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ABSTRACT

This research is aimed at making contributions in three fundamental problems in systems and

control. The problems are broadly known as system identification, optimal simulation and data-

based control. The system identification problem involves the inverse problem of developing the

dynamics model of a system from input/output experimental data. The system simulation problem

pertains to the use of numerical simulations in predicting model response for a complex dynamical

system, while the data-based control problem is aimed at deriving certain control inputs based on

empirical response data to direct the system to elicit a desired response from it.

Q-Markov covariance equivalent realization (QMC) is a system identification approach that

matches exactly the first q Markov parameters and covariance parameters of a system with a pre-

specified positive scalar q. Existing QMC methods possess two deficiencies. First, they are not

applicable system identification of unstable systems. Second, they find infinite numbers of so-

lutions and do not provide a means to choose the best solution. The first result of this research

develops a new QMC formulation that extends the existing QMC methods for identification of un-

stable systems. This new QMC formulation is derived over closed-loop dynamics as an observer

and does not pose any constraints on the stability of the system to identify. In addition, this re-

search presents a methodology to determine an efficient QMC solution and a general algorithm for

system identification applications using the QMC method.

When dynamic systems are simulated on the computer, the numerical values of the outputs

and states are corrupted by round-off errors. The second set of results of this research aims at

finding the simulation model that gives optimal performance under finite precision computing.

This research provides two approaches to tackle this problem. The first approach formulates the

problem into three linear matrix inequalities (LMIs) plus a non-convex constraint and transforms

it into a feedback control problem. It becomes solvable numerically via the LMI toolbox after

convexification and guarantees convergence to a local optimum. The second approach focuses on

simulation applications of flexible structures in modal coordinates. It finds the simulation model

ii



with the optimal size via truncation of modes.

A data-based control law for reference tracking applications is developed as the third result of

this research. This control law finds an optimal input sequence that minimizes a quadratic weighted

cost function consisting of tracking errors and input increments. Its effectiveness is demonstrated

using an application involving the morphing control of a tensegrity airfoil.
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1. INTRODUCTION AND LITERATURE REVIEW

The interaction of dynamical systems and data poses three distinct sets of problems of interest

to the analyst. The knowledge of the inputs and outputs (I/O) associated with a dynamic system

enables us to discover the system’s dynamics via the I/O signal relationships. The set of inverse

problems are known as system identification approaches. With the knowledge of the system’s

dynamics and input signals, one may predict the system responses. This is the system simulation

problem. Alternatively, based on the data analytic relationships between output and input signals,

control algorithms may be designed to make the system behave as expected, which is the data-

based control problem. A relationship among these three key elements is depicted in Figure 1.1.

These three problems, and their relationships via signal analysis are the subject of this work.

Figure 1.1: Three fundamental problems in systems and control.
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1.1 System Identification Problem

System identification explorations were desired during the 1960s after Kalman introduced the

state-space realization. Extensive research on system identification methods is documented in the

literature [1, 2]. Ho and Kalman presented the first solution to find the minimal state-space repre-

sentation using impulse response data in 1966 [3]. This approach paved the way for the subspace

identification technique, one of the prevailing techniques to date. General system identification

approaches for a black box system fall into two categories: those that seek a least square solution

of all measurements, such as Eigensystem Realization Algorithm (ERA) [4] or Dynamic Mode

Decomposition (DMD) [5], and those seek an exact match of some but not all properties, such as

q-Markov Covariance Equivalent Realization (QMC) [6, 7]. Frequency domain approaches also

exist in the literature [8].

Based upon Ho-Kalman’s method, the ERA became popular in the identification of flexible

structures ever since its appearance in 1985 [4]. It finds a least square solution that minimizes

the error norms between two sequential Hankel matrices, constructed using input-output cross-

correlations. An extension of that called ERA/DC considers data correlation was developed in

1987 [9].

Instead of finding a least square solution, the QMC method [10, 11] finds all state-space re-

alizations that exactly match the first several cross-correlations and auto-correlations, or namely

Markov parameters and covariance parameters, up to a positive scalar q. Markov parameters and

covariance parameters characterize the transient and steady-state properties of a system respec-

tively. Therefore a QMC realization maintains both transient and steady-state properties of the

system one aims to identify. QMC is particularly useful in system identification applications of

non-minimum phase physics [12–14]. Model reduction applications of the QMC approach that

have performance requirements on steady-state output covariance, such as pointing control or vi-

bration control, have also been studied [13, 15].

A comparison among the ERA, ERA/DC, QMC, and another method developed by Moonen et

al. was conducted to identify a Mini-Mast structure [16, 17]. This study concluded that ERA/DA
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gives the best results of the four methods. This comparison found that ERA and ERA/DC are

perfect identification for a noise-free system, while QMC demands more computation time to

approach the same accuracy. This added computation is mainly used in finding converged auto-

correlations and cross-correlations. However, the computation cost is not as significant these days

with advances in microelectronics and embedded computing.

The QMC method is significantly developed over the past decades. Figure 1.2 shows the gen-

eral concept of system identification using the QMC method, and Figure 1.3 shows the key ideas

of the QMC formulation. Liu and Skelton [6,7] present their new formulation of QMC to parame-

terize QMC solutions. Skelton and Shi show how to determine a weighted QMC model with noisy

measurements [18]. This approach was applied to the identification and control of NASA’S ACES

structure [13]. Zhu et al. show the method to find QMC systems using pseudo-random binary

signals [19]. Li and Skelton extended the QMC method for finite precision implementations by

introducing round-off errors into the QMC parameterization [20]. Majji studied the time-varying

applications for QMC systems [21]. Although many efforts have been made, two problems remain

unsolved in the current formulation of the QMC method.

The first problem is "how to find a QMC approximation model for an unstable system?" Ex-

isting QMC methods use the steady state discrete algebraic Lyapunov stability equation governing

state covariance during derivations. A steady solution exists for this equation only for stable dy-

namical systems. The QMC approach finds all stable linear models whose state covariance is the

identity matrix that matches the given set of data. Therefore, an identified system estimated by

existing QMC methods is always stable. A stable approximation can hardly capture the majority

of information associated with the unstable part of the system. If the given data comes from an un-

stable system, existing QMC methods may not recognize the physics well. This problem is solved

in the second chapter of this dissertation.

The second problem is "how to find the most efficient QMC solution among the set of infinite

solutions?" Existing QMC methods contain a free unitary variable, and find all linear stable systems

that match the given set of Markov and covariance parameters up to q. Unfortunately there is no
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Figure 1.2: System identification using the QMC method.

clear measure to define the free unitary variable. Matching q parameters does not guarantee to

match the parameters associated with the physics model. The problem of finding the QMC solution

that matches the transfer function of the physics is detailed in the third chapter of this dissertation.

1.2 System Simulation Problem

We describe this world using mathematical models for purposes of estimation and control.

The disciplines we learned from universities suggest that we should put more and more physics

in the model to get the most accurate model. Well, if we look at physics, we might say yes.

Modeling is not just about the physics. The world is infinitely complex, but our ability to predict

or explain the world comes through imperfect laws of physics, imperfect models of physical laws,

and imperfect computations of the model. Suppose we have got the best model from physics, the

computer is going to make errors: round-off errors and truncation errors. A system simulation

based upon round-off errors and truncation errors is inaccurate. Figure 1.4 depicts this fact. We
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Figure 1.3: Key ideas of the QMC method.

have to integrate signal processing to derive an adequate model of any engineering system, in

addition to respecting the physical laws.

Emerges in the 1960s, finite precision computing is as old as the computer itself. Some re-

searchers focused on reducing the effects of finite word length effects by seeking an optimal real-

ization of the exact physics. In 1976 and 1977, Mulis and Roberts and Hwung first revealed the

influence of round-off errors on digital filter performance and proved that there exists a coordinate

transformation matrix that minimizes round-off noise effects [22, 23]. Williamson and Kadiman

included arithmetic errors in the linear quadratic regulator (LQR) controllers [24]. Some other

researchers focused on reducing model sizes to match key parameters. The reduced basis method,

balancing method, and q-Markov cover are several of them [2,6,25,26]. The work by Li and Skel-

ton presented a methodology to compute all the linear state-space models matching input/output

cross-correlations and output auto-correlations up to a specified positive scalar q in finite precision
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Figure 1.4: System simulation process with finite precision effects.

environments, yet sometimes it is impossible to find one with a large q [20].

However, sufficient attention to signal processing techniques was not paid by the control en-

gineers. For example, the original Hubble Space Telescope (HST, launched on April 25, 1990)

controller was designed assuming infinite precision computing. The pointing accuracy (ratio of

pointing variance to control variance) of HST was not better than any earth-based space telescopes,

which means five billion dollars wasted. A redesign by Skelton et al. improved two orders of mag-

nitude in pointing accuracy without increasing control complexity (update coefficients within the

existing algorithm) [27, 28]. This work does not contribute significantly to either control theories

or signal processing disciplines but is a great attempt to integrate the two fields.

Finite precision errors consist of the following: quantization of coefficients, quantization of

signals, overflow, and accumulated computational errors [29]. Coefficient errors can be observed
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and compensated during implementations. In this dissertation the other three errors are addressed.

Dynamics error comes from the model size and coefficient differences between the simulation

model and physical system. Computational error comes from the accumulation of round-off errors

during the computer simulation process. The minimization of dynamics error reduces to a model

reduction problem [30]. The minimization of round-off error reduces to a minimum round-off

noise realization problem [22, 23]. Extensive research has been conducted on them as two dif-

ferent problems [31, 32]. However, few trials have been made to combine these two problems to

minimize total errors. As the model size grows, the dynamics error decreases monotonically, but

computational error increases. While the total error is the sum of two, a threshold of model size

should exist where total error reaches the minimum. A conceptual representation is shown in Fig-

ure 1.5. As a result, one may intentionally introduce dynamics error by reducing simulation model

size for overall superior simulation performance. Li and Skelton present their work to find the op-

timal simulation system implementing finite precision effects [33, 34]. However, their designs are

limited to linear systems only. This dissertation will present an approach applicable to nonlinear

systems that seeks the simulation model that gives the most optimal simulation performance within

a pre-specified finite-precision environment.

Figure 1.5: A conceptual representation of simulation error which combines dynamics error and
computational error
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1.3 System Control Problem

Researchers typically formulate the control problems of dynamic systems by starting with their

equations of motions. Appropriate linearizations for a nonlinear system are used to apply the

principles of linear system theory. However, we cannot write down the dynamics of systems of

interest every time (such as black box systems) or sometimes do not trust the dynamics that we

already have.

The development of modern technology enables the vast storage and fast processing of big

data. Consequently, data-driven approaches relying on input-output (I/O) data have emerged. Lim

and Phan developed an observer from I/O data, which estimates the system’s states at some future

step [35]. Safonov and Taso developed a method to determine a validated control law that meets

given performance specifications from I/O data [36]. Zhang et al. developed a data-driven control

approach that recognizes a neural network model from I/O data and then applies adaptive dynamic

programming [37]. Proctor et al. used the technique of regression that identifies a model from

I/O data [38]. Wang et al. found an optimal control policy for unknown systems using a dynamic

programming approach [39]. However, most of these approaches seek the best fit for input-output

data, which may have no explicit physical explanations.

On the other hand, a few attempts have been made to control a system with interpreted phys-

ical properties from I/O data. Markov parameters are impulse responses of a system. They are

evaluated from the knowledge of input-output data, step response, or well-conditioned time re-

sponse [1,40]. The work by Furuta et al. solved the finite horizon linear quadratic gaussian (LQG)

problem using an infinite number of Markov parameters [41]. Building upon that, Shi and Skelton

proposed their Markov data-based control design, solving the finite horizon LQG problem but re-

ducing the required information to the first N +1 Markov parameters only [42]. Aangenent further

extends this data-based LQG design to applications of infinite horizon applications [43].

Reference tracking control is essential in modern control applications. Wildly used in robot

manipulation, aircraft control, manufacturing, etc, the purpose of reference tracking control is

to tune the control inputs such that the system’s outputs follow a pre-specified reference signal.
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Figure 1.6 shows the general idea of reference tracking control. While most of these data-based

controller designs are limited to regulation, few efforts have been made on reference tracking

applications. Admittedly, it is possible to design a tracking controller by first preparing a regulator

then adding feed-forward compensators [44]. However, a tracking controller like this is of no

utility. It often requires additional information of derivatives of the reference signal, and is not

robust to uncertainties in models [45]. This dissertation presents a new data-based controller design

for reference tracking applications. The controller used minimizes a quadratic cost consisting of

tracking errors and input increments.

Figure 1.6: The concept of the reference tracking control.

1.4 Contribution of this Dissertation

This dissertation contains innovative work on system identification, simulation, and control.

Major contributions of this work are:

1. A unique formation of the q-Markov covariance equivalent realization (QMC) problem using

closed-loop observer dynamics. This formulation does not require the true system to be
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stable, thereby extends the current QMC methods to identification of unstable or marginally

stable systems.

2. A QMC solution selection, and proof that this solution matches the transfer function of the

system dynamics.

3. A general algorithm for system identification of linear timer varying systems using the QMC

method.

4. A general approach for non-linear dynamic system simulation with finite-precision effects

that minimizes the norm of simulation error through integration signal processing and model

reduction.

5. A new data-based controller design for reference tracking applications. This design finds the

optimal control sequence which minimizes a quadratic cost function consisting of tracking

error and input increments over a finite horizon.

1.5 Outline of this Dissertation

Chapter 1 introduces the main contributions of this dissertation: the system identification prob-

lem using q-Markov Covariance Equivalent Realization (QMC) methods, the dynamic system sim-

ulation problem considering finite precision effects, and the data-based system control problem. In

short, the system identification problem finds an approximation system that is the closest to the

system to identify, the dynamic system simulation problem finds the optimal simulation model to

implement in a finite precision environment to deliver the most accurate simulation result, and the

system control problem finds an optimal control sequence that minimizes a quadratic cost function

consisting of tracking error and input increments over a finite horizon.

Chapter 2 addresses the system identification problem that extends the current QMC methods to

identify unstable or marginally stable systems. First, we formulate the QMC problem using closed-

loop observer dynamics, then define and find observer Markov parameters matching the given

Markov and covariance parameters. Next, we provide the existence conditions of the observer
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QMC system and parameterize all observer QMC models that match the given set of data. A

method to reconstruct the state-space realizations from observer dynamics is also provided.

Chapter 3 addresses the system identification problem to find the best QMC solution that

matches the pre-specified data. A QMC solution selection criterion using finite data of Markov

and covariance parameters up to q is presented. This solution is then shown to be equivalent to

a QMC solution that matches Matkov and covariance parameters up to ∞ . Next, we present an

algorithm to apply the QMC method in system identification problems. A specific comparison

among the QMC and two other widely-recognized system identification methods is also provided.

Chapter 4 addresses the system simulation problem from two aspects that find the most optimal

simulation model that minimizes simulation error with finite precision effects. We first mathemat-

ically formulate the problem and transform it into linear matrix inequalities along with a coupling

non-convex constraint. After convexification, we can numerically solve the problem using the LMI

toolbox with a guaranteed local optimum. By integrating the QMC method, both approaches are

extended to the simulation of non-linear systems.

Chapter 5 addresses the system control problem that finds an optimal control sequence that min-

imizes a weighted quadratic cost function for reference control applications. First, the model-based

control law is derived. The parameters of the model-based controllers using Markov parameters is

then constructed. An application on control of a 2D tensegrity morphing airfoil is implemented to

demonstrate the method.

Chapter 6 summarizes the major accomplishments of this dissertation.
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2. Q-MARKOV COVARIANCE EQUIVALENT REALIZATIONS FOR UNSTABLE

SYSTEMS

Existing q-Markov covariance equivalent realization (QMC) methods do not apply to unstable

systems. This chapter develops a unique QMC formulation that extends the current QMC methods

to the identification of unstable systems. This unique QMC formulation is derived over a closed-

loop dynamics of an observer, which is guaranteed asymptotically stable by pole assignment. All

linear state-space models in an observer form that match a prespecified set of input/output cross-

correlation and output auto-correlation data are computed. A method to reconstruct all solutions

of general state-space models that match the prespecified data is also provided.

