance of the light in the medium. Another quantity directly related to the

scattering coefficient µs is the mean free path (MFP), which is defined by

ls =
1

µs

(2.72)

It is interpreted as the average distance that a photon can propagate between two successive scat-

tering events. As we can see from Eq. (2.71), the ballistic component is attenuated exponentially

as the propagation distance l increases. For many practical media, their thicknesses are much

larger than their MFPs, so the transmitted light will be scattered multiple times, and the ballistic

signals will be swamped by the scattered component for any significant propagation depth. The

domination of scattered light will obscure the camera image of a conventional imaging system.

However, the fact that most scattering media are highly forward-scattering makes it possible for

photons to propagate a longer distance without being randomized in their propagation directions.

For a scattering distance where no ballistic light can reach, there may be some photons that are

only slightly deflected about the ballistic direction. These photons are called “snake photons”, and

they carry the information about a relatively well-defined path through the scattering medium. The

intensity of snake photon is attenuated according to

I = I0e
−µ′

sl (2.73)

where µ′
s = µs (1− g) is the transport scattering coefficient, g is a parameter that defines the

degree of forward scattering, and l is the propagation distance. The higher the value of g is, the

more forward the scattering is, and the longer the photon can propagate without being randomized
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in direction. Similar to MFP, the transport mean free path (TMFP) is defined to be

l′s =
1

µ′
s

(2.74)

which gives the average distance beyond which the propagation direction of photons will be ran-

domized.

The story is different when light reflects off or transmits through a scattering surface [104, 105,

106, 107]. In this case, the scattering surface is modeled as a collection of independent scatter-

ing centers located in a section of the light path. The interference between the diffraction lobes

originated from different scattering centers will form a far-field pattern consisting of randomly

distributed bright and dark areas with irregular sizes and shapes, which is known as “speckle pat-

tern”. According to the field propagation theory discussed in Section 2.3, the optical field in the

observation plane can be expressed as

E (R) =

∫
E (r) exp {iϕ (r)}G (R− r) dr (2.75)

where R and r are the position vectors that define the observation plane and incident plane, re-

spectively. ϕ (r) describes the random phase modulation introduced by the scattering surface, and

G (R− r) is the field propagator. In the Fresnel diffraction approximation, the field propagator is

given by

G (R− r) =
keikz

2πiz
exp

{
ik

2z
|R− r|2

}
(2.76)

where k = 2π/λ is the wave number of the field and z is the distance between the observation

plane and incident plane. Eq. (2.75) implies that the spatial information conveyed by E (r) will

be degraded due to the random phase ϕ (r) introduced by the scattering surface. For rough surface

scattering media, such as ground glass diffusers, the phase modulation function ϕ (r) is further

related to the height distribution of the rough surface h (r) [108]. For transmitting surfaces, the
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relation is given by

ϕ (r) = k (n− 1)h (r) (2.77)

where n is the refractive index. For reflecting surfaces, the relation is given by

ϕ (r) = −2kh (r) cos θi (2.78)

where θi is the incident angle. It follows that the variation of phases dϕ (r) /dr is proportional to

the variation of height dh (r) /dr, so the rougher the surface is, the sharper the variation of phases

is.
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3. HIGH ORDER COHERENCE FUNCTIONS AND SPECTRAL DISTRIBUTIONS AS

GIVEN BY THE SCULLY-LAMB QUANTUM THEORY OF THE LASER*

3.1 Introduction

In this chapter, we present an experiment on the time evolution of the off-diagonal elements

of laser density matrix given by the Scully-Lamb quantum theory of laser [109]. This experiment

inspires the idea of imaging through scattering media by extracting the beat frequency of two

lasers, which we will mainly discuss in Chapter 4 and 5.

Quantum coherence effects in molecular physics are largely based on the existence of the laser

[110]. Indeed, in most of our experiments and calculations, we take the laser to be an ideal

monochromatic light source. If the laser linewidth is important then we usually just include a

“phase diffusion” linewidth into the logic. But what if we are thinking about higher-order cor-

relation effects in an ensemble of coherently driven molecules. For example, photon correlation

and light beating spectroscopy involving Glauber second-order correlation functions [111, 112].

Furthermore, third- and higher-order photon correlations of the laser used to drive our molecular

system can be important. The investigation of higher-order quantum laser noise is the focus of this

chapter [109].

Fifty years ago the Scully-Lamb (SL) quantum theory of the laser (QTL) was developed using

a density matrix formalism [113]. In the interesting threshold region [114, 115] the steady-state

laser photon statistics is given by the diagonal elements of the laser density matrix ρnn (t) ≡ p (n)

as

p (n) = p (0)
n∏

k=1

(A /L )

1 + B
A
k

(3.1)

where A is the linear gain, B is the nonlinear saturation coefficient, L is the cavity loss rate,

and p (0) is the normalization constant determined by
∑∞

n=0 p (n) = 1, which can be expressed by

*Reprinted with permission from “High order Coherence Functions and Spectral Distributions as given by the
Scully-Lamb Quantum Theory of the Laser” by Tao Peng, Xingchen Zhao, Yanhua Shih, and Marlan O. Scully, 2021.
Frontiers in Physics, 9, 657333, Copyright 2021 by Creative Commons Attribution License (CC BY).
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confluent hypergeometric function [116]

p (0) =

 ∞∑
n=0

(
A
B

)
!
(

A 2

BL

)n
(
n+ A

B

)
!

−1

=

[
F

(
1,

A

B
+ 1,

A 2

BL

)]−1

(3.2)

Eq. (3.1) is plotted in Fig. 3.1 where it is compared with the photon distribution of a coherent state:

p (n) =
⟨n⟩n e−⟨n⟩

n!
(3.3)

The parameters are determined by two conditions: 1. the laser is 20 percent above the threshold

Laser

Coherent state

0 100 200 300 400

0.000

0.005

0.010

0.015

0.020

0.025

n

p(
n)

Figure 3.1: Steady state photon distribution function for coherent and laser radiation. The laser is
taken to be 20 percent above threshold, and ⟨n⟩ = 200.

(A /L = 1.2); 2. the average photon number

⟨n⟩ = A

L

A − L

B
(3.4)
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is equal to 200.

The formalism developed in the QTL density matrix analysis has since been successfully ap-

plied to many other physical systems such as the single-atom maser [117], the Bose-Einstein con-

densate (BEC, see Table 3.1) [118], pion physics [119], etc. Other applications of the formalism

have been developed recently and more will likely emerge. Thus we are motivated to deeper our

understanding of the QTL by further analyzing and experimentally verifying the time dependence

of off-diagonal elements ρn,n+k(t) ≡ ρ
(k)
n (t). The diagonal elements of the laser density matrix

for which k = 0, have been well studied. Not as for the off-diagonal elements. In particular

ρ
(1)
n (t) yields the Schawlow-Townes laser linewidth. But what about the higher-order correlations

k = 2, 3 · · · ?

Laser BEC

A Linear stimulated emission gain
Rate of cooling due to interaction with
walls times the number of atom N

B
Nonlinear saturation due to the re-
absorption of photons generated by stim-
ulated emission

Nonlinearity parameter due to the con-
straint that there are N atoms in the BEC:
numerically equal to A /N .

L
Loss rate due to photons absorbed in cav-
ity mirrors etc.

Loss rate due to photon absorption
from the thermal bath (walls) equal to
A (T/Tc)

3.

Table 3.1: Correspondence of parameters between laser and BEC systems.

3.2 Theory and Experiments

The time evolution of the off-diagonal elements of laser density matrix has been obtained in

Schrödinger picture as [120]

ρ(k)n (t) = ρ(k)n (0) e−iνte−k2Dt (3.5)
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where ν is the center frequency of the laser, D = γ/n̄ is the Schawlow-Townes phase diffusion

linewidth, and n̄ = (α − γ)/β. For the sake of simplicity, we assume that the electric field of the

laser is single-mode and linearly polarized. The field operator can be expressed as the sum of its

positive and negative frequency parts

Ê (z) = Ê(+) (z) + Ê(−) (z) (3.6)

where

Ê(+) (z) = E0âe
iκz (3.7)

Ê(−) (z) = E0â
†e−iκz (3.8)

in which κ are the center frequency and the wavenumber of the laser field, respectively. â and â†

are the annihilation and creation operator in the Schrödinger picture and obey
[
â, â†

]
= 1. The

electric field per photon is given by E0 =
√

ℏν/ϵ0V , where ϵ0 is the permittivity of free space and

V is the laser cavity volume. One way to calculate the spectrum of the laser is based on Wiener-

Khinchin theorem, which implies that the first order correlation function of the laser field G(1) (τ)

forms a Fourier transform pair with the power spectrum of the field S (ω):

S (ω) =
1

π
ℜ
∫ ∞

0

dτG(1) (τ) eiωτ (3.9)

in which ℜ stands for taking the real part, and the first order correlation function of the field is

given by

G(1) (τ) =
〈
Ê(−) (t) Ê(+) (t+ τ)

〉
= TrFR

{
Ê(−) (t) Ê(+) (t+ τ) ρ̂FR (0)

}
(3.10)

where Ê(+) (t) is the electric field operator at time t, and ρ̂FR (0) is the density operator of the

field-reservoir system at t = 0. However, there are two difficulties with this approach [121]. First,
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calculating spectrum from correlation function is a procedure in classical signal processing theory,

which must be properly transferred to quantum-mechanical form before solving problems of a

quantized field. Second, the time dependence of the electric field have not been defined. A remedy

of this approach is given by the quantum regression theorem [121] (See Appendix C for more

details), which allows to calculate the two-time correlation function
〈
Ê(−) (t) Ê(+) (t+ τ)

〉
from

the single-time expectation value
〈
Ê(−) (t)

〉
.

