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 ABSTRACT 

Automated vehicle (AV) safety needs to be evaluated for successful development 

and deployment. However, the AV safety evaluation literature is scarce, and AV safety has 

not been validated yet. This study (1) synthesizes the existing knowledge about AV safety 

evaluations, (2) proposes a new methodology to address the gaps in AV safety evaluations, 

and (3) designs an empirical study to assess the safety performance of existing AVs under 

the road tests. 

A scoping review is designed and conducted to systematically synthesize the 

literature about AV safety evaluations. As a result of this review, six AV safety 

quantification methods were identified and compared. This review showed that existing 

methodologies for AV safety evaluation carry certain shortcomings and cannot be used for 

reliable evaluation of AV safety. In addition, major challenges in AV safety evaluations are 

highlighted, including uncertainties in AV implementations and their impacts on AV safety, 

potential riskier behavior of AV passengers as well as other road users, and emerging safety 

issues related to AV implementations. 

A new methodology based on a survival analysis approach is proposed to evaluate 

AV safety with limited road test data. To this end, the time-to-event, in the form of the 

number of miles to a crash (MTC), is incorporated to add a new layer of information, time, 

into the analysis. The likelihood of failure for both AV and conventional vehicles is further 

estimated, and the difference of the failure functions is statistically examined using the 

Anderson-Darling and Kolmogorov–Smirnov tests. Moreover, a new metric for evaluating 

the safety performance of vehicles, “no-crash expectancy,” is defined, which represents the 

average number of miles that a vehicle is expected to travel before a crash happens. 
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Elaborating on the hazard rate of AVs as a function of the number of miles driven by the 

vehicle, this study further formulates crash prediction models in the era of automation and 

indicates the necessity of revisiting existing road safety analysis methods. 

An empirical study is designed to address the limitations in performing an apple-to-

apple comparison between AVs and conventional vehicle safety and examine the proposed 

safety evaluation methodology. Conventional crashes, including non-police-reportable 

crashes, were sourced from the Second Strategic Highway Research Program’s naturalistic 

driving study (NDS) data. NDS data comprise the driver’s trip trajectory information, 

constantly collected from a sample of drivers, reflecting both major and minor crashes. AV 

crashes are sourced from the California Department of Motor Vehicles Autonomous Vehicle 

Tester program. The results of the empirical study on conventional vehicles and Level 3 AV 

crashes showed that, with 95% confidence, automated driving is safer in terms of MTC. The 

results indicated that the no-crash expectancy would be increased by 27% when switching 

from conventional vehicles to AVs in 150,000 miles of road operation. Despite the 

uncertainties in AV crash reports, this study can be considered the most accurate verdict 

regarding Level 3 of automation safety.  

This study has certain limitations, mainly inherited in the availability of data. Future 

studies are required to address the limitations of this study and the identified gaps and 

challenges in AV safety evaluations. The proposed methodology can be further expanded to 

evaluate the vehicle-level crash contributing factors, such as vehicle technologies. 
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CHAPTER 1  

INTRODUCTION 

 

 

This chapter contains the problem statement, including some definitions and 

background information, the objectives of the study, and the structure of the research.  

1.1 Statement of Problem 

Automated vehicles (AVs) have the potential to improve traffic safety profoundly, 

mainly by eliminating driver error. According to the National Highway Traffic Safety 

Administration (NHTSA), human error contributes to 94% of crashes, and AVs are 

optimistically expected to prevent these crashes (NHTSA, 2018). AV safety, and the 

related safety implication complexity, vary in terms of driving automation levels, as 

defined by the Society of Automobile Engineers (SAE, 2018). In the lower levels of 

automation (Levels 1 and 2), the driver is responsible for dynamic driving tasks (DDTs), 

and advanced driver assistance systems (ADASs) on the vehicle can sometimes assist the 

human driver with either steering or braking/accelerating (SAE, 2018). ADASs have the 

potential to prevent or mitigate crashes by partially eliminating driver error. In higher 

levels of automation, the automated driving system (ADS) performs the entire DDT while 

engaged. In Level 3, the DDT fallback-ready user needs to intervene when requested 