2.1 Introduction

Suppose we have access to the inputs and outputs (I/O) data of a system to identify. In that case,

we may evaluate the system’s dynamics by solving the inverse problem from I/O experimental

data, which is the system identification problem. Q-Markov Covariance Equivalent Realization

(QMC) is a system identification technique that finds all state-space realizations that exactly match

the Markov and covariance parameters of the system to identify up to q. Markov parameters are

defined as the cross-correlations between the series of I/O data, and covariance parameters as the

auto-correlations between the output data [46–48]. Both parameters are obtainable from a white

noise experiment to the system to identify. Since the Markov parameters represent and transient

property and covariance parameters the steady-state property of a system, matching these two

parameters gives a sound approximation system.

Existing QMC methods use the steady state discrete algebraic Lyapunov equation during its

formulation [6, 7]. However, a steady-state solution does not exist for the dynamics with an unsta-

ble origin. Accordingly, existing QMC methods do not apply to system identification applications

of unstable or marginally stable systems. This chapter introduces a unique formulation for the

QMC method using the state-space observer dynamics to address this deficiency.
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A state-space observer model is a closed-loop auto-regressive model that feeds output signals

to states during propagation [49]. A typical application of the state-space observer model is to find

the least square solution of Markov parameters from a given set of I/O data [50, 51]. The closed-

loop dynamics is guaranteed to be asymptotically stable by pole assignment when observable [52].

The discrete algebraic Lyapunov equation for the state-space observer dynamics always exists a

steady-state solution, thus extending the existing QMC methods for unstable system applications.

The outline of this chapter is as follows: Section 2.2 formulates the mathematical problem

statement. Section 2.3 defines and finds observer Markov parameters that will be used in the

calculation of observer QMC systems. Section 2.4 gives the existence condition of the observer

QMC systems. Section 2.5 presents the parameterization of all observer QMC solutions and shows

a method to reconstruct the state-space realizations from observer dynamics. Section 2.6 presents

illustrate examples that demonstrate this formulation.

2.2 Problem Statement

Let us assume an unknown system of interest:

xk+1 = Axk +Buk, (2.1a)

yk = Cxk +Duk, (2.1b)

where xk ∈ Rn, yk ∈ Rm, uk ∈ Rr, are the state, output, and input signals, and A, B, C, D are

matrices of proper dimensions. We are assumed to have access to input uk and output yk only.

If exciting the system (2.1) with a zero-mean independent white noise sequence with variance I ,

we experimentally evaluate its Markov parameters (Hi) and covariance parameters (Ri) using the

following formulas:

Hi = E(yk+iu
T
k ) = lim

N→∞

1

N

N

∑
k=0

yk+iu
T
k , (2.2a)

Ri = E(yk+iy
T
k ) = lim

N→∞

1

N

N

∑
k=0

yk+iy
T
k . (2.2b)
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Suppose a QMC solution is a statet space realization in the form (2.3):

x̂k+1 = Âx̂k + B̂uk, (2.3a)

ŷk = Ĉx̂k + D̂uk, (2.3b)

Deterministic definitions for corresponding Markov parameters (Ĥi) and covariance parameters

(R̂i) of the QMC solution (2.3) are given in (2.4a,2.4b) where X̂ is the steady state solution of the

discrete algebraic Lyapunov equation (2.4c):

Ĥ0 = 0, Ĥi = ĈÂi−1B̂, i = 1,2, . . . (2.4a)

R̂i = ĈÂiX̂ĈT + ĤiH
T
0 , i = 0,1,2, . . . (2.4b)

X̂ = ÂX̂ÂT + B̂B̂T . (2.4c)

Existing QMC methods solve the following problem: “Suppose an unknown system (2.1) pro-

duces {Hi,Ri∣i = 0,1,⋯, q−1}where q is a pre-specified positive scalar, find all finite-dimensional

linear time-invariant (FDLTI) models (2.3) whose {Ĥi, R̂i∣i = 0,1,⋯, q − 1} matches the data

{Hi,Ri∣i = 0,1,⋯, q − 1} [6, 7, 20]."

Existing QMC theories assume that (2.1) is asymptotically stable. However, a steady state

solutions of (2.4c) does not exist when (2.3) is unstable or marginally stable [53]. As a result,

existing QMC methods cannot find an approximation system (2.3) that is unstable or marginally

stable. In this chapter, We attack this problem with a unique formulation by implementing the

state-space observer dynamics during the derivation of the QMC method.

First, we introduce an output feedback gain sequence by adding and subtracting the term Gyk

to the right hand side of equation (2.3), which would give the equation (2.5):

x̂k+1 = Âx̂k + B̂uk +Gŷk −Gŷk. (2.5)

Here, G ∈ Rn×m is an arbitrary matrix of proper dimension. Rearrangement would give us the
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state-space observer model (2.6) :

x̂k+1 = Āx̂k + B̄vk, (2.6a)

ŷk = Ĉx̂k + D̂uk, (2.6b)

where Ā = Â +GĈ, B̄ = [B̂ +GD̂ −G], vk =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

uk

ŷk

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ Rr+m. If (2.3) is observable, there exists a

G that can place the pole of Ā as desired, and a positive scalar p that Āp ≈ 0 [54]. This guarantees

the closed-loop dynamics (2.6) is asymptotically stable. We can construct the discrete algebraic

Lyapunov equation where the steady state solution X̂ exists as the following:

X̂ = [B̄ Ā]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

U UĤT
0 0

Ĥ0U R̂0 ĈX̂

0 X̂Ĉ X̂

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[B̄ Ā]
T

. (2.7)

Deriving QMC methods over the observer dynamics, we find all stable linear systems in ob-

server form (2.6) that match the given data {Hi,Ri∣i = 0,1,⋯, q − 1}. Notice that a steady-state

solution to the discrete algebraic Lyapunov equation (2.7) always exists. This avoids the con-

straint of (2.4c) thereby poses no requirement on the stability of the system to identify. With this

new formulation, we can find an unstable approximation system when given data is from unstable

physics.

It is our intention to find all observer QMC solutions (2.6) that up to q Markov and covariance

parameters generated by (2.6) match the given data {Hi,Ri∣i = 0,1,⋯, q − 1} for a pre-specified

positive scalar q.

2.3 Observor-Based Markov Parameters

In this section we define the observer Markov parameters h̄i of the state-space observer model

(2.6), and shows how to evaluate them using given information of {Hi,Ri∣i = 0,1,⋯, q−1}. These

observer Markov parameters are essential for computation of observer QMC model of (2.6).
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Define h̄i as the following:

h̄0 = D̂, h̄i = ĈĀi−1B̄, i = 1,2,⋯. (2.8)

Notice that:

h̄i = [ĈĀi−1(B̂ +GD̂) −ĈĀi−1G] (2.9a)

= [h̄
(1)
i h̄

(2)
i
] . (2.9b)

The superscripts (1) and (2) will be used to distinguish inputs u and outputs y from the observer

inputs v during later derivations.

Before we proceed with the main theorem of this section which computes the observer markov

parameters (h̄i) using information of Markov parameters (Hi) and Covariance paremeters (Ri),

we shall introduce a linear algebra tool first [55, 56]. The following lemma leads to the existence

condition and all the solutions of the observer markov parameters.

Lemma 2.3.1. Let A ∈ Ra×b and B ∈ Ra×c be given matrices. Then the following statements are

equivalent:

1. The equation

AX = B (2.10)

has a solution,

2. A and B satisfy

AA+B = B, (2.11)

16



3. A and B satisfy

(I −AA+)B = 0. (2.12)

In this case, all such X are parameterized by:

X = A+B +Z −A+AZ, (2.13)

where Z is an arbitrary b × c matrix and A+ denotes the Moore-Penrose inverse of A.

Proof. The implication 1→ 2 can be verified by multiplying both sides of (2.10) by AA+ from the

left. To prove the converse, suppose (2.11) holds. Then using (2.13)

AX = A(A+B +Z −A+AZ),

= AA+B +AZ −AA+AZ,

= B (2.14)

which holds by virtue of the pseudo-inverse property AA+A = A and (2.11). Thus we have 1 → 2

and it has been shown that any X given by (2.13) is a solution of (2.10).

To prove that any solution X to (2.10) can be generated by (2.13), we must show that for any

solutions of (2.10), there exists a Z satisfying (2.13). That is, solve

X = A+(AX) +Z −A+AZ, (2.15)

for Z. Obviously, a choice Z =X works.

To prove the equivalence of 2 and 3, suppose (2.11) holds. Replace B in (2.12) by the left-hand

side of (2.11) to get

(I −AA+)(AA+B) = 0. (2.16)

17



Hence (2.11) implies (2.12). This completes the proof.

Theorem 2.3.2. Suppose an unknown (not necessarily stable) system generates data {Hi,Ri∣i =

0,1,⋯, q − 1}. There exists at least a sequence of {h̄i∣i = 0,1,⋯, p} that matches the given data if

p ≥ q. All solutions of observer Markov parameters h̄i are given by the following:

[h̄
(1)
p h̄

(1)
p−1 . . . h̄0 h̄

(2)
p h̄

(2)
p−1 . . . h̄

(2)
1
] = [Lq Kq]V

+
q +Z(I − VqV

+
q ), (2.17)

where p is a positive scalar that satisfies p ≥ q, V +q is the pseudo inverse of matrix Vq, Z is an

arbitrary matrix of proper dimension, matrices Vq, Lq, Kq are defined as

Vq =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ū H̄l

H̄r R̄

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.18a)

Lq = [H0 H1 ⋯ Hq−1] , (2.18b)

Kq = [R0 R1 ⋯ Rq−1] , (2.18c)

where

Ū =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 ⋯ ⋯ 0

⋮ ⋰ ⋰ U

⋮ ⋰ ⋰ 0

0 U ⋰ ⋮

U 0 ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.18d)
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H̄l =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

HT
p ⋯ ⋯ HT

1

⋮ ⋰ ⋰ HT
0

⋮ ⋰ ⋰ 0

HT
1 HT

0 ⋰ ⋮

HT
0 0 ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.18e)

H̄r =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 ⋯ ⋯ 0

⋮ ⋰ ⋰ H0

⋮ ⋰ ⋰ 0

0 H0 ⋰ Hq−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.18f)

R̄ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

RT
p ⋯ ⋯ RT

1

⋮ ⋰ ⋰ RT
0

⋮ ⋰ ⋰ R1

RT
1 RT

0 ⋰ ⋮

RT
0 R1 ⋯ Rq−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.18g)

Proof. The consecutive outputs of (2.6) can be written as the following:

ŷ0 = Ĉx̂0 + D̂u0, (2.19a)

ŷ1 = ĈĀx̂0 + ĈB̄v0 + D̂u1, (2.19b)

⋮

ŷp = ĈĀpx̂0 + ĈĀp−1B̄v0 + ⋅ ⋅ ⋅ + ĈB̄vp−1 + D̂up, (2.19c)

⋮

ŷp+q−1 = ĈĀp+q−1x̂0 + ĈĀp+q−2B̄v0 +⋯

+ ĈB̄vp+q−2 + D̂up+q−1. (2.19d)
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Using the property that Āp ≈ 0, the following expression can be formulated:

[ŷp ŷp+1 . . . ŷp+q−1] =

[h̄
(1)
p h̄

(1)
p−1 . . . h̄

(1)
1 h̄0]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u0 u1 . . . uq−1

u1 u2 . . . uq

⋮ ⋮ ⋱ ⋮

up up+1 . . . up+q−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

[h̄
(2)
p h̄

(2)
p−1 . . . h̄

(2)
1
]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ŷ0 ŷ1 . . . ŷq−1

ŷ1 ŷ2 . . . ŷq

⋮ ⋮ ⋱ ⋮

ŷp−1 ŷp . . . ŷp+q−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.20)

Taking outer-product with uT
p and ŷTp on both sides of (2.20) yields the following two equations:

Lq = [h̄
(1)
p h̄

(1)
p−1 . . . h̄0] Ū + [h̄

(2)
p h̄

(2)
p−1 . . . h̄2

1
] H̄r (2.21a)

Kq = [h̄
(1)
p h̄

(1)
p−1 . . . h̄0] H̄l + [h̄

(2)
p h̄

(2)
p−1 . . . h̄2

1
] R̄, (2.21b)

Assembling (2.21a) and (2.21b) gives the following:

[Lq Kq] = [h̄
(1)
p h̄

(1)
p−1 . . . h̄0 h̄

(2)
p h̄

(2)
p−1 . . . h̄

(2)
1
]Vq. (2.22)

Notice that equation (2.22) follows the pattern of a typical linear algebra problem ”AX = B”.

Equation (2.22) exists a solution if and only if Vq is full column rank, where the dimension of Vq

shall satisfy:

qm + qr ≤ pr + r + pm, (2.23)
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which is

p ≥ q −
r

m + r
. (2.24)

Thus, the lower bound of p is q, and all solutions of (2.22) are given by (2.17). This completes the

proof.

2.4 Existence Conditions of QMC for Unstable Systems

In this section we will discuss the existence condition of the observer QMC solution (2.6).

Theorem 2.4.1. Suppose an unknown (but not necessarily stable) system generates data {Hi,Ri∣i =

0,1,⋯, q−1}, and its observer Markov parameter sequence {h̄i∣i = 0,1,⋯, p} for p ≥ q is computed

using Theorem 2.3.2. There exists a linear system (2.6) that matches the data iff D̄q ≥ 0 where

D̄q = H̄
(2)
q RqH̄

(2)T
q − H̄

(1)
q H̄

(1)T
q , (2.25a)

H̄
(1)
q =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h̄0 0 ⋯ 0

h̄
(1)
1 h̄0 ⋮ 0

⋮ ⋱ ⋱ ⋮

h̄
(1)
q−1 ⋯ h̄

(1)
1 h̄0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.25b)

H̄
(2)
q =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 ⋯ 0

−h̄
(2)
1 1 ⋮ 0

⋮ ⋱ ⋱ ⋮

−h̄
(2)
q−1 ⋯ −h̄

(2)
1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.25c)

Rq =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

R0 RT
1 ⋯ RT

q

R1 R0 ⋱ ⋮

⋮ ⋱ ⋱ RT
1

Rq−1 ⋯ R1 R0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.25d)
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Proof. One may notice that equations (2.19a) - (2.19d) can be re-formulated as the following:

ŷ0 =Ĉx̂0 + h̄0u0, (2.26a)

ŷ1 =ĈĀx̂0 + h̄
(1)
1 u0 + h̄

(2)
1 ŷ0 + h̄0u1, (2.26b)

ŷ2 =ĈĀ2x̂0 + h̄
(1)
2 u0 + h̄

(2)
2 ŷ0 + h̄

(1)
1 u1 + h̄

(2)
1 ŷ1 + h̄0u2, (2.26c)

⋮

ŷq =ĈĀq−1x̂0 + h̄
(1)
q u0 + h̄

(2)
q ŷ0 + h̄

(1)
q−1u1 + h̄

(2)
q−1ŷ1 +⋯

+ h̄
(1)
1 uq−1 + h̄

(2)
1 ŷq−1 + h̄0uq. (2.26d)

Augment equations (2.26a) - (2.26d) to get the following expression:

H̄
(2)
q yq = Ōqx̂0 + H̄

(1)
q uq, (2.27a)

where

Ōq =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ĉ

ĈĀ

ĈĀ2

⋮

ĈĀq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,yq =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y0

y1

y2

⋮

yq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,uq =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u0

u1

u2

⋮

uq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.27b)

Taking outer product on both sides of (2.27a) yields:

H̄
(2)
q RqH̄

(2)T
q = ŌqX̂ŌT

q + H̄
(1)
q UqH̄

(1)T
q . (2.28)

If D̄q ≥ 0 is satisfied, there exists at least one observer system (2.6) that satisfies the equality

(2.28). This completes the proof.
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2.5 Parameterizing All QMC Solutions

In this section we find all parameterization of the observer QMC models. Before proceeding

with the main theorem, we shall introduce another linear algebra tool that leads to the existence

condition and all the solutions of the observer QMC models [55].