The spectrum of the laser can also be deduced from the beat signal of two independent lasers,

which also avoids the difficulty of calculating the two-time correlation function. Here we first

list the relation between the expectation values of the electric field and the off-diagonal elements

of the laser density matrix ρ
(k)
n (0). Later, we will use these relations to calculate the high-order

coherence functions associated with our experiments . The expectation value of the electric field

amplitude operator is given by

〈
Ê(−) (z, t)

〉
= Tr

{
ρ̂ (t)E0â

†eiκz
}

= E0e
iκz
∑
n

〈
n
∣∣ρ̂ (t) â†∣∣n〉

= E0e
iκz
∑
n

√
n+ 1 ⟨n |ρ̂ (t)|n+ 1⟩

= E0e
iκz
∑
n

√
n+ 1ρ(1)n (0) e−Dte−iνt (3.11)

which is related to the first order off-diagonal elements ρ(1)n (0). It follows As is discussed in the

following, the second-order off-diagonal elements are given by the field operator averages

〈
Ê(−) (z, t) Ê(−) (z, t)

〉
= Tr

{
ρ̂ (t)E 2

0

(
â†
)2

ei2κz
}

= E 2
0 e

i2κz
∑
n

〈
n
∣∣∣ρ̂ (t) (â†)2∣∣∣n〉

= E 2
0 e

i2κz
∑
n

√
(n+ 2) (n+ 1)ρ(2)n (0) e−4Dte−i2νt (3.12)
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and the third-order off-diagonal elements are given by

〈
Ê(−) (z, t) Ê(−) (z, t) Ê(−) (z, t)

〉
= Tr

{
ρ̂ (t)E 3

0

(
â†
)3

ei3κz
}

= E 3
0 e

i3κz
∑
n

〈
n
∣∣∣ρ̂ (t) (â†)3∣∣∣n〉

= E 3
0 e

i3κz
∑
n

√
(n+ 3) (n+ 2) (n+ 1)ρ(3)n (0) e−9Dte−i3νt

(3.13)

Eq. (3.11) gives the time evolution associated with the first order off-diagonal elements ρ(1)n , yield-

ing the spectral profile of the laser. Eq. (3.12) and Eq. (3.13) will give the second- and third-order

spectral profile that is determined by the off-diagonal elements ρ(2)n and ρ
(3)
n .

The heterodyne method is usually adapted to measure the linewidth of the laser [122, 123], in

which case the center frequency is shifted from optical frequency to the radio frequency range. A

natural way to measure the laser linewidth is to beat two almost identical but uncorrelated lasers

[124] such that the beat frequency between the lasers is in the MHz range. The result, as seen from

Eq. (3.17), is twice the laser linewidth when the two independent lasers are nearly identical. Many

experiments have been carried out to determine the linewidth [122] and photon statistics [125] of

the laser. Other experiments have measured the intensity correlation of the laser at threshold [126],

revealing the influence of the intensity fluctuation on the laser spectrum. However, to the best of our

knowledge, no measurements have been made of the higher-order phase correlations (k ≥ 2). Here

we measure the second and third correlation of the heterodyne signals from two independent lasers,

which yields the second and third-order time evolution of a laser above threshold. Specifically, we

performed the following experiments: the first set of experiments is to measure the spectral profile

of the laser beat note, i.e., allows us to measure the decay rate as shown in Eq. (3.11). The other

two sets of experiments determine the spectral profile of the second and third-order correlated beat

notes, this allows us to measure the decay rate as shown in Eq. (3.12) and Eq. (3.13).

Fig. 3.2 illustrates the setup of the first set of experiments. This is a typical heterodyne detection

setup, the center frequency between the two He-Ne lasers is in the MHz range. This difference
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Laser 1
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se

r 2

BS D

Spectrum 
Analyzer

Figure 3.2: Experimental setup for measuring the spectrum of the beat note between lasers 1 and
2. The beat note signal is measured by the detector (D) and analyzed by the spectrum analyzer.
BS: non-polarizing beamsplitter.

allows us to analyze the beat signal around a non-zero value hence the full shape of the linewidth

is obtained unambiguously. A non-polarizing beamsplitter (BS) is used to mix the two laser beams.

The beat signal is then directed to the photodiode (D) after the BS. A fast Fourier transform (FFT)

of the signal is performed by the spectrum analyzer (SA), giving the spectrum of the beat note.

For the first set of experiments, the first-order coherence function [112, 113] is

G(1) (t) = Tr
{
ρ̂ (t)

[
Ê

(−)
1 (t) + Ê

(−)
2 (t)

] [
Ê

(+)
1 (t) + Ê

(+)
2 (t)

]}
= Tr

{
(ρ̂1 (t)⊗ ρ̂2 (t))

(∣∣∣Ê1 (0)
∣∣∣2 + ∣∣∣Ê2 (0)

∣∣∣2 + Ê
(−)
1 (0) Ê

(+)
1 (0) + c.c.

)}
= E 2

1 Tr
{
ρ̂1 (t) â

†
1â1

}
+ E 2

2 Tr
{
ρ̂2 (t) â

†
2â2

}
+ E1E2Tr

[
(ρ̂1 (t)⊗ ρ̂2 (t)) â

†
1â2 + c.c.

]
(3.14)

where ρ̂ (t) = ρ̂1 (t) ⊗ ρ̂2 (t) is the density operator of the system, ρ̂1 (t) and ρ̂2 (t) represent the

density operators of laser 1 and 2, ν1 and ν2 represent the center frequencies of the lasers 1 and 2,

respectively. From the above equation, we can see the only terms that carry the beat note frequency

is

Γ(1) (t) = E1E2Tr
[
(ρ̂1 (t)⊗ ρ̂2 (t)) â

†
1â2

]
(3.15)
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and its complex conjugate which contributes to the negative frequency component. Under the

condition that the two lasers are independent, Eq.(3.15) can be further calculated using Eq. (3.11)

Γ(1) (t) = E1E2Tr
[
(ρ̂1 (t)⊗ ρ̂2 (t)) â

†
1â2

]
= E1E2Tr

[
ρ̂1 (t) â

†
1

]
Tr [ρ̂2 (t) â2]

= E1E2

∑
n1

√
n1 + 1ρ(1)n1

(0) e−D1t−iν1t
∑
n2

√
n2ρ

(−1)
n2

(0) e−D2teiν2t

= E1E2

∑
n1

√
n1 + 1ρ(1)n1

(0)
∑
n2

√
n2ρ

(−1)
n2

(0) e−D′teiν0t (3.16)

where ν0 = ν2 − ν1 is the beat frequency of the two lasers and D′ = D1 + D2. Using Eq. (3.9),

we can find the power spectrum of the laser

S(1) (ω) = ℜ
{∫ ∞

0

Γ(1) (t) e−iωtdt

}
∝ D′

D′2 + (ω − ν0)
2 (3.17)

which is a Lorentzian spectrum centered at the beat frequency ν0 with a linewidth D′ that is essen-

tially twice the width of one laser.

The second and third experiments measure the spectral profile of the second- and third-order

correlation of beat notes, the setup is shown in Fig. 3.3. We used the same two lasers to create the

beat signal, where three detectors PDi (i = 1, 2, 3) are used. The outputs from the photodiodes

are used as inputs for a frequency mixer. The output from the mixer is then sent to the spectrum

analyzer and the frequency spectrum of the correlated signal is obtained after the FFT. As shown

in Fig. 3.3, this set of experiments measures the laser field correlation that is governed by the time

evolution of the second and third-order off-diagonal elements ρ(2)n (t) and ρ
(3)
n (t), respectively. The

quantity we now measure is determined by the correlation of the heterodyne signals from detectors

as in Fig. 3.3. The correlated heterodyne signal at frequency 2ν0 from the second-order coherence
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Figure 3.3: Experimental setup for measuring spectral line distribution up to the third order. Laser
1 and 2 : He-Ne lasers; P: polarizer; NDF: neutral-density filter; A: analyzer; BS: non-polarizing
beam splitter; Mixer: frequency mixer; PD: photodiode detectors. The bandwidths of the detectors
are 50 MHz, the resolution bandwidth of the spectrum analyzer is 10 kHz.
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function is given by

Γ(2) (t) = E1E2Tr
[
(ρ̂1 (t)⊗ ρ̂2 (t)) â

†
1â

†
1â2â2

]
= E1E2Tr

[
ρ̂1 (t) â

†
1â

†
1

]
Tr [ρ̂2 (t) â2â2]

= E1E2

∑
n1

√
(n1 + 2) (n1 + 1)ρ(2)n1

(0) e−4D1t−i2ν1t

×
∑
n2

√
(n2 − 1)n2ρ

(−2)
n2

(0) e−4D2tei2ν2t

= E1E2

∑
n1

√
(n1 + 2) (n1 + 1)ρ(2)n1

(0)

×
∑
n2

√
(n2 − 1)n2ρ

(−2)
n2

(0) e−4D′tei2ν0t (3.18)

Taking the Fourier transform as defined by Eq. (3.9), we get a Lorentzian spectral profile centered

at 2ν0 with a width of 4D′

S(2) (ω) ∝ 4D′

(4D′)2 + (ω − 2ν0)
2 (3.19)

Similarly, The correlated heterodyne signal at frequency 3ν0 from the third-order coherence func-

tion is found to be

Γ(3) (t) = E 3
1 E 3

2 Tr
[
(ρ̂1 (t)⊗ ρ̂2 (t)) â

†
1â

†
1â

†
1â2â2â2

]
= E1E2Tr

[
ρ̂1 (t) â

†
1â

†
1â

†
1

]
Tr [ρ̂2 (t) â2â2â2] (3.20)

= E 3
1 E 3

2

∑
n1

√
(n1 + 3) (n1 + 2) (n1 + 1)ρ(3)n1

(0)

×
∑
n2

√
(n2 − 2) (n2 − 1)n2ρ

(−3)
n2

(0) e−9D′tei3ν0t (3.21)

Therefore, we get a Lorentzian spectral profile centered at 3ν0 with a width of 9D′

S(3) (ω) ∝ 9D′

(9D′)2 + (ω − 3ν0)
2 (3.22)
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A B C

Figure 3.4: Spectral line profiles for up to the third order. The black dots are experimental data,
and the red curves are theory. (A) The beat signals from PD1, where the FWHM is 107.9 kHz with
average 50 times; (B) Correlated signal from PD2 and PD3, where the FWHM bandwidth is 420.6
kHz with average 50 times; (C) Correlated signal from PD1, PD2, and PD3, where the FWHM is
963.3 kHz with average 50 times.