 
 Part of this chapter is reprinted with permission from Sohrabi, S., Khodadadi, A., Mousavi, S.M., 

Dadashova, B. and Lord, D., 2021. Quantifying the automated vehicle safety performance: A scoping review 

of the literature, evaluation of methods, and directions for future research. Accident Analysis & 

Prevention, 152, p.106003. Copyright [2021] by Elsevier. 
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(SAE, 2018). On the other hand, Levels 4 and 5 of automation do not require a DDT 

fallback-ready user, and Level 5 has an unlimited operation design domain (ODD). An 

ADS is expected to eliminate driver error entirely; however, disengagement from ADSs 

and DDT fallback can be challenging.  

AV impacts on safety can be investigated at three levels: vehicle, transportation 

system, and society (Figure 1.1). At the vehicle level, AVs can be examined in terms of 

how they contribute to the critical driver-related reasons for crashes, such as inattention; 

internal and external distractions; inadequate surveillance; decision error caused by false 

assumptions and perceptions; performance (i.e., execution of improper driver response); 

and nonperformance mainly due to impairment, drowsiness, and fatigue (NHTSA, 2018). 

AVs implementation carries higher levels of uncertainty at the transportation system level. 

AV safety can be examined based on its potential to reduce traffic conflicts and, 

consequently, reduce crashes. At the society level, crashes pose a public health crisis, and 

the health impacts of AVs can be investigated based on the changes in motor vehicle 

crashes (Sohrabi et al., 2020). Previously, the role of motor vehicle crashes in public health 

has been measured in the form of premature mortalities from fatality crashes (Sohrabi and 

Khreis, 2020) and the disability-adjusted life year from injury crashes (Tainio, 2015).  
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Figure 1.1. AV Levels of safety implications (Reprinted with permission from Sohrabi 

et al. 2021) 

Although traffic crashes caused by driver error are expected to be eliminated after 

AVs’ deployment, other safety issues may compromise the positive impacts (Kockelman et 

al., 2016, Litman, 2017, Yang et al., 2017). System operation failure (Koopman and 

Wagner, 2016), cybersecurity (Lee, 2017), and passengers’ risky behaviors related to 

feeling overly safe while using AVs are some examples of potential safety concerns at the 

vehicle level. At the transportation system level, with AV market penetration rate (MPR) 

less than 100%, AVs may experience safety issues related to the interaction between 

human drivers and AVs in mixed traffic (Virdi et al., 2019, Taeihagh and Lim, 2018), as 

well as AVs’ potential to increase traffic flow and, consequently, exposure to crashes as a 

result of induced demand, increased mobility, and changes in land use (Milakis et al., 

2017). Moreover, due to the high cost of AVs, only wealthy consumers might be able to 

afford AVs as personal vehicles (Raj et al., 2019, Cohen and Shirazi, 2017) and, therefore, 
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the disproportionate deployment of AVs may lead to health inequities that challenge AV 

safety impacts at the society level. The controversial discussion about how AVs should 

react during an unavoidable crash is another example of AV safety challenges at the 

society level. 

Despite the complexities in AV safety evaluations and their impacts, accurate AV 

safety evaluations are required before deploying AVs. Particularly, the intent to use AVs 

and their market success are contingent upon the safety evaluation of AVs (Sener et al., 

2019). In addition, not only can manufacturers and the automotive industry benefit from 

the accurate safety evaluations of AVs, but legislative and executive agencies require such 

information to advocate with industry stakeholders and society (Junietz et al., 2018). 

Evaluating the safety implications of AVs is necessary for formulating regulations and 

policies to alleviate the unintended consequences of AV implementations and increase 

their benefits, as outlined by the United States (US) Department of Transportation (US 

DOT, 2018) and the US Congressional Research Service (Canis, 2020). 