Lemma 2.5.1. Let A ∈ Ra×b and B ∈ Ra×c be given matrices, where c ≥ b. Then the following

statements are equivalent:

1. There exists X satisfying

AX = B,XXT = I, (2.29)

2. A and B satisfy

AAT = BBT , (2.30)

In this case, all such X are parameterized by:

X = [VA1 VA2]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I 0

0 U

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V T
B1

V T
B2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.31)

where U is an arbitrary matrix such that UUT = I and VA1, VA2, VB1 and VB2 are defined from the

SVD of A and B as follow:

A = [UA1 UA2]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ΣA 0

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V T
A1

V T
A2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= UAΣAV
T
A , (2.32a)

B = [UA1 UA2]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ΣA 0

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V T
B1

V T
B2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= UAΣAV
T
B . (2.32b)
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Proof. Square both sides of AX = B to get:

AX(AX)T = AXXTAT = AAT = BBT . (2.33)

This proves necessity of (2.30). For sufficiency, recall from the SVD of A that UA satisfies

AATUA = UA

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σ2
A 0

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.34)

From (2.30) and (2.34) it is clear that we can choose UA = UB, ΣA = ΣB. Hence (2.34). Now

define

ZT ≜

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ZT
1

ZT
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≜

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V T
A1

V T
A2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

X, (2.35)

then (2.29) becomes

[UA1 UA2]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ΣA 0

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ZT
1

ZT
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= [UA1 UA2]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ΣA 0

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

V T
b , (2.36a)

ZTZ = I, (2.36b)

which is

ΣAZ
T
1 = ΣAV

T
B1, Z

T
2 Z2 = I,Z2Z1 = 0, (2.37)

which is (using the fact VB2VB1 = 0)

Z1 == VB1, Z2 = VB2U
T , UUT = I, (2.38)

24



which is (since X = VAZT )

X = VA

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I 0

0 U

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

V T
b , UUT = I. (2.39)

This completes the proof.

Theorem 2.5.2. Given the data {Hi,Ri∣i = 0,1,⋯, q − 1} generated by a system (not necessarily

stable) with white noise excitation of variance U . Let integers p ≥ q > 0 be specified. Suppose

D̄q ≥ 0. Then all linear stable models (2.6) with X̂ = I that match the given data are parameterized

by (2.40); their corresponding linear models (2.3) that match the given data are parameterized by

(2.49).

D̂ =H0, (2.40a)

Ĉ = [Im 0] Ōq, (2.40b)

[B̄ Ā] = Ō
+
q−1 [M̄q−1 Ōq−1] + VbÛV T

d V −1, (2.40c)

where ŌqŌT
q = D̄q is the minimal rank factorization of D̄q, Û is an arbitrary matrix of proper

dimension satisfying Û ÛT = I , and Vb, Vd are given by the following SVD:

Ōq−1 = [Ua Ub]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σa 0

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V T
a

V T
b

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.40d)

[M̄q−1V −1 N̄q−1V −1] = [Ua Ub]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σa 0

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V T
c

V T
d

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.40e)

where

V V T =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

U UHT
0 0

H0U R0 Ĉ

0 ĈT I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.40f)
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Ōq−1 = [Iq−1 0] Ōq, (2.40g)

N̄q−1 = [0 Iq−1] Ōq, (2.40h)

M̄q−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h̄1

h̄2

⋮

h̄q−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.40i)

Proof. Assume an observed-based qmc model exists whose state covariance is X̂ = I . The two

governing equations of the new QMC method are the following:

I = [B̄ Ā]V V T [B̄ Ā]
T

, (2.41a)

Ōq−1 [B̄ Ā] = [M̄q−1 Ōq−1] . (2.41b)

Rearrangement yields the following expressions:

I = [B̄V ĀV ] [B̄V ĀV ]
T

, (2.42a)

Ōq−1 [B̄V ĀV ] = [M̄q−1V Ōq−1V ] . (2.42b)

Equations (2.42a) and (2.42b) can be represented as the standard linear algebra problem of

{AX = B; XXT = I} [55] by the change of variables. The existence condition is the following:

Ōq−1Ō
T
q−1 = [M̄q−1V Ōq−1V ] [M̄q−1V Ōq−1V ]

T

. (2.43)

We will show that (2.43) is always true. Notice the left hand side of (2.43) is the following:

Ōq−1Ō
T
q−1 = [Im(q−1) 0] ŌqŌ

T
q

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Im(q−1)

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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= [Im(q−1) 0] (H̄
(2)
q RqH̄

(2)T
q − H̄

(1)
q UqH̄

(1)T
q )

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Im(q−1)

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= H̄
(2)
q−1Rq−1H̄

(2)T
q−1 − H̄

(1)
q−1Uq−1H̄

(1)T
q−1 . (2.44)

The right hand side of (2.43) is the following:

[M̄q−1V Ōq−1V ] [M̄q−1V Ōq−1V ]
T

= [M̄
(1)
q−1 M̄

(2)
q−1 N̄q−1]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

U UHT
0 0

H0U R0 C

0 CT I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[M̄
(1)
q−1 M̄

(2)
q−1 N̄q−1]

T

= M̄
(1)
q−1UM̄

(1)T
q−1 + M̄

(2)
q−1H0UM̄

(1)T
q−1 + M̄

(1)
q−1UHT

0 M̄
(2)T
q−1

+ M̄
(2)
q−1R0M̄

(2)T
q−1 + N̄q−1C

TM̄
(2)T
q−1 + M̄

(2)
q−1CN̄T

q−1 + N̄q−1N̄
T
q−1, (2.45)

where

M̄
(1)
q−1 = [0 Im(q−1)] H̄

(1)
q

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ir

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.46a)

M̄
(2)
q−1 = − [0 Im(q−1)] H̄

(2)
q

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ir

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.46b)

N̄q−1 = [0 Im(q−1)] Ōq. (2.46c)

Notice that:

N̄q−1C
TM̄

(2)T
q−1 + M̄

(1)
q−1UHT

0 M̄
(2)T
q−1 =
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− [0 Im(q−1)] (H̄
(2)
q

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

R0 0 ⋯ 0

R1 0 ⋱ 0

⋮ ⋱ ⋱ ⋮

Rq−1 0 ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

H
(2)T
q )

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

Im(q−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.47a)

M̄
(2)
q−1CN̄T

q−1 + M̄
(2)
q−1H0UM̄

(1)T
q−1 =

− [0 Im(q−1)] (H̄
(2)
q

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

R0 RT
1 ⋯ RT

q−1

0 0 ⋱ 0

⋮ ⋱ ⋱ ⋮

0 0 ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

H
(2)T
q )

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

Im(q−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.47b)

N̄q−1N̄
T
q−1 =

[0 Im(q−1)] (H̄
(2)
q RqH̄

(2)T
q − H̄

(1)
q UqH̄

(1)T
q )

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

Im(q−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.47c)

M̄
(1)
q−1UM̄

(1)T
q−1 =

[0 Im(q−1)] H̄
(1)
q

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ir

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

U [Ir 0] H̄
(1)T
q

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

Im(q−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.47d)

M̄
(2)
q−1R0M̄

(2)T
q−1 =

[0 Im(q−1)] H̄
(2)
q

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ir

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

U [Ir 0] H̄
(2)T
q

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

Im(q−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.47e)
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The right hand side of (2.43), which is the sum of terms (2.47a) to (2.47e), is given as:

RHS = [0 Im(q−1)] (H̄
(2)
q

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

Im(q−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Rq [0 Im(q−1)] H̄
(2)T
q

− H̄
(1)
q

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

Im(q−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Uq [0 Im(q−1)] H̄
(1)T
q )

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

Im(q−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= H̄
(2)
q−1Rq−1H̄

(2)T
q−1 − H̄

(1)
q−1Uq−1H̄

(1)T
q−1 (2.48)

= LHS.

Thus, we have shown that the existence condition (2.43) is satisfied, and a solution to (2.42a) and

(2.42b) always exists. The solution is given by (2.40).

Lemma 2.5.3. The QMC solution (2.3) can be constructed using its observer form (2.6) as follows:

G = −B̄

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

Im

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.49a)

Â = Ā −GĈ, (2.49b)

B̂ = B̄

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ir

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−GD̂. (2.49c)

where m and r represents the numbers of outputs and inputs respectively.

Proof. This is a direct result from the composition of (2.6) where

Ā = Â +GĈ, (2.50a)

B̄ = [B̂ +GD̂ −G] . (2.50b)
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2.6 Illustrative Examples

In this section, we show two illustrative examples to demonstrate the QMC for unstable sys-

tems. The first case is an oscillator. It is marginally stable. A solution to the discrete algebraic

Lyapunov equation does not exist, therefore it is not well-recognized by existing QMC methods.

The second case is a non-minimum phase system, which has a zero on the right half-plane. Such a

system may go in the wrong direction when applied inputs initially and cannot be well-recognized

by most system identification approaches. We found approximation systems employing the QMC

method developed in this chapter for both cases.

2.6.1 An Oscillator Example

Consider the system of interest (2.1) with the following parameters:

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.5918 0.8061

−0.8061 −0.5918

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.5918

0.8061

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

C = [−1 0] , D = 1. (2.51)

It is easy to verify that this system is marginally stable. Choose p = q = 3. The QMC solution (2.3)

is found as the following:

Â =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.5918 0.8061

−0.8061 −0.5918

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0085

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Ĉ = [−187.2703 94.8310] , D̂ = 1. (2.52)

Tables 2.1 and 2.2 compare the parameters generated by the system to identify, and the QMC

system. Hi and Ri are the Markov and covariance parameters of the oscillator system (2.51), while

Ĥi and R̂i are the Markov and covariance parameters recovered by the QMC system (2.52). Their

errors are defined in (2.53).

∆Hi ≜ Ĥi −Hi, (2.53a)
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∆Ri ≜ R̂i −Ri. (2.53b)

Figures 2.1 and 2.2 show the error percentages of Markov and covariance parameters. It is no-

ticed that the first q = 3 of both parameters are matched exactly. Proceeding parameters have some

errors but are at insignificant scales. The two systems are related via the following transformation

matrix:

T =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

187.2703 −94.8310

94.8410 187.2721

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.54)

where

Â = T −1AT, B̂ = T −1B, Ĉ = CT. (2.55)

It is reasonable to claim that the oscillator system (2.51) and the QMC system (2.52) are simi-

mar in kinematics.

Table 2.1: Comparing the Covariance Parameters of the System to Identify and the QMC System
for the Oscillator Example.

Index Hi Ĥi
∆Hi

Hi

0 1 1 0.00%
1 −1.5918 −1.5918 0.00%
2 0.2923 0.2923 0.00%
3 1.2458 1.2458 −0.00%
4 −1.7669 −1.7668 −0.01%
5 0.8455 0.8454 −0.02%
6 0.7661 0.7662 0.00%
7 −1.7523 −1.7521 −0.01%
8 1.3080 1.3077 −0.02%
9 0.2042 0.2044 0.09%
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Figure 2.1: Error percentage in Markov parameters for the oscillator example.

Table 2.2: Comparing the Covariance Parameters of the System to Identify and the QMC System
for the Oscillator Example.

Index Ri R̂i
∆Ri

Ri

0 4.4064E4 4.4064E4 −0.00%
1 −2.6077E4 −2.6077E4 −0.00%
2 −1.3199E4 −1.3199E4 0.00%
3 4.1698E4 4.1698E4 0.00%
4 −3.6153E4 −3.6154E4 0.00%
5 0.1094E4 0.1094E4 0.04%
6 3.4858E4 3.4858E4 0.00%
7 −4.2350E4 −4.2351E4 0.00%
8 1.5268E4 1.5269E4 0.01%
9 2.4278E4 2.4277E4 −0.00%
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Figure 2.2: Error percentage in Covariance parameters for the oscillator example.
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2.6.2 A Non-Minimum Phase Example

A system is in its minimum phase if the system and its inverse are both causal and stable, while

a non-minimum system is the one whose inverse is not stable [57, 58]. Compared to minimum

phase systems, non-minimum phase systems are generally harder to identify and control. Consider

the system with the following transfer function (2.56). It has two poles and one positive zero,

which is a non-minimum phase system.

G(s) =
s − 1

s2 + 2s + 4
. (2.56)

Discretizing (2.56) at a sampling time of 0.1s gives the following parameters:

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.8013 −0.3601

0.0900 0.9813

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0900

0.0047

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

C = [1 −1] , D = 0. (2.57)

One may verify that this system is non-minimum phase. Choose p = q = 3. The QMC solution

(2.3) is found as the following:

Â =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.8339 0.2505

−0.1109 0.9487

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.4919

0.2962

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Ĉ = [−0.1760 0.0040] , D̂ = 0. (2.58)

Tables 2.3 and 2.4 compare the parameters generated by the original system and the QMC

system. Hi and Ri are the Markov and covariance parameters of the non-minimum phase system

(2.57), while Ĥi and R̂i are the Markov and covariance parameters recovered by the QMC system

(2.58). It is noticed that the first q = 3 of both parameters are matched exactly. Proceeding param-

eters are matched well too. Their error percentages are plotted in Figures 2.3 and 2.4, where the
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magnitude are 10−12. The two systems are related via the following transformation:

T =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.1424 0.0674

0.0335 0.0714

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.59)

where

Â = T −1AT, B̂ = T −1B, Ĉ = CT. (2.60)

Therefore, the non-minimum phase system (2.57) and the QMC system (2.58) are simimar in

kinematics.

Table 2.3: Comparing the parameters of physics/QMC systems for non-minimum Phase System.

Index Hi Ĥi
∆Hi

Hi

0 0 0 0.00%
1 0.0854 0.0854 0.00%
2 0.0578 0.0578 0.00%
3 0.0331 0.0331 −0.00%
4 0.0117 0.0117 0.00%
5 −0.0062 −0.0062 0.00%
6 −0.0207 −0.0207 0.00%
7 −0.0318 −0.0318 0.00%
8 −0.0397 −0.0397 0.00%
9 −0.0448 −0.0448 0.00%

2.7 Conclusion

This chapter developed a unique formulation of the QMC method, which extends the existing

QMC methods to system identification applications of unstable or marginally stable systems. Ex-

isting QMC methods only apply to system identification of asymptotically systems. This unique

formulation, which is derived using a closed-loop dynamics of state-space observer model, does
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Figure 2.3: Error percentage in Markov parameters for the non-minimum phase example.

Table 2.4: Comparing the parameters of physics/QMC systems for non-minimum phase system.

Index Ri R̂i
∆Ri

Ri

0 0.0310 0.0310 0.00%
1 0.0259 0.0259 0.00%
2 0.0209 0.0209 0.00%
3 0.0160 0.0160 −0.00%
4 0.0114 0.0114 −0.00%
5 0.0072 0.0072 −0.00%
6 0.0035 0.0035 −0.00%
7 0.0004 0.0004 −0.00%
8 −0.0022 −0.0022 0.00%
9 −0.0042 −0.0042 0.00%

not pose any constraints on the stability of the system to identify. Two illustrative examples, a

marginally stable oscillator system and a non-minimum phase system, have been conducted, and

their results are presented to demonstrate the unique QMC formulation.
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Figure 2.4: Error percentage in Covariance parameters for the non-minimum phase example.
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3. THE EFFICIENT Q-MARKOV COVARIANCE EQUIVALENT REALIZATION

This chapter provides a method that finds an efficient q-Markov covariance equivalent real-

ization (QMC) system that matches the first Markov parameters and covariance parameters up to

∞ with a finite number of data. It further presents a generalized QMC theory to find the effi-

cient QMC solution for stable/unstable systems and an algorithm for system identifications using

the QMC method. A comparison of the QMC approach with Eigensystem Realization Algorithm

(ERA) and Eigensystem Realization Algorithm using Data Correlations (ERA/DC) is presented.

Compared to the other two, the efficient QMC method finds an approximation system with the

least errors in frequency responses.

3.1 Introduction

The system simulation problem determines the dynamics of an unknown system from its in-

put/output data. General system identification techniques fall into two categories: those that seek

a least-square solution that minimizes the norms of errors for all data or those who seek an exact

match to some but not all of the data. The least square methods are prevalent in today’s system

identification applications because it gives a solution under all circumstances. However, there is

no guarantee on the performance of the least square solution, whereas the solution can be as bad

as possible. Inversely, exact match methods guarantee the matching of some parameters and are

especially useful in applications with specific requirements of certain parameters.

Q-Markov covariance equivalent realization (QMC) is an exact match method that finds all

state-space realizations that exactly match the Markov and covariance parameters up tp q of the

system one aims to identify. Since Markov and covariance parameters characterize the transient

and steady-state proprieties, an exact match of these two parameters produces a reasonable approx-

imation system. The parameterization of existing QMC methods contains a free unitary variable.

