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ABSTRACT 

 

Triatomines are vectors of Trypanosoma cruzi, the etiological agent of Chagas 

disease. They exhibit stercorarian transmission, in which T. cruzi is transmitted via fecal 

contamination to the host. Differential feeding and defecation behavior may contribute 

to the lower burden of human Chagas disease in the U.S. compared to Latin America, 

but behaviors of species in the U.S. have been infrequently studied. We hypothesized 

that U.S. triatomines less commonly defecate during or shortly after blood-feeding when 

compared to a South American triatomine species. We reared T. cruzi-infected (TcI and 

TcIV) and uninfected Triatoma gerstaeckeri and Triatoma sanguisuga (both of the 

southern U.S.) and Rhodnius prolixus—a South American triatomine sourced from a 

colony maintained by the U.S. Centers for Disease Control and Prevention. Single 

nymphs were allowed to interact with a restrained guinea pig for one-hour during which 

insect feeding and defecation events were measured. In 148 trials across all three 

species, 40.0% of insects fed at least once, of which 71.2% defecated during the 

observation period. Compared to R. prolixus, T. gerstaeckeri were more likely to feed 

and had more feeding events, and T. sanguisuga fed longer. The average interval 

between feeding to the first defecation was 4.5 min for R. prolixus, 9.8 min for T. 

gerstaeckeri and 20.7 min for T. sanguisuga, and there were observations of 

simultaneous feeding and defecation in all three species. The defecation index reported a 

similar pattern with R. prolixus having the highest infection capacity, followed by T. 

gerstaeckeri and then T. sanguisuga. Triatomines that were infected with T. cruzi DTU 
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TcI were less likely to feed than uninfected controls, while those infected with TcIV had 

no significant differences. Finally, T. cruzi-infected insects had shorter post-feeding 

defecation intervals when considering multiple defecation events. These data suggest 

that while the feeding and defecation behaviors of T. gerstaeckeri and T. sanguisuga 

result in them being less efficient vectors compared to R. prolixus, they are still capable 

of stercorarian transmission. These observations suggest that other extrinsic and intrinsic 

factors contribute to the reduced autochthonous transmission of T. cruzi in the U.S. 

compared to elsewhere in the Americas. 
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CHAPTER I  

INTRODUCTION 

 

1.1. Chagas Disease and Trypanosoma cruzi 

Chagas disease, also known as American trypanosomiasis, is a zoonotic disease 

caused by a protozoan parasite, Trypanosoma cruzi. The disease was discovered by 

Carlos Chagas in 1909, when he identified the parasites in the hind gut of triatomines, 

the vectors of Chagas disease [1]. Since its discovery, Chagas disease has become an 

increasing public health concern. It affects about 8 million people worldwide, with the 

majority of infected individuals living in endemic areas of the Americas. Some cases 

have been reported in non-endemic areas, such as Europe and Asia, but these are mostly 

due to global migration [2]. Chagas disease also accounts for an annual loss of 806,170 

disability-adjusted life years (DALYs) globally [3], burdening those infected 

economically and socially [4]. 

The primary transmission route of Chagas disease is via the feces of an infected 

triatomine, where the feces can enter the host through an open wound or mucous 

membrane. Other ways of transmission routes are oral, congenital, organ transplantation, 

blood transfusion, or laboratory accidents [5]. Chagas disease has three stages: acute, 

indeterminate, and chronic. The acute phase occurs when T. cruzi is circulating in the 

host’s blood, and symptoms may include nausea, fever, chills, or even the infamous 

Romana’s eye. The indeterminate stage occurs when infected individuals do not show 

any clinical symptoms—and even may not realize they are infected [6]. This may lead 
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into the chronic stage which can result in severe cardiomyopathy or gastrointestinal 

issues in 20-30% of patients. Currently, there are no vaccines available and treatments 

for humans are limited. 

Trypanosoma cruzi can affect a wide range of hosts, many of which serve as 

reservoirs in the transmission cycle—domestic canines, opossums, raccoons, and many 

other mammals [7]. T. cruzi has been identified to have seven discrete typing units 

(DTUs)—TcI to TcVI and TcBat. In North America, TcI and TcIV are the predominant 

DTUs. TcI is the predominant strain implicated in human Chagas diseases in the United 

States (U.S.) [8], and is also found in most of the U.S. vector species [9] and in domestic 

and wildlife animals [7]. TcIV has been mostly shown in wildlife reservoirs, which is 

important because it has been shown that there is spillover from wildlife to domestic 

animals [7]. 

 

1.2. Triatomines 

Triatomines, or kissing bugs, are hematophagous insects that can transmit T. 

cruzi. These insects share the same family Reduviidae as other assassin bugs and over 

130 triatomine species are capable of transmitting the parasite [10]. The parasite is found 

in the gut and feces of triatomines, which is one of the primary modes of transmission of 

Chagas disease. In order for triatomines to pass on the parasite to a host, they must rely 

on feeding and defecating near them, where T. cruzi must somehow enter the host’s 

body through an open wound or membrane. This usually means a higher chance of 

parasite transmission. Because there are no vaccines available and limited treatments for 



 

3 

 

Chagas disease, efforts in public health interventions have been focused on controlling 

triatomine populations. Many countries in Central and South America have taken 

initiatives in reducing triatomine populations, which has greatly decreased the number of 

infected individuals compared to that of a couple decades ago [11, 12]. An example is 

the successful story of eliminating populations of Rhodnius prolixus, one of the most 

epidemiologically important vectors of Chagas disease, in Central America [13]. In the 

United States, reducing triatomine populations is difficult because the species found here 

are known to be sylvatic and do not colonize homes like those in Central and South 

America [6].  

As we know, there are well-established triatomine populations distributed across 

a wide geographical range, expanding from the southern U.S. to near the southern tip of 

South America [10]. In Latin America, roughly 6-7 million people are infected with 

Chagas disease since the disease is endemic in these areas, and the majority of these 

infections were locally-acquired—humans are getting T. cruzi infections from the 

kissing bugs themselves [14]. However, in the U.S., we can estimate about 300,000 

people infected with Chagas disease [15], but a low number of those infected persons 

acquired the infections from kissing bugs. In a recent review paper, 76 confirmed and/or 

suspected autochthonous cases were reported from the years 2000 to 2018 in the U.S. 

[16]. We are seeing a disconnect between well-established vector populations in the U.S. 

and not many locally-acquired cases. Possible explanations could be: 1) differences in 

domestic versus sylvatic triatomine species; 2) more robust housing available in the 

southern U.S. compared to some areas in Latin America; 3) differences in disease 
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surveillance and reporting; and 4) vector behavioral differences between the U.S. and 

Latin America.  

1.2.1. Triatomine Feeding and Defecation Behaviors 

Vector behaviors, such as feeding and defecation patterns, may play a role in the 

differences of disease burden between the U.S. and Latin America. It is essential to 

understand the biology and behaviors of these vectors because public health intervention 

is limited to controlling for triatomine populations. Studies conducted over feeding and 

defecation behaviors of triatomines have been done for decades since there has been an 

interest in how the defecation behaviors of triatomines relate to the risk of T. cruzi 

transmission. Many of these studies have looked at epidemiologically important species 

in Central and South Americas, such as R. prolixus, T. infestans, and T. dimidiata. It has 

been shown that these species, as well as others, are more efficient vectors of Chagas 

disease because they are more likely to defecate and have shorter post-feeding 

defecation intervals (PFDI) [17-20]. Zeledon (1977) conducted feeding and defecation 

behavioral studies on R. prolixus, T. infestans, and T. dimidiata, and found that R. 

prolixus were better defecators than the latter two species; however, all three species 

have been shown to be competent vectors for T. cruzi [17]. He also proposed the 

“defecation index”, a standardized measurement for infection capacity of triatomines 

which accounts for how often triatomines will defecate within 10 minutes post feeding. 

This use of measurement has been used in many studies since then [20-22]. 