The main experimental results are shown in Fig. 3.4. All measurements were taken with the

laser operating at the same average output power level. The resolution bandwidth (RBW) of the

SA is 10 kHz, video bandwidth (VBW) is 30 kHz in all the measurements. For the sake of sim-

plicity, the Full width at half maximum (FWHM) linewidth is taken at the -3 dB width of the

measured spectrum by considering only the Lorentzian fitting [124]. Fig. 3.4(A) represents the

data of the first set of experiments with an average of 50 measurements of beat note signal from

PD1. The theoretical fitting in the red solid line is based on Eq. (3.17), and the FWHM is 107.9

kHz. Fig. 3.4(B) represents the data of the second set of experiments with 50 measurements of

correlated beat note signals from PD1 and PD2. The theoretical fitting in the red solid line is based

on Eq. (3.19), and the FWHM is estimated to be 420.6 kHz. Fig. 3.4(C) represents the data of the

third-order experiments with 50 measurements from all three detectors. The theoretical fitting in

the red solid line is based on Eq. (3.22), and the FWHM is estimated to be 963.3 kHz,. First of

all, we see that the obtained linewidth from the second-order correlation spectrum is essentially 4

times wider than that of the single beat note linewidth, as well as the third-order spectrum is 9 times

wider than that of the single beat note linewidth, validating our theoretical expectation. Secondly,

we see that the theoretical curves fit the data well in the center peak, but not well at the tails. This

is mainly due to the influences from other noises that also contribute to the spectral profile. For
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the same reason, we see that the single beat note signal can be better fitted than the second- and

third-order correlation signals. There are some small peaks in the higher-order measurements, due

to our remeasured higher-order spectral signal is close to the noise level of the detection system.

Ideally, more averaging (≫ 50) should be able to smooth out these peaks. However, we note here

that, there is a trade-off between time averaging and the accurate measurement of the center beat

note frequency, due to the drifting of center frequencies of the two lasers. Further using an intense

local oscillator and sensitive detection system (detector and spectral analyzer) should be able to

solve this issue. Nevertheless, our data confirms the Lorentzian spectral profile of the signal and

the time evolution described by Eq. (3.5), in the case of k = 1, k = 2, and k = 3.

3.3 Conclusion

In conclusion, we have studied the time evolution of the higher degrees of off-diagonality

obtained by the Scully-Lamb theory of the laser. We particularly measured the bandwidth of the

laser beat note and the bandwidth of the correlated laser beat note, which reveal the evolution of

the first, second, and third-order off-diagonal elements of the laser density operator. The higher-

order spectra reveal the influence of the randomness in the phase of the laser field due to quantum

fluctuation. Experimental results agreed with the SL QTL showing that the bandwidth of the third-

order and second-order spectral profile are 9 times and 4 times wider than that of the first-order

spectral profile, respectively.
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4. NON-INVASIVE IMAGING OF OBJECT BEHIND SCATTERING MEDIA VIA

CROSS-SPECTRUM

4.1 Introduction

As mentioned in Section 3.2, heterodyne detection of the beat signal of two independent lasers

allows the direct measurement of optical information by an electronic device, since the frequency

of interest is shifted from optical frequency to radiofrequency. The beat note of two lasers thus can

be used as a “feature” to label the optical signal, and the detection of this feature may provide a

new method to image an object through scattering media.

Enlightened by the light beating measurement performed in Section 3.2, we propose an exper-

iment to image the structure inside a piece of tissue, as illustrated in Fig. 4.1. In biological tissue,

if there are some semi-transparent structures of which the orientation happens to make the output

laser beams overlap with each other, the setup may be able to determine the position of these struc-

tures. By scanning the whole tissue pixel by pixel and measure the amplitude of the beat frequency

for each pixel, one can generate a heat map of the amplitudes, which will show an image of the

semi-transparent structures. To verify if this method works, we must first answer two questions:

Can we retrieve the beat note of two lasers in the presence of scattering media? If the beat note can

be retrieved, can we use it to image an object through scattering media?

4.2 Imaging through scattering media with the beat signal of two lasers

To answer the first question, we performed an experiment as shown in Fig. 4.2. Two He-

Ne lasers (633 nm) of nearly identical frequencies are split into two arms to produce a beat signal.

The beamsplitter (BS) is surrounded by four cuvettes containing scattering media (mixture of silica

power and water) to mimic the scattering condition in tissues. The transmitted light are measured

by two photodetectors, and the data is sent to a computer for calculating the normalized correlation
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Figure 4.1: An illustration for the idea of locating a semi-transparent object embedded in scattering
media by measuring the beat note of two lasers. The two lasers are almost identical but uncorre-
lated. The data collected by the two detectors are sent to a computer for calculating the two-time
correlation function of the two signals.

of the intensity fluctuations defined by

Cnorm (τ) =
⟨∆IA (t)∆IB (t+ τ)⟩t√〈
(∆IA (t))2

〉
t

〈
(∆IB (t))2

〉
t

(4.1)

in which ∆I (t) = I (t) − ⟨∆I (t)⟩t, τ is the time delay, and the average ⟨⟩t is taken over time.

As shown in Fig. 4.3 (a), two well-defined beat signal are measured directly by the photodetectors

without scattering media. The beat signal is overwhelmed by random noise once the BS is hidden

behind the scattering media (Fig. 4.3(b)). However, the beat signal can be retrieved in the correla-

tion defined by Eq. (4.1). This indicates that time-domain correlation is immune to the scattering

events, and the input optical information can be retrieved by calculating the correlation.

Now, we have confirmed that the beat signal of two lasers can be retrieved through scattering

media. To answer the second question, we developed another experimental setup as shown in

Fig. 4.4. We first overlap two independent laser beams to generate a beam containing the beat

signal. Then, the beam is shined on an object hidden in between two cuvettes with the same
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Figure 4.2: Schematic of the experimental setup for retrieving light beating signal via cross-
correlation. Two He-Ne lasers (633 nm) of nearly identical frequencies are split into two arms
to produce a beat signal. The BS is surrounded by scattering media (mixture of silica power and
water) to mimic the scattering condition in tissues. The transmitted light intensities are measured
and sent to a computer for processing. L: laser; SM: scattering media; BS: beam splitter; PD:
photodetector.
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Figure 4.3: Experimental demonstration of retrieving light beating signal via cross-correlation. (a)
Clear beat signal can be observed for both arms without scattering media. (b) Beat signal is over-
whelmed by random noise in the presence of scattering media. A single measurement of laser in-
tensity (solid colors) is shown for each arm together with other 49 measurements (semi-transparent
colors) as a guide of eye to show the randomness of the signals. (c) Normalized temporal cross-
correlation of intensity fluctuations which indicates beat signal can be retrieved from signals with
random noise.
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scattering media as in the previous experiment. The object is a home-made opaque plate with two

transparent slits, and its position can be scanned by a motorized translational stage. The transmitted

light is split by a BS and measured by two photodetectors for each position of scan x. The data

is sent to a computer for processing. Since calculating the time-domain correlation defined by Eq.

(4.1) is computationally expensive, we switch to the frequency domain to perform the computation.

Analogous to the convolution theorem, the cross-correlation of the two arms of transmitted signal

satisfies

Fτ {C (x; τ)} = Ft {IA (x; t)}Ft {IA (x; t)} (4.2)

where Fv denotes Fourier transform with respect to variable v. Note that

Γ (x;ω) ≡ Fτ {C (x; τ)} =

∫ ∞

−∞
dτC (x; τ) e−iωτ , (4.3)

we are essentially calculating the cross-spectrum of the two signals [127]. Finally, we plot the

cross-spectral amplitude at the beat frequency fB for every position x, i.e., Γ (x;ω = 2πfB), and

expect an image of the two slits. The results are shown in Fig. 4.5. The Fourier transform of

the measured signals give no information of the beat frequency (Fig. 4.5(a)), and no image of the

object can be reconstructed from a single spectrum of the signal in arm A (Fig. 4.5(c)). In contrast,

the cross-spectrum of the two signals shows a peak at the beat frequency, and an image of the two

slits can be reconstructed by plotting the function Γ (x;ω = 2πfB).

Although the beat signal of two lasers has been demonstrated successful in imaging an object

through scattering media, there are some drawbacks that will restrict its application in practice.