Accordingly, it finds infinite solutions that match the given data when its existence condition is

met. Unfortunately, a criterion for selecting the best QMC solution is not available, and matching
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these two parameters up to q does not guarantee to match the physics system’s parameters. This

chapter provides a criterion to select the particular QMC solution that matches the Markov and

covariance parameters up to infinity using minimal data. We call it “the efficient QMC”.

The outline of this chapter is as follows: Section 3.2 formulates the mathematical problem

statement. Section 3.3 gives the existence condition and solution of the efficient QMC and proves

that it matches Markov and covariance parameters up to infinity. Section 3.4 gives a generalized

QMC theory to find the efficient QMC solution for stable/unstable system and an algorithm for sys-

tem identifications using the QMC method. Section 3.5 presents a comparison among the efficient

QMC and two other popular system identification techniques, Eigensystem Realization Algorithm

(ERA) and Eigensystem Realization Algorithm using Data Correlations (ERA/DC).

3.2 Problem Statement

Let us assume an unknown system of interest:

xk+1 = Axk +Buk, (3.1a)

yk = Cxk +Duk, (3.1b)

where xk ∈ Rn, yk ∈ Rm, uk ∈ Rr, are the state, output, and input signals, and A, B, C, D are

matrices of proper dimensions. We are assumed to have access to input uk and output yk only.

If exciting the system (3.1) with a zero-mean independent white noise sequence with variance I ,

we experimentally evaluate its Markov parameters (Hi) and covariance parameters (Ri) using the

following formulas:

Hi = E(yk+iu
T
k ) = lim

N→∞

1

N

N

∑
k=0

yk+iu
T
k , (3.2a)

Ri = E(yk+iy
T
k ) = lim

N→∞

1

N

N

∑
k=0

yk+iy
T
k . (3.2b)

Suppose a QMC solution is a state-space realization in the form (3.3):

x̂k+1 = Âx̂k + B̂uk, (3.3a)
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ŷk = Ĉx̂k + D̂uk, (3.3b)

Deterministic definitions for corresponding Markov parameters (Ĥi) and covariance parameters

(R̂i) of the QMC solution (3.3) are given in (3.4a,3.4b) where X̂ is the steady state solution of the

Lyapunov stability equation (3.4c):

Ĥ0 = 0, Ĥi = ĈÂi−1B̂, i = 1,2, . . . (3.4a)

R̂i = ĈÂiX̂ĈT + ĤiH
T
0 , i = 0,1,2, . . . (3.4b)

X̂ = ÂX̂ÂT + B̂B̂T . (3.4c)

Existing QMC methods solve the following problem: “Suppose an unknown system (3.1)

produces {Hi,Ri∣i = 0,1,⋯, q − 1} where q is a pre-specified positive scalar. Find all finite-

dimensional linear time-invariant (FDLTI) models (3.3) whose {Ĥi, R̂i∣i = 0,1,⋯, q − 1} matches

the data {Hi,Ri∣i = 0,1,⋯, q − 1} [6, 7, 20]."

Construct matrices Hq and Rq using Markov parameters and covariance parameters as (3.5a)

and (3.5b), and define the data matrix Dq as (3.5c):

Hq =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H0 0 ⋯ 0

H1 H0 ⋮ 0

⋮ ⋱ ⋱ ⋮

Hq−1 ⋯ H1 H0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.5a)

Rq =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

R0 RT
1 ⋯ RT

q

R1 R0 ⋱ ⋮

⋮ ⋱ ⋱ RT
1

Rq−1 ⋯ R1 R0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.5b)

Dq = Rq −HqUqH
T
q . (3.5c)
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If Dq ≥ 0 is satisfied, all linear systems that match the given set of data are parameterized as

the following [6, 7]:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D̂ Ĉ

B̂ Â

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I 0

0 O+q−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[Mq Oq] +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

VbÛV T
d

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.6a)

where Mq =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H0

⋮

Hq−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, OqOT
q = Dq is the minimal rank factorization of Dq, Û is an arbitrary matrix

of proper dimension satisfying Û ÛT = I , and Vb, Vd are given by the following decomposition:

Oq−1 = [Ua Ub]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σa 0

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V T
a

V T
b

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.6b)

[Kq−1 Nq−1] = [Ua Ub]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σa 0

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V T
c

V T
d

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.6c)

where Kq−1 = [0 Iq−1]Mq, and Nq−1 = [0 Iq−1]Oq.

Equation (3.6) shows the set of all solutions that matches the data {Hi,Ri∣i = 0,1,⋯, q − 1}. It

is our intention to find the efficient QMC solution that matches the data {Hi,Ri∣i = 0,1,⋯,∞}.

3.3 The Efficient QMC

In this section we show the selection of the efficient QMC solution, and prove that this solution

matches parameters {Hi,Ri∣i = 0,1,⋯,∞} using finite data.

Theorem 3.3.1. Suppose an unknown system generates data {Hi,Ri∣i = 0,1,⋯, q − 1}, and Dq >

0. Let n be the effective state dimension and m be the output size of the unknown system. The

following two statements are equivalent:

1. q ≥ n
m + 1

2. There exists an efficient QMC solution (3.3) with X = I that matches {Hi,Ri∣i = 0,1,⋯, q −
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1}

Under this circumstance, the efficient QMC solution is given by the following:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D̂ Ĉ

B̂ Â

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I 0

0 O+q−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[Mq Oq] . (3.7)

Proof. Expanding the system (3.3) over the horizon [0, q − 1] yields the following:

ŷ0 = Ĉx̂0 + D̂u0, (3.8a)

ŷ1 = ĈÂx̂0 + ĈB̂u0 + D̂u1, (3.8b)

ŷ2 = ĈÂ2x̂0 + ĈÂB̂u0 + ĈB̂u1 + D̂u2, (3.8c)

⋮

ŷq−1 = ĈÂq−1x̂0 + ĈÂq−2B̂u0 +⋯ + ĈB̂uq−1 + D̂uq. (3.8d)

Augment equations (3.8a) - (3.8d) to get the following expression:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ŷ0

ŷ1

ŷ2

⋮

ŷq−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ĉ

ĈÂ

ĈÂ2

⋮

ĈÂq−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x̂0 +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ĥ0 0 ⋯ ⋯ 0

Ĥ1 Ĥ0 ⋱ ⋱ ⋮

Ĥ2 Ĥ1 ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮

Ĥq−1 ⋯ Ĥ2 Ĥ1 Ĥ0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u0

u1

u2

⋮

uq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.9)

Notice that if a QMC solution (3.3) exists, Ĥi and R̂i match the parameters Hi and Ri up to q.

Take outer products on both sides of (3.9) yields:

Rq = OqO
T
q +HqH

T
q , (3.10)

If Dq ≥ 0 is satisfied, there exists at least one QMC solution 3.3 that matches the given data.
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Under this condition, two governing equations of the QMC algorithm are below:

Oq−1 [B̂ Â] = [Kq−1 Nq−1] , (3.11a)

[B̂ Â] [B̂ Â]
T

= I. (3.11b)

Equation (3.11a) can be easily verified by observation; equation (3.11b) comes from the Lya-

punov stability equation of (3.3) by setting X̂ = I and U = I . Equation (3.11a) and (3.11b) forms

the standard linear algebra problem of AX = B,XXT = I. Its solution is given as (3.6) which

involves a pseudo inverse of Oq−1.

Notice that the dimension of Oq−1 is (q − 1)m × n, where q is the number of parameters to

match, and m is the dimension of outputs. Under the condition that (q − 1)m ≥ n, the singular

value decomposition of Oq−1, which is equation (3.6b), becomes the following:

Oq−1 = [Ua Ub]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σa

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[V T
a
] , (3.12)

Notice that Vb vanishes in the decomposition above. This means the term VbÛV T
d vanishes, and

the variable Û does not have an impact on the qmc solution. The qmc solution becomes unique as

(3.7).

Lemma 3.3.2. If Markov parameters Hi and covariance parameters Ri are fully converged, the

efficient QMC solution (3.7) matches {Hi,Ri∣i = 0,1, . . . ,∞}.

Proof. We just prove that the efficient QMC solution (3.7) matches {Hi,Ri∣i = 0,1, . . . , q + k − 1}

for any positive scalar k.

Define Dq+k > 0 to be the data matrix constructed by {Hi,Ri∣i = 0,1, . . . , q + k − 1}, and

{Aq+k,Bq+k} is the unique q + k-MC plant that matches Dq+k:

Dq+k ≜

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Dq D12

DT
12 D22

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.13a)
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Aq+k ≜

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Â A12

A21 A22

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.13b)

Bq+k ≜

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B̂

B2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.13c)

From the decomposition of Dq+k, we have:

Dq+k = Oq+kO
T
q+k, (3.14a)

where

Oq+k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Oq 0

O21 O22

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.14b)

Expand Oq+k as the following:

Oq+k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ĉ 0

⋮ ⋮

ĈÂq−1 0

Oq,1 Oq,2

Oq+1,1 Oq+1,2

⋮ ⋮

Oq+k−1,1 Oq+k−1,2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.15a)
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where

O21 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Oq,1

Oq+1,1

⋮

Oq+k−1,1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,O22 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Oq,2

Oq+1,2

⋮

Oq+k−1,2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.15b)

The governing equation that {Aq+k,Bq+k} satisfies the following:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ĉ 0

⋮ ⋮

ĈÂq−1 0

Oq,1 Oq,2

Oq+1,1 Oq+1,2

⋮ ⋮

Oq+k−2,1 Oq+k−2,2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Â A12 B̂

A21 A22 B2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ĈÂ 0 H1

⋮ ⋮ ⋮

Oq,1 Oq,2 Hq

Oq+1,1 Oq+1,2 Hq+1

Oq+2,1 Oq+2,2 Hq+2

⋮ ⋮

Oq+k−1,1 Oq+k−1,2 Hq+k−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.16)

Notice

[Ôq−1 0]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A12

A22

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0, (3.17a)

The matrix Ôq−1 is of full column rank because of the dimension requirement q ≥ n
m + 1. The

only solution for (3.17a) is

A12 = 0. (3.17b)
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Notice

[ĈÂq−1 0]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A12

A22

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Oq,2, (3.17c)

Using (3.17b) makes

Oq,2 = 0. (3.17d)

Notice

[Oq,1 Oq,2]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A12

A22

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Oq+1,2, (3.17e)

Using (3.17b) and (3.17d) makes

Oq+1,2 = 0. (3.17f)

Keep this iteration and one can conclude:

O22 = 0, (3.18)

Notice that Oq−1 is of full column rank, thus

rank(Oq+k) = rank(Oq−1). (3.19)

As a result, we have

A21 = 0, (3.20a)

A22 = 0, (3.20b)
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B2 = 0. (3.20c)

Consequently, the efficient QMC solution (3.7) is equivalent to a QMC solution that matches

the data matrix Dq+k for any positive scalar k.

3.4 A Generalized QMC Theory

In Chapter 2 section 2.5 we develop a formulation that extends the QMC method to system

identification of unstable systems. In Chapter 2 section 3.2 we develop a formulation that finds the

efficient QMC solution. In this section we combine the two formulations to a generalized QMC

theory that finds an efficient QMC solution for system identification applications, regardless of the

stability of the system to identify.

Theorem 3.4.1. Given the data {Hi,Ri∣i = 0,1,⋯, q − 1} generated by a system (not necessarily

stable) with white noise excitation of variance U . Suppose D̄q ≥ 0 is satisfied. Let m, r and

n represent the numbers of outputs, inputs and effective state dimension of the unknown system

respectively, where where (q−1)m ≥ n is satisfied. Let integers p ≥ q > 0 be specified. The efficient

QMC solution in form of (2.6) with X̂ = I that matches the given data is the following:.

D̂ =H0, (3.21a)

Ĉ = [Im 0] Ōq, (3.21b)

[B̄ Ā] = Ō
+
q−1 [M̄q−1 Ōq−1] , (3.21c)

where ŌqŌT
q = Dq is the minimal rank factorization of Dq, Û is an arbitrary matrix of proper

dimension satisfying Û ÛT = I . Its corresponding QMC system in form of (3.3) is given as:

G = −B̄

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

Im

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.22a)
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Â = Ā −GĈ, (3.22b)

B̂ = B̄

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ir

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−GD̂. (3.22c)

Proof. This theorem is a direct result from Theorem 2.5.2 and Theorem 3.3.1.

Consider recognizing a physics system whose effective state dimension n is unknown. We

summarize a general algorithm for system identification using the QMC method.

Algorithms 3.4.1. Let k ≤ n be specified.

1. Select q and m such that (q − 1)m ≥ k.

2. Construct D̄q using data {Hi,Ri∣i = 0,1,⋯, q − 1}.

3. If rank(Dq) < qm, declare convergence and proceed to Step 4; otherwise, set k ← k + 1 and

return to Step 1.

4. Find the approximation system using Theorem 3.4.1.

Remark: In reality, we deal with sensors and actuators with noise. When checking the rank of

data matrix D̄q, it is typical to observe that some small eigenvalues close to 0, but not exactly 0.

One needs to determine the threshold for such truncations.

3.5 Illustrative Examples

In this section, we introduce a cantilever beam example to demonstrate our method. We find

approximation systems of the beam example using methods of q-Markov Covariance Equivalent

Realization (QMC), Eigensystem Realization Algorithm (ERA) and Eigensystem Realization Al-

gorithm Considering Data Correlations (ERA/DC), then compare their results.

3.5.1 The Euler Bernoulli Beam

Consider a cantilever beam as shown in Figure 3.1. The beam has deflection µ(r, t), where r

is the spatial displacement from the clamped end, and t is the time variable. Consider the damped
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Figure 3.1: A conceptual drawing of a cantilever beam.

flexible structure with N degrees of freedom:

Mq̈ +Dq̇ +Kq = Bu, (3.23)

where q = [q1, . . . , qN] is the time-varying displacement, u = [u1, . . . , ur] is the input vector,

matricesM,D andK are the mass, damping and stiffness matrix respectively. Matrix B determines

the locations of actuators. With the normalization of the mass matrixM, the governing equation

(3.23) may be reduced to the following modal form:

q̈ + 2cΩq̇ +Ω2q = Hu, (3.24)

where Ω = diag(ω1, . . . , ωN), H = [H1, . . . ,HN]
T

. Here, ω2
i are the mode frequencies where:

ωi = (βiL)
2

√
EI

ρL4
, (3.25)

where EI , ρ, and L are the moduli of elasticity, mass density, and beam length, respectively. They

are assumed constant. For force inputs, Hi are defined as:

Hi = [Φi(r1), . . . ,Φi(rp)], (3.26)
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where p is the number of force inputs, and r1, . . . , rp are locations of force actuators. The function

Φi(r) is the spatial mode shape function that satisfies specified boundary conditions. Its solution

for a cantilever beam is given below [59]:

Φi(r) = C[cosh(βir) − cos(βir) − ki{sinh(βir) − sin(βir)}], (3.27)

where the constant C is determined by the initial condition at t = 0, and constant ki is defined as:

ki =
cosh(βiL) + cos(βiL)

sinh(βiL) + sin(βiL)
. (3.28)

Define the state vector as follows:

x = [q1, q̇1, . . . , qN , q̇N]
T

, (3.29a)

the corresponding state equation may be constructed below:

A = diag

⎛
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1

−ω2
1 −2cω1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, . . . ,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1

−ω2
N −2cωN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎠

, (3.29b)

B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 . . . 0

Φ1(r1) . . . Φ1(rp)

⋮ . . . ⋮

0 . . . 0

ΦN(r1) . . . ΦN(rp)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.29c)

Define outputs as the accelerations of deflections below:

y = [µ̈1, . . . , µ̈m]
T

, (3.29d)
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the corresponding output equation may be constructed below:

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ1(r1) . . . ΦN(r1)

⋮ ⋮ ⋮

Φ1(rm) . . . ΦN(rm)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

diag ([−ω2
1 −2cω1] , . . . , [−ω2

N −2cωN]) , (3.29e)

D =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ1(r1) . . . ΦN(r1)

⋮ ⋮ ⋮

Φ1(rm) . . . ΦN(rm)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ1(r1) . . . Φ1(rp)

⋮ . . . ⋮

ΦN(r1) . . . ΦN(rp)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.29f)

3.5.2 Eigensystem Realization Algorithm (ERA)

Assume a system may be represented by the state-space realization (3.1) whose Markov pa-

rameters (3.2a) are known. Construct the following Hankel matrices:

Ψ1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H1 H2 ⋯ Hb

H2 H3 ⋯ Hb+1

⋮ ⋰ ⋰ ⋮

Ha Ha+1 ⋯ Ha+b−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.30a)

Ψ2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H2 H3 ⋯ Hb+1

H3 H4 ⋯ Hb+2

⋮ ⋰ ⋰ ⋮

Ha+1 Ha+2 ⋯ Ha+b

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.30b)

where a and b are arbitrary positive integers. The above two matrices may be decomposed as the

following:

Ψ1 = OC, (3.31a)

Ψ2 = OAC, (3.31b)
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where

O =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C

CA

⋮

CAa−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.31c)

C = [B AB ⋯ Ab−1B] . (3.31d)

Evaluate the singular value decomposition of Ψ gives the following:

Ψ1 = [Un Ut]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σn 0

0 Σt

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V T
n

V T
t

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.32)

where Σn is the dominant eigenvalues and Σt is the eigenvalues to truncate. An ERA realization

of order n that captures the majority eigenvalues of the Hankel matrix Ψ1 is computed as below:

Ae = Σ
− 1

2
n UT

n Ψ2VnΣ
− 1

2
n , (3.33a)

Be = Σ
1
2
nV

T
n

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ip

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.33b)

Ce = [Im 0]UnΣ
1
2
n , (3.33c)

De =H0. (3.33d)
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3.5.3 Eigensystem Realization Algorithm Using Data Correlations (ERA/DC)

Construct the following matrices:

Ψi =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Hi Hi+1 ⋯ Hb+i−1

Hi+1 Hi+2 ⋯ Hb+i

⋮ ⋰ ⋰ ⋮

Ha+i−1 Ha+i ⋯ Ha+b+i−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.34a)

Θi = ΨiΨ
T
1 , (3.34b)

Ui =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Θi Θi+1 ⋯ Θβ+i−1

Θi+1 Θi+2 ⋯ Θβ+i

⋮ ⋰ ⋰ ⋮

Θα+i−1 Θα+i ⋯ Θα+β+i−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.34c)

where a, b, and α,β are arbitrary positive integers. The following decomposition may be com-

posed:

U1 =MN , (3.35a)

U2 =MAN , (3.35b)

where

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

O

OA

⋮

OAα−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.35c)

N = [P AP ⋯ Aβ−1P] , (3.35d)

P = CCTOT , (3.35e)
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Notice O and C are the observability and controllability matrices defined in Equations (3.31c) and

(3.31d).

