

REAL-TIME BIG DATA PLATFORM FOR DISTRIBUTED ENERGY LOAD

FORECASTING WITH COMPUTING APPROACHES

A Dissertation

by

AMEEMA ZAINAB

Submitted to the Graduate and Professional School of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Ali Ghrayeb

Co-Chair of Committee, Haitham Abu-Rub

Committee Members, Erchin Serpedin

 Eyad Masad

 Le Xie

 Othmane Bouhali

Head of Department, Miroslav Begovic

December 2021

Major Subject: Electrical Engineering

Copyright 2021 Ameema Zainab

ii

ABSTRACT

The proliferation of smart meters in the grids has resulted in an explosion of

large energy datasets. Processing such big data is challenging and usually takes a longer

time than the requirement of a short-term load forecast. In the era of big data, where

information is one of the key factors in making decisions, this study is drawing attention to

the need for data management in smart grids. For the utility to be able to plan the

resources accurately and balance the electricity supply and demand, accurate and timely

forecasting is required. Machine learning algorithms have been intensively applied to

perform load forecasting to obtain better accuracies as compared to traditional statistical

methods. However, with the huge increase in data size, sophisticated algorithms must be

created which require big data platforms with adequate computational resources.

Optimal and effective use of the available computational resources can be attained by

maximizing the efficient utilization of the computational nodes of a big data platform.

Parallel computing is demanded to allow for optimal resources utilization in dealing with

smart grid big data. The work in this research addresses the concerns by deploying

parallel computing capabilities to minimize the execution time while maintaining highly

accurate load forecasting models. This work utilizes multi-node and multi-core

processing to minimize the overall execution time of the forecasting models while

ensuring acceptable accuracy by mapping simultaneous jobs to available processors. The

obtained results demonstrate the efficacy of the proposed approach through real-time

adoption of machine learning (ML) models, diminishing execution time, and enhancing

scalability. This research will show how tree-based models have outperformed the other

iii

models accomplishing a tradeoff between model accuracy and execution time. The

proposed approach is validated on real big data provided by Iberdrola, a Spanish utility

company. The data is acquired from one hundred thousand different data sources in the

electrical distribution system and amounts to 2.2 billion records approximately. To

enhance the analysis further, a master-slave parallel computing paradigm for load

forecasting is deployed and experimentally verified. The work proposes a concurrent job

scheduling algorithm in a multi-energy data source environment using Apache Spark.

An efficient resource utilization strategy is developed for optimizing multiple Spark jobs

to reduce job completion time. The clustering method is implemented to group the

electrical distribution nodes into clusters to reduce the number of required forecasting

models, additionally reducing computational time.

iv

DEDICATION

This work is dedicated to my family.

v

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Ali Ghrayeb, my committee co-chair, Dr.

Haitham Abu-Rub, and my committee members, Dr. Othmane Bouhali and Dr. Le Xie

for their guidance and support throughout the course of this research. I would like to

thank Dr. Shady S. Refaat for his continuous support. I sincerely appreciate Mahdi’s

support and guidance throughout the project. Thanks also go to my friends, colleagues,

the department faculty, and staff for making my time at Texas A&M University and

Texas A&M University at Qatar a great experience.

Finally, thanks to my father and mother for their blessing and my husband for his

support, patience, and love. Thanks to my siblings for their unending encouragement to

pursue my goals.

vi

CONTRIBUTORS AND FUNDING SOURCES

Contributors

 This work was supported by a dissertation committee consisting of Professor Ali

Ghrayeb, Professor Haitham Abu-Rub, Professor Erchin Serpedin, Professor Eyad

Masad and Professor Le Xie of the Department of Electrical and Computer Engineering,

Professor Othmane Bouhali of the Department of Physics and industry professionals

Engineer Santiago and Mahdi Houchati. All the work conducted for the dissertation was

completed by the student independently.

Funding Sources

This thesis was made possible by the NPRP grant [NPRP10-0101-170082] from

the Qatar National Research Fund (a member of Qatar Foundation), an internal seed

grant from Texas A&M University at Qatar, and the co-funding by IBERDROLA

QSTPLLC. The findings achieved herein are solely the responsibility of the author[s].

vii

NOMENCLATURE

ACID Atomicity, Consistency, Isolation, and Durability

AMI Advanced Metering Infrastructure

ANN Artificial Neural Networks

API Application Programming Interface

ARIMA Auto-Regressive Integrated Moving Average

ARMSE Average Root Mean Square Error

CAP Consistency, Availability, Partition tolerance

CO Number of Cores

COperE Core per Executor

CSV Comma Separated Values

D2R Dynamic Demand Response

DAG Directed Acyclic Graph

DBN Dynamic Based Network

DNN Deep Neural Network

DRNN Deep Recurrent Neural Network

DT Distribution Transformer

DTR Decision Tree Regressor

DTE Detroit-based Diversified Energy

ENEL Ente nazionale per l'energia elettrica

ETL Extract Transform and Load

FIFO First In First Out

viii

GBRT Gradient Boosted Regression Trees

HDFS Hadoop Distributed File System

HEALPix Hierarchical Equal Area isoLatitude Pixelization

HPRC High Performance Research Computing

IBM International Business Machines

JCT Job Completion Time

JVM Java Virtual machines

LR Linear Regression

MAPE Mean Absolute Percentage Error

Mem Memory

MemperE Memory per Executor

ML Machine Learning

MLP Multi-Layer Perceptron

NN Neural Network

ORC Optimized Row Columnar

PMU Phasor Measurement Unit

PSU Power Supply Unit

RAM Random Access Memory

RBF Radial Basis Function

RDD Resilient distributed datasets

RFR Random Forest Regressor

RMSE Root Mean Square Error

ix

RMT Random Matrix Theory

SATA Serial Advanced Technology Attachment

SCADA Supervisory Control and Data Acquisition

SLURM Simple Linux Utility for Resource Management

STLF Short Term Load Forecasting

SVM Support Vector Machine

SVR Support Vector Regreesor

TAMU Texas A&M University

TAMU-Q Texas A&M University at Qatar

TVA Tennessee Valley Authority

vCPU Virtual CPU

YARN Yet Another Resource Negotiator

x

TABLE OF CONTENTS

Page

ABSTRACT ...ii

DEDICATION .. iv

ACKNOWLEDGEMENTS ... v

CONTRIBUTORS AND FUNDING SOURCES ... vi

NOMENCLATURE ...vii

TABLE OF CONTENTS ... x

LIST OF FIGURES .. .xiii

LIST OF TABLESxvi

CHAPTER I INTRODUCTION .. 1

1.1 Problem Definition ... 2
1.2 Research Goal and Objectives.. 3

1.2.1 Research Objectives .. 3

CHAPTER II LITERATURE REVIEW .. 5

2.1 Introduction .. 5
2.2 Related Work.. 6

2.2.1 Storage and Processing .. 8
2.2.2 Database Management Systems .. 12
2.2.3 Software Technologies .. 16
2.2.4 Architectures ... 16

2.2.5 Systems benchmarking .. 19
2.3 Smart Grid Data ... 20

CHAPTER III BIG DATA PLATFORMS .. 25

3.1 High-performance research computing platform ... 25
3.2 Cloud computing service - Microsoft Azure .. 26
3.3 Texas A and M Qatar Research computing - Raad2 supercomputer 26

xi

CHAPTER IV MULTIPROCESSING .. 28

4.1 Introduction .. 28

4.2 Related Work.. 30
4.3 Multi AMI load forecasting algorithm ... 31
4.4 Parallelization using python multiprocessing .. 34

CHAPTER V DISTRIBUTED LOAD FORECASTING WITH APACHE SPARK 37

5.1 Introduction .. 37

5.2 Related Work.. 39

5.3 Load forecasting methodology for optimized computation with apache-spark 41
5.3.1 Introduction ... 41

5.3.2 Datastore parallelism ... 42
5.3.3 Training parallelism .. 43
5.3.4 Data partitioning in a distributed environment .. 44

5.4 Optimal scheduling algorithm .. 45

5.4.1 Introduction ... 45
5.4.2 Ignoring communication costs .. 46

5.4.3 Considering communication costs ... 48
5.4.4 Objective function ... 48

CHAPTER VI PROPOSED METHODOLOGY ... 50

6.1 Data .. 50

6.1.1 Dataset 1 .. 51
6.1.2 Dataset 2 .. 51
6.1.3 Dataset 3 .. 53

6.2 Data Statistics and Pre-processing ... 54
6.3 Proposed Methodology .. 56

6.3.1 ETL .. 56

6.3.2 Big data platform layer .. 56
6.3.3. Data processing layer ... 57

6.3.4 ML Modeling .. 58

CHAPTER VII RESULTS AND DISCUSSION .. 60

7.1 Performance Evaluation Metrics .. 60
7.1.1 RMSE, MAPE, and R-squared .. 60
7.1.2 Average RMSE .. 61

7.1.3 Execution time ... 62
7.1.4 Spark optimization .. 62

7.2 Experimental Results.. 65
7.2.1 Multiprocessing Layer ... 65
7.2.2 Distributed processing with spark executors .. 73

xii

7.2.3 Experimental results on Scalability .. 84

CHAPTER VIII CONCLUSION AND FUTURE WORK .. 106

8.1 Conclusion and Future Work ... 106

REFERENCES ... 108

APPENDIX .. 122

A. Published/Accepted Journal Papers ... 122
B. Published/accepted conference papers ... 122

C. Submitted Journal papers (under review) ... 123
D. Submitted Conference papers (under review) .. 123

xiii

LIST OF FIGURES

 Page

Figure 1 Software Framework – MapReduce .. 10

Figure 2 Lambda Architecture ... 17

Figure 3 Experimental setup of Spark framework for load forecasting 27

Figure 4 Processing the data without parallel processing .. 33

Figure 5 Processing the data with parallel processing ... 33

Figure 6 Proposed forecasting algorithm based on multiprocessing. The steps 2 and 3

are repeated for 𝑇/𝑥 or 𝑇/𝑥 + 1 times to complete the forecasting ofall the

1000 models under consideration. .. 34

Figure 7 Graph for assessing the training time and root mean square error trade-off 36

Figure 8 Nested parallelism with spark (sequential and parallel runs) 42

Figure 9 Spark-based DAG visualization for random forest regressor 44

Figure 10 Data partitioning in a distributed environment using window operation on

the month column ... 45

Figure 11 Descriptive quantile statistics with outliers ... 52

Figure 12 Descriptive quantile statistics without outliers .. 52

Figure 13 Statistics on transformer rating data .. 53

Figure 14 Descriptive quantile statistics of 100k transformers dataset 54

Figure 15 Top left - Load distribution across all the three years (The vertical axis

indicates the load value in kWh and the x axis indicates the time stamp).

Top right – Data with large load values greater than 1000 kWh (The vertical

axis indicates the transformer id the data belongs to and the x axis indicates

the load value in kWh. Bottom left – Frequency of the load distribution

limiting to 1000 kWh. Bottom right – Frequency of log normalized load

plus 1. .. 55

Figure 16 Proposed methodology for big data management in the smart grids 57

Figure 17 Spark job anatomy single job ... 63

file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610088
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610089
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610092
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610092
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610092
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610094
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610095
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610096
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610096
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610101
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610101
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610101
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610101
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610101
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610101
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610101
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610102
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610103

xiv

Figure 18 Proposed k-means parallel in-memory clustering component with parallel

jobs. ... 64

Figure 19 Day ahead hourly load forecast RMSE of 1,000 transformers. 67

Figure 20 Transformer RMSE for random with proper resolution and good

interpretations ... 67

Figure 21 Comparison of the forecast strategy based on RMSE, training time and 6

ML models. ... 69

Figure 22 Execution time of 3 different ML models in different environments for ~24

million samples. .. 69

Figure 23 Total execution time of all the 1,000 transformers for different ML models

and varying datasets. ... 71

Figure 24 Decision tree for predicting load for one of the transformers. Note var(t-1):

1-hour lag value, var(t-2): past 2nd hour lag value, previous value of load

consumption. ... 73

Figure 25 Neural network architecture used to forecast the model. The activation

function is chosen as relu and the solver as adam optimizer. 73

Figure 26 Performance evaluation. (a) shows the speedup for various cluster sizes for

a concurrent job submission size of 18 and (b) presents the speedup of

increasing the number of jobs. A value of k=93 is chosen for all the job

submission values. .. 75

Figure 27 Comparison of compute time at various stages of load forecasting. (a)

Results obtained for the time taken to perform clustering, training time and

testing time on the holdout dataset for SLR(spark LR), SDT, SRF and

SGBT. (b) The execution time involves ... 76

Figure 28 Run time comparison for various spark optimization parameters 77

Figure 29 ARMSE of training and holdout dataset for spark decision tree. The spot

above 820 nodes result in overfitting of the datasets. 79

Figure 30 MSE Results on Average of decision tree and random forest(1000 t/f) 82

Figure 31 Mean absolute percentage error results on decision tree and random forest

(Average of 1000 t/f) .. 82

Figure 32 ARMSE comparison of training and holdout dataset for all the DT's 84

file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610107
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610107
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610108
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610108
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610109
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610109
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610110
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610110
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610110
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610111
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610111
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610112
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610112
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610112
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610112
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610113
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610113
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610113
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610113
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610114
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610115
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610115
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610118

xv

Figure 33 Computation time and silhouette score of three clustering techniques on

spark for varying values of k .. 91

Figure 34 Computational time and clustering efficiency measure of hourly and daily

load consumption of Dataset1. ... 92

Figure 35 RMSE in kWh of 1000 transformers with representative clustering and

without representative clustering .. 94

Figure 36 Comparison of run time of spark parallel k-means with varying values of k

on different datasets. ... 95

Figure 37 Kmeans|| result on Dataset3 - elbow curve .. 98

Figure 38 Time to evaluate the clusters using the parallel sum of square error on

Dataset3 .. 99

Figure 39 Distribution of transformers per cluster ... 99

Figure 40 R2 Results for load forecasting with clustering ... 101

file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610119
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610119
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610120
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610120
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610121
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610121
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610122
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610122

xvi

LIST OF TABLES

 Page

Table 1 Software framework – MapReduce .. 13

Table 2 Stream mining systems ... 18

Table 3 Big data framework hardware requirements ... 20

Table 4 Distributed data indexing techniques .. 21

Table 5 Dealing with big data matrices in smart grid .. 24

Table 6 Size of the Linux virtual machines in azure .. 26

Table 7 Results of 6 ML models on hourly load [kWh]. ... 65

Table 8 Performance of ML model in terms of RMSE and training time to monitor

the effect of deep networks ... 78

Table 9 Number of records for a sample transformer for the varying horizon 80

Table 10 Final ARMSE, for training and holdout dataset after choosing tuned

parameters. .. 83

Table 11 Time taken for spark k-means parallel and proposed scheduling

methodology with various k values .. 96

Table 12 Load Forecasting results in terms of RMSE and R-squared on Dataset2 102

Table 13 Load Forecasting results in terms R-squared on Dataset2 with 5900 t/f’s

adding lag values .. 103

Table 14 Load forecasting results on dataset 3 (102,988 t/f) ... 104

Table 15 Time taken to read the data, perform pre-processing, ML modeling,

Training, Prediction, and Saving the results for Dataset3. 105

Table 16 Model inference estimate for Dataset3.. 105

file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610133
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610134
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610135
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610135
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610138
file:///C:/Users/dabee/Texas%20A&M%20University/Syed,%20Dabeeruddin%20-%201%20TAMU/0%20TAMU%20Research/0%20Research%20Files%20Zainab/Thesis%20Defense/Thesis-Ameema%20Zainab-2021_17%20Oct%20-%20clean%20Copy.docx%23_Toc86610138

1

CHAPTER I

INTRODUCTION*1

The smart grid is re-engineering the electricity generation, transmission, and distribution

throughout the world. Smart Grid is an amalgam of increased digital information with

the electrical power grids. Managing the big data generated from the grid efficiently is

the key to successful transformation to the smart grid era. Most of the scientific

advancements are becoming data-driven and hence, big data management in smart grids

is an emerging and interesting area of research for data scientists. The world is

computationally challenged enough to develop new storage methods and processing

technologies for such big data. Managing big data involves data cleaning, varied data

source integration, and decision-making applications. This thesis focuses on the study of

big data management and proposes a data management platform to help manage the big

data in the smart grid. Data management tools and techniques have been leveraged to

understand the sources and data types in the electric grid. The thesis work emphasizes

the limitations of the existing computational solutions inclined towards applications for

smart grid big data.

As the data size increases, the computations tend to be heavy and time-consuming,

resulting in a challenging situation to forecast the load under short time constraints.

Various computationally intelligent techniques have also been employed previously in the

electric energy field [1]. Several ML algorithms were designed with the assumption that

1 Reprinted with permission from "Distributed Tree-Based Machine Learning for Short-Term Load Forecasting With Apache
Spark," by “Ameema Zainab, Ali Ghrayeb, Haitham Abu-Rub, Shady S. Refaat and Othmane Bouhali, 2021. IEEE Access, vol. 9,

pp. 57372-57384, Copyright 2021 by Ameema Zainab.

2

the entire dataset fits in the memory. This assumption negatively affects the ML

algorithms while impeding their performance. For instance, a support vector machine

(SVM) has a space complexity of 𝑂(𝑚2) and a training complexity of 𝑂(𝑚3) [2],

where 𝑚 indicates the number of samples. Therefore, as the size of the data increases,

parallel data structures, data reuse, and data partitioning become important

characteristics. Resilient distributed datasets (RDDs) implemented in a Spark cluster

computing framework exhibit in-memory characteristics [3]. This leads to the work of

this thesis to use a typical architecture that can accommodate both the cluster computing

framework and machine learning capabilities.

1.1 Problem Definition

Utility companies focus on enhancing the convergence rates to perform short-term and

medium-term load forecasting. Smart meter data is collected at high velocity, variety, and

volume; making the data characterized as big data. A large electrical grid with smart

meters widely installed consists of distributed data stores. Distributed computing

platforms with multiple nodes are required to process the data generated to create

accurate load forecasting models. In a classical big data problem, historical data

accumulated at one location is high in volume. In the current scenario of this problem

statement, a large number of transformers are spread across the distribution network.

This makes the problem statement challenging as the load forecast expects simultaneous

execution of the forecasting models. This problem statement reflects two solutions, edge

computing to forecast the load at the location of data generation or data concentrated at

stored locations in the database and then processed by creating clusters. The problem

3

statement requires the short-term load forecasting of all the transformers simultaneously.

It is highly crucial during the analysis to optimize the execution time of the forecast

models and maintain the accuracy of forecasting models to obtain the economic

operation of the power system.

1.2 Research Goal and Objectives

The goal of this research is to provide a big data management computing platform for

convenient Extract Transform and Load (ETL) of the smart grid data to be able to make

more informed decisions with high processing speed and highly accurate forecasting

models.

1.2.1 Research Objectives

The following are the objectives of this work:

1. the use of parallel computing to perform simultaneous load forecasts in a multi-

AMI environment to reduce the overall time needed for Short Term Load

Forecasting (STLF).

2. Utilization of distributed machine learning models to perform load predictions with

the highest possible accuracy.

3. Finding a suitable tradeoff between execution time to predict the load and the

choice of machine learning model with the least error.

4. A scheduling algorithm to perform parallel and distributed execution of load

forecast on the smart grid big data is proposed.

5. Spark parameter optimization in terms of the number of executors, number of

cores per executor, and memory per executor.

4

6. ML model parameter optimization to gain high accuracy contained with measures

to combat overfitting.

7. Testing the proposed methodology on one hundred thousand transformers’ data

without clustering, then make a comparison against the proposed clustering

technique.

The main objective of this thesis is to provide a big data platform that is robust and reliable

to be able to perform load forecasting and scalable to be able to handle data received from

100,000 transformers.

5

CHAPTER II

LITERATURE REVIEW*2

In this chapter, an introduction to the big data platforms and the literature review of the

platforms utilized in the field of electric grids and smart grids are to be be presented.

2.1 Introduction

Big data offers potential insights and is crucial for the efficient functioning of the smart

grid [4]. Information from big data is becoming more and more valuable, therefore many

energy companies have invested in handling and utilizing the data to perceive, innovate

and extract actionable insights. It is estimated in a preliminary assessment by a utility that

the amount of data required to process transactions of its customers would reach about 25

gigabytes of data points per day [5]. The management of such a large data set is

challenging. Energy companies such as ENEL, are moving towards new strategies and

plans to be data-driven companies exploiting huge amounts of data obtained from the grid

architecture, customers, etc. [6]. Many utilities and systems operators plan to migrate their

data center to the cloud which may bring savings from this migration at €300,000,000 [7].

ENEL plans to focus on a platform model rather than a pipeline model involving data-

driven networks. It is very crucial to timely manage the available smart grid data as it

would help the utilities to understand the demand and perform a dynamic balance of

demand and supply. Moreover, the correlations between different data features can

identified [8]. Additionally, it is very crucial to identify different analytic and data

2 Reprinted with permission from "Big Data Management in Smart Grids: Technologies and Challenges," by Ameema Zainab, Ali
Ghrayeb, Dabeeruddin Syed, Haitham Abu-Rub, Shady S. Refaat and Othmane Bouhali, 2021. IEEE Access, vol. 9, 73046-73059,

Copyright 2021 by Ameema Zainab.

6

management strategies for different applications and usage. The biggest players in the

energy market have utilized big data technologies to manage the grid. National Grid, DTE

Energy, and Ausgrid are some of the largest utilities which have used the International

Business Machines (IBM) insights foundation to help improve their decision-making for

monitoring assets health and maintenance [9]. Romeo project is a five-year and €16

million project led by Iberdrola Renowables Energia [10]. This project focuses on

managing the data from the wind farms using predictive models and physical fault models

to lower the operation and maintenance costs of the wind farms [11]. This thesis is

conducted on a project that is co-sponsored by IBERDROLA which delivers real five-

years consumption data of 100,000 transformers in Spain to perform one day ahead load

forecasting. The importance and uses of managing big data from the grid are endless.

To perform the analytics on the data for required applications and visualization,

relevant software technologies must be in place.

2.2 Related Work

Many frameworks have been proposed in the literature to understand the data flow,

analyze the data, and manage the data in the smart grids. Previous works include the

proposal and implementation of big data frameworks in the smart grids to take decisions

on many aspects such as balancing demand, load forecasting, grid infrastructure

optimization, asset management, consumer behavior analysis, state estimation, and

service quality analytics, etc.

