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ABSTRACT 

The proliferation of smart meters in the grids has resulted in an explosion of 

large energy datasets. Processing such big data is challenging and usually takes a longer 

time than the requirement of a short-term load forecast. In the era of big data, where 

information is one of the key factors in making decisions, this study is drawing attention to 

the need for data management in smart grids. For the utility to be able to plan the 

resources accurately and balance the electricity supply and demand, accurate and timely 

forecasting is required. Machine learning algorithms have been intensively applied to 

perform load forecasting to obtain better accuracies as compared to traditional statistical 

methods. However, with the huge increase in data size, sophisticated algorithms must be 

created which require big data platforms with adequate computational resources. 

Optimal and effective use of the available computational resources can be attained by 

maximizing the efficient utilization of the computational nodes of a big data platform. 

Parallel computing is demanded to allow for optimal resources utilization in dealing with 

smart grid big data. The work in this research addresses the concerns by deploying 

parallel computing capabilities to minimize the execution time while maintaining highly 

accurate load forecasting models. This work utilizes multi-node and multi-core 

processing to minimize the overall execution time of the forecasting models while 

ensuring acceptable accuracy by mapping simultaneous jobs to available processors. The 

obtained results demonstrate the efficacy of the proposed approach through real-time 

adoption of machine learning (ML) models, diminishing execution time, and enhancing 

scalability. This research will show how tree-based models have outperformed the other 
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models accomplishing a tradeoff between model accuracy and execution time. The 

proposed approach is validated on real big data provided by Iberdrola, a Spanish utility 

company. The data is acquired from one hundred thousand different data sources in the 

electrical distribution system and amounts to 2.2 billion records approximately. To 

enhance the analysis further, a master-slave parallel computing paradigm for load 

forecasting is deployed and experimentally verified. The work proposes a concurrent job 

scheduling algorithm in a multi-energy data source environment using Apache Spark. 

An efficient resource utilization strategy is developed for optimizing multiple Spark jobs 

to reduce job completion time. The clustering method is implemented to group the 

electrical distribution nodes into clusters to reduce the number of required forecasting 

models, additionally reducing computational time.  
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CHAPTER I 

INTRODUCTION*1 

The smart grid is re-engineering the electricity generation, transmission, and distribution 

throughout the world. Smart Grid is an amalgam of increased digital information with 

the electrical power grids. Managing the big data generated from the grid efficiently is 

the key to successful transformation to the smart grid era. Most of the scientific 

advancements are becoming data-driven and hence, big data management in smart grids 

is an emerging and interesting area of research for data scientists. The world is 

computationally challenged enough to develop new storage methods and processing 

technologies for such big data. Managing big data involves data cleaning, varied data 

source integration, and decision-making applications. This thesis focuses on the study of 

big data management and proposes a data management platform to help manage the big 

data in the smart grid. Data management tools and techniques have been leveraged to 

understand the sources and data types in the electric grid. The thesis work emphasizes 

the limitations of the existing computational solutions inclined towards applications for 

smart grid big data. 

As the data size increases, the computations tend to be heavy and time-consuming, 

resulting in a challenging situation to forecast the load under short time constraints. 

Various computationally intelligent techniques have also been employed previously in the 

electric energy field [1]. Several ML algorithms were designed with the assumption that 

 

1 Reprinted with permission from "Distributed Tree-Based Machine Learning for Short-Term Load Forecasting With Apache 
Spark," by “Ameema Zainab, Ali Ghrayeb, Haitham Abu-Rub, Shady S. Refaat and Othmane Bouhali, 2021. IEEE Access, vol. 9, 

pp. 57372-57384, Copyright 2021 by Ameema Zainab. 
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the entire dataset fits in the memory. This assumption negatively affects the ML 

algorithms while impeding their performance. For instance, a support vector machine 

(SVM) has a space complexity of 𝑂(𝑚2) and a training complexity of 𝑂(𝑚3) [2],  

where 𝑚 indicates the number of samples. Therefore, as the size of the data increases, 

parallel data structures, data reuse, and data partitioning become important 

characteristics. Resilient distributed datasets (RDDs) implemented in a Spark cluster 

computing framework exhibit in-memory characteristics [3]. This leads to the work of 

this thesis to use a typical architecture that can accommodate both the cluster computing 

framework and machine learning capabilities. 

1.1 Problem Definition 

Utility companies focus on enhancing the convergence rates to perform short-term and 

medium-term load forecasting. Smart meter data is collected at high velocity, variety, and 

volume; making the data characterized as big data. A large electrical grid with smart 

meters widely installed consists of distributed data stores. Distributed computing 

platforms with multiple nodes are required to process the data generated to create 

accurate load forecasting models. In a classical big data problem, historical data 

accumulated at one location is high in volume. In the current scenario of this problem 

statement, a large number of transformers are spread across the distribution network. 

This makes the problem statement challenging as the load forecast expects simultaneous 

execution of the forecasting models. This problem statement reflects two solutions, edge 

computing to forecast the load at the location of data generation or data concentrated at 

stored locations in the database and then processed by creating clusters. The problem 
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statement requires the short-term load forecasting of all the transformers simultaneously. 

It is highly crucial during the analysis to optimize the execution time of the forecast 

models and maintain the accuracy of forecasting models to obtain the economic 

operation of the power system. 

1.2 Research Goal and Objectives 

The goal of this research is to provide a big data management computing platform for 

convenient Extract Transform and Load (ETL) of the smart grid data to be able to make 

more informed decisions with high processing speed and highly accurate forecasting 

models. 

1.2.1 Research Objectives 

The following are the objectives of this work: 

1. the use of parallel computing to perform simultaneous load forecasts in a multi-

AMI environment to reduce the overall time needed for Short Term Load 

Forecasting (STLF).  

2. Utilization of distributed machine learning models to perform load predictions with 

the highest possible accuracy.  

3. Finding a suitable tradeoff between execution time to predict the load and the 

choice of machine learning model with the least error.  

4. A scheduling algorithm to perform parallel and distributed execution of load 

forecast on the smart grid big data is proposed. 

5. Spark parameter optimization in terms of the number of executors, number of 

cores per executor, and memory per executor.  
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6. ML model parameter optimization to gain high accuracy contained with measures 

to combat overfitting. 

7. Testing the proposed methodology on one hundred thousand transformers’ data 

without clustering, then make a comparison against the proposed clustering 

technique. 

The main objective of this thesis is to provide a big data platform that is robust and reliable 

to be able to perform load forecasting and scalable to be able to handle data received from 

100,000 transformers. 
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CHAPTER II 

LITERATURE REVIEW*2 

In this chapter, an introduction to the big data platforms and the literature review of the 

platforms utilized in the field of electric grids and smart grids are to be be presented.  

2.1 Introduction 

Big data offers potential insights and is crucial for the efficient functioning of the smart 

grid  [4]. Information from big data is becoming more and more valuable, therefore many 

energy companies have invested in handling and utilizing the data to perceive, innovate 

and extract actionable insights. It is estimated in a preliminary assessment by a utility that 

the amount of data required to process transactions of its customers would reach about 25 

gigabytes of data points per day [5]. The management of such a large data set is 

challenging. Energy companies such as ENEL, are moving towards new strategies and 

plans to be data-driven companies exploiting huge amounts of data obtained from the grid 

architecture, customers, etc. [6]. Many utilities and systems operators plan to migrate their 

data center to the cloud which may bring savings from this migration at €300,000,000 [7]. 

ENEL plans to focus on a platform model rather than a pipeline model involving data-

driven networks. It is very crucial to timely manage the available smart grid data as it 

would help the utilities to understand the demand and perform a dynamic balance of 

demand and supply. Moreover, the correlations between different data features can 

identified [8].  Additionally, it is very crucial to identify different analytic and data 

 

2 Reprinted with permission from "Big Data Management in Smart Grids: Technologies and Challenges," by Ameema Zainab, Ali 
Ghrayeb, Dabeeruddin Syed, Haitham Abu-Rub, Shady S. Refaat and Othmane Bouhali, 2021. IEEE Access, vol. 9, 73046-73059, 

Copyright 2021 by Ameema Zainab. 
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management strategies for different applications and usage. The biggest players in the 

energy market have utilized big data technologies to manage the grid. National Grid, DTE 

Energy, and Ausgrid are some of the largest utilities which have used the International 

Business Machines (IBM) insights foundation to help improve their decision-making for 

monitoring assets health and maintenance [9]. Romeo project is a five-year and €16 

million project led by Iberdrola Renowables Energia [10]. This project focuses on 

managing the data from the wind farms using predictive models and physical fault models 

to lower the operation and maintenance costs of the wind farms [11]. This thesis is 

conducted on a project that is co-sponsored by IBERDROLA which delivers real five-

years consumption data of 100,000 transformers in Spain to perform one day ahead load 

forecasting.  The importance and uses of managing big data from the grid are endless. 

To perform the analytics on the data for required applications and visualization, 

relevant software technologies must be in place.  

2.2 Related Work 

Many frameworks have been proposed in the literature to understand the data flow, 

analyze the data, and manage the data in the smart grids. Previous works include the 

proposal and implementation of big data frameworks in the smart grids to take decisions 

on many aspects such as balancing demand, load forecasting, grid infrastructure 

optimization, asset management, consumer behavior analysis, state estimation, and 

service quality analytics, etc. 

In [12], Mayilvaganan et al. proposed a cloud-based smart grid management 

architecture that analyses the big data for balancing the demand and supply to meet 
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customer needs. In [13], Yogesh et al. have proposed ‘Floe’s, a continuous data flow 

engine that utilizes a private cloud infrastructure. The proposed cloud based D2R 

(Dynamic Demand Response) platform performs intelligent dynamic demand response 

management relieving the load peaks in the power grid.  In [14], Baek et al. proposed 

‘Smart-Frame’ as a secure cloud-computing-based big data platform to analyze a 

voluminous amount of data acquired from power assets, smart meters, and distinct types 

of front-end devices in the grid. A popular cloud computing opensource platform called 

eucalyptus has been utilized for the prototype implementation [15]. TVA was selected 

by NERC (North American Electric Reliability Corporation) in 2009 as the repository 

for PMU data nationwide. America’s power grids at the TVA producing hundreds of 

terabytes of data have been handled with the help of apache Hadoop [16]. In [17], 

architecture named ‘SmartSantander’ which is a live city flexible big data platform has 

been introduced. In [18], ’SCOPE’ was presented as a smart city Cloud-based Open 

platform and ecosystem by Boston University. City Pulse [19] is proposed by Osborne 

Clarke, a smart city consulting firm from Europe [20]. FIWARE [21] is a smart energy 

platform for the development of intelligent applications in the future internet. It serves as 

an energy platform capable of supporting various business models for different smart 

energy industries. Wang et al. proposed wireless computing architecture for the 

processing and analysis of smart grid data [22]. Zhou et al. presented data mining and 

visualization techniques for smart grid data and achieved real-time monitoring of power 

consumption [23]. In [24] UlTraMan a unified platform for big data management and 

analytics for trajectory data is proposed. It offers a customized pipeline extension of 
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modules offering enhanced computing. ASTROIDE is a unified big data processing 

engine over spark for astronomical data. It introduces efficient query execution, by data 

partitioning with Hierarchical Equal Area isoLatitude Pixelization (HEALPix) on Spark 

[25]. Because the data is both complex and has different formats, handling the data is not 

straightforward. Big data technologies offer scalability, persistence, and are 

computationally efficient. Various technologies offer services that help in dealing with 

big data complexities.  A comprehensive review of the storage and processing structures, 

database management systems, software technologies, architectures, systems 

benchmarking, and data indexing is outlined below.  

2.2.1 Storage and Processing 

2.2.1.1 Hadoop 

Hadoop is a unified and centralized storage platform to manage various types of data. 

Hadoop augments itself by providing a repository where structured, semi-structured, and 

unstructured data can be processed together easily [26]. Along with being open-source 

software, Hadoop is fault-tolerant and has a very reliable storage system. Having a 

programmable storage system, it is flexible for users to analyse the data directly attached 

to the disk where it resides. However, Hadoop has limitations i.e. it supports only batch 

processing and is not efficient with real-time, iterative, and stream processing. The data 

collected from dispatched sources in the grid is stored in huge datasets. This data needs 

to be accessible by multiple users on multiple machines for analytics. The Hadoop 

framework helps in parallelizing the processing in cloud computing environments and 

permits users to attain a local copy of the stored data. The Hadoop distributed file system 
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is also well known for efficient storage of data as it provides fault tolerance, high 

availability, and scalability. For applications such as smart meter data analytics, load 

forecasting, and scheduling which require stream processing, hadoop is not very efficient 

as it cannot produce output in real-time with low latency. The Hadoop ecosystem is built 

of two components, MapReduce and Hadoop distributed file system (HDFS) and these 

are discussed in the next sections. 

2.2.1.2 MapReduce 

MapReduce is a parallel data processing system of Hadoop. It is the programming model 

used within Hadoop and it is efficient at processing huge volumes of data. MapReduce 

works on the concept of a job scheduler that assigns multiple tasks in parallel to data 

nodes in a single cluster or shared clusters and results are collated, filtered, sorted, and 

then passed out as an output. If the task assigned to a node is overloaded or failed in a 

cluster, then the task is executed by another server in the cluster as shown in Figure 1. 

MapReduce can execute in a potential number of high-level languages such as C, C++, 

and scripting programming languages i.e. Python, Perl, and PHP. It can also be noted 

that as MapReduce processes large datasets, it requires a large amount of time and might 

result in increased latency. Running on various clusters results in increased time and 

lesser processing speeds. This limitation can be overcome by the in-memory 

computation capability of the Hadoop spark. MapReduce does not have an interactive 

mode. However, this can be overcome by adding Hive Hadoop [27] or Pig Hadoop [28] 

and this enables users to have an interface to deal with the MapReduce paradigm without 

having to code complex java MapReduce programs.  
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2.2.1.3 HDFS and HopsFS 

The file storage system in Hadoop is called the Hadoop distributed file system (HDFS). 

Because of its write once and read many models, it is best suited for data integrity when 

a read operation is performed. Many grid centers utilize Hadoop with HDFS file storage 

to collect various types of data from the grid such as phasor measurement units (PMU). 

HDFS however doesn’t support random reading of small file sizes. It is designed in a 

way to support a small number of large datasets rather than a large number of small 

datasets. This can be overcome by merging the small files into one and then copying the 

bigger files to HDFS.  

 

Figure 1 Software Framework – MapReduce 

 

   HopsFS is an open-source file system and it is an alternative to HDFS [29].  It uses the 

active and standby name nodes and thereby overcomes the deficiencies of HDFS. The 

name nodes in HopsFS can process the metadata not just locally in memory but also the 

metadata stored in the database. HopsFS works with different varieties of NewSQL 
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databases even if the databases have different licenses. It is since HopsFS uses Data 

Access Layer (DAL) as encapsulation to the database operations. 

2.2.1.4 Apache Spark  

Apache Spark is a lightning-fast framework that processes data that exists in data storage 

systems such as HDFS, Amazon S3 [30], MapR FileSystem [31], Cassandra [32], etc. 

The data processing also utilizes a cluster manager such as spark cluster, Apache Mesos, 

HadoopYARN, etc. [33]. Spark can process the data as it comes, even millions of events 

per second as it uses Resilient Distributed Datasets (RDDs) which reside in memory. 

The flexibility, speed, and scalable features of spark address the challenges of big data in 

smart grids. Spark also supports user-friendly APIs such as Python, Scala, Java, etc. and 

this makes developers easily use spark for machine learning libraries [34]. The very 

nature of data from smart grids (for example, the data from SCADA) is dynamic and 

anomalies in electrical systems tend to occur in milliseconds. Apache spark supports the 

real-time processing of the data and it can capture real-time information from the grid. 

Memory management in spark is crucial and involves various levels such as memory 

only, memory and disk, memory only serialization, and memory and disk serialization. 

Based on the size of the data, the memory allocation is altered. 

2.2.1.5 Resource scheduler 

A key to efficient utilization of a large asset is the choice of a suitable resource 

scheduler. Both supercomputers and big data systems use schedulers to allocate 

computing resources for the execution of submitted processes. The authors in [35] 

analyze 15 schedulers in both supercomputing and big data architectures. In [36], the 
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authors utilized up to 32 processors with the help of the Simple Linux Utility for 

Resource Management (SLURM) resource scheduler. Four of the most popular open-

sourced schedulers include SLURM, Apache YARN, Apache Mesos, and Kubernetes.  