Evaluate the singular value decomposition of U gives the following:

U1 = [Un Ut]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σn 0

0 Σt

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V T
n

V T
t

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.36)

where Σn is the dominant eigenvalues and Σt is the eigenvalues to truncate. An ERA/DC real-

ization of order n that captures the majority eigenvalues of the Hankel matrix Ψ1 is computed as

below:

Ad = Σ
− 1

2
n UT

n U2VnΣ
− 1

2
n , (3.37a)

Bd = Σ
− 1

2
n UT

n

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ψ1

⋮

Ψa+i−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ip

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.37b)

Cd = [Im 0]UnΣ
1
2
n , (3.37c)

Dd =H0. (3.37d)

3.5.4 A Beam Example

In our specific example, we select the cantilever beam with following material properties: EI =

1, ρ = 1, L = 1. We consider 4 modes, 2 outputs and 1 input, where N = 4,m = 2, p = 1. The

corresponding mode frequencies are given as: ω2
1 = 3.5160, ω2

2 = 22.0345, ω2
3 = 61.6972, ω2

4 =

120.9019. The two acceleration outputs are specified at locations r1 = 0.4L, r2 = 0.8L and the

force input is specified at location r3 = L. The effective state dimension of this system is n = 8.

This beam model is assumed to be the physics.
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3.5.4.1 A Noise Free Example

In this case we identify this system using fully converged cross-correlations and auto-correlations

(defined as (3.2a) and (3.2b)) for QMC, ERA and ERA/DC methods. We select q = 9 in the QMC

method that uses data {Hi,Ri∣i = 0,1, . . . ,8}, a = 9, b = 9 in the ERA method that uses data {Hi∣i =

0,1, . . . ,18}, and a = 9, b = 9, α = 4, β = 4 in the ERA/DC that uses data {Hi∣i = 0,1, . . . ,24}.

Figures 3.2, 3.3 and 3.4 show the frequency responses for the beam model versus QMC model,

ERA model and ERA/DC model respectively. All three methods capture the four modes at specific

mode frequencies. However, the ERA and ERA/DC models lose information on magnitude and

phase at lower frequency bands for both outputs. Figure 3.5 shows the error in frequency responses,

and Figure 3.6 shows the error in eigenvalues between the three methods and physics. Both show

that the QMC method generates the least error, while the ERA method generates the biggest error.

Using fully converged Markov and covariance parameters, the QMC method recovers the physics

of the system to identify.
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Figure 3.2: Frequency responses of QMC vs physics for a noise-free case.

Figure 3.3: Frequency responses of ERA vs physics for a noise-free case.
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Figure 3.4: Frequency responses of ERA/DC vs physics for a noise-free case.

Figure 3.5: Errors in frequency responses for QMC, ERA and ERA/DC for a noise-free case.
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Figure 3.6: Error in eigenvalues for QMC, ERA and ERA/DC at different shape modes for a noise-
free case.
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3.5.4.2 A Noisy Example

In this case we identify this system cross-correlations and auto-correlations from white noise

experiments for QMC, ERA and ERA/DC methods. Additive noises are modelled as zero-mean

white Gaussian noise of covariance 1 × 10−7, and applied on inputs and outputs. With adequate

experiment trials, experimentally-determined parameters will eventually converge. In this exam-

ple, these parameters contain measurement error due to limited computation resources. We select

q = 50 in the QMC method that uses data {Hi,Ri∣i = 0,1, . . . ,49}, a = 50, b = 50 in the ERA

method that uses data {Hi∣i = 0,1, . . . ,100}, and a = 30, b = 30, α = 20, β = 20 in the ERA/DC that

uses data {Hi∣i = 0,1, . . . ,100}.

Figure 3.7: Singular values for noisy data matrix Dq of QMC.

Figures 3.7, 3.8 and 3.9 show the singular values of data/measurement matrices of three meth-

ods. All three figures show a significant decrease after the 8th singular value. Residue singular

values are caused by convergence errors, where one needs to determine the threshold of where to

truncate. In this case, we keep the first 14 singular values for the QMC method, the first 14 for
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Figure 3.8: Singular values for noisy measurement matrix Φ1 of ERA.

Figure 3.9: Singular values for noisy measurement matrix U1 of ERA/DC.

the ERA method, and the first 14 for ERA/DC method. Their corresponding frequency responses

versus the physics are presented in Figures 3.10, 3.11 and 3.12. One may observe that only the

QMC method identifies the four modes at correct frequencies correctly. The ERA method misses
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Figure 3.10: Frequency responses of QMC vs Physics for a noisy case.

the phase information for the first mode, and the ERA/DC method misses the magnitude informa-

tion for the first mode. Figure 3.13 presents the errors in frequency responses of three methods. It

shows that the QMC method produces the least magnitude and phase errors during all frequency

bands.
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Figure 3.11: Frequency responses of ERA vs Physics for a noisy case.

Figure 3.12: Frequency responses of ERA/DC vs Physics for a noisy case.
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Figure 3.13: Errors in frequency responses of QMC, ERA and ERA/DC for a noisy case.

63



3.6 Conclusions

A method that finds an efficient q-Markov covariance equivalent realization (QMC) system that

matches the first Markov parameters and covariance parameters up to ∞ with a finite number of

data is presented. This efficient QMC solution also matches the transfer function and frequency

responses of the system to identify. A generalized QMC theory is also provided to find the efficient

QMC solution for stable/unstable systems and an algorithm for system identification using the

QMC method. A comparison of the QMC approach with Eigensystem Realization Algorithm

(ERA) and Eigensystem Realization Algorithm using Data Correlations (ERA/DC) is presented.

Compared to the other two, the QMC method finds an approximation system with the least errors

in frequency responses.
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4. DYNAMIC SYSTEM SIMULATION

The dynamic simulation problem with finite precision computing is studied via signal process-

ing and model reduction integration. This chapter delivers two approaches to attack the simulation

problem. The first approach transforms the simulation problem into a feedback control problem,

yielding to three linear matrix inequalities (LMIs) along plus a coupling non-convex constraint. It

becomes solvable via LMI toolbox, and guarantees a local optimum. The second approach focuses

on finding an optimal simulation model for flexible structures via truncation of modes. Exten-

sions to non-linear system simulations are conducted by integration with the q-Markov Covariance

Equivalent Realization (QMC) method.

4.1 Problem Statement

In simulation problems, the physics of the system to simulate is normally given. Assume the

physics is represented by the following state-space realization:

xk+1 = Axk +Buk, (4.1a)

yk = Cxk +Duk, (4.1b)

where the input uk considered a zero mean, unit variance white noise sequence. When imple-

mented in the finite word-length environment, inputs will involve quantization errors, states and

outputs will be twisted by round-off errors, which makes the output inaccurate. A mathematical

formation of this effect is the following:

x̌k+1 = A(x̌k + exk
) +B(uk + euk

), (4.2a)

y̌k = C(x̌k + exk
) +D(uk + euk

) + eyk , (4.2b)

where euk
, exk

and eyk are finite precision errors at inputs, states and outputs. We will quantitatively

implement them in Section 4.2. Apparently, the physics output yk and the simulation output y̌k are
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different, and there is no guarantee on the closure between them. We are interested in finding a

simulation model that satisfies a covariance constraint on the errors of their outputs.

Denote a linear model in the form of (4.3) that considers finite precision effects:

xsk+1 = As(xsk + exk
) +Bs(uk + euk

), (4.3a)

ysk = Cs(xsk + exk
) +Ds(uk + euk

) + eyk , (4.3b)

The set of coefficients, {As,Bs,Cs,Ds}, are the model coefficients replacing the physics system

{A,B,C,D} during computational simulation, where A ∈ Rn×n, As ∈ Rγ×γ , n and γ are positive

scalars that represent model sizes of the physics system (4.1) and the simulation system (4.3)

respectively. Denote ỹk as the error between the output of the physical system (4.1) and that of the

simulation system (4.3) where

ỹk = yk − ysk , (4.4)

We seek to find the set of {As,Bs,Cs,Ds} that satisfies an upper bound constraint (4.5) where

Q is a positive definite diagonal weighting matrix, and α is a given positive scalar. We call α the

error covariance scalar.

E{ỹkỹ
T
k } ≤ αQ. (4.5)

4.2 Round-off Noise Model and the Scaling Condition

4.2.1 Round-off Noise Model

The round-off error ek can be modeled as a zero-mean uniform distribution if overflow is not

triggered [60]. The quantification of ek are given below.

1. Fixed-point arithmetic can be expressed as:

E{e2k}i,i =
1

12
2−2βi , (4.6)
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where βi is the word length of the fractional part.

2. Floating-point arithmetic can be modelled as:

E{e2k}i,i =
2

3
2−2βibe, (4.7)

where βi is the word length of the fractional part of the significant, b is the base, and e is the

exponent number. In our problem formulation, the round-off noise terms exk
, euk

and eyk are

modelled as zero-mean uniform distributions with variance Ex,Eu and Ey as the following:

E(exk
) = 0,E(exk

eTxk
) = Ex, (4.8a)

E(euk
) = 0,E(euk

eTuk
) = Eu, (4.8b)

E(eyk) = 0,E(eyke
T
yk
) = Ey, (4.8c)

where Ex,Eu and Ey depends on the type of arithmetic and fractional bits.

4.2.2 Scaling Condition

The round-off error models (4.6) and (4.7) are build upon on the assumption of rare overflow.

Additionally, it is possible that the realization of a model may blow up the state covariance and

eventually cause overflow [61]. To prevent the overflow, we impose an additional L2-norm scaling

constraint as the following:

Xsi,i ≤ s, i = 1,2,⋯, n, (4.9)

where Xs is the state covariance matrix of (4.3), and s is a given positive scalar. Without loss of

generality, let s = 1. The scaling condition may be relaxed as the following:

Xs ≤ I. (4.10)
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4.3 Simulation Design by Output Feedback Control

4.3.1 The Converted Output Feedback Control Problem

The problem is approached as follows. Augment the two systems (4.1) and (4.3):

x̃k+1 = Ãx̃k + Ãeexk
+ B̃uk + B̃eeuk

, (4.11a)

ỹk = C̃x̃k + C̃eexk
+ D̃uk + D̃eeuk

− eyk . (4.11b)

where

x̃k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xk

xsk

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ỹk = yk − ysk , (4.11c)

Ã =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A 0

0 As

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Ãe =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

As

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B̃ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B

Bs

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B̃e =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

Bs

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.11d)

C̃ = [C −Cs] , C̃e = −Cs, D̃ =D −Ds, D̃e = −Ds, (4.11e)

The problem can be solved numerically by reconstructing into an output feedback control prob-

lem [33]. Define the following parameter:

K =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ds Cs

Bs As

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.12a)

Parameters of the augmented error system (4.11) may be formulated as the following form:

Ã = A +FKM, Ãe = FKJ ,

B̃ = B +FKE , B̃e = FKE ,

C̃ = C +HKM, C̃e = HKJ ,

D̃ = D +HKE , D̃e = HKE ,

(4.12b)

68



where

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A 0

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, C = [C 0] , D =D,

F =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0

0 I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, M = FT , J =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, H = [−I 0] , E =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Here K is the only unknown variable among the relations above, which contains parameter

information of the simulation system. The problem is transformed into an output feedback control

problem where K represents the feedback controller gain.

Theorem 4.3.1. Let a linear stable system (4.1), a positive definite diagonal matrix Q and a pos-

itive scalar α be given. Consider the error system assembly (4.11) with parametrizations (4.12b)

where eu, ey, and ex are uniformly distributed random variables with variances of Eu, Ey, and Ex

respectively. The following two statements are equivalent

1. There exists a simulation model (4.3) of order γ satisfying the scaling condition (4.10).

The error system (4.11) consisting of (4.1) and (4.3) is asymptotically stable, and its output

covariance satisfies an upper-bound constraint (4.5).

2. There exist matrices X̃ > 0, X̃ ∈ R(n+γ)×(n+γ), and K ∈ R(n+ny)×(n+nu) that satisfies the

following inequalities

I ≥ [0 I]K

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

U +Eu 0

0 I +Ex

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

KT

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.13a)

X̃ ≥ ÃX̃ÃT + ÃeExÃ
T
e + B̃UB̃T + B̃eEuB̃

T
e , (4.13b)

αQ ≥ C̃X̃C̃T + C̃eExC̃
T
e + D̃UD̃T + D̃eEuD̃

T
e +Ey. (4.13c)

Proof. A linear stable simulation system (4.3) satisfying an output covariance upper bound con-

straint αQ if the following conditions are satisfied.
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1. The simulation system (4.3) is stable to satisfy the Lyapunov stability inequality

Xs ≥ As(Xs +Ex)A
T
s +Bs(U +Eu)B

T
s , (4.14)

Notice that the state covariance matrix Xs is constrained by a scaling condition, to prevent

overflow, as indicated in Eqn. (4.10). Combining (4.10), (4.14) and (4.12a) formulates the

first inequality (4.13a).

2. The integrated error system (4.11) is stable to satisfy its Lyapunov stability inequality, which

is the second inequality (4.13b).

3. The error output covariance of (4.11), satisfies an upper bound constraint αQ. Notice that the

error output covariance is formulated in (4.15a) and the upper bound constraint is formulated

in (4.15b). Combining (4.15a) and (4.15b) formulates the third inequality (4.13c).

Ỹ = C̃X̃C̃T + C̃eExC̃
T
e + D̃UD̃T + D̃eEuD̃

T
e +Ey, (4.15a)

Ỹ ≤ αQ. (4.15b)

To numerically evaluate the three inequalities (4.13a,4.13b,4.13c), we introduce Schur’s com-

plement as a useful linear algebra tool [55, 62, 63]. It is the following lemma that transforms

the three inequalities (4.13a,4.13b,4.13c) into three linear matrix inequalities plus one non-convex

constraint.