In [12], Mayilvaganan et al. proposed a cloud-based smart grid management

architecture that analyses the big data for balancing the demand and supply to meet

7

customer needs. In [13], Yogesh et al. have proposed ‘Floe’s, a continuous data flow

engine that utilizes a private cloud infrastructure. The proposed cloud based D2R

(Dynamic Demand Response) platform performs intelligent dynamic demand response

management relieving the load peaks in the power grid. In [14], Baek et al. proposed

‘Smart-Frame’ as a secure cloud-computing-based big data platform to analyze a

voluminous amount of data acquired from power assets, smart meters, and distinct types

of front-end devices in the grid. A popular cloud computing opensource platform called

eucalyptus has been utilized for the prototype implementation [15]. TVA was selected

by NERC (North American Electric Reliability Corporation) in 2009 as the repository

for PMU data nationwide. America’s power grids at the TVA producing hundreds of

terabytes of data have been handled with the help of apache Hadoop [16]. In [17],

architecture named ‘SmartSantander’ which is a live city flexible big data platform has

been introduced. In [18], ’SCOPE’ was presented as a smart city Cloud-based Open

platform and ecosystem by Boston University. City Pulse [19] is proposed by Osborne

Clarke, a smart city consulting firm from Europe [20]. FIWARE [21] is a smart energy

platform for the development of intelligent applications in the future internet. It serves as

an energy platform capable of supporting various business models for different smart

energy industries. Wang et al. proposed wireless computing architecture for the

processing and analysis of smart grid data [22]. Zhou et al. presented data mining and

visualization techniques for smart grid data and achieved real-time monitoring of power

consumption [23]. In [24] UlTraMan a unified platform for big data management and

analytics for trajectory data is proposed. It offers a customized pipeline extension of

8

modules offering enhanced computing. ASTROIDE is a unified big data processing

engine over spark for astronomical data. It introduces efficient query execution, by data

partitioning with Hierarchical Equal Area isoLatitude Pixelization (HEALPix) on Spark

[25]. Because the data is both complex and has different formats, handling the data is not

straightforward. Big data technologies offer scalability, persistence, and are

computationally efficient. Various technologies offer services that help in dealing with

big data complexities. A comprehensive review of the storage and processing structures,

database management systems, software technologies, architectures, systems

benchmarking, and data indexing is outlined below.

2.2.1 Storage and Processing

2.2.1.1 Hadoop

Hadoop is a unified and centralized storage platform to manage various types of data.

Hadoop augments itself by providing a repository where structured, semi-structured, and

unstructured data can be processed together easily [26]. Along with being open-source

software, Hadoop is fault-tolerant and has a very reliable storage system. Having a

programmable storage system, it is flexible for users to analyse the data directly attached

to the disk where it resides. However, Hadoop has limitations i.e. it supports only batch

processing and is not efficient with real-time, iterative, and stream processing. The data

collected from dispatched sources in the grid is stored in huge datasets. This data needs

to be accessible by multiple users on multiple machines for analytics. The Hadoop

framework helps in parallelizing the processing in cloud computing environments and

permits users to attain a local copy of the stored data. The Hadoop distributed file system

9

is also well known for efficient storage of data as it provides fault tolerance, high

availability, and scalability. For applications such as smart meter data analytics, load

forecasting, and scheduling which require stream processing, hadoop is not very efficient

as it cannot produce output in real-time with low latency. The Hadoop ecosystem is built

of two components, MapReduce and Hadoop distributed file system (HDFS) and these

are discussed in the next sections.

2.2.1.2 MapReduce

MapReduce is a parallel data processing system of Hadoop. It is the programming model

used within Hadoop and it is efficient at processing huge volumes of data. MapReduce

works on the concept of a job scheduler that assigns multiple tasks in parallel to data

nodes in a single cluster or shared clusters and results are collated, filtered, sorted, and

then passed out as an output. If the task assigned to a node is overloaded or failed in a

cluster, then the task is executed by another server in the cluster as shown in Figure 1.

MapReduce can execute in a potential number of high-level languages such as C, C++,

and scripting programming languages i.e. Python, Perl, and PHP. It can also be noted

that as MapReduce processes large datasets, it requires a large amount of time and might

result in increased latency. Running on various clusters results in increased time and

lesser processing speeds. This limitation can be overcome by the in-memory

computation capability of the Hadoop spark. MapReduce does not have an interactive

mode. However, this can be overcome by adding Hive Hadoop [27] or Pig Hadoop [28]

and this enables users to have an interface to deal with the MapReduce paradigm without

having to code complex java MapReduce programs.

10

2.2.1.3 HDFS and HopsFS

The file storage system in Hadoop is called the Hadoop distributed file system (HDFS).

Because of its write once and read many models, it is best suited for data integrity when

a read operation is performed. Many grid centers utilize Hadoop with HDFS file storage

to collect various types of data from the grid such as phasor measurement units (PMU).

HDFS however doesn’t support random reading of small file sizes. It is designed in a

way to support a small number of large datasets rather than a large number of small

datasets. This can be overcome by merging the small files into one and then copying the

bigger files to HDFS.

Figure 1 Software Framework – MapReduce

 HopsFS is an open-source file system and it is an alternative to HDFS [29]. It uses the

active and standby name nodes and thereby overcomes the deficiencies of HDFS. The

name nodes in HopsFS can process the metadata not just locally in memory but also the

metadata stored in the database. HopsFS works with different varieties of NewSQL

11

databases even if the databases have different licenses. It is since HopsFS uses Data

Access Layer (DAL) as encapsulation to the database operations.

2.2.1.4 Apache Spark

Apache Spark is a lightning-fast framework that processes data that exists in data storage

systems such as HDFS, Amazon S3 [30], MapR FileSystem [31], Cassandra [32], etc.

The data processing also utilizes a cluster manager such as spark cluster, Apache Mesos,

HadoopYARN, etc. [33]. Spark can process the data as it comes, even millions of events

per second as it uses Resilient Distributed Datasets (RDDs) which reside in memory.

The flexibility, speed, and scalable features of spark address the challenges of big data in

smart grids. Spark also supports user-friendly APIs such as Python, Scala, Java, etc. and

this makes developers easily use spark for machine learning libraries [34]. The very

nature of data from smart grids (for example, the data from SCADA) is dynamic and

anomalies in electrical systems tend to occur in milliseconds. Apache spark supports the

real-time processing of the data and it can capture real-time information from the grid.

Memory management in spark is crucial and involves various levels such as memory

only, memory and disk, memory only serialization, and memory and disk serialization.

Based on the size of the data, the memory allocation is altered.

2.2.1.5 Resource scheduler

A key to efficient utilization of a large asset is the choice of a suitable resource

scheduler. Both supercomputers and big data systems use schedulers to allocate

computing resources for the execution of submitted processes. The authors in [35]

analyze 15 schedulers in both supercomputing and big data architectures. In [36], the

12

authors utilized up to 32 processors with the help of the Simple Linux Utility for

Resource Management (SLURM) resource scheduler. Four of the most popular open-

sourced schedulers include SLURM, Apache YARN, Apache Mesos, and Kubernetes.

2.2.2 Database Management Systems

Picking a relational SQL or a non-relational (NoSQL) database is one of the crucial

decisions in choosing a database system. Both types of databases are suitable options,

however, non-relational databases are constantly replacing relational databases as non-

relational databases are efficient for big data applications. The cost of scaling relational

databases is very high and the volume of data is ever-increasing in big data. Moreover,

the ACID properties (Atomicity, Consistency, Isolation, and Durability) set unrequired

constraints and hindrances to applications and these pose a challenge [37]. Therefore,

relational databases are best avoided in big data applications.

 NoSQL data storage has more ability to perform better adaptability, scaling, and

performance when compared to relational databases. Although it must be noted that

NoSQL does not have a universal query language that fits with all data models. Instead,

it allows for RESTful coherence to the data and the query APIs. A comprehensive study

explains the uses and performance comparisons between relational and non-relational

databases [38]. Some of the non-relational databases include Redis, MemCached,

Dynamo, Cassandra, PNUTS, MongoDB, CouchDB, Neo4j, HyperGraph DB, etc. The

comparison between the relational and NoSQL databases is discussed in Table 1.

13

Table 1 Software framework – MapReduce

Characteristic Relational Databases NoSQL Databases

Data

representation

Predefined schemas. The schema

represents a logical view in which

the data is organized & the

relations are displayed.

Dynamic schema for

unstructured data

Data Structure Structured Unstructured or lenient

structure

Scaling Vertically scalable. The amount of

data stored depends on the physical

memory of the system. Relational

databases are scaled by increasing

the hardware resources like CPU,

RAM, SSD, etc. on a single server.

Horizontally scalable. No

limit on data storage. NoSQL

databases are scaled by

increasing database servers.

Examples MySQL, Oracle, SQLite, Postgres,

MS-SQL, etc.

MongoDB, Bigtable, Redis,

RavenDB, Cassandra, HBase,

CouchDB, Graph databases

like Neo4j, OrientDB,

InfiniteGraph, AllegroGraph,

etc.

14

Table 1 continued

Characteristic Relational Databases NoSQL Databases

Types Table based databases Column DB, Graph DB,

Key-value pair DB,

Document DB, etc.

Properties ACID (Atomicity, Consistency,

Isolation, Durability)

CAP (Consistency,

Availability, Partition

tolerance)

Language Structured Query Language for

data definition & manipulation

Unstructured Query

Language

Development Mix of open source (PostgreSQL) &

closed (Oracle)

Open source

Complex

Querying

Suitable for complex querying does not have standards to

perform complex queries.

Complexity If records do not fit in the pre-defined

schema tables, then the design of the

database table becomes complex.

Schema is easily changed

here as it is dynamic.

15

Table 1 continued

Characteristic Relational

Databases

NoSQL Databases

Community Widely

supported by

vendors

Only community support

Normalization Necessary No constraint of normalization

Maintenance High

maintenance

Low maintenance with features like automatic

repair, easier distribution of data & simpler data

models is available. So, the administration is

easy & so is the tuning requirement.

Consumer-

friendly

GUI mode tools

are available.

GUI mode tools are not available.

 There are many other databases in the market that provide support to the requirements

of huge data sizes, different data types, and high speed. The big databases include in-

memory or main memory databases, object-oriented databases, time-series databases,

and spatial and GIS (Geographical Information systems) databases. Even though in-

memory databases are quite fast they are not durable, and they might be subject to data

loss. The spatial databases are useful when data has geospatial attributes, but at the same

time, it is hard to query upon [39]. Also, it requires good visualization to interpret the

16

data patterns. Streaming data from SCADA and oscillography data are usually stored in

time-series databases.

2.2.3 Software Technologies

The evolution of big data technologies started way early in the 1990s. A boost to big

data technology started with Hadoop in 2011 and it has been an open-source platform.

Big data technologies have evolved in the past decade performing batch processing at

one stage to real-time processing later. In [40], Sebnemet al. has explained the evolution

of big data technologies starting with Google File system performing batch processing

(2003) to Google Data Flow and Apache spark (2003) performing real-time analytical

streams processing. Different software applications were released in the market and

many were open-source, and these handled the high data volumes and high speeds while

decreasing the latency of processing. One of the most widely used state-of-the-art

lambda architecture has been discussed in the section below along with the system

requirements to handle the software technologies:

2.2.4 Architectures

This section outlines the architectures utilized in the literature and the current streaming

systems have been discussed.

2.2.4.1 Lambda Architecture

The advantages of data systems built with the assistance of lambda architecture go

beyond just scaling and support real-time and batch processing on the distributed data. In

support, the architecture will not just be capable of handling the data only but will also

17

be able to accumulate more data to interpret information from it. Increasing the number

of data types and volumes stored will result in further opportunities to mine the data

including, predicting performance, avoiding more than one version of a schema to be

operative at the same time, and building new applications. Lambda architecture (Figure

2), a unique software design, is adopted to overcome the need to process two different

systems considering batch processing and stream processing [41]. The batch layer is

implemented using Hadoop well known open-source platform for batch processing.

Hadoop discussed in section 2.2.1.1 can handle the data at rest with the help of

Hadoop’s MapReduce functionality. The data received would be pulled into HDFS and

MapReduce jobs are executed using Pig, Hive, etc. As all the data would be in HDFS,

there will be a full view of the data available to process it. Streaming analytics engines

such as spark and Flink will assist to perform processing and analytics on incomplete

data or when data is being updated [42]. This engine's process ables the data as it comes

Figure 2 Lambda Architecture

18

in and does it a lot faster. These help in processing the data even before the data is

transferred to HDFS.

A portion of the data that is collected is analyzed instantaneously as and when the data

is generated, and the rest of the data is stored for batch processing. Table 2 refers to

some current systems in the field of stream analytics. Analyzing the data as it is

available from the source to the memory of a distributed platform needs stream mining

systems. If working with stream-only frameworks is desired, then apache storm [42] is

one of the best-suited frameworks as it offers a great range of language support, but at

the same time, it cannot guarantee to order in its default configuration. The best fit

always relies on the data being analyzed, the required latency, and the application

required. The three layers of Lambda Architecture are:

Table 2 Stream mining systems

Current Systems Year

R’s stream package (clustering only) [43] 2017

streamDM (github) [44] 2016

Moa.cs.woikato.ac.nz (Massive Online Analysis) [45] 2014

Samoa-project.net [46] 2014

lambda-architecture.net [41] 2013

Spark.apache.org/streaming [3] 2012

Rapid Miner stream plugin [47] 2012

Apache Samza [48] 2012

Apache Storm [49] 2011

19

• Batch layer: stores all the data as ‘master data’, manages it, and precomputes batch

views.

• Speed Layer: processes the incoming streaming data as per user-defined

requirements and increments the real-time views.

• Serving Layer: a linearly scalable data management system on top of the batch layer

and speed layer exposing queried views by the user.

2.2.5 Systems benchmarking

Big data in the smart grid sector involves not only data at rest but also real-time data.

Owing to the data being real-time and continuous, additional resources and high

computational speeds are required.

 As discussed earlier, the use of cloud computing helps electrical companies to reduce

cost and power requirements. Table 3 shows the minimum requirements needed to install

the platforms Hadoop, Strom, Spark, and Flink and work with the big data frameworks

[50]. A minimum of 8 GB RAM is required to have any of the mentioned software

technologies to be installed. A supercomputer will help the processes to run faster as it

consists of vast computational capability and high-speed interconnect between multiple

nodes.

2.2.6 Data Indexing

Indexing plays an important role when it comes to big data management. The speed of

data retrieval from a database system is vital for efficient data access. Time-series data is

one of the massive types of smart girds. An index format is chosen based on the type of

20

storage system. Table 4 shows a summary of advanced data indexing techniques that

exhibit comprehensive distributed functionality. As the paper suggests the utilization of

a distributed framework, the section focuses on distributed data indexing techniques.

Table 3 Big data framework hardware requirements

Framework Hadoop Storm Spark Flink

RAM(Min) 64 GB 64 GB 64 GB 64

GB

CPU (at least) 2 8 8 8

Hard Disk (for

each 1TB at

least)- Disks per

node

12-24 6 4-8 12-24

Operating Sytems 64 bit:

SUSELinux

Enter-

priseServer

CentOS, Red

HatEnterprise

Linux, Windows

WindowsXP/7/8,

Windows (Cygwin),

Linux, MacOSX,

CentOS, Linux

Linux

2.3 Smart Grid Data

An automated big data management pipeline for a smart grid must have the following

qualities:

• The platform should be able to support the acquisition of dynamic data at variable

rates and high volumes.

• The platform should be adaptive to the operational needs of current data sources.

21

Table 4 Distributed data indexing techniques

Indexing Year Property Underlying

storage system

FITing-Tree 2019 A data-aware index structure that

captures data trends and fits an index

to a dataset with the help of

piecewise linear functions.

-

Parallel B+ trees

[52]

2019 Tree-based: maximizing terminal

nodes and minimizing the height of a

B+ tree

Hadoop

FastPM [53] 2018 Extends k-d tree indexing to a

distributed framework

IndexedHBase [54] 2014 Historical and streaming data scalable

indexing

HBase

E3 [55] 2013 Avoiding irrelevant data splits

accesses

Hadoop

HIndex [56] 2013 Secondary Index (server side) HBase

HAIL [57] 2012 Less index creation cost Hadoop

22

Table 4 Continued

Indexing Year Property Underlying

storage system

MD-HBase [58] 2011 Quad-Tree and K-d based multi-

dimensional index

HBase

Trojan Index [59] 2010 Created at data load time and at query

time no penalty

Hadoop

The data sources in the smart grid fall under four categories i.e. historical (archived),

real-time, multimedia, and time series [4]. Data sources from SCADA, PMUs,

Automated Metering Infrastructure (AMIs), smart meter, Digital Fault Recorders

(DFRs), Digital Protective Relays (DPRs), Intelligent Electronic Device (IEDs), Asset

management, operational and weather are real-time data sources. The real-time data

flows in high volumes and the data is either collected at once or streamed in chunks

continually. For instance, standard SCADA polls every 4 seconds. PMU, weather or

lightning, and GIS are mostly historically based. The data is usually available in bursts

from devices in the grid or as files stored in any of the storage devices and this data can

be captured when there is a triggered event. On-demand, this data is transferred by the

utility for different kinds of analyses. Data in the form of text, voice, and video (e.g.,

video surveillance cameras) are multimedia and PMU data is time series. Most often

event messages are generated in response to any unusual physical events. These

23

responses might be in the form of commands communicated to the grid devices by grid-

control systems, e.g., an asynchronous business process such as meter ping [60].

Big data management deals with finding the hidden patterns in the data to get

meaningful information as an output. As the data grows in volume, variety, and velocity,

it tends to be multi-dimensional. To handle big data with multiple dimensions, Random

Matrix Theory (RMT) is particularly useful [51]. The most fundamental concepts of

dealing with big data account for the representation and modeling of big data.

The random matrices are natural building blocks in modeling big data [4]. The non-

asymptotic theory is a unified treatment to a lot of big data problems, which was

proposed to model the datasets as large random matrices in 2010 [61]. A single dataset

can be expressed as an 𝑚 × 𝑛 matrix given by equation (1)

𝑋 = 𝑈 ∧ 𝑉 (1)

𝑈(𝑚 × 𝑛) - Orthonormal rows matrix

∧ (𝑛 × 𝑛) - Diagonal matrix with real and non-negative entries

𝑉(𝑛 × 𝑛) - Unitary matrix

 Where 𝑋𝑋𝐻 and 𝑋𝐻𝑋 are Hermitian matrices with diagonal entries of ∧ 2

correspondings to the eigenvalues. 𝑈 and 𝑉 correspond to the eigenvectors. When it

comes to large random matrices 𝑚 → ∞, 𝑛 → ∞, both Hermitian and Non-Hermitian are

utilized in various applications based on the variety of data [62]. Some of the differences

between Hermitian and non-Hermitian matrices have been stated in Table 5.

 In a high dimensional setting, it is often desired to cut down the dimension of the

matrix by working on a low-rank matrix approximation and often require solving for

24

eigenvalues. The most prevalent methods are Principal Component Analysis (PCA) and

Singular Value Decomposition (SVD). PCA is one of the most widely used

dimensionality reduction techniques [63].

Table 5 Dealing with big data matrices in smart grid

Operations Hermitian matrices Non-Hermitian matrices

Diagonalization 𝑋𝑉 = 𝑉 ∧ 𝑋𝑋𝑅 = 𝑋𝑅 ∧ and

𝑋𝐿𝑋 =∧ 𝑋𝐿

𝑋𝑅 right-hand eigenvectors

𝑋𝐿 left-hand eigenvectors

Eigenvalues Real Real or complex conjugate pairs

Eigenvectors Orthonormal Not orthonormal

It is used to reduce the number of features in the data. It selects the features which have

the most variance in the data and neglects the features that have the least information in

the data. We can explicitly specify the number of principal components or features that

we wish to consider. The reduction in the features decreases the training and the testing

time to a great extent and this knowledge can help in the reduction of data that is to be

managed. A centralized process flow has been proposed in this work to manage the data

in the smart grids.

25

CHAPTER III*3, 4

BIG DATA PLATFORMS

The computational capacities utilized in the experimental work consist of three platforms.

1. Texas A&M University (TAMU) High-Performance Research Computing (HPRC)

Ada, Terra clusters

2. Microsoft Azure cloud computing resource

3. Texas A&M University at Qatar (TAMU-Q) research raad2 cluster with 6 compute

nodes (1 master node and 5 data nodes) with Spark on top of Hadoop.

Each of the three platforms' hardware requirements is described in detail in the

following sections.

3.1 High-performance research computing platform

The Texas A and M University supercomputer has been used during the process of

performing the experiments and the specifications of the supercomputer are outlined

below.

TAMU Supercomputer:

Processor - Intel Xeon E5-2680 v4 2.40GHz

Operating System - Linux (CentOS 7)

3 Reprinted with permission from "A Multiprocessing-Based Sensitivity Analysis of Machine Learning Algorithms for Load

Forecasting of Electric Power Distribution System," by Ameema Zainab, Dabeeruddin Syed, Ali Ghrayeb, Haitham Abu-Rub, Shady
S. Refaat, Mahdi Houchati, Othmane Bouhali and Santiago Bañales Lopez, 2021. IEEE Access, 31684-31694, Copyright 2021 by

Ameema Zainab.
4 Reprinted with permission from "Distributed Tree-Based Machine Learning for Short-Term Load Forecasting With Apache

Spark," by “Ameema Zainab, Ali Ghrayeb, Haitham Abu-Rub, Shady S. Refaat and Othmane Bouhali, 2021. IEEE Access, vol. 9,

pp. 57372-57384, Copyright 2021 by Ameema Zainab.

26

Batch Scheduler - SLURM

Frequency - 64 GB DDR4, 2400 MHz

Interconnect - Intel Omni-Path Fabric 100 Series switches.

Memory per node utilized - 2560M

3.2 Cloud computing service - Microsoft Azure

vCPUs varying from 8 - 32 are used to run experiments in the azure environment. The

specifications are indicated in Table 6.