2.2.2 Database Management Systems 

Picking a relational SQL or a non-relational (NoSQL) database is one of the crucial 

decisions in choosing a database system. Both types of databases are suitable options, 

however, non-relational databases are constantly replacing relational databases as non-

relational databases are efficient for big data applications. The cost of scaling relational 

databases is very high and the volume of data is ever-increasing in big data. Moreover, 

the ACID properties (Atomicity, Consistency, Isolation, and Durability) set unrequired 

constraints and hindrances to applications and these pose a challenge [37]. Therefore, 

relational databases are best avoided in big data applications. 

    NoSQL data storage has more ability to perform better adaptability, scaling, and 

performance when compared to relational databases.  Although it must be noted that 

NoSQL does not have a universal query language that fits with all data models.  Instead, 

it allows for RESTful coherence to the data and the query APIs. A comprehensive study 

explains the uses and performance comparisons between relational and non-relational 

databases [38]. Some of the non-relational databases include Redis, MemCached, 

Dynamo, Cassandra, PNUTS, MongoDB, CouchDB, Neo4j, HyperGraph DB, etc. The 

comparison between the relational and NoSQL databases is discussed in Table 1. 



13 

 

Table 1 Software framework – MapReduce 

Characteristic Relational Databases NoSQL Databases 

Data 

representation 

Predefined schemas.  The schema 

represents a logical view in which 

the data is organized & the 

relations are displayed. 

Dynamic schema for 

unstructured data 

Data Structure Structured Unstructured or lenient 

structure 

Scaling Vertically scalable.  The amount of 

data stored depends on the physical 

memory of the system.  Relational 

databases are scaled by increasing 

the hardware resources like CPU, 

RAM, SSD, etc. on a single server. 

Horizontally scalable. No 

limit on data storage. NoSQL 

databases are scaled by 

increasing database servers. 

Examples MySQL, Oracle, SQLite, Postgres, 

MS-SQL, etc. 

MongoDB, Bigtable, Redis, 

RavenDB, Cassandra, HBase, 

CouchDB,  Graph databases 

like  Neo4j,  OrientDB, 

InfiniteGraph, AllegroGraph, 

etc. 
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Table 1 continued 

Characteristic Relational Databases NoSQL Databases 

Types Table based databases Column DB, Graph DB, 

Key-value pair DB, 

Document DB, etc. 

Properties ACID (Atomicity, Consistency, 

Isolation, Durability) 

CAP (Consistency, 

Availability, Partition 

tolerance) 

Language Structured   Query   Language   for   

data   definition & manipulation 

Unstructured Query 

Language 

Development Mix of open source (PostgreSQL) & 

closed (Oracle) 

Open source 

Complex 

Querying 

Suitable for complex querying does not have standards to 

perform complex queries. 

Complexity If records do not fit in the pre-defined 

schema tables, then the design of the 

database table becomes complex. 

Schema is easily changed 

here as it is dynamic. 
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Table 1 continued 

Characteristic Relational 

Databases 

NoSQL Databases 

Community Widely 

supported by 

vendors 

Only community support 

Normalization Necessary No constraint of normalization 

Maintenance High 

maintenance 

Low maintenance with features like automatic 

repair, easier distribution of data & simpler data 

models is available.  So, the administration is 

easy & so is the tuning requirement. 

Consumer-

friendly 

GUI mode tools 

are available. 

GUI mode tools are not available. 

 

    There are many other databases in the market that provide support to the requirements 

of huge data sizes, different data types, and high speed. The big databases include in-

memory or main memory databases, object-oriented databases, time-series databases, 

and spatial and GIS (Geographical Information systems) databases.  Even though in-

memory databases are quite fast they are not durable, and they might be subject to data 

loss. The spatial databases are useful when data has geospatial attributes, but at the same 

time, it is hard to query upon [39]. Also, it requires good visualization to interpret the 



16 

 

data patterns.  Streaming data from SCADA and oscillography data are usually stored in 

time-series databases.  

2.2.3 Software Technologies 

The evolution of big data technologies started way early in the 1990s. A boost to big 

data technology started with Hadoop in 2011 and it has been an open-source platform. 

Big data technologies have evolved in the past decade performing batch processing at 

one stage to real-time processing later. In [40], Sebnemet al. has explained the evolution 

of big data technologies starting with Google File system performing batch processing 

(2003) to Google Data Flow and Apache spark (2003) performing real-time analytical 

streams processing. Different software applications were released in the market and 

many were open-source, and these handled the high data volumes and high speeds while 

decreasing the latency of processing. One of the most widely used state-of-the-art 

lambda architecture has been discussed in the section below along with the system 

requirements to handle the software technologies: 

2.2.4 Architectures 

This section outlines the architectures utilized in the literature and the current streaming 

systems have been discussed. 

2.2.4.1 Lambda Architecture 

The advantages of data systems built with the assistance of lambda architecture go 

beyond just scaling and support real-time and batch processing on the distributed data. In 

support, the architecture will not just be capable of handling the data only but will also 
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be able to accumulate more data to interpret information from it. Increasing the number 

of data types and volumes stored will result in further opportunities to mine the data 

including, predicting performance, avoiding more than one version of a schema to be 

operative at the same time, and building new applications. Lambda architecture (Figure 

2), a unique software design, is adopted to overcome the need to process two different 

systems considering batch processing and stream processing [41]. The batch layer is 

implemented using Hadoop well known open-source platform for batch processing. 

Hadoop discussed in section 2.2.1.1 can handle the data at rest with the help of 

Hadoop’s MapReduce functionality. The data received would be pulled into HDFS and 

MapReduce jobs are executed using Pig, Hive, etc. As all the data would be in HDFS, 

there will be a full view of the data available to process it. Streaming analytics engines 

such as spark and Flink will assist to perform processing and analytics on incomplete 

data or when data is being updated [42]. This engine's process ables the data as it comes 

Figure 2 Lambda Architecture 
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in and does it a lot faster. These help in processing the data even before the data is 

transferred to HDFS.  

A portion of the data that is collected is analyzed instantaneously as and when the data 

is generated, and the rest of the data is stored for batch processing.  Table 2 refers to 

some current systems in the field of stream analytics. Analyzing the data as it is 

available from the source to the memory of a distributed platform needs stream mining 

systems. If working with stream-only frameworks is desired, then apache storm [42] is 

one of the best-suited frameworks as it offers a great range of language support, but at 

the same time, it cannot guarantee to order in its default configuration. The best fit 

always relies on the data being analyzed, the required latency, and the application 

required. The three layers of Lambda Architecture are:  

Table 2 Stream mining systems 

Current Systems Year 

R’s stream package (clustering only) [43] 2017 

streamDM (github) [44] 2016 

Moa.cs.woikato.ac.nz (Massive Online Analysis) [45] 2014 

Samoa-project.net [46] 2014 

lambda-architecture.net [41] 2013 

Spark.apache.org/streaming [3] 2012 

Rapid Miner stream plugin [47] 2012 

Apache Samza [48] 2012 

Apache Storm [49] 2011 
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• Batch layer: stores all the data as ‘master data’, manages it, and precomputes batch 

views.  

• Speed Layer: processes the incoming streaming data as per user-defined 

requirements and increments the real-time views. 

• Serving Layer: a linearly scalable data management system on top of the batch layer 

and speed layer exposing queried views by the user. 

2.2.5 Systems benchmarking 

Big data in the smart grid sector involves not only data at rest but also real-time data. 

Owing to the data being real-time and continuous, additional resources and high 

computational speeds are required.   

    As discussed earlier, the use of cloud computing helps electrical companies to reduce 

cost and power requirements. Table 3 shows the minimum requirements needed to install 

the platforms Hadoop, Strom, Spark, and Flink and work with the big data frameworks 

[50]. A minimum of 8 GB RAM is required to have any of the mentioned software 

technologies to be installed. A supercomputer will help the processes to run faster as it 

consists of vast computational capability and high-speed interconnect between multiple 

nodes.  

2.2.6 Data Indexing 

Indexing plays an important role when it comes to big data management. The speed of 

data retrieval from a database system is vital for efficient data access. Time-series data is 

one of the massive types of smart girds. An index format is chosen based on the type of 
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storage system. Table 4 shows a summary of advanced data indexing techniques that 

exhibit comprehensive distributed functionality. As the paper suggests the utilization of 

a distributed framework, the section focuses on distributed data indexing techniques.  

Table 3 Big data framework hardware requirements  

Framework Hadoop Storm Spark Flink 

RAM(Min) 64 GB 64 GB 64 GB 64 

GB 

CPU (at least) 2 8 8 8 

Hard   Disk (for 

each 1TB at 

least)- Disks per 

node 

12-24 6 4-8 12-24 

Operating Sytems 64   bit: 

SUSELinux

Enter-

priseServer 

CentOS, Red   

HatEnterprise 

Linux, Windows 

WindowsXP/7/8, 

Windows (Cygwin), 

Linux, MacOSX, 

CentOS, Linux 

Linux 

2.3 Smart Grid Data 

An automated big data management pipeline for a smart grid must have the following 

qualities: 

• The platform should be able to support the acquisition of dynamic data at variable 

rates and high volumes. 

• The platform should be adaptive to the operational needs of current data sources. 
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Table 4 Distributed data indexing techniques 

Indexing Year Property Underlying 

storage system 

FITing-Tree 2019 A data-aware index structure that 

captures data trends and fits an index 

to a dataset with the help of 

piecewise linear functions. 

- 

Parallel B+ trees 

[52]  

2019 Tree-based: maximizing terminal 

nodes and minimizing the height of a 

B+ tree 

Hadoop 

FastPM [53] 2018 Extends k-d tree indexing to a 

distributed framework 

 

IndexedHBase [54] 2014 Historical and streaming data scalable 

indexing 

HBase 

E3 [55] 2013 Avoiding irrelevant data splits 

accesses 

Hadoop 

HIndex [56] 2013 Secondary Index (server side) HBase 

HAIL [57] 2012 Less index creation cost Hadoop 
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Table 4 Continued 

Indexing Year Property Underlying 

storage system 

MD-HBase [58] 2011 Quad-Tree and K-d based multi-

dimensional index 

HBase 

Trojan Index [59] 2010 Created at data load time and at query 

time no penalty 

Hadoop 

The data sources in the smart grid fall under four categories i.e. historical (archived), 

real-time, multimedia, and time series [4]. Data sources from SCADA, PMUs, 

Automated Metering Infrastructure (AMIs), smart meter, Digital Fault Recorders 

(DFRs), Digital Protective Relays (DPRs), Intelligent Electronic Device (IEDs), Asset 

management, operational and weather are real-time data sources. The real-time data 

flows in high volumes and the data is either collected at once or streamed in chunks 

continually. For instance, standard SCADA polls every 4 seconds. PMU, weather or 

lightning, and GIS are mostly historically based. The data is usually available in bursts 

from devices in the grid or as files stored in any of the storage devices and this data can 

be captured when there is a triggered event. On-demand, this data is transferred by the 

utility for different kinds of analyses.  Data in the form of text, voice, and video (e.g., 

video surveillance cameras) are multimedia and PMU data is time series. Most often 

event messages are generated in response to any unusual physical events. These 
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responses might be in the form of commands communicated to the grid devices by grid-

control systems, e.g., an asynchronous business process such as meter ping [60].   

Big data management deals with finding the hidden patterns in the data to get 

meaningful information as an output. As the data grows in volume, variety, and velocity, 

it tends to be multi-dimensional. To handle big data with multiple dimensions, Random 

Matrix Theory (RMT) is particularly useful [51]. The most fundamental concepts of 

dealing with big data account for the representation and modeling of big data. 

The random matrices are natural building blocks in modeling big data [4]. The non-

asymptotic theory is a unified treatment to a lot of big data problems, which was 

proposed to model the datasets as large random matrices in 2010 [61]. A single dataset 

can be expressed as an 𝑚 × 𝑛 matrix given by equation (1) 

𝑋 =  𝑈 ∧ 𝑉 (1) 

𝑈(𝑚 × 𝑛) - Orthonormal rows matrix 

∧ (𝑛 × 𝑛) - Diagonal matrix with real and non-negative entries 

𝑉(𝑛 × 𝑛) - Unitary matrix 

   Where 𝑋𝑋𝐻 and 𝑋𝐻𝑋 are Hermitian matrices with diagonal entries of ∧ 2 

correspondings to the eigenvalues. 𝑈 and 𝑉 correspond to the eigenvectors. When it 

comes to large random matrices 𝑚 → ∞, 𝑛 → ∞, both Hermitian and Non-Hermitian are 

utilized in various applications based on the variety of data [62]. Some of the differences 

between Hermitian and non-Hermitian matrices have been stated in Table 5.  

    In a high dimensional setting, it is often desired to cut down the dimension of the 

matrix by working on a low-rank matrix approximation and often require solving for 
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eigenvalues. The most prevalent methods are Principal Component Analysis (PCA) and 

Singular Value Decomposition (SVD).  PCA is one of the most widely used 

dimensionality reduction techniques [63]. 

Table 5 Dealing with big data matrices in smart grid 

Operations Hermitian matrices Non-Hermitian matrices 

Diagonalization 𝑋𝑉 =  𝑉 ∧ 𝑋𝑋𝑅 = 𝑋𝑅 ∧ and 

𝑋𝐿𝑋 =∧ 𝑋𝐿 

𝑋𝑅 right-hand eigenvectors 

𝑋𝐿 left-hand eigenvectors 

Eigenvalues Real Real or complex conjugate pairs 

Eigenvectors Orthonormal Not orthonormal 

 

It is used to reduce the number of features in the data. It selects the features which have 

the most variance in the data and neglects the features that have the least information in 

the data. We can explicitly specify the number of principal components or features that 

we wish to consider. The reduction in the features decreases the training and the testing 

time to a great extent and this knowledge can help in the reduction of data that is to be 

managed. A centralized process flow has been proposed in this work to manage the data 

in the smart grids. 
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CHAPTER III*3, 4 

BIG DATA PLATFORMS 

The computational capacities utilized in the experimental work consist of three platforms. 

1. Texas A&M University (TAMU) High-Performance Research Computing (HPRC) 

Ada, Terra clusters 

2. Microsoft Azure cloud computing resource 

3. Texas A&M University at Qatar (TAMU-Q) research raad2 cluster with 6 compute 

nodes (1 master node and 5 data nodes) with Spark on top of Hadoop. 

Each of the three platforms' hardware requirements is described in detail in the 

following sections. 

 
3.1 High-performance research computing platform 

The Texas A and M University supercomputer has been used during the process of 

performing the experiments and the specifications of the supercomputer are outlined 

below. 

TAMU Supercomputer: 

Processor - Intel Xeon E5-2680 v4 2.40GHz 

Operating System - Linux (CentOS 7) 

 

3 Reprinted with permission from "A Multiprocessing-Based Sensitivity Analysis of Machine Learning Algorithms for Load 

Forecasting of Electric Power Distribution System," by Ameema Zainab, Dabeeruddin Syed, Ali Ghrayeb, Haitham Abu-Rub, Shady 
S. Refaat, Mahdi Houchati, Othmane Bouhali and Santiago Bañales Lopez, 2021. IEEE Access, 31684-31694, Copyright 2021 by 

Ameema Zainab. 
4 Reprinted with permission from "Distributed Tree-Based Machine Learning for Short-Term Load Forecasting With Apache 

Spark," by “Ameema Zainab, Ali Ghrayeb, Haitham Abu-Rub, Shady S. Refaat and Othmane Bouhali, 2021. IEEE Access, vol. 9, 

pp. 57372-57384, Copyright 2021 by Ameema Zainab. 
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Batch Scheduler - SLURM 

Frequency - 64 GB DDR4, 2400 MHz 

Interconnect - Intel Omni-Path Fabric 100 Series switches. 

Memory per node utilized - 2560M 

3.2 Cloud computing service - Microsoft Azure 

vCPUs varying from 8 - 32 are used to run experiments in the azure environment. The 

specifications are indicated in Table 6. 