The salient of the subject urged researchers to evaluate AV safety (reviewed by 

(Bagloee et al., 2016b, Sousa et al., 2017, Milakis et al., 2017, Martínez-Díaz and 

Soriguera, 2018, Montanaro et al., 2018)). Despite the previous effort, AV safety has not 

been validated yet (Milakis et al., 2017). The lack of AV safety validations could be 

associated with limitations in existing evaluation methods (Kalra, 2017). More specifically, 

Kalra (2017) pointed out the restrictions in AV road testing given the risk they impose on 

the other road users. As a result of these restrictions, there is not sufficient data for AV 

safety evaluations. The researcher resembles this situation with the “chicken and egg” 

paradox (further discussed in Chapter Three). Alternative evaluation methodologies were 
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proposed to address the limitations in road test data by simulating AV operation and how 

they execute the DDT under different ODD (Wang et al., 2020) or reconstructing the 

crashes to explore measure AV contribution to the crashes (Kusano and Gabler, 2014), 

among others. This research targets AV safety evaluations to address its complexities and 

limitations in the existing methodologies. 

1.2 Research Objectives 

The main objective of this study is to contribute to the safety evaluation of AVs at 

the vehicle level, transportation system level, and society level. In this context, this study 

seeks the answer to three fundamental questions:  

1- How can AV safety be validated, and what are the research gaps in the existing 

safety evaluation methods? 

2- What methodologies are required to validate AV safety, evaluate their safety 

performance, and investigate the contributing factors to AV crashes? 

3- How safe are the existing AVs in comparison with conventional vehicles? 

First, this study is designed to conduct a comprehensive review of the AV safety 

evaluation literature, identify the existing AV safety evaluation approaches, and compare 

the identified approaches. Each approach is investigated in terms of its input, output, and 

application to estimate AV safety implications at the vehicle, transportation system, and 

society levels. The identified approaches are compared in terms of three criteria: 

availability of input data, suitability for evaluating different levels of automation, and 

reliability of estimations. Further, challenges in AV safety validation are identified. The 

results of this systematic review are expected to serve as a stop knowledge point and future 
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research avenues to contribute to AV safety evaluation. Evaluating AV quantification 

methods can help researchers, policy makers, and practitioners choose an appropriate 

evaluation method based on their objectives.  

This study proposes a methodology to statistically evaluate the safety of AVs in 

comparison with conventional vehicles with limited road test data. The proposed 

methodology adds a new layer of information, time, to address limitations in the 

availability of the road test data. The failure functions for AV and conventional vehicles 

are estimated, which represents the risk of being involved in a crash for each type of 

vehicle. Statistical tests are employed to compare the failure function of the vehicles and 

draw reliable conclusions regarding AV safety. In addition, a new metric is defined to 

compare the safety performance of vehicles effectively. The proposed framework for 

assessing AV safety, and its flexibility to enable further innovation, can address the 

decision maker’s concerns (e.g., NHTSA’s advance notice of proposed rulemaking for the 

development of a framework for the ADS safety 1).  

An empirical study is designed to (1) investigate the safety of existing AVs in 

comparison with conventional vehicles and (2) examine the proposed methodology. The 

results of implementing the proposed methodology on the designed empirical study are 

expected to offer the most accurate verdict regarding the safety of the existing AVs on a 

public road in terms of crash frequencies. This could contribute to the dialogue about AV 

safety among AV manufacturers, policymakers, and the public.  

 
1 Sourced from: 

https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ads_safety_principles_anprm_website_version.pd

f (Accessed January 2021) 

https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ads_safety_principles_anprm_website_version.pdf
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ads_safety_principles_anprm_website_version.pdf
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1.3 Structure of Research 

This dissertation is divided into six chapters. Chapter Two reports the conducted 

scoping literature review on AV safety evaluation methodologies. This chapter contains 

the review methodology, a summary of review results, and an introduction to the identified 

AV safety evaluation methodologies. Two qualitative analyses on the identified methods 

and an extensive discussion on the challenges and gaps in AV safety evaluations are 

undertaken in this chapter. 