3.3 Texas A and M Qatar Research computing - Raad2 supercomputer

The apache-spark platform, on which all the distributed computations are performed,

consists of one master node and 5 slave nodes as shown in Figure 3. Each of the 5 compute

nodes is Linux-based and contains 24 physical CPU cores -- 2 processor sockets with 12

Table 6 Size of the Linux virtual machines in azure

Symbol Quantity

VM Size D32s_v3

Offering Standard

Family General purpose

vCPUs 32

RAM (GiB) 128

Data disks 32

Max IOPS 51200

Temporary 256

storage (GiB) yes

27

cores per socket -- and 128GB of RAM. The interconnect is comprised of the Cray Aries

network, which is employed both for MPI as well as for storage traffic [64]. Hadoop 2.8.0

and spark 3.0.0 are installed on both the master and slave nodes. The load forecasting

algorithm is implemented in Python 3.6.4.

Master

YARN

Resource

Manager

HDFS Name

Node

Pyspark

Spark

Session

Worker

HDFS Data

Node

Node

Manager

HDFS

Secondary

Name Node

Worker

HDFS Data

Node

Node

Manager

Worker

HDFS Data

Node

Node

Manager

Worker

HDFS Data

Node

Node

Manager

Worker

HDFS Data

Node

Node

Manager

Figure 3 Experimental setup of Spark framework for load forecasting

28

CHAPTER IV*5

MULTIPROCESSING

In this chapter, the choice of multiprocessing method to perform load forecasting

is discussed in detail. This computational methodology supports the simultaneous

execution of ML models on multiple processors. These methods will be used as a layer

in our research in the data processing layer of the proposed multi-layer big data platform

proposed in Chapter VI section 6.2 for data processing.

4.1 Introduction

Accurate short-term load forecast with the help of available energy consumption data is

essential for demand management and to deliver the required load energy while

minimizing the redundancy for power generation and operational costs. A variety of ML

approaches have been proposed in the literature for short-term load forecasting such as

semi-parametric additive model [65], neural-network-based engine [66], novel radial basis

function (RBF) algorithm [67], random forest-based day-ahead load forecast [68] [69],

novel wavelet-based ensemble method [70], multi-dimensional XGBoost and fireworks

algorithm [71], and average ensembles model [72]. The benefits of load forecasting can

not only be utilized by utilities but also by the energy markets. The electricity market's

short-term forecasting is realized to improve the management of their resources and to

enhance the economics of energy trade. Choosing the best ML model is based on two

5 Reprinted with permission from "A Multiprocessing-Based Sensitivity Analysis of Machine Learning Algorithms for Load

Forecasting of Electric Power Distribution System," by Ameema Zainab, Dabeeruddin Syed, Ali Ghrayeb, Haitham Abu-Rub, Shady
S. Refaat, Mahdi Houchati, Othmane Bouhali and Santiago Bañales Lopez, 2021. IEEE Access, 31684-31694, Copyright 2021 by

Ameema Zainab.

29

main criteria, namely, the forecasting accuracy and the convergence rate of the model.

 As the smart grid data grows exponentially with the transformation to the smart grid era,

a fusion of big data availability becomes a challenge for utilities and other electric sector

players. Various research has been concentrated in this area of application. Step-by-step

architectural planning for data extraction, data querying, and effective solution for

improved accuracy and load modeling was proposed in [73]. Syed et al [74] performed a

survey on big data technologies and applications in the field of smart grids. Detection of

fault using data-driven approaches utilizing machine learning techniques was proposed in

[69]. Gao et al [75], performed load forecasting by proposing a multifactorial framework

that compares the effects of various features on forecasting accuracy. This approach is

critical when the number of features is increased by adding weather conditions, energy

rating of the transformer, etc. Structural dynamics of materials are analyzed with the help

of software tools that perform streaming and are anticipated to be time-consuming.

 However, one of the biggest persisting challenges in the field of big data is the efficient

utilization of the available computational resources while still achieve acceptable results.

In this thesis, a methodology that aims at reducing the training time of the ML model

whilst enhancing the prediction accuracy is proposed. The load forecasting in the proposed

approach is performed with the help of machine learning in absolute run-times of seconds

to minutes for an energy data of 3 years for 1,000 transformers. This scale down of

training time is intended to offer a significant advantage in load forecasting models with

high precision and low execution time.

The accuracy of the proposed approach can also be determined by comparing the

30

smart meter measurements with the simulated voltages. Additionally, the proposed

methodology can be deployed in cloud systems or data centers that are geographically

closest to the meters to reduce communication and data transmission delay.

4.2 Related Work

In [76], a moldable parallel task was proposed to perform forecasting, where each sub-task

within a parallel task supports a time slice. The authors in [76] focused on reducing the

wait time which holds resources until all the tasks are completed. However, the proposed

method of multiprocessing in the thesis does not wait for all the next batch of jobs to be

submitted but instead picks the next available processor and submits the undone job

immediately. However, the method in [14] is applied to a single dataset as compared to

multi AMI datasets in the proposed work. Hence to achieve the best performance,

workstations with multicore processors are utilized to essentially parallelize the data to

achieve fast processing [77]. The spark regression python libraries have been utilized to

evaluate the performance of distributed computing in smart meter data management

[78][34]. An accurate and fast converging STLF model was proposed in [79] by devising

modifications in the artificial neural networks (ANNs) training process to attain a tradeoff

between the convergence rate (decrease by 52.38%) and the forecasting accuracy (99.5%).

The utilization of spark-based parallel computing has been performed for mid-term load

forecasting on historical data of size ~88 million rows to gain an advantage in the

calculation time [80]. The published works in [77] – [81] have all focused on processing a

unified dataset, however, the proposed approach handles multi-AMI dataset simultaneous

load forecast.

31

4.3 Multi AMI load forecasting algorithm

Load forecasting is performed on a high aggregation level of thousands of

transformers or at a low-aggregation level of individual transformers or on a cluster of

transformers. Load prediction is performed using machine learning models instead of

traditional techniques such as time series, autoregressive models, time of the day model,

etc. The problem statement here expects the hourly day-ahead load forecast of individual

transformers with a load sampling frequency of 15 mins to be performed. In the STLF

scenario of this work, the load of 1,000 distribution transformers needs to be forecasted at

the same time. This issue does not involve accumulating a very large dataset but involves

distributed large datasets to be worked upon individually. The factors that have to be

considered are if the task being performed is heavy and can be a part of the

multiprocessing technique or can be a part of a multi-threading technique that involves any

form of input-output (IO). The task of fitting the data in memory is challenging for big

data. As the models under consideration do not have any bottleneck of I/O being CPU-

intensive task multiprocessing will be a logical choice.

 Let the data 𝐷 comprise of 𝑛 ∗ 𝑑 matrix, where 𝑛 is the total number of rows in

the data and 𝑑 is the number of features 𝑋 in the dataset.

𝐷 =

(

𝑋1 𝑋1 𝑋𝑑
𝑥1 𝑥11 𝑥12 𝑥1𝑑
𝑥2..,
.

𝑥21 𝑥22 𝑥2𝑑....
𝑥𝑛 𝑥𝑛1 𝑥𝑛1 𝑥𝑛𝑑)

(2)

where 𝑥𝑛 in (2) represents the 𝑛𝑡ℎ line of the dataset. Figure 4 indicates the load

forecasting being performed on the aggregated data and the time taken to process all the

32

models sequentially is outlined. The aggregated data is split as per the transformer ID

and the models are trained to start with dataset 1 (which is 𝐷1) and then the processing of

dataset 2 is initiated. The time taken to train model 1 is given as 𝑡1. Then the data from

transformer 2 is trained taking time 𝑡2. Each time 𝑡𝑡 also involves the dataset 𝐷𝑡 filtered

from the aggregated data. The total processing time depicted in Figure 4, is given by

equation (3):

𝛴𝑡𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒 = 𝑡1 + 𝑡2 +⋯ ⋅ 𝑡𝑇 (3)

where 𝑡𝑡 is the time taken to train the ML model on the transformer 𝑡, and 𝑇 is

the total number of transformers. Figure 5 shows the use of parallel processing to

process each of the 𝑥 meter ID’s data concurrently. The total time of processing all the

ML models will change as shown in equation (4).

𝛴𝑡𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒

=
𝑡1 + 𝑡2 + 𝑡3 +⋯𝑡𝑥

𝑥

+
𝑡𝑥+1 + 𝑡𝑥+2 + 𝑡𝑥+3 +⋯𝑡𝑥+𝑥

𝑥
+. .

𝑡𝑇−𝑥+1 + 𝑡𝑇−𝑥+2 +⋯𝑡𝑇
𝑥

(4)

which equates to equation (5)

𝛴𝑡𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒 =
𝑡1 + 𝑡2 + 𝑡3 +⋯𝑡𝑇

𝑥

(5)

where 𝑥 is the number of processors utilized. In this method, 𝑥 transformers

equal to the number of processors are running on multiple processors. Once the 𝑥 batch

is completed, the next 𝑥 batch is submitted. The time taken for each of the 𝑥

transformers is reduced from 𝑡1 + 𝑡2 +⋯ ⋅ 𝑡𝑇 to
𝑡1+𝑡2+𝑡3+⋯𝑡𝑇

𝑥
 . Submitting the processing

33

of the transformers as a pool to multiple processors shows the reduction in the time to

process the data by ~𝒙 times not considering the costs of communication.

Figure 4 Processing the data without parallel processing

Figure 5 Processing the data with parallel processing

The forecasting strategy is outlined in the form of a block diagram in Figure 6. The

strategy can be broadly categorized into 4 stages outlined below :

Stage1 : Collection of complete data 𝐷

Stage2 : Filter the data at transformer level resulting in 𝑇 𝐷𝑇’s.

34

Stage3 : Parallel processing of each of 1000 𝐷𝑇’s is submitted in batches of 𝑥. The total

number of batches submitted can be given as
𝑇

𝑥
 :
𝑇

𝑥
∈ ℤ and

𝑇

𝑥
+ 1 :

𝑇

𝑥
∉ ℤ

Stage4 : Accumulation of forecasting results simultaneously. As the forecasting is a day

ahead hourly load forecast, the accumulated results consist of [𝑌]1000×24 values.

4.4 Parallelization using python multiprocessing

Multiprocessing is a technique of executing tasks in parallel utilizing multi-core or multi-

processors in a computing cluster. Python multiprocessing follows a similar approach to

spawning the processes over multiple workers. While running the processes in parallel, it

needs communication between the processes, and python uses the pickle module for these

communications [82]. Distributing the job to parallel machines expects fast

Figure 6 Proposed forecasting algorithm based on multiprocessing. The steps 2

and 3 are repeated for 𝑻/𝒙 or 𝑻/𝒙 + 𝟏 times to complete the forecasting ofall the

1000 models under consideration.

35

communication among the machines, which results in high communication costs if data

needs to transfer among the processors. The pickling and unpickling usually result in a

considerable amount of overhead, hence it is best to keep as few arguments as possible

between the processes. Furthermore, the pool class in multiprocessing provides a

convenient approach to utilize parallel processing tasks. The worker processes in these

processes utilize the pool.map method, which considers only a single iterative argument

for processing. Since the computations in the current problem statement do not need any

communication between the processes, the order of processes follows the First In First Out

(FIFO) queue for gathering the results.

 If 𝑀𝑖 is the ML model ⅈ utilized to train the data 𝐷 resulting in prediction 𝑌𝑖, the time

taken to train the model is given as 𝑡(𝑌𝑖) and the error of the prediction variable is given

as 𝑅𝑀𝑆𝐸(𝑌𝑖). The trade-off ⅈ value between these two parameters 𝑡(𝑌𝑖) and 𝑅𝑀𝑆𝐸(𝑌𝑖) is

the value we are trying to attain. To attain a model 𝑀𝑖 with the tradeoff between run time

and the error, the model 𝑀𝑖 falling under the square with Min{𝑡(𝑌𝑖)}, Min{𝑅𝑀𝑆𝐸(𝑌𝑖)}

will be considered as the best model for the analysis (Figure 7).

To utilize the proposed parallel processing strategy in this work to handle the data from

multiple transformers and to be able to forecast energy consumption simultaneously, it can

be assumed that the matrix 𝐷 is split into 𝑡 transformer datasets which can be given in

equation (6):

36

𝐷𝑡 =

(

𝑋1 𝑋1 𝑋𝑑
𝑥1
𝑡 𝑥11

𝑡 𝑥12
𝑡 𝑥1𝑑

𝑡

𝑥1
𝑡 .,
.
𝑥21
𝑡 𝑥22

𝑡 𝑥2𝑑
𝑡

𝑥𝑛
𝑡 𝑥𝑛1

𝑡 𝑥𝑛1
𝑡 𝑥𝑛𝑑

𝑡)

(6)

where 𝐷𝑡 is the data belonging to each of the transformers. The strategy

discussed in section 4.3 is applied to the training of ML models where each of the 𝑥 𝐷𝑡s

are submitted to 𝑥 processes to gain advantages in the processing speed. The results are

accumulated from all the processes and accumulated to calculate the average 𝑅𝑀𝑆𝐸.

Figure 7 Graph for assessing the training time and root mean square error trade-

off

37

CHAPTER V*6

DISTRIBUTED LOAD FORECASTING WITH APACHE SPARK

In this chapter, works on the apache spark platform to perform distributed

computing are presented. This work will be used later in the research in the data

processing layer of the proposed methodology in chapter VI section 6.3. The distributed

computing of apache spark enables the data collection from the distributed storage in

Hadoop with the help of HDFS. The performance shows unprecedented improvements

in the ETL process and data processing thereby enhancing the forecasting accuracy of

load forecasting models.

5.1 Introduction

With the development of the smart infrastructure in the electrical grids, the data collected

from various units and locations over time have begun to receive the attention of grid

operators and research centers. Data centers usually collect 15-minutes to the one-hour

frequency of captured data, which creates enormous amounts of data streams. The power

grid operators are looking forward to creating data analytics solutions to benefit from these

enormous amounts of collected data. Processing large amounts of data and deriving

insights from them will help in the purpose of knowledge discovery and better decision

making. Machine learning (ML) techniques help in the decision-making processes and big

data provides power in better decision making.

6 Reprinted with permission from "Distributed Tree-Based Machine Learning for Short-Term Load Forecasting With Apache

Spark," by “Ameema Zainab, Ali Ghrayeb, Haitham Abu-Rub, Shady S. Refaat and Othmane Bouhali, 2021. IEEE Access, vol. 9,
pp. 57372-57384, Copyright 2021 by Ameema Zainab.

38

 To manage big data and perform ML with big data, most of the researchers have been

focusing on handling large size of data stored historically in the data centers [83]. To

improve the performance of the machine learning algorithms in big data, processing

infrastructure and manipulations in terms of the way ML algorithms execute is necessary.

Among the ML paradigms in big data, the proposed work focuses on tree-based methods

and ensemble learning techniques. Splitting a deluge of data into multiple datasets to

perform training with the ML models has gained significant improvement in the learning

process in terms of the big data context. For example, the authors in [84] applied ensemble

learning to subsamples of big data improving learning accuracy and simultaneously

decreased the computation time.

 The multi-AMI infrastructure mostly concentrates on forecasting the load of all the

distribution transformers (DT’s) at the same time. In this methodology, a novel scheduling

technique with the help of the Apache spark platform is proposed to short-long term

forecast the load of all the one thousand transformers simultaneously. The spark cluster

submits big data analytics tasks as spark jobs and the computational resources are

allocated optimally to these spark jobs. The amount allocated to these jobs is customizable

by the user which affects the Job Completion Time (JCT) significantly. ML algorithms

such as Spark Random Forest and Spark Gradient boosted regression trees for training and

forecasting the load are utilized. The proposed method performs load forecasting by

submitting multiple jobs concurrently on the data sets utilizing the cluster resources

optimally.

39

 The main contributions of this distributed load forecasting methodology can be

summarized as follows:

1) A scheduling algorithm to perform parallel and distributed execution of load forecast

on the smart grid big data is proposed.

2) Testing the proposed methodology on all the one thousand transformers’ data without

grouping, then make a comparison against the proposed grouping technique.

3) Tuning the ML models to gain high accuracy along with measures to combat

overfitting.

5.2 Related Work

Many works have proposed benchmarking results with the use of ML for load forecasting,

but in this section, the essence of big data smart grid load forecasting using spark is

outlined. The widely installed smart meters collect huge amounts of load data for each of

the grid’s distribution transformers. Many computing frameworks [85], [86], [87], [88]

have been developed for the analysis of big data but, MapReduce [85] is the most famous

one because of its features of fault-tolerance, parallel computation, and flexibility. Apache

Spark [89] proposed by the Zaharia et al. emerged to overcome the drawbacks in

MapReduce. It is an open-source framework and is 100 times faster than Hadoop

MapReduce [90]. Spark can execute over several cluster managers such as Hadoop YARN

[91], Apache Mesos [92], and spark’s standalone scheduler. Spark can also interface with

a variety of data storage repositories such as Hadoop Distributed File System (HDFS)

[93], Hive [27], Hbase [94], to name a few. However, spark supports distributed

computing resulting in a communication overhead increase. Previous research has

40

observed that by only increasing the computational capability, JCT reduces but then starts

increasing in communication overhead [95]. Hence the proposed scheduling algorithm

focuses to utilize the available computation capability and still be able to submit multiple

jobs with the help of an optimal scheduling algorithm and not losing on communication

overhead.

 Highly cited algorithms for forecasting smart grid data include linear regression, SVM

and its variants [96], and artificial neural networks (ANN). A pooling-based deep recurrent

neural network (DRNN) was proposed to learn the spatial information, which

outperformed Support Vector Regressor (SVR), Auto-Regressive Integrated Moving

Average (ARIMA), and the classical deep recurrent neural network (RNN) [97]. In [98],

Happy et al, proposed a statistical approach for load forecasting using quantile regression

random forest, risk assessment index, and probability map. In [80], Wei et al performed

midterm load forecasting of power supply unit (PSU) considered as a collection of

distribution transformers. The authors have utilized a dynamic-based network (DBN), with

a peak load of all the distribution transformers within a PSU summed. All of the summed

load values are utilized to train and forecast the load using sparks standalone clusters.

However, the use of complete data to train instead of summed load values can result in

better training accuracies but will require optimized scheduling method which is achieved

in this work.

The proposed solution focuses on an hourly day-ahead load forecast with the use of spark

ML tree-based algorithms. The models are trained with the spark.ml Application

41

Programming Interface (API) of spark which is data frame based facilitating ML pipelines

and feasible feature transformations [99].

5.3 Load forecasting methodology for optimized computation with apache-spark

5.3.1 Introduction

The Spark ML library supports tree-based models namely spark ml decision trees and

ensemble models namely spark ml random forest and spark ml gradient boosted regression

trees [100]. Spark session connects to the master node to submit jobs, where each job is

split into stages, and stages are further split into tasks. Adding more tasks to a single job if

possible is recommended as compared to starting new jobs to avoid start-up costs. In the

case of data from multiple transformers, each dataset can be assigned as a job. To reduce

the execution time of the load forecasting models, multiple DTs’ load forecasting is

performed simultaneously with the help of parallel job submission in spark. Moreover, the

shortest job submitted may consume fewer resources as compared to the other jobs

submitted. To overcome this, python’s thread pool concurrency feature in addition to the

spark fair scheduler can be used. A solution is to decompose the complete dataset into a

cluster of transformers IDs and use multiple computing nodes to train the clustered model

with an added sequential step to test the model of each of the transformers within the

clusters. However, it is necessary to train clustered models first and then test the individual

models within the clusters. This attempts to add multiple layers of parallel processes

executed sequentially as iterated in Figure 8. For 𝑛 clusters, the number of iterations to

train the clustered data is 𝑛 𝑗⁄ , where 𝑗 is the number of jobs submitted simultaneously.

Similarly, for 𝑡 transformers, the number of iterations to test the holdout data of each of

42

the transformer (TF) is 𝑛 ∗ (𝑡/𝑗). As the value of 𝑛 ∗ (𝑡/𝑗) is larger than 𝑛/𝑗 in all cases

of 𝑡, the time in the previous case (with 𝑛 clusters) is much less than without clustering,

provided the data size for each of the jobs in both cases is the same. The proposed parallel

and sequential approach of the tree-based ensemble model is deployed on the spark. As

shown in Figure 3, spark adopts a single master and multiple slave’s model. To

incorporate the proposed methodology parallelism in datastore and training are discussed

further.

5.3.2 Datastore parallelism

The big data of the transformers' load values with the timestamp is stored in the HDFS

with replication factor 3. The resulting load data partitions are constructed into RDDs and

stored in the corresponding data nodes. The number of partitions is automatically set by

Figure 8 Nested parallelism with spark (sequential and parallel runs)

43

Spark as one partition for a block of file, however, the data is repartitioned to 20 which is

equal to the number of cores in each of the nodes using the pyspark programming

interface.

5.3.3 Training parallelism

The data from HDFS is read into the spark data frame for the analysis. By using the data

frame API only, all the physical execution is compiled in native spark using Java Virtual

Machine (JVM), while only the logical plan is constructed in pyspark [101]. The use of

data frame API in pyspark results in efficient execution as it avoids the creation of key-

value pairs that occur in Scala. Data frames in spark are immutable like RDD and are

conceptually similar to a panda’s data frame or a relational database. However, the

important difference is the execution of transformations and actions in spark. The spark’s

catalyst optimizer creates an optimized logical plan before sending an instruction to the

spark driver. As the catalyst optimizer functions are the same across all the language APIs,

data frames provide equivalent performance to all the spark API. Once a logical plan is

created, it visualizes it as a Directed Acyclic Graph (DAG) as shown in Figure 9, and is

distributed among all the tasks in a job to be able to perform each of the stages

concurrently.

 Considering the merits of spark, it is used as the big data processing platform in our

application for two of the main computing tasks:

1) Average load matrices calculation: the elements of the average load matrix consist

of load averaged for 1 lag day, 7 lag days, etc. The data is inputted into the matrix

44

calculation from the historical data stored in HDFS and the computations are carried

out in pyspark.

2) Simultaneous training of DTs’ load forecasting models with the help of thread pools

in python and multiple jobs in spark utilizing a FAIR scheduler.

5.3.4 Data partitioning in a distributed environment

The RDDs in spark are distributed in partitions and spread across different nodes.

Some operations in spark such as rank, count, and window for example can result in

serious performance degradation as it results in all the records to shuffle into a single

Figure 9 Spark-based DAG visualization for random forest regressor

45

partition. In this work, a window function has been used to utilize the F.lag function in

spark. To overcome the performance degradation in such a scenario, the data has been

partitioned by the column month. Partitioning the data by month column has resulted in

data being stored into a subdirectory for each partition. Figure 10 illustrates the approach

of partitioning the data by column in a distributed environment.

