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ABSTRACT

When streaming media in an environment with less than ideal resources, simple algorithms do

not perform well by not prioritizing specific clients well enough. Therefore, intelligent network

sharing must occur to ensure maximum average quality of experience (QoE). We propose formu-

lating this problem of designing intelligent policies as a Constrained Markov decision process.

By relaxing the problem by using a Lagrangian formulation we reduce it down into single-client

problems. Reinforcement learning can then be applied to control resource allocation to each client

by implementing a threshold with respect to each client’s buffer length. By developing a simula-

tion environment and evaluating algorithms on a real world system capable of handling a variable

number of clients, we demonstrate improvement in overall average QoE.
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1. INTRODUCTION

Video streaming services are acquiring more internet traffic year by year. As of 2021, video

is now over 48% of all traffic happening on a network, dominating over social networking, mes-

saging, gaming, etc. Youtube specifically, is the number one application on mobile networks [1].

With the increase in high video quality available and the amount of data required to be transmitted,

there exists a need to accurately divide available bandwidth to available clients to ensure a good

quality of experience. In edge networks specifically, this available bandwidth acts as a constraint

preventing clients from streaming seamlessly.

In the case of video streaming, various factors affect user experience and are not taken into

account when allocating resources. If resources are shared equally among clients, it could result

in all clients having a poor experience when dealing with limited resources. Some routers do

prioritize some time-sensitive data packets over others, however these routers do not specifically

consider the use case of media streaming. As software support for WiFi and cellular networks

increases, intelligent bandwidth allocation on a finer level becomes a possibility. This software

support also allows for systems to learn from the data that they transmit as well as the performance

of the clients in accordance to the resources they are assigned.

The goal of this thesis is to propose a novel algorithm related to dynamically allocating band-

width to clients specifically in the case of media streaming on Youtube. To prove the algorithm

is beneficial when it comes to QoE involves computing the policy such that it is straightforward

to implement on the real world system and holds up under different scenarios involving a variable

number of clients and channel conditions. A diagram illustrating the specific use case of media

streaming is shown in Figure 1.1, where multiple clients are connected to a common wireless ac-

cess point. Each client is represented by a streaming Youtube video and has an application state in

terms of its buffer length and the number of stalls it has experienced so far.

This state is relayed back to a controller through the use of a shared database. The controller

then uses the states gathered from all the clients to compute a policy that determines which clients
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are prioritized over others. This prioritization affects the bandwidth each client receives and con-

sequently, their application states are impacted. This impact is measured through by calculation of

QoE and once again this information is made available to the controller, completing a continuous

feedback loop.

1

Intelligent 
Controller

Wireless
Access Point 

STATE,
REWARD

CONSTRAINTS

Media Server

IN
TE
RN

ET

ACTION

Figure 1.1: Feedback loop for reinforcement learning in a media streaming application.

Figure 1.2 shows a bare-bones methodology of the system. This problem of deciding how to

best allocate resources to maximize QoE can be framed as a Markov Decision Process (MDP). Fig-

ure 1.1 indicates that resource allocation is can be performed through placing Youtube sessions in

queues that have different priorities. The constraint of limited resources given to Youtube sessions

makes this a constrained Markov Decision Process (CMDP).

The CMDP in case is not straightforward to resolve, due to the many random factors that play

a role. Examples include Youtube playout rate, interactions between channels, and network proto-

cols used. Due to the randomness present, the CMDP is not sufficient to derive the optimal policy.

Instead, a data driven approach using constrained reinforcement learning is required. However, any

reinforcement learning algorithm requires a large amount of data. Reducing the learning duration

is key if the developed policy is required to be robust over different scenarios. Therefore, the first

objective is to work on discovering the structure of the optimal policy. Once the structure has been

2



Figure 1.2: Simplified feedback loop

discovered, it can be used to expedite the learning process. In this thesis, we seek to determine a

robust policy that generalizes in a variety of scenarios in a real world scenario.