On the other hand, species that can be found in the U.S. may have longer PFDIs 

or might not defecate as often, which may lower the chance of parasite transmission. 
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This reasoning could account for the low disease burden seen in the U.S. However, only 

a few studies have extensively observed the feeding and defecation behaviors of North 

American species. Sherwin Wood’s early studies looked at the contaminative effects of 

T. protracta and T. rubida and observed that these species had delayed PFDIs [23]. A 

more recent study found similar results in the same species and concluded that T. 

protracta and T. rubida would be inefficient vectors for Chagas in the southwestern 

parts of the U.S. [21]. Another study focused on the feeding and defecation patterns of T. 

gerstaeckeri and T. sanguisuga, two species that can be found in Texas, and compared 

them to that of R. prolixus. The author found that the U.S. species did not defecate as 

often, so they were less likely to contaminate their hosts [19]. However, many studies 

have not considered the effect T. cruzi may play on the feeding and defecation behaviors 

of species found in the U.S.—T. cruzi manipulation has been shown in some Latin 

American species [20, 24-26]. Learning the feeding and defecation behaviors of 

triatomines, especially with and without T. cruzi infection, will help us understand the 

disease risk of Chagas disease in the U.S. and determine that there is indeed a low 

probability of T. cruzi transmission in U.S. species. 
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CHAPTER II 

 COMPARATIVE FEEDING AND DEFECATION BEHAVIORS OF TRYPANOSOMA 

CRUZI-INFECTED AND UNINFECTED TRIATOMINES FROM THE AMERICAS 

 

2.1. Introduction 

Triatomines (Hemiptera: Reduviidae), or kissing bugs, are the vectors of 

Trypanosoma cruzi, the etiological agent of Chagas disease. They are arthropods that 

require blood meals in order to develop throughout their hemimetabolous life cycles. 

Over 130 triatomine species distributed from the southern United States to northern 

Argentina and Chile are capable of transmitting T. cruzi [10]. Triatomines exhibit the 

stercorarian form of biological transmission, in which they transmit the infectious state 

of T. cruzi via fecal contamination to the host. If an infected triatomine feeds on a host 

and defecates at the same time or shortly after, there is a higher risk for the parasite to 

enter the host via the bite wound or other orifices. Accordingly, there is a long-standing 

interest in triatomine defecation behavior as it relates to the risk of T. cruzi transmission 

[17, 21-23, 25, 27-30]. 

Studies observing the feeding and defecation behaviors of triatomines have been 

conducted for decades. It is commonly cited that South American triatomines are more 

efficient vectors of T. cruzi because they generally have shorter post-feeding defecation 

intervals (PFDIs) [17-20, 31], as compared to North American species that do not 

defecate while feeding nor immediately after [17, 19, 21-23]. Thus, the feeding and 

defecation behaviors of North American species may dampen transmission of T. cruzi in 
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the U.S. This has been a factor stated to contribute to why the human health burden of 

Chagas disease in the U.S. is relatively low compared to that in Latin America [21-23, 

32-34], despite established vector populations in both locations. Despite this perspective, 

few studies have comparative feeding and defecation behavior data of species found in 

the U.S. and elsewhere in the Americas. 

Based on public submissions in a community science program, both Triatoma 

gerstaeckeri and Triatoma sanguisuga are considered as the two most epidemiologically 

important vector species in Texas, and they both have relatively high infection 

prevalence of T. cruzi [9], with about 45-70% infection prevalence for T. gerstaeckeri [9, 

19, 35, 36], and about 25-67% infection prevalence for T. sanguisuga [19, 35-37]. 

Triatoma gerstaeckeri is more likely to carry discrete typing unit (DTU) TcI, and T. 

sanguisuga is more likely to carry DTU TcIV [9]. The distribution of T. gerstaeckeri 

expands to all but the northern parts of Texas extending into parts of New Mexico [5, 

35], while T. sanguisuga is broadly distributed from Texas to the east coast of the U.S. 

[5]. Although the distribution of T. gerstaeckeri is limited to two states, it is one of the 

most commonly collected species in the U.S. [5] with the majority of specimens found in 

Texas.  

Rhodnius prolixus is a species native to South America and is one of the most 

competent vectors for T. cruzi. It has been thoroughly studied for decades as it can be 

easily colonized in laboratory settings [38, 39]. Rhodnius prolixus has been shown to 

have higher vectorial capacity given short PFDIs compared to triatomine species found 

in the U.S. [19], as well has other South American species [18]. Accordingly, this 
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species would be a good model to compare feeding and defecation behaviors with the 

U.S. species. 

The objective for this study was to examine feeding and defecation behaviors of 

T. cruzi-infected and uninfected T. gerstaeckeri and T. sanguisuga in comparison with R. 

prolixus under laboratory conditions. Comparison of feeding and defecation behaviors 

between the two North American triatomines and R. prolixus, as well as between 

individuals infected with the T. cruzi (TcI and TcIV) and uninfected controls, will afford 

key information for parameterizing models of vectorial capacity as it relates to 

differences in human disease risk across the Americas.  

 

2.2. Methods 

2.2.1. Insects 

All insects in this study were lab reared in our triatomine colony located in a 

USDA APHIS-PPQ, arthropod containment level 2 (ACL2) facility. The temperature in 

the room ranged from 24-27°C, and relative humidity levels ranged from 28-57%, 

although the microclimate experienced by the insects had higher humidity because they 

were housed in Nalgene primary containers (Avantor, Radnor, PA, USA) that were 

placed in a plastic secondary container filled with water to maintain humidity levels 

[40]. The secondary containers sit in tubs coated with fluon (BioQuip Products, Rancho 

Dominguez, CA, USA) to prevent the insects from escaping. Three species of 

triatomines were used in the experiments. Rhodnius prolixus were acquired from the 

Centers of Disease Control and Prevention whose original source was collected in 
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Colombia (BEI Resources, Manassas, VA, USA), and T. gerstaeckeri and T. sanguisuga 

were offspring of individuals caught locally in the wild between 2017 and 2019 [41]. All 

nymphs came from known T. cruzi-negative colonies which were separated from adults 

and subsampled to confirm infection status following testing protocols described below. 

Triatomines were maintained using defibrinated rabbit blood (Hemostat Laboratories, 

Dixon, CA, USA) fed weekly through artificial membrane feeders (Hemotek Ltd, 

Blackburn, UK). 

2.2.2. Guinea Pigs 

Because triatomines are able to take an average of 0.3 mL of blood per blood meal 

with the upper limits approximately at 0.75 mL (Wormington et al., unpublished data), 

the safe limits of blood loss could be exceeded in laboratory mice and rats when used 

repeatedly. Thus, guinea pigs (Cavia porcellus) were selected as the model to allow live 

animal feeding because their body size is larger than that of laboratory mice and rats, 

thereby allowing for triatomine blood feeding at two- and three-week intervals without 

concern for blood loss. 

Fourteen adult, female guinea pigs were used in the trials (IACUC 2018-0484). They 

were uniquely marked with fur pigment markers (Stoelting, Wood Dale, IL, USA) and 

group-housed in animal BSL-1 containment. Although T. cruzi infection was not an 

expected outcome in animals in this study, each of the guinea pigs had their blood drawn 

at three different time points: pre-study, mid-study, and post-study. We extracted DNA 

from 100 µL of whole blood or 50 µL of blood clot with the E.Z.N.A.® Blood DNA Kit 

(Omega Bio-tek, USA). Extracted DNA was amplified for detection of T. cruzi using 
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previously published methods [42]. Guinea pigs were adopted at the end of the study 

after confirming they did not have evidence of T. cruzi DNA in their blood. 

2.2.3. Parasite Cultures 

We obtained T. cruzi metacyclic trypomastigotes by gently compressing the 

abdomen of a wild-caught T. gerstaeckeri nymph from Moore, TX from which the feces 

had previously tested positive for T. cruzi discrete typing unit (DTU) TcI. We obtained 

T. cruzi epimastigotes of T. cruzi DTU TcIV by hemoculture of a naturally infected non-

human primate from a central Texas biomedical research facility [43]. 

These trypanosomes were cultured in liver-infusion tryptose (LIT) media (Difco, 

BD, Franklin Lakes, NJ, USA) supplemented with fetal bovine serum, penicillin-

streptomycin, and nystatin (Sigma-Aldrich, Darmstadt, Germany) [44-46]. Culture flasks 

were placed into an incubator at 27°C and microscopically examined for the presence of 

motile trypanosomes two weeks later. Cultures were maintained by passaging in LIT 

media. These cultures were mixtures of abundant epimastigotes and rare trypomastigotes 

as determined by microscopy. The T. cruzi DTU in each culture were confirmed by a 

multiplex qPCR targeting the spliced leader intergenic region (SL-IR) for determination 

of strain type, according to previously described protocols [47]. 