Lemma 4.3.2. Let M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A B

BT C

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

be a symmetrix matrix. The following three statements are

equivalent:

(i). M > 0, (4.16)

(ii). A > 0,C −BTA−1B > 0, (4.17)
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(iii). C > 0,A −BC−1BT > 0. (4.18)

Proof. Notice that

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I 0

BTA−1 I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A 0

0 C −BTA−1B

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I A−1B

0 I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= PDP T , (4.19)

where

P =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I 0

BTA−1 I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.20)

D =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A 0

0 C −BTA−1B

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.21)

Observe that P is invertable where

P −1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I 0

−BTA−1 I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.22)

Let v be any vector which v ≠ 0. Then

vTDv = (vTP −1)M(P −Tv) = wTMw > 0, (4.23)

where

w = P −Tv. (4.24)

One may observe that M > 0 guarantees D > 0 , and vise versa. One may also observe that D > 0

guarantees A > 0,C−BTA−1B > 0, and vise versa. Thus, (4.16) and (4.17) are equivalent. Without

loss of generality, (4.16), (4.17) and (4.18) are equivalent.
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Theorem 4.3.3. The following two statements are equivalent

1. There exist matrices X̃ > 0, X̃ ∈ R(n+γ)×(n+γ), and K ∈ R(n+ny)×(n+nu) that satisfies the

inequalities (4.13a-4.13c).

2. There exist matrices X̃ > 0, X̃ ∈ R(n+γ)×(n+γ), Z > 0, Z ∈ R(n+γ)×(n+γ), and K ∈ R(n+ny)×(n+nu)

that satisfies the matrix inequalities (4.25a-4.25c) and the constraint (4.25d).

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I [0 I]K

KT

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(U +Ex)
−1 0

0 (I +Ex)
−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≥ 0, (4.25a)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Z−1 Ã Ãe B̃ B̃e

ÃT Z 0 0 0

ÃT
e 0 E−1x 0 0

B̃T 0 0 U−1 0

B̃T
e 0 0 0 E−1u

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≥ 0, (4.25b)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

αQ −Ey C̃ C̃e D̃ D̃e

C̃T Z 0 0 0

C̃T
e 0 E−1x 0 0

D̃T 0 0 U−1 0

D̃T
e 0 0 0 E−1u

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≥ 0, (4.25c)

X̃ = Z−1. (4.25d)

Notice that (4.25a), (4.25b) and (4.25c) are already in linear matrix inequality forms while the

inequality (4.25d) is non-convex. The problem can be numerically evaluated using LMI toolbox if

we are able to convexify (4.25d).
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4.3.2 Convexification

4.3.2.1 Potential Functional

The previous section shows that the dynamic simulation problem is reduced to three LMIs

and one non-convex constraint. Similar non-convex constraints appear in structural linear control

problems, and an algorithm to convexify using potential functional is given in [64]. A potential

functional is defined as Definition 1.

Definition 1. (Potential matrix functional) A first-order differentiable matrix functional H(x, z)

defined for all x and z in a convex set Φ is called a potential functional if

1. H(x, z) ≥ 0 for all x, z ∈ Φ,

2. G(x,x) = 0 for all x ∈ Φ,

3. ∇G(x,x) = 0 for all x ∈ Φ.

Next, we define a convexifying potential matrix functional for convexification of a non-convex

matrix variable as Definition 2.

Definition 2. (Convexifying potential matrix functional) A first-order differentiable matrix func-

tional H(x, z) is said to be a convexifying potential matrix functional if, given a first order dif-

ferentiable nonconvex matrix functional F (x) defined for all x ∈ Φ, F (x) +H(x, z) is a convex

matrix functional for all x, z ∈ Φ.

We are interested in solving the following nonconvex optimization problem:

min
x∈Ω

, Ω ∶= {x ∈ Φ ∶ F (x) ≤ 0}, (4.26)

where f(x) is a scalar and first order differentiable convex function bounded from below on the

convex set Ω, and that F (x) is a nonconvex matrix variable to be convexified. The correspond-

ing algorithm to convexify F (x) employing the convexifying potential matrix functional G(x) is

attached below.
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Algorithms 4.3.1. Let ϵ > 0, x0 ∈ Ω and a convexifying potential matrix functional H(x, z) be

given.

1. Solve the convex optimization problem

xk+1 ∶= argmin
x
{f(x) ∶ x ∈ Φk}, (4.27a)

Ωk ∶= {x ∶ F (x) +G(x,xk) ≤ 0}, (4.27b)

2. If ∣∣xk+1 − xk∣∣ ≥ ϵ, stop. Otherwise, set k ← k + 1 and go back to Step 1.

This algorithm transforms the non-convex optimization problem (4.26) into iterations of a se-

quence of convex optimization problems, where F (x) is non-convex but F (x) +G(x) is convex.

Since the potential functional is driven to 0 at each iteration, the algorithm yields a feasible solu-

tion to the original non-convex optimization problem. This algorithm converges to a local optimal

solution.

Theorem 4.3.4. Given a scalar and first order differentiable convex function f(x) and a con-

vexifying potential matrix functional H(x, z) defined for all x, z in the convex set Φ, Algorithm

4.3.1 generates a sequence of feasible points that converges to a solution satisfying the necessary

optimality conditions for problem (4.26).

Proof. We start noticing that every point xk+1 ∈ Ωk is also in Ω since from Definition 1, F (xk+1 ≤

F (xk+1 +G(xk+1, xk)) ≤ 0. Furthermore, assuming that xk ∈ Ω we can write F (xk) +G(xk, xk) =

F (xk) ≤ 0 so that xk ∈ Ωk. This proves that when x0 ∈ Ω, Algorithm 4.3.1 generates a sequence

of feasible solutions. As xk ∈ Ωk, we have immediately that f(xk+1) ≤ f(xk), which holds strictly

until xk+1 = xk, f(xk+1 = f(xk), which characterizes the stationary point. Assuming some mild

constraint qualification on the definition of the set Ω and using the first order differentiability of

the function f(⋅) and of the matrix function F (⋅) and G(⋅), the Kuhn-Tucker necessary optimality

condition for problem (4.26) are given as the existence of some Ū ≤ 0 such that F (xk+1+Gxk+1,xk
) ≤
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0 and

∇f(xk+1) + ⟨Ū ,∇F (xk+1) +∇G(xk+1, xk)⟩ = 0, (4.28a)

⟨Ū , F (xk+1) +G(xk+1, xk)⟩ = 0. (4.28b)

As a stationary point xk+1 = xk, the above conditions coincide with the optimality conditions

for the original nonconvex problem because G(xk+1, xk+1) = 0 and ∇G(xk+1, xk+1) = 0.

Notice that at a stationary solution xk+1 = xk and the value of the convexifying potential func-

tional G(xk+1, xk) in (4.26) reduces to zero, guaranteeing the feasibility of the original problem.

This completes the proof.

4.3.2.2 Convexification of the Dynamic Simualtion Problem

Denote

F (K,Z) = −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Z−1 Ã Ãe B̃ B̃e

ÃT Z 0 0 0

ÃT
e 0 E−1x 0 0

B̃T 0 0 U 0

B̃T
e 0 0 0 E−1u

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ 0. (4.29)

Let H(Z,Z0) be a convexifying potential function such that F (K,Z) + H(Z,Z0) ≤ 0. A

choice of a convexifying potential function may be found as below where lin(Z−1, Z0) represents

the linearizzation of Z−1 about Z0

H(Z,Z0) = Z
−1 − lin(Z−1, Z0)

≈ Z−1 − (2Z−10 −Z
−1
0 ZZ−10 ). (4.30)

Then, from equation (4.29) and equation (4.30) we have

F (K,Z) +H(Z,Z0) =
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−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2Z−10 −Z
−1
0 ZZ−10 Ã Ãe B̃ B̃e

ÃT Z 0 0 0

ÃT
e 0 E−1x 0 0

B̃T 0 0 U 0

B̃T
e 0 0 0 E−1u

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ 0. (4.31)

One can select an initial Z0 such that F (K,Z) +H(Z,Z0) < 0 is satisfied. Then, one iterate

the procedure below until a converged Zk is found

Zk+1 = argmin
Z∈0k

α, (4.32)

where

0k
∆
={Z ∶ F (K,Z) +H(Z,Z0) ≤ 0, (4.25a), (4.25c)} (4.33)

A general algorithm for finding the optimal simulation model at prespecified simulation model

size γ and finite precision environment of word-length beta is given below:

Algorithms 4.3.2. Initialize with an initial Z0 to make F (K,Z) +H(Z,Z0) ≤ 0, and a threshold

ϵ.

1. Update

Zk+1 = argmin
Z∈0k

α,

0k
∆
= {Z ∶ F (K,Z) +H(Z,Z0) ≤ 0, (4.25a), (4.25c)},

2. If ∣∣αk − αk−1∣∣ ≤ ϵ, declare convergence; otherwise, return to Step 1 and set k ← k + 1.
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4.3.3 Nonlinear Dynamic System Simulation

In reality, a well-linearized dynamics of the system to simulate may not be available. We may

only have access to the non-linear dynamics of the system to simulate. Let us consider a general

system as the following:

ẋ(t) = f(x(t), u(t)) (4.34a)

y(t) = g(x(t), u(t)), (4.34b)

We want to find the most optimal simulation system that matches the outputs of (4.34). The theo-

rem 4.3.1 developed in section 4.2 is only applicable to linear systems. An extension to dynamic

system simulations of non-linear systems is necessary.

In Chapter 3 section 3.3 we introduced the generalized QMC theory for system identification

applications, and we showed its advantages in system identification in section 3.4. We introduce

this method again for the purpose of linearization for the non-linear system (4.34).

We first discretize the system (4.34) using the zero-order-hold (ZOH) method. A conceptual

drawing of disretization using the ZOH method is shown in Figure 4.1. Hold the input u(t) at

discrete control uk at sampling period ∆t

u(t) = uk, k∆t ≤ t < (k + 1)∆t. (4.35a)

Denote yk as the discretized states and outputs of the system (4.34) with sampling period ∆t

xk = x(k∆t), (4.35b)

yk = y(k∆t). (4.35c)

Next, define Markov parameters(Hi) and Covariance parameters (Ri) of system (4.34) as the
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Figure 4.1: A discretization framework using the zero-order hold (ZOH) method.

cross-correlations and auto-correlations as follows:

Hi = E(y
T
k+iuk), (4.36a)

Ri = E(y
T
k+iyk). (4.36b)

Using Algorithm 3.4.1, we find a linear approximation system (4.37) that matches {Hi,Ri∣i =

0,1, . . . , q − 1}:

x̂k+1 = Âx̂k + B̂uk, (4.37a)

ŷk = Ĉx̂k + D̂uk, (4.37b)

One may proceed with the simulation problem of non-linear systems using Algorithm 4.3.2 by

replacing the non-linear dynamics (4.1) with this approximation system.

4.3.4 An Illustrative Example

In this section we introduce an example to demonstrate our method. We find the most optimal

simulation model with implementation of finite word-length effects.

Assume a linear model given as the format (4.1), where
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A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0673 0.0589 0.0641 0.0410 0.0237 0.0100

−0.6875 −0.3817 −0.2456 −0.0216 0.0210 0.0162

−0.2787 −0.3539 −0.5766 −0.7079 −0.3442 −0.1328

1.1390 0.7089 0.6199 0.3092 −0.3626 −0.1470

0.6304 0.4828 0.6183 0.8003 0.8921 −0.0445

0.0954 0.0820 0.1271 0.2288 0.4884 0.9952

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.0859

−0.1393

1.1390

1.2608

0.3817

0.0416

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

C = [0.5000 0.2799 0.1749 0.1175 0.0904 0.0700] , D = 0. (4.38)

Denote βu, βy and βx as fractional bits of float-pointing arithmeticat inputs, outputs and states

respectively. Let βu = βy = βx = β where β = 0,⋯,6, and Q = I .

4.3.4.1 dynamic simulation Results

Let β = 4. Construct the error system (4.11) and find simulation models in form of (4.3) using

algorithm (1) for simulation model size γ = 1,2, . . . ,6. The optimized α for each case are presented

in the Table 4.1. This result has also been plotted in Figure 4.2 for the case of Fractional bit β = 4.

The optimal simulation model size occurs at γ = 3. This tells us that a simulation model of size 3

gives the best simulation performance in a finite precision environment of float-pointing arithmetic

of fractional bits β = 4. Such a 3rd order model is given below:

As =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.5258 0.5230 0.1437

−0.4918 −0.2707 −0.1882

0.4406 −0.4955 0.4523

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Bs =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.5647

0.7589

0.2452

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Cs = [0.1924 0.1924 0.1924] , Ds = 0. (4.39)

Table 4.2 shows the eigenvalues of the simulation system of size 6. This simulation is not

the optimal, its error covariance scalar is 3.3117e−3 as shown in Table 4.1. However, one may

notice that the 4th, 5th and 5th eigenvalues are nearly negligible. This essentially indicates that

only 3 eigenvalues are required for this simulation case, and a model size of 3 will give satisfying
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Table 4.1: Error covariance scalar α for simulation model at different sizes γ = 1, . . . ,6 in float-
pointing arithmetic with fractional bit β = 4.

γ α

1 0.0164

2 3.8239e−3

3 3.2877e−3

4 3.2906e−3

5 3.2916e−3

6 3.3117e−3

simulation performance. This converges with our result in Table 4.1.

Table 4.2: Eigenvalues of the simulation system for β = 4, γ = 6.

Index Eigenvalues

1 0.6252

2 0.0378 + 0.1357i

3 0.0378 − 0.1357i

4 0.0007

5 0.0000015

6 −0.0001

Figure 4.2 shows how different fractional bits affect the optimal simulation model size. It

shows that for a float-pointing arithmetic fractional bit β = 0, and optimal simulation model size is

γ = 2. The optimal size increases to γ = 3 for β = 2 and β = 4, and increases to γ = 4 for β = 6. It

is expected that if we increase the fractional bits beta, the optimal simulation model size will keep

increasing till the full model size of the physics, which is γ = 6 in this specific case.
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Figure 4.2: Error covariance scalar α for simulation models at different sizes γ = 1, . . . ,6 in float-
pointing arithmetic with fractional bit β = 0,2,4,6.

4.3.4.2 Error Covariance of the Physics System

We are also interested in studying what is the error covariance scalar if we put the physics

system directly into the finite precision environment. Consider the physics system (4.1) and its

implementation with finite precision errors (4.2). Combine them together to get the following

assembly plant:

x̃k+1 = Ãx̃k + Ãeexk
+ B̃uk + B̃eeuk

(4.40a)

ỹk = C̃x̃k + C̃eexk
+ D̃eeuk

− eyk (4.40b)
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where

x̃k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xk

x̌k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Ã =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A 0

0 A

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Ãe =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

A

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B̃ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B

B

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B̃e =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

B

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.40c)

ỹk = yk − y̌k, C̃ = [C −C] , C̃e = −C, D̃e = −D. (4.40d)

The error covariance for performing computational simulation over the physics system in a finite

precision environment is given below:

Ỹ = C̃X̃C̃T + C̃eExC̃
T
e + D̃eEuD̃

T
e +Ey, (4.41)

where X̃ is the solution to the equation below:

X̃ = ÃX̃ÃT + ÃeExÃ
T
e + B̃UB̃T + B̃eEuB̃

T
e . (4.42)

Let α̌ be the smallest scalar that satisfies α̌Q ≥ Ỹ . α̌ is the performance scalar of computational

simulation for the physics system in a finite precision environment.

Let β = 0, . . . ,6, construct the error system (4.2) and compute their corresponding error covari-

ance scalar α̌. We compare these results with the optimal error covariance scalar α from simulation

systems in section 4.3.4.1. The result is attached in table 4.3. It clearly shows that in any of the

finite precision β = 0, . . . ,6, the error covariance scalar of the simulation model α, is superior to

that of the physics model. This result shows that implementing a physics model directly into the

computational simulation may lead to a very poor simulation performance.
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Table 4.3: Comparison of error covariance scalars for physics system α̌ and optimal simulation
system α in finite precision environment of float-pointing arithmetic, fractional bits β = 0,⋯,6.