3.3 Texas A and M Qatar Research computing - Raad2 supercomputer 

The apache-spark platform, on which all the distributed computations are performed, 

consists of one master node and 5 slave nodes as shown in Figure 3. Each of the 5 compute 

nodes is Linux-based and contains 24 physical CPU cores -- 2 processor sockets with 12 

Table 6 Size of the Linux virtual machines in azure 

Symbol Quantity 

VM Size D32s_v3 

Offering Standard 

Family General purpose 

vCPUs 32 

RAM (GiB) 128 

Data disks 32 

Max IOPS 51200 

Temporary 256 

storage (GiB) yes 
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cores per socket -- and 128GB of RAM. The interconnect is comprised of the Cray Aries 

network, which is employed both for MPI as well as for storage traffic [64]. Hadoop 2.8.0 

and spark 3.0.0 are installed on both the master and slave nodes. The load forecasting 

algorithm is implemented in Python 3.6.4. 
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Figure 3 Experimental setup of Spark framework for load forecasting 
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CHAPTER IV*5 

MULTIPROCESSING 

In this chapter, the choice of multiprocessing method to perform load forecasting 

is discussed in detail. This computational methodology supports the simultaneous 

execution of ML models on multiple processors. These methods will be used as a layer 

in our research in the data processing layer of the proposed multi-layer big data platform 

proposed in Chapter VI section 6.2 for data processing. 

4.1 Introduction 

Accurate short-term load forecast with the help of available energy consumption data is 

essential for demand management and to deliver the required load energy while 

minimizing the redundancy for power generation and operational costs. A variety of ML 

approaches have been proposed in the literature for short-term load forecasting such as 

semi-parametric additive model [65], neural-network-based engine [66], novel radial basis 

function (RBF) algorithm [67], random forest-based day-ahead load forecast [68] [69], 

novel wavelet-based ensemble method [70], multi-dimensional XGBoost and fireworks 

algorithm [71], and average ensembles model [72]. The benefits of load forecasting can 

not only be utilized by utilities but also by the energy markets. The electricity market's 

short-term forecasting is realized to improve the management of their resources and to 

enhance the economics of energy trade. Choosing the best ML model is based on two 

 

5 Reprinted with permission from "A Multiprocessing-Based Sensitivity Analysis of Machine Learning Algorithms for Load 

Forecasting of Electric Power Distribution System," by Ameema Zainab, Dabeeruddin Syed, Ali Ghrayeb, Haitham Abu-Rub, Shady 
S. Refaat, Mahdi Houchati, Othmane Bouhali and Santiago Bañales Lopez, 2021. IEEE Access, 31684-31694, Copyright 2021 by 

Ameema Zainab. 
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main criteria, namely, the forecasting accuracy and the convergence rate of the model.  

   As the smart grid data grows exponentially with the transformation to the smart grid era, 

a fusion of big data availability becomes a challenge for utilities and other electric sector 

players. Various research has been concentrated in this area of application. Step-by-step 

architectural planning for data extraction, data querying, and effective solution for 

improved accuracy and load modeling was proposed in [73]. Syed et al [74] performed a 

survey on big data technologies and applications in the field of smart grids. Detection of 

fault using data-driven approaches utilizing machine learning techniques was proposed in 

[69]. Gao et al [75], performed load forecasting by proposing a multifactorial framework 

that compares the effects of various features on forecasting accuracy. This approach is 

critical when the number of features is increased by adding weather conditions, energy 

rating of the transformer, etc. Structural dynamics of materials are analyzed with the help 

of software tools that perform streaming and are anticipated to be time-consuming.  

   However, one of the biggest persisting challenges in the field of big data is the efficient 

utilization of the available computational resources while still achieve acceptable results.  

In this thesis, a methodology that aims at reducing the training time of the ML model 

whilst enhancing the prediction accuracy is proposed. The load forecasting in the proposed 

approach is performed with the help of machine learning in absolute run-times of seconds 

to minutes for an energy data of 3 years for 1,000 transformers. This scale down of 

training time is intended to offer a significant advantage in load forecasting models with 

high precision and low execution time.  

The accuracy of the proposed approach can also be determined by comparing the 
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smart meter measurements with the simulated voltages. Additionally, the proposed 

methodology can be deployed in cloud systems or data centers that are geographically 

closest to the meters to reduce communication and data transmission delay. 

4.2 Related Work 

In [76], a moldable parallel task was proposed to perform forecasting, where each sub-task 

within a parallel task supports a time slice. The authors in [76] focused on reducing the 

wait time which holds resources until all the tasks are completed. However, the proposed 

method of multiprocessing in the thesis does not wait for all the next batch of jobs to be 

submitted but instead picks the next available processor and submits the undone job 

immediately. However, the method in [14] is applied to a single dataset as compared to 

multi AMI datasets in the proposed work. Hence to achieve the best performance, 

workstations with multicore processors are utilized to essentially parallelize the data to 

achieve fast processing [77]. The spark regression python libraries have been utilized to 

evaluate the performance of distributed computing in smart meter data management 

[78][34]. An accurate and fast converging STLF model was proposed in [79] by devising 

modifications in the artificial neural networks (ANNs) training process to attain a tradeoff 

between the convergence rate (decrease by 52.38%) and the forecasting accuracy (99.5%). 

The utilization of spark-based parallel computing has been performed for mid-term load 

forecasting on historical data of size ~88 million rows to gain an advantage in the 

calculation time [80]. The published works in [77] – [81] have all focused on processing a 

unified dataset, however, the proposed approach handles multi-AMI dataset simultaneous 

load forecast. 
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4.3 Multi AMI load forecasting algorithm 

Load forecasting is performed on a high aggregation level of thousands of 

transformers or at a low-aggregation level of individual transformers or on a cluster of 

transformers. Load prediction is performed using machine learning models instead of 

traditional techniques such as time series, autoregressive models, time of the day model, 

etc. The problem statement here expects the hourly day-ahead load forecast of individual 

transformers with a load sampling frequency of 15 mins to be performed. In the STLF 

scenario of this work, the load of 1,000 distribution transformers needs to be forecasted at 

the same time. This issue does not involve accumulating a very large dataset but involves 

distributed large datasets to be worked upon individually. The factors that have to be 

considered are if the task being performed is heavy and can be a part of the 

multiprocessing technique or can be a part of a multi-threading technique that involves any 

form of input-output (IO). The task of fitting the data in memory is challenging for big 

data. As the models under consideration do not have any bottleneck of I/O being CPU-

intensive task multiprocessing will be a logical choice.  

   Let the data 𝐷 comprise of 𝑛 ∗ 𝑑 matrix, where 𝑛 is the total number of rows in 

the data and 𝑑 is the number of features 𝑋 in the dataset. 

𝐷 =

(

 
 

𝑋1 𝑋1 . . . . 𝑋𝑑
𝑥1 𝑥11 𝑥12 . . . . 𝑥1𝑑
𝑥2..,
.

𝑥21 𝑥22 . . . . 𝑥2𝑑....
𝑥𝑛 𝑥𝑛1 𝑥𝑛1 𝑥𝑛𝑑)

 
 

 

 

(2) 

where 𝑥𝑛 in (2) represents the 𝑛𝑡ℎ line of the dataset. Figure 4 indicates the load 

forecasting being performed on the aggregated data and the time taken to process all the 
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models sequentially is outlined. The aggregated data is split as per the transformer ID 

and the models are trained to start with dataset 1 (which is 𝐷1) and then the processing of 

dataset 2 is initiated. The time taken to train model 1 is given as 𝑡1. Then the data from 

transformer 2 is trained taking time 𝑡2. Each time 𝑡𝑡 also involves the dataset 𝐷𝑡 filtered 

from the aggregated data. The total processing time depicted in Figure 4, is given by 

equation (3): 

𝛴𝑡𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒 = 𝑡1 + 𝑡2 +⋯ ⋅ 𝑡𝑇  (3) 

where 𝑡𝑡 is the time taken to train the ML model on the transformer 𝑡, and 𝑇 is 

the total number of transformers. Figure 5 shows the use of parallel processing to 

process each of the 𝑥 meter ID’s data concurrently. The total time of processing all the 

ML models will change as shown in equation (4). 

𝛴𝑡𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒

= 
𝑡1 + 𝑡2 + 𝑡3 +⋯𝑡𝑥

𝑥
 

+ 
𝑡𝑥+1 + 𝑡𝑥+2 + 𝑡𝑥+3 +⋯𝑡𝑥+𝑥

𝑥
+. .

𝑡𝑇−𝑥+1 + 𝑡𝑇−𝑥+2 +⋯𝑡𝑇
𝑥

 

 

 

(4) 

which equates to equation (5) 

𝛴𝑡𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒 =
𝑡1 + 𝑡2 + 𝑡3 +⋯𝑡𝑇

𝑥
 

(5) 

where 𝑥 is the number of processors utilized. In this method, 𝑥 transformers 

equal to the number of processors are running on multiple processors. Once the 𝑥 batch 

is completed, the next 𝑥 batch is submitted. The time taken for each of the 𝑥 

transformers is reduced from 𝑡1 + 𝑡2 +⋯ ⋅ 𝑡𝑇 to 
𝑡1+𝑡2+𝑡3+⋯𝑡𝑇

𝑥
 . Submitting the processing 
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of the transformers as a pool to multiple processors shows the reduction in the time to 

process the data by ~𝒙 times not considering the costs of communication. 

 

Figure 4 Processing the data without parallel processing 

 

Figure 5 Processing the data with parallel processing 

    

The forecasting strategy is outlined in the form of a block diagram in Figure 6. The 

strategy can be broadly categorized into 4 stages outlined below : 

Stage1 : Collection of complete data 𝐷 

Stage2 : Filter the data at transformer level resulting in 𝑇 𝐷𝑇’s. 
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Stage3 : Parallel processing of each of 1000 𝐷𝑇’s is submitted in batches of 𝑥. The total 

number of batches submitted can be given as 
𝑇

𝑥
 :
𝑇

𝑥
∈ ℤ and 

𝑇

𝑥
+ 1 : 

𝑇

𝑥
∉ ℤ 

Stage4 : Accumulation of forecasting results simultaneously. As the forecasting is a day 

ahead hourly load forecast, the accumulated results consist of [𝑌]1000×24 values.  

4.4 Parallelization using python multiprocessing 

Multiprocessing is a technique of executing tasks in parallel utilizing multi-core or multi-

processors in a computing cluster. Python multiprocessing follows a similar approach to 

spawning the processes over multiple workers. While running the processes in parallel, it 

needs communication between the processes, and python uses the pickle module for these 

communications [82]. Distributing the job to parallel machines expects fast 

 

Figure 6 Proposed forecasting algorithm based on multiprocessing. The steps 2 

and 3 are repeated for 𝑻/𝒙 or 𝑻/𝒙 +  𝟏 times to complete the forecasting ofall the 

1000 models under consideration. 
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communication among the machines, which results in high communication costs if data 

needs to transfer among the processors. The pickling and unpickling usually result in a 

considerable amount of overhead, hence it is best to keep as few arguments as possible 

between the processes. Furthermore, the pool class in multiprocessing provides a 

convenient approach to utilize parallel processing tasks. The worker processes in these 

processes utilize the pool.map method, which considers only a single iterative argument 

for processing. Since the computations in the current problem statement do not need any 

communication between the processes, the order of processes follows the First In First Out 

(FIFO) queue for gathering the results. 

   If 𝑀𝑖 is the ML model ⅈ utilized to train the data 𝐷 resulting in prediction 𝑌𝑖, the time 

taken to train the model is given as 𝑡(𝑌𝑖) and the error of the prediction variable is given 

as 𝑅𝑀𝑆𝐸(𝑌𝑖). The trade-off ⅈ value between these two parameters 𝑡(𝑌𝑖) and 𝑅𝑀𝑆𝐸(𝑌𝑖) is 

the value we are trying to attain. To attain a model 𝑀𝑖 with the tradeoff between run time 

and the error, the model 𝑀𝑖 falling under the square with Min{𝑡(𝑌𝑖)}, Min{𝑅𝑀𝑆𝐸(𝑌𝑖)} 

will be considered as the best model for the analysis (Figure 7).  

To utilize the proposed parallel processing strategy in this work to handle the data from 

multiple transformers and to be able to forecast energy consumption simultaneously, it can 

be assumed that the matrix 𝐷 is split into 𝑡 transformer datasets which can be given in 

equation (6):  
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𝐷𝑡 =

(

 
 

𝑋1 𝑋1 . . . . 𝑋𝑑
𝑥1
𝑡 𝑥11

𝑡 𝑥12
𝑡 . . . . 𝑥1𝑑

𝑡

𝑥1
𝑡  .,
.
𝑥21
𝑡 𝑥22

𝑡 . . . . 𝑥2𝑑
𝑡    ....

𝑥𝑛
𝑡 𝑥𝑛1

𝑡 𝑥𝑛1
𝑡 𝑥𝑛𝑑

𝑡 )

 
 

 

 

 

(6) 

 

 

where 𝐷𝑡 is the data belonging to each of the transformers. The strategy 

discussed in section 4.3 is applied to the training of ML models where each of the 𝑥 𝐷𝑡s 

are submitted to 𝑥 processes to gain advantages in the processing speed. The results are 

accumulated from all the processes and accumulated to calculate the average 𝑅𝑀𝑆𝐸. 

 

Figure 7 Graph for assessing the training time and root mean square error trade-

off 
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CHAPTER V*6 

DISTRIBUTED LOAD FORECASTING WITH APACHE SPARK 

In this chapter, works on the apache spark platform to perform distributed 

computing are presented. This work will be used later in the research in the data 

processing layer of the proposed methodology in chapter VI section 6.3. The distributed 

computing of apache spark enables the data collection from the distributed storage in 

Hadoop with the help of HDFS. The performance shows unprecedented improvements 

in the ETL process and data processing thereby enhancing the forecasting accuracy of 

load forecasting models. 

5.1 Introduction 

With the development of the smart infrastructure in the electrical grids, the data collected 

from various units and locations over time have begun to receive the attention of grid 

operators and research centers. Data centers usually collect 15-minutes to the one-hour 

frequency of captured data, which creates enormous amounts of data streams. The power 

grid operators are looking forward to creating data analytics solutions to benefit from these 

enormous amounts of collected data. Processing large amounts of data and deriving 

insights from them will help in the purpose of knowledge discovery and better decision 

making. Machine learning (ML) techniques help in the decision-making processes and big 

data provides power in better decision making. 

 

6 Reprinted with permission from "Distributed Tree-Based Machine Learning for Short-Term Load Forecasting With Apache 

Spark," by “Ameema Zainab, Ali Ghrayeb, Haitham Abu-Rub, Shady S. Refaat and Othmane Bouhali, 2021. IEEE Access, vol. 9, 
pp. 57372-57384, Copyright 2021 by Ameema Zainab. 
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    To manage big data and perform ML with big data, most of the researchers have been 

focusing on handling large size of data stored historically in the data centers [83]. To 

improve the performance of the machine learning algorithms in big data, processing 

infrastructure and manipulations in terms of the way ML algorithms execute is necessary. 

Among the ML paradigms in big data, the proposed work focuses on tree-based methods 

and ensemble learning techniques. Splitting a deluge of data into multiple datasets to 

perform training with the ML models has gained significant improvement in the learning 

process in terms of the big data context. For example, the authors in [84] applied ensemble 

learning to subsamples of big data improving learning accuracy and simultaneously 

decreased the computation time.  

    The multi-AMI infrastructure mostly concentrates on forecasting the load of all the 

distribution transformers (DT’s) at the same time. In this methodology, a novel scheduling 

technique with the help of the Apache spark platform is proposed to short-long term 

forecast the load of all the one thousand transformers simultaneously. The spark cluster 

submits big data analytics tasks as spark jobs and the computational resources are 

allocated optimally to these spark jobs. The amount allocated to these jobs is customizable 

by the user which affects the Job Completion Time (JCT) significantly. ML algorithms 

such as Spark Random Forest and Spark Gradient boosted regression trees for training and 

forecasting the load are utilized. The proposed method performs load forecasting by 

submitting multiple jobs concurrently on the data sets utilizing the cluster resources 

optimally.  
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    The main contributions of this distributed load forecasting methodology can be 

summarized as follows: 

1) A scheduling algorithm to perform parallel and distributed execution of load forecast 

on the smart grid big data is proposed. 

2) Testing the proposed methodology on all the one thousand transformers’ data without 

grouping, then make a comparison against the proposed grouping technique. 

3) Tuning the ML models to gain high accuracy along with measures to combat 

overfitting. 