3



2. RELATED WORK

Constrained MDPs in the area of control have been extensively resarched on previously [2, 3].

In the context of media streaming over wireless channels, several works identify structural proper-

ties of the optimal policy [4, 5, 6] that often take a threshold form. [4, 5] both consider maximizing

QoE for a finite system. [4] provides optimal tradeoffs between various QoE metrics, while [5]

maximizes the video QoE of several clients in a system, where the optimal policy has structural

properties, and the solution can be decentralized. [5] also utilizes a dual-based decentralization

approach. [6] focuses on the heavy traffic limit and provides optimal online QoE optimization in

heavy traffic conditions, over fading channels.

Reinforcement learning is broadly classified into model-based methods and model-free meth-

ods to identify optimal policies for MDP/CMDP problems. In the context of model-based learning,

recent works focus on characterizing the regret [7, 8] and the sample complexity [9] of learning al-

gorithms. Model-free learning has focused on high-performance policy gradient approaches [10],

such as Proximal policy gradient [11], Trust region methods [12] for the MDPs, and constrained

policy optimization [13] in the CMDP regime.

A variety of systems have been proposed to improve the QoE performance of video streaming.

in [14] utilizes path selection algorithms through software defined networks (SDN) to assign video

streaming flows to network links.

Reinforcement learning has also been applied to a variety of video streaming applications [15,

16], which show significant improvements over existing methods. [15] proposes an algorithm Pen-

seive, to train adaptive bit rate (ABR) algorithms to optimize the QoE of the clients. [16] consid-

ers the complementary problem of service prioritization, and shows empirically that off-the-shelf

model-based and model-free RL approaches can result in major improvements in QoE. In contrast,

we provide a simple, structured RL algorithm with provable convergence guarantees, which is

empirically able to attain the same performance as more complex deep learning approaches using

significantly fewer data samples.
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3. PROBLEM FORMULATION

Our model consists of clients providing states to the controller. The controller obtains infor-

mation from each client on the state of its media stream and instructs the wireless access point to

instantiate clients into two queues, referred to as a ”high” and ”low” priority queue. The controller

periodically decides which clients are allowed into the high priority queue. While streaming, the

media server sends data packets to the AP which in turn, forwards them to each client. The data

packets buffers up the content allowing the video to play. Due to resource constraints on the sys-

tem, not every client is assigned to the high priority queue at the same time. This turns our problem

into a constrained decision making problem with an aim of maximizing overall QoE of all clients.

State: We denote the state of client n at time t by sn(t) = (xn(t), yn(t)), where xn(t) is the

number of packets in the buffer, and yn(t) is the number of stalls the client n has encountered until

time t. We consider a finite state buffer for every client, i.e., xn(t) ∈ [L] , {0, 1, . . . , L}. We

keep track of stalls up to a finite number, and choose yn(t) ∈ [M ] , {0, 1, . . . ,M}. Thus, the

state space of client n, denoted by Sn is [L] × [M ] and the joint system state space is given by

S , ⊗Nn=1Sn.

Actions: The service class assigned to a client n is denoted by action an(t), i.e., an(t) ∈

An , {1, 2}, where 1 means the high priority service, and 2 means low priority service. Let µn(a)

represent the service rate obtained by the nth client. We assume that the packet arrival process

An(t) for every n is a Bernoulli distributed random variable, with a parameter µn(a), depending

only upon a.

µn(a) =


µn,1 a = 1

µn,2 a = 2.

We assume that µn,1 > µn,2, for each n. This means that when the client is assigned to high priority

service, its service rate is higher than that of the low priority service. The joint system action space

5



is A , ⊗Nn=1An.

Policy: The joint policy Π is a mapping from joint state space S to joint action space A,

Π : S ×A → [0, 1].

State Transition Structure: The system has two state transition processes, corresponding to

the media buffer evolution and the stall count evolution. We assume that the media playback pro-

cess Bn(t) is distributed according to Bernoulli distribution such that stall-free playout is possible

if the client placed in the high priority queue. We assume a stall occurs when there is a transition

from a non-zero video buffer state to a zero buffer state.