2.2.4. Experimental Infections 

To calculate parasite concentration of each culture, we agitated the culture flask 

and pipetted 10 µL of parasite in media into 90 µL of formalin (VWR, Radnor, PA, 

USA) and counted individual parasites in a hemocytometer (Reichert, Buffalo, NY, 

USA) to determine an approximate density of parasites in the culture while accounting 
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for the formalin dilution. To concentrate the parasites, we centrifuged samples from the 

same culture flask in microcentrifuge tubes for 10 minutes at 3,000 rpm, poured off the 

culture medium, and replaced it with sterile phosphate-buffered saline (PBS) solution 

(VWR, Radnor, PA, USA). After resuspending the parasite in PBS, we again centrifuged 

and poured off the PBS and culture medium.  

To prepare blood, we transferred the washed parasite into a measured quantity of 

defibrinated rabbit blood to a final estimated concentration of 3 x 106 parasites per mL of 

blood, a concentration similar to peak parasitemia in laboratory mice and produces a 

very high probability of insect infection [48-51]. Infected blood was offered to 4th and 5th 

instar triatomine nymphs through an artificial membrane feeder for two hours in an 

ACL2 facility. These instars were chosen not only because of robust availability in the 

insect colony, easy handling, and high visibility under the surveillance cameras used in 

the trials, but also these life stages were potentially considered better defecators, at least 

for T. gerstaeckeri and T. sanguisuga [19]. The control groups were offered blood 

without parasites. The following treatments were prepared: T. gerstaeckeri (control); T. 

gerstaeckeri (TcI); T. gerstaeckeri (TcIV); T. sanguisuga (control); T. sanguisuga (TcI); 

R. prolixus (control); R. prolixus (TcI); R. prolixus (TcIV). There was no treatment 

group for T. sanguisuga TcIV because there were limited numbers of T. sanguisuga 

nymphs in the triatomine colony. The insects were starved for 2-6 weeks after feeding 

before being used in the trials, with individual periods of starvation included in the 

analysis. Insects that did not feed on the infected bloodmeal, or fed then molted into 

adults prior to use, were removed from the study. 



 

12 

 

2.2.5. Confirmation of Infection Status 

We used up to three different methods to confirm the infection status of the 

insects. For abdominal compression, insects at 2 weeks post feeding on infected blood 

were gently compressed to obtain any fecal material that was directly expelled into 5 mL 

of LIT culture media. The cultures incubated at 27°C and were checked weekly for 

presence of T. cruzi. If the presence of at least one T. cruzi parasite was observed, the 

insect was confirmed for infection. The final call on the infection status was made at the 

1-month mark [52]. For fecal spot testing, we collected feces from individuals held in 50 

mL-conical tubes containing filter paper (Whatman Filter Paper, Sigma-Aldrich, 

Darmstadt, Germany). Following defecation on the filter paper, the fecal spot was cut 

using sterile scissors and placed into a microcentrifuge tube using sterile forceps. Fecal 

spots were extracted using the KingFisher Cell and Tissue kit (Thermo Fisher Scientific, 

Waltham, MA, USA), and the DNA were run through real-time qPCR [9]. After the 

insects were used in trials and if their infection status was not confirmed with the former 

two methods, then the insects were dissected to obtain gut material, which was subjected 

to DNA extraction and tested using qPCR using protocols previously described [9].  

2.2.6. Feeding and Defecation Trials 

The trials were conducted over a 1-year period (August 2019─September 2020) 

in an ACL2 negative air pressure biocontainment unit (bioBUBBLE, Fort Collins, CO, 

USA). Temperatures ranged from 18-26°C. For each trial session, we set up four arenas, 

each consisting of a 17.6 in x 11.5 in x 7.8 in, clear, polycarbonate Sous Vide container 

(Lipavi, United Kingdom) with the bottom surfaces lined with white bench paper, onto 
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shelf racks. The bench paper was taped down using white laboratory tape. One Yi Lite 

camera (YI Technology, Pudong District, Shanghai, China) was docked above each 

arena to allow recording of the trials (Figure 1). After the first several trials were done in 

ambient light, two 25-watt red, light bulbs were set up above the containers to allow for 

observations to be made with the low-light surveillance cameras. 

 
 

 

 
Figure 1: Experiment arena with polycarbonate containers lined with white bench paper and Yi 
Lite cameras docked above 
 

 
 

Four guinea pigs were used for each trial session, one per arena. Each guinea pig 

was restrained into a 2 inch-mesh, cotton stockinette (Rolyan, Warrenville, IL, USA) 

with both ends tied. For optimal restraint, the guinea pigs were in a curled position to 

restrict excessive mobility in the stockinette after the ends were tied. Both ends of the 

stockinette were secured with white duct tape to the sides of the containers, and the 

guinea pigs were positioned on their feet. Each insect was weighed before and after the 
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trial period and randomly assigned to be placed with a guinea pig for the first 60 minutes 

of the trial period [52]. One insect was released in each assigned container with a guinea 

pig at the start of the trial.  

During the initial hour of the trial in which the insect and guinea pig were 

together in the arena, both insect and guinea pig behaviors were monitored. Insect 

behavioral scoring was based on: (i) whether the insect was sedentary or walking; (ii) 

feeding attempts, feeding events, interrupted feedings; (iii) and defecation events. The 

color of each defecation was also observed (clear, light, medium, or dark). Guinea pig 

behavioral scoring was based on: (i) reaction to probing by an insect (strong, weak, no 

reaction); (ii) movement inside the stockinette (yes or no); (iii) and other general 

observations (such as chewing on stockinette or defecating or urinating in stockinette). 

After the 60 minutes, the guinea pigs were removed from the arena and returned 

to group housing, and the insects stayed in the arena for an additional 60 minutes for 

observations of defecation events. In cases that an insect was still feeding on a guinea 

pig at the 60-minute mark, the guinea pig stayed in the arena until the insect finished 

feeding and then the guinea pig was returned to group housing. After the two-hour trial 

period, the insects were weighed again and a unique colored marking with nail polish 

was painted over their lower abdomen. Any fecal spots on the bench paper from the 

trials were collected.  

2.2.7. Statistical Analyses 

Of the 91 triatomines that were experimentally exposed to and fed on T. cruzi-

infected blood, all were subjected to confirmatory testing of infection status, and T. cruzi 
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was found via culture or PCR methods in 85 (93.4%) (Table 1). Of the 69 triatomines 

that were in the control category, 64 (92.8%) were subjected to confirmatory testing of 

infection status, and 63 (98.4%) were confirmed as uninfected. Insects that had test 

results congruent with their assigned treatment groups were used for statistical analysis, 

which resulted in a total of 148 (92.5%) individuals.  

 
 
 
Table 1: Number of triatomines of each species by infection group that were used in the trials 
and were confirmed for their assigned treatment group. 

  
 
 

A feeding event started when an insect inserted its proboscis into the guinea pig 

and initiated feeding; the feeding event ended once the insect removed its proboscis and 

walked away from the location of the bite [24]. A defecation event occurred when an 

insect excreted either urinal or fecal material at any time in the two-hour trial period. 

The time at which the insect defecated was also noted. 

We adopted the defecation index from Zeledon [2] to allow for a standardized 

index of infection capacity to compare with other studies [17, 21, 22], where DI= (% of 

insects that defecated up to 10 minutes post feeding x average number of defecations up 

to 10 minutes post feeding)/100. We also recorded the time intervals between an insect’s 

most recent bloodmeal to the time of its first defecation [20]. 

Species Control TcI TcIV Total 
T. gerstaeckeri 26 21 17 64 
T. sanguisuga 16 11 0 27 

R. prolixus 21 19 17 57 
Total 63 51 34 148 
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For any insect that fed on a guinea pig and gained weight after the two-hour trial, 

the volume of blood ingested was calculated using a proportion of 1 mg of weight gained 

after feeding equal to 1 µL of blood [24]. The percent weight gain was also calculated by 

dividing the ingested blood volume by the pre-trial weight of the insect [19].  