First, it requires the precise alignment of two lasers for a given orientation of the BS. Second, any

small displacement or rotation of the BS will destroy the beat signal. Third, the beat frequency is

not stable due to the drift of the laser frequencies, making it difficult to target a single frequency

value for the image reconstruction. One may note that the key point of this imaging technique is

to embed a “characteristic frequency” in the input optical signal and extract this “feature” in the

transmitted signal. A laser of which the intensity is modulated by a sinusoidal driving signal at
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a certain frequency can meet this requirement. Furthermore, using an intensity-modulated laser

removes the requirement of precise alignment of two laser sources, and the modulation frequency

can be very stable with modern optical modulators (months under laboratory conditions).

Figure 4.4: Schematic of the experimental setup for imaging a double slit through scattering media.
Two He-Ne lasers (633 nm) are first combined to one beam that carries the beat frequency, and then
shined on a transparent object (double slits) hidden in between two cuvettes containing a mixture
of silica power and water. The transmitted light are split into two arms and measured by two
photodetectors, respectively. The data are processed by a computer to generate an image of the
object. L: laser; BS: beam splitter; SM: scattering media; O: object; PD: photodetector.

4.3 Imaging through scattering media with the beat signal of two lasers

In this section, we show a method based on the cross-spectrum measurement from two single-

pixel detectors with an intensity-modulated CW laser. The cross-spectrum technique has been

mainly used to analyze the cross-correlation between two time series in the frequency domain, and

detect weak signal in noisy environment [128, 129, 130]. A CW laser with intensity modulation is

commonly used in diffuse optical imaging to study the optical properties of living tissue [131, 132,

132]. We adopt these techniques to demonstrate a non-invasive and easy-to-implement scheme,

by which the image of an object can be reconstructed not only through both static and dynamic

diffusers but also under an extremely noisy environment, i.e., the light intensity is much lower than

detector noise. Besides, the use of CW laser makes the method more favorable in applications

involving living tissues.

The experimental setup is shown in Fig. 4.6. A CW laser (633 nm, QPhotonics, QFBGLD-
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Figure 4.5: Experimental demonstration of imaging a double slit through scattering media. (a)
Beat frequency cannot be distinguished in the Fourier spectrum of both arms in the presence of
scattering media when the scanning spot is on one of the slits. (b) Beat frequency can be observed
in the cross-spectrum under the same condition as in (a). (c) The average intensity is not able to
produce an image of the object. (d) The cross-spectrum can show the position of the double slits.
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633-30PM) is intensity-modulated by an electro-optic modulator (EOM: Thorlabs, EO-AM-NR-

C1) at frequency fmod = 1 MHz. The modulation frequency serves as a “feature” that can be

extracted later from the output light to accomplish the goal of image reconstruction. The narrow

bandwidth associated with the modulated center frequency also allows circumventing the G-R

noise in the detection. An objective lens (L1: Nikon, plan fluor, 10X/0.30, ∞/0, WD 17.5) is used

to focus the modulated light onto the object plate (O: Thorlabs, R3L1S4N resolution test target)

where the letter “1X” is transparent (height: ∼ 2.3 mm; width: ∼ 3.3 mm; width of transparent

region: ∼ 0.36 mm). The object plate is sandwiched in situ between a pair of ground glass

diffusers (GGDs: Thorlabs, DG10-220) of 220 grit (average grit diameter d̄grit = 53 µm). The

GGD serves as the scattering medium in our experiment, as widely used in a variety of imaging

scenarios [133, 134, 135, 62]. The focal spot is ∼ 2.7 µm in size without the GGD and is estimated

to be ∼ 25 µm when GGD1 is present. A second lens (L2: f = 150 mm) is placed behind GDD2

to collect the scattered light. The distance between the object and each diffuser is ∼ 5 mm (we

note here that the distance cannot be too small due to the shower-curtain effect [136]). The GGDs

can be either kept static or moved back and forth together by a motorized stage. The output light is

split into two arms by a beam splitter (BS), which are then measured by two photodetectors (PDs:

Thorlabs, PDA 10A) respectively, where the two PDs are put at the focal plane of the lens. The

data is then sent to a computer to generate images of the object. The object is scanned pixel-by-

pixel with an appropriate step size to resolve the region of interest. We note here that, due to the

low incident laser power (∼ 2 µW ) and scattering from the two GGDs (∼ 75 nW at the detector

plane), the laser power measured at each PD is buried in the electronic and environmental noise.

We first outline a brief theoretical description of the cross-spectrum method [105, 106, 104,

137]. The incident optical field is assumed to be represented by a plane wave with a Gaussian

cross-section profile. The ground glass diffuser is modeled as a collection of independent scattering

centers which will modify the phase of the incident field locally. Paraxial approximation and scalar

field theory are used to simplify the description such that the principle of image reconstruction is

highlighted and the overall logic is not overwhelmed by irrelevant details.
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Figure 4.6: Schematic of the experimental setup. We use a modulated CW laser for illumination.
The object is sandwiched between two GGDs. Signal at each detector is made to be much lower
than the noise level. EOM: electro-optic modulator; L: lens; GGD: ground glass diffuser; O:
object; BS: beam splitter; PD: photodetector. The Cartesian coordinate is located in the center of
L1 with z-axis pointing along the propagation direction of the light.

As shown in Fig. 4.6, a Cartesian coordinate system is placed in the center of L1, with the

z-axis pointing along the propagation direction of the light. A collimated incident beam of radius

σ is focused by L1 with focal length f1. The scattering centers on GGD1 will produce an electric

field at distance z with the form

E (ρ, z, t) =
−ik

2π
A (z − za)×∫

d2ρaE (ρa, za, t)R (ρa)G (ρ− ρa, z − za) , (4.4)

where ρ = (x, y) is the position vector in the transversal plane at distance z from L1, k is the wave

vector, R (ρa) describes GGD1 as a phase plate due to the scattering centers at position ρa in the

plane at distance za, which imprint the random phase profile on the propagating field. E (ρa, za, t)
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is the profile of the field at the left surface of GGD1, which is given by

E (ρa, za, t) = E0 (t)Eae
−i(ν0t−kza)

× exp

{
−Ea

2

(
ik

f1
+

1

2σ2

)
ρ2
a

}
, (4.5)

where Ea = − ik
2za

1
1/4σ2+(ik/2)(1/f−1/za)

, E0 (t) =
√
I0 cos 2πfmodt expresses a sinusoidal-modulation

of light intensity I0 at frequency fmod, and ν0 is the frequency of the laser. We also define

A (z) = eikz/z and G (α; β) = eik|α|2/2β . The integration in Eq. (4.4) is performed over the

illumination area on GGD1.

When the step size is made roughly about the same size as the focal spot after GGD1, and

much smaller as compared to the object size, the object is considered as scanned point by point,

i.e., the sample transparency can be considered constant for each scanning point. We can model

the object as a transmission function T (ρb) where ρb is the position vector in the object plane.

Upon passing through the object, being scattered by GGD2, and being collected by L2, the field at

the two detectors is found to be

E (ρb, zj, t) =
−ik

2π
Ã

∫∫∫∫
d2ρjd

2ρdd2ρcd
2ρa

× E (ρa, za, t)R (ρa)R (ρc)T (ρb)

×G (ρc − ρa, zc − za)G (ρd − ρc, zd − zc)

×G
(
ρj − ρd, zj − zd

)
G (−ρd, f2) , (4.6)

where Ã = A (zc − za)A (zd − zc)A (zj − zd), zj (j = 1, 2) denote the path length between the

detector j and L1, f2 is the focal length of L2, R (ρc) describes the random phase profile due to

scattering on GGD2. G (−ρd; f2) is the propagation factor of L2.

The total signals measured by the two photodetectors for each scanning position centered at ρb

can be expressed as

S (ρb, zj, t) = I (ρb, zj, t) +Nj (t) , (4.7)

58



where I (ρb, zj, t) ≡ E (ρb, zj, t)E
∗ (ρb, zj, t) is the intensity at detector j, Nj (t) is a white noise

distribution that models all the noise due to detectors and environment at detector j. It follows that

the time-domain cross-correlation is given by

C (ρb, τ) =

∫ T

0

dtS∗ (ρb, z1, t)S (ρb, z2, t+ τ) , (4.8)

where T is the measurement time. We further assumed that the correlations between intensity and

noise vanish since they are uncorrelated. On substituting from Eq. (4.7) into Eq. (4.8), we obtain

C (ρb, τ) =

∫ T

0

dtI (ρb, z1, t) I (ρb, z2, t+ τ)

+

∫ T

0

dtN1 (t)N2 (t+ τ)

=

∫ T

0

dtE (ρb, z1, t)E
∗ (ρb, z1, t)

E (ρb, z2, t+ τ)E∗ (ρb, z2, t+ τ)

+

∫ T

0

dtN1 (t)N2 (t+ τ) . (4.9)

where E (ρb, zj, t) (j = 1, 2) is given by Eq. (4.6). The scattering centers are independent of each

other and satisfy Gaussian statistics. Taken over all possible realizations, the random phase term

R (ρi) obeys

⟨R (ρi)R
∗ (ρ′

i)⟩ = δ (ρi − ρ′
i) (4.10)

and

⟨R (ρi)R
∗ (ρ′

i)R (ρ′′
i )R

∗ (ρ′′′
i )⟩

= δ (ρi − ρ′
i) δ (ρ

′′
i − ρ′′′

i ) + δ (ρi − ρ′′′
i ) δ (ρ

′
i − ρ′′

i ) (4.11)

where i = a, c and δ (ρi − ρ′
i) is the delta function. Using Eq. (4.6) and (4.10), Eq. (4.9) can

be calculated without difficulty. Since the measured noise intensities from the two detectors are
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independent, their cross-correlation is a constant. The second term in Eq. (4.9) can be expressed

as ∫ T

0

dtN1 (t)N2 (t+ τ) = T N̄1N̄2. (4.12)

where N̄1 and N̄2 represent the average noise levels at PD1 and PD2, respectively. Upon substitut-

ing Eq. (4.5), (4.6), (4.10), and (4.12) into Eq. (4.9), we obtain after carrying out the integrals