We assume that the media that is currently being played by the client may be terminated at

any time with probability α > 0 by the end-user, which causes a reset of the client state to (0, 0).

Hence, the possible state transitions are

(xn(t+ 1), yn(t+ 1)) =



(xn(t), yn(t)), w.p (1− α)Pn,1(an(t)),

(min{xn(t) + 1, L}, yn(t)), w.p (1− α)Pn,2(an(t)),

((xn(t)− 1)+,min{y′,M}),w.p (1− α)Pn,3(an(t)),

(0, 0), w.p α,

where y′ = yn(t) + 1{xn(t) > 0, xn(t + 1) = 0}, and Pn,1(a) = (1 − µn(a))(1 − βn) +

µn(a)βn, Pn,2(a) = µn(a)(1− βn), Pn,3(a) = (1− µn(a))βn, for a ∈ {1, 2}, and for every n. The

state transition probability of the nth client is denoted by pn(s′|s, a).

Reward Structure: A stall occurs when the media playback stops due to the media buffer

becoming empty. Hence, we say that a stall period begins at time t if the media buffer becomes

empty at t. A cost function is used, rather than a QoE-based reward function for consistency with a

generic MDP/RL approach that focuses on cost minimization. This can be done by multiplying the

instantaneous cost by −1 and maximizing the value. We use the DQS model, which was validated

using 183 videos and 53 human participants [17] to gain insight into the nature of an appropriate

6



cost function. Here, the client starts the video with a QoE of 5. It decreases when the stall event

happens, and further decreases when the stall period continues. The QoE recovers when the stall

period ends.

Constrained Markov Decision Process: Our resource allocation problem takes the form of

the constrained infinite horizon discounted optimization

min
Π

EΠ[
N∑
n=1

∞∑
t=0

γtc(xn(t), xn(t+ 1), yn(t+ 1)))]

s.t
N∑
n=1

g(an(t)) ≤ K, ∀t,

where γ < 1 is the discount factor, and g(an(t)) = 1{an(t) = 1}. Note that the constraint enforces

the condition that only K clients may be allowed high priority service at a given time.

Relaxed CMDP: A commonly used approach to solving CMDPs is to relax hard constraints

and making them hold in expectation to obtain a near-optimal policy [18]. The hard constraint

can then be re-enforced by an indexing approach wherein the actions leading to the highest value

are chosen, while subjected to the constraint. We follow this approach to soften the constraint to

obtain the following problem:

min
Π

EΠ[
N∑
n=1

∞∑
t=0

γtc(xn(t), xn(t+ 1), yn(t+ 1))]

s.t EΠ[
N∑
n=1

∞∑
t=0

γtg(an(t))] ≤ K̄,

(3.1)

where, K̄ = K/(1 − γ), a(t) ∼ Π(s(t)), a(t) = (an(t))Nn=1, s(t) = (sn(t))Nn=1. The constraint

is now the discounted total number of times the high priority service is allocated to all the clients.

The policy here depends on the joint state of the system as a whole. Hence, a centralized controller

is needed to compute the policy, adding to complexity.

By using the assumption that clients’ transitions are independent of each other given the action,

the centralized problem can be decomposed in to N smaller problems [5].

7



Let πn : Sn ×An → [0, 1] be policy of client n. Define

Jπn(x, y;λ) = Eπn [
∞∑
t=0

γt[c(xn(t), xn(t+ 1), yn(t+ 1))

+ λg(an(t))]|(xn(0), yn(0)) = (x, y)], (3.2)

where an(t) ∼ πn(xn(t), yn(t)), (xn(t+1), yn(t+1)) ∼ pn(((xn(t), yn(t)), an(t), ·). λ is basically

the ‘price’ imposed by the AP for violating the constraint imposed. The optimal client policy and

the optimal client value function are then given as

π∗n = arg min
πn

Jπn , Jn = Jπ
∗
n . (3.3)

8



4. ANALYSIS OF THE OPTIMAL POLICY

Our analysis begins by stating two important properties of the optimal policy and value func-

tion. In particular, we state that the optimal policy has a threshold structure and the value function

has a unimodal structure with respect to the threshold parameter.