5.4 Optimal scheduling algorithm

5.4.1 Introduction

Scheduling jobs considering the available resources is challenging. An optimal scheduling

algorithm is necessary to schedule jobs to be able to reduce the execution time. As per the

requirement of load prediction of multiple transformers at the same time, two scheduling

Partition

1

Partition

2

Partition

10

--1000 records---

Partition 1

Adding lag

values
Partition 2

Partition 3

Partition 10

------- -------

Col

1

Col

2

Col

n

- ---

- ---

-

-

Figure 10 Data partitioning in a distributed environment using window operation on

the month column

46

algorithms are leveraged in this thesis. In this section, the solutions of optimal scheduling

when communication costs are ignored and when considered are discussed.

5.4.2 Ignoring communication costs

Considering 𝑤 workers available and 𝑀 jobs to be executed, three cases can be obtained

where (𝑤 < 𝑀) & (𝑤𝑥 = 𝑀), (𝑤 < 𝑀) & (𝑤𝑥 < 𝑀), and 𝑤 ≥ 𝑀 where 𝑥 is a multiple

of 𝑀 resulting in 𝑤𝑥 = 𝑀. The algorithm in this section is structured as follows.

Step 1: Submit the array of tasks to the 𝑤 workers

Step 2: 𝑤 jobs are submitted to the available w workers

Step 3: Whenever a processor becomes available, assign it the unexecuted ready job with

the highest priority.

Submitting the jobs with the help of a thread pool as discussed in section 5.3, 𝑤 jobs are

submitted at the same time. Considering the three cases, the algorithm flow can be

elaborated for three of the cases as below:

Case I:

𝑝𝑜𝑜𝑙𝜔(𝑡𝑟𝑎ⅈ𝑛, [1, 2, … .𝑤])

(𝑤 < 𝑀) & (𝑤𝑥 = 𝑀)

 𝑇𝑚
1 𝑇𝑚

2 𝑇𝑚
3 𝑇𝑚

4 . . 𝑇𝑚
𝑤

.

. 𝑥 𝑡ⅈ𝑚𝑒𝑠

.

𝑇𝑚
1 𝑇𝑚

2 𝑇𝑚
3 𝑇𝑚

4 . . 𝑇𝑀
𝑤

Case II:

47

𝑝𝑜𝑜𝑙𝜔(𝑡𝑟𝑎ⅈ𝑛, [1, 2, … .𝑤])

(𝑤 < 𝑀) & (𝑤𝑥 < 𝑀)

 𝑇𝑚
1 𝑇𝑚

2 𝑇𝑚
3 𝑇𝑚

4 . . 𝑇𝑚
𝑤

.

. 𝑥 − 1 𝑡ⅈ𝑚𝑒𝑠

.

𝑇𝑚
1 𝑇𝑚

2 𝑇𝑚
3 . . 𝑇𝑚

𝑀−(𝑥−1)𝑤

Case III:

𝑝𝑜𝑜𝑙𝜔(𝑡𝑟𝑎ⅈ𝑛, [1, 2, … .𝑤])

(𝑤 ≥ 𝑀)

 𝑇𝑚
1 𝑇𝑚

2 𝑇𝑚
3 𝑇𝑚

4 . . 𝑇𝑀
𝑤

where 𝑇𝑚
 is the time taken for individual job execution and is assumed to be the same. In

case III, the computational capabilities are not as high most of the time when the number

of jobs to be submitted is in the thousands. The total execution time in all three cases can

be summarized in (7) as:

𝑇𝑡𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒 = {
𝑥𝑇 𝑤ℎ𝑒𝑟𝑒 (𝑤 < 𝑀) 𝑎𝑛𝑑 (𝑤𝑥 = 𝑀)

𝑥𝑇 𝑤ℎ𝑒𝑟𝑒 (𝑤 < 𝑀) 𝑎𝑛𝑑 (𝑤𝑥 < 𝑀)
𝑇 𝑤ℎ𝑒𝑟𝑒 𝑤 ≥ 𝑀

(7)

Because of the way the number of concurrent jobs is submitted, 𝑤 workers are

assigned for each step of parallel runs. Although at the last step of execution 𝑤𝑥 < 𝑀 still

takes the same amount of time, as 𝑤 workers are assigned to perform the job.

48

5.4.3 Considering communication costs

The main idea of this scheduling task is to augment the scheduling with new precedence

relations to be able to compensate for the communication time. By clustering the jobs into

𝐶 clusters and submitting them to the same worker, the overall communication between

clusters will be minimized. If �̃� is the time taken by a cluster including the communication

costs, and 𝑦 is a multiple of the total number of clusters resulting in 𝑤𝑦 = 𝐶, 𝑦�̃�, is the

time taken for all the jobs where 𝑦 < 𝑥.

5.4.4 Objective function

This section attempts to create the theoretical functions for parallel and sequential

training approaches and to propose an implementation solution based on the spark

platform. The collected transformers power data is denoted as 𝐷 where

𝐷1, 𝐷2, 𝐷3, … 𝐷𝑀 denote the data for meter 𝑚. The data 𝐷𝑚 consists of 𝐹 features

namely month, day, year, etc.

Therefore, the chunk of data for a meter ID can be expressed by 𝐷𝑚as in the

following equation (8) and (9):

𝐷𝑚 = [𝑋1
𝑚, 𝑋2

𝑚, … . . 𝑋𝐹
𝑚] (8)

𝐷 = ⋃ 𝐷𝑚
𝑀

𝑚=1

= ⋃⋃𝐷𝑛
𝑚

𝑁𝑚

𝑛=1

𝑀

𝑚=1

(9)

where 𝑋𝑓
𝑚 is the feature 𝑓 of the chunk of the data for a meter ID 𝑚; 𝑁𝑚 is the size

of the 𝑚𝑡ℎ dataset. This chunk of data is trainable input to the machine learning model.

Additionally based on the data decomposition shown in (9), the means square error

49

(MSE) for regression of the parallel training of the ML model is represented as shown in

equation (10) [102] [103]

𝑅𝑀𝑆𝐸𝑂𝑂𝐵 = min
1

𝑁
∑ 𝐽𝑚

𝑀

𝑚=1

 = min
1

𝑁
∑ 𝑀
𝑚=1 ∑ 𝐽𝑛

𝑚𝑁
𝑚

𝑛=1 (10)

And the loss function 𝐽𝑛
𝑚 of the sample 𝑛 in data with subset 𝑚 is given by (11)

𝐽𝑛
𝑚 = √

1

𝑁∑ ‖𝑦𝑛
𝑚−�̂�𝑛

𝑂𝑂𝐵(𝑋𝑛
𝑚)‖ 2𝑁

𝑛=1

(11)

where 𝐽𝑚 in (12) is the loss function of the 𝑚𝑡ℎ data set

Jm = ∑ Jn
m

N
m

n=1

(12)

𝑦𝑛
𝑚 and �̂�𝑛

𝑚 are the observed and the predicted load values, respectively, of sample 𝑛

in data subset 𝑚; and 𝑁 is the dimension of each of the output samples. The ML model

training is performed to minimize the 𝑅𝑀𝑆𝐸𝑂𝑂𝐵 in (10) and obtain the trees using the

dataset 𝐷. Similar procedures are performed for the subset dataset 𝐷𝑚 concerning the

data subset 𝑚 for transformer level load forecasting.

50

CHAPTER VI*7, 8

PROPOSED METHODOLOGY

This chapter presents the complete big data management platform proposed in

this thesis for managing the data from the smart meters to perform short-term load

forecasting in large electrical networks. The main aim of the work is to analyze big data

and perform load forecasting with high accuracy for electrical energy forecasts. One day

ahead hourly energy forecasts are the goal of the work.

A detailed description of the various steps involved in the proposed methodology

is described in subsequent sections starting with the description of acquisition data sets

used for the case studies.

6.1 Data

The data was collected from an advanced smart metering infrastructure (AMI) of the

Iberdrola network. The collected dataset is the energy consumption data of transformers at

the distribution level for a period of 33 months (from January 2017 to September 2019). It

consists of the hourly energy consumption of transformers located in different

municipalities of Spain. Each data point includes the summertime, meter ID reading

timestamp, and consumption. This investigation is focused on forecasting the day-ahead

hourly load of each of the DTs.

7 Reprinted with permission from "A Multiprocessing-Based Sensitivity Analysis of Machine Learning Algorithms for Load

Forecasting of Electric Power Distribution System," by Ameema Zainab, Dabeeruddin Syed, Ali Ghrayeb, Haitham Abu-Rub, Shady
S. Refaat, Mahdi Houchati, Othmane Bouhali and Santiago Bañales Lopez, 2021. IEEE Access, 31684-31694, Copyright 2021 by

Ameema Zainab.
8 Reprinted with permission from "Distributed Tree-Based Machine Learning for Short-Term Load Forecasting With Apache

Spark," by “Ameema Zainab, Ali Ghrayeb, Haitham Abu-Rub, Shady S. Refaat and Othmane Bouhali, 2021. IEEE Access, vol. 9,

pp. 57372-57384, Copyright 2021 by Ameema Zainab.

51

6.1.1 Dataset 1

Number of DTs – 1,000

Data points - 24,072,709

Dates - 2017-01-01 11:00:00 to 2019-10-01 09:00:00

Format – CSV, size - 2.85 GB

Format – ORC files, size – 200 MB

6.1.2 Dataset 2

Number of DTs – 10,000

Data points - 206,660,033

Dates - 2017-01-01 11:00:00 to 2019-10-01 09:00:00

Format – CSV, size – 23.7 GB

Figure 11 indicates the load values of the data. It can be noted that for a quantile more

than 0.9999 the values of load are more than ~700 kWh. Keeping this in view load

values above a quantile of 0.99995 have been equated to 0.9995. Quantile statistics after

removal of outliers in indicated in Figure 12.

52

Figure 11 Descriptive quantile statistics with outliers

Figure 12 Descriptive quantile statistics without outliers

Transformer rating was also obtained for Dataset2. Out of the rating of the 10k

transformer for 354 transformers rating was not obtained. Figure 13 shows the count of

transformers on the y-axis and the rating values on the x-axis.

0 1
6

4
2

5
1

8
2

1
1
7

4
2
9

6
9
3

1
0
7
5

2
3
3
5

3
9
1
4

1
4
4
5
3

2
3
0
0
5

4
3
5
5
4

2
1
4
7
4
8
3

-500000

0

500000

1000000

1500000

2000000

2500000

L
o
ad

 v
al

u
e

(k
W

h
)

Quantile

0 16
42

429

0

100

200

300

400

500

0.25 0.5 0.75 0.9999995

L
o
ad

 (
k
W

h
)

Quantile

53

Figure 13 Statistics on transformer rating data

The transformer rating maximum value of 1000 kWh shows that no transformer

can have a load value of more than 2000kWh considering the transformer is loaded

twice the capacity. Also, 63% of the transformers have a rating ranging between 400

kWh to 630 kWh.

6.1.3 Dataset 3

Number of transformers – 105,148

Data points - 2,166,910,300 (~2.2 billion records)

Dates - 2017-01-01 11:00:00 to 2019-10-01 09:00:00

Format – CSV, size – ~250 GB

Figure 14 indicates the count of the number of transformers against the number of days

the data is available for each of the transformers. The x-axis indicates the difference of

the end date and the start date for the data available for each of the transformers and the

y-axis indicates the count of the transformers. It can be noted from the figure that

0

500

1000

1500

2000

2500

3000

3500

4000

1
0

1
5

2
5

3
0

5
0

6
0

7
5

1
0
0

1
0
1

1
5
0

1
6
0

2
0
0

2
5
0

3
0
0

3
1
5

3
5
0

4
0
0

6
3
0

8
0
0

1
0
0
0

C
o
u
n
t

o
f

tr
an

sf
o
rm

er
s

Transformer Rating (kWh)

although the majority of transformers have complete data for 3 years (=3*365*24 =

~24000 records) there are transformers for which the data is unavailable indicating that

either these meters were installed at a later stage or the data has not been collected for

these transformers for the complete range of the timeframe.

Figure 14 Descriptive quantile statistics of 100k transformers dataset

6.2 Data Statistics and Pre-processing

In the experiments on dataset 1, the data consists of load value and timestamp of 1000

transformers meters of the Iberdrola network [104]. The data is split into 90% (Jan 2017

to Jun 2019) of training and 10% (July 2019 to September 2019) holdout dataset. The total

dataset counts to around ~24,000,000. The data was collected from the utility company in

an Optimized Row Columnar (ORC) format and was stored in the HDFS storage on 5 data

nodes and replicated 3 times. Currently, spark supports timestamp input with the help of

flint time series as flint context and not flint session. Because of this limitation, the

timestamp is split into the year, month, day, and hour.

 Figure 15 shows the power consumption pattern for all the 3 years in the top left, data

with large load values on the top right, and the frequency of the load values in the bottom

54

55

left and bottom right graphs. It can be noted that the bottom left graph is right-skewed, and

after log normalization, the spread of the data is more diverse comparatively but still not

normally distributed. The bottom right graph also has log+1 normalization as the data

consists of load values of 0. It can be noticed that the data is right-skewed.

Figure 15 Top left - Load distribution across all the three years (The vertical axis

indicates the load value in kWh and the x axis indicates the time stamp). Top right

– Data with large load values greater than 1000 kWh (The vertical axis indicates

the transformer id the data belongs to and the x axis indicates the load value in

kWh. Bottom left – Frequency of the load distribution limiting to 1000 kWh.

Bottom right – Frequency of log normalized load plus 1.

56

6.3 Proposed Methodology

The performance of the forecasting models in terms of execution time is assessed on

various big data management proposed methodologies. After the assessment, an end-to-

end data management and analytics platform is proposed to perform load forecasting.

The tested methods can be categorized into 4 main blocks as depicted in Figure 16. The

blocks depicted in Figure 16 are listed below:

• ETL

• The hardware layer

• Data processing layer

• ML modeling

The reason for the choice of each of the components in these four blocks is described in

detail below:

6.3.1 ETL

There are various data sources in the smart grid. A few examples are SCADA, Advanced

Metering Infrastructure (AMI), smart meters, sensors, PMUs, distributed generation

units, weather, customers, etc. The data is collected in the data storage location or

streamed through secure channels. In the proposed methodology both Hadoop storage

and a physical SATA disk are integrated.

6.3.2 Big data platform layer

In the big data platform layer, multiple compute nodes are added. The current

infrastructure discussed in chapter III involves 5 compute nodes with 120GB each.

These compute nodes are utilized in a distributed manner to help in the processing of

57

data. Multiprocessing supports 8 concurrent computation nodes whereas the spark

platform supports as many numbers of executors as design in the platform upon the 5

compute nodes. To enhance the computation speed and test the performance of

multiprocessing azure cloud infrastructure has also been utilized with 32 simultaneous

processes for testing.

6.3.3. Data processing layer

ETL

Multiple compute nodes

Node 2 Node n …

…

Node 1

ML modeling

ML forecasting

Figure 16 Proposed methodology for big data management in the smart grids

terra.tamu.edu Microsoft Azure Raad2.qatar.tamu.edu

Hadoop

HDFS

1TB 7.2K RPM

SATA disk

storage

YARN

resource

manager

58

Depending on the data source, the data processing is performed. For processing the data

two methodologies have been proposed. With the help of multiprocessing, multiple jobs

are submitted in parallel to the processors. The complete process of filtering the data,

preprocessing, and ML model is performed on the multiple processors simultaneously

and the results are aggregated. This methodology does not involve any communication

between the processes and hence there is also no memory share involved. Only messages

are passed to each of the processors with the meter IDs. Based on the index of the meter

ID the complete processes are initiated and the forecasting result is delivered. In the

second methodology of distributed processing apache-spark platform is utilized. Spark is

lightning fast and utilizes all the nodes under consideration with the help of a cluster

manager. The work has focused upon tuning the spark executors, number of cores per

executor, amount of memory per executor, amount of memory in the driver node,

scheduler mode, number of shuffle partitions, off-heap memory size, and blocksize

compression. The concept of multiple job submissions has been utilized from

multiprocessing to be utilized in spark to perform analysis on all the transformers,

followed by ML modeling and accumulation of results.

6.3.4 ML Modeling

While performing ML modeling on the transformers data, the choice of ML

model has been performed. A sensitivity analysis has been performed by choosing

various ML models to observe the performance in terms of both accuracy and execution

time. Measures to avoid overfitting have also been considered. Hyperparameter tuning

has been performed to choose the ML model with the best parameters. As the job

59

submission pattern is simultaneous, the accumulation of results is done in such a way

that the results are posted online to a single repository.

60

CHAPTER VII*9, 10

RESULTS AND DISCUSSION

7.1 Performance Evaluation Metrics

7.1.1 RMSE, MAPE, and R-squared

The mean absolute percentage error (MAPE) and the root mean square error (RMSE) are

chosen as the evaluation criteria. However, MAPE is a widely used error statistic in energy

forecasting [105]. Therefore, most of the presented results are compared based on the

MAPE values to have a clear comparison with the existing techniques and results. The

used MAPE and RMSE are shown in equations (13) and (14):

𝑀𝐴𝑃𝐸𝑡 =
1

𝑛𝑡
∑|

𝑌𝑡 − 𝑌𝑝

𝑌𝑡
|

𝑛𝑡

𝑡=1

(13)

𝑅𝑀𝑆𝐸𝑡 =
√∑ (𝑌𝑡 − 𝑌𝑝)

2𝑛𝑡

𝑡=1

𝑛𝑡
(14)

where 𝑅𝑀𝑆𝐸𝑡 and 𝑀𝐴𝑃𝐸𝑡 are the error metrics belonging to transformer 𝑡 with

data size of 𝑛𝑡. 𝑌𝑡 is the true load value and 𝑌𝑝 is the predicted load value.

9 Reprinted with permission from "A Multiprocessing-Based Sensitivity Analysis of Machine Learning Algorithms for Load

Forecasting of Electric Power Distribution System," by Ameema Zainab, Dabeeruddin Syed, Ali Ghrayeb, Haitham Abu-Rub, Shady
S. Refaat, Mahdi Houchati, Othmane Bouhali and Santiago Bañales Lopez, 2021. IEEE Access, 31684-31694, Copyright 2021 by

Ameema Zainab.
10 Reprinted with permission from "Distributed Tree-Based Machine Learning for Short-Term Load Forecasting With Apache

Spark," by “Ameema Zainab, Ali Ghrayeb, Haitham Abu-Rub, Shady S. Refaat and Othmane Bouhali, 2021. IEEE Access, vol. 9,

pp. 57372-57384, Copyright 2021 by Ameema Zainab.

61

For non-linear models, the R-squared measure is a choice measure for regression

models and is given in the equation. R-squared goodness of fit measure belongs to a class

of exponential family and generally leads to a value of [0, 1] [106].

𝑅 − 𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝑡 = 1 −

∑ (𝑌𝑡 − 𝑌𝑝)
2𝑛𝑡

𝑡=1

∑ (𝑌𝑡 − �̅�𝑡)2
𝑛𝑡

𝑡=1

(15)

where �̅�𝑡 is the mean of the true load value for transformer t. The R-squared

measure is also called the coefficient of multiple determination and is given by the

division of regression sum of squares against the total sum of squares (RSS/TSS).

7.1.2 Average RMSE

The objective of future load consumption is to predict the load with high precision and

speed to have near real-time processing ability. Root mean square error (RMSE) is used as

the error metric because of its wide use. To evaluate the predictive performance, the

training dataset is separated from the holdout dataset (data never used for training). All the

models are built on the training data and optimized to obtain as low 𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 as possible

and predicted on the holdout dataset to note the 𝑅𝑀𝑆𝐸ℎ𝑜𝑙𝑑𝑜𝑢𝑡. Moreover, to evaluate the

performance on all the holdout datasets for different transformers, the average

𝑅𝑀𝑆𝐸 (𝐴𝑅𝑀𝑆𝐸) is calculated as described in equation (16):

62

𝐴𝑅𝑀𝑆𝐸 =
1

𝑀
∑ 𝑅𝑀𝑆𝐸ℎ𝑜𝑙𝑑𝑜𝑢𝑡
𝑀
𝑖=1 1 < ⅈ < 𝑀 (16)

 The ARMSE shows how well the ML model learns the data for all the distribution

transformers. The reason for choosing ARMSE is to have high average accuracy across all

the distribution transformers and not just one or a few.

7.1.3 Execution time

An important objective of choosing the proposed methodology is to reduce the processing

time of the transformer's data. To improve the performance in terms of execution time,

total time 𝑇𝑡𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒
 is first measured by submitting individual jobs and �̃�𝑡𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒 by

considering a cluster of jobs. The time is compared in both cases to choose the

methodology with the lowest execution time and still retain the skewed distribution of the

multiple meters data.

7.1.4 Spark optimization

Besides spark being an in-memory computing framework, it runs on top of the Java

Virtual machines (JVMs). Hence tuning the JVM parameters is necessary to improve the

performance of the spark. In this work, three key spark parameters that impact the

utilization of resources to reduce the workload execution time have been identified. The

work is focused on parameters that impact the memory serialization, data compression,

caching, and repartitioning of data. Experiments are conducted considering: i) various

combinations of several executors, ii) the number of cores per executor, and iii) the

amount of memory for each of the executors. If 𝐶𝑂 is the total number of cores in the

configuration as shown in equation (17)

63

𝐶𝑂 = 𝐸 ∗ 𝐶𝑂𝑝𝑒𝑟𝐸 (17)

where 𝐸 is the total number of executors assigned and 𝐶𝑂𝑝𝑒𝑟𝐸 is the number of cores

assigned per executor in the spark configuration. The distribution of total memory in the

spark configuration is given in equation (18).

𝑀𝐸𝑀 = (𝑀𝐸𝑀𝑝𝑒𝑟𝐸 ∗ 𝐸) + (0.1 ∗ 𝑀𝐸𝑀𝑝𝑒𝑟𝐸) (18)

where 𝑀𝐸𝑀𝑝𝑒𝑟𝐸 is the memory assigned per executor. The second term in (18) is the

overhead memory allocated to each of the executors which accounts for virtual machine

overheads or other native overheads. Further, the 𝑀𝐸𝑀𝑝𝑒𝑟𝐸 is divided into two fractions,

one for memory and the other for storage. The memory fraction handles the data

structures, out-of-memory error and the storage fraction handles the cached blocks of data.