β α̌ α

0 1.0077 0.7414

1 0.2519 0.1999

2 0.0630 0.0517

3 0.0157 0.0131

4 0.0039 0.0033

5 9.8413E−4 8.5841E−4

6 2.4603E−4 2.2128E−4
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4.4 Simulation Design by Truncation of Modes

In section 4.3 we attacked the system simulation problem with finite precision effects using

a feedback control technique. The problem is transformed into three linear matrix inequalities

(LMIs) and one nonconvex constraint. After convexification, we can numerically evaluate the

problem using LMI toolbox. However, this approach only guarantees local optimum, where the

final solution depends on the choice of initial guess. Yet, a general criterion on how to make a good

initial guess is not available. In this section, we confine the system of interest to flexible structures

and attack this problem using a different approach.

4.4.1 Problem Statement

Assume the system to simulate is a flexible structure, where (4.43) denotes as its dynamics.

ẋ = f(x,u), (4.43a)

y = g(x,u). (4.43b)

Let (4.44) be the state-space realization in its modal coordinate, where l is the number of modes

included.

ẋl = Alxl +Blu, (4.44a)

yl = Clxl +Dlu. (4.44b)

With the existence of finite precision effects, (4.44) becomes the following when implemented

in computation simulations

ˇ̇xl = Al(x̌ + ex) +Bl(u + eu), (4.45a)

y̌l = Cl(x̌ + ex) +Dl(u + eu) + ey. (4.45b)

Denote ỹ = y − y̌l to be the error between outputs of the system to simulate and the reduced-

modes system with finite precision effects. We are interested in finding the smallest mode number l
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that satisfies an output covariance upper-bound constraint (4.46) where α is a pre-specified positive

scalar, and Q is a given weighting matrix.

E(ỹỹT ) ≤ αQ (4.46)

4.4.2 Problem Formulation

Let’s start this problem by first discretizing and linearizing the flexible structure system (4.44).

This is similar to the section (4.3.3) where non-linear dynamics are identified to linear state-space

realizations using q-Markov Covariance Equivalent (QMC) method. Denote the system (4.47) as

the linearized physics we would like to match

x̂k+1 = Âx̂k + B̂uk, (4.47a)

ŷk = Ĉx̂k + D̂uk, (4.47b)

where ∆t represents the discretization sampling time, uk and yk are the discretized input and output

u(t) = uk, k∆t ≤ t < (k + 1)∆t, (4.47c)

yk = y(k∆t). (4.47d)

Similarly, denote the system (4.48) as the discretized reduced-modes system of modes number

l

xlk+1 = Ǎlxlk + B̌luk, (4.48a)

ylk = Člxlk + +Ďluk, (4.48b)

where uk, xlk and ylk are the discretized input, state and output

u(t) = uk, k∆t ≤ t < (k + 1)∆t, (4.48c)

xlk = xl(k∆t), (4.48d)
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ylk = yl(k∆t). (4.48e)

Implement (4.48) in finite precision environment to get system (4.49)

x̌lk+1 = Ǎl(x̌lk + exk
) + B̌l(uk + euk

), (4.49a)

y̌lk = Čl(x̌lk + exk
) + Ďl(uk + euk

) + eyk , (4.49b)

where exk
, eyk , euk

are modelled as random variables satisfying a uniform distribution with variance

Ex,Ey,Eu respectively as depicted in section (4.2)

E(exk
) = 0,E(exk

eTxk
) = Ex, (4.49c)

E(euk
) = 0,E(euk

eTuk
) = Eu, (4.49d)

E(eyk) = 0,E(eyke
T
yk
) = Ey, (4.49e)

Augment systems (4.47) and (4.49) to get the following error system

x̃lk+1 = Ãlx̃lk + Ãleexk
+ B̃luk + B̃leeuk

, (4.50a)

ỹlk = C̃lx̃lk + C̃leexk
+ D̃luk + D̃leeuk

− eyk , (4.50b)

where

x̃lk =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x̂k

x̌lk

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ỹlk = ŷk − y̌lk , (4.50c)

Ãl =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Â 0

0 Al

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Ãle =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

Al

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B̃l =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B̂

B̌l

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B̃le =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

B̌l

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.50d)

C̃l = [Ĉ −Čl] , C̃le = −Čl, D̃l = D̂ − Ďl, D̃le = −Ďl, (4.50e)

Notice that for a specific modes number l, its corresponding modal coordinate realization
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{Al,Bl,Cl,Dl} is known. Thus he augmented plant (4.50) is also known for a pre-specified l.

The error covariance Ỹl of (4.50) is computable once l is specified as follows:

Ỹl = C̃lX̃lC̃
T
l + C̃leExC̃

T
le
+ D̃lUD̃T

l + D̃leEuD̃
T
le
+Ey, (4.51a)

X̃l = ÃlX̃lÃ
T
l + ÃleExÃ

T
le
+ B̃lUB̃T

l + B̃leEuB̃
T
le
. (4.51b)

Algorithms 4.4.1. Let a positive weighting matrix Q be given. Find the linear approximation

system of (4.43) using QMC method. Initialize with k = 1.

1. Find the modal coordinate system with modes number l = k and discretize to get (4.45).

2. Construct the error plant (4.50), and compute the error covariance scalar αk which satisfies

E(ỹlỹTl ) < αkQ.

3. If αk − αk−1 > 0, stop; otherwise set k ← k + 1 and return to step 1.

4.4.3 A Flexible Structure Example

Section 3.5.1 describes a formulation of an cantilever beam with different mode shapes. In this

specific example, we select the cantilever beam with following material properties: EI = 1, ρ =

1, L = 1, and an damping coefficient c = 0.1. We consider the true physics has 1 deflection output

at r1 = 0.8L, 1 force input at r2 = L, and 16 mode shapes. Frequencies of all mode shapes are

listed in Table 4.4, and frequencies responses are plotted in Figure 4.3. High-frequency modes

are essentially difficult to excite, and their magnitudes become insignificant compared to low-

frequency modes. The corresponding state-space realization is the following:

ẋl = Alxl +Blu, (4.52a)

yl = Clxl +Dlu. (4.52b)

where

Al = diag

⎛
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1

−ω2
1 −2cω1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,⋯,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1

−ω2
l −2cωl

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎠

, (4.52c)

87



Bl = [0 Φ1(r1)T ⋯ 0 ΦN(r1)T ]
T

, (4.52d)

Cl = [Φ1(r1) 0 ⋯ ΦN(r1) 0] , (4.52e)

Dl = 0, (4.52f)

where Φi(ri) represents the mode shape function (4.52g), the constant C is determined by the initial

condition at t = 0, and βi are solutions to make the following condition satisfied

Φi(r) = C[cosh(βir) − cos(βir) − ki{sinh(βir) − sin(βir)}], (4.52g)

ki =
cosh(βiL) + cos(βiL)

sinh(βiL) + sin(βiL)
, (4.52h)

cos(βiL)cosh(βiL) = −1. (4.52i)

We consider the fixed-pointing arithmetic, fractional bits β = [0,1,2,4,8,16,32,64], as the

finite precision environment. We calculated the error covariance scalar α with reduced-mode sys-

tems considering mode numbers l = 1,⋯,16. Figure 4.4a displays the results for β = [0,1,2,4] and

Figure 4.4b displays the results for β = [8,16,32,64]. The result shows that the optimal number

of modes to include in the simulation model is 1 for β = [0,1,2,4,8], 7 for β = 16, 12 for β = 32,

and 16 for β = 64. This result demonstrates that reduced-mode models may have better simulation

performances than the full-size model with the existence of finite precision effects.
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Table 4.4: Mode shape frequencies for the cantilever beam.

Mode Index i Mode Frequency ωi(rad/s)

1 3.5160

2 22.0345

3 61.6972

4 120.9019

5 199.8595

6 298.5555

7 416.9908

8 555.1652

9 713.0790

10 890.7318

11 1088.1237

12 1305.2555

13 1542.1258

14 1798.7353

15 2075.0840

16 2371.1728
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Figure 4.3: Frequency responses for the 16 modes.
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(a) Error covariance scalar plots for fixed-point arithmetic, fractional bits β = 0,1,2,4.

(b) Error covariance scalar plots for fixed-point arithmetic, fractional bits β = 8,16,32,64.

Figure 4.4: Error covariance scalars for fixed-point arithmetic with different fractional bits.
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4.5 Conclusion

This chapter develops a general approach for computational simulations of dynamic systems

that considers finite precision. First, the problem is mathematically formulated, where the simula-

tion performance is defined as the error covariance of an assembled system integrating the physics

system and the simulation system. The purpose is to minimize the norm of the error covariance

through the integration of signal processing and model reduction. The problem yields to a set of

linear matrix inequalities (LMIs) plus a coupling non-convex constraint. A convexification algo-

rithm has been applied to guarantee local optimum so that the problem is solvable through the

LMI toolbox. A methodology that extends the approach to computational simulation applications

of nonlinear systems is provided. An illustrative example has been conducted at the end. Its result

demonstrates that one should reduce the simulation model to the optimal size in order to get the

most optimal simulation performance.
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5. MARKOV DATA-BASED REFERENCE TRACKING CONTROL AND ITS

APPLICATION TO A TENSEGRITY AIRFOIL

This chapter presents a data-based control design for reference tracking applications, which

requires only the first N + 1 Markov parameters of a system. This design finds the optimal con-

trol sequence, which minimizes a quadratic cost function consisting of tracking error and input

increments over a finite interval [0,N]. This design is employed on a tensegrity morphing airfoil

whose topology has been described in detail in this chapter. A NACA 2412 airfoil with specified

morphing targets is chosen to verify the developed design. The principle developed in this paper is

also applicable to other structural control problems.

5.1 Problem Formulation

Assume the system to control may be represented by the following state-space realization:

xk+1 = Axk +Buk +Bwwk, (5.1a)

yk = Cxk +Duk + vk, (5.1b)

where A, B, C and D are state-space coefficient matrices, uk is the control input, wk is the

system disturbance and vk is the sensor noise. Consider a trajectory reference signal rk, which we

would like the output signal yk to track. Denote the following two terms:

ek = rk − yk, (5.2a)

∆uk = uk − uk−1, (5.2b)

where ek is the tracking error between the reference signal yk, and ∆uk is the input increment

between two concussive inputs.
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Notice that system (5.1) may be written as the following [65]:

x̆k+1 = Ăx̆k + B̆∆uk + B̆wk, (5.3a)

yk = C̆x̆k + D̆∆uk + vk, (5.3b)

where

Ă =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A B

0 I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B̆ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B

I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B̆w =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Bw

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.4)

C̆ = [C D] , D̆ =D, x̆k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xk

uk−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.5)

We are interested in finding an optimal control sequence uk over a finite horizon [0,N] that

minimizes a quadratic weighted cost function (5.6) using Markov parameters of (5.1) only, where

J is a function consisting of tracking errors and input increments, and S,Q,R,T are related weight

matrices.

J =
1

2
eTNSeN +

1

2

N−1
∑
k=0
(eTkQek +∆uT

kR∆uk) +
1

2
∆uT

NT∆uT
N . (5.6)

5.2 Model-based Control Law

The cost function (5.6) can be analytically evaluated by taking the partial derivative ∇J = 0.

The solution of input increment sequence is given by the theorem below [65].

Theorem 5.2.1. Suppose a linear system (5.1) is given, and weight matrices S,Q,R,T are known.

Suppose a reference signal rk is specified. A control sequence that minimize the cost function (5.6)

is the following:

uk =
k

∑
i=0

∆ui, k ∈ [0,N], (5.7a)
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where

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆u0

∆u1

⋮

∆uN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=K

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r0

r1

⋮

rN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C̆

C̆Ă

⋮

C̆ĂN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x̆0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.7b)

K = (H̆T Q̆H̆ + R̆)−1(Q̆H̆)T , (5.7c)

H̆ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D̆ 0 ⋯ ⋯ 0

C̆B̆ D̆ ⋱ ⋱ ⋮

C̆ĂB̆ C̆B̆ ⋱ ⋱ ⋮

⋮ ⋮ ⋱ ⋱ ⋮

C̆ĂN−1B̆ C̆ĂN−2B̆ ⋯ C̆B̆ D̆

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.7d)

Q̆ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Q ⋯ ⋯ 0

⋮ ⋱ ⋱ ⋮

⋮ ⋱ Q ⋮

0 ⋯ ⋯ S

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.7e)

R̆ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

R ⋯ ⋯ 0

⋮ ⋱ ⋱ ⋮

⋮ ⋱ R ⋮

0 ⋯ ⋯ T

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.7f)

Proof. The cost function (5.6) may be rewritten as the following:

J =
1

2
r⃗T Q̆r⃗ − r⃗T Q̆C̆x⃗ − r⃗T Q̆D̆∆u⃗ +

1

2
x⃗T
k C̆

T Q̆C̆x⃗

+ x⃗T
k C̆

T Q̆D̆∆u⃗ +
1

2
∆u⃗T D̆T Q̆D̆∆u⃗ +

1

2
∆u⃗T R̆∆u⃗, (5.8a)
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where

x⃗ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x̆0

x̆1

⋮

x̆N

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, r⃗ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r̆0

r̆1

⋮

r̆N

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,∆u⃗ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆u0

∆u1

⋮

∆uN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.8b)

C̆ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C̆ ⋯ ⋯ 0

⋮ ⋱ ⋱ ⋮

⋮ ⋱ C̆ ⋮

0 ⋯ ⋯ C̆

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, D̆ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D̆ ⋯ ⋯ 0

⋮ ⋱ ⋱ ⋮

⋮ ⋱ D̆ ⋮

0 ⋯ ⋯ D̆

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.8c)

Notice the following:

x⃗ =A1x0 +A2∆u⃗, (5.9a)

where

A1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I

Ă

⋮

ĂN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,A2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 ⋯ 0

B̆ 0 ⋱ 0

⋮ ⋱ ⋱ ⋮

ĂN−1B̆ ĂN−1B̆ ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.9b)

Substitute (5.8b) into (5.8a) and take partial derivative over the vector ∆u⃗ give the following:

∆J = −(Q̆C̆A2 + Q̆D̆)T r⃗ + (Q̆C̆A2 + Q̆D̆)T C̆A1x0

+ ((C̆A2 + D̆)
T Q̆(C̆A2 + D̆) + R̆)∆u⃗. (5.10)

Notice

C̆A2 + D̆ = H̆, (5.11)
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Set ∆J = 0 gives the following result:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆u0

∆u1

⋮

∆uN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=K

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r0

r1

⋮

rN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C̆

C̆Ă

⋮

C̆ĂN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x̆0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.12)

K = (H̆T Q̆H̆ + R̆)−1(Q̆H̆)T . (5.13)

5.3 Markov Parameters

Markov parameters of a system convey its transient properties and can be evaluated via many

approaches. Let’s start our discussion with the deterministic definitions of Markov parameters for

the system (5.1):

H0 = 0,Hi = CAi−1B, i = 1,2,⋯, (5.14a)

M0 = 0,Mi = CAi−1Bw, i = 1,2,⋯. (5.14b)

There are quite a few methods to evaluate Markov parameters Hi and Mi without knowing the

dynamics of (5.1). The most straightforward method would be an impulse experiment, as Markov

parameters are equivalent to the impulse responses of a system. Another method would be the

white noise which utilizes its stochastic definition (5.15). A least-square method to determine

Markov parameters of a system employing input/output information is also given in [50].

Hi = E(yk+iu
T
k ) = lim

N→∞

1

N

N−1
∑
k=0

yk+iu
T
k , (5.15a)

Mi = E(yk+iw
T
k ) = lim

N→∞

1

N

N−1
∑
k=0

yk+iw
T
k . (5.15b)
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Let’s define the following Markov parameters H̆1 and M̆i for the reconstructed system (5.3):

H̆0 = 0, H̆i = C̆Ăi−1B̆, i = 1,2,⋯, (5.16a)

M̆0 = 0, M̆i = C̆Ăi−1B̆w, i = 1,2,⋯. (5.16b)

One may numerically evaluate H̆i and M̆i using information of Hi and Mi, as stated in the

Lemma 5.3.1.

Lemma 5.3.1. Markov parameters of (5.3) and (5.1) satisfy the following relationships:

H̆i =
i

∑
j=0

Hj, (5.17a)

M̆i =Mi. (5.17b)

Proof. One may observe the following patterns:

H̆0 =H0, (5.18a)

H̆1 = C̆B̆ = CB =H0 +H1, (5.18b)

H̆2 = C̆ĂB̆ = CAB +CB =H0 +H1 +H2, (5.18c)

⋮

H̆i = C̆Ăi−1B̆ = CAi−1B +CAi−2B +⋯ +CB =
i

∑
j=0

Hj, (5.18d)

M̆0 =M0, (5.18e)

M̆1 = C̆B̆w = CBw =M1, (5.18f)

M̆2 = C̆ĂB̆w = CABw =M2, (5.18g)

⋮

M̆i = C̆Ăi−1B̆w = CAi−1Bw =Mi. (5.18h)
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5.4 Data-Based Control Law

In this section we introduce the complete data-based control law for reference tracking appli-

cation, which requires Markov parameters H̆i and M̆i as defined in (5.16a) and (5.16b).