Chapter Three introduces the proposed methodology for AV safety evaluation 

using road test data. This chapter describes how the proposed methodology addresses the 

identified gaps in Chapter Two. A brief introduction to the theories behind the proposed 

methodology and its literature in the context of traffic safety analysis is described in this 

chapter.  

The designed three-step empirical study for AV safety evaluation is described in 

Chapter Four. This chapter also includes an introduction to AV crash datasets and the 

availability of the data. Finally, the data used for the empirical study and the sources of the 

data are introduced. 

In Chapter Five, the results about the implementation of the proposed methodology 

on the designed empirical analysis are reported. This chapter is outlined based on the three 

steps of the empirical study, and the results of each step are reported subsequently. 

Chapter Six contains a summary of the analysis and a discussion about the results 

of the research. This chapter reports the limitations in the literature review, the proposed 

methodology, and the conducted empirical study. Also, a set of recommendations for 

future research are included in this chapter. 
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2 CHAPTER 2   

LITERATURE REVIEW 

 

 

In this chapter, a comprehensive literature review was conducted to (1) synthesize 

the AV safety evaluation literature, (2) summarize previous research findings, (3) compare 

the quantification methodologies, and (4) identify the gaps and limitations. In the 

subsequent section, the scoping review methodology is discussed. Then, the results of the 

literature review and elaborate on the identified quantification methodologies are reported. 

Next, two qualitative analyses on the identified methods are compared. This section is 

followed by a detailed discussion about AV safety evaluation challenges and limitations. 

Finally, a summary of the chapter is provided. 

2.1 Review Methodology 

A scoping review methodology framework proposed by Arksey and O’Malley 

(2005) was followed in this study. A scoping review methodology was selected rather than 

a systematic review since this study aims to identify previous studies answering a general 

question and then review the evidence from previous quantifications on AVs’ impact on 

traffic safety (Munn et al., 2018). In this context, the findings are not aggregated, nor is the 

quality of evidence assessed (Arksey and O'Malley, 2005). 

 
 Part of this chapter is reprinted with permission from Sohrabi, S., Khodadadi, A., Mousavi, S.M., 

Dadashova, B. and Lord, D., 2021. Quantifying the automated vehicle safety performance: A scoping review 

of the literature, evaluation of methods, and directions for future research. Accident Analysis & 

Prevention, 152, p.106003. Copyright [2021] by Elsevier. 
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2.1.1 Review Question 

The first step in a scoping review is to identify a research question to be answered 

(Arksey and O'Malley, 2005). The research question for this review was the following: 

“What are the methodologies and the gaps in the existing research on quantifying the 

potential impacts of AVs on traffic safety?” Specifically, this review identified the research 

that quantified the impacts of AVs rather than studies of a speculative nature.  

2.1.2 Identifying Relevant Studies 

A search strategy was developed to retrieve relevant research evidence from four 

electronic research databases—Scopus, Web of Science, Transport Research International 

Documentation (TRID), and Institute of Electrical and Electronics Engineers (IEEE) 

Xplore—as well as reference lists of the retrieved publications. IEEE Xplore is a 

research database that covers more than five million journal articles, conference 

proceedings, standards, and related materials on multiple disciplines, including but not 

limited to computer science, electrical engineering and electronics, and allied fields.2 IEEE 

Xplore is sponsored by IEEE and other partner publishers. Scopus is Elsevier’s research 

database, which covers more than 75 million records from 50,000 publishers in four core 

areas: life sciences, social sciences, physical sciences, and health science.3 The Web of 

Science, sponsored by the Institute of Scientific Information, is a publisher-independent 

research database that covers more than 79 million records from several areas, such as life 

sciences, biomedical sciences, engineering, social sciences, arts and humanities, natural 