The values of 𝐶𝑂 and 𝑀𝐸𝑀 can vary and are very specific to the cluster used for

configuring spark. Choosing a larger value of 𝐸 results in reducing the 𝐶𝑂𝑝𝑒𝑟𝐸 to balance

the 𝐶𝑂. Similarly, choosing a larger value of 𝐸 reduces the 𝑀𝐸𝑀𝑝𝑒𝑟𝐸 to balance the

Figure 17 Spark job anatomy single job

64

𝑀𝐸𝑀.

The topology of a single job function of spark is described in Figure 17. A job

connects with the HDFS to read the data and perform computations on it by partitioning it

into stages. All the stages are executed sequentially one after the other. Each stage has

multiple tasks which are performed by multiple executors. These executors consist of

multiple cores depending on the optimization performed on sparks topology. Each of the

tasks is performed on a logically divided partition.

Figure 18, shows the architecture of the design which involves a series of parallel

execution followed by sequential execution and finally followed by parallel execution. The

proposed methodology utilizes an optimized scheduling strategy to incorporate the parallel

execution of multiple jobs [27]. Considering the spark platform, with total cores as CO, the

number of cores per executor is given in equation (17) where 𝑪𝑶𝒑𝒆𝒓𝑬 is denoted as the

number of cores per executor. When a single job is submitted in spark, the resources are

allocated as per the configuration of the platform.

Figure 18 Proposed k-means parallel in-memory clustering component with

parallel jobs.

65

7.2 Experimental Results

The future load can be predicted by determining the relationship between the load and the

variables that influence the load i.e. time of the day and weather [107]. The parameters of

the model are precalculated to accelerate the forecasting on the larger volumes of the DTs.

90% of the data is taken for training, and 10% for forecasting to determine the least root

mean square error (RMSE) and mean absolute percentage error (MAPE).

7.2.1 Multiprocessing Layer

Six machine learning regression models are chosen for comparison, viz, Linear

Regression, Support Vector Machine, MLP Regressor, Decision Tree, Random Forest, and

Gradient Boosting Regressor. Table 7 lists the average RMSE and MAPE values

generated for the hourly day-ahead load forecast of the 1,000 transformers. The table

Table 7 Results of 6 ML models on hourly load [kWh].

Accuracy DTR LR NN SVR GBRT RFR

Average RMSE 252.26 111.27 6527.39 94.54 224.03 194.27

Average RMSE

(without outliers)

5.67 5.91 40.78 4.87 4.26 4.02

MAPE (%) 10.91 10.0 553.29 5.42 11.99 10.64

Fit time(s) 781.27 28.63 16121.48 39040.04 5240.23 45570.63

Forecast time(s) 1.957 1.702 5.004 2716.54 6.02 92.73

Number of

parameters

12 4 8 11 21 16

The time in sec indicated above is the accumulated time for all the 1000 transformers data which is close to ~24 million rows

66

contains the training fit time, the forecast time, and the number of parameters. Therefore,

this assessment is based on the average of all the 1000 transformers, which helps in

portraying the comparison of model performances. The limitation of the approach is that

the best model cannot be generalized to determine a tradeoff between accuracy and time.

None of the used models exhibit the best accuracies, which is consistent with the fact that

the values are an average of all the transformers' results. This inconsistency indicates the

need for individual models to be hyperparameter tuned for each of the ML models across

all the transformers. The SVR shows the least error followed by decision trees and

gradient boosted random forest. Even though linear regression shows fewer error rates,

LRs cannot be considered as the best model because of the nonlinear patterns in the data.

The elimination of random spikes in a few of the transformers results in a more accurate

load forecast of the transformer with maximum load. Figure 19 shows the RMSE of the

day-ahead hourly forecast for all the 1,000 transformers while removing outliers. Among

all the RMSE values obtained in Figure 19, approximately 20 transformers with peak

values above 1,000 kWh were excluded. As the results indicate 1,000 transformers,

some samples at random have been filtered in Figure 20.

67

Figure 19 Day ahead hourly load forecast RMSE of 1,000 transformers.

Figure 20 Transformer RMSE for random with proper resolution and good

interpretations

7.2.1.1 Data size / ML model / Execution time

To validate the proposed approach and the performance evaluation, the three following

measures are considered that impact the big data load forecasting strategy:

Data size – The frequency at which the data is generated affects the size of the data.

Bigger data volumes result in larger execution times and more memory requirements.

0.01

0.1

1

10

100

1000

10000

1
2

7
5

3
7

9
1

0
5

1
3
1

1
5
7

1
8
3

2
0
9

2
3
5

2
6
1

2
8
7

3
1
3

3
3
9

3
6
5

3
9
1

4
1
7

4
4
3

4
6
9

4
9
5

5
2
1

5
4
7

5
7
3

5
9
9

6
2
5

6
5
1

6
7
7

7
0
3

7
2
9

7
5
5

7
8
1

8
0
7

8
3
3

8
5
9

8
8
5

9
1
1

9
3
7

9
6
3

R
M

S
E

 [
L

o
ad

 i
n
 k

W
h
]

Transformer ID

DT LR NN SVM RF GBRT

0.5

5

50

2 10 26 116 228 312 345 486 537 628 783 872 918

R
M

S
E

 [
L

o
ad

 i
n
 K

W
h
]

Transformer ID
DT LR NN

SVM RF GBRT

68

ML model – Better forecasting accuracies can be attained by choosing the best suited

ML model. A complex model with multiple optimizing parameters results in higher

execution times.

Execution time – An important aspect that must be considered while evaluating a

prediction model. A shorter execution time is necessary for short-term load forecasting

in a real-case scenario.

Short-term load forecasting can be performed only if the big data generated can be

processed rapidly, for example within an hour for an hourly load forecast. Most of the

research conducted on STLF targets the load prediction within an hour horizon [108]. The

computing time should be less than the targeted forecasting timeline. To attain this goal,

load forecasting is performed along with parallel computing. The parallel processing

model helps in the execution of the ML models parallelly on multiple nodes reducing the

run time as compared to the traditional method. Figure 22 presents the comparison results

of concurrent computation and non-concurrent computation with dataset 1 for 1,000

transformers for randomly chosen 3 ML models utilizing 20 processors. The measure of

computational speedup is calculated in equation (19) based on Amdahl’s law [109]:

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑟𝑢𝑛 𝑡ⅈ𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑙𝑜𝑛𝑒 𝑎𝑙𝑔𝑜𝑟ⅈ𝑡ℎ𝑚 (𝑠𝑒𝑐)

𝑟𝑢𝑛 𝑡ⅈ𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑎𝑙𝑔𝑜𝑟ⅈ𝑡ℎ𝑚 (𝑠𝑒𝑐)

(19)

 The speedup values for three ML models NN (3 layers), DT, and LR are 20.55, 20.95,

and 17.30, respectively considering average run times. The average speedup of all the

models in a parallel environment as compared to the stand-alone environment is 19.06.

FIGURE 5. Day ahead hourly load forecast RMSE of 1,000 transformers.

69

 Hence, the parallel execution of the model attains a faster processing speed in total for

all the models as compared to the series computing environment. As the number of

experiment samples increases from 1 million to 64 million, the average execution time

of the Spark-DBN model increases from 3.35 to 113.12 seconds, however, the

processing speed of 24 million samples to perform linear regression is only 56 seconds

Figure 22 Execution time of 3 different ML models in different environments for

~24 million samples.

Figure 21 Comparison of the forecast strategy based on RMSE, training time and 6

ML models.

0

200

400

600

800

1000

1200

1400

MLPRegressor Decision Tree Linear

Regression

E
x
ec

u
ti

o
n
 t

im
e

(s
ec

o
n
d

s) Stand-alone environment

Parallel Environment

70

as compared to ~120 seconds in [80]. SVR stopped execution with a kill time error while

running in the stand-alone environment. This is because of a system problem on the

HPRC due to the processing limit of one hour on the HPRC login node.

7.2.1.2 ML model/Execution time

The experimental results of prediction error in terms of RMSE and the time taken to train

the models of ML models under consideration are depicted in Figure 21. As per the

proposed methodology of parallelization using python multiprocessing in section 4.4 of

chapter IV, Min {𝑡(𝑌𝑖)}, Min{𝑅𝑀𝑆𝐸(𝑌𝑖)} will be considered as the best model. The

neural network model indicated with a plus sign is spread across both in terms of RMSE

and training time. Whereas, DT and GBRT and LR fall under the Min{𝑡(𝑌𝑖)},

Min{𝑅𝑀𝑆𝐸(𝑌𝑖)} bucket. Random forest, an ensemble model indicated in green and

support vector regressor indicated in blue, takes more time to execute as compared to

Linear Regression indicated in red. RFs and SVRs exhibit lower RMSE but have higher

training times. The error distribution for Neural Networks ranges gives an insight into the

high forecasting errors but showcase lower training times as compared to SVR.

7.2.1.3 Data Size

Execution times on the data of a different number of DTs for the period data ranging

from January 2017 to September 2019 is considered. The numbers of distribution

transformers considered in various experiments are 10, 100, 500, and 1,000. When the

number of transformers increases from 10 to 1,000, the execution time of the ML models

increases. The execution times for all the 6 ML models for various numbers of

processors with 8, 12, 16, and 32 are shown with top-left, top-right, bottom-left, and

71

bottom-right in Figure 23. The execution time on the Y-axis for all the graphs as shown

sums the time is taken for transformers’ data filtering from the aggregated dataset, model

training time, prediction time, and model evaluation time. For all the four cases

considering 8, 12, 16 and 32 processors run time is averaged to compare the ML model

in terms of run time. The average execution time of linear regression increases from an

Figure 23 Total execution time of all the 1,000 transformers for different ML models

and varying datasets.

0

2000

4000

6000

8000

0.24 2.41 12.05 24.09

R
u
n
 T

im
e
 (

s
e
c
o
n
d
s
)

Transformer Data (million)

8 processors

0

1000

2000

3000

4000

5000

0.24 2.41 12.05 24.09R
u
n
 T

im
e
 (

s
e
c
o
n
d
s
)

Transformer Data (million)

12 processors

0

2000

4000

0.24 2.41 12.05 24.09R
u
n
 T

im
e
 (

s
e
c
o
n
d
s
)

Transformer Data (million)

16 processors

LR DT GBRT NN SVR RF

267 sec

0
200
400
600
800

1000
1200
1400
1600
1800

0.24 2.41 12.05 24.09

R
u
n
 T

im
e
 (

s
e
c
o
n
d
s
)

Transformer Data (million)

32 processors

72

average of 1 second to 271 seconds, the average execution time of SVR increases from

an average of 110 seconds to 80 minutes, the average execution time of MLPRegressor

increases from an average of 30 seconds to 18 minutes, the average execution time of

GBRT increases from an average of 4 seconds to seven minutes, the average execution

time of random forest increases from an average of 72 seconds to 61 minutes, while the

average execution time of DTs increases from an average of 16 seconds to 9 minutes.

From Figure 23, it can also be noted that from 8 processors to 32 processors the range of

the Y-axis changes from 0-8000 sec to 0-1800 sec. The time required is the shortest for

32 processors in all the experimental trials.

Overall, considering a tradeoff between the accuracy and the execution times of

the models, decision trees have outperformed as compared to the other ML models and

can complete the training of the ML models for all the 1,000 transformers in nine

minutes approximately. Figure 24 exhibits a snapshot of the decision tree with 24 lag

hours with a max depth of a tree restricted to 8, and the maximum leaf node to be 50.

Similarly, Figure 25, depicts the architecture of the neural network used. The 30 features

𝑋 are given as input to the neural network to obtain the forecast value 𝑌. The results

show an intuitive understanding of the benefits of using decision trees in the scope of big

data over other Machine Learning algorithms. Real-time processes of large data streams

for utility applications are hence possible with decision trees. The observations confirm

the findings that this method is also one of the suitable methods for data streams that can

be adapted to fast execution times [110].

73

 The results after comparison in terms of ML model, execution time, and data size

indicate that decision trees have outperformed the other models with an execution time

of 9 minutes utilizing 32 processors to run all the 1,000 models with 24-hour lag day

features added, and a data size of ~24 million records.

7.2.2 Distributed processing with spark executors

In this section, the metrics discussed in the section 7.1.2, 7.1.3 and 7.1.4 are

evaluated on the datasets to showcase the benefits of the optimal scheduling algorithm.

Figure 24 Decision tree for predicting load for one of the transformers. Note var(t-1):

1-hour lag value, var(t-2): past 2nd hour lag value, previous value of load

consumption.

Figure 25 Neural network architecture used to forecast the model. The activation

function is chosen as relu and the solver as adam optimizer.

74

The 𝐴𝑅𝑀𝑆𝐸 and the execution times are noted under experiments to determine the

robustness of load forecasting methodology using spark. All the experiments are

conducted on spark 3.0.1 on top of the Hadoop platform with 5 worker nodes and 1 name

node each with 120GB of memory and 20 cores. YARN is installed on top of Hadoop as

the resource manager and HDFS is used for the distributed storage of data.

7.2.2.1 Validation of execution time

In this experiment, the proposed optimal scheduling method is validated in terms of the

training time and the forecasting time. The total time 𝑇 and �̃� are measured for both cases

of 𝑥 and 𝑦 number of jobs submitted. The proposed scheme is tested for 𝑥 using the k-

means clustering algorithm to group the data to obtain clusters with higher accuracy. To

validate the proposed method, various chunks of 𝑦 values are considered and compared

against the time taken for 𝑥 number of chunks of data. For the given data as the value of 𝑥

is 1000, values ranging from 750 to 25 are chosen as shown in Figure 26(a). The

speedup is calculated for the various combinations by performing 𝑇 �̃�⁄ . As the value of 𝑦

increases, the size of the data is distributed among the y chunks which also affects the

processing time for different sizes of 𝑦. For varying values of 𝑦 the speedup is

increasing, indicating the time �̃� is always less than 𝑇 for all the values of 𝑦. Choosing a

lesser value of 𝑦 and still not losing on speedup is recommended, as in practice it will

help in reducing the execution time in cases of performing representative clustering.

Hence the proposed optimal scheduling algorithm stated in section iv improves the

performance by reducing the time to perform the analysis. Similarly, for a 𝑦 value of 93,

varying values of the thread pool are performed to analyze the speedup as shown in

75

Figure 26(a). Compared with a single job submission, the calculation time tends to

decrease gradually as the number of concurrent jobs submitted increases based on the

left axis in Figure 26(b). Massive jobs are distributed across the slave nodes, which

reduces the computational load. The spark computing platform captures the

intermediates results to memory resulting in the inefficiency of iterative processing

where each data frame is called multiple times for various processing stages. As shown

in Figure 26(b), based on the right y-axis, the speedup is approximately increasing

linearly up to a value close to some cores and makes it less linear after a value of 18-20.

When the number of jobs submitted increases above the threshold of a possible number

of concurrent threads that can be submitted, the data transfer among the processes

increases communication overhead which eventually increases the parallel management

overhead. Hence a trend of less linearity can be observed clearly after a value of

jobs=18. The training time is 43.8% faster for a pool value of 18 than the traditional

method of submitting jobs sequentially in spark.

Figure 26 Performance evaluation. (a) shows the speedup for various cluster sizes

for a concurrent job submission size of 18 and (b) presents the speedup of

increasing the number of jobs. A value of k=93 is chosen for all the job submission

values.

76

Additionally, the clustering time, training time, and testing time for a value of k =

93 is estimated based on the clustering performed to choose the best cluster number value

as shown in Figure 27(a). The total execution time (includes the training time of grouped

clusters, testing time of individual transformers with clustering, the training time of the

individual transformers, and the testing time for individual transformers) for the 1000

models is shown in Figure 27(b). The time taken by the gradient boosted algorithm is the

highest compared to the other spark ml algorithms. Although both random forest and

gradient boosted trees are ensemble models, the random forest takes noticeably lesser

time as compared to random forest. Inference out of this observation is that gradient

boosted is a boosting algorithm that is quite sequential and is intended to take more

execution time whereas multiple trees in the random forest can be run parallelly across

the nodes to speed up the execution. The times observed in Figure 27(a) show the lowest

training time for spark decision tree regressor. It can be noted that the time taken to

perform testing is almost close to the training time. This is evident from the proposed

Figure 27 Comparison of compute time at various stages of load forecasting. (a)

Results obtained for the time taken to perform clustering, training time and

testing time on the holdout dataset for SLR(spark LR), SDT, SRF and SGBT. (b)

The execution time involves

77

methodology which states that performing analysis on grouped data is preferred over

individual transformers data. However, as the testing has to be performed on all the DT's

datasets, grouping cannot be performed to reduce execution time.

7.2.2.2 Validation of spark optimization

To validate the use of an optimal number of 𝐶𝑂𝑝𝑒𝑟𝐸, experiments are conducted based on

various combinations of 𝐶𝑂𝑝𝑒𝑟𝐸 and 𝐸 which in turn affects the 𝑀𝐸𝑀𝑝𝑒𝑟𝐸. Figure 28

displays the comparison of run-time for various combinations of executors and cores per

executor. The combination with the largest number of cores per executor shows the lowest

run time as per the secondary y-axis in Figure 28. As the job submission computes

multiple jobs at the same time more number of workers helps in the distribution of the jobs

to more number of workers. Hence a choice of 5 executors and 20 cores per executor is

decided as an optimized combination of the spark configuration. It is worth mentioning

that as the number of executors is increased, the 𝑀𝐸𝑀𝑝𝑒𝑟𝐸 is reduced as it is distributed

among the executors, to sum up to 𝑀𝐸𝑀. Other than time, communication overhead and

Figure 28 Run time comparison for various spark optimization parameters

78

data transfer is also a concern in distributed computing. Other than time, communication

overhead and data transfer are also a concern in distributed computing. By increasing the

depth of a decision tree (refer to Table 8), it is noticed that as the tree grows larger, after a

max depth of 10, a large task transfer warning is shown by spark indicating that deep

models with a large number of tree nodes are being transferred across the tasks which

result in more data transfer. Referring to Table 8, it can be noted that by increasing the

depth of the model, the training accuracy is reducing, and the time taken is close to each

other. However, after a max depth of 10, there is a jump in the time and the time is

gradually increasing. This indicates that more amount of time is being utilized in

transferring data, hence such a scenario has to be avoided during the execution or the spark

parameters have to be tuned further to accommodate large task binaries.

Table 8 Performance of ML model in terms of RMSE and training time to

monitor the effect of deep networks

Max depth Training accuracy (kWh) Holdout accuracy (kWh) Time (sec)

2 5.850740 9.205257 28.711398

4 5.422266 9.738556 25.833542

6 4.759868 11.30912 24.382604

8 4.401291 17.37286 25.479490

10 4.153886 12.44175 26.977820

12 4.083622 12.50476 29.376672

14 4.077183 17.77995 32.170327

16 4.081471 17.79192 35.396624

79

7.2.2.3 Overfitting

Most of the machine learning models perform accurately post tuning of hyperparameters.

However, excess tuning of parameters tends to fit the training data so accurately that the

model is overfitted. Once overfit, the models do not perform as expected on the new

forecasting dataset. To avoid such a case many measures are taken to avoid overfitting in

the training data. Consideration of holdout data set which has never been used in the

training is one of the measures to prevent overfitting. In the case of tree ML models, the

depth of the tree or the number of nodes while training can be regulated. An experiment is

performed by increasing the depth of the tree and the num of nodes in the trained model is

monitored (refer to Figure 29). The x-axis shows the number of nodes, and the y-axis is

the performance measure in terms of RMSE. It can be noted that the black line in Figure

29, which indicates the training RMSE, is decreasing with an increase in the number of

nodes by fitting the dataset onto the trees as deeper as possible. Whereas the red line which

Figure 29 ARMSE of training and holdout dataset for spark decision tree. The

spot above 820 nodes result in overfitting of the datasets.

80

denotes the holdout RMSE does not show such a trend. After a point, the models'

performance starts deteriorating. This point is called the sweet spot where the models tend

to start overfitting. Hence the depth of the model must be restricted below this point which

indicates a value of 820 nodes in Figure 29. By taking such a measure on the average

RMSE of all the transformers data, a max depth of 8 is chosen to perform training on the

spark ML models.

7.2.2.4 Validation of historical data

The use of historical data has been used in the field of data mining to discover

regularities to improve the decision-making processes [111]. For the dataset at hand, the

data is collected for 3 years over the years 2017 to 29. Experiments have been run to

understand the effect of historical data in forecasting the models. A sample of

transformers data has been collected with varying horizons such as data from 2019,

2018, 2017, 2018+2019, and 2017+2018+2019. The dataset sizes vary for each of the

three cases as shown in Table 9.

Table 9 Number of records for a sample transformer for the varying horizon

Dataset Number of records

2019 5,895

2018 8,760

2017 8,759

2018+2019 14,654

2017+2018+2019 23,389

81

Considering each of the scenarios discussed in Table 9 mean square error and mean

absolute percentage error has been measured for all the transformers in Dataset 1. The

results for mean squared error have been described in Figure 30 and the mean absolute

percentage error in Figure 31. The results indicated in both the figures are averaged for

all the 1000 transformers. 24-hour lag day values have been added as a pre-processing

step for the analysis. The x-axis for both the figures indicates the average time taken to

fit the models on the training data and the y-axis indicates the measure in KWh. The bars

in blue and green belong to DTR and RFR respectively. It can be observed in both the

figures that the average time is taken to train increases as the data is added. It can be

observed that both DTR and RFR average MSE is least considering only data from 2019

as compared to the cases of 2019+2018 and 2017+2018+2019. The training time for the

RFR is more than DTR in all the cases as it is an ensemble model and runs a lot of

computations as compared to a single decision tree. Average MAPE as shown in Figure

31 is still the least considering only data from 2019.

From the experiments of adding historical data, although considering only data

from 2019 gives results better than the rest of the cases. This discovery of mining the

load data gives an insight that only considering data from 2019 is sufficient to generate

models with high accuracy whilst saving a lot of execution time needed to process the

historical data.