C (ρb, τ) ∝ T |T (ρb)|
4 cos (2πfmodτ) + T N̄1N̄2. (4.13)

It follows from Eq. (4.13) that the cross-spectrum is

Γ (ρb, ω) =

∫ ∞

−∞
C (ρb, τ) e

−iωτdτ

= Γ0T |T (ρb)|
4 δ (ω − 2πfmod) + T δ (0) , (4.14)

where Γ0 =
(

4π2

k2

)2 (πσ2)2|Ã|4I20
fmod

. The cross-spectrum is a sum of frequency peak signal multi-

plied by the transmission function |T (ρb)|
4 and uniform noise background. Scanning the object

and recording S1 (t) and S2 (t) at every position ρb, we can calculate the cross-spectrum as a

function of the position. A heat map of Γ (ρb, ω = 2πfmod) will produce an image of the object,

because |T (ρb)|
4 serves as a “mask” that modulates the amplitudes of the cross-spectrum from

position to position as indicated in Eq. (4.14), and the shape of the object is finally encoded in

Γ (ρb, ω = 2πfmod). Also, the longer the integration time T is, the greater the amplitude of the

frequency peak will be; while the cross spectrum of the noise does not contribute to the image

reconstruction process. This suggests that the signal-to-noise ratio can be improved by increasing

T . Therefore, even if the output signal undergoes scattering and is below the noise level of the

detectors, this method can still reconstruct the image of the target.

To demonstrate that our method works experimentally for both static and dynamic scattering

media, we perform the measurements under three situations: 1. imaging without diffuser (no

diffuser, ND); 2. the object is sandwiched between two static diffusers (SDs); and 3. the two
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diffusers are moved back and forth together by a motorized stage (dynamic diffusers, DDs). The

stage moves at a random speed with upper limits of the speed and acceleration set to be 500

mm/s and 1500 mm/s2, respectively. The full range is 1.5 cm. The object has the letter “1X”

being transparent and other regions being opaque. For all three cases, data are collected by an

oscilloscope with a fixed sample rate at 2 GHz. At each position, 1 million data points are taken

to calculate the cross-spectrum, corresponding to 500 µs integration time which ensures a strong

cross-correlation signal. The whole image contains 100 × 140 pixels (number of steps scanned)

with the pixel size (scanning step size) of 25 µm.

The main experimental result is shown in Fig. 4.7, of which the pixel values v are normalized

by ṽ = (v−vmin)/(vmax−vmin). In the first column, we directly plot the intensity measured by the

detectors; while, in the second column, we plot Γ (ρb, 2πfmod). The first row shows ND images.

The second and third row list images obtained with SD and DD, respectively. We summarize the

visibility of images in Table 4.1, which is calculated by V = (¯̃vs − ¯̃vb)/(¯̃vs + ¯̃vb), where ¯̃vs and

¯̃vb are the average pixel values of signal (“1X” region) and background, respectively. As shown in

Fig. 4.7, in both SD and DD cases, when the scattering media is present, the recorded intensity does

not show any image in either case, the extremely low visibility is a sign that our signal is truly at the

noise level of the detectors. On the other hand, in both cases, the images are still retrieved using the

cross-spectrum technique with high visibility. The results suggest that the cross-spectrum method

can image an object hidden behind both static and dynamic scattering media. We also notice that

the visibility of the cross-spectrum image is higher than the intensity image even though there is no

diffuser (ND), which suggests cross-spectrum is also an effective way to enhance signal-to-noise

ratio when the scattering media is absent.

To further test our method, we also compare the measured images from different acquisition

time (50 µs, 100 µs, and 500 µs) with the same sample rate. The incident intensity of light is

fixed for the static and dynamic diffusers. Simulation is also performed for the intensity and cross-

spectrum based on Eq. (4.7) and Eq. (4.14), respectively, as a comparison with the experimental
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Figure 4.7: Raster-scan images for an object with the letter "1X" being transparent and other
regions being opaque. Cross-spectrum images are generated by plotting Γ (ρb, ω = 2πfmod) (see
Eq. (4.14)). Scale bar, 40 pixels. ND: no diffuser. SD: static diffuser. DD: dynamic diffuser. Scale
bar: 10 pixels (0.25 mm).

Diffuser State Intensity Cross-spectrum

No diffuser (ND) 0.725 0.967

Static diffuser (SD) 0.032 0.451

Dynamic diffuser (DD) 0.031 0.558

Table 4.1: Visibility for different diffuser states
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(a)

(b)

Figure 4.8: Raster-scan images and simulations for different acquisition time with (a) static dif-
fusers and (b) dynamic diffusers. Scale bar: 10 pixels (0.25 mm).
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Acquisition time
Static diffuser (SD) Dynamic diffuser (DD)

Intensity Cross-spectrum Intensity Cross-spectrum

50 µs 0.027 ± 0.004 0.135 ± 0.009 0.035 ± 0.005 0.190 ± 0.004

100 µs 0.033 ± 0.004 0.332 ± 0.001 0.030 ± 0.002 0.305 ± 0.004

500 µs 0.034 ± 0.003 0.466 ± 0.008 0.048 ± 0.004 0.560 ± 0.002

Table 4.2: Visibility of different acquisition time for static and dynamic diffuser states

results. Specifically, the simulated signal is given by

Sj (x, y, t) =
αT (x, y) I (t) + βNj (t)√

α2 + β2
(4.15)

where j = 1, 2 is the index of detectors, and t = 0, 1, 2, · · · , tN is the discrete time in which

tN = T rs is determined by the acquisition time T and the sample rate rs. α and β are coefficients

that control the relative magnitude of the optical signal I (t) and the noise Nj (t). The function

T (x, y) =


0.95, (x, y) ∈ object

0.05, (x, y) ∈ background
(4.16)

gives the transmission coefficient of the object (transparent region) and the background (opaque

region), respectively. The incident sinusoidal optical intensity is defined by

I (t) = sin

(
2πfmod

t

rs

)
+ 1 (4.17)

and the additive white noise due to environment and detectors is simulated with independent Gaus-

sian noise

Nj ∼ N (0, σ) (4.18)

at every time stamp t, where σ is the standard deviation. The simulation was done with α = 0.02
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and β = 1.0 for all cases, and σ is set to be 5 and 6 for static and dynamic diffusers, respectively.

The results are shown in Fig. 4.8, the corresponding visibility of the experimental results are listed

in Table 4.2. It can be seen that, in general, the longer the integration time is, the higher visibility

one can achieve for both static and dynamic diffusers. This means we can obtain a clear image at

the expense of a long acquisition time. We note that the visibility of the recorded intensity image

is kept extremely low even when one increases the acquisition time up to 10 times. Nevertheless,

the cross-spectrum image becomes more and more clear. The visibility also increases much faster

than that of the intensity measurement when increasing the acquisition time. We point out that

the fundamental limit of imaging speed is the acquisition length, which is on the order of 100 µs

for the current setup but can be, in principle, orders faster with higher modulation frequency and

higher sample rate (GHz range laser modulation speed and detection). The raster scan speed can

also be much improved if, for instance, a 2D galvo-resonant scanner is integrated into the system.

4.4 Conclusion

In conclusion, we have developed a cross-spectrum method to extract a weak optical signal

from the extremely noisy background and image objects hidden behind scattering media. The

major advantage of this scheme is that it uses a CW laser in a non-invasive manner which would be

easy to implement and bio-tissue friendly. It is effective for both static and dynamic media, making

it adaptive in most application situations with various scattering levels, as long as the power of the

incident light and the integration time is sufficient so that the cross-spectrum signal overcomes the

noise level. With the fast acquisition time with current technology, our scheme paves the way for

efficient imaging in previously inaccessible scenarios.
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5. SINGLE-PIXEL IMAGING THROUGH SCATTERING MEDIA VIA SPACE-TIME

ENCODED ILLUMINATION

5.1 Introduction

In Chapter 4, we have successfully developed an imaging technique based on cross-spectral

extraction of the modulation frequency of the source. However, the raster-scan nature of this

technique leads to a long acquisition time of the image. Typically, it takes about 1 s to complete the

measurement and computation for one pixel, and an image of 100×100, which is fairly small, will

take 3 hours to complete. Therefore, developing a full-field counterpart of this imaging technique

is highly desired. A simple way to accelerate the imaging process is to parallelize the raster scan,

i.e., generate a bundle of intensity-modulated laser beams. Each beam in the bundle must have a

unique modulation frequency, otherwise, there is no way to identify which frequency corresponds

to which pixel. This one-to-one relationship between the modulation frequency and the spatial

location of the beam is where the spatial resolution comes from.

This parallelism can be implemented with the spatial light modulator (SLM). One type of

SLM technology is based on the digital micromirror device (DMD), which consists of an array

of individually controllable micromirrors [138, 139]. This device can provide fast spatial light

modulation for a wide range of wavelengths. Each micromirror has two orientations with respect

to the array plane (±12
◦), and light incident normally on the array plane is reflected into two paths

±24
◦ , respectively. The orientation of the micromirrors is programmable with customized binary

patterns in which the pixel values “1” and “0” correspond to the two tiled states of the mirrors.

Therefore, DMD can spatially modulate the profile of incident light beam and project intensity

patterns onto a screen.