 
2 Sourced from: https://innovate.ieee.org/about-the-ieee-xplore-digital-library/ 
3 Sourced from: https://www.elsevier.com/solutions/scopus/why-choose-scopus  

https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Electrical_engineering
https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Elsevier
https://en.wikipedia.org/wiki/Abstract_and_citation_database
https://en.wikipedia.org/wiki/Abstract_and_citation_database
https://en.wikipedia.org/wiki/Life_sciences
https://en.wikipedia.org/wiki/Social_sciences
https://en.wikipedia.org/wiki/Physical_sciences
https://innovate.ieee.org/about-the-ieee-xplore-digital-library/
https://www.elsevier.com/solutions/scopus/why-choose-scopus
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sciences, health sciences, engineering, computer science, and materials sciences.4 TRID 

database, a research database that combines the records from the Transportation Research 

Board’s Transportation Research Information Services, is also explored, which is solely 

focused on transportation research and provides access to more than 1.25 million records.5 

The databases were searched to identify published articles, letters, reports, book 

chapters, and books using any combination of two sets of keywords in their title, abstract, 

and keywords: [“autonomous vehicle” or “autonomous car” or “self-driving car” or 

“driverless car” or “automated driving”] and [“crashes” or “accidents” or “collision” or 

“safety”]. Due to the burdensome translating process, only the published material written 

in English is included in this review. All material considered in the review was published 

as of October 2020.  

2.1.3 Study Selection 

To ensure consistency in selecting studies that answered the review’s question and 

excluded irrelevant studies, a set of inclusion and exclusion criteria are defined. The 

included studies had to meet the following established criteria: 

1. Must explicitly quantify AVs’ impacts on traffic safety rather than merely offer 

speculations and qualitative assessments. 

2. Must evaluate AV as a vehicle for ground transportation, such as automated cars, 

buses, shuttles, trucks, and the like. 

3. Must investigate the safety of different levels of vehicle automation rather than 

individual AV technologies (e.g., ADASs, sensors, and algorithms). 

 
4 Sourced from: https://clarivate.libguides.com/webofscienceplatform/coverage 
5 Sourced from: http://www.trb.org/InformationServices/AboutTRID.aspx  

https://clarivate.libguides.com/webofscienceplatform/coverage
http://www.trb.org/InformationServices/AboutTRID.aspx
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Based on the inclusion criteria, connected vehicles’ safety evaluations did not fall 

within the scope of this study. However, the literature on connected and automated 

vehicles (CAVs) is included in the review, with a focus on the safety evaluation of 

automation components of CAVs. The selection process was divided into two stages. First, 

the titles and abstracts of the identified publications were reviewed, and potentially 

relevant publications were selected. Second, the full text of the potentially relevant 

publications was retrieved and reviewed against the inclusion criteria, and studies that did 

not meet all inclusion criteria were excluded. The reference lists of included publications 

were also reviewed to find any relevant articles that were not identified through the 

developed search strategy.  

2.2 Search Results and Characteristics of Included Studies 

The implemented scoping review process is shown in Figure 2.1. As of October 

2020, a total of 1,859 publications were identified using the developed search strategy. 

After checking for duplicates, screening the identified articles, and reviewing articles’ full 

text, 1,809 articles were excluded: 324 duplicates, 1,396 after screening, and 89 after full-

text review. Ultimately, 50 articles met the inclusion criteria and were included in this 

review.  
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Figure 2.1. Study identification and selection mechanism of the implemented scoping 

review 

The number of publications increased significantly beginning in 2012, although in 

2019, only 14 articles were published on quantifying AV safety implications (Figure 2.2a). 

The AV safety quantification approaches can be classified into six groups: target crash 

population, traffic simulation, driving simulator, road test data analysis, system failure risk 

assessment, and safety effectiveness estimation. Figure 2.2b shows the distribution of 
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quantification approaches. Road test data analysis and simulation studies were more 

commonly used in the literature, followed by the driving simulator and target crash 

population approaches. Failure risk assessment and safety effectiveness quantification 

received the least attention. A time-series analysis of publications indicated that traffic 

simulation and road test data analysis methods began receiving more attention over time. 