We tested for differences among treatment groups (triatomine species and 

infection status) using a generalized estimating equation models, GEE [53]. Models were 

fit using the “geepack” package in R version 4.1.1. We employed GEE models given the 

nature of the data, where the performance of experiments using different guinea pigs and 

done over different days, constrained the use of simpler regression tools that assume full 

replication [54]. Given that we analyzed different outcomes we employed GEE models 

with different distributions for the response variables. To analyze whether triatomines 

fed or defecated we employed logistic GEE models, a suitable modeling strategy for 

dichotomous variables [55]. To analyze variables associated with the number of times a 

triatomine fed, or defecated/urinated, we employed models with a Poisson distribution 

[55]. To analyze the total feeding time and the post-feeding defecation intervals, we used 

a model with a Gaussian distribution [53].   

In all models we considered the triatomine species and the infection status as the 

main explanatory variables. As covariates, we considered the illumination conditions for 

the experiment (with lights on or off), the number of days the triatomine was starved 

before the experiment, and the nymphal instar. This basic structure was used in the 

model looking at factors associated with vector feeding; in all other models, we included 

additional covariates depending on the response variable studied. For the model studying 
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whether triatomines defecated or not, we considered whether the triatomines fed when 

offered the guinea pig. For models studying the number of feedings, number of 

defecations, total feeding time, and PFDIs, we compared their goodness of fit 

considering either the initial insect weight or the pre- and post-feeding weight difference 

at the end of the experiment. After running the models, we found that the pre- and post-

feeding weight difference was the best predictor. For the model of number of 

defecations, we also added the number of feedings as a covariate. 

For the inference we used a sandwich estimator to obtain robust standard errors, 

since naïve standard errors are appropriate only when the correlation structure is correct 

[55]. When fitting the GEE models we fitted alternative models that either considered an 

independent or a correlated, a.k.a. exchangeable, error structure as function of the 

clustering factor [53]. We also fitted alternative models considering the day of 

measurement or guinea pig as clustering factor. Among these alternatives we chose the 

best model for each of the responses based on the minimization of the quasi-likelihood 

information criterion (QIC), a goodness of fit function that trades-off deviance and 

number of parameters in GEE models, and whose minimization can be used to choose 

the best model [56].  

 

2.3. Results 

For each species and infection group, we recorded the number of triatomines that 

fed, defecated, defecated after feeding, and the proportion of those that fed and defecated 

out of the number of triatomines that fed (Table 2). Out of 148 triatomines, 59 (40.0%) 
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fed on guinea pigs during the trial periods. Of those 59 insects, 42 (71.2%) defecated at 

least once after feeding. Forty-one (64.1%) T. gerstaeckeri fed on the guinea pigs, while 

only eight (29.6%) T. sanguisuga and ten (17.5%) R. prolixus fed on the guinea pigs. For 

defecation, 33 (51.6%) T. gerstaeckeri defecated during the observation period, while 

there were eight (29.6%) for T. sanguisuga and 15 (26.3%) for R. prolixus. Surprisingly, 

none of the R. prolixus insects in the TcI infection group fed.  

 
 

Table 2: Descriptive summary of triatomine species feeding and defecation behaviors. No. Fed 
indicates the number of triatomines that fed within 60 minutes of exposure to the guinea pig. No. 
Defecated indicates the number of triatomines that defecated within the 2-hour observation 
period. Results are presented by triatomine species and T. cruzi DTU (TcI and TcIV) infection 
status 

Species Infection 
Group 

 
No. of 
Insects 

No. Fed 
(%) 

No. 
Defecated 

(%)a 

No. Fed + 
Defecated 

(%)b 

% Defecated 
After 

Feeding 
T. 

gerstaeckeri 
Control 26 17 (65) 15 (58) 13 (50) 76 

TcI 21 14 (67) 7 (33) 7 (33) 50 
TcIV 17 10 (58) 11 (65) 8 (47) 80 

 
T. 

sanguisuga 
Control 16 6 (38) 5 (31) 3 (19) 50 

TcI 11 2 (17) 3 (25) 2 (17) 
 

100 
 

R. prolixus Control 21 9 (47) 8 (42) 8 (42) 89 
TcI 19 0 (0) 2 (11) 0 (0) 0 

 TcIV 17 1 (6) 5 (29) 1 (6) 100 
 

aThis is the number of insects that defecated at least once in the 2-hour period, including insects that 
defecated before feeding or did not feed at all. 
bThis number represents insects that fed on a guinea pig either with simultaneous defecation or 
defecation following feeding. 

 
 

 

For the logistic GEE model that looked at predictors of whether or not an insect 

fed, the best fit model had an independent correlation structure considering the guinea 

pig as the clustering factor (Table 3). We found the odds of T. gerstaeckeri feeding on a 
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guinea pig were 9.21 times higher (P<0.001) than in R. prolixus, the reference species in 

the analysis. In contrast, T. sanguisuga feeding odds were not different to those of R. 

prolixus. If an insect was infected with TcI, it had 1/3 the odds of feeding on the guinea 

pig (P=0.025) than that of an uninfected insect (Table 4). There were no differences in 

feeding odds if the insect was infected with TcIV when compared to uninfected 

triatomines. 

For the model looking at variables associated with whether or not an insect 

defecated, the best fit model had an independent correlation structure considering the 

guinea pig as the clustering factor (Table 5). We found that there were no significant 

differences between species nor infection status, but if an insect was observed in the dark 

(with the red lights), it had an odds of defecating two times higher than the odds of an 

insect in ambient light (P=0.045) during the two-hour trial period (Table 6). If an insect 

fed on the guinea pig, the odds of defecating was 17.99 times higher than that of an 

insect that did not feed on the guinea pig (P<0.001). 
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Table 3: Model selection for the best fit logistic generalized estimating equation model to predict 
whether or not a triatomine fed on a guinea pig 

Correlation 
Structure 

Cluster Variables QIC 

Independent Guinea Pig Illumination Environment, Starvation 
Period, Life Stage, Triatomine Species, 

T.cruzi DTU 

173.52 

Independent Date of 
Trial 

Illumination Environment, Starvation 
Period, Life Stage, Triatomine Species, 

T.cruzi DTU 

177.15 

Exchangeable Guinea Pig Illumination Environment, Starvation 
Period, Life Stage, Triatomine Species, 

T.cruzi DTU 

179.78 

Exchangeable Date of 
Trial 

Illumination Environment, Starvation 
Period, Life Stage, Triatomine Species, 

T.cruzi DTU 

178.27 

QIC: Quasi-likelihood Information Criterion 
 
 
 
 
Table 4: Parameter estimates for the best logistic generalized estimating equations studying 
whether or not a triatomine fed on a guinea pig 
Parameter Odds Ratio Estimate (± S.E.) P-value 
Intercept 1 ─ ─ 
Illumination Environment—Lights On 1.68 0.52 (± 0.40) 0.196 
Starvation Period 1.00 0.001 (± 0.01) 0.911 
Life Stage—5th Instar 0.48 -0.73 (± 0.78) 0.350 
T. gerstaeckeri 9.21 2.22 (± 0.44) <0.001* 
T. sanguisuga 1.17 0.16 (± 0.72) 0.825 
TcI Infected 0.34 -1.09 (± 0.49) 0.025* 
TcIV Infected 0.34 -0.94 (± 0.58) 0.109 
*Statistically significant (P<0.05) 
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Table 5: Model selection for best fit logistic generalized estimating equation model to predict 
whether or not a triatomine defecated during the trials 

Correlation 
Structure 

Cluster Variables QIC 

Independent Guinea Pig Fed, Illumination Environment, Starvation 
Period, Life Stage, Triatomine Species, T. 

cruzi DTU 

151.43 

Independent Date of 
Trial 

Fed, Illumination Environment, Starvation 
Period, Life Stage, Triatomine Species, T. 

cruzi DTU 

151.76 

Exchangeable Guinea Pig Fed, Illumination Environment, Starvation 
Period, Life Stage, Triatomine Species, T. 

cruzi DTU 

153.16 

Exchangeable Date of 
Trial 

Fed, Illumination Environment, Starvation 
Period, Life Stage, Triatomine Species, T. 