82

Figure 30 MSE Results on Average of decision tree and random forest(1000 t/f)

Figure 31 Mean absolute percentage error results on decision tree and random

forest (Average of 1000 t/f)

0

20

40

60

80

100

120

0

0.5

1

1.5

2

2.5

3

 6,551 14,654 23,389

2019 2019 and 2018 2017 2018 and 2019

M
S

E
 (

K
W

h
)

A
v
er

ag
e

T
im

e
(s

ec
)

Average count / years of data

model_fit_time DT model_fit_time RF RMSE RF RMSE DT

RMSE still lowest for
only 2019

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.5

1

1.5

2

2.5

3

 6,551 14,654 23,389

2019 2019 and 2018 2017 2018 and 2019 A
v
er

ag
e

M
ea

n
 a

b
so

lu
te

 p
er

ce
n
ta

g
e

er
ro

r

A
v
er

ag
e

T
im

e
(s

ec
)

Average count / years of data

model_fit_time DT model_fit_time RF MAPE RF MAPE DT

MAPE is lowest
for only 2019

83

7.2.2.5 Validation of accuracy

This section discusses the results after considering the validation of accuracy, computation

time, and overfitting in the previous sections. For each of the spark ml models, the

performance of the training dataset and holdout dataset are compared. Table 10 reports the

𝐴𝑅𝑀𝑆𝐸 computed for all the 1000 datasets. Holdout 𝐴𝑅𝑀𝑆𝐸 indicates the quality of load

forecasting. Thus, a lower value of 𝐴𝑅𝑀𝑆𝐸 indicates a better load forecasting model. The

table indicates that the values of holdout 𝐴𝑅𝑀𝑆𝐸 are the lowest for the spark random

forest regression model.

Referring back to Figure 27(b), the execution time for the random forest is not the lowest

but is comparable to the spark DTR model. Even though the random forest is an ensemble

model, the execution time is not as large compared to other models. This is because the

way spark performs its execution is that it utilizes its parallel computing capability to

execute each of the decision trees individually and gives back the result. The actual power

of spark in terms of execution can be observed here. Thus, it can be concluded that the

spark RF performs better than the other spark ml models under comparison.

Table 10 Final ARMSE, for training and holdout dataset after choosing tuned

parameters.

Algorithm Training 𝐴𝑅𝑀𝑆𝐸

(kWh)

Holdout 𝐴𝑅𝑀𝑆𝐸

(kWh)

Spark Decision Tree Regression Model 9.17193954 10.80716307

Spark Random Forest Regression Model 8.01070855 10.60056138

Spark Gradient-Boosted Trees 4.20657451 11.88559708

https://spark.apache.org/docs/latest/ml-classification-regression.html#gradient-boosted-trees-gbts

84

 Figure 32 shows the plot of 𝑅𝑀𝑆𝐸 of all the distribution transformers under

consideration. For randomly chosen DTs, those indexed as 0, 78, 208, 91, 13, 39, 104, 1,

52 present the training 𝑅𝑀𝑆𝐸 and holdout 𝑅𝑀𝑆𝐸. The plots indicate that the forecasting

accuracy follows the training accuracy closely attributing to the fact that the built ML

model is quite robust in terms of performance while increasing the speedup when a large

number of jobs is performed.

7.2.3 Experimental results on Scalability

This section outlines the results of the proposed methodology on a dataset obtained for

dataset 2 with 10 thousand transformers and dataset 3 with100 thousand transformers. The

results focus on the execution time and accuracy of the ML models based on the proposed

methodology. All the experiments are conducted on spark 3.0.1 on top of the Hadoop

platform with 7 worker nodes and 1 name node each with 120GB of memory and 20

Figure 32 ARMSE comparison of training and holdout dataset for all the DT's

85

cores. YARN is installed on top of Hadoop as the resource manager and HDFS is used for

the distributed storage of data.

7.2.3.1 Estimating Number of Clusters Utilizing Optimized Scheduling of Parallel

Jobs

A parallel implementation of the k-means is discussed in this section. The Lloyd’s

iterations as part of the k-means clustering methodology can be parallelized in the

MapReduce framework, hence can be utilized in the spark framework. The algorithm is a

parallel version of the k-means++ clustering technique. The details of the algorithm are

presented in Algorithm 1 [112]. The initial center is picked up at random and it computes

the initial cost ψ, followed by subsequent 𝑙𝑜𝑔(ψ) iterations. Given each set of c centers,

the algorithm samples with probability
𝑙𝑑2(𝑥,𝐶)

ϕ𝑋(𝐶)
 for each sample 𝑥, and 𝑙 is the

oversampling factor give as Ω(𝑘). It can be noticed from the algorithm that the size of 𝐶 is

Algorithm 1 k-means||

Step1: Sample a point uniformly.

Step2: 𝜓 ⇐ cost of 𝐶 for 𝑋.

Step3: Repeat Step4 and Step5 for 𝑂(𝑙𝑜𝑔𝜓) times.

Step4: Sample new points with probability
𝒍𝒅𝟐(𝒙,𝑪)

𝛟𝑿(𝑪)

Step5: Add the new points to the points sampled at step1.

Step6: End repetition.

Step7: Choice of 𝝎𝒙 number of points closer to 𝑥 than any other point in 𝑐.

Step8: form 𝑘 clusters by reclustering the weighted points in 𝐶.

86

less than the input size significantly.

Concerning the problem statement of the optimal value of 𝑘 while performing clustering,

the data is clustered for all the values in the range [2, 𝐾] to choose the best value of 𝑘

resulting in an iterative process. The work proposes these iterations 𝑘 to be submitted as

parallel jobs. If 𝜃 is the batch of jobs submitted, then the total number of iterations can be

reduced to equation (20)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ⅈ𝑡𝑒𝑟𝑎𝑡ⅈ𝑜𝑛𝑠  =  
(𝐾 − 2) + 1

θ

(20)

By submitting 𝜃 jobs the 𝐶𝑂 value will be reduced to 𝐶𝑂𝑝𝑒𝑟𝐽 (cores per job) as

shown in equation (21)

𝐶𝑂𝑝𝑒𝑟𝐽  =  
𝐶𝑂

θ

(21)

The resource allocation per job is now reduced, however, if each of the jobs

requires only a limited number of resources, then multiple jobs can be run to expedite the

iterative process of finding the optimal value of 𝑘. Algorithm 2 is stated with the pseudo-

code describing the functional behavior of the scheduling strategy to deliver the main idea.

In this section, the efficiency of the proposed algorithm on a 10k transformers and

100k transformers real-world dataset provided by Spanish utility has been evaluated. The

results are investigated on scalability, execution time, and evaluation score. All the

experiments have been performed with pyspark programming language to integrate python

supported ML techniques with the Spark SQL module which supports distributed query

engines and data frames.

87

Algorithm 2. The proposed k-means parallel in-memory optimal job scheduling

algorithm

Input:

 j: the number of batches

 w: number of workers (indicates 𝐶𝑜𝑝𝑒𝑟𝐸)

 K: Maximum value of k.

 r: step value of k

 csv: an empty csv file to accumulate all the results

Initialize:

def cluster (𝑘):

Perform k-means parallel clustering;

Evaluate clustering on the evaluation measures;

Update the clustering scores;

end def

Output:

 csv: the WSSE and Silhouette of data for all values of 𝑘.

Assign the number of workers and create a thread pool equal to the number of

workers;

Create an array [2, 𝐾, 𝑟];

Call pool.map function for cluster function with the array of 𝑘 and 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 function

as variables;

The function cluster is called in j batches n times resulting in n/j iterations. The jobs

are assigned to the next available processors in a random fashion. The WSSE and

silhouette evaluation scores for each of the values of k are simultaneously updated

after each execution;

close pool;

return csv

The experiments have been conducted on [6.1.1 Dataset 1] and 6.1.2 Dataset 2

provided by Spanish utility Iberdrola. In both datasets, duplicates have been dropped and

88

the time stamp variable has been segregated into the year, month, and day of the

timestamp. The meter IDs have been anonymized with an index, while a dictionary is

created to refer to the meter IDs corresponding to the index if needed. The total number of

features in the data is 8. To perform clustering, the prediction variable (load value) with

the help of timestamp has been averaged hourly and daily to obtain a matrix with each row

indicating the averaged load. The data is stored in a compressed format of Optimized Row

Columnar (ORC) and collected from hive datastores of the utility storage facility. Both the

datasets were preprocessed and the preprocessing time of both Dataset 1 and Dataset 2

individually was less than a minute.

To measure the goodness of our clusters, we use WSSE which is a measure of how far

each point 𝑋 is from its centroid. The WSSE is calculated as shown in (22)

∑𝑑(𝑋, 𝐶�̅�)

𝑁

𝑖=1

=∑(∑(𝐶𝑖𝑗 − 𝐶�̅�𝑗)
2

𝐷

𝑗=1

)

𝑁

𝑖=1

(22)

where 𝑋 is each of the points in the data with 𝐷 dimension, 𝐶𝑖 is the point 𝑋

belonging to the cluster, 𝐶𝑖𝑗 is the 𝑗𝑡ℎ dimension of ⅈ𝑡ℎ point in the cluster and 𝐶�̅�𝑗 is the

𝑗𝑡ℎ dimension of the cluster center. The computational complexity of calculating the

distances is given by 𝑂(𝑁 ∗ 𝐷), where 𝑁 is the cardinality of the dataset. To ease the

cluster evaluation complexity, equation (23) is expanded as

∑𝑑(𝐶𝑖, 𝐶�̅�)

𝑁

𝑖=1

=∑(∑(∑(𝐶𝑙𝑗 − 𝐶�̅�𝑗)
2

𝑃

𝑙=1

)

𝐷

𝑗=1

)

𝑘

𝑖=1

(23)

where 𝑘 is the number of clusters and 𝑃 is the number of records within a single

cluster. Equation (23) holds when

89

∑𝑃𝑙

𝑘

𝑙=1

= 𝑁

(24)

After rearranging equation (23), the computations for each of the 𝑘 clusters can be

distributed as broadcast variables to the worker nodes 𝑤 to incorporate distributed

processing. The platform computes the sum of one cluster or segment of the data on one

worker, then a sum of a different segment or cluster over on another worker, and then

combines those two sums as the final result. The computational complexity is hence

reduced from 𝑂(𝑁 ∗ 𝐷), to 𝑂 (
𝐷∗𝑁

𝑤
) by using a parallel implementation of the WSSE by

changing (22) to (23).

Silhouette Score is used to measure the clustering consistency within the clusters as

indicated in equation (25) [113]. A value of 1 indicates all the data to be appropriately

clustered.

𝑠𝑖 =
𝑏𝑖  −  𝑎𝑖

𝑚𝑎𝑥(𝑎𝑖, 𝑏𝑖)
=

{

 1 −
𝑎𝑖
𝑏𝑖
   ⅈ𝑓𝑎𝑖 ≤ 𝑏𝑖

𝑏ⅈ

𝑎𝑖
− 1    ⅈ𝑓𝑎𝑖 > 𝑏𝑖

(25)

where 𝑎𝑖 is the average distance of ⅈ𝑡ℎ point in the cluster to all the other points

within the cluster and 𝑏𝑖 is the average distance of ⅈ𝑡ℎ point with all the other points to

which the point ⅈ does not belong. If 𝑎𝑖 the measure is small and the 𝑏𝑖 measure is large,

the value of 𝑠𝑖 will be close to 1 indicating the points are appropriately clustered. The

algorithm computes the distance of each of a couple of points in the dataset by the

equation (26) below.

90

∑𝑑(𝑋, 𝐶𝑖)

𝑁

𝑖=1

=∑(∑(𝑥𝑗 − 𝐶𝑖𝑗)
2

𝐷

𝑗=1

)

𝑁

𝑖=1

(26)

This measure is not scalable in 𝑁, hence, to ease the cluster evaluation computational

complexity, Equation (26) is expanded as equation (27)

∑𝑑(𝑋, 𝐶𝑖)

𝑁

𝑖=1

=∑(∑𝑥𝑗
2

𝐷

𝑗=1

+∑𝐶𝑖𝑗
2

𝐷

𝑗=1

− 2∑𝑥𝑗𝐶𝑖𝑗

𝐷

𝑗=1

)

𝑁

𝑖=1

(27)

The equation is further rearranged as shown in (28)

=∑∑𝑥𝑗
2

𝐷

𝑗=1

𝑁

𝑖=1

+∑∑𝐶𝑖𝑗
2

𝐷

𝑗=1

𝑁

𝑖=1

− 2∑(∑𝐶𝑖𝑗

𝑁

𝑖=1

)𝑥𝑗

𝐷

 𝑗=1

(28)

= 𝑁ξ𝑋 + ψΓ  − 2∑𝑌Γ𝑗𝑥𝑗

𝐷

𝑗=1

(29)

where ξ𝑋 is the sum of squares of each of the 𝑋 points and is a constant. ψΓ is also a

constant for each of the clusters Γ. 𝑌Γ𝑗 is a vector for all the 𝑁 points and is fixed for each

cluster Γ. The average distance of a point is given in (30)

= ξ𝑋 +
ψΓ
𝑁
− 2∑

𝑌Γj𝑥𝑗

𝑁

𝐷

𝑗=1

(30)

where the constant ξ𝑋 can be precalculated for each of the points 𝑋, and ψΓ, 𝑌Γ for each

cluster Γ for 𝑘 clusters. These pre-computed values for the 𝑘 clusters are distributed as

broadcast variables to the worker nodes 𝑤. The computational complexity is hence

reduced from 𝑂(𝑁2 ∗ 𝐷), to 𝑂 (
𝑘∗𝐷∗𝑁

𝑤
) by using a parallel implementation of the

Silhouette by changing (26) to (30).

91

Extensive experiments have been performed to examine the speedup of the parallel jobs.

To measure the performance of load forecasting, Root Means Square Error (RMSE) has

been utilized as the evaluation measure. For 6.1.2 Dataset 2, we compare the performance

of spark k-means random, k-means parallel, and bisecting k-means using the parameters of

k ranging from 2 up to 500. An outer bound of 500 is chosen as the number of clusters

beyond 500 is undesirable and does not serve the purpose of clustering to reduce the

number of models to be trained. Figure 33 illustrates the computation time and silhouette

score for various values of k. From Figure 33(a) it can be observed that the computation

time increases for spark bisecting k-means till a 𝑘 value of 400 and then drops. In the case

of clustering, as the value of k increases, the number of partitions in the data also increases

which is distributed across workers and can result in a reduction in runtime. It is observed

from Figure 33(a), that for both k-means parallel and k-means random the computation

time is less as compared to bisecting k-means. The silhouette score in Figure 33(b),

indicates that for all values of 𝑘, k-means parallel shows superior performance. The higher

(a) (b)

Figure 33 Computation time and silhouette score of three clustering techniques on

spark for varying values of k

92

the silhouette score better the clustering quality. Hence spark k-means parallel is a choice

algorithm to perform clustering on big data.

Experiments of hourly load consumption and daily load consumption for different values

of 𝑘 have been conducted and the execution time has been measured. The data for

evaluation consists of averaged load matrix of size [1000,1003] and [1000,24000] for

daily load consumption and hourly load consumption, respectively. Clearly, from Figure

34(a), the hourly load consumption takes more time as compared to daily load

consumption. In [114], the authors suggest that the optimal value of 𝑘 value is 93 utilizing

the k-Medoid clustering algorithm. Regarding the silhouette scores, the result in Figure

34(b) emphasizes that more data with hourly load patterns leads to better clustering as the

silhouette score is closer to 1 for the majority values of 𝑘 the hourly load as compared to

daily load.

The efficiency of the proposed k-means parallel in-memory clustering component parallel

jobs to the RMSE has been evaluated. Note that the idea behind this algorithm is to

Figure 34 Computational time and clustering efficiency measure of hourly and daily

load consumption of Dataset1.

 (a) (b)

0

500

1000

1500

2000

2500

2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
2

1
0

2

1
1

2

1
2

2

1
3

2

1
4

2

1
5

2

1
6

2

1
7

2

1
8

2

T
im

e
(s

ec
)

k value
hourly load consumption daily load consumption

-0.03

0.07

0.17

0.27

0.37

0.47

0.57

0.67

0.77

0.87

2
1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
2

1
0

2
1
1

2
1
2

2
1
3

2
1
4

2
1
5

2
1
6

2
1
7

2
1
8

2

S
il

h
o
u

et
te

 S
co

re

k value

hourly load consumption daily load consumption

93

distribute the load forecast of all the transformers across the worker nodes of the big data

platform. The data is divided into clusters and the choice value of 𝑘 is discovered. Once

the value of 𝑘 is known this value is used to perform clustering on the data. Once the

clusters are known the transformer closest to the center is chosen as the representative

cluster. This representative cluster is chosen as the training dataset and the load is

forecasted for the rest of the transformers. Thus, the value of 𝑘 only decides the right

clustering value and not the accuracy of the load forecasting model. To perform the load

forecasting accuracy analysis, the decision tree algorithm is chosen based on its

performance considering a tradeoff between accuracy and execution time [36]. The focus

is on the effect of clustering, hence a deeper analysis on the choice of ML model is not

considered in the evaluation. To test the clustering strategy firstly 90% of the data of all

the transformers is used for training and 10% as the holdout dataset. The training of all the

transformers is performed individually and the data is not collected at one place for all the

transformers for the results indicated in Figure 35(a). In the results of Figure 35, the red

line indicates training RMSE, and the blue line indicates RMSE for the holdout dataset. As

shown in Figure 35(a), the RMSE for holdout exceeds the training data RMSE by not

more than 20KWh approximately for the majority of the transformers. This shows a good

performance of the trained model. It can also be noted that most of the transformers'

RMSE ranges between 0 to 10 kWh. Figure 35(b) shows the results on representative

clustering, X-axis shows the cluster number, and each cluster number is repeated for many

cases showcasing the different transformers within a cluster. In representative clustering as

only 90% of data of the transformer closest to the centers is used for training, the RMSE

94

for training will remain the same for all the transformers within the cluster. This model is

used to test the 10% data of the remaining transformers within the cluster. The advantage

of representative clustering is that only k transformers closest to the cluster centroids are

trained instead of all the transformers reducing the training time further. These results

show that the RMSE for almost all the transformers is in the range of 0 to 40 kWh for

training and more than 40kWh for the holdout data. With the use of clustering, the RMSE

of the holdout data farther from the cluster center is expected to deteriorate as the model

may not be completely suitable for all the transformers within the cluster as the clustering

quality is not 100% in a real-time scenario.

The performance in terms of scalability by running the tests on dataset 2 which is 10 times

Figure 35 RMSE in kWh of 1000 transformers with representative clustering and

without representative clustering

(a)

(b)

0

50

100

150

0

3
0

6
0

9
0

1
2
0

1
5
0

1
8
0

2
1
0

2
4
0

2
7
0

3
0
0

3
3
0

3
6
0

3
9
0

4
2
0

4
5
0

4
8
0

5
1
0

5
4
0

5
7
0

6
0
0

6
3
0

6
6
0

6
9
0

7
2
0

7
5
0

7
8
0

8
1
0

8
4
0

8
7
0

9
0
0

9
3
0

9
6
0

9
9
0

R
M

S
E

 (
k
W

h
)

transformer number

RMSEtrain RMSEholdout

0

50

100

150

0

1
1

1
1

1
4

1
4

1
9

2
0

2
0

2
0

2
0

2
0

2
2

2
2

2
2

2
2

3
1

3
5

3
5

3
5

4
2

4
2

4
2

4
2

4
6

4
9

5
5

5
5

6
1

8
1

8
8

8
8

8
8

8
9

R
M

S
E

 (
k
W

h
)

cluster number

RMSEwithclusteringtrain RMSE holdout

95

larger than dataset 1 has been compared. To access the scalability, the total time taken to

cluster the data for the various value of 𝑘 for both the datasets is measured. The

experiments aim to verify that an exponential increase in big data does not have an

exponential increase in the run time for all the values of 𝑘 clusters. From Figure 36, it can

be observed that as we increase the data size from ~24 million records to ~210 records

both consisting of 8 features, for a 𝑘 value of 500 we obtain results for clustering along

with the evaluation measures. In terms of comparison of evaluation scores, the silhouette

score takes longer than the proposed SSE score. An SSE evaluation time of 227 sec for

dataset 2 with 210 million records prove the scalability of the proposed SSE evaluation

measure in this paper. The results also showcase that the spark platform has a noticeable

effect on the parallel k-means algorithm as we scale up the size of the data by almost 10

times. Hence, the parallel k-means algorithm with Spark on top of Hadoop is very suitable

for large scale and can handle large datasets for clustering smart meter data.

To evaluate the proposed job scheduling of parallel k-means in-memory processing the

experiments are run on the various value of k for both spark k-means parallel and the

17.785

819.354

7.769

227.847

12.35

1436.051

1

10

100

1000

10000

Dataset1 (~24 million) Dataset2 (~210 million)

ex
ec

u
ti

o
n
 t

im
e

(s
ec

)

k = 500

Clustering time
SSE evaluation time
Silhouette evaluation time

Figure 36 Comparison of run time of spark parallel k-means with varying values of

k on different datasets.

96

proposed method on daily average load values of 6.1.2 Dataset 2. Table 11 tabulates the

time taken to execute 8 values of 𝑘 ranging from 0 to 10000 with a step size of 250. The

time taken for clustering (prediction time) is lower for each of the values of 𝑘 as compared

to the proposed method, however, with the proposed method, the total time is lower than

Table 11 Time taken for spark k-means parallel and proposed scheduling

methodology with various k values

k spark k-means|| Proposed job scheduling for k-means||

Predictio

n time

(sec)

SSE

calculati

on time

(sec)

Silhouette

score

calculation

time (sec)

Prediction

time (sec)

SSE

calculation

time (sec)

Silhouette

score

calculation

time (sec)

250 179.633 5.913 11.719 194.035 27.572 40.924

500 11.467 4.106 9.644 209.527 17.477 28.826

750 14.257 4.237 9.895 195.819 25.790 36.600

1000 12.578 4.606 10.262 194.020 27.587 40.149

2500 13.670 6.629 13.241 201.884 21.556 36.470

5000 14.185 8.446 15.700 209.013 20.744 33.398

7500 15.028 10.425 18.300 199.965 23.290 38.010

10000 15.525 11.926 20.379 201.218 28.500 41.122

Total

time

416.694 248.297

Total time includes the prediction time, SSE calculation time and Silhouette score

calculation time for all the values of k

97

the spark k-means parallel. The run time for both the evaluation measure WSSE and

silhouette score has been computed.