5.2 Related Work 

Many works have proposed benchmarking results with the use of ML for load forecasting, 

but in this section, the essence of big data smart grid load forecasting using spark is 

outlined. The widely installed smart meters collect huge amounts of load data for each of 

the grid’s distribution transformers. Many computing frameworks [85], [86], [87], [88] 

have been developed for the analysis of big data but, MapReduce [85] is the most famous 

one because of its features of fault-tolerance, parallel computation, and flexibility. Apache 

Spark [89] proposed by the Zaharia et al. emerged to overcome the drawbacks in 

MapReduce. It is an open-source framework and is 100 times faster than Hadoop 

MapReduce [90]. Spark can execute over several cluster managers such as Hadoop YARN 

[91], Apache Mesos [92], and spark’s standalone scheduler. Spark can also interface with 

a variety of data storage repositories such as Hadoop Distributed File System (HDFS) 

[93], Hive [27], Hbase [94], to name a few. However, spark supports distributed 

computing resulting in a communication overhead increase. Previous research has 



40 

 

observed that by only increasing the computational capability, JCT reduces but then starts 

increasing in communication overhead [95]. Hence the proposed scheduling algorithm 

focuses to utilize the available computation capability and still be able to submit multiple 

jobs with the help of an optimal scheduling algorithm and not losing on communication 

overhead.  

    Highly cited algorithms for forecasting smart grid data include linear regression, SVM 

and its variants [96], and artificial neural networks (ANN). A pooling-based deep recurrent 

neural network (DRNN) was proposed to learn the spatial information, which 

outperformed Support Vector Regressor (SVR), Auto-Regressive Integrated Moving 

Average  (ARIMA), and the classical deep recurrent neural network (RNN) [97].  In [98], 

Happy et al, proposed a statistical approach for load forecasting using quantile regression 

random forest, risk assessment index, and probability map. In [80], Wei et al performed 

midterm load forecasting of power supply unit (PSU) considered as a collection of 

distribution transformers. The authors have utilized a dynamic-based network (DBN), with 

a peak load of all the distribution transformers within a PSU summed. All of the summed 

load values are utilized to train and forecast the load using sparks standalone clusters. 

However, the use of complete data to train instead of summed load values can result in 

better training accuracies but will require optimized scheduling method which is achieved 

in this work. 

The proposed solution focuses on an hourly day-ahead load forecast with the use of spark 

ML tree-based algorithms. The models are trained with the spark.ml Application 
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Programming Interface (API) of spark which is data frame based facilitating ML pipelines 

and feasible feature transformations [99].  

5.3 Load forecasting methodology for optimized computation with apache-spark 

5.3.1 Introduction 

The Spark ML library supports tree-based models namely spark ml decision trees and 

ensemble models namely spark ml random forest and spark ml gradient boosted regression 

trees [100]. Spark session connects to the master node to submit jobs, where each job is 

split into stages, and stages are further split into tasks. Adding more tasks to a single job if 

possible is recommended as compared to starting new jobs to avoid start-up costs. In the 

case of data from multiple transformers, each dataset can be assigned as a job. To reduce 

the execution time of the load forecasting models, multiple DTs’ load forecasting is 

performed simultaneously with the help of parallel job submission in spark. Moreover, the 

shortest job submitted may consume fewer resources as compared to the other jobs 

submitted. To overcome this, python’s thread pool concurrency feature in addition to the 

spark fair scheduler can be used. A solution is to decompose the complete dataset into a 

cluster of transformers IDs and use multiple computing nodes to train the clustered model 

with an added sequential step to test the model of each of the transformers within the 

clusters. However, it is necessary to train clustered models first and then test the individual 

models within the clusters. This attempts to add multiple layers of parallel processes 

executed sequentially as iterated in Figure 8. For 𝑛 clusters, the number of iterations to 

train the clustered data is 𝑛 𝑗⁄ , where 𝑗 is the number of jobs submitted simultaneously. 

Similarly, for 𝑡 transformers, the number of iterations to test the holdout data of each of 
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the transformer (TF) is 𝑛 ∗ (𝑡/𝑗). As the value of 𝑛 ∗ (𝑡/𝑗) is larger than 𝑛/𝑗 in all cases 

of 𝑡, the time in the previous case (with 𝑛 clusters) is much less than without clustering, 

provided the data size for each of the jobs in both cases is the same. The proposed parallel 

and sequential approach of the tree-based ensemble model is deployed on the spark. As 

shown in Figure 3, spark adopts a single master and multiple slave’s model. To 

incorporate the proposed methodology parallelism in datastore and training are discussed 

further.  

5.3.2 Datastore parallelism 

The big data of the transformers' load values with the timestamp is stored in the HDFS 

with replication factor 3. The resulting load data partitions are constructed into RDDs and 

stored in the corresponding data nodes. The number of partitions is automatically set by 

Figure 8 Nested parallelism with spark (sequential and parallel runs) 
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Spark as one partition for a block of file, however, the data is repartitioned to 20 which is 

equal to the number of cores in each of the nodes using the pyspark programming 

interface.   

5.3.3 Training parallelism 

The data from HDFS is read into the spark data frame for the analysis. By using the data 

frame API only, all the physical execution is compiled in native spark using Java Virtual 

Machine (JVM), while only the logical plan is constructed in pyspark [101]. The use of 

data frame API in pyspark results in efficient execution as it avoids the creation of key-

value pairs that occur in Scala. Data frames in spark are immutable like RDD and are 

conceptually similar to a panda’s data frame or a relational database. However, the 

important difference is the execution of transformations and actions in spark. The spark’s 

catalyst optimizer creates an optimized logical plan before sending an instruction to the 

spark driver. As the catalyst optimizer functions are the same across all the language APIs, 

data frames provide equivalent performance to all the spark API. Once a logical plan is 

created, it visualizes it as a Directed Acyclic Graph (DAG) as shown in Figure 9, and is 

distributed among all the tasks in a job to be able to perform each of the stages 

concurrently.  

    Considering the merits of spark, it is used as the big data processing platform in our 

application for two of the main computing tasks: 

1)  Average load matrices calculation: the elements of the average load matrix consist 

of load averaged for 1 lag day, 7 lag days, etc. The data is inputted into the matrix 
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calculation from the historical data stored in HDFS and the computations are carried 

out in pyspark. 

2) Simultaneous training of DTs’ load forecasting models with the help of thread pools 

in python and multiple jobs in spark utilizing a FAIR scheduler.  

5.3.4 Data partitioning in a distributed environment 

The RDDs in spark are distributed in partitions and spread across different nodes. 

Some operations in spark such as rank, count, and window for example can result in 

serious performance degradation as it results in all the records to shuffle into a single 

Figure 9 Spark-based DAG visualization for random forest regressor 
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partition. In this work, a window function has been used to utilize the F.lag function in 

spark. To overcome the performance degradation in such a scenario, the data has been 

partitioned by the column month. Partitioning the data by month column has resulted in 

data being stored into a subdirectory for each partition. Figure 10 illustrates the approach 

of partitioning the data by column in a distributed environment. 

 

5.4 Optimal scheduling algorithm 

5.4.1 Introduction 

Scheduling jobs considering the available resources is challenging. An optimal scheduling 

algorithm is necessary to schedule jobs to be able to reduce the execution time. As per the 

requirement of load prediction of multiple transformers at the same time, two scheduling 
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algorithms are leveraged in this thesis. In this section, the solutions of optimal scheduling 

when communication costs are ignored and when considered are discussed. 

5.4.2 Ignoring communication costs 

Considering 𝑤 workers available and 𝑀 jobs to be executed, three cases can be obtained 

where (𝑤 < 𝑀) & (𝑤𝑥 = 𝑀), (𝑤 < 𝑀) & (𝑤𝑥 < 𝑀), and 𝑤 ≥ 𝑀 where 𝑥 is a multiple 

of 𝑀 resulting in 𝑤𝑥 = 𝑀. The algorithm in this section is structured as follows. 

Step 1: Submit the array of tasks to the 𝑤 workers 

Step 2: 𝑤 jobs are submitted to the available w workers 

Step 3: Whenever a processor becomes available, assign it the unexecuted ready job with 

the highest priority. 

Submitting the jobs with the help of a thread pool as discussed in section 5.3, 𝑤 jobs are 

submitted at the same time. Considering the three cases, the algorithm flow can be 

elaborated for three of the cases as below: 

Case I: 

𝑝𝑜𝑜𝑙𝜔(𝑡𝑟𝑎ⅈ𝑛, [1, 2, … .𝑤]) 

(𝑤 < 𝑀) & (𝑤𝑥 = 𝑀) 

 𝑇𝑚
1    𝑇𝑚

2     𝑇𝑚
3     𝑇𝑚

4    . .  𝑇𝑚
𝑤 

. 

. 𝑥 𝑡ⅈ𝑚𝑒𝑠 

. 

𝑇𝑚
1    𝑇𝑚

2     𝑇𝑚
3     𝑇𝑚

4    . .  𝑇𝑀
𝑤 

Case II: 
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𝑝𝑜𝑜𝑙𝜔(𝑡𝑟𝑎ⅈ𝑛, [1, 2, … .𝑤]) 

(𝑤 < 𝑀) & (𝑤𝑥 < 𝑀) 

 𝑇𝑚
1    𝑇𝑚

2     𝑇𝑚
3     𝑇𝑚

4    . .  𝑇𝑚
𝑤 

. 

. 𝑥 − 1 𝑡ⅈ𝑚𝑒𝑠 

. 

𝑇𝑚
1    𝑇𝑚

2     𝑇𝑚
3    . .  𝑇𝑚

𝑀−(𝑥−1)𝑤
 

 

Case III: 

𝑝𝑜𝑜𝑙𝜔(𝑡𝑟𝑎ⅈ𝑛, [1, 2, … .𝑤]) 

(𝑤 ≥ 𝑀 ) 

 𝑇𝑚
1    𝑇𝑚

2     𝑇𝑚
3     𝑇𝑚

4    . .  𝑇𝑀
𝑤 

 

where 𝑇𝑚
  is the time taken for individual job execution and is assumed to be the same. In 

case III, the computational capabilities are not as high most of the time when the number 

of jobs to be submitted is in the thousands. The total execution time in all three cases can 

be summarized in (7) as: 

𝑇𝑡𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒 = {
𝑥𝑇       𝑤ℎ𝑒𝑟𝑒 (𝑤 < 𝑀) 𝑎𝑛𝑑 (𝑤𝑥 = 𝑀)

𝑥𝑇       𝑤ℎ𝑒𝑟𝑒 (𝑤 < 𝑀) 𝑎𝑛𝑑  (𝑤𝑥 < 𝑀)
𝑇                                        𝑤ℎ𝑒𝑟𝑒 𝑤 ≥ 𝑀

 

 

(7) 

Because of the way the number of concurrent jobs is submitted, 𝑤 workers are 

assigned for each step of parallel runs. Although at the last step of execution 𝑤𝑥 < 𝑀 still 

takes the same amount of time, as 𝑤 workers are assigned to perform the job. 
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5.4.3 Considering communication costs 

The main idea of this scheduling task is to augment the scheduling with new precedence 

relations to be able to compensate for the communication time. By clustering the jobs into 

𝐶 clusters and submitting them to the same worker, the overall communication between 

clusters will be minimized. If 𝑇̃ is the time taken by a cluster including the communication 

costs, and 𝑦 is a multiple of the total number of clusters resulting in 𝑤𝑦 = 𝐶, 𝑦𝑇̃, is the 

time taken for all the jobs where 𝑦 < 𝑥. 

5.4.4 Objective function 

This section attempts to create the theoretical functions for parallel and sequential 

training approaches and to propose an implementation solution based on the spark 

platform. The collected transformers power data is denoted as 𝐷 where 

𝐷1, 𝐷2, 𝐷3, … 𝐷𝑀 denote the data for meter 𝑚. The data 𝐷𝑚 consists of 𝐹 features 

namely month, day, year, etc.  

Therefore, the chunk of data for a meter ID can be expressed by 𝐷𝑚as in the 

following equation (8) and (9): 

𝐷𝑚 = [𝑋1
𝑚, 𝑋2

𝑚, … . . 𝑋𝐹
𝑚] (8) 

𝐷  =  ⋃ 𝐷𝑚
𝑀

𝑚=1

= ⋃⋃𝐷𝑛
𝑚

𝑁𝑚

𝑛=1

𝑀

𝑚=1

 

(9) 

where 𝑋𝑓
𝑚 is the feature 𝑓 of the chunk of the data for a meter ID  𝑚; 𝑁𝑚 is the size 

of the 𝑚𝑡ℎ dataset. This chunk of data is trainable input to the machine learning model. 

Additionally based on the data decomposition shown in (9), the means square error 
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(MSE) for regression of the parallel training of the ML model is represented as shown in 

equation (10) [102] [103] 

𝑅𝑀𝑆𝐸𝑂𝑂𝐵 = min
1

𝑁
∑  𝐽𝑚 

𝑀

𝑚=1

 

 

                              = min
1

𝑁
∑  𝑀
𝑚=1  ∑  𝐽𝑛

𝑚𝑁 
𝑚

𝑛=1  (10) 

 

And the loss function 𝐽𝑛
𝑚 of the sample 𝑛 in data with subset 𝑚 is given by (11) 

𝐽𝑛
𝑚 = √

1

𝑁∑ ‖𝑦𝑛
𝑚−𝑦̂𝑛

𝑂𝑂𝐵(𝑋𝑛
𝑚)‖ 2𝑁

𝑛=1

 

 
(11) 

where 𝐽𝑚 in (12) is the loss function of the 𝑚𝑡ℎ data set  

Jm = ∑  Jn
m

N 
m

n=1

 

 

(12) 

𝑦𝑛
𝑚 and 𝑦̂𝑛

𝑚 are the observed and the predicted load values, respectively, of sample 𝑛 

in data subset 𝑚; and 𝑁 is the dimension of each of the output samples. The ML model 

training is performed to minimize the 𝑅𝑀𝑆𝐸𝑂𝑂𝐵 in (10) and obtain the trees using the 

dataset 𝐷. Similar procedures are performed for the subset dataset 𝐷𝑚 concerning the 

data subset 𝑚 for transformer level load forecasting. 
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CHAPTER VI*7, 8 

PROPOSED METHODOLOGY 

This chapter presents the complete big data management platform proposed in 

this thesis for managing the data from the smart meters to perform short-term load 

forecasting in large electrical networks. The main aim of the work is to analyze big data 

and perform load forecasting with high accuracy for electrical energy forecasts. One day 

ahead hourly energy forecasts are the goal of the work. 

A detailed description of the various steps involved in the proposed methodology 

is described in subsequent sections starting with the description of acquisition data sets 

used for the case studies. 

6.1 Data 

The data was collected from an advanced smart metering infrastructure (AMI) of the 

Iberdrola network.  The collected dataset is the energy consumption data of transformers at 

the distribution level for a period of 33 months (from January 2017 to September 2019). It 

consists of the hourly energy consumption of transformers located in different 

municipalities of Spain. Each data point includes the summertime, meter ID reading 

timestamp, and consumption. This investigation is focused on forecasting the day-ahead 

hourly load of each of the DTs. 

 

7 Reprinted with permission from "A Multiprocessing-Based Sensitivity Analysis of Machine Learning Algorithms for Load 

Forecasting of Electric Power Distribution System," by Ameema Zainab, Dabeeruddin Syed, Ali Ghrayeb, Haitham Abu-Rub, Shady 
S. Refaat, Mahdi Houchati, Othmane Bouhali and Santiago Bañales Lopez, 2021. IEEE Access, 31684-31694, Copyright 2021 by 

Ameema Zainab. 
8 Reprinted with permission from "Distributed Tree-Based Machine Learning for Short-Term Load Forecasting With Apache 

Spark," by “Ameema Zainab, Ali Ghrayeb, Haitham Abu-Rub, Shady S. Refaat and Othmane Bouhali, 2021. IEEE Access, vol. 9, 

pp. 57372-57384, Copyright 2021 by Ameema Zainab. 
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6.1.1 Dataset 1 

Number of DTs – 1,000 

Data points - 24,072,709  

Dates - 2017-01-01 11:00:00 to 2019-10-01 09:00:00 

Format – CSV, size - 2.85 GB  

Format – ORC files, size – 200 MB 

6.1.2 Dataset 2 

Number of DTs – 10,000 

Data points - 206,660,033 

Dates - 2017-01-01 11:00:00 to 2019-10-01 09:00:00 

Format – CSV, size – 23.7 GB 

Figure 11 indicates the load values of the data. It can be noted that for a quantile more 

than 0.9999 the values of load are more than ~700 kWh. Keeping this in view load 

values above a quantile of 0.99995 have been equated to 0.9995. Quantile statistics after 

removal of outliers in indicated in Figure 12. 
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Figure 11 Descriptive quantile statistics with outliers 

 

Figure 12 Descriptive quantile statistics without outliers 

Transformer rating was also obtained for Dataset2. Out of the rating of the 10k 

transformer for 354 transformers rating was not obtained. Figure 13 shows the count of 

transformers on the y-axis and the rating values on the x-axis.  
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Figure 13 Statistics on transformer rating data 

The transformer rating maximum value of 1000 kWh shows that no transformer 

can have a load value of more than 2000kWh considering the transformer is loaded 

twice the capacity. Also, 63% of the transformers have a rating ranging between 400 

kWh to 630 kWh. 