cruzi DTU 

153.03 

QIC: Quasi-likelihood Information Criterion 
 
 
 
Table 6: Parameter estimates for the best logistic generalized estimating equation model 
studying whether or not a triatomine defecated during the trials 
Parameter Odds Ratio Estimate (± S.E.) P-value 
Intercept 1 ─ ─ 
Fed 17.99 2.89 (± 0.61) <0.001* 
Illumination Environment—Lights On 0.52 -0.65 (± 0.32) 0.045* 
Starvation Period 0.98 -0.02 (± 0.01) 0.213 
Life Stage—5th Instar 2.75 1.01 (± 0.64) 0.116 
T. gerstaeckeri 1.16 0.15 (± 0.44) 0.725 
T. sanguisuga 1.86 0.62 (± 0.59) 0.294 
TcI Infected 0.64 -0.45 (± 0.58) 0.444 
TcIV Infected 1.99 0.69 (± 0.43) 0.106 
*Statistically significant (P<0.05) 

 
 
 
2.3.1. Feeding 
 

For the model explaining the predictors that determined the number of feedings, 

the best fit model had an exchangeable correlation structure using the date of trial 

observation as the clustering factor (Table 7). Of the insects that fed, the mean number 
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(± S.E.) of feeding events per insect within the first 60 minutes with the guinea pig were 

6.49 (± 0.56) for T. gerstaeckeri; 6.50 (± 0.68) for T. sanguisuga; and 3.50 (± 0.76) for 

R. prolixus. The control group had an average of 5.34 (± 0.61) feeding events per insect, 

while TcI had 7.44 (± 0.91) and TcIV had 5.73 (± 0.73) feeding events per insect. Figure 

2 shows the distribution of number of feeding events per insect by infection status and 

species. On average, T. gerstaeckeri had more feeding events than R. prolixus 

(P=0.017). As expected, if an insect gained more weight when feeding, it correlated with 

a higher number of feedings (P<0.001) (Table 8). 
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Table 7: Model selection for the best Poisson generalized estimating equation model to predict 
the total number of feedings on the guinea pig during the first 60 minutes of the trials 

Correlation 
Structure 

Cluster Variables QIC 

Independent Guinea Pig Illumination Environment, Starvation 
Period, Initial Weight, Life Stage, 
Triatomine Species, T. cruzi DTU 

-453.02 

Independent Date of Trial Illumination Environment, Starvation 
Period, Initial Weight, Life Stage, 
Triatomine Species, T. cruzi DTU 

-455.39 

Exchangeable Guinea Pig Illumination Environment, Starvation 
Period, Initial Weight, Life Stage, 
Triatomine Species, T. cruzi DTU 

-453.22 

Exchangeable Date of Trial Illumination Environment, Starvation 
Period, Initial Weight, Life Stage, 
Triatomine Species, T. cruzi DTU 

-453.23 

Independent Guinea Pig Illumination Environment, Starvation 
Period, Weight Change, Life Stage, 
Triatomine Species, T. cruzi DTU 

-468.15 

Independent Date of Trial Illumination Environment, Starvation 
Period, Weight Change, Life Stage, 
Triatomine Species, T. cruzi DTU 

-469.60 

Exchangeable Guinea Pig Illumination Environment, Starvation 
Period, Weight Change, Life Stage, 
Triatomine Species, T. cruzi DTU 

-468.73 

Exchangeable Date of Trial Illumination Environment, Starvation 
Period, Weight Change, Life Stage, 
Triatomine Species, T. cruzi DTU 

-469.95 

QIC: Quasi-likelihood Information Criterion 
 
 

Table 8: Parameter estimates for the best Poisson generalized estimating equation model 
studying the total number of feedings on the guinea pig during the first 60 minutes of the trials 
Parameter Estimate (± S.E.) P-value 
Starvation Period 0.00 (± 0.005) 0.991 
Illumination Environment—Lights On 0.02 (± 0.18) 0.899 
Insect’s Weight Change (g) 2.76 (± 0.67) <0.001* 
Life Stage—5th Instar -0.12 (± 0.43) 0.786 
T. gerstaeckeri 0.71 (± 0.30) 0.017* 
T. sanguisuga 0.60 (± 0.42) 0.154 
TcI Infected 0.15 (± 0.22) 0.495 
TcIV Infected -0.57 (± 0.34) 0.093 
*Statistically significant (P<0.05)   
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Figure 2: Boxplots of mean number of feeding events per triatomine species: Rhodnius prolixus 
(Control, TcIV); Triatoma gerstaeckeri (Control, TcI, TcIV); Triatoma sanguisuga (Control, 
TcI) 

 

 

The best fitted Gaussian model explaining total feeding time per insect had an 

independent correlation structure using the date of trial observation as the clustering 

factor (Table 9). The mean total feeding times per insect were 14.6 (± 1.51) minutes for 

T. gerstaeckeri; 15.2 (± 3.34) minutes for T. sanguisuga; and 14.8 (± 3.86) minutes for 

R. prolixus. Uninfected insects fed for a mean of 13.67 (± 1.80) minutes; TcI fed for 

14.42 (± 2.67) minutes; and TcIV fed for 18.13 (± 2.35) minutes. Figure 3 shows the 

distribution of total feeding times (min) for each T. cruzi DTU infection status and 

triatomine species. On average, T. sanguisuga fed 10.55 minutes longer than R. prolixus 
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(P<0.001) (Table 10). The model also showed the covariates of life stage and 

illumination environment were significant: 5th-instars took an average of 10.43 minutes 

more to feed than 4th-instars (P<0.001), and insects that fed in ambient light fed 4.37 

minutes less than those with red lights (P=0.021) (Table 10). An insect fed for 0.065 

minutes more for every 1 mg increase in its weight (P<0.001).  

 
 
 
Table 9: Model selection for the best Gaussian generalized estimating equation model to predict 
the total feeding time (min) on the guinea pig 

Correlation 
Structure 

Cluster Variables QIC 

Independent Guinea Pig Illumination Environment, Starvation 
Period, Initial Weight, Life Stage, 
Triatomine Species, T. cruzi DTU 

4971.97 

Independent Date of 
Trial 

Illumination Environment, Starvation 
Period, Initial Weight, Life Stage, 
Triatomine Species, T. cruzi DTU 

4971.95 

Exchangeable Guinea Pig Illumination Environment, Starvation 
Period, Initial Weight, Life Stage, 
Triatomine Species, T. cruzi DTU 

5090.40 

Exchangeable Date of 
Trial 

Illumination Environment, Starvation 
Period, Initial Weight, Life Stage, 
Triatomine Species, T. cruzi DTU 

5113.30 

Independent Guinea Pig Illumination Environment, Starvation 
Period, Weight Change, Life Stage, 
Triatomine Species, T. cruzi DTU 

2869.63 

Independent Date of 
Trial 

Illumination Environment, Starvation 
Period, Weight Change, Life Stage, 
Triatomine Species, T. cruzi DTU 

2868.98 

Exchangeable Guinea Pig Illumination Environment, Starvation 
Period, Weight Change, Life Stage, 
Triatomine Species, T. cruzi DTU 

2879.04 

Exchangeable Date of 
Trial 

Illumination Environment, Starvation 
Period, Weight Change, Life Stage, 
Triatomine Species, T. cruzi DTU 

2887.92 

QIC: Quasi-likelihood Information Criterion 
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Table 10: Parameter estimates for the best Gaussian generalized estimating equation model 
studying the total feeding time (min) on the guinea pig 
Parameter Estimate (± S.E.) P-value 
Starvation Period -0.09 (± 0.05) 0.077 
Illumination Environment—Lights On -4.36 (± 1.89) 0.021* 
Insect’s Weight Change (g) 64.92 (± 11.89) <0.001* 
Life Stage—5th Instar 10.43 (± 2.70) <0.001* 
T. gerstaeckeri -3.14 (± 3.50) 0.370 
T. sanguisuga 10.55 (± 2.96) <0.001* 
TcI Infected 3.86 (± 2.65) 0.145 
TcIV Infected -3.46 (± 2.38) 0.146 
*Statistically significant (P<0.05)   
 

 
 
 