4.1 Threshold Structure

We first state that the optimal policy for each client has a simple threshold structure, following

an approach similar to [5]. We present this result as a theorem below.

Theorem 1. The optimal policy π∗n for any single client n ∈ [N ] has a threshold structure. More

precisely, for any given stall count y ∈ [M ], there exists an integer θ∗(y) such that

π∗n(x, y) =


1 if x ≤ θ∗(y),

2 if x > θ∗(y).

4.2 Unimodality

A threshold policy, denoted as πθ, can be completely specified by its threshold parameter vector

θ = {θ(0), θ(1), . . . , θ(M)}. Let J(θ;λ)(x, y) = Jπθ(x, y, λ). In this subsection, we will show

that J(θ;λ) has a unimodal structure with respect to θ. Since this result is true for any arbitrary λ,

we omit λ from the notation for convenience and denote J(θ;λ) simply as J(θ).

Definition 1. J(θ) is unimodal in θ if and only if the following are true for every y ∈ [M ]:

(i). For θ(y) ≤ θ∗(y), J(θ) is monotonically non-increasing in θ(y), and (ii) for θ(y) > θ∗(y),

J(θ) is monotonically non-decreasing in θ(y), while the rest of dimensions of θ remain fixed.

We now present the unimodality property of J(θ) formally as a theorem below

Theorem 2. J(θ) is unimodal in θ.

9



5. RL FOR LEARNING THE OPTIMAL THRESHOLD

Our proposed algorithm follows the methodology of actor-critic algorithms with function ap-

proximation and slightly modifies our hard-threshold policy to a soft-threshold policy. Denoting

πθ(x, y, a) as the probability of taking action a, when state is (x, y), the soft-threshold policy cor-

responding to the threshold parameter vector θ is defined as

πθ(x, y, a) =


1− 1

1+e−x+θ(y)
if a = 1,

1
1+e−x+θ(y)

if a = 2.

The threshold parameter vector θ can be a real-valued vector now, instead of the integer-valued

vector.

Instead of following a stochastic gradient descent approach, we follow a more rigorous stochas-

tic approximation approach [19] to show the almost sure convergence our proposed algorithm. Our

Decentralized Threshold algorithm, given as Algorithm 1, is a three time scale stochastic approxi-

mation algorithm which iteratively updates the value function, policy, and the Lagrange multiplier.

At each time step, it calls N instances of ACSUBROUTINE, that runs an actor-critic step, one for

each client. After each client updates its value function and its policy, the Algorithm 1 retrieves the

experienced actions from the clients, and updates the Lagrange multiplier by running a gradient

ascent in the slowest time scale. According to the step sizes defined earlier, we run the value update

at a faster time scale, the policy at a slower time scale, and the Lagrangian update at the slowest

time scale.

Theorem 3. Let a(m), b(m) and c(m) be the standard stochastic approximation step size se-

quences satisfying the following properties: (i)
∑∞

m=1 a(m) =∞,
∑∞

m=1 b(m) =∞,
∑∞

m=1 c(m) =

∞, (ii)
∑∞

m=1[(a(m))2 + (b(m))2 + (c(m))2] < ∞, (iii) limm→∞ b(m)/a(m) → 0, and (iv)

limm→∞ c(m)/b(m)→ 0. Then the Algorithm 1 converges to the optimal values of MDP for every

client n and the optimal Lagrange multiplier. i.e., (J
(n)
m , θ

(n)
m )→ (Jn, θn), λm → λ∗.