6.1.3 Dataset 3 

Number of transformers – 105,148 

Data points - 2,166,910,300 (~2.2 billion records) 

Dates - 2017-01-01 11:00:00 to 2019-10-01 09:00:00 

Format – CSV, size – ~250 GB 

Figure 14 indicates the count of the number of transformers against the number of days 

the data is available for each of the transformers. The x-axis indicates the difference of 

the end date and the start date for the data available for each of the transformers and the 

y-axis indicates the count of the transformers. It can be noted from the figure that 
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although the majority of transformers have complete data for 3 years (=3*365*24 = 

~24000 records) there are transformers for which the data is unavailable indicating that 

either these meters were installed at a later stage or the data has not been collected for 

these transformers for the complete range of the timeframe. 

Figure 14 Descriptive quantile statistics of 100k transformers dataset 

6.2 Data Statistics and Pre-processing 

In the experiments on dataset 1, the data consists of load value and timestamp of 1000 

transformers meters of the Iberdrola network [104].  The data is split into 90% (Jan 2017 

to Jun 2019) of training and 10% (July 2019 to September 2019) holdout dataset. The total 

dataset counts to around ~24,000,000. The data was collected from the utility company in 

an Optimized Row Columnar (ORC) format and was stored in the HDFS storage on 5 data 

nodes and replicated 3 times. Currently, spark supports timestamp input with the help of 

flint time series as flint context and not flint session. Because of this limitation, the 

timestamp is split into the year, month, day, and hour.  

    Figure 15 shows the power consumption pattern for all the 3 years in the top left, data 

with large load values on the top right, and the frequency of the load values in the bottom 
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left and bottom right graphs. It can be noted that the bottom left graph is right-skewed, and 

after log normalization, the spread of the data is more diverse comparatively but still not 

normally distributed. The bottom right graph also has log+1 normalization as the data 

consists of load values of 0.  It can be noticed that the data is right-skewed.   

Figure 15  Top left - Load distribution across all the three years (The vertical axis 

indicates the load value in kWh and the x axis indicates the time stamp). Top right 

– Data with large load values greater than 1000 kWh (The vertical axis indicates 

the transformer id the data belongs to and the x axis indicates the load value in 

kWh. Bottom left – Frequency of the load distribution limiting to 1000 kWh. 

Bottom right – Frequency of log normalized load plus 1.
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6.3 Proposed Methodology 

The performance of the forecasting models in terms of execution time is assessed on 

various big data management proposed methodologies. After the assessment, an end-to-

end data management and analytics platform is proposed to perform load forecasting. 

The tested methods can be categorized into 4 main blocks as depicted in Figure 16. The 

blocks depicted in Figure 16 are listed below: 

• ETL

• The hardware layer

• Data processing layer

• ML modeling

The reason for the choice of each of the components in these four blocks is described in 

detail below: 

6.3.1 ETL 

There are various data sources in the smart grid. A few examples are SCADA, Advanced 

Metering Infrastructure (AMI), smart meters, sensors, PMUs, distributed generation 

units, weather, customers, etc.  The data is collected in the data storage location or 

streamed through secure channels. In the proposed methodology both Hadoop storage 

and a physical SATA disk are integrated. 

6.3.2 Big data platform layer 

In the big data platform layer, multiple compute nodes are added. The current 

infrastructure discussed in chapter III involves 5 compute nodes with 120GB each. 

These compute nodes are utilized in a distributed manner to help in the processing of 
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data. Multiprocessing supports 8 concurrent computation nodes whereas the spark 

platform supports as many numbers of executors as design in the platform upon the 5 

compute nodes. To enhance the computation speed and test the performance of 

multiprocessing azure cloud infrastructure has also been utilized with 32 simultaneous 

processes for testing.   

6.3.3. Data processing layer 

ETL 

Multiple compute nodes 

Node 2 Node n …

…

Node 1  

ML modeling 

ML forecasting 

Figure 16 Proposed methodology for big data management in the smart grids 

terra.tamu.edu Microsoft Azure Raad2.qatar.tamu.edu 

Hadoop 
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Depending on the data source, the data processing is performed. For processing the data 

two methodologies have been proposed. With the help of multiprocessing, multiple jobs 

are submitted in parallel to the processors. The complete process of filtering the data, 

preprocessing, and ML model is performed on the multiple processors simultaneously 

and the results are aggregated. This methodology does not involve any communication 

between the processes and hence there is also no memory share involved. Only messages 

are passed to each of the processors with the meter IDs. Based on the index of the meter 

ID the complete processes are initiated and the forecasting result is delivered. In the 

second methodology of distributed processing apache-spark platform is utilized. Spark is 

lightning fast and utilizes all the nodes under consideration with the help of a cluster 

manager. The work has focused upon tuning the spark executors, number of cores per 

executor, amount of memory per executor, amount of memory in the driver node, 

scheduler mode, number of shuffle partitions, off-heap memory size, and blocksize 

compression. The concept of multiple job submissions has been utilized from 

multiprocessing to be utilized in spark to perform analysis on all the transformers, 

followed by ML modeling and accumulation of results.  

6.3.4 ML Modeling 

While performing ML modeling on the transformers data, the choice of ML 

model has been performed. A sensitivity analysis has been performed by choosing 

various ML models to observe the performance in terms of both accuracy and execution 

time. Measures to avoid overfitting have also been considered. Hyperparameter tuning 

has been performed to choose the ML model with the best parameters. As the job 
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submission pattern is simultaneous, the accumulation of results is done in such a way 

that the results are posted online to a single repository.  
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CHAPTER VII*9, 10 

RESULTS AND DISCUSSION 

7.1 Performance Evaluation Metrics 

7.1.1 RMSE, MAPE, and R-squared 

The mean absolute percentage error (MAPE) and the root mean square error (RMSE) are 

chosen as the evaluation criteria. However, MAPE is a widely used error statistic in energy 

forecasting [105]. Therefore, most of the presented results are compared based on the 

MAPE values to have a clear comparison with the existing techniques and results. The 

used MAPE and RMSE are shown in equations (13) and (14): 

𝑀𝐴𝑃𝐸𝑡 = 
1

𝑛𝑡
∑|

𝑌𝑡 − 𝑌𝑝

𝑌𝑡
|

𝑛𝑡

𝑡=1

(13) 

𝑅𝑀𝑆𝐸𝑡 =
√∑ (𝑌𝑡 − 𝑌𝑝)

2𝑛𝑡

𝑡=1

𝑛𝑡
(14) 

where 𝑅𝑀𝑆𝐸𝑡 and 𝑀𝐴𝑃𝐸𝑡 are the error metrics belonging to transformer 𝑡 with 

data size of 𝑛𝑡. 𝑌𝑡 is the true load value and 𝑌𝑝 is the predicted load value.

9 Reprinted with permission from "A Multiprocessing-Based Sensitivity Analysis of Machine Learning Algorithms for Load 

Forecasting of Electric Power Distribution System," by Ameema Zainab, Dabeeruddin Syed, Ali Ghrayeb, Haitham Abu-Rub, Shady 
S. Refaat, Mahdi Houchati, Othmane Bouhali and Santiago Bañales Lopez, 2021. IEEE Access, 31684-31694, Copyright 2021 by 

Ameema Zainab. 
10 Reprinted with permission from "Distributed Tree-Based Machine Learning for Short-Term Load Forecasting With Apache 

Spark," by “Ameema Zainab, Ali Ghrayeb, Haitham Abu-Rub, Shady S. Refaat and Othmane Bouhali, 2021. IEEE Access, vol. 9, 

pp. 57372-57384, Copyright 2021 by Ameema Zainab. 
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For non-linear models, the R-squared measure is a choice measure for regression 

models and is given in the equation. R-squared goodness of fit measure belongs to a class 

of exponential family and generally leads to a value of [0, 1] [106].  

𝑅 − 𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝑡 = 1 −

∑ (𝑌𝑡 − 𝑌𝑝)
2𝑛𝑡

𝑡=1

∑ (𝑌𝑡 − 𝑌̅𝑡)2
𝑛𝑡

𝑡=1

(15) 

where 𝑌̅𝑡 is the mean of the true load value for transformer t. The R-squared 

measure is also called the coefficient of multiple determination and is given by the 

division of regression sum of squares against the total sum of squares (RSS/TSS). 

7.1.2 Average RMSE 

The objective of future load consumption is to predict the load with high precision and 

speed to have near real-time processing ability. Root mean square error (RMSE) is used as 

the error metric because of its wide use. To evaluate the predictive performance, the 

training dataset is separated from the holdout dataset (data never used for training). All the 

models are built on the training data and optimized to obtain as low 𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 as possible 

and predicted on the holdout dataset to note the 𝑅𝑀𝑆𝐸ℎ𝑜𝑙𝑑𝑜𝑢𝑡. Moreover, to evaluate the 

performance on all the holdout datasets for different transformers, the average 

𝑅𝑀𝑆𝐸 (𝐴𝑅𝑀𝑆𝐸) is calculated as described in equation (16): 
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𝐴𝑅𝑀𝑆𝐸 =  
1

𝑀
∑ 𝑅𝑀𝑆𝐸ℎ𝑜𝑙𝑑𝑜𝑢𝑡
𝑀
𝑖=1  1 < ⅈ < 𝑀 (16) 

    The ARMSE shows how well the ML model learns the data for all the distribution 

transformers. The reason for choosing ARMSE is to have high average accuracy across all 

the distribution transformers and not just one or a few. 

7.1.3 Execution time 

An important objective of choosing the proposed methodology is to reduce the processing 

time of the transformer's data. To improve the performance in terms of execution time, 

total time 𝑇𝑡𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒
  is first measured by submitting individual jobs and 𝑇̃𝑡𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒 by

considering a cluster of jobs. The time is compared in both cases to choose the 

methodology with the lowest execution time and still retain the skewed distribution of the 

multiple meters data. 

7.1.4 Spark optimization 

Besides spark being an in-memory computing framework, it runs on top of the Java 

Virtual machines (JVMs). Hence tuning the JVM parameters is necessary to improve the 

performance of the spark. In this work, three key spark parameters that impact the 

utilization of resources to reduce the workload execution time have been identified. The 

work is focused on parameters that impact the memory serialization, data compression, 

caching, and repartitioning of data. Experiments are conducted considering: i) various 

combinations of several executors, ii) the number of cores per executor, and iii)  the 

amount of memory for each of the executors. If 𝐶𝑂 is the total number of cores in the 

configuration as shown in equation (17) 
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𝐶𝑂 = 𝐸 ∗ 𝐶𝑂𝑝𝑒𝑟𝐸 (17) 

where 𝐸 is the total number of executors assigned and 𝐶𝑂𝑝𝑒𝑟𝐸 is the number of cores 

assigned per executor in the spark configuration. The distribution of total memory in the 

spark configuration is given in equation (18). 

𝑀𝐸𝑀 = (𝑀𝐸𝑀𝑝𝑒𝑟𝐸 ∗ 𝐸 ) + (0.1 ∗  𝑀𝐸𝑀𝑝𝑒𝑟𝐸) (18) 

where 𝑀𝐸𝑀𝑝𝑒𝑟𝐸 is the memory assigned per executor. The second term in (18) is the 

overhead memory allocated to each of the executors which accounts for virtual machine 

overheads or other native overheads. Further, the 𝑀𝐸𝑀𝑝𝑒𝑟𝐸 is divided into two fractions, 

one for memory and the other for storage. The memory fraction handles the data 

structures, out-of-memory error and the storage fraction handles the cached blocks of data. 

The values of 𝐶𝑂 and 𝑀𝐸𝑀 can vary and are very specific to the cluster used for 

configuring spark. Choosing a larger value of 𝐸 results in reducing the 𝐶𝑂𝑝𝑒𝑟𝐸 to balance 

the 𝐶𝑂. Similarly, choosing a larger value of  𝐸 reduces the 𝑀𝐸𝑀𝑝𝑒𝑟𝐸 to balance the 

Figure 17 Spark job anatomy single job 
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𝑀𝐸𝑀. 

The topology of a single job function of spark is described in Figure 17. A job 

connects with the HDFS to read the data and perform computations on it by partitioning it 

into stages. All the stages are executed sequentially one after the other. Each stage has 

multiple tasks which are performed by multiple executors. These executors consist of 

multiple cores depending on the optimization performed on sparks topology. Each of the 

tasks is performed on a logically divided partition.  

Figure 18, shows the architecture of the design which involves a series of parallel 

execution followed by sequential execution and finally followed by parallel execution. The 

proposed methodology utilizes an optimized scheduling strategy to incorporate the parallel 

execution of multiple jobs [27]. Considering the spark platform, with total cores as CO, the 

number of cores per executor is given in equation (17) where 𝑪𝑶𝒑𝒆𝒓𝑬 is denoted as the 

number of cores per executor. When a single job is submitted in spark, the resources are 

allocated as per the configuration of the platform. 

 

Figure 18 Proposed k-means parallel in-memory clustering component with 

parallel jobs. 
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7.2 Experimental Results 

The future load can be predicted by determining the relationship between the load and the 

variables that influence the load i.e. time of the day and weather [107]. The parameters of 

the model are precalculated to accelerate the forecasting on the larger volumes of the DTs. 

90% of the data is taken for training, and 10% for forecasting to determine the least root 

mean square error (RMSE) and mean absolute percentage error (MAPE).  

7.2.1 Multiprocessing Layer 

Six machine learning regression models are chosen for comparison, viz, Linear 

Regression, Support Vector Machine, MLP Regressor, Decision Tree, Random Forest, and 

Gradient Boosting Regressor. Table 7 lists the average RMSE and MAPE values 

generated for the hourly day-ahead load forecast of the 1,000 transformers. The table 

Table 7 Results of 6 ML models on hourly load [kWh]. 

Accuracy DTR LR NN SVR GBRT RFR 

Average RMSE 252.26 111.27 6527.39 94.54 224.03 194.27 

Average RMSE 

(without outliers) 

5.67 5.91 40.78 4.87 4.26 4.02 

MAPE (%) 10.91 10.0 553.29 5.42 11.99 10.64 

Fit time(s) 781.27 28.63 16121.48 39040.04 5240.23 45570.63 

Forecast time(s) 1.957 1.702 5.004 2716.54 6.02 92.73 

Number of 

parameters 

12 4 8 11 21 16 

The time in sec indicated above is the accumulated time for all the 1000 transformers data which is close to ~24 million rows 
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contains the training fit time, the forecast time, and the number of parameters. Therefore, 

this assessment is based on the average of all the 1000 transformers, which helps in 

portraying the comparison of model performances. The limitation of the approach is that 

the best model cannot be generalized to determine a tradeoff between accuracy and time. 

None of the used models exhibit the best accuracies, which is consistent with the fact that 

the values are an average of all the transformers' results. This inconsistency indicates the 

need for individual models to be hyperparameter tuned for each of the ML models across 

all the transformers. The SVR shows the least error followed by decision trees and 

gradient boosted random forest. Even though linear regression shows fewer error rates, 

LRs cannot be considered as the best model because of the nonlinear patterns in the data. 

The elimination of random spikes in a few of the transformers results in a more accurate 

load forecast of the transformer with maximum load. Figure 19 shows the RMSE of the 

day-ahead hourly forecast for all the 1,000 transformers while removing outliers. Among 

all the RMSE values obtained in Figure 19, approximately 20 transformers with peak 

values above 1,000 kWh were excluded. As the results indicate 1,000 transformers, 

some samples at random have been filtered in Figure 20. 
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Figure 19 Day ahead hourly load forecast RMSE of 1,000 transformers. 

 

Figure 20 Transformer RMSE for random with proper resolution and good 

interpretations 

 

7.2.1.1 Data size / ML model / Execution time 

To validate the proposed approach and the performance evaluation, the three following 

measures are considered that impact the big data load forecasting strategy: 

Data size – The frequency at which the data is generated affects the size of the data. 

Bigger data volumes result in larger execution times and more memory requirements. 
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ML model – Better forecasting accuracies can be attained by choosing the best suited 

ML model. A complex model with multiple optimizing parameters results in higher 

execution times. 

Execution time – An important aspect that must be considered while evaluating a 

prediction model. A shorter execution time is necessary for short-term load forecasting 

in a real-case scenario. 