Increases in road test data may be one of the reasons behind this change.   
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(a) 

 
(b) 

Figure 2.2. (a) Publication date of the studies included in this review, and (b) 

distribution of the identified AV safety quantification approaches (Reprinted 

with permission from Sohrabi et al. 2021) 
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2.3 Identified AV Safety Evaluation Approaches 

In this section, the included studies are reviewed. A narrative review of the 

literature under the six identified AV safety quantification approaches is reported. 

2.3.1 Target Crash Population 

The target crash population approach quantifies the number of preventable crashes 

after AV implementation. The quantification process in the examined studies followed 

three steps (Rau et al., 2015, Yanagisawa et al., 2017): 

1. Identify AVs’ ADS and ADAS functionality.  

2. Match AV functionality with the target crash type. 

3. Explore the crash datasets and identify preventable crashes. 

In the first step, AV functions were investigated on the basis of (a) levels of 

automation (Lubbe et al., 2018, Agriesti et al., 2019) and (b) individual or combined ADS 

and ADAS functions (Combs et al., 2019, Detwiller and Gabler, 2017, Hendrickson and 

Harper, 2018, Li and Kockelman, 2016, Kusano and Gabler, 2014). 

In the second step, AV functionality was matched with corresponding crash 

characteristics. Previous studies assessed AV technology to mitigate either specific crash 

types (e.g., rear-end collision, pedestrian crashes) (Combs et al., 2019, Detwiller and 

Gabler, 2017, Hendrickson and Harper, 2018), specific crash-contributing factors (e.g., 

distracted driving, speeding, etc.), or critical pre-crash events (e.g., running a red light, 

vehicle failure) (Yanagisawa et al., 2017, Lubbe et al., 2018, Li and Kockelman, 2016, 

Kusano and Gabler, 2014). In addition, some AV functions are programmed to operate 

under a certain ODD to activate and achieve the maximum desired effectiveness; therefore, 
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the crash dataset had to be filtered out to mirror those conditions properly. Lighting 

condition (day/night) (Yanagisawa et al., 2017, Agriesti et al., 2019), weather condition 

(clear/adverse) (Yanagisawa et al., 2017, Agriesti et al., 2019), road surface condition 

(wet/dry) (Yanagisawa et al., 2017, Agriesti et al., 2019), travel speed range (Yanagisawa 

et al., 2017, Agriesti et al., 2019, Hendrickson and Harper, 2018), visual obstruction 

(Lubbe et al., 2018, Combs et al., 2019), pedestrian crossing condition (Lubbe et al., 2018, 

Detwiller and Gabler, 2017), lane marking condition (Lubbe et al., 2018, Agriesti et al., 

2019), and stable vehicle condition (Lubbe et al., 2018) are conditions under which AV 

safety was examined in the literature. AV safety implications were explored for various 

road facilities and areas (Detwiller and Gabler, 2017, Hendrickson and Harper, 2018) as 

well. However, in some studies, facility type was automatically filtered out by selecting 

possible crash scenarios (e.g., running a red light, which is specific to intersections only) 

and beneficial safety equipment specific to that facility (e.g., cooperative intersection 

collision avoidance systems, which are applicable in intersections only) (Li and 

Kockelman, 2016, Kusano and Gabler, 2014). The safety effectiveness of AV technology 

was widely presumed to be 100% in the literature (Yanagisawa et al., 2017, Agriesti et al., 

2019, Detwiller and Gabler, 2017, Hendrickson and Harper, 2018, Kusano and Gabler, 

2014); however, some studies accounted for the shortcomings in the safety implications of 

AVs by considering the effectiveness of AV technology (Lubbe et al., 2018, Combs et al., 

2019, Li and Kockelman, 2016). AV safety effectiveness was either extracted from 

simulation studies (Combs et al., 2019) or indirectly through defining different sets of rules 

(Lubbe et al., 2018, Li and Kockelman, 2016). Each set consisted of assumptions regarding 

weather, road condition, vehicle condition, speed range, and so forth, through which both 
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maximum effectiveness and lower effectiveness due to adverse conditions could be taken 

into account. Moreover, different rule sets provided a lower and upper bound for the 

expected number of preventable crashes instead of a constant value for effectiveness. Most 

of the literature assumed a 100% MPR; indeed, only two studies considered the MPR in 

their analysis (Agriesti et al., 2019, Li and Kockelman, 2016). 