 
Figure 3: Boxplot of total feeding times (min) per triatomine species: Rhodnius prolixus 
(Control, TcIV); Triatoma gerstaeckeri (Control, TcI, TcIV); Triatoma sanguisuga (Control, 
TcI) 
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2.3.2. Defecation 

A total of 56 (37.8%) insects defecated during the trials, and 42 of those 

defecated after feeding. The remaining 14 insects defecated without feeding during the 

trial. We recorded the mean number of defecations per insect during the 2-hour trial and 

PFDIs to the first defecation [20, 57]. The best fit model for number of defecation events 

had an independent correlation structure using guinea pigs as the clustering factor (Table 

11). Both T. gerstaeckeri and T. sanguisuga had, on average, fewer defecation events 

than R. prolixus (P<0.001 for both) (Table 12). For every 1 mg increase in an insect’s 

weight, there was a 6.65% increase in the number of defecations (P=0.002). Infection 

status did not yield significant differences in the number of defecation events. The other 

covariates (lights on/off, starvation period, number of feedings, and life stage) also did 

not yield significant differences. The mean (± S.E.) total number of defecation/urination 

events per insect were 1.80 (± 0.29) for T. gerstaeckeri; 0.91 (± 0.21) for T. sanguisuga; 

and 2.56 (± 0.59) for R. prolixus. In regards to infection status, controls had 1.81 (± 

0.32) defecation events per insect; TcI had 1.53 (± 0.50); and TcIV had 2.22 (± 0.43). 

Figure 4 shows the distribution of total number of defecation events by infection status 

and species. It is noted that although the R. prolixus TcI group did not feed at all, there 

were some insects that still defecated.  
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Table 11: Model selection for the best Poisson generalized estimating equation model to predict 
the total number of defecation and urination events during the trials 

Correlation 
Structure 

Cluster Variables QIC 

Independent Guinea Pig Illumination Environment, Starvation 
Period, Number of Feedings, Initial Weight, 

Life Stage, Triatomine Species, T. cruzi 
DTU 

85.85 

Independent Date of 
Trial 

Illumination Environment, Starvation 
Period, Number of Feedings, Initial Weight, 

Life Stage, Triatomine Species, T. cruzi 
DTU 

91.60 

Exchangeable Guinea Pig Illumination Environment, Starvation 
Period, Number of Feedings, Initial Weight, 

Life Stage, Triatomine Species, T. cruzi 
DTU 

94.15 

Exchangeable Date of 
Trial 

Illumination Environment, Starvation 
Period, Number of Feedings, Initial Weight, 

Life Stage, Triatomine Species, T. cruzi 
DTU 

89.86 

Independent Guinea Pig Illumination Environment, Starvation 
Period, Number of Feedings, Weight 

Change, Life Stage, Triatomine Species, T. 
cruzi DTU 

61.00 

Independent Date of 
Trial 

Illumination Environment, Starvation 
Period, Number of Feedings, Weight 

Change, Life Stage, Triatomine Species, T. 
cruzi DTU 

64.89 

Exchangeable Guinea Pig Illumination Environment, Starvation 
Period, Number of Feedings, Weight 

Change, Life Stage, Triatomine Species, T. 
cruzi DTU 

69.08 

Exchangeable Date of 
Trial 

Illumination Environment, Starvation 
Period, Number of Feedings, Weight 

Change, Life Stage, Triatomine Species, T. 
cruzi DTU 

63.19 

QIC: Quasi-likelihood Information Criterion 
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Table 12: Parameter estimates of the best Poisson generalized estimating equation model 
studying the total number of defecation and urination events during the trials 
Parameter Estimate (± S.E.) P-value 
Number of Feedings 0.07 (± 0.04) 0.080 
Starvation Period -0.00 (± 0.004) 0.950 
Illumination Environment—Lights On 0.18 (± 0.13) 0.169 
Insect’s Weight Change (g) 4.21 (± 1.38) 0.002* 
Life Stage—5th Instar 0.14 (± 0.22) 0.507 
T. gerstaeckeri -1.01 (± 0.15) <0.001* 
T. sanguisuga -0.94 (± 0.14) <0.001* 
TcI Infected -0.16 (± 0.26) 0.549 
TcIV Infected 0.06 (± 0.20) 0.755 
*Statistically significant (P<0.05)   

 
 
 

 
Figure 4: Boxplots of total number of defecation events per triatome species: Rhodnius prolixus 
(Control, TcI, TcIV); Triatoma gerstaeckeri (Control, TcI, TcIV); Triatoma sanguisuga 
(Control, TcI) 
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2.3.3. Post-Feeding Defecation Intervals 

We measured the post-feeding defecation interval (number of minutes from the 

end of a blood meal to the first defecation) using GEE models with a Gaussian 

distribution. The best fitted model had an independent correlation structure using guinea 

pigs as the clustering factor (Table 13). The mean (±S.E.) interval between feeding to the 

first defecation was 9.75 (± 2.52) minutes for T. gerstaeckeri; 20.69 (± 8.98) minutes for 

T. sanguisuga; and 4.54 (± 2.46) minutes for R. prolixus. The PFDIs for the control 

group was 11.82 (± 3.17) minutes; TcI group was 8.19 (± 3.26) minutes; and TcIV group 

was 6.68 (± 4.02) minutes. Comparing to R. prolixus, we found that on average T. 

gerstaeckeri would defecate 11.45 minutes later post feeding (P<0.001), and T. 

sanguisuga would defecate 19.52 minutes later post feeding (P<0.001) (Table 14). We 

did not see a significant difference between the infected and uninfected groups (TcI: 

P=0.087; TcIV: P=0.389) for the PFDIs to the first defecation; however, when we fitted 

the model to include multiple PFDIs (since many of the insects had multiple defecation 

events post feeding), we saw that TcI-infected insects were faster than the uninfected 

controls in defecating after feeding (P=0.019). We also observed insects with a bigger 

weight gain had shorter PFDIs (P<0.001). Figure 5 shows the distribution of the PFDIs 

of the first defecation broken down by infection status and species. There is no boxplot 

for the R. prolixus TcI since none of those insects fed, and for R. prolixus TcIV, only one 

insect is represented. 
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Table 13: Model selection for the best Gaussian generalized estimating equation model to predict 
the post-feeding defecation intervals (min) to the first defecation 

Correlation 
Structure 

Cluster Variables QIC 

Independent Guinea Pig Illumination Environment, Starvation 
Period, Number of Feedings, Initial 

Weight, Life Stage, Triatomine Species, 
T. cruzi DTU 

6422.22 

Independent Date of 
Trial 

Illumination Environment, Starvation 
Period, Number of Feedings, Initial 

Weight, Life Stage, Triatomine Species, 
T. cruzi DTU 

6426.44 

Exchangeable Guinea Pig Illumination Environment, Starvation 
Period, Number of Feedings, Initial 

Weight, Life Stage, Triatomine Species, 
T. cruzi DTU 

6587.01 

Exchangeable Date of 
Trial 

Illumination Environment, Starvation 
Period, Number of Feedings, Initial 

Weight, Life Stage, Triatomine Species, 
T. cruzi DTU 

6437.36 

Independent Guinea Pig Illumination Environment, Starvation 
Period, Number of Feedings, Weight 

Change, Life Stage, Triatomine Species, 
T. cruzi DTU 

5243.38 

Independent Date of 
Trial 

Illumination Environment, Starvation 
Period, Number of Feedings, Weight 

Change, Life Stage, Triatomine Species, 
T. cruzi DTU 

5248.51 

Exchangeable Guinea Pig Illumination Environment, Starvation 
Period, Number of Feedings, Weight 

Change, Life Stage, Triatomine Species, 
T. cruzi DTU 

5400.46 

Exchangeable Date of 
Trial 

Illumination Environment, Starvation 
Period, Number of Feedings, Weight 

Change, Life Stage, Triatomine Species, 
T. cruzi DTU 

5359.62 

QIC: Quasi-likelihood Information Criterion  
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Table 14: Parameter estimates of the best Gaussian generalized estimating equation model 
studying the post-feeding defecation intervals (min) to the first defecation 
Parameter Estimate (± S.E.) P-value 
Starvation Period 0.18 (± 0.13) 0.384 
Illumination Environment—Lights On 3.13 (± 2.37) 0.187 
Insect’s Weight Change (g) -58.98 (± 12.08) <0.001* 
Life Stage—5th Instar 6.10 (± 7.56) 0.420 
T. gerstaeckeri 11.45 (± 2.08) <0.001* 
T. sanguisuga 19.52 (± 1.60) <0.001* 
TcI Infected -8.26 (± 4.83) 0.087 
TcIV Infected 2.87 (± 3.33) 0.389 
*Statistically significant (P<0.05)   