Short-term load forecasting can be performed only if the big data generated can be 

processed rapidly, for example within an hour for an hourly load forecast. Most of the 

research conducted on STLF targets the load prediction within an hour horizon [108]. The 

computing time should be less than the targeted forecasting timeline. To attain this goal, 

load forecasting is performed along with parallel computing. The parallel processing 

model helps in the execution of the ML models parallelly on multiple nodes reducing the 

run time as compared to the traditional method. Figure 22 presents the comparison results 

of concurrent computation and non-concurrent computation with dataset 1 for 1,000 

transformers for randomly chosen 3 ML models utilizing 20 processors. The measure of 

computational speedup is calculated in equation (19) based on Amdahl’s law [109]: 

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑟𝑢𝑛 𝑡ⅈ𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑙𝑜𝑛𝑒 𝑎𝑙𝑔𝑜𝑟ⅈ𝑡ℎ𝑚 (𝑠𝑒𝑐)

𝑟𝑢𝑛 𝑡ⅈ𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑎𝑙𝑔𝑜𝑟ⅈ𝑡ℎ𝑚 (𝑠𝑒𝑐)
 

(19) 

   The speedup values for three ML models NN (3 layers), DT, and LR are 20.55, 20.95, 

and 17.30, respectively considering average run times. The average speedup of all the 

models in a parallel environment as compared to the stand-alone environment is 19.06.  

 
FIGURE 5. Day ahead hourly load forecast RMSE of 1,000 transformers. 
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   Hence, the parallel execution of the model attains a faster processing speed in total for 

all the models as compared to the series computing environment. As the number of 

experiment samples increases from 1 million to 64 million, the average execution time 

of the Spark-DBN model increases from 3.35 to 113.12 seconds, however, the 

processing speed of 24 million samples to perform linear regression is only 56 seconds 

 

Figure 22 Execution time of 3 different ML models in different environments for 

~24 million samples. 
  
 

 
 

 
 
 

 

 

 

Figure 21 Comparison of the forecast strategy based on RMSE, training time and 6 

ML models. 
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as compared to ~120 seconds in [80]. SVR stopped execution with a kill time error while 

running in the stand-alone environment. This is because of a system problem on the 

HPRC due to the processing limit of one hour on the HPRC login node. 

7.2.1.2 ML model/Execution time 

The experimental results of prediction error in terms of RMSE and the time taken to train 

the models of ML models under consideration are depicted in Figure 21. As per the 

proposed methodology of parallelization using python multiprocessing in section 4.4 of 

chapter IV, Min {𝑡(𝑌𝑖)}, Min{𝑅𝑀𝑆𝐸(𝑌𝑖)} will be considered as the best model. The 

neural network model indicated with a plus sign is spread across both in terms of RMSE 

and training time. Whereas, DT and GBRT and LR fall under the Min{𝑡(𝑌𝑖)}, 

Min{𝑅𝑀𝑆𝐸(𝑌𝑖)} bucket. Random forest, an ensemble model indicated in green and 

support vector regressor indicated in blue, takes more time to execute as compared to 

Linear Regression indicated in red. RFs and SVRs exhibit lower RMSE but have higher 

training times. The error distribution for Neural Networks ranges gives an insight into the 

high forecasting errors but showcase lower training times as compared to SVR. 

7.2.1.3 Data Size 

Execution times on the data of a different number of DTs for the period data ranging 

from January 2017 to September 2019 is considered. The numbers of distribution 

transformers considered in various experiments are 10, 100, 500, and 1,000. When the 

number of transformers increases from 10 to 1,000, the execution time of the ML models 

increases. The execution times for all the 6 ML models for various numbers of 

processors with 8, 12, 16, and 32 are shown with top-left, top-right, bottom-left, and 



71 

 

bottom-right in Figure 23. The execution time on the Y-axis for all the graphs as shown 

sums the time is taken for transformers’ data filtering from the aggregated dataset, model 

training time, prediction time, and model evaluation time. For all the four cases 

considering 8, 12, 16 and 32 processors run time is averaged to compare the ML model 

in terms of run time. The average execution time of linear regression increases from an 

 

 

Figure 23 Total execution time of all the 1,000 transformers for different ML models 

and varying datasets. 
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average of 1 second to 271 seconds, the average execution time of SVR increases from 

an average of 110  seconds to 80 minutes, the average execution time of MLPRegressor 

increases from an average of  30 seconds to 18 minutes, the average execution time of 

GBRT increases from an average of  4 seconds to seven minutes, the average execution 

time of random forest increases from an average of 72 seconds to 61 minutes, while the 

average execution time of DTs increases from an average of 16 seconds to 9 minutes. 

From Figure 23, it can also be noted that from 8 processors to 32 processors the range of 

the Y-axis changes from 0-8000 sec to 0-1800 sec. The time required is the shortest for 

32 processors in all the experimental trials.  

Overall, considering a tradeoff between the accuracy and the execution times of 

the models, decision trees have outperformed as compared to the other ML models and 

can complete the training of the ML models for all the 1,000 transformers in nine 

minutes approximately. Figure 24 exhibits a snapshot of the decision tree with 24 lag 

hours with a max depth of a tree restricted to 8, and the maximum leaf node to be 50. 

Similarly, Figure 25, depicts the architecture of the neural network used. The 30 features 

𝑋 are given as input to the neural network to obtain the forecast value 𝑌. The results 

show an intuitive understanding of the benefits of using decision trees in the scope of big 

data over other Machine Learning algorithms. Real-time processes of large data streams 

for utility applications are hence possible with decision trees. The observations confirm 

the findings that this method is also one of the suitable methods for data streams that can 

be adapted to fast execution times [110]. 
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   The results after comparison in terms of ML model, execution time, and data size 

indicate that decision trees have outperformed the other models with an execution time 

of 9 minutes utilizing 32 processors to run all the 1,000 models with 24-hour lag day 

features added, and a data size of ~24 million records. 

7.2.2 Distributed processing with spark executors 

In this section, the metrics discussed in the section 7.1.2, 7.1.3 and 7.1.4 are 

evaluated on the datasets to showcase the benefits of the optimal scheduling algorithm. 

 

Figure 24 Decision tree for predicting load for one of the transformers. Note var(t-1): 

1-hour lag value, var(t-2): past 2nd hour lag value, previous value of load 

consumption. 
 

 
 

 

 

Figure 25 Neural network architecture used to forecast the model. The activation 

function is chosen as relu and the solver as adam optimizer. 
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The 𝐴𝑅𝑀𝑆𝐸 and the execution times are noted under experiments to determine the 

robustness of load forecasting methodology using spark. All the experiments are 

conducted on spark 3.0.1 on top of the Hadoop platform with 5 worker nodes and 1 name 

node each with 120GB of memory and 20 cores. YARN is installed on top of Hadoop as 

the resource manager and HDFS is used for the distributed storage of data. 

7.2.2.1 Validation of execution time 

In this experiment, the proposed optimal scheduling method is validated in terms of the 

training time and the forecasting time. The total time 𝑇 and 𝑇̃ are measured for both cases 

of 𝑥 and 𝑦 number of jobs submitted. The proposed scheme is tested for 𝑥 using the k-

means clustering algorithm to group the data to obtain clusters with higher accuracy. To 

validate the proposed method, various chunks of 𝑦 values are considered and compared 

against the time taken for 𝑥 number of chunks of data. For the given data as the value of 𝑥 

is 1000, values ranging from 750 to 25 are chosen as shown in Figure 26(a). The 

speedup is calculated for the various combinations by performing 𝑇 𝑇̃⁄ . As the value of 𝑦 

increases, the size of the data is distributed among the y chunks which also affects the 

processing time for different sizes of 𝑦. For varying values of 𝑦 the speedup is 

increasing, indicating the time 𝑇̃ is always less than 𝑇 for all the values of 𝑦. Choosing a 

lesser value of 𝑦 and still not losing on speedup is recommended, as in practice it will 

help in reducing the execution time in cases of performing representative clustering. 

Hence the proposed optimal scheduling algorithm stated in section iv improves the 

performance by reducing the time to perform the analysis. Similarly, for a 𝑦 value of  93, 

varying values of the thread pool are performed to analyze the speedup as shown in 
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Figure 26(a). Compared with a single job submission, the calculation time tends to 

decrease gradually as the number of concurrent jobs submitted increases based on the 

left axis in Figure 26(b). Massive jobs are distributed across the slave nodes, which 

reduces the computational load. The spark computing platform captures the 

intermediates results to memory resulting in the inefficiency of iterative processing 

where each data frame is called multiple times for various processing stages. As shown 

in Figure 26(b), based on the right y-axis, the speedup is approximately increasing 

linearly up to a value close to some cores and makes it less linear after a value of 18-20. 

When the number of jobs submitted increases above the threshold of a possible number 

of concurrent threads that can be submitted, the data transfer among the processes 

increases communication overhead which eventually increases the parallel management 

overhead. Hence a trend of less linearity can be observed clearly after a value of 

jobs=18. The training time is 43.8% faster for a pool value of 18 than the traditional 

method of submitting jobs sequentially in spark.  

Figure 26 Performance evaluation. (a) shows the speedup for various cluster sizes 

for a concurrent job submission size of 18 and  (b) presents the speedup of 

increasing the number of jobs. A value of k=93 is chosen for all the job submission 

values. 
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Additionally, the clustering time, training time, and testing time for a value of k = 

93 is estimated based on the clustering performed to choose the best cluster number value 

as shown in Figure 27(a). The total execution time (includes the training time of grouped 

clusters, testing time of individual transformers with clustering, the training time of the 

individual transformers, and the testing time for individual transformers) for the 1000 

models is shown in Figure 27(b). The time taken by the gradient boosted algorithm is the 

highest compared to the other spark ml algorithms. Although both random forest and 

gradient boosted trees are ensemble models, the random forest takes noticeably lesser 

time as compared to random forest. Inference out of this observation is that gradient 

boosted is a boosting algorithm that is quite sequential and is intended to take more 

execution time whereas multiple trees in the random forest can be run parallelly across 

the nodes to speed up the execution. The times observed in Figure 27(a) show the lowest 

training time for spark decision tree regressor. It can be noted that the time taken to 

perform testing is almost close to the training time. This is evident from the proposed 

Figure 27 Comparison of compute time at various stages of load forecasting. (a) 

Results obtained for the time taken to perform clustering, training time and 

testing time on the holdout dataset for SLR(spark LR), SDT, SRF and SGBT. (b) 

The execution time involves 
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methodology which states that performing analysis on grouped data is preferred over 

individual transformers data. However, as the testing has to be performed on all the DT's 

datasets, grouping cannot be performed to reduce execution time. 

7.2.2.2 Validation of spark optimization 

To validate the use of an optimal number of 𝐶𝑂𝑝𝑒𝑟𝐸, experiments are conducted based on 

various combinations of 𝐶𝑂𝑝𝑒𝑟𝐸 and 𝐸 which in turn affects the 𝑀𝐸𝑀𝑝𝑒𝑟𝐸. Figure 28 

displays the comparison of run-time for various combinations of executors and cores per 

executor. The combination with the largest number of cores per executor shows the lowest 

run time as per the secondary y-axis in Figure 28. As the job submission computes 

multiple jobs at the same time more number of workers helps in the distribution of the jobs 

to more number of workers. Hence a choice of 5 executors and 20 cores per executor is 

decided as an optimized combination of the spark configuration. It is worth mentioning 

that as the number of executors is increased, the 𝑀𝐸𝑀𝑝𝑒𝑟𝐸 is reduced as it is distributed 

among the executors, to sum up to 𝑀𝐸𝑀. Other than time, communication overhead and 

Figure 28 Run time comparison for various spark optimization parameters 
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data transfer is also a concern in distributed computing. Other than time, communication 

overhead and data transfer are also a concern in distributed computing. By increasing the 

depth of a decision tree (refer to Table 8), it is noticed that as the tree grows larger, after a 

max depth of 10, a large task transfer warning is shown by spark indicating that deep 

models with a large number of tree nodes are being transferred across the tasks which 

result in more data transfer. Referring to Table 8, it can be noted that by increasing the 

depth of the model, the training accuracy is reducing, and the time taken is close to each 

other. However, after a max depth of 10, there is a jump in the time and the time is 

gradually increasing. This indicates that more amount of time is being utilized in 

transferring data, hence such a scenario has to be avoided during the execution or the spark 

parameters have to be tuned further to accommodate large task binaries.  

Table 8 Performance of ML model in terms of RMSE and training time to 

monitor the effect of deep networks 

Max depth Training accuracy (kWh) Holdout accuracy (kWh) Time (sec) 

2 5.850740 9.205257 28.711398 

4 5.422266 9.738556 25.833542 

6 4.759868 11.30912 24.382604 

8 4.401291 17.37286 25.479490 

10 4.153886 12.44175 26.977820 

12 4.083622 12.50476 29.376672 

14 4.077183 17.77995 32.170327 

16 4.081471 17.79192 35.396624 
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7.2.2.3 Overfitting 

Most of the machine learning models perform accurately post tuning of hyperparameters. 

However, excess tuning of parameters tends to fit the training data so accurately that the 

model is overfitted. Once overfit, the models do not perform as expected on the new 

forecasting dataset. To avoid such a case many measures are taken to avoid overfitting in 

the training data. Consideration of holdout data set which has never been used in the 

training is one of the measures to prevent overfitting. In the case of tree ML models, the 

depth of the tree or the number of nodes while training can be regulated. An experiment is 

performed by increasing the depth of the tree and the num of nodes in the trained model is 

monitored (refer to Figure 29). The x-axis shows the number of nodes, and the y-axis is 

the performance measure in terms of RMSE. It can be noted that the black line in Figure 

29, which indicates the training RMSE, is decreasing with an increase in the number of 

nodes by fitting the dataset onto the trees as deeper as possible. Whereas the red line which 

Figure 29 ARMSE of training and holdout dataset for spark decision tree. The 

spot above 820 nodes result in overfitting of the datasets. 
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denotes the holdout RMSE does not show such a trend. After a point, the models' 

performance starts deteriorating. This point is called the sweet spot where the models tend 

to start overfitting. Hence the depth of the model must be restricted below this point which 

indicates a value of 820 nodes in Figure 29. By taking such a measure on the average 

RMSE of all the transformers data, a max depth of 8 is chosen to perform training on the 

spark ML models. 

7.2.2.4 Validation of historical data 

The use of historical data has been used in the field of data mining to discover 

regularities to improve the decision-making processes [111]. For the dataset at hand, the 

data is collected for 3 years over the years 2017 to 29. Experiments have been run to 

understand the effect of historical data in forecasting the models. A sample of 

transformers data has been collected with varying horizons such as data from 2019, 

2018, 2017, 2018+2019, and 2017+2018+2019. The dataset sizes vary for each of the 

three cases as shown in Table 9. 

Table 9 Number of records for a sample transformer for the varying horizon 

Dataset Number of records 

2019 5,895 

2018 8,760 

2017 8,759 

2018+2019 14,654 

2017+2018+2019 23,389 
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Considering each of the scenarios discussed in Table 9 mean square error and mean 

absolute percentage error has been measured for all the transformers in Dataset 1. The 

results for mean squared error have been described in Figure 30 and the mean absolute 

percentage error in Figure 31. The results indicated in both the figures are averaged for 

all the 1000 transformers. 24-hour lag day values have been added as a pre-processing 

step for the analysis. The x-axis for both the figures indicates the average time taken to 

fit the models on the training data and the y-axis indicates the measure in KWh. The bars 

in blue and green belong to DTR and RFR respectively. It can be observed in both the 

figures that the average time is taken to train increases as the data is added. It can be 

observed that both DTR and RFR average MSE is least considering only data from 2019 

as compared to the cases of 2019+2018 and 2017+2018+2019. The training time for the 

RFR is more than DTR in all the cases as it is an ensemble model and runs a lot of 

computations as compared to a single decision tree. Average MAPE as shown in Figure 

31 is still the least considering only data from 2019.   

From the experiments of adding historical data, although considering only data 

from 2019 gives results better than the rest of the cases. This discovery of mining the 

load data gives an insight that only considering data from 2019 is sufficient to generate 

models with high accuracy whilst saving a lot of execution time needed to process the 

historical data. 
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Figure 30 MSE Results on Average of decision tree and random forest(1000 t/f) 

 

Figure 31 Mean absolute percentage error results on decision tree and random 

forest (Average of 1000 t/f) 
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7.2.2.5 Validation of accuracy 

This section discusses the results after considering the validation of accuracy, computation 

time, and overfitting in the previous sections. For each of the spark ml models, the 

performance of the training dataset and holdout dataset are compared. Table 10 reports the 

𝐴𝑅𝑀𝑆𝐸 computed for all the 1000 datasets. Holdout 𝐴𝑅𝑀𝑆𝐸 indicates the quality of load 

forecasting. Thus, a lower value of 𝐴𝑅𝑀𝑆𝐸 indicates a better load forecasting model. The 

table indicates that the values of holdout 𝐴𝑅𝑀𝑆𝐸 are the lowest for the spark random 

forest regression model.  