In the third step, the crash datasets were explored, and the crash characteristics 

were extracted. Next, the safety benefits of AVs were quantified in terms of the number of 

preventable crashes (Yanagisawa et al., 2017, Lubbe et al., 2018, Agriesti et al., 2019, 

Combs et al., 2019, Detwiller and Gabler, 2017, Hendrickson and Harper, 2018, Kusano 

and Gabler, 2014) and/or reduced cost of crashes (Yanagisawa et al., 2017, Hendrickson 

and Harper, 2018, Li and Kockelman, 2016). As a result, AV safety was attributed to 

ADSs (Yanagisawa et al., 2017, Lubbe et al., 2018, Agriesti et al., 2019, Combs et al., 

2019, Detwiller and Gabler, 2017, Hendrickson and Harper, 2018, Kusano and Gabler, 

2014, Li and Kockelman, 2016) and ADASs (Combs et al., 2019, Hendrickson and Harper, 

2018, Li and Kockelman, 2016, Kusano and Gabler, 2014). The total number of 

preventable crashes was estimated in the target crash population methodology, and some 

studies stratified crashes based on severity level (Detwiller and Gabler, 2017, Hendrickson 

and Harper, 2018, Li and Kockelman, 2016, Kusano and Gabler, 2014). Table A1 in the 

appendix summarizes the target population studies. 

2.3.2 Road Test Data Analysis  

Analyzing AV road tests is one of the approaches used in the literature to evaluate 

AV safety. AV incident data were sourced from the California Department of Motor 

Vehicles (CA DMV) (Schoettle and Sivak, 2015, Teoh and Kidd, 2017, Favarò et al., 
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2017, Matysiak and Razin, 2018, Banerjee et al., 2018, Xu et al., 2019, Wang and Li, 

2019, Petrović et al., 2020, Boggs et al., 2020, Das et al., 2020), US National 

Transportation Safety Board (NTSB) (Wang and Li, 2019), or AV manufacturers’ self-

reports (Schoettle and Sivak, 2015). CA DMV mandates that all manufacturers testing 

AVs on public roads file two different types of reports: (a) a report of a collision involving 

an AV within ten days after the collision; and (b) an annual report summarizing the 

disengagements.  

Three types of analyses were found in the literature. First, the rate of AV incidents 

was compared to conventional car crashes as a benchmark (Schoettle and Sivak, 2015, 

Teoh and Kidd, 2017, Matysiak and Razin, 2018, Banerjee et al., 2018, Favarò et al., 

2017). The AV incident rate was estimated as either number of crashes per number of AV 

vehicle miles traveled (VMT) (Schoettle and Sivak, 2015, Teoh and Kidd, 2017, Favarò et 

al., 2017) or the number of disengagements per VMT (Matysiak and Razin, 2018, Banerjee 

et al., 2018). AV incident rates were then compared to either conventional vehicle crash 

rates (Schoettle and Sivak, 2015, Teoh and Kidd, 2017, Favarò et al., 2017, Banerjee et al., 

2018) or injury and fatality crash rates (Matysiak and Razin, 2018). Unlike AV crashes, 

where the auto manufacturers report every single incident involving AVs, conventional 

vehicle crashes are reported by police based on the dollar amount of the property damage 

and therefore are significantly underreported. To have a fair comparison between AVs and 

conventional vehicle crash rates, Toeh and Kidd (2017) used AV police-reportable crashes, 

and Schoettle and Sivak (2015) adjusted the conventional vehicle crash rates for 

underreporting. Given the disparities in the equivalence between AV and conventional 
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vehicle crash rates, mixed conclusions were drawn in the literature regarding AV safety in 

terms of crash rates. 