10



Algorithm 1 Decentralized Threshold Algorithm

1: Initialize Value function J
(n)
0 (x, y) = 0,∀(x, y) ∈ S × [M ], and ∀n ∈ [N ]. Threshold

θ
(n)
0 = 0, state (xn(0), yn(0)) = (0, 0), Gn = 0, counts ηn(x, y) = 0 for every (x, y), for every

client n.
2: for m = 0, 1, . . . , do
3: for Each client n = 0, 1, . . . , N do
4: Gn ← ACSUBROUTINE(m,λm).
5: end for
6: Update the Lagrange multiplier

λm+1 = (λm + c(m)[
∑N

n=1Gn −K])+.
7: end for

Algorithm 2 ACSUBROUTINE(m,λm)

1: Take the action A ∼ πθm(x, y, .).
2: Obtain the next state ζm(x, y), and costs c(x, ζm(x, y)), g(A) from the environment.
3: Update the count η(x, y)← η(x, y) + 1.
4: Update the value function according to

Jm+1(x, y) = Jm(x, y) + a(η(x, y)) [λmg(A) + [c(x, ζm(x, y)) + βJm(ζm(x, y))]− Jm(x, y)] ,

Jm+1(x′, y′) = Jm(x′, y′),∀(x′, y′) 6= (x, y).

5: Update the threshold

θm+1(y) = Λ(θm(y) + b(η(x, y))[λmg(A) + [c(x, ζm(x, y)) + βJm(ζm(x, y))]

− Jm(x, y)]∇ ln πθm(x, y, A),

θm+1(y′) = θm(y′), when y′ 6= y.

6: Update the state (x, y)← ζm(x, y).
7: Return g(A).
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The updates in our algorithm correspond to stochastic approximation updates. Stochastic ap-

proximation theory then guarantees convergence if certain assumptions are satisfied. Our algorithm

satisfies these assumptions and our unimodality result guarantees global almost sure convergence.
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6. SIMULATION SYSTEM

Developing a simulator is necessary as developing policies on the real system would take huge

amounts of data. Collecting the data required would take very long, making the system impracti-

cal. Therefore, all the policy training occurs on the simulator, developed on Python using OpenAI

Gym. The simulator consists of a wireless access point (AP) and two queues which are set to have

a fixed bandwidth to which clients are put in. The simulator is meant to closely mimic the real

system where clients then share the bandwidth assigned to the queue equally among them. For

example, if there were 4 clients in the 4Mbps queue, then each client would stream video with

1Mbps bandwidth.The number of clients can be variable and is set to 6 as default. The simulator

instantiates each client with a buffer, and models the evolution of the buffer based on queue assign-

ment and video bitrate. The video bitrate (in Mbps) is sampled from a normal distribution with

mean 2.9 and standard deviation 1. Each client plays videos sequentially and stalls occur when

the buffer runs out. The video lengths are drawn from a normal distribution with mean 600 and

standard deviation 50.

Each client possesses a buffer state which includes the number of times the video has stalled

and the number of seconds it has been playing since the last stall or buffering. Using this data,

an intelligent controller calculates its QoE using the DQS model. We use “reward” using the

QoE, rather than “cost” as used in the analytical model, since most RL implementations use this

approach (by we multiplying “cost” by -1 and maximizing instead of minimizing).

The state of the system as a whole is the combined state for all clients that are present in the

system. Therefore, the total number of states as a whole is infinite (as the video buffer and number

of stalls have no theoretical limit). The action is the a permutation of clients that end up in the

high priority queue and the low priority queue. This results in a total of 26 possible actions. As

mentioned before, when the number of clients in each queue is fixed, the system can be treated as

N independent single-client systems, each having appropriate shared bandwidth. Intuitively, train-

ing on this system should be faster, since we obtain N [state, action, next-state, reward] samples

13



per time step here, as opposed to just one in the joint system case. Furthermore, solving using the

dual approach introduces a Lagrange multiplier λ, which also has to be learned by performing a

hyperparameter search to ensure that when the controller follows the optimal policy the number

of clients in each service class satisfies the service class constraints. Given the structure of the

simulator, we implement two categories of algorithms, centralized and decentralized algorithms.