 
 
 
 

 
Figure 5: Boxplot showing the post-feeding defecation interval (min) of the first defecation per 
triatomine species: Rhodnius prolixus (Control, TcIV); Triatoma gerstaeckeri (Control, TcI, 
TcIV); Triatoma sanguisuga (Control, TcI) 
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Of the 148 triatomines that were analyzed, we observed six insects (4.05%) 

simultaneously feed and defecate (Figure 6). At least one insect in each species and 

infection group were represented. Three of these insects also simultaneously fed and 

defecated twice. These insects had a total feeding time range from 13 to 40 minutes and 

defecated a total of 29 times, of which 21 defecations were within 10 minutes post 

feeding. For both T. gerstaeckeri and T. sanguisuga, only infected insects 

simultaneously fed and defecated, and they accounted for 14 total defecation events—10 

of which were within 10 minutes post feeding. We also observed that when insects were 

placed at the top of the guinea pigs at the start of the trials, most insects immediately 

crawled off of the animals and preferred to feed while standing on the bench paper. Only 

a couple stayed on the guinea pigs, including one that fed and also simultaneously 

defecated. This insect was a R. prolixus in the control group. 

 

 

 

 

 

Figure 6: Triatomines simultaneously feeding on a guinea pig and defecating. Left to right: 
Triatoma gerstaeckeri, Triatoma sanguisuga, Rhodnius prolixus 
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2.3.4. Defecation Index 

A defecation index (DI= (% of insects that defecated up to 10 minutes post 

feeding x average number of defecations up to 10 minutes post feeding)/100)) was 

calculated to measure an insect’s potential infection capacity [17]. Figure 7 shows the 

defecation indices for each infection status of T. gerstaeckeri, T. sanguisuga, and R. 

prolixus. For R. prolixus, both the uninfected and infected groups had higher DIs 

compared to the two North American species. The high DI for R. prolixus (TcIV) is most 

likely due to only one insect included in the calculation. The DI for R. prolixus (TcI) 

could not be calculated since none of the insects in that group fed on a guinea pig, which 

was needed to determine if an insect defecated within 10 minutes post feeding.  Given 

that some studies emphasize the importance of defecation at an interval less than 10 

minutes [17, 20], we also report the percent of individuals defecating within 1-minute 

post-feeding: 11 (39.3%) of T. gerstaeckeri, 1 (20%) of T. sanguisuga, and 6 (66.7%) of 

R. prolixus. 
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Figure 7: Defecation indices (DI= (% of insects that defecated up to 10 minutes post feeding X 
average number of defecations up to 10 minutes post feeding)/100)) of each infection group 
 
 
 
2.3.5. Weight Gain 

We calculated the mean weight gain (mg), mean volume of blood ingested (µL), 

and percent weight gain for insects that fed on the guinea pigs and gained weight (Table 

15). There was a total of five insects that we recorded feeding events for, but they did 

not gain weight and were excluded in the tabulation, so the total number of insects that 

fed and gained weight was 54. The lack of weight gain could possibly be due to scale 

error or insufficient blood to detect a difference on the scale. Overall, the majority of the 

infected groups gained more weight and ingested more blood. T. gerstaeckeri (TcI) had 

lower mean weight gain and mean blood volume ingested, but had a higher percent 
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weight gain than the control group. Both T. cruzi-infected groups (TcI and TcIV) for all 

three species had larger mean weight gain percentages than the control groups, with the 

exception of R. prolixus (TcI) since none of those insects fed. 

 
 
 

Table 15: Mean weight gain, mean blood volume ingested, and percent weight gain of triatomine 
insects that fed and gained weight for each species by infection status. 

Species Infection 
Group 

No. 
Insects 

that 
Gained 
Weight 

Mean 
Weight 

Gain (mg) 

Mean 
Blood 

Volume 
Ingested 

(µL) 

% Weight 
Gain 

T. 
gerstaeckeri 

Control 15 121 120.7 98.8 

 TcI 13 102 102.2 104.8 
 TcIV 

 
8 265 264.9 164.0 

T. sanguisuga Control 6 16 16.0 45.1 
 TcI 

 
2 64 63.7 88.9 

R. prolixus Control 9 71  70.7 222.3 
 TcI 0  0 0 0 
 TcIV 1 160 159.5 406.9 

a There were five insects that fed on guinea pigs, but did not gain any weight. These data points were 
excluded from the calculations. 

 
 
 

2.4. Discussion 

We observed the feeding and defecation behaviors of two important triatomine 

species found in the U.S. and compared them with a highly competent vector species 

from South America. We found that in the uninfected (control) groups, all three species 

had similar mean total feeding times to each other. Rhodnius prolixus had fewer feeding 

events per insect than T. gerstaeckeri and T. sanguisuga, which may be attributed to R. 
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prolixus taking a longer time to feed per feeding event. When it comes to the defecation 

behaviors, R. prolixus had significantly more defecation events and had shorter PFDIs 

than the two U.S. species. This was expected since R. prolixus has been shown to be a 

more efficient defecator than other U.S. and South American species [17-19, 31]. T. 

gerstaeckeri had the highest weight gain at 121 mg of the three species, which could be 

explained by that this species has a larger body size than that of T. sanguisuga and R. 

prolixus. 

We also experimentally infected a subset of triatomines for each species to determine 

any differences in behaviors between T. cruzi-infected and uninfected insects. Many 

studies have investigated the influence of T. cruzi on various aspects of triatomine 

behavior, such as development, fecundity, and fitness [58-61]. Some of these studies and 

others have seen changes in infected triatomine’s biting rates, weight gains, and 

defecations [20, 24-26], suggesting that T. cruzi may modulate vector competence. One 

study showed infected Mepraia spinolai were twice more likely to bite and defecated 

sooner than uninfected triatomines [25], and another study showed that T. cruzi infection 

increased triatomine’s vector activity [26]. Both studies came to conclusions that 

suggested the manipulation by T. cruzi of feeding and defecation behaviors led to 

increased parasite transmission. Interestingly, while we saw the infected groups had 

slightly more feeding and defecation events and longer feeding times, none of these 

metrics were significantly different for infection status. Both infected groups also had 

shorter PFDIs to the first defecation, which can also be seen in a study with Triatoma 

infestans, where the infected insects defecated more and faster post feeding than 



 

38 

 

uninfected insects [20]. Our study did not see a significant difference in infection groups 

for PFDIs to the first defecation; however, since we observed multiple insects defecate 

multiple times, we also ran a model considering the multiple defecation events post 

feeding and found that TcI-infected insects had significantly shorter PFDIs than 

uninfected insects. This finding could suggest that infection with T. cruzi makes a 

difference in the timing of multiple defecation events. We saw insects that had more than 

one defecation event generally fed longer and had higher blood intake, on average, than 

those that defecated once or did not defecate at all. This could also account to these 

insects having multiple PFDIs and defecated faster. The model showing that TcI-

infected insects had lower odds of feeding on the guinea pig than uninfected insects was 

the only one that showed a difference based on infection status.  

The defecation index (DI) was first proposed as a measurement to estimate an 

insect’s infection capability that accounted for defecations within 10 minutes post 

feeding [17]. A higher DI generally equates to a higher capability of infection. Zeledon 

calculated the DIs for 4th and 5th-instars of R. prolixus to be 3.8 and 1.8, respectively. 