Theorem 5.4.1. The data-based control law that minimizes the quadratic weighted cost function

(5.6) over a finite horizon [0,N] that requires the first N + 1 Markov parameters (5.14a) and

(5.14b) is the following:

uk =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∆uk , k = 0

uk−1 +∆uk , k > 0
, (5.19a)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆uk

∆uk+1

⋮

∆uN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=Kk

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

rk

rk+1

⋮

rN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− ⃗̄xk

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.19b)

where

Kk = (H̆
T
k Q̆kH̆k + R̆k)

−1(Q̆kH̆k)
T , (5.19c)

⃗̄xk =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 , k = 0

[−Fk I] ⃗̄xk−1 +Bk∆uk +Fkyk−1 , k > 0
, (5.19d)

H̆k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H̆0 0 ⋯ ⋯ 0

H̆1 H̆0 ⋱ ⋱ ⋮

H̆2 H̆1 ⋱ ⋱ ⋮

⋮ ⋮ ⋱ ⋱ ⋮

H̆N−k H̆N−k−1 ⋯ H̆1 H̆0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.19e)
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Q̆k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Q ⋯ ⋯ 0

⋮ ⋱ ⋱ ⋮

⋮ ⋱ Q ⋮

0 ⋯ ⋯ S

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.19f)

R̆k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

R ⋯ ⋯ 0

⋮ ⋱ ⋱ ⋮

⋮ ⋱ R ⋮

0 ⋯ ⋯ T

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.19g)

Fk =MkPkN
T
k (V +NkPkN

T
k )
−1, (5.19h)

Bk =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H̆1

H̆2

⋮

H̆N−k+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.19i)

Mk =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M̆2 M̆3 ⋯ M̆k+1

M̆3 ⋰ ⋰ M̆k+2

⋮ ⋰ ⋰ ⋮

M̆N−k+2 M̆N−k+3 ⋯ M̆N+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.19j)

Nk = [M̆1 M̆2 ⋯ M̆k] , (5.19k)

Pk = (W
−1
k−1 +T

T
k−1V

−1
k−1Tk−1)

−1, (5.19l)

Wk−1 = diag(W ), W = E(wT
k wk), (5.19m)

Vk−1 = diag(V ), V = E(vTk vk), (5.19n)
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Tk−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M̆0 M̆1 ⋯ ⋯ M̆k−1

0 M̆0 ⋱ ⋱ M̆k−2

⋮ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ M̆1

0 ⋯ ⋯ 0 M̆0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.19o)

Proof. Define the following variable:

⃗̄xk =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C̆

C̆Ă

⋮

C̆ĂN−k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x̌k, (5.20)

Then, we can write the following:

x̌k+1 = Ăx̌k + B̆∆uk +Lk(yk − C̆x̌k), (5.21)

where x̌k is the estimation of the state x̆k, and Lk stands for the gain of the estimator. The following

relation can be established [42]:

⃗̄xk =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C̆Ă

C̆Ă2

⋮

C̆ĂN−k+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x̌k−1 +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C̆B̆

C̆ĂB̆

⋮

C̆ĂN−kB̆

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∆uk−1 +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C̆

C̆Ă

⋮

C̆ĂN−k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Lk−1(yk−1 − C̆x̌k−1)

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C̆

C̆Ă

⋮

C̆ĂN−k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Lk−1 I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C̆

C̆Ă

⋮

C̆ĂN−(k−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x̌k−1 +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C̆B̆

C̆ĂB̆

⋮

C̆ĂN−kB̆

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∆uk−1 +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C̆

C̆Ă

⋮

C̆ĂN−k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Lk−1yk−1
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= [−Fk I] ⃗̄xk−1 +Bk∆uk−1 +Fkyk−1, (5.22)

where

Fk =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C̆

C̆Ă

⋮

C̆ĂN−k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Lk−1, Bk =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C̆B̆

C̆ĂB̆

⋮

C̆ĂN−kB̆

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.23)

The solution of the estimator gain can be expressed as the following [66]:

Lk−1 = ĂYk−1C̆
T (V + C̆Yk−1C̆

T )−1, (5.24)

Yk−1 =Dk−1PkD
T
k−1,

where:

Dk−1 = [B̆w ĂB̆w ⋯ Ăk−1B̆w] , (5.25a)

Pk = (W
−1
k−1 +T

T
k−1V

−1
k−1Tk−1)

−1, (5.25b)

Wk−1 = diag(W ), W = E(wT
k wk), (5.25c)

Vk−1 = diag(V ), V = E(vTk vk), (5.25d)

Tk−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D̆ C̆B̆w ⋯ ⋯ C̆Ăk−2B̆w

0 D̆ ⋱ ⋱ C̆Ăk−3B̆w

⋮ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ C̆B̆w

0 ⋯ ⋯ 0 D̆

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.25e)
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Applying Eq. (5.24) one may get the following expression:

Fk =MkPkN
T
k (V +NkPkN

T
k )
−1, (5.26a)

where:

Mk =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C̆ĂB̆w C̆Ă2B̆w ⋯ C̆ĂkB̆w

C̆Ă2B̆w ⋰ ⋯ C̆Ăk+1B̆w

⋮ ⋰ ⋰ ⋮

C̆ĂN−k+1B̆w C̆ĂN−k+2B̆w ⋯ C̆ĂN B̆w

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.26b)

Nk = [C̆B̆w C̆ĂB̆w ⋯ C̆Ăk−1B̆w] . (5.26c)

5.5 Tensegrity Morphing Airfoil

5.5.1 Tensegrity

A tensegrity structure is a pre-stressed and stable structure composed of compressive members

(bars or struts), and tensile members (strings or cables) [67]. Evidence from biological systems

perhaps elucidates that tensegrity concepts yield the most efficient structures. For example, the

molecular structure of cell surface, DNA bundles, spider fibers, and human elbows are all exam-

ples of internal tensegrity structures [68–71]. During its development, the tensegrity system has

shown its advantages in properties lightweight, deployability, energy absorption, and promoting

the integration of structural and control [72–80].

Due to the many benefits of tensegrity systems, control and robotics communities have devel-

oped many soft robots using the tensegrity paradigm in recent years. For example, Baines et al.

presented their tensegrity rolling robots by soft membrane actuators [81]. Wang et al. derived

a nonlinear dynamics-based control, and a decoupled data-based (D2C) LQR control law around

the linearized open-loop trajectories [82]. Goyal et al. developed tensegrity robotics with gyro
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actuators [83]. Begey et al. demonstrated two approaches, X-shaped tensegrity mechanisms and

an analogy with scissor structures, to design tensegrity-based manipulators [84].

Compared with rigid airfoils, morphing airfoils are gaining significant interest from various

researchers due to their advantage of excellent flexibility to different flight regimes. Although cur-

rent approaches, such as flaps, slats, aileron, and wing-let, can help achieve the desired control

objective, most of these efforts break the streamlined airfoil shape, which aerodynamics engineers

carefully design. Other emerging methods, such as shape memory alloys and piezoelectric actu-

ators, can also smoothly fulfill the morphing targets—however, most of them work at relatively

low bandwidth and require heavy supporting equipment. A few attempts have been made to in-

tegrate topology design and control design towards a system point of view. For example, Chen

et al. presented a design of tensegrity morphing airfoil and a nonlinear control approach to class-

k tensegrity structures [85]. Shintake et al. designed a fish-like robot with tensegrity systems,

driven by a waterproof servomotor [86]. This chapter also tries to demonstrate structural control

with an application of reference tracking control for a tensegrity morphing airfoil by a data-based

approach.

5.5.2 Airfoil Configuration

We connect the discrete points in a pattern similar to the structure of the vertebra. Figure 5.1

shows the procedure of discretization. Figure 5.2 gives the notation of nodes, bars, and strings of

a tensegrity airfoil with any complexity q, where q represents the number of horizontal bars in a

tensegrity structure. The discrete points on the surface of the airfoil (nodes nq+1,nq+2,⋯,n3q+1)

are determined by error bound spacing method developed in [85, 87]. They are defined as the

maximum errors between the continuous surface shape where each straight-line segment is less

than a specified value δ. The coordinate of node ni (i = 1,2,⋯, q) is determined by the two nodes

that are above or below this point with a same ratio µ ∈ (0,1). The following analytical expression

describes this relation:

ni = µnq+1+i + (1 − µ)n2q+1+i. (5.27)
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Figure 5.1: Tensegrity airfoil configuration, blue area is the rigid body, black and red lines are bars
and strings.

We define N , B, S, Cb, Cs as the matrices for nodes, bars , strings, bar connectivity and string

connectivity for a tensegrity airfoil with any complexity q, as shown in (5.28). The nodal matrix

N consists of three components, where each column represents the x, y, and z coordinate of each

node. CS and CB are connectivity matrices of strings and bars consisting of elements 0, -1, and 1,

denoting the start and end node of a bar or string, where bj (j = 1,2,⋯,3q) and sk (k = 1,2,⋯,6q−

4) are the jth bar and kth string. The bar and string matrices are the multiplications of nodal matrix

and connectivity matrices sytisfying B = NCT
b , S = NCT

s . A function tenseg_ind2C.m is given

to convert Cbin and Csin to Cb and Cs [88].

N = [n1 n2 ⋯ n3q+1] ,ni = [xi yi zi]
T

, (5.28a)

B = [b1 b2 ⋯ b3q] , (5.28b)

S = [s1 s2 ⋯ s6q−4] , (5.28c)

Cbin =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[i, i + 1], 1 ≤ i ≤ q

[i − q, i + 1], q + 1 ≤ i ≤ 2q

[i − 2q, i + 1], 2q + 1 ≤ i ≤ 3q

, (5.28d)
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Csin =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[i + 1 + q, i + 2 + q], 1 ≤ i ≤ q − 1

[2q + 1, q + 1]

[q + i, i], 2 ≤ i ≤ q

[i, q + 2 + i], 1 ≤ i ≤ q − 1

[i,2q + 2 + i], 1 ≤ i ≤ q − 1

[2q + i, i], 2 ≤ i ≤ q

[i + 1 + 2q, i + 2 + 2q], 1 ≤ i ≤ q − 1

[3q + 1, q + 1]

. (5.28e)

The nonlinear tensegrity dynamics using a finite element method is employed as the black box

system to do the system identification, which is in the following vector form [89]:

Mn̈ +Dṅ +Kn = fex − g, (5.29)

M =
1

6
(∣C ∣Tm̂∣C ∣ + ⌊∣C ∣Tm̂∣C ∣⌋)⊗ I3, (5.30)

K = (CT x̂C)⊗ I3, (5.31)

g =
g

2
(∣C ∣Tm)⊗ [0 0 1]

T

. (5.32)

Here n ∈ R3nn is the nodal coordinate vector for the whole structure where n = [nT
1 nT

2 ⋯ nT
3q+1]

T

,

connectivity matrix C = [CT
b CT

s
]
T

, M , D, and K are mass, damping, and stiffness matrices,

m is the mass vector of bars and strings (m̂ is a diagonal matrix), fex represents the external force

on the structure nodes, and g represents the gravity vector where g is gravity constant.

5.5.3 Morphing target

A NACA 2412 is selected. Its chord length is c = 1 m where the first 0 ∼ 0.3 m is the rigid part.

The vertical bar length ratio is selected as µ = 1/3, and error bound δ = 0.001 m for generation of

the tensegrity foil’s initial generation [90]. This example has five horizontal bars thus q = 5. The
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Figure 5.2: Node, bar, and string notations of a tensegrity airfoil with complexity q.

target configuration is generated by rotating the horizontal bars b1,b2,⋯,b5 for angles θ1 =
π
72 ,

θ2 =
π
36 ,θ3 = 3π

72 , θ4 = π
18 θ5 =

5π
72 . The rotation motions are assumed linear and lengths of every bar

are assumed unchanged during deformation. Vertical bars remain perpendicular to the horizontal

bars. Figure 5.3 depicts the initial configuration and target configuration.

5.5.4 Data experiment and results

A black box system that contains the dynamics of the tensegrity airfoil shown has been con-

structed, which accepts 26 input signals and returns 26 output signals. Its Markov parameters have

been evaluated via black box experiments Eq. (5.15), and control sequences have been computed

using Eq. (5.19) to track a reference configuration. Figure 5.4 shows the configuration of the

morphing airfoil at T = 0s,0.5s and 1s. Figures 5.5 and 5.6 show the node errors in x and y
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Figure 5.3: Initial and morphing configuration of the tensegrity NACA 2412 airfoil, top one (bars
in black, strings in red, and nodes in black) is the initial state, and the bottom one (bars in grey,
strings in pink, and nodes in blue) is the morphing target.

coordinates during the control process. These errors decrease and converge to zero as the control

process approaches the final step. A bump occurs at the beginning of the control process. This is

because the state estimator takes effect at the second step, and the control algorithm takes effect at

the third step. Figure 5.7 shows the change of the string lengths during the control process. The

result demonstrates a successful morphing control for the tensegrity airfoil.
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Figure 5.4: Time history of the tensegrity morphing airfoil at T = 0s, 0.5s, and 1s.
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Figure 5.5: Node error in x coordinate during control process.

Figure 5.6: Node error in y coordinate during control process.
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Figure 5.7: String length time history, string current length minus string initial length v.s. time.
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5.6 Conclusions

This chapter presents an optimal data-based reference tracking controller design that uses the

knowledge of the first N + 1 Markov parameters. This design finds an optimal control sequence

minimizing a quadratic cost function concerning tracking error and input increments. The only

necessary knowledge, Markov parameters, can be evaluated from the input/output experimental

data from the system one aims to control. Accordingly, this design does not require any explicit

information regarding the dynamics of the system to control. Result demonstrates a successful

reference tracking control of a tensegrity morphing airfoil.
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6. SUMMARY AND CONCLUSIONS

This dissertation delivers innovative contributions to the system identification problem using

the q-Markov Covariance Equivalent (QMC) method, the simulation problem considering finite

precision effects, and the data-based control problem for reference tranking applications.

The identification of unstable or marginally stable systems using the QMC method has been ad-

dressed in Chapter 2. Existing QMC methods do not apply to unstable or marginally stable system

identifications. We repaired this deficiency by introducing the closed-loop observer dynamics into

a unique formulation of the QMC dynamics. By feeding the outputs into the states, the observer

system is guaranteed asymptotically stable via pole placements. This unique QMC formulation

enables us to find an approximation system with identical nature of stability to the system one

aims to identify. A method to reconstruct state-space QMC systems from observer QMC systems

is presented.

The identification problem of finding the best QMC solution which matches the pre-specified

data set using minimal data has been addressed in Chapter 3. Parametrization of existing QMC

methods finds all solutions that match the given data set. We propose a new selection criterion to

find the most efficient QMC, then prove it matches the transfer function of the system to identify.

Combining with the unstable QMC formulation in Chapter 2, we propose a general QMC theorem

and a generalized algorithm for system identification using QMC methods.

The system simulation problem of finding the most optimal simulation model with the exis-

tence of round-off errors, disturbance, and measurement noise has been addressed in Chapter 4.

First, We transform this problem into a set of linear matrix inequalities (LMIs) along with a cou-

pling non-convex constraint. A convexifying algorithm is applied to the non-convex constraint.

Solving the problem via the LMI toolbox guarantees the convergence of the local optimum. Next,

focus on the simulation applications of flexible structures in modal coordinates. We find the simu-

lation model with the optimal size via truncation of modes. By introducing the QMC method, We

further extend both methods to dynamic simulations of a non-linear system.
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The system control problem of finding an optimal control sequence using a data-based tech-

nique for reference tracking applications has been addressed in Chapter 5. This control sequence

minimizes a weighted quadratic cost function over a finite horizon [0,N], and requires only infor-

mation of Markov parameters up to N + 1. We apply this data-based technique on the control of a

2D tensegrity morphing airfoil for demonstration.
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