Centralized algorithms train on the joint states and action spaces of all 6 clients, whilst the decen-

tralized algorithms train on a single agent system.
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7. ALGORITHMS
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7 different algorithms are simulated and compared on the real system. Intuitively, we expect

some algorithms to perform better than others, however results are verified on the simulation and

real world system.

Vanilla (V): This is a simple policy that merges all available throughput into a single service

class and shares it equally. We will use this as a base policy in the real-world system, but do not

simulate it.

Greedy Buffer (GB): This algorithm awards high priority service to the clients with the lowest

video buffer state, subject to resource constraints. This algorithm does not consider stall count as

a factor in calculating QoE and is used as a well-established algorithm with a decent performance

in the real-world evaluation.

Centralized Hard PPO (CH): QFlow [16] shows that unstructured Deep Q-Learning (DQN)

performs really well in a context much like ours but requires a long training duration. A more

recent policy gradient algorithm (specifically Proximal Policy Optimization (PPO) [11]). It is

implemented with a hard constraint of 2 clients with in the high priority queue and 4 in the low

priority queue.

Centralized Soft PPO (CS): This algorithm implements the Lagrangian relaxation by adding

15



a penalty λ for accessing “high” service. We use the same PPO algorithm, but do not impose a hard

constraint as in CH. Rather, we impose a soft constraint on the joint action space, by penalizing the

agent for placing more than two clients in the high priority queue. The algorithm is trained using a

hyperparameter search over λ such that we have an average of 2 clients in the “high” service class.

Decentralized PPO (DC): This algorithm takes advantage of the conditional independence

property that enables division into N independent systems, along with a Lagrangian relaxation of

the constraints. The PPO algorithm is now used on an individual client basis, but since we obtain 6

samples per step, it can train much faster. However, we do not impose any structure on the policy

class. Again, we need to find the appropriate penalty λ to enforce the constraint.

Decentralized Threshold (DC-T) This algorithm is similar to DC in utilizing division into

N systems for faster learning, but also imposes a threshold structure of the optimal algorithm. It

requires only one neuron (logistic function) to represent a threshold policy, which makes for simple

implementation. Like DC, it too can train faster than the centralized approaches, and also needs an

appropriate penalty term to enforce constraints.

Index (I): This algorithm follows the philosophy behind the Whittle Index [18] in converting a

soft-constrained into a hard-constrained and robust policy. We calculate the index for each client as

a function of buffer length, number of stalls, and QoE. However, we digitize these values and also

place an upper limit. We order the states of clients based on their values obtained from DC-T, and

provide “high” service the two with the highest value. We will see that this can be used regardless

of the number of clients, or the quality of their channels.

7.1 Training and Evaluation

Figure 7.1 shows the evaluation of the algorithms on a joint system during training (averaged

over 5 random seeds). We observe that decentralized algorithms converge over four times faster

than centralized algorithms as they exploit the structure of the environment. The performance

difference between the trained centralized and decentralized algorithms is negligible as seen in

Figure 7.2 (averaged over 100 runs). The performance of DC-T is on par with the best performing

algorithms, which confirms our hypothesis that the optimal policy is indeed a threshold policy.
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The index policy, I that is hard-constrained version of DC-T shows similarly high performance.