Referring back to Figure 27(b), the execution time for the random forest is not the lowest 

but is comparable to the spark DTR model. Even though the random forest is an ensemble 

model, the execution time is not as large compared to other models. This is because the 

way spark performs its execution is that it utilizes its parallel computing capability to 

execute each of the decision trees individually and gives back the result. The actual power 

of spark in terms of execution can be observed here. Thus, it can be concluded that the 

spark RF performs better than the other spark ml models under comparison. 

Table 10 Final ARMSE, for training and holdout dataset after choosing tuned 

parameters. 

Algorithm Training 𝐴𝑅𝑀𝑆𝐸 

(kWh) 

Holdout 𝐴𝑅𝑀𝑆𝐸 

(kWh) 

Spark Decision Tree Regression Model 9.17193954 10.80716307 

Spark Random Forest Regression Model 8.01070855 10.60056138 

Spark Gradient-Boosted Trees 4.20657451 11.88559708 

 

https://spark.apache.org/docs/latest/ml-classification-regression.html#gradient-boosted-trees-gbts
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    Figure 32 shows the plot of 𝑅𝑀𝑆𝐸 of all the distribution transformers under 

consideration. For randomly chosen DTs, those indexed as 0, 78, 208, 91, 13, 39, 104, 1, 

52 present the training 𝑅𝑀𝑆𝐸 and holdout 𝑅𝑀𝑆𝐸. The plots indicate that the forecasting 

accuracy follows the training accuracy closely attributing to the fact that the built ML 

model is quite robust in terms of performance while increasing the speedup when a large 

number of jobs is performed. 

7.2.3 Experimental results on Scalability 

This section outlines the results of the proposed methodology on a dataset obtained for 

dataset 2 with 10 thousand transformers and dataset 3 with100 thousand transformers. The 

results focus on the execution time and accuracy of the ML models based on the proposed 

methodology. All the experiments are conducted on spark 3.0.1 on top of the Hadoop 

platform with 7 worker nodes and 1 name node each with 120GB of memory and 20 

Figure 32 ARMSE comparison of training and holdout dataset for all the DT's 
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cores. YARN is installed on top of Hadoop as the resource manager and HDFS is used for 

the distributed storage of data. 

7.2.3.1 Estimating Number of Clusters Utilizing Optimized Scheduling of Parallel 

Jobs 

A parallel implementation of the k-means is discussed in this section. The Lloyd’s 

iterations as part of the k-means clustering methodology can be parallelized in the 

MapReduce framework, hence can be utilized in the spark framework. The algorithm is a 

parallel version of the k-means++ clustering technique. The details of the algorithm are 

presented in Algorithm 1 [112].  The initial center is picked up at random and it computes 

the initial cost ψ, followed by subsequent 𝑙𝑜𝑔(ψ) iterations. Given each set of c centers, 

the algorithm samples with probability 
𝑙𝑑2(𝑥,𝐶)

ϕ𝑋(𝐶)
 for each sample 𝑥, and 𝑙 is the 

oversampling factor give as Ω(𝑘). It can be noticed from the algorithm that the size of 𝐶 is 

Algorithm 1 k-means|| 

Step1: Sample a point uniformly. 

Step2: 𝜓 ⇐ cost of 𝐶 for 𝑋. 

Step3: Repeat Step4 and Step5 for 𝑂(𝑙𝑜𝑔𝜓) times. 

Step4: Sample new points with probability 
𝒍𝒅𝟐(𝒙,𝑪)

𝛟𝑿(𝑪)
 

Step5: Add the new points to the points sampled at step1. 

Step6: End repetition. 

Step7: Choice of 𝝎𝒙 number of points closer to 𝑥 than any other point in 𝑐. 

Step8: form 𝑘 clusters by reclustering the weighted points in 𝐶. 
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less than the input size significantly.   

Concerning the problem statement of the optimal value of 𝑘 while performing clustering, 

the data is clustered for all the values in the range [2, 𝐾] to choose the best value of 𝑘 

resulting in an iterative process. The work proposes these iterations 𝑘 to be submitted as 

parallel jobs. If 𝜃 is the batch of jobs submitted, then the total number of iterations can be 

reduced to equation (20) 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ⅈ𝑡𝑒𝑟𝑎𝑡ⅈ𝑜𝑛𝑠  =  
(𝐾 − 2) + 1

θ
 

(20) 

By submitting 𝜃 jobs the 𝐶𝑂 value will be reduced to 𝐶𝑂𝑝𝑒𝑟𝐽 (cores per job) as 

shown in equation (21) 

𝐶𝑂𝑝𝑒𝑟𝐽  =  
𝐶𝑂

θ
 

(21) 

The resource allocation per job is now reduced, however, if each of the jobs 

requires only a limited number of resources, then multiple jobs can be run to expedite the 

iterative process of finding the optimal value of 𝑘. Algorithm 2 is stated with the pseudo-

code describing the functional behavior of the scheduling strategy to deliver the main idea. 

In this section, the efficiency of the proposed algorithm on a 10k transformers and 

100k transformers real-world dataset provided by Spanish utility has been evaluated. The 

results are investigated on scalability, execution time, and evaluation score. All the 

experiments have been performed with pyspark programming language to integrate python 

supported ML techniques with the Spark SQL module which supports distributed query 

engines and data frames. 
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Algorithm 2. The proposed k-means parallel in-memory optimal job scheduling 

algorithm 

Input: 

   j: the number of batches 

  w: number of workers (indicates 𝐶𝑜𝑝𝑒𝑟𝐸) 

  K: Maximum value of k. 

  r: step value of k  

 csv: an empty csv file to accumulate all the results 

Initialize: 

def cluster (𝑘): 

Perform k-means parallel clustering; 

Evaluate clustering on the evaluation measures; 

Update the clustering scores; 

end def 

Output: 

      csv: the WSSE and Silhouette of data for all values of 𝑘.  

Assign the number of workers and create a thread pool equal to the number of 

workers; 

Create an array [2, 𝐾, 𝑟]; 

Call pool.map function for cluster function with the array of 𝑘 and 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 function 

as variables; 

The function cluster is called in j batches n times resulting in n/j iterations. The jobs 

are assigned to the next available processors in a random fashion. The WSSE and 

silhouette evaluation scores for each of the values of k are simultaneously updated 

after each execution; 

close pool; 

return csv 

The experiments have been conducted on [6.1.1 Dataset 1] and 6.1.2 Dataset 2 

provided by Spanish utility Iberdrola. In both datasets, duplicates have been dropped and 
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the time stamp variable has been segregated into the year, month, and day of the 

timestamp. The meter IDs have been anonymized with an index, while a dictionary is 

created to refer to the meter IDs corresponding to the index if needed. The total number of 

features in the data is 8. To perform clustering, the prediction variable (load value) with 

the help of timestamp has been averaged hourly and daily to obtain a matrix with each row 

indicating the averaged load. The data is stored in a compressed format of Optimized Row 

Columnar (ORC) and collected from hive datastores of the utility storage facility. Both the 

datasets were preprocessed and the preprocessing time of both Dataset 1 and Dataset 2 

individually was less than a minute. 

To measure the goodness of our clusters, we use WSSE which is a measure of how far 

each point 𝑋 is from its centroid. The WSSE is calculated as shown in (22) 

∑𝑑(𝑋, 𝐶𝑖̅)

𝑁

𝑖=1

=∑(∑(𝐶𝑖𝑗 − 𝐶𝑖̅𝑗)
2

𝐷

𝑗=1

)

𝑁

𝑖=1

 

 

(22) 

where 𝑋 is each of the points in the data with 𝐷 dimension, 𝐶𝑖 is the point 𝑋 

belonging to the cluster, 𝐶𝑖𝑗 is the 𝑗𝑡ℎ dimension of ⅈ𝑡ℎ point in the cluster and 𝐶𝑖̅𝑗 is the 

𝑗𝑡ℎ dimension of the cluster center. The computational complexity of calculating the 

distances is given by 𝑂(𝑁 ∗ 𝐷), where 𝑁 is the cardinality of the dataset. To ease the 

cluster evaluation complexity, equation (23) is expanded as  

∑𝑑(𝐶𝑖, 𝐶𝑖̅)

𝑁

𝑖=1

=∑(∑(∑(𝐶𝑙𝑗 − 𝐶𝑙̅𝑗)
2

𝑃

𝑙=1

)

𝐷

𝑗=1

)

𝑘

𝑖=1

 

(23) 

where 𝑘 is the number of clusters and 𝑃 is the number of records within a single 

cluster. Equation (23) holds when  
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∑𝑃𝑙

𝑘

𝑙=1

= 𝑁 

 

(24) 

After rearranging equation (23), the computations for each of the 𝑘 clusters can be 

distributed as broadcast variables to the worker nodes 𝑤 to incorporate distributed 

processing. The platform computes the sum of one cluster or segment of the data on one 

worker, then a sum of a different segment or cluster over on another worker, and then 

combines those two sums as the final result. The computational complexity is hence 

reduced from 𝑂(𝑁 ∗ 𝐷), to 𝑂 (
𝐷∗𝑁

𝑤
) by using a parallel implementation of the WSSE by 

changing (22) to (23). 

Silhouette Score is used to measure the clustering consistency within the clusters as 

indicated in equation (25) [113]. A value of 1 indicates all the data to be appropriately 

clustered. 

𝑠𝑖 =
𝑏𝑖  −  𝑎𝑖

𝑚𝑎𝑥(𝑎𝑖, 𝑏𝑖)
=

{
 

 1 −
𝑎𝑖
𝑏𝑖
   ⅈ𝑓𝑎𝑖 ≤ 𝑏𝑖

𝑏ⅈ

𝑎𝑖
− 1    ⅈ𝑓𝑎𝑖 > 𝑏𝑖

 

(25) 

where 𝑎𝑖 is the average distance of ⅈ𝑡ℎ point in the cluster to all the other points 

within the cluster and 𝑏𝑖 is the average distance of ⅈ𝑡ℎ point with all the other points to 

which the point ⅈ does not belong. If 𝑎𝑖 the measure is small and the 𝑏𝑖 measure is large, 

the value of 𝑠𝑖 will be close to 1 indicating the points are appropriately clustered. The 

algorithm computes the distance of each of a couple of points in the dataset by the 

equation (26) below. 
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∑𝑑(𝑋, 𝐶𝑖)

𝑁

𝑖=1

=∑(∑(𝑥𝑗 − 𝐶𝑖𝑗)
2

𝐷

𝑗=1

)

𝑁

𝑖=1

 

(26) 

This measure is not scalable in 𝑁, hence, to ease the cluster evaluation computational 

complexity, Equation (26) is expanded as equation (27) 

∑𝑑(𝑋, 𝐶𝑖)

𝑁

𝑖=1

=∑(∑𝑥𝑗
2

𝐷

𝑗=1

+∑𝐶𝑖𝑗
2

𝐷

𝑗=1

− 2∑𝑥𝑗𝐶𝑖𝑗

𝐷

𝑗=1

)

𝑁

𝑖=1

 

(27) 

The equation is further rearranged as shown in (28) 

=∑∑𝑥𝑗
2

𝐷

𝑗=1

𝑁

𝑖=1

+∑∑𝐶𝑖𝑗
2

𝐷

𝑗=1

𝑁

𝑖=1

− 2∑(∑𝐶𝑖𝑗

𝑁

𝑖=1

)𝑥𝑗

𝐷

 𝑗=1

 

(28) 

= 𝑁ξ𝑋 + ψΓ  − 2∑𝑌Γ𝑗𝑥𝑗

𝐷

𝑗=1

 

(29) 

where ξ𝑋 is the sum of squares of each of the 𝑋 points and is a constant. ψΓ is also a 

constant for each of the clusters Γ. 𝑌Γ𝑗 is a vector for all the 𝑁 points and is fixed for each 

cluster Γ. The average distance of a point is given in (30) 

= ξ𝑋 +
ψΓ
𝑁
− 2∑

𝑌Γj𝑥𝑗

𝑁

𝐷

𝑗=1

 

(30) 

where the constant ξ𝑋 can be precalculated for each of the points 𝑋, and ψΓ, 𝑌Γ for each 

cluster Γ for 𝑘 clusters. These pre-computed values for the 𝑘 clusters are distributed as 

broadcast variables to the worker nodes 𝑤. The computational complexity is hence 

reduced from 𝑂(𝑁2 ∗ 𝐷), to 𝑂 (
𝑘∗𝐷∗𝑁

𝑤
) by using a parallel implementation of the 

Silhouette by changing (26) to (30). 
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Extensive experiments have been performed to examine the speedup of the parallel jobs. 

To measure the performance of load forecasting, Root Means Square Error (RMSE) has 

been utilized as the evaluation measure. For 6.1.2 Dataset 2, we compare the performance 

of spark k-means random, k-means parallel, and bisecting k-means using the parameters of 

k ranging from 2 up to 500. An outer bound of 500 is chosen as the number of clusters 

beyond 500 is undesirable and does not serve the purpose of clustering to reduce the 

number of models to be trained. Figure 33 illustrates the computation time and silhouette 

score for various values of k. From Figure 33(a) it can be observed that the computation 

time increases for spark bisecting k-means till a 𝑘 value of 400 and then drops. In the case 

of clustering, as the value of k increases, the number of partitions in the data also increases 

which is distributed across workers and can result in a reduction in runtime. It is observed 

from Figure 33(a), that for both k-means parallel and k-means random the computation 

time is less as compared to bisecting k-means. The silhouette score in Figure 33(b), 

indicates that for all values of 𝑘, k-means parallel shows superior performance. The higher 

  
(a)                                                                                 (b) 

Figure 33 Computation time and silhouette score of three clustering techniques on 

spark for varying values of k 
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the silhouette score better the clustering quality. Hence spark k-means parallel is a choice 

algorithm to perform clustering on big data.  

Experiments of hourly load consumption and daily load consumption for different values 

of 𝑘 have been conducted and the execution time has been measured. The data for 

evaluation consists of averaged load matrix of size [1000,1003] and [1000,24000] for 

daily load consumption and hourly load consumption, respectively. Clearly, from Figure 

34(a), the hourly load consumption takes more time as compared to daily load 

consumption. In [114], the authors suggest that the optimal value of 𝑘 value is 93 utilizing 

the k-Medoid clustering algorithm. Regarding the silhouette scores, the result in Figure 

34(b) emphasizes that more data with hourly load patterns leads to better clustering as the 

silhouette score is closer to 1 for the majority values of 𝑘 the hourly load as compared to 

daily load.  

The efficiency of the proposed k-means parallel in-memory clustering component parallel 

jobs to the RMSE has been evaluated. Note that the idea behind this algorithm is to 

Figure 34 Computational time and clustering efficiency measure of hourly and daily 

load consumption of Dataset1. 
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distribute the load forecast of all the transformers across the worker nodes of the big data 

platform. The data is divided into clusters and the choice value of 𝑘 is discovered. Once 

the value of 𝑘 is known this value is used to perform clustering on the data. Once the 

clusters are known the transformer closest to the center is chosen as the representative 

cluster. This representative cluster is chosen as the training dataset and the load is 

forecasted for the rest of the transformers. Thus, the value of 𝑘 only decides the right 

clustering value and not the accuracy of the load forecasting model. To perform the load 

forecasting accuracy analysis, the decision tree algorithm is chosen based on its 

performance considering a tradeoff between accuracy and execution time [36]. The focus 

is on the effect of clustering, hence a deeper analysis on the choice of ML model is not 

considered in the evaluation. To test the clustering strategy firstly 90% of the data of all 

the transformers is used for training and 10% as the holdout dataset. The training of all the 

transformers is performed individually and the data is not collected at one place for all the 

transformers for the results indicated in Figure 35(a). In the results of Figure 35, the red 

line indicates training RMSE, and the blue line indicates RMSE for the holdout dataset. As 

shown in Figure 35(a), the RMSE for holdout exceeds the training data RMSE by not 

more than 20KWh approximately for the majority of the transformers. This shows a good 

performance of the trained model. It can also be noted that most of the transformers' 

RMSE ranges between 0 to 10 kWh. Figure 35(b) shows the results on representative 

clustering, X-axis shows the cluster number, and each cluster number is repeated for many 

cases showcasing the different transformers within a cluster. In representative clustering as 

only 90% of data of the transformer closest to the centers is used for training, the RMSE 
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for training will remain the same for all the transformers within the cluster. This model is 

used to test the 10% data of the remaining transformers within the cluster. The advantage 

of representative clustering is that only k transformers closest to the cluster centroids are 

trained instead of all the transformers reducing the training time further. These results 

show that the RMSE for almost all the transformers is in the range of 0 to 40 kWh for 

training and more than 40kWh for the holdout data. With the use of clustering, the RMSE 

of the holdout data farther from the cluster center is expected to deteriorate as the model 

may not be completely suitable for all the transformers within the cluster as the clustering 

quality is not 100% in a real-time scenario.  