It is observed that the time taken for SSE calculation in both cases is lesser than the

silhouette score as expected. Silhouette score has a greater number of distance measures to

be evaluated as compared to SSE. However, it can be noted that both the evaluation

measures are scalable and can be used to measure the clustering quality. The total time

indicates the time taken to cluster and evaluate both the measures for all the values of 𝑘. It

is the time taken for clustering, SSE evaluation, and silhouette score evaluation for all the

values of 𝑘. The total time in the proposed optimal scheduling method is 40.4% lesser than

the spark k-means parallel method without optimal scheduling. In the proposed method as

the workers are distributed across various jobs each worker gets a lesser share of the

memory as compared to the spark k-means parallel classical method. However, the overall

time to run all the iterations of 𝑘 is lower in the proposed methodology. Thus, we can

conclude that the proposed optimized scheduling strategy performs better than the spark k-

means parallel algorithm in terms of execution time.

 The number of clusters has also been estimated on Dataset 3 for 100k transformers

data using kmeans|| as the clustering technique. The results have been shown in Figure 37.

The graph on the x-axis shows the various value of 𝑘 for which the clustering technique

has been tested to obtain the elbow curve. The primary x-axis shows the measure of error

using SSE and the secondary y-axis indicates the times taken to cluster the data in seconds.

The suggested value of 𝑘 is chosen to be 15,050 considering a dip in the elbow at this 𝑘

98

value. It can also be observed that the time that it takes to cluster the data for a value of 𝑘

of 15,050 is ~2800 sec or ~46 minutes.

Figure 37 Kmeans|| result on Dataset3 - elbow curve

 The spikes in the graph for clustering time indicate that when any of the workers

are busy performing other tasks the time it takes increases. However, as the tests are run

based on the proposed scheduling methodology discussed in section 7.2.3.1 all the values

of 𝑘 are submitted simultaneously as multiple jobs and are executed in parallel. The time

to evaluate the clusters with the proposed parallel implementation of the evaluation score

(SSE) with the help of workers is shown in Figure 38. All the values of 𝑘 are distributed as

broadcast variables to the worker nodes 𝑤. The time taken to evaluate each value of k is

fairly less and does not reach more than 60 secs for a k value as large as 25000.

y = -7E+09ln(x) + 3E+10

R² = 0.9815

0

20

40

60

80

100

120

140

160

180

0

50

100

150

200

250

300

350

400

5
0

1
0
5
0

2
0
5
0

3
0
5
0

4
0
5
0

5
0
5
0

6
0
5
0

7
0
5
0

8
0
5
0

9
0
5
0

1
0

0
5

0

1
1

0
5

0

1
2

0
5

0

1
3

0
5

0

1
4

0
5

0

1
5

5
5

0

1
8

0
5

0

2
2

5
5

0

C
lu

st
er

in
g
 t

im
e

(s
ec

)

H
u
n
d
re

d
s

A
v
er

ag
e

d
is

ta
n
ce

 t
o
 c

en
tr

o
id

x
 1

0
0
0
0
0
0
0
0

K --------------------------->

99

Figure 38 Time to evaluate the clusters using the parallel sum of square error on

Dataset3

 For a chosen k value of 15,050, the distribution of the number of transformers

per cluster is noted. Figure 39 indicates the bins for the number of transformers on the x-

axis and the number of transformers falling under each of the bins on the primary y-axis.

The secondary y-axis indicates the % of the total number of transformers falling under

the respective bins.

Figure 39 Distribution of transformers per cluster

0

10

20

30

40

50

60

70

ti
m

e
(s

ec
)

k ------------->

100

 The majority of the transformers (>90%) fall under the 1-10 bin width

considering 15k clusters. The bin with a majority number of transformers is a fair

distribution of the transformers considering 105k transformers in total distributed across

15k clusters. However, there are clusters with only 1 transformer per cluster and also

clusters with 1928 transformers belonging to a single cluster. Considering the k value of

15,050 load forecasting has been performed considering the transformer closest to the

centroid as the training model and the rest of the transformers data is used for testing. A

sample cluster is considered with 10 transformers to observe the performance of R-

square in this scenario. Figure 40 shows the comparison of with and without clustering

for a sample cluster with 10 transformers. The x-axis shows the names of the

transformers are positioned as per the distance of the transformer from the centroid. The

transformer closest to the centroid is ZIVS004475051. The blue line indicates the R-

square value without performing any clustering and the red line indicates the R-square

value considering the trained model of transformer ZIVS004475051. The blue is on a

record high above 0.98 R-square value for all the transformers, however as expected the

red line with R-square indicating the goodness of fit measure values decrease. To

evaluate the performance statistically an average of R-square without and with clustering

is calculated to be 0.991962064 and 0.95100845 respectively. The %loss on average can

be evaluated to be 4% by clustering data to be able to generate a lesser number of trained

models and save computation time eventually. In this particular scenario, only a single

model will be trained instead of training 10 different ML models.

101

Figure 40 R2 Results for load forecasting with clustering

7.2.3.2 Load Forecasting results on Dataset 2 (10k transformers)

The results outlined in this section are for Dataset 2. The results indicated are with

regards to a quantile range of [0.25 – 0 kWh, 0.5 – 16 kWh, 0.75 – 42 kWh, 0.9995 -

1751 kWh] utilizing decision tree regression for a maxDepth of 8. The results are

indicated in Table 12 are not only in terms of RMSE but also in terms of the R-squared

statistic. Out of the ~10k transformers, as indicated in 6.1.2 Dataset 2, columns 2&3,

5&6 in Table 12 indicate the number of transformers falling under the designated range

in columns 1 and 4 respectively. RMSE is an absolute measure of fit as indicated in

equation (14), and is observed to be low for a majority of transformers for both DTR and

random forest (RF) regressor. The results with the R-squared measure on the same

dataset are also captured in Table 12. It can be noticed that a majority of transformers for

both DTR and RF fall under the R-squared range of [0.5, 1]. An R-squared value as

1

0.98 0.98 0.97 0.97
0.96

0.95
0.92

0.91

0.88

1
0.99 0.99 1 0.99 0.99

0.98
0.99

0.99
0.99

0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1
1.02

R
2

 t
es

t
sc

o
re

 with clustering without clustering

102

close as possible to 1 makes the model more accurate. Hence to improve the models for

a majority of the transformers load values of the lag day have been added to the data in

the preprocessing step.

Table 12 Load Forecasting results in terms of RMSE and R-squared on Dataset2

RMSE R-Squared

Range tf’s

DTR

tf’s

RF

Range tf’s DTR

test

tf’s RFR

test

 𝑅2 < 0 18 23

0 ≤ 𝑅𝑀𝑆𝐸 ≤ 10 9655 9612 0 ≤ 𝑅2 < 0.2 67 66

10 < 𝑅𝑀𝑆𝐸 ≤ 50 262 314 0.2 ≤ 𝑅2 < 0.5 1281(13%) 957(10%)

50 < 𝑅𝑀𝑆𝐸 ≤ 100 6 10 0.5 ≤ 𝑅2 < 0.8 5860(61%) 4334(45%)

100 < 𝑅𝑀𝑆𝐸 ≤ 200 18 5 0.8 ≤ 𝑅2 ≤ 1 2250(23%) 4102(43%)

 Considering the data partitioning technique discussed in 5.3.4 Data partitioning

in a distributed environment lag values for 24-hour load values are added to the dataset

and results have been obtained. The Quantile range for 0.25, 0.5, 0.75, and 0.9995 is 0

kWh, 16 kWh, 42 kWh, and 1751 kWh respectively. The tuning parameters for random

forest regressor have been performed for a maxDepth = [6, 8, 10] and numTrees [6, 12,

24]. Based on the results obtained random forest regressor with a maxDepth of 8 and

numTrees as 20 has been considered and the results are tabulated in Table 13. The total

time taken to obtain the results for 5900 t/f’s is 8.5 hours.

103

Table 13 Load Forecasting results in terms R-squared on Dataset2 with 5900 t/f’s

adding lag values

R−squared (tuning individual

models)

 R−squared (adding

24−hour lag values)

Range tf’s RF test tf’s RF test

tuned

Range tf’s RF

test

tf’s RF

test

tuned

𝑅2 < 0 28 23 𝑅2 < 0 28 34

0 ≤ 𝑅2 < 0.2 56 51 0 ≤ 𝑅2 < 0.2 28 29

0.2 ≤ 𝑅2 < 0.5 948 (16%) 731 (12%) 0.2 ≤ 𝑅2 < 0.5 34 35

0.5 ≤ 𝑅2 < 0.8 3540 (60%) 3267 (55%) 0.5 ≤ 𝑅2 < 0.8 79 73

0.8 ≤ 𝑅2 ≤ 1 1279 (21%) 1778 (30%) 0.8 ≤ 𝑅2 ≤ 1 5698

(96%)

5704

(96%)

 It can be observed from Table 13 that most transformers are now moved from an

R-squared range of [0.5, 1.0] to [0.8, 1.0]. It clearly shows that adding lag values has

resulted in a drastic improvement of the model accuracies for a majority of transformers.

7.2.3.3 Load Forecasting results on Dataset 3 (100k transformers)

In this section Dataset3 with 105k transformers has been considered to evaluate

the performance of the proposed techniques to prove scalability. For feasibility, the

dataset has been divided into 10 batches with approximately 10k transformers each and

the tests have been performed. The results of load forecasting on 105k t/f’s are shown in

Table 14. The results indicate that for the test dataset almost 90% of the transformers

104

have an R-square value greater than 0.9. The time taken to train the models is shown in

Table 15.

Table 14 Load forecasting results on dataset 3 (102,988 t/f)

R−squared (adding 24-hour lag values)

 R-squared train R-squared test

 t/f number % of total t/f number % of total

𝑅2 < 0 4 0 1075 1%

0 ≤ 𝑅2 < 0.2 5 ~0 777 1%

0.2 ≤ 𝑅2 < 0.5 9 ~0 644 1%

0.5 ≤ 𝑅2 < 0.8 461 ~0 1,248 1%

0.8 ≤ 𝑅2 < 0.9 1,505 1% 1,440 1%

0.9 ≤ 𝑅2 < 1 100,311 97% 94,739 91%

RFR with a maxDepth of 8 and numTrees as 20 has been considered with a lag

value of 24 hours. The total Time taken – ~4 days 5 hours for Data read, Pre-processing,

ML modeling, Training, Prediction, and saving the results. Considering the techniques

discussed the time taken to perform the computations for a total cycle model inference

can also be estimated for a platform with specifications other than the one used for

experimentation. Total time for testing 10% of each transformer – 2,216,366 sec (36,939

min or 615 hours). If 20 cores are utilized on each of the executors, then the computation

time can be reduced to 31 hours. To perform hourly day-ahead prediction model

inference for 24 data points can be estimated to 18.42 min. Comparing the platform

105

specifications with a possible platform in production the time can be estimated to be

7min for model inference. The details are estimated and explained in Table 16.

Table 15 Time taken to read the data, perform pre-processing, ML modeling,

Training, Prediction, and Saving the results for Dataset3.

Batch1 ~12 hours

Batch2 ~12 hours

Batch3 ~12 hours

Batch4 ~12 hours

Batch5 9hrs, 31mins

Batch6 9hrs, 27mins

Batch7 10hrs, 6mins

Batch9 6 hrs

Batch10 8hrs, 39 mins

Total ~4 days 5 hours

Table 16 Model inference estimate for Dataset3.

Current platform

configuration / node

Production platform

configuration / node

Time estimate for model

inference

7 nodes

20 cores

120 GB RAM

3 TB of disk Storage

38 nodes

96 cores

252 GB RAM

22 TB of disk Storage

7 min

106

CHAPTER VIII

CONCLUSION AND FUTURE WORK

8.1 Conclusion and Future Work

This thesis proposed a big data platform for managing the big data from the real

distribution transformers to perform short-term load forecasting while utilizing

multiprocessing and distributed computing techniques. Several factors that affect the

choice of the machine learning model for the load forecast were taken into consideration.

The parallel processing platform was set up to address the problem of simultaneously

improving the short-term forecasting accuracy and speed. The obtained results indicate

that the decision trees demonstrate superior performance in terms of accuracy and

calculation speed. The findings of the work can be generalized and utilized for any number

of transformers with similar load patterns. In this work, a smart scheduling algorithm to

perform load forecasting on multiple distribution transformers was proposed. The

proposed approach was implemented on Apache spark to not only deal with the challenges

associated with computation time while handling the big data but also to optimize

deployed jobs in a parallel environment. One of the distinctive characteristics of the

proposed approach is its capability to submit as many jobs in parallel as that is achievable

for efficient memory utilization. The processed big data was partitioned into various

chunks and cached to improve the performance of big data storage that is too large to be

stored. The other significant accomplishment of this work is the use of thread pool and fair

scheduler in spark to speed up the processes with in-memory processing which resulted in

a 43% improvement in execution time. This is a good optimization strategy for load

107

forecasting utilizing multi-AMI big datasets. Several experiments were performed to

evaluate the scheduling strategy in terms of ML model forecasting error and execution

time. The results with the use of spark ml libraries have shown superior performance in

terms of both accuracy and execution time. The proposed ML models achieved higher

accuracies over the previously proposed iterative algorithms. The merits shown in the

experiments indicated that there is a great potential for the proposed method to be used in

big data processing of multi-AMI environments.

In section 7, the experiments have been extended to an electrical network with

10,000 transformers and 100,000 transformers to prove the scalability of the proposed

distributed computing methodology using a big data platform. Scaling the data to more

than 1000 DTs requires more than a minimum of 100 jobs to be scheduled. However, the

experiments have been conducted with restricted computational resources and intuitions

have been developed with scaled spark cluster sizes. The tests have been performed to

investigate the scalability of the clustering approach and to determine the optimal

number of clusters for larger data sets.

In this thesis, a scalable big data platform is proposed to uncover the patterns in

the load data and to perform forecasting. The future data will become larger, complex,

and will be collected at a velocity. Analysis of streaming data is a step in that direction.

This extension will improve the real-time computations of forecasting models.

108

REFERENCES

[1] S. N. Fallah, M. Ganjkhani, S. Shamshirband, and K. wing Chau, “Computational

intelligence on short-term load forecasting: A methodological overview,”

Energies, vol. 12, no. 3, 2019, doi: 10.3390/en12030393.

[2] I. W. Tsang, J. T. Kwok, and P. M. Cheung, “Core vector machines: Fast SVM

training on very large data sets,” J. Mach. Learn. Res., vol. 6, no. 13, pp. 363–

392, 2005, Accessed: Jan. 12, 2021. [Online]. Available:

http://jmlr.org/papers/v6/tsang05a.html.

[3] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:

Cluster computing with working sets,” 2nd USENIX Work. Hot Top. Cloud

Comput. HotCloud 2010, vol. 10, no. 10–10, p. 95, 2010.

[4] Qiu, R. C., & Antonik, P. (2017). Smart grid using big data analytics: a random

matrix theory approach. John Wiley & Sons.

[5] D. Alahakoon and X. Yu, “Advanced analytics for harnessing the power of smart

meter big data,” in 2013 IEEE International Workshop on Inteligent Energy

Systems (IWIES), 2013, pp. 40–45.

[6] M. Nisi et al., “Transparently mining data from a medium-voltage distribution

network: A prognostic-diagnostic analysis,” in CEUR Workshop Proceedings,

2019, vol. 2322.

[7] D. Arkhipova and C. Bozzoli, “Digital Capabilities,” in CIOs and the Digital

Transformation, Springer, 2018, pp. 121–146.

[8] I. S. Group and others, “Managing big data for smart grids and smart meters,”

IBM Corp. whitepaper (May 2012), 2012.

[9] N. B. Reinprecht, G. White, and M. Peters, “Enabling European electrical

transmission and distribution smart grids by standards,” IBM J. Res. Dev., vol. 60,

no. 1, pp. 1–3, 2016, doi: 10.1147/JRD.2015.2482878.

109

[10] “Romeo project lands in East Anglia ONE and Wikinger.”

https://www.iberdrola.com/about-us/romeo-project. Online: accessed, 2019.

[11] H. Owen, M. Avila, A. Folch, L. Cosculluela, and L. Prieto, “A high performance

finite element model for wind farm modeling in forested areas,” in EGU General

Assembly Conference Abstracts, 2015, vol. 17.

[12] M. Mayilvaganan and M. Sabitha, “A cloud-based architecture for Big-Data

analytics in smart grid: A proposal,” in 2013 IEEE International Conference on

Computational Intelligence and Computing Research, IEEE ICCIC 2013, 2013,

pp. 1–4, doi: 10.1109/ICCIC.2013.6724168.

[13] Y. Simmhan et al., “Cloud-based software platform for big data analytics in smart

grids,” Comput. Sci. Eng., vol. 15, no. 4, pp. 38–47, 2013, doi:

10.1109/MCSE.2013.39.

[14] J. Baek, Q. H. Vu, J. K. Liu, X. Huang, and Y. Xiang, “A secure cloud computing

based framework for big data information management of smart grid,” IEEE

Trans. cloud Comput., vol. 3, no. 2, pp. 233–244, 2015.

[15] R. Kumar and S. Gupta, “Open source infrastructure for cloud computing

platform using eucalyptus,” Glob. J. Comput. Technol. Vol, vol. 1, no. 2, pp. 44–

50, 2014.

[16] Christophe Bisciglia. The smart grid: Hadoop at the tennessee valley authority

(tva). http://blog.cloudera.com/blog/2009/06/smart-grid-hadooptennessee-valley-

authority-tva/, 2009.

[17] B. Cheng, S. Longo, F. Cirillo, M. Bauer, and E. Kovacs, “Building a big data

platform for smart cities: Experience and lessons from santander,” in 2015 IEEE

International Congress on Big Data, 2015, pp. 592–599.

[18] A. C. C. Bestavros, L. Hutyra, and E. Terzi, “SCOPE: Smart-city Cloud Based

Open Platform and Ecosystem,” Bost. Univ. Boston, MA, USA, 2016.

110

[19] D. Puiu et al., “Citypulse: Large scale data analytics framework for smart cities,”

IEEE Access, vol. 4, pp. 1086–1108, 2016.

[20] Osborne Clarke (2016). OC: The smart cities law firm. Retrieved from

http://smartcities.osborneclarke.com

[21] T. Zahariadis et al., “FIWARE lab: managing resources and services in a cloud

federation supporting future internet applications,” in 2014 IEEE/ACM 7th

International Conference on Utility and Cloud Computing, 2014, pp. 792–799.

[22] K. Wang et al., “Wireless Big Data Computing in Smart Grid,” IEEE Wirel.

Commun., vol. 24, no. 2, pp. 58–64, 2017, doi: 10.1109/MWC.2017.1600256WC.

[23] Y. Zhou, P. Li, Y. Xiao, A. Masood, Q. Yu, and B. Sheng, “Smart grid data

mining and visualization,” in PIC 2016 - Proceedings of the 2016 IEEE

International Conference on Progress in Informatics and Computing, 2017, pp.

536–540, doi: 10.1109/PIC.2016.7949558.

[24] X. Ding, L. Chen, Y. Gao, C. S. Jensen, and H. Bao, “Ultraman: a unified

platform for big trajectory data management and analytics,” Proc. VLDB Endow.,

vol. 11, no. 7, pp. 787–799, 2018.

[25] M. Brahem, K. Zeitouni, and L. Yeh, “Astroide: A unified astronomical big data

processing engine over spark,” IEEE Trans. Big Data, 2018.

[26] M. Olson, “Hadoop: Scalable, flexible data storage and analysis,” IQT Quart, vol.

1, no. 3, pp. 14–18, 2010.

[27] A. Thusoo et al., “Hive: a warehousing solution over a map-reduce framework,”

Proc. VLDB Endow., vol. 2, no. 2, pp. 1626–1629, 2009.

[28] A. F. Gates et al., “Building a high-level dataflow system on top of Map-Reduce:

the Pig experience,” Proc. VLDB Endow., vol. 2, no. 2, pp. 1414–1425, 2009.

[29] M. Ismail, S. Niazi, M. Ronstrom, S. Haridi, and J. Dowling, “Scaling HDFS to

111

more than 1 million operations per second with HopsFS,” in Proceedings - 2017

17th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing, CCGRID 2017, 2017, pp. 683–688, doi: 10.1109/CCGRID.2017.117.

[30] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel, “Amazon S3 for

science grids: a viable solution?,” in Proceedings of the 2008 international

workshop on Data-aware distributed computing, 2008, pp. 55–64.

[31] M.C. Srivas et.al,Map-Reduce Ready Distributed File System, Patented

Document Appl. No.: 13/162,439; Dec 2011.

[32] A. Lakshman and P. Malik, “Cassandra - A decentralized structured storage

system,” Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40, 2010, doi:

10.1145/1773912.1773922.

[33] M. Zaharia et al., “Apache spark: A unified engine for big data processing,”

Commun. ACM, vol. 59, no. 11, pp. 56–65, Nov. 2016, doi: 10.1145/2934664.

[34] © [2020] IEEE. Reprinted, with permission, from, A. Zainab, S. S. Refaat, H.

Abu-Rub, and O. Bouhali, “Distributed Computing for Smart Meter Data

Management for Electrical Utility Applications,” in 2020 Cybernetics &

Informatics (K&I), Jan. 2020, pp. 1–6, doi: 10.1109/KI48306.2020.9039899.

[35] A. Reuther, C. Byun, W. Arcand, … D. B.-J. of P. and, and undefined 2018,

“Scalable system scheduling for HPC and big data,” Elsevier.

[36] A. Zainab et al., “A Multiprocessing-Based Sensitivity Analysis of Machine

Learning Algorithms for Load Forecasting of Electric Power Distribution

System,” IEEE Access, vol. 9, pp. 31684–31694, 2021, doi:

10.1109/ACCESS.2021.3059730.

[37] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. U. Khan,

“The rise of ‘big data’ on cloud computing: Review and open research issues,”

Inf. Syst., vol. 47, pp. 98–115, 2015.

112

[38] A. Makris, K. Tserpes, V. Andronikou, and D. Anagnostopoulos, “A

classification of NoSQL data stores based on key design characteristics,”

Procedia Comput. Sci., vol. 97, pp. 94–103, 2016.

[39] S. Le, Y. Dong, H. Chen, and K. Furuse, “Balanced Nearest Neighborhood Query

in Spatial Database,” in 2019 IEEE International Conference on Big Data and

Smart Computing, BigComp 2019 - Proceedings, 2019, pp. 1–4, doi:

10.1109/BIGCOMP.2019.8679425.