In this chapter, we report a computational imaging technique, termed space-time encoded pat-

tern (STEP) illumination, which is a parallel version of the technique developed in Chapter 4 and

allows non-invasive imaging of an object through scattering media and around corners. We show
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that the images of objects can be reconstructed from a 1D time series of light intensity measured by

a single-pixel photodetector. Specifically, inspired by the concepts of space-time duality, intensity

modulation [94], and Fourier-transform-based discrimination [91, 140, 141, 142, 143, 144], we

design a sequence of patterns that consists of a bundle of sinusoidal time series with different fre-

quencies, such that every spatial location in each pattern is encoded by a unique frequency which

is also a unique feature of the periodic oscillation of pixel values along “time” axis (i.e., looking at

one spatial location through different patterns). We illuminate the diffuser-object system with this

sequence of patterns and collect the transmitted light by a single-pixel detector. With the help of an

image reconstruction algorithm based on fast Fourier transform (FFT), the images of the objects

can be retrieved without prior knowledge of the objects and the scattering media. As a proof of

concept, we experimentally demonstrate our technique with ground glass diffusers and slices of

chicken breast (1.2-mm thick) as the scattering media. The design of STEP avoids the use of a

high-resolution camera and allows an elegant frequency-domain image reconstruction algorithm

that is more computationally efficient than previous single-pixel imaging methods, which may be

more favorable in many application fields.

5.2 The principle of STEP

The mechanism of STEP is sketched in Fig. 5.1. We generate a sequence of grayscale (8-bit,

256 pixel values) patterns of height H and width W (H ×W matrix). For a spatial location (i, j)

(ith row, jth column), the time series is given by

aijt = 127.5 sin

(
2πfij

t

rs

)
+ 127.5, t = 0, 1, 2, · · ·Mpatt − 1, (5.1)

in which rs is the sample rate, t is the discrete time variable (index of the patterns), Mpatt is the

total number of patterns, and the frequency fij is defined by

fij = f0 + (j + iW )∆f (5.2)
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Figure 5.1: The principle of STEP. The sequence of patterns consists of a bundle of sinusoidal
time series with unique frequency at each spatial location. For location (i, j), the frequency is
fij , which is also a unique feature of the periodic oscillation of pixel values along the “time” axis
(i.e., looking at one spatial location through different patterns). The grayscale patterns are first
decomposed into monochrome patterns, and then projected onto the object-diffuser system. The
transmitted light is collected by a single-pixel detection unit, and the image is reconstructed by a
FFT-based algorithm.

where i = 0, 1, · · · , H − 1, j = 0, 1, · · · ,W − 1, are the row and column index of the pixels,

respectively, f0 is the starting frequency, and ∆f is the increment of the frequency. To avoid signal

aliasing, we set rs = 8fmax, where fmax = f0 + (HW − 1)∆f . The grayscale patterns are then

decomposed to 8Mpatt monochrome (1-bit, 2 pixel values) patterns in order to be compatible with

the input format of the DMD. The monochrome patterns are successively projected to the diffuser-

object system and synchronically collected by the single-pixel detection unit. The 1D time series

intensity can be expressed by

It =
∑
i,j

aijtIij +Nt, (5.3)

where Iij is the illumination intensity at location (i, j) of the pattern displayed on DMD and Nt is

a white noise term describing the noise of detector and environment. To reconstruct an image, It

is transformed to the spectral domain

S (ω) = Ft {It} ∝ Mpatt

∑
i,j

Iijδ (f − fij) + N̄ (5.4)
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where Fv denotes Fourier transform with respect to the variable v, Mpatt happens to be the number

of data points in the discrete 1D time series (integration length) since the measurement is synchro-

nized with the projection, and N̄ is the average noise level. For each fij in the patterns, we find

the closest frequency f̂ij in the spectrum and save its magnitude S(f̂ij). Finally, a H ×W matrix

is filled with all the S(f̂ij) in their locations (i, j), and a heat map of this matrix will yield an

image of the object. It is the one-to-one correspondence between the frequency fij and the spatial

location (i, j) that allows us to retrieve the spatial information computationally, and therefore we

only need to measure the transmitted light with a single-pixel detector. We note here that the noise

only contributes a constant term in the spectrum given by Eq. (5.4).

5.3 Experimental demonstration of STEP

The experimental setups for imaging with line-of-sight and around-corner detection are illus-

trated in Fig. 5.2a and 5.2b, respectively. A solid-state laser (633 nm) is used to illuminate the

DMD, which spatially modulated the incident laser beam and generate a set of illumination pro-

jections with a spatial structure that is similar to the input monochrome patterns. Each projection

has 20 × 60 pixels, and each pixel is maintained by a 10 × 10 array of DMD micromirrors (each

mirror has size 10.8 µm× 10.8 µm). We define such an array of mirrors as a single “DMD pixel”.

The patterns are then imaged by a lens (L3) with magnification equals to 2. High-order images

due to diffraction are filtered out by an iris (I) such that only the zeroth-order image with the

strongest intensity is formed in the image plane. A high-contrast object (O) with letters “IQSE”

(3 mm × 10 mm) being transparent is placed at the image plane of L3, where the zeroth-order

images of the patterns are directly projected on the region of “IQSE” without scattering media.

Then, two ground glass diffusers (D1 and D2, 220 grit) are inserted to block the view of the object.

The distances between the object and D1 and D2 are about 1 mm and 7 mm, respectively. The

diffusers can be kept stationary or moved back and forth by a motorized stage. For line-of-sight

detection (Fig. 5.2a), a lens (L4) followed by a photodetector (PD) is placed behind D2 to collect

the transmitted light; while, for around-corner detection (Fig. 5.2b), the light collected by L4 is

diffusely reflected by a piece of letter paper (white) and then recollected by L5 and measured by a
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Figure 5.2: Experimental setup for demonstrating STEP. a. line-of-sight detection. b. around-
corner detection. L: lens; DMD: digital micromirror device; I: iris; D: diffuser; O: object; PD:
photodetector.
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PD.

The image of the object is first captured by a CMOS camera under three conditions (a): 1.

without scattering media (ND), 2. with stationary ground glass diffusers (SDs), and 3. with dy-

namic ground glass diffusers (DDs). As shown in Fig. 5.3a, the object is invisible with the present

of SDs and DDs in the camera images; while our STEP imaging scheme can retrieve the images

through SDs and DDs for both line-of-sight (Fig. 5.3b) and around-corner detection (Fig. 5.3c).

We define

β =
Mpatt

Mpixel

(5.5)

as a rescaled “number of patterns” used in the experiment, in which Mpatt is the number of

grayscale patterns and Mpixel = 120 is the number of pixels in one pattern. The measurements

in Fig. 5.2 are performed with β = 100, i.e., 120000 gray-scale patterns (8× 120000 monochrome

patterns). To reconstruct an image, the frequency resolution of the Fourier transform

δf =
rs

Mpatt

=
8 [f0 + (HW − 1)∆f ]

βMpixel

(5.6)

must satisfy the condition δf ≥ ∆f , which determines the minimum value of β that is required

to reconstruct an image computationally. Our experimental parameters (f0 = ∆f = 0.1, H = 20,

W = 60) give β ≥ 8. Fig. 5.3b and 5.3c are obtained with β = 8 and β = 32, respectively. We

define the visibility of the reconstructed image to be

v =
p̄s − p̄b
p̄s + p̄b

(5.7)

in which p̄s and p̄b are the average pixel values of the signal (“IQSE” regions) and background

(other regions), respectively. The larger β is, the more capable the spectrum can distinguish target

frequencies from the noisy background, resulting in a higher visibility of the reconstructed images.

This is the reason why we use a larger β to process the data of around-corner detection (Fig. 5.3c),

as a higher noise level is encountered in this case due to the extra scattering by the white paper. The
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number of raw pixels (20×60) in the reconstructed image is always the same as that of the patterns.

Such a small number of pixels leads to pixelated images. Nevertheless, the pixelation effect can be

eliminated computationally by applying bilinear interpolation on the raw pixels without increasing

the density of pixels in the original patterns, and interpolated images of size 400× 1200 are given

in Fig. 5.3b and 5.3c.

Figure 5.3: Imaging through ground glass diffusers with STEP. a. Images captured by a CMOS
camera with no diffuser (ND), stationary diffusers (SDs), and dynamic diffusers (DDs), respec-
tively. b. line-of-sight detection. Images are generated with β = 8. Bilinear interpolation is
applied to remove the pixelation effect. c. around-corner detection. Images are generated with
β = 32.
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The imaging depth is determined by how well the structure of the patterns can be preserved

after transmitting through the scattering media and before illuminating the object. This is related

to the so-called shower-curtain effect: an object placed at a distance behind a scattering layer looks

blurred, but if the object is attached to the layer, it can be clearly seen. Within a short distance after

D1 in Fig. 5.2, the relative positions between the pixels on the patterns may be unchanged even

after scattering, and the one-to-one correspondence between the spatial location and the frequency

of the sinusoidal intensity is retained. Since the measured signal is a convolution of the patterns

and the object, the spatial information can be retrieved by extracting the frequencies fij , and an

image of the object can be produced by S (fij). The shower-curtain effect indicates the major

shortcoming of STEP: the imaging depth is shallow (≲ 1 mm for current setup). Despite this, STEP

is inherently insensitive to the scattering properties of D2 and its distance from the object, because

any scattering event cannot destroy the spatial information carried by the convoluted signal.

The imaging resolution is determined by the size of an individual pixel in the patterns projected

onto the object: the smaller the pixel is, the more details of the object can be resolved. Imagin-

ing that the scattering media are absent in Fig. 5.2. The pixel size at the image plane of L3 is

determined by the size of the DMD pixel and the magnification of the imaging system defined

by L3. For a given magnification, decreasing the DMD pixel size will increase the resolution.