The performance in terms of scalability by running the tests on dataset 2 which is 10 times 

Figure 35 RMSE in kWh of 1000 transformers with representative clustering and 

without representative clustering 
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larger than dataset 1 has been compared. To access the scalability, the total time taken to 

cluster the data for the various value of 𝑘 for both the datasets is measured. The 

experiments aim to verify that an exponential increase in big data does not have an 

exponential increase in the run time for all the values of 𝑘 clusters. From Figure 36, it can 

be observed that as we increase the data size from ~24 million records to ~210 records 

both consisting of 8 features, for a 𝑘 value of 500 we obtain results for clustering along 

with the evaluation measures. In terms of comparison of evaluation scores, the silhouette 

score takes longer than the proposed SSE score. An SSE evaluation time of 227 sec for 

dataset 2 with 210 million records prove the scalability of the proposed SSE evaluation 

measure in this paper. The results also showcase that the spark platform has a noticeable 

effect on the parallel k-means algorithm as we scale up the size of the data by almost 10 

times. Hence, the parallel k-means algorithm with Spark on top of Hadoop is very suitable 

for large scale and can handle large datasets for clustering smart meter data.  

To evaluate the proposed job scheduling of parallel k-means in-memory processing the 

experiments are run on the various value of k for both spark k-means parallel and the 
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Figure 36 Comparison of run time of spark parallel k-means with varying values of 

k on different datasets. 
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proposed method on daily average load values of 6.1.2 Dataset 2. Table 11 tabulates the 

time taken to execute 8 values of 𝑘 ranging from 0 to 10000 with a step size of 250. The 

time taken for clustering (prediction time) is lower for each of the values of 𝑘 as compared 

to the proposed method, however, with the proposed method, the total time is lower than 

Table 11 Time taken for spark k-means parallel and proposed scheduling 

methodology with various k values 

k spark k-means|| Proposed job scheduling for k-means|| 

 

Predictio

n time 

(sec) 

SSE 

calculati

on time 

(sec) 

Silhouette 

score 

calculation 

time (sec) 

Prediction 

time (sec) 

SSE 

calculation 

time (sec) 

Silhouette 

score 

calculation 

time (sec) 

250 179.633 5.913 11.719 194.035 27.572 40.924 

500 11.467 4.106 9.644 209.527 17.477 28.826 

750 14.257 4.237 9.895 195.819 25.790 36.600 

1000 12.578 4.606 10.262 194.020 27.587 40.149 

2500 13.670 6.629 13.241 201.884 21.556 36.470 

5000 14.185 8.446 15.700 209.013 20.744 33.398 

7500 15.028 10.425 18.300 199.965 23.290 38.010 

10000 15.525 11.926 20.379 201.218 28.500 41.122 

Total 

time 

416.694 248.297 

Total time includes the prediction time, SSE calculation time and Silhouette score 

calculation time for all the values of k 
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the spark k-means parallel. The run time for both the evaluation measure WSSE and 

silhouette score has been computed. 

It is observed that the time taken for SSE calculation in both cases is lesser than the 

silhouette score as expected. Silhouette score has a greater number of distance measures to 

be evaluated as compared to SSE. However, it can be noted that both the evaluation 

measures are scalable and can be used to measure the clustering quality. The total time 

indicates the time taken to cluster and evaluate both the measures for all the values of 𝑘. It 

is the time taken for clustering, SSE evaluation, and silhouette score evaluation for all the 

values of 𝑘. The total time in the proposed optimal scheduling method is 40.4% lesser than 

the spark k-means parallel method without optimal scheduling. In the proposed method as 

the workers are distributed across various jobs each worker gets a lesser share of the 

memory as compared to the spark k-means parallel classical method. However, the overall 

time to run all the iterations of 𝑘 is lower in the proposed methodology. Thus, we can 

conclude that the proposed optimized scheduling strategy performs better than the spark k-

means parallel algorithm in terms of execution time. 

 The number of clusters has also been estimated on Dataset 3 for 100k transformers 

data using kmeans|| as the clustering technique. The results have been shown in Figure 37. 

The graph on the x-axis shows the various value of 𝑘 for which the clustering technique 

has been tested to obtain the elbow curve. The primary x-axis shows the measure of error 

using SSE and the secondary y-axis indicates the times taken to cluster the data in seconds. 

The suggested value of 𝑘 is chosen to be 15,050 considering a dip in the elbow at this 𝑘 
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value. It can also be observed that the time that it takes to cluster the data for a value of 𝑘 

of 15,050 is ~2800 sec or ~46 minutes.  

 

Figure 37 Kmeans|| result on Dataset3 - elbow curve 

 

 The spikes in the graph for clustering time indicate that when any of the workers 

are busy performing other tasks the time it takes increases. However, as the tests are run 

based on the proposed scheduling methodology discussed in section 7.2.3.1 all the values 

of 𝑘 are submitted simultaneously as multiple jobs and are executed in parallel. The time 

to evaluate the clusters with the proposed parallel implementation of the evaluation score 

(SSE) with the help of workers is shown in Figure 38. All the values of 𝑘 are distributed as 

broadcast variables to the worker nodes 𝑤. The time taken to evaluate each value of k is 

fairly less and does not reach more than 60 secs for a k value as large as 25000. 
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Figure 38 Time to evaluate the clusters using the parallel sum of square error on 

Dataset3 

 

 For a chosen k value of 15,050, the distribution of the number of transformers 

per cluster is noted. Figure 39 indicates the bins for the number of transformers on the x-

axis and the number of transformers falling under each of the bins on the primary y-axis. 

The secondary y-axis indicates the % of the total number of transformers falling under 

the respective bins. 

 

Figure 39 Distribution of transformers per cluster 
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 The majority of the transformers (>90%) fall under the 1-10 bin width 

considering 15k clusters. The bin with a majority number of transformers is a fair 

distribution of the transformers considering 105k transformers in total distributed across 

15k clusters. However, there are clusters with only 1 transformer per cluster and also 

clusters with 1928 transformers belonging to a single cluster. Considering the k value of 

15,050 load forecasting has been performed considering the transformer closest to the 

centroid as the training model and the rest of the transformers data is used for testing. A 

sample cluster is considered with 10 transformers to observe the performance of R-

square in this scenario. Figure 40 shows the comparison of with and without clustering 

for a sample cluster with 10 transformers. The x-axis shows the names of the 

transformers are positioned as per the distance of the transformer from the centroid. The 

transformer closest to the centroid is ZIVS004475051. The blue line indicates the R-

square value without performing any clustering and the red line indicates the R-square 

value considering the trained model of transformer ZIVS004475051. The blue is on a 

record high above 0.98 R-square value for all the transformers, however as expected the 

red line with R-square indicating the goodness of fit measure values decrease. To 

evaluate the performance statistically an average of R-square without and with clustering 

is calculated to be 0.991962064 and 0.95100845 respectively. The %loss on average can 

be evaluated to be 4% by clustering data to be able to generate a lesser number of trained 

models and save computation time eventually. In this particular scenario, only a single 

model will be trained instead of training 10 different ML models. 



101 

 

 

Figure 40 R2 Results for load forecasting with clustering 

  

7.2.3.2 Load Forecasting results on Dataset 2 (10k transformers) 

The results outlined in this section are for Dataset 2. The results indicated are with 

regards to a quantile range of [0.25 – 0 kWh, 0.5 – 16 kWh, 0.75 – 42 kWh, 0.9995 - 
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in columns 1 and 4 respectively. RMSE is an absolute measure of fit as indicated in 
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random forest (RF) regressor. The results with the R-squared measure on the same 
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close as possible to 1 makes the model more accurate. Hence to improve the models for 

a majority of the transformers load values of the lag day have been added to the data in 

the preprocessing step. 

Table 12 Load Forecasting results in terms of RMSE and R-squared on Dataset2 

RMSE  R-Squared  

Range tf’s 

DTR 

tf’s 

RF 

Range tf’s DTR 

test 

tf’s RFR 

test 

   𝑅2 < 0 18 23 

0 ≤ 𝑅𝑀𝑆𝐸 ≤ 10 9655 9612 0 ≤ 𝑅2 <  0.2 67 66 

10 < 𝑅𝑀𝑆𝐸 ≤ 50 262 314 0.2 ≤ 𝑅2 <  0.5 1281(13%) 957(10%) 

50 < 𝑅𝑀𝑆𝐸 ≤ 100 6 10 0.5 ≤ 𝑅2 < 0.8 5860(61%) 4334(45%) 

100 < 𝑅𝑀𝑆𝐸 ≤ 200 18 5 0.8 ≤ 𝑅2 ≤  1 2250(23%) 4102(43%) 

 

 Considering the data partitioning technique discussed in 5.3.4 Data partitioning 

in a distributed environment lag values for 24-hour load values are added to the dataset 

and results have been obtained. The Quantile range for 0.25, 0.5, 0.75, and 0.9995 is 0 

kWh, 16 kWh, 42 kWh, and 1751 kWh respectively. The tuning parameters for random 

forest regressor have been performed for a maxDepth = [6, 8, 10] and numTrees [6, 12, 

24]. Based on the results obtained random forest regressor with a maxDepth of 8 and 

numTrees as 20 has been considered and the results are tabulated in Table 13. The total 

time taken to obtain the results for 5900 t/f’s is 8.5 hours. 
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Table 13 Load Forecasting results in terms R-squared on Dataset2 with 5900 t/f’s 

adding lag values 

R−squared (tuning individual 

models) 

 R−squared (adding 

24−hour lag values) 

 

Range tf’s RF test tf’s RF test 

tuned 

Range tf’s RF 

test 

tf’s RF 

test 

tuned 

𝑅2 < 0 28 23 𝑅2 < 0 28 34 

0 ≤ 𝑅2 <  0.2 56 51 0 ≤ 𝑅2 <  0.2 28 29 

0.2 ≤ 𝑅2 <  0.5 948 (16%) 731 (12%) 0.2 ≤ 𝑅2 <  0.5 34 35 

0.5 ≤ 𝑅2 < 0.8 3540 (60%) 3267 (55%) 0.5 ≤ 𝑅2 < 0.8 79 73 

0.8 ≤ 𝑅2 ≤  1 1279 (21%) 1778 (30%) 0.8 ≤ 𝑅2 ≤  1 5698 

(96%) 

5704 

(96%) 

 

 It can be observed from Table 13 that most transformers are now moved from an 

R-squared range of [0.5, 1.0] to [0.8, 1.0]. It clearly shows that adding lag values has 

resulted in a drastic improvement of the model accuracies for a majority of transformers. 

7.2.3.3 Load Forecasting results on Dataset 3 (100k transformers) 

In this section Dataset3 with 105k transformers has been considered to evaluate 

the performance of the proposed techniques to prove scalability. For feasibility, the 

dataset has been divided into 10 batches with approximately 10k transformers each and 

the tests have been performed. The results of load forecasting on 105k t/f’s are shown in 

Table 14. The results indicate that for the test dataset almost 90% of the transformers 
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have an R-square value greater than 0.9. The time taken to train the models is shown in 

Table 15. 

Table 14 Load forecasting results on dataset 3 (102,988 t/f) 

R−squared (adding 24-hour lag values) 

 R-squared train R-squared test 

 t/f number % of total t/f number % of total 

𝑅2 < 0 4 0 1075 1% 

0 ≤ 𝑅2 <  0.2 5 ~0 777 1% 

0.2 ≤ 𝑅2 <  0.5 9 ~0 644 1% 

0.5 ≤ 𝑅2 < 0.8 461 ~0 1,248 1% 

0.8 ≤ 𝑅2 < 0.9 1,505 1% 1,440 1% 

0.9 ≤ 𝑅2 < 1 100,311 97% 94,739 91% 

 

RFR with a maxDepth of 8 and numTrees as 20 has been considered with a lag 

value of 24 hours. The total Time taken – ~4 days 5 hours for Data read, Pre-processing, 

ML modeling, Training, Prediction, and saving the results. Considering the techniques 

discussed the time taken to perform the computations for a total cycle model inference 

can also be estimated for a platform with specifications other than the one used for 

experimentation. Total time for testing 10% of each transformer – 2,216,366 sec (36,939 

min or 615 hours). If 20 cores are utilized on each of the executors, then the computation 

time can be reduced to 31 hours. To perform hourly day-ahead prediction model 

inference for 24 data points can be estimated to 18.42 min. Comparing the platform 
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specifications with a possible platform in production the time can be estimated to be 

7min for model inference. The details are estimated and explained in Table 16. 

Table 15 Time taken to read the data, perform pre-processing, ML modeling, 

Training, Prediction, and Saving the results for Dataset3. 

Batch1 ~12 hours 

Batch2 ~12 hours 

Batch3 ~12 hours 

Batch4 ~12 hours 

Batch5 9hrs, 31mins 

Batch6 9hrs, 27mins 

Batch7 10hrs, 6mins 

Batch9 6 hrs 

Batch10 8hrs, 39 mins 

Total ~4 days 5 hours 

Table 16 Model inference estimate for Dataset3. 

Current platform 

configuration / node 

Production platform 

configuration / node 

Time estimate for model 

inference 

7 nodes 

20 cores 

120 GB RAM 

3 TB of disk Storage 

38 nodes 

96 cores 

252 GB RAM 

22 TB of disk Storage 

7 min 
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CHAPTER VIII 

CONCLUSION AND FUTURE WORK 

8.1 Conclusion and Future Work 

This thesis proposed a big data platform for managing the big data from the real 

distribution transformers to perform short-term load forecasting while utilizing 

multiprocessing and distributed computing techniques. Several factors that affect the 

choice of the machine learning model for the load forecast were taken into consideration. 

The parallel processing platform was set up to address the problem of simultaneously 

improving the short-term forecasting accuracy and speed. The obtained results indicate 

that the decision trees demonstrate superior performance in terms of accuracy and 

calculation speed. The findings of the work can be generalized and utilized for any number 

of transformers with similar load patterns. In this work, a smart scheduling algorithm to 

perform load forecasting on multiple distribution transformers was proposed. The 

proposed approach was implemented on Apache spark to not only deal with the challenges 

associated with computation time while handling the big data but also to optimize 

deployed jobs in a parallel environment. One of the distinctive characteristics of the 

proposed approach is its capability to submit as many jobs in parallel as that is achievable 

for efficient memory utilization. The processed big data was partitioned into various 

chunks and cached to improve the performance of big data storage that is too large to be 

stored. The other significant accomplishment of this work is the use of thread pool and fair 

scheduler in spark to speed up the processes with in-memory processing which resulted in 

a 43% improvement in execution time. This is a good optimization strategy for load 
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forecasting utilizing multi-AMI big datasets. Several experiments were performed to 

evaluate the scheduling strategy in terms of ML model forecasting error and execution 

time. The results with the use of spark ml libraries have shown superior performance in 

terms of both accuracy and execution time. The proposed ML models achieved higher 

accuracies over the previously proposed iterative algorithms. The merits shown in the 

experiments indicated that there is a great potential for the proposed method to be used in 

big data processing of multi-AMI environments. 

In section 7, the experiments have been extended to an electrical network with 

10,000 transformers and 100,000 transformers to prove the scalability of the proposed 

distributed computing methodology using a big data platform. Scaling the data to more 

than 1000 DTs requires more than a minimum of 100 jobs to be scheduled. However, the 

experiments have been conducted with restricted computational resources and intuitions 

have been developed with scaled spark cluster sizes. The tests have been performed to 

investigate the scalability of the clustering approach and to determine the optimal 

number of clusters for larger data sets.    

In this thesis, a scalable big data platform is proposed to uncover the patterns in 

the load data and to perform forecasting. The future data will become larger, complex, 

and will be collected at a velocity. Analysis of streaming data is a step in that direction. 

This extension will improve the real-time computations of forecasting models. 
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