Our DI calculations were based on infection status, but we saw higher DIs in both the 

control and TcIV groups for R. prolixus. Therefore, we could say the DIs for R. prolixus 

in our study were fairly similar to those in Zeledon’s study. The DIs for most of the T. 

gerstaeckeri and T. sanguisuga groups were relatively higher than that found in 

Triatoma protracta and Triatoma rubida [17, 21, 23], with one study showing adult 

female T. rubida having a DI of 1.3 [22]. This suggests that both T. gerstaeckeri and T. 

sanguisuga may potentially be better vectors than T. protracta and T. rubida. However, 
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it should be noted that some of the DI calculations were based off from data of one or 

two insects, and thus may not accurately represent the species’ infection capability. We 

found that the infected groups had higher DIs compared with their own control groups, 

so it seems T. cruzi may be playing a role in increasing the vector competence of 

triatomines with respect to their defecation behaviors, as explained in a previous study 

[20]. With the exception of T. gerstaeckeri (TcI), all infected groups had a higher mean 

for blood volume ingested than the control groups, which was found in Triatoma 

rubrovaria infected with DTU TcIV [24]. Not only that, we also observed the more 

blood an insect ingested—indicating a bigger weight gain—the PFDIs were shorter, 

corroborating that blood intake had a negative correlation with the time of appearance of 

the first defecation [57]. While our study did not measure the effect of T. cruzi on the 

triatomine’s development, survival, and fecundity at the end of the trials, we still 

observed how T. cruzi could potentially influence the feeding and defecation behaviors 

of the U.S. triatomines like it did in other species. 

A total of six insects fed and defecated simultaneously, in which all three species 

were represented. These insects had multiple defecation events, of which a majority was 

within 10 minutes post feeding. If an insect fed to repletion, then it is possible that they 

will still be in close proximity to the host because the added weight may slow down its 

mobility [17], and the chances to defecate or urinate multiple times is likely. We also 

observed 14 insects that defecated without feeding. These insects were considered in the 

logistic GEE models because they could still potentially infect a host by being attracted 

to the host and subsequently defecate on or near it even without feeding. Thus, these 
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insects are still in close contact with the host, and may feed later when the host is not 

active, which increases contact time with the host despite not having defecations post 

feeding [17, 62]. 

The three species we used in the trials were the same that were used in Pippin’s 

study in 1970 with triatomines feeding on laboratory mice and rats. His findings showed 

the mean total feeding times of 4th- and 5th-instar nymphs were 33 and 39 minutes, 

respectively, for T. gerstaeckeri; 25 and 31 minutes for T. sanguisuga; and 17 and 19 

minutes for R. prolixus [19]. Our mean total feeding time data shows that all three 

species had similar mean feeding times to each other as well, although we broke it down 

by species and not by life stage. Pippin stated that T. gerstaeckeri and T sanguisuga fed 

more than twice as long as R. prolixus, which we did not see in our study; however, we 

saw a significant difference in total feeding times for T. sanguisuga as it fed longer than 

R. prolixus. Pippin also founded that a larger percentage of 4th- and 5th-instar nymphs of 

R. prolixus defecated within two minutes of feeding than that of T. gerstaeckeri and T. 

sanguisuga, indicating the two U.S. species were less efficient stercorarian vectors than 

R. prolixus. In our study, we did not see significant differences determining which 

species was more likely to defecate, but both T. gerstaeckeri and T. sanguisuga had 

fewer defecation events than R. prolixus. It was also noted that in Pippin’s study, about 

1/4th of the late instar nymphs of T. gerstaeckeri and T. sanguisuga were able to defecate 

within two minutes post feeding, making them potential efficient vectors for T. cruzi 

[63]. If we applied the same method of reporting for our insects that defecated, we would 

have seen 42.9% of T. gerstaeckeri and 20% of T. sanguisuga defecating within two 
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minutes after feeding, which is similar to T. sanguisuga (23.3%) but higher than T. 

gerstaeckeri (25%) observed in Pippin’s study [19]. Another study compared feeding 

and defecation behaviors of T. gerstaeckeri with two other North American species and 

found that late stage T. gerstaeckeri took a longer time to feed and had a PFDI at around 

13 minutes [28], which is slightly longer than what we observed.  

Our study design posed some limitations. A previous study reported that T. 

sanguisuga were more likely to carry DTU TcIV [9], yet we did not have a TcIV 

infection group for that species. Triatoma sanguisuga is more challenging to colonize 

[64] than T. gerstaeckeri which thus, we could not properly make comparisons between 

TcIV-infected and uninfected insects in the trials. Surprisingly, our results showed none 

of the R. prolixus (TcI) insects feed on the guinea pigs. This is most likely because the R. 

prolixus we have in our insect colony have been removed from wild populations for over 

15 years, and therefore may exhibit different feeding and defecation behaviors. Also, the 

DTU TcI is known to be mostly associated with R. prolixus [50, 65, 66], so due to the 

lack of data for that infection group, we could not assess if T. cruzi can influence the 

feeding and defecation patterns nor could we corroborate that parasite manipulation did 

not occur in R. prolixus [67].  

The results from this study will help to gain a better insight of the disease risk of 

Chagas disease in the U.S. in comparison with Latin America. Although T. gerstaeckeri 

and T. sanguisuga had fewer defecation events and longer PFDIs than R. prolixus, a 

highly efficient vector, our observations in this study suggest that these two species are 

capable vectors of T. cruzi in the U.S. through the stercorarian form of biological 
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transmission. While considering results on PFDI, DI, and the percent defecating within 

1-minute following feeding, T. gerstaeckeri appears to have higher transmission 

potential compared to T. sanguisuga based on feeding and defecation behavior. 

Although this does not consider intrinsic factors associated with vector competence for 

T. cruzi that could exist between these two species. We present evidence that T. cruzi 

infection in triatomines might influence feeding and defecation behavior in ways that 

would facilitate T. cruzi transmission. We observed a decreased PFDI with T. cruzi 

infection which was only significant when models considered multiple defecation 

events. This observation warrants further research investigating the influence of T. cruzi 

on feeding and defecation behavior and mathematical models to determine the 

importance at the population level. Additionally, up to 11 species of triatomines exist in 

the U.S. and more studies should be conducted to compare the feeding and defecation 

behaviors among these species and from multiple geographic populations. The scientific 

and lay-community perspective that prolonged PFDIs results in less efficient 

transmission of T. cruzi in the U.S. is not supported by the observations in this current 

study. Instead, we hypothesize that other factors of triatomine ecology and contact with 

humans contributes to the lower disease burden in the U.S. compared to other regions in 

Latin America. 
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CHAPTER III 

CONCLUSION 

 

Chagas disease is becoming a growing public health concern, and we are 

currently trying to find innovative strategies to control triatomine populations. In Latin 

America, initiatives were implemented which drastically reduced the number of infected 

people as well as eliminated highly competent species that posed as public health threats 

[11-13]. However, when one species population is eliminated or reduced as a public 

health threat, there are concerns that another species may take over, and they could be 

just as efficient vectors as their predecessors. In the U.S., species have established 

populations—primarily in the sylvatic environment—but this still makes control 

measures difficult to implement. There have been reports that triatomines can be found 

in peridomestic environments, such as dog kennels, as well as inside homes where 

people may be in close contact with these vectors [68]. With a high infection prevalence 

in some species [9], there is a need to learn triatomine behavior so that efforts in creating 

innovative control measures can be successful.  

In the study comparing the feeding and defecation behaviors of two U.S. species 

with a South American species, we found that the U.S. species fed more which indicates 

more contact time with the host, but they also defecated less than the South American 

species. This may account for the low disease risk of Chagas disease in the U.S.; 

however, we observed that T. gerstaeckeri and T. sanguisuga are still capable of 

defecating when nearby a host, which may lead to increased parasite transmission. There 
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also may be evidence that T. cruzi infection could play a role in the feeding and 

defecation behaviors for the U.S. species, but further research is needed. For those 

reasons, we believe that other factors in triatomine ecology contribute to the low disease 

burden in the U.S. and not solely the feeding and defecation behaviors.  

By understanding the feeding and defecation patterns of triatomines, we are able 

to identify which species are of most epidemiological importance and can use that 

knowledge to determine their vector competence, or ability to transmit a disease. We 

will also gain insightful knowledge that can help us with assessing the disease risks in 

the Americas, as well as developing preventive measures in eliminating those species. 

However, in order to fully combat against Chagas disease, we need to continue to learn 

more of triatomine ecology and behavior, raise educational awareness of the vectors 

[41], and improve public health interventions and control methods.
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