However, the optical power reflected by each DMD pixel will be reduced due to the shrinkage of

the reflective area (fewer micromirrors), resulting in a decreased signal-to-noise ratio (SNR) of the

measured light. Conversely, increasing the DMD pixel will provide better SNR, which is, however,

at the expense of a lower resolution. If the scattering layers are inserted, the degradation of pattern

quality and the attenuation of optical power due to scattering must also be considered. Therefore,

the trade-off between resolution and SNR should be decided according to the configuration of a

specific setup. For our experiment, the resolution is ∼ 0.2 mm, which is adequate for resolving the

object of size 3 mm × 10 mm, and the transmitted light intensity is far above the shot noise level

of the detector.

The imaging speed of STEP is only limited by the frame rate of the DMD, as modern computers
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Figure 5.4: Imaging through two slices of chicken breast (∼ 1.2 mm each slice) with STEP. a.
A camera image of the object hidden in between the two slices of chicken breast. b. Image
reconstructed by STEP with β = 96. Bilinear interpolation is applied to remove the pixelation
effect.

can complete the computation in negligible time. The frame rate of our DMD is about 40 Hz,

resulting in a measurement time of 7 hours for β = 100 (8×12000 patterns), while the computation

can be done within 1 s. The highest frame rate of current commercial DMD is 22.7 kHz, which

will reduce our measurement time to 45 s. We expect that the speed will be further increased as

the frame rate of DMD becomes faster in the future.

To further demonstrate that STEP is also insensitive to the motion of the scattering centers in

the media, we replaced the D1 and D2 in Fig. 5.2 with two slices of chicken breast (∼ 1.2 mm)

and perform similar line-of-sight measurements with β = 100. As shown in Fig. 5.4a, the object

cannot be resolved in the camera image, whereas the image can be reconstructed by STEP with

β = 96 (Fig. 5.4b). An even larger β to perform the computation implies a stronger scattering in

the tissues than that of ground glass diffusers (GGDs). Due to the nonuniform texture of the tissue,

the transmitted light intensity is not as evenly distributed as that for the GGDs, resulting in some

bright spots in the reconstructed image. The results support the argument that STEP is capable of

imaging through dynamic scattering media.
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5.4 Discussion

Different from other structured illumination techniques in which the information required for

image reconstruction is only encoded in the spatial structure of the patterns, the STEP illumination

also encodes the information (frequencies) in time. One advantage of introducing the time-domain

encoding is that it allows a further improvement of the visibility on top of increasing β via halv-

ing a successive segment of the data and calculating the cross-spectrum of the two halves. The

cross-correlation technique has been demonstrated very effective in weak signal detection. Cross-

spectrum is the frequency-domain representation of the cross-correlation of two time series signals,

which is defined by

S12 (f) ≡ Fτ {g1 ⋆ g2} = Ft {g1} · Ft {g2} (5.8)

where Fv denotes Fourier transform with respect to variable v, τ is the delay in time, and

g1 ⋆ g2 =
M∑
t=0

g1,tg2,t+τ (5.9)

is the cross-correlation of two discrete signals g1 and g2 with M data points. For images recon-

Figure 5.5: A schematic of the image reconstruction algorithms based on fast Fourier transform
(FFT), cross-spectrum, and correlation. a. A segment of M data points in time domain is trans-
formed by FFT to frequency domain (spectrum). b. A segment of M data points are divided into
two halves, and their cross-spectrum is calculated by Eq. (5.8). c. The correlation between a
segment of M data points and the time series in the original pattern sequence is calculate by Eq.
(5.12).
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structed with a specific β, higher visibility is obtained if the searching of target frequencies is

performed in the cross-spectrum of the two halves of the data rather than in the Fourier spectrum

of all the data. As shown in Fig. 5.5b, we divide the whole data set into two segments of the same

length, and their cross-correlation is found to be

I1 ⋆ I2 =

M/2−1∑
t=0

[∑
ij

Iij sin

(
2πfij

t

rs

)
+N1

][∑
ij

I ′ij sin

(
2πfij

t+ τ

rs

)
+N2

]

=
M

2
IijI

′
ij sin

(
2πfij

τ

rs

)
+

M

2
N̄1N̄2 (5.10)

where M is the total length of the two signal segments, and N̄1 and N̄2 are the average noise levels

for the two segments, respectively. It follows that the cross-spectrum is

S12 (f) = Fτ {I1 ⋆ I2} ∝ M

2

∑
ij

IijI
′
ijδ (f − fij) +

M

2
δ (0) (5.11)

As we have seen in Eq. (5.4), the noise contributes a constant background equally at every fre-

quency in the spectrum. However, in the cross-spectrum (Eq. (5.11)), the noise is concentrated to

zero frequency (δ (0)) and never contributes to the cross-spectral magnitude at any other frequen-

cies. Therefore, the SNR is enhanced, leading to sharper peaks of the target frequencies and less

noisy reconstructed images.

The image reconstruction can also be implemented by calculating the correlations between the

measured intensity data It and the time series aijt in the original patterns

Cij =
M−1∑
t=0

Itaijt (5.12)

Filling an H ×W matrix with all the Cij at their locations (i, j) will yield an image of the object.

However, the visibility of the image reconstructed by correlation is lower than that of the image

produced by FFT-based methods, because in this case the correlation is done without a shift in

time, leading to a non-trivial contribution of the white noise. Fig. 5.6a compares the images recon-
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Figure 5.6: Comparison of images reconstructed by different algorithms for line-of-sight detec-
tion. a. Images reconstructed by Fourier transform (STEP-FT), cross-spectrum (STEP-CS), and
correlation, respectively, with β = 16; b. Visibility of the reconstructed images using the three
algorithms with different values of β.
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structed by Fourier transform (STEP-FT), cross-spectrum (STEP-CS), and correlation for line-of-

sight detection with ground glass diffusers and β = 16. STEP-FT is the standard algorithm used

previously. As can be seen, the image generated by STEP-CS appears to be less noisy than that by

STEP-FT, which supports our argument that cross-spectrum can eliminate noise. Meanwhile, the

image produced by correlation is the noisiest among the three, indicating a significant contribution

of the noise in the computation. Fig. 5.6b compares the visibility of the images generated by the

three algorithms for different β. It is worth mentioning that the performances of STEP-FT and

STEP-CS are almost independent of β: they have similar visibility over the investigated range of β

and show saturation behaviors. This means high-quality images may be obtained with small data

sets, and thus consume less time on computation. On the other hand, the correlation has the worst

overall performance and is sensitive to the value of β. Therefore, high-quality images may only

be acquired with a large number of data points, and the computation will be slow. Fig. 5.7 shows

similar comparisons for around-corner detection with ground glass diffusers and β = 32, and the

results agree with those in Fig. 5.6.

The correlation method also suffers from a low computational efficiency. For N patterns of size

H×W , both the time and space complexity of the image reconstruction via correlation are O(H×

W ×N); whereas, the time complexity of FFT-based reconstruction (FT and CS) is O (N log2N)

since the FFT algorithm is used to compute the spectrum, and the space complexity is O (N) as

there is no need to store the original patterns. A benchmark of the computing time for FFT-based

and correlation algorithms are given in Fig. 5.8, where the rapid increase in the computing time

for correlation algorithm provides a sharp contrast with those of the FFT-based methods. The

high computational efficiency of the FFT-based algorithm may enable fast image processing with

devices having limited computing resources.

To end the discussion, we would like to explain the reason why β is always chosen to be a

multiple of 8 in our computation. We will compare β = 8 and β = 9 to show some insights. As

discussed previously, any value of β ≥ 8 can provide enough frequency resolution in the spectrum

under our experimental conditions. Recall that our target frequencies are [0.1, 0.2, 0.3, · · · , 120]
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Figure 5.7: Comparison of images reconstructed by different algorithms for around-corner detec-
tion. a. Images reconstructed by Fourier transform (STEP-FT), cross-spectrum (STEP-CS), and
correlation, respectively, with β = 32; b. Visibility of the reconstructed images using the three
algorithms with different values of β.

79



Figure 5.8: Comparison of time complexity of FFT- and correlation-based image reconstruction
algorithms. Computing time are measured with different image sizes in total pixels. The com-
puting time for correlation-based algorithm increases rapidly compared to that of the FFT-based
algorithms.

(starting from 0.1 with an increment of 0.1), and the frequencies in the spectrum (discrete Fourier

transform) given by β = 8 and β = 9 are listed as follows (only the leading 10 values):

β = 8 : [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] (5.13)

β = 9 : [0, 0.08889, 0.17778, 0.26667, 0.35556, 0.44444, 0.53333, 0.62222, 0.71111, 0.8] (5.14)

We can see that, for β = 8, the closest frequencies f̂ij we can find in the spectrum are exactly the

target frequencies; while for β = 9, we can never find any f̂ij = fij , so the algorithm will select

0.0889 as the closest value to target 0.1 and 0.17778 for the target 0.2, and so on. These closest

frequencies and their corresponding magnitudes are only approximations of the target frequencies

and their magnitudes, so they may not produce an image as good as the exact matching frequencies.

The images generated with β = 8 and β = 9 are shown in Fig. 5.9, which provide an intuitive
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understanding of the point we just discussed. Therefore, to get the best results, we prefer to choose

a multiple of 8 as the value of β such that all the target frequencies appear in the spectrum.

Figure 5.9: Images reconstructed with β = 8 and β = 9, respectively, with other conditions being
the same.