Figure 7.3 (averaged over 100 runs) shows the number of clients in the high priority queue during

evaluation of the soft constrained algorithms is near 2, and so confirms our choice of λ.
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8. EXPERIMENTS ON THE REAL-WORLD SYSTEM
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erage QoE in a poor channel
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The real system is set up similar to [16] with 4 Intel NUCs, with 3 of the NUCs acting as clients

and the last as the controller. The client NUCs have Youtube sessions running and relevant data

is gathered. The 4 NUCs are all connected to a WiFi router with OpenWrt installed on it. The

OpenWrt operating system allows for various queues to be created where packets are transmitted.
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We create a high priority and low priority queue for the purpose of our experiments. Every 10

seconds, the controller receives a new action from the policy that determines which clients enter

the high priority queue and the low priority queue. Each evaluation has a runtime of three hours, to

ensure sufficient data collection. The controller NUC runs various policies and accordingly sends

clients into the two queues using Linux Traffic Control. We compare the 7 policies mentioned in

Chapter 7 answer three different questions accordingly.

8.1 Does structured RL provide high-performance?

In the first scenario we look at, we have two queues, a high priority and a low priority queue

and 6 clients. The 6 clients are distributed among the two queues depending on the state of clients

and the policy running. We first determine if structured RL approaches are near-optimal. Figure

8.1 shows the average QoE across three hours of YouTube sessions for all 7 policies. As expected,

the centralized policies CH and CS do the best, with the decentralized versions DC, DC-T and I

following close behind. GB does reasonably well, but is unable to account for stalls influencing

QoE, hence causing performance loss. The vanilla approach shows why intelligent control is

necessary, as it lags behind the RL approaches by full QoE unit, i.e., it is over 30% worse. Figure

8.2 shows the CDF of QoE samples, where the value of the RL approach is even clearer from

the fact that about 60-70% of samples have a perfect score of QoE 5, while the other approaches

are about 20% worse. Finally, Figure 8.1 shows the average video buffer length, and appears to

indicate that Greedy tries to equalize buffers, letting them go too low before prioritizing. The

RL-based policies all have higher average buffers, consistent with higher QoE and fewer stalls.

8.2 Is indexing robust to a variable number of clients?

We next address whether the index policy I can be applied unaltered to the case where the

number of clients is less than 6, which means that there is no need to train over a variable number

of clients. So we perform an experiment where we decrease number of clients from 6 to 4 over

three hours. As expected, the QoE of all three policies increases, with all three policies having an

average QoE above 4 in Fugure 8.4. However, the overall trend is maintained as the Index policy
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does the best as seen in Figures 8.4, 8.5, and 8.6.

8.3 Does the index approach generalize to variable channels?

Depending on our surroundings, our traffic control queues could face loss and delay. The

question arises as to whether the RL approach needs to be trained separately over many channel

realizations? Since indexing simply orders clients based on their states, we wish to determine if it

can be used unchanged even when the channel quality is low. Hence, we introduce packet losses

and delays using a network emulator to create channels with disturbances. We first group clients

with similar channels into clusters and divide the total available resources in a proportionally fair

manner across clusters. We then apply our service differentiation policies across members of each

cluster. We show results for a cluster seeing 10% packet loss and 20 ms delay, and, as expected,

QoE drops as seen in Figure 8.7. However, the overall order still holds as Vanilla and Greedy

Buffer have QoEs over 20% worse than Index. Further, the client QoE CDF and average buffer

state indicate same trend as seen in 8.8 and 8.9, with Indexing still performing significantly better

than the base approaches.
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9. CONCLUSION

In this work we explored the value of structured reinforcement learning for solving constrained

MDPs in the context of media streaming systems. The key observation was that by first relaxing

the constraint, we obtain a simpler CMDP whose optimal policy both has a threshold structure,

and value function has a unimodal behavior with respect to the threshold parameter. These two

properties enable us to develop a 3-timescale policy gradient algorithm that provably converges

to the global optimum, rather than the local optimum that is usually guaranteed by the policy

gradient approach. We empirically verify that exploiting structure enables much faster and simpler

approaches to learning a near-optimal policy, which can be made robust to variations in the setting

via indexing. Finally, we verify using real-world experiments our hypothesis regarding structured

RL being able to robustly outperform traditional approaches in a variety of scenarios.

Future work involves translating our system to act as a RAN intelligent controller (RIC) at a

cellular base station to test out other policies with a finer level of control.
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