[40] H. A. Abdelhafez, “Big Data Technologies and Analytics,” in International

Journal of Business Analytics, 2014, vol. 1, no. 2, pp. 1–17, doi:

10.4018/ijban.2014040101.

[41] N. Marz and J. Warren, Big Data: Principles and best practices of scalable real-

time data systems. New York; Manning Publications Co., 2015.

[42] Carbone and Asterios Katsifodimos and Stephan Ewen and Volker Markl and Seif

Haridi and Kostas Tzoumas, “Apache Flink {TM} : Stream and Batch

Processing in a Single Engine Paris,” Undefined, vol. 36, no. 4, 2016.

[43] M. Hahsler, M. Bolaños, and J. Forrest, “Introduction to stream: An extensible

framework for data stream clustering research with R,” J. Stat. Softw., vol. 76, no.

1, pp. 1–50, 2017, doi: 10.18637/jss.v076.i14.

[44] A. Bifet, S. Maniu, J. Qian, G. Tian, C. He, and W. Fan, “Streamdm: Advanced

data mining in spark streaming,” in 2015 IEEE International Conference on Data

Mining Workshop (ICDMW), 2015, pp. 1608–1611.

[45] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA: Massive Online

Analysis,” J. Mach. Learn. Res., vol. 11, no. May, pp. 1601–1604, 2010.

[46] G. D. F. Morales and A. Bifet, “SAMOA: scalable advanced massive online

analysis.,” J. Mach. Learn. Res., vol. 16, no. 1, pp. 149–153, 2015.

113

[47] C. Bockermann and H. Blom. The streams Framework. Technical Report 5, TU

Dortmund University, 12 2012..

[48] G. Hesse and M. Lorenz, “Conceptual survey on data stream processing systems,”

in Proceedings of the International Conference on Parallel and Distributed

Systems - ICPADS, 2016, vol. 2016-Janua, pp. 797–802, doi:

10.1109/ICPADS.2015.106.

[49] “Apache Storm Project.”, http://storm.apache.org/. Online: accessed, 2018.

[50] H. Daki, A. El Hannani, A. Aqqal, A. Haidine, and A. Dahbi, “Big Data

management in smart grid: concepts, requirements and implementation,” J. Big

Data, vol. 4, no. 1, p. 13, 2017, doi: 10.1186/s40537-017-0070-y.

[51] X. He, Q. Ai, R. C. Qiu, W. Huang, L. Piao, and H. Liu, “A big data architecture

design for smart grids based on random matrix theory,” IEEE Trans. Smart Grid,

vol. 8, no. 2, pp. 674–686, 2017.

[52] H. C. V. Ngu and J.-H. Huh, “B+-tree construction on massive data with

Hadoop,” Cluster Comput., vol. 22, no. 1, pp. 1011–1021, 2019.

[53] D. Yang et al., “Fastpm: An approach to pattern matching via distributed stream

processing,” Inf. Sci. (Ny)., vol. 453, pp. 263–280, 2018.

[54] X. Gao and J. Qiu, “Supporting queries and analyses of large-scale social media

data with customizable and scalable indexing techniques over NoSQL databases,”

in 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing, 2014, pp. 587–590.

[55] M. Y. Eltabakh, F. Özcan, Y. Sismanis, P. J. Haas, H. Pirahesh, and J. Vondrak,

“Eagle-eyed elephant: Split-oriented indexing in Hadoop,” in ACM International

Conference Proceeding Series, 2013, pp. 89–100, doi: 10.1145/2452376.2452388.

[56] Glänzel W: “On the H-index – A mathematical approach to a new measure of

114

publication activity and citation impact”. Scientometrics 67(2), to appear.

[57] J. Dittrich, J.-A. Quiané-Ruiz, S. Richter, S. Schuh, A. Jindal, and J. Schad, “Only

aggressive elephants are fast elephants,” Proc. VLDB Endow., vol. 5, no. 11, pp.

1591–1602, 2012.

[58] S. Nishimura, S. Das, D. Agrawal, and A. El Abbadi, “MD-HBase: A scalable

multi-dimensional data infrastructure for location aware services,” in Proceedings

- IEEE International Conference on Mobile Data Management, 2011, vol. 1, pp.

7–16, doi: 10.1109/MDM.2011.41.

[59] J. Dittrich, J. A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, and J. Schad,

“Hadoop++: Making a yellow elephant run like a cheetah (without it even

noticing),” Proc. VLDB Endow., vol. 3, no. 1, pp. 518–529, 2010, doi:

10.14778/1920841.1920908.

[60] B. Taube, S. G. Solutions, and V. Corporation, “Leveraging big data and real-time

analytics to achieve situational awareness for smart grids.”

[61] G. W. Andersonf, A. Guionnet, and O. Zeitouni, “An introduction to random

matrices, volume 118 of Cambridge Studies in Advanced Mathematics.”

Cambridge University Press, Cambridge New York.

[62] A. Basak and M. Rudelson, “Invertibility of sparse non-Hermitian matrices,” Adv.

Math. (N. Y)., vol. 310, pp. 426–483, 2017, doi: 10.1016/j.aim.2017.02.009.

[63] L. Xie, Y. Chen, and P. R. Kumar, “Dimensionality reduction of synchrophasor

data for early event detection: Linearized analysis,” IEEE Trans. Power Syst., vol.

29, no. 6, pp. 2784–2794, 2014, doi: 10.1109/TPWRS.2014.2316476.

[64] “TAMUQ Research Computing Policies - Research Computing @ TAMUQ.”

https://rc-docs.qatar.tamu.edu/index.php/Main_Page (accessed Jan. 11, 2021).

[65] S. Fan and R. J. Hyndman, “Short-term load forecasting based on a semi-

115

parametric additive model,” IEEE Trans. Power Syst., vol. 27, no. 1, pp. 134–141,

2012, doi: 10.1109/TPWRS.2011.2162082.

[66] S. Kulkarni, S. P. Simon, and K. Sundareswaran, “A spiking neural network

(SNN) forecast engine for short-term electrical load forecasting,” Appl. Soft

Comput. J., vol. 13, no. 8, pp. 3628–3635, 2013, doi: 10.1016/j.asoc.2013.04.007.

[67] C. Cecati, J. Kolbusz, P. Rózycki, P. Siano, and B. M. Wilamowski, “A Novel

RBF Training Algorithm for Short-Term Electric Load Forecasting and

Comparative Studies,” IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6519–

6529, Oct. 2015, doi: 10.1109/TIE.2015.2424399.

[68] A. Lahouar and J. Ben Hadj Slama, “Day-ahead load forecast using random forest

and expert input selection,” Energy Convers. Manag., vol. 103, pp. 1040–1051,

2015, doi: 10.1016/j.enconman.2015.07.041.

[69] © [2020] IEEE. Reprinted, with permission, from, A. Zainab, S. S. Refaat, D.

Syed, A. Ghrayeb, and H. Abu-Rub, “Faulted Line Identification and Localization

in Power System using Machine Learning Techniques,” in Proceedings - 2019

IEEE International Conference on Big Data, Big Data 2019, Dec. 2019, pp.

2975–2981, doi: 10.1109/BigData47090.2019.9006377.

[70] S. Li, P. Wang, and L. Goel, “A novel wavelet-based ensemble method for short-

term load forecasting with hybrid neural networks and feature selection,” IEEE

Trans. Power Syst., vol. 31, no. 3, pp. 1788–1798, May 2016, doi:

10.1109/TPWRS.2015.2438322.

[71] G. Suo, L. Song, Y. Dou, and Z. Cui, “Multi-dimensional short-term load

forecasting based on XGBoost and fireworks algorithm,” Proc. - 2019 18th Int.

Symp. Distrib. Comput. Appl. Bus. Eng. Sci. DCABES 2019, pp. 245–248, 2019,

doi: 10.1109/DCABES48411.2019.00068.

[72] © [2019] IEEE. Reprinted, with permission, from, D. Syed, S. S. Refaat, H. Abu-

116

Rub, O. Bouhali, A. Zainab, and L. Xie, “Averaging Ensembles Model for

Forecasting of Short-term Load in Smart Grids,” in Proceedings - 2019 IEEE

International Conference on Big Data, Big Data 2019, Los Angeles, CA, USA,

Dec. 2019, pp. 2931–2938, doi: 10.1109/BigData47090.2019.9006183.

[73] H. Zheng, N. Jin, C. Ji, Z. Xiong, and K. Li, “Analysis technology and typical

scenario application of electricity big data of power consumers,” Dianwang

Jishu/Power Syst. Technol., vol. 39, no. 11, pp. 3147–3152, Nov. 2015, doi:

10.13335/j.1000-3673.pst.2015.11.020.

[74] D. Syed, A. Zainab, S. S. Refaat, H. Abu-Rub, and O. Bouhali, “Smart Grid Big

Data Analytics: Survey of Technologies, Techniques, and Applications,” IEEE

Access, pp. 1–1, Nov. 2020, doi: 10.1109/access.2020.3041178.

[75] Y. Gao, Y. Fang, H. Dong, and Y. Kong, “A Multifactorial Framework for Short-

Term Load Forecasting System as Well as the Jinan’s Case Study,” IEEE Access,

vol. 8, pp. 203086–203096, Nov. 2020, doi: 10.1109/access.2020.3036675.

[76] J. Li, Y. Zhong, and X. Zhang, “A Scheduling Method of Moldable Parallel Tasks

Considering Speedup and System Load on the Cloud,” IEEE Access, vol. 7, pp.

86145–86156, 2019, doi: 10.1109/ACCESS.2019.2925429.

[77] S. K. Abeykoon, M. Lin, and K. K. Van Dam, “Parallelizing x-ray photon

correlation spectroscopy software tools using python multiprocessing,” 2017 New

York Sci. Data Summit, NYSDS 2017 - Proc., 2017, doi:

10.1109/NYSDS.2017.8085042.

[78] © [2020] IEEE. Reprinted, with permission, from, D. Syed, S. S. Refaat, and H.

Abu-rub, “Performance Evaluation of Distributed Machine Learning for Load

Forecasting in Smart Grids,” in Cubernetics and Informatics 2020, 2020, p. In

Publishing.

[79] A. Ahmad, N. Javaid, M. Guizani, N. Alrajeh, and Z. A. Khan, “An Accurate and

117

Fast Converging Short-Term Load Forecasting Model for Industrial Applications

in a Smart Grid,” IEEE Trans. Ind. Informatics, vol. 13, no. 5, pp. 2587–2596,

2017, doi: 10.1109/TII.2016.2638322.

[80] W. Jiang, H. Tang, L. Wu, H. Huang, and H. Qi, “Parallel processing of

probabilistic models-based power supply unit mid-term load forecasting with

apache spark,” IEEE Access, vol. 7, pp. 7588–7598, 2019, doi:

10.1109/ACCESS.2018.2890339.

[81] W. Jiang, H. Tang, L. Wu, H. Huang, and H. Qi, “Parallel processing of

probabilistic models-based power supply unit mid-term load forecasting with

apache spark,” IEEE Access, vol. 7, pp. 7588–7598, 2019, doi:

10.1109/ACCESS.2018.2890339.

[82] P. Prettenhofer,) Datarobot, and G. Louppe, “Gradient Boosted Regression Trees

scikit Motivation Motivation,” 2014. Accessed: Apr. 21, 2020. [Online].

Available: https://orbi.uliege.be/handle/2268/163521.

[83] A. L’Heureux, K. Grolinger, H. F. Elyamany, and M. A. M. Capretz, “Machine

Learning with Big Data: Challenges and Approaches,” IEEE Access, vol. 5, no. 1,

pp. 7776–7797, 2017, doi: 10.1109/ACCESS.2017.2696365.

[84] Y. Tang, Z. Xu, and Y. Zhuang, “Bayesian network structure learning from big

data: A reservoir sampling based ensemble method,” in International Conference

on Database Systems for Advanced Applications, Dallas, Texas, USA, 2016, vol.

9645, pp. 209–222, doi: 10.1007/978-3-319-32055-7_18.

[85] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large

clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008, doi:

10.1145/1327452.1327492.

[86] P. Mika, “Flink: Semantic Web technology for the extraction and analysis of

social networks,” Web Semant., vol. 3, no. 2–3, pp. 211–223, 2005, doi:

118

10.1016/j.websem.2005.05.006.

[87] A. Baldominos, E. Albacete, Y. Saez, and P. Isasi, “A scalable machine learning

online service for big data real-time analysis,” in IEEE Symposium on

Computational Intelligence in Big Data (CIBD), Orlando, FL, USA, 2014, pp. 1–

8, doi: 10.1109/CIBD.2014.7011537.

[88] Y. Zhang, S. Chen, Q. Wang, and G. Yu, “I2MapReduce: Incremental mapreduce

for mining evolving big data,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 7, pp.

1906–1919, 2016, doi: 10.1109/TKDE.2015.2397438.

[89] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant abstraction for

in-memory cluster computing,” in Proceedings of NSDI 2012: 9th USENIX

Symposium on Networked Systems Design and Implementation, 2012, pp. 15–28.

[90] N. Bharill, A. Tiwari, and A. Malviya, “Fuzzy Based Scalable Clustering

Algorithms for Handling Big Data Using Apache Spark,” IEEE Trans. Big Data,

vol. 2, no. 4, pp. 339–352, 2016, doi: 10.1109/tbdata.2016.2622288.

[91] V. K. Vavilapalli et al., “Apache hadoop YARN: Yet another resource

negotiator,” in Proceedings of the 4th Annual Symposium on Cloud Computing,

SoCC 2013, Santa Clara, CA, USA, 2013, vol. 13, pp. 1–16, doi:

10.1145/2523616.2523633.

[92] B. Hindman et al., “Mesos: A platform for fine-grained resource sharing in the

data center,” Networked Syst. Des. Implement., vol. 11, no. 2011, pp. 295–308,

2011, Accessed: Dec. 09, 2020. [Online]. Available:

https://www.usenix.org/event/nsdi11/tech/full_papers/Hindman.pdf.

[93] T. White, Hadoop: The definitive guide, Third ed. Sebastopol, CA, USA: O’Reilly

Media, Inc., 2012.

[94] L. George, HBase: the definitive guide: random access to your planet-sized data,

First ed. Sebastopol, CA, USA: O’Reilly Media, Inc., 2011.

119

[95] Z. Hu, D. Li, and D. Guo, “Balance resource allocation for spark jobs based on

prediction of the optimal resource,” Tsinghua Sci. Technol., vol. 25, no. 4, pp.

487–497, 2020, doi: 10.26599/TST.2019.9010054.

[96] R. E. Edwards, J. New, and L. E. Parker, “Predicting future hourly residential

electrical consumption: A machine learning case study,” Energy Build., vol. 49,

no. 1, pp. 591–603, Jun. 2012, doi: 10.1016/j.enbuild.2012.03.010.

[97] H. Shi, M. Xu, and R. Li, “Deep Learning for Household Load Forecasting-A

Novel Pooling Deep RNN,” IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 5271–

5280, 2018, doi: 10.1109/TSG.2017.2686012.

[98] H. Aprillia, H.-T. Yang, and C.-M. Huang, “Statistical Load Forecasting Using

Optimal Quantile Regression Random Forest and Risk Assessment Index,” IEEE

Trans. Smart Grid (Early Access), pp. 1–1, Oct. 2020, doi:

10.1109/tsg.2020.3034194.

[99] “Classification and regression - Spark 3.0.1 Documentation.”

https://spark.apache.org/docs/latest/ml-classification-regression.html#decision-

trees (accessed Nov. 26, 2020).

[100] X. Meng et al., “Mllib: Machine learning in apache spark,” J. Mach. Learn. Res.,

vol. 17, no. 1, pp. 1235–1241, 2016.

[101] M. Armbrust et al., “Spark SQL: Relational data processing in spark,” in

Proceedings of the ACM SIGMOD International Conference on Management of

Data, Melbourne Victoria Australia, May 2015, pp. 1383–1394, doi:

10.1145/2723372.2742797.

[102] M. Manivannan, B. Najafi, and F. Rinaldi, “Machine Learning-Based Short-Term

Prediction of Air-Conditioning Load through Smart Meter Analytics,” Energies,

vol. 10, no. 11, p. 1905, Nov. 2017, doi: 10.3390/en10111905.

[103] A. Cutler, D. R. Cutler, and J. R. Stevens, “Random Forests,” Ensemble Mach.

120

Learn., pp. 157–175, 2012, doi: 10.1007/978-1-4419-9326-7_5.

[104] “STAR Project - Iberdrola.” https://www.iberdrola.com/about-us/lines-

business/flagship-projects/star-project (accessed Jan. 11, 2021).

[105] T. Hong, J. Wilson, and J. Xie, “Long term probabilistic load forecasting and

normalization with hourly information,” IEEE Trans. Smart Grid, vol. 5, no. 1,

pp. 456–462, 2014, doi: 10.1109/TSG.2013.2274373.

[106] M. Lewis-Beck, A. S.-P. Analysis, and undefined 1990, “The R-squared: Some

straight talk,” cambridge.org, 2021, doi: 10.1093/pan/2.1.153.

[107] B. Parhami. Introduction to Parallel Processing: Algorithms and Architectures.

Kluwer Academic, 2002.

[108] S. Sepasi, E. Reihani, A. M. Howlader, L. R. Roose, and M. M. Matsuura, “Very

short term load forecasting of a distribution system with high PV penetration,”

Renew. Energy, vol. 106, pp. 142–148, Jun. 2017, doi:

10.1016/j.renene.2017.01.019.

[109] J.L. Gustafson, “Reevaluating Amdahl’s Law,” Comm. ACM, May 1988, pp.

532-533

[110] A. Bifet et al., “Extremely fast decision tree mining for evolving data streams,” in

Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, Aug. 2017, vol. Part F1296, pp. 1733–1742, doi:

10.1145/3097983.3098139.

[111] T. M. Mitchell, “Machine Learning and Data Mining,” Commun. ACM, vol. 42,

no. 11, pp. 30–36, Nov. 1999, doi: 10.1145/319382.319388.

[112] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii, “Scalable κ-

means++,” 2012. doi: 10.14778/2180912.2180915.

[113] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation

121

of cluster analysis,” J. Comput. Appl. Math., vol. 20, no. C, pp. 53–65, Nov. 1987,

doi: 10.1016/0377-0427(87)90125-7.

[114] D. Syed et al., “Deep Learning-Based Short-Term Load Forecasting Approach in

Smart Grid With Clustering and Consumption Pattern Recognition,” IEEE Access,

vol. 9, pp. 54992–55008, Apr. 2021, doi: 10.1109/access.2021.3071654.

122

APPENDIX

A. Published/Accepted Journal Papers

• Zainab, A., Ghrayeb, A., Abu-Rub, H., Refaat, S. S., & Bouhali, O. (2021).

Distributed tree-based machine learning for short-term load forecasting with apache

spark. IEEE Access, 9, 57372-57384.

• Zainab, A., Syed, D., Ghrayeb, A., Abu-Rub, H., Refaat, S. S., Houchati, M., ... &

Lopez, S. B. (2021). A multiprocessing-based sensitivity analysis of machine

learning algorithms for load forecasting of electric power distribution system. IEEE

Access, 9, 31684-31694.

• Zainab, A., Ghrayeb, A., Syed, D., Abu-Rub, H., Refaat, S. S., & Bouhali, O. (2021).

Big Data Management in Smart Grids: Technologies and Challenges. IEEE

Access, 9, 73046-73059.

• Syed, D., Zainab, A., Ghrayeb, A., Refaat, S. S., Abu-Rub, H., & Bouhali, O. (2020).

Smart grid big data analytics: Survey of technologies, techniques, and applications.

IEEE Access, 9, 59564-59585.

• Zainab A, S. Refaat S, Bouhali O. Ensemble-Based Spam Detection in Smart Home

IoT Devices Time Series Data Using Machine Learning Techniques. Information.

2020; 11(7):344. https://doi.org/10.3390/info11070344

B. Published/accepted conference papers

• A. Zainab, S. S. Refaat, D. Syed, A. Ghrayeb and H. Abu-Rub, "Faulted Line

Identification and Localization in Power System using Machine Learning

Techniques," 2019 IEEE International Conference on Big Data (Big Data), Los

Angeles, CA, USA, 2019, pp. 2975-2981, doi:

10.1109/BigData47090.2019.9006377.

• Ameema Zainab, Ali Ghrayeb, Mahdi Houchati, Shady S. Refaat, Haitham Abu-Rub

"Performance Evaluation of Tree-based Models for Big Data Load Forecasting using

123

Randomized Hyperparameter Tuning" In 2020 IEEE International Conference on

Big Data (Big Data). IEEE, 2020. (Accepted)

• D. Syed, S. S. Refaat, H. Abu-Rub, O. Bouhali, A. Zainab and L. Xie, "Averaging

Ensembles Model for Forecasting of Short-term Load in Smart Grids," 2019 IEEE

International Conference on Big Data (Big Data), Los Angeles, CA, USA, 2019, pp.

2931-2938, doi: 10.1109/BigData47090.2019.9006183.

• A. Zainab, S. S. Refaat, H. Abu-Rub and O. Bouhali, "Distributed Computing for

Smart Meter Data Management for Electrical Utility Applications," 2020

Cybernetics & Informatics (K&I), Velke Karlovice, Czech Republic, 2020, pp. 1-6,

doi: 10.1109/KI48306.2020.9039899.

C. Submitted Journal papers (under review)

• Ameema Zainab, Dabeeruddin Syed, Ali Ghrayeb, Haitham Abu-Rub, Shady S.

Refaat, Othmane Bouhali, Mahdi Houchati, “Estimating Number of Clusters

Utilizing Optimized Scheduling of Parallel Jobs to Manage Smart Grid Big Data” in

IEEE Systems Journal [Submitted, Under Review].

• Dabeeruddin Syed, Othmane Bouhali, Shady S. Refaat, Ameema Zainab, Haitham

Abu-Rub, “Enhancement of the Performances of Cross-model Power Forecasting in

Smarts Grids using Transfer Learning”. In IEEE Systems Journal [Submitted, Under

Review].

D. Submitted Conference papers (under review)

• Dabeeruddin Syed, Haitham Abu-Rub, Ameema Zainab, Mahdi Houchati, Othmane

Bouhali, Ali Ghrayeb, and Shady S. Refaat. “Investigation on Optimizing Cost

Function to Penalize Underestimation of Load Demand through Deep Learning

Modeling”. In 47th Annual Conference of the IEEE Industrial Electronics Society

[Submitted, Under Review].