5.5 Conclusion

In conclusion, we have developed a computational imaging method named “STEP” that can

realize non-invasive imaging through scattering media and around corners with a single-pixel pho-

todetector. This method is insensitive to the motion of the scattering centers in the media. The

design of STEP removes the requirement of a high-resolution camera and allows an elegant FFT-

based image reconstruction algorithm that is more computationally efficient than correlation-based

methods, which may be more favorable in many application fields. Our technique provides a new

perspective to realize the vision of peeking through turbid media and enables potential fast imaging

for currently unreachable scenarios.
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6. CONCLUSION

We have proposed a computational imaging mechanism based on time-domain information

encoding and FFT-based information decoding that can realize non-invasive imaging through scat-

tering media.

We first present an enlightening experiment on the time evolution of the off-diagonal elements

of laser density matrix given by the Scully-Lamb quantum theory of laser. The spectral distribution

of high order correlations of the beat note of two lasers are derived theoretically, showing that the

linewidth of the second- and third-order spectral profile are 4 and 9 times wider than that of the

first-order spectral profile, respectively. The theoretical expectation is verified experimentally by

measuring the linewidth of the laser beat note and the correlated laser beat note of two independent

He-Ne lasers. This experiment inspires the idea of imaging through scattering media by extracting

the beat frequency of two lasers.

Next, the idea of detecting an object inside a scattering medium by the beat signal of two

lasers is proposed, and its feasibility is confirmed by a preliminary experiment. To overcome some

disadvantages of using two lasers, the method is further improved by replacing the beat signal of

two lasers with an intensity-modulated laser. Using cross-spectrum detection of the modulation

frequency and raster-scan measurement, we demonstrate a non-invasive and easy-to-implement

scheme, by which the image of an object can be reconstructed not only through both static and

dynamic diffusers but also under extremely noisy environments, i.e., the light intensity is much

lower than detector noise. Besides, the use of low power CW laser (∼ 20 mW) makes the method

more favorable in applications involving living tissues.

To overcome the speed limit due to raster scan, the computational imaging mechanism is further

improved to realize full-field imaging via space-time encoded illumination. We show that the

images of objects can be reconstructed from a 1D time series of light intensity measured by a

single-pixel photodetector. Specifically, we design a sequence of patterns that consists of a bundle

of sinusoidal time series with different frequencies, such that every spatial location in each pattern
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is encoded by a unique frequency which is also a unique feature of the periodic oscillation of

pixel values along “time” axis (i.e., looking at one spatial location through different patterns). We

illuminate the diffuser-object system with this sequence of patterns and collect the transmitted light

by a single-pixel detector. With the help of a FFT-based image reconstruction algorithm, the images

of the objects can be retrieved without prior knowledge of the objects and the scattering media. As

a proof of concept, We experimentally demonstrate our technique with ground glass diffusers and

slices of chicken breast (1.2-mm thick) as the scattering media. Various aspects of this technique,

including resolution, penetration depth, imaging speed, and algorithm complexity, are discussed to

provide more insights. This imaging scheme removes the requirement of a high-resolution camera

and allows an elegant FFT-based image reconstruction algorithm that is more computationally

efficient than correlation-based methods. Furthermore, this technique is inherently insensitive to

the motion of the scattering centers in the media, and the imaging speed is only limited by the

frame rate of the DMD. With the development of high-speed DMD technology, this technique may

be applied to video-rate imaging through scattering media.
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APPENDIX A

A PROPERTY OF THE FIELD PROPAGATOR

We give a proof of Eq. (2.50) as follows:

∫
dαG (α, β) eiγ·α =

∫
dαei

β
2
|α|2+iγ·α

=

∫
dαe

iβ
2

[
|α+γ

β |
2
− |γ|2

β2

]

= ei(−
1
2β )|γ|

2
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dαei
β
2 |α+γ

β |
2

= ei(−
1
2β )|γ|
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dαxdαye

iβ
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= ei(−
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2β )|γ|
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(√
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=
2πi

β
G

(
γ,− 1

β

)
(A.1)

98



APPENDIX B

INTEGRAL REPRESENTATION OF BESSEL FUNCTION

The Bessel function of the first kind can be defined by an integral representation [145]

Jn (x) =
1

2π

∫ 2π

0

ei(x sin θ−nθ)dθ =
1

π

∫ π

0

cos (x sin θ − nθ) dθ (B.1)

where n is an integer. A special case of Eq. (B.1) is

J0 (x) =
1

2π

∫ 2π

0

eix cos θdθ =
1

π

∫ π

0

cos (x sin θ) dθ (B.2)

which is very useful in calculating the integral of form

E ∼
∫ a

0

ρdρ

∫ 2π

0

eibρ cos θdθ (B.3)

where E is the amplitude of the diffracted field and (ρ, θ) defines points in the aperture. According

to Eq. (B.2), we can reduce Eq. (B.3) to

E ∼ 2π

∫ a

0

J0 (bρ) ρdρ (B.4)

Recall the recurrence relation

d

dx
[xnJn (x)] = xnJn−1 (x) , (B.5)
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Eq. (B.3) is found to be

E ∼ 2π

∫ a

0

1

b2
d

dρ
[(bρ) J1 (bρ)] dρ

=
2π

b2
[bρJ1 (bρ)]

a
0

=
2πa

b
J1 (ab) (B.6)

where the last line is reached using the fact that J1 (0) = 0.
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APPENDIX C

QUANTUM REGRESSION THEOREM AND THE CALCULATION OF TWO-TIME

CORRELATION FUNCTION

The power spectrum of the laser can be deduced from two-time correlation function of the field

operator
〈
Ê(−) (t) Ê(+) (t+ τ)

〉
. In general, a solution of the laser density matrix is not adequate

to calculate the correlation function [116]. However, in Markovian approximation,the quantum

regression theorem allows us to calculate the two-time correlation from a single-time expectation

value [121, 146, 147, 148].

To see this, we first define the time evolution operator of the atom-reservoir system:

Û (t) = exp
{
−iĤt/ℏ

}
(C.1)

where Ĥ is the total Hamiltonian of the system. Then, the total density operator of the system at

time t > 0 can be given in terms of the density operator at time t = 0 by

ρ̂s (t) = Û (t) ρ̂s (0) Û
† (t) (C.2)

We also define the reduced density operator for the atom and the reservoir at time t as

ρ̂a (t) = Trr {ρ̂s (t)} (C.3)

ρ̂r (t) = Tra {ρ̂s (t)} (C.4)

where Trr and Tra stand for tracing over the reservoir and the atom, respectively. We further assume

that the atom density operator is uncoupled from the reservoir density operator at time t = 0, so

ρ̂s (0) can be factorized as

ρ̂s (0) = ρ̂a (0)⊗ ρ̂r (0) (C.5)
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The expectation value of the field operator Ê(−) (t) is given by

〈
Ê(−) (t)

〉
= Trs

{
Ê(−) (0) ρ̂s (t)

}
= Trs

{
Ê(−) (0) Û (t) ρ̂s (0) Û

† (t)
}

= Tra
{
Ê(−) (0) Û (t)Trr {ρ̂a (0)⊗ ρ̂r (0)} Û † (t)

}
= Tra

{
Ê(−) (0) Û (t) Û † (t+ τ) Û (t+ τ) ρ̂a (0) Û

† (t+ τ) Û (t+ τ) Û † (t)
}

= Tra
{
Ê(−) (0) Û † (τ) ρ̂a (t+ τ) Û (τ)

}
(C.6)

The two-time correlation function is given by

〈
Ê(−) (t) Ê(+) (t+ τ)

〉
= Trs

{
Ê(−) (t) Ê(+) (t+ τ) ρ̂s (0)

}
= Trs

{
Û † (t) Ê(−) (0) Û (t) Û † (t+ τ) Ê(+) (0) Û (t+ τ) ρ̂s (0)

}
= Trs

{
Ê(−) (0) Û † (τ) Ê(+) (0) Û (t+ τ) ρ̂s (0) Û

† (t)
}

= Trs
{
Ê(−) (0) Û † (τ) Ê(+) (0) Û (t+ τ) ρ̂s (0) Û

† (t+ τ) Û (t+ τ) Û † (t)
}

= Trs
{
Ê(−) (0) Û † (τ) Ê(+) (0) ρ̂s (t+ τ) Û (τ)

}
(C.7)

If ρ̂a (t+ τ) is uncoupled from the reservoir for all times, i.e., ρ̂s (t+ τ) can be factorized by

ρ̂s (t+ τ) = ρ̂a (t+ τ)⊗ ρ̂r (0) (C.8)

we obtain from Eq.

〈
Ê(−) (t) Ê(+) (t+ τ)

〉
= Trs

{
Ê(−) (0) Û † (τ) Ê(+) (0) ρ̂s (t+ τ) Û (τ)

}
= Tra

{
Ê(−) (0) Û † (τ) Ê(+) (0)Trr {ρ̂a (t+ τ)⊗ ρ̂r (0)} Û (τ)

}
= Tra

{
Ê(−) (0) Û † (τ) Ê(+) (0) ρ̂a (t+ τ) Û (τ)

}
(C.9)
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Comparing Eq. (C.6) and Eq. (C.9), we see that ρ̂a (t+ τ) and Ê(+) (0) ρ̂a (t+ τ) appear to have

the same time evolution under Û (τ). Therefore, replacing ρ̂a (t+ τ) with Ê(+) (0) ρ̂a (t+ τ) in

Eq. (C.6), we can calculate the two-time correlation function with the knowledge of single-time

expectation value. In reaching Eq. (C.9) we used a crucial assumption Eq. (C.8), which is referred

as the Markovian approximation.
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