Second, some studies investigated the characteristics of AV crashes in terms of 

collision type, crash location, speed, and causes of the crash. The majority of the literature 

ran a descriptive analysis of AV characteristics (Schoettle and Sivak, 2015, Favarò et al., 

2017, Xu et al., 2019, Petrović et al., 2020), whereas some compared AV crash 

characteristics to conventional vehicle crashes (Schoettle and Sivak, 2015, Favarò et al., 

2017, Petrović et al., 2020). Researchers found that the rate of rear-end crashes is higher in 

AV crashes (Schoettle and Sivak, 2015, Favarò et al., 2017, Petrović et al., 2020), while 

the severity of crashes is lower (Schoettle and Sivak, 2015). More rigorous statistical 

analyses, in the form of logistic regression (Wang and Li, 2019, Xu et al., 2019), a decision 

tree (Wang and Li, 2019), a Bayesian latent class model (Das et al., 2020), and logit 

discrete choice models (Boggs et al., 2020) were used to uncover the factors contributing 

to AV crash risk (Boggs et al., 2020), collision type (Xu et al., 2019, Wang and Li, 2019), 

and severity (Xu et al., 2019, Wang and Li, 2019). Driving speed, on-street parking, speed 

limit, and collision location—highway, arterial and collector, streetlights, and 

intersections—were shown to be associated with AV crash risk. The number of lanes 

marked with a centerline and clear weather conditions were shown to reduce the likelihood 

of AV crashes. AV driving mode (AV mode or conventional driver), collision location, 

roadside parking, rear-end collision, and one-way road were the main factors found to 

contribute to the severity level of AV-involved crashes. AV driving mode, AV stopped or 

not, vehicle turning movement, and whether crashes were associated with yielding to 

pedestrians/cyclists were the factors found to affect the collision type of AV crashes. The 
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cause of AV disengagement was investigated by Banerjee et al. (2018), who found that 

64% of disengagements were the result of problems in, or untimely decisions made by, the 

machine learning system. 

Third, the safety reliability of AVs was examined by comparing (a) the AV failure 

rate to other safety-critical autonomous systems (Banerjee et al., 2018); (b) the number of 

miles driven by AVs until a crash to the number of miles driven by conventional cars until 

a crash (Favarò et al., 2017); (c) the number of failure-free miles AVs should drive to reach 

conventional cars’ failure rates (Kalra and Paddock, 2016, Li and Zhai, 2019); (d) the total 

number of miles driven to evaluate AV failure rate (Kalra and Paddock, 2016, Li and Zhai, 

2019); and (e) the total number of miles AVs need to drive to demonstrate their failure rate 

is statistically lower than that of conventional cars (Kalra and Paddock, 2016). Banerjee et 

al. (2018) compared AV reliability with other safety-critical autonomous systems in terms 

of reliability per mission and demonstrated that AVs are 4.22 times worse than airplanes 

and 2.5 times better than surgical robots. Favarò et al. (2017) estimated that AVs drive 

500,000 miles before a crash, which shows AVs’ reliability versus conventional vehicles. 

However, estimations regarding the number of failure-free miles AVs should drive to reach 

conventional vehicles’ failure rate resulted in higher thresholds of 1.6 million miles (Kalra 

and Paddock, 2016) and 140 million miles (Li and Zhai, 2019). Kalra and Puddok (2016) 

showed that AVs need to be driven 51 and 61 million miles to be able to test their failure 

rate and statistically examine their failure rate, respectively. However, much higher 

numbers (71 billion miles) have been estimated for AV testing requirements to be able to 

properly investigate AV safety (Kalra and Paddock, 2016). Table A2 summarizes the 

studies that used AV road test data to evaluate their safety.  
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2.3.3 Traffic Simulations 

During the last decade, traffic simulation models have been frequently 

implemented to replicate conventional vehicles’ driving characteristics in a fleet (Young et 

al., 2014). Research studies have employed traffic simulation models to assess AVs’ safety 

effects and the assumption, methodologies, and limitations behind them (see Table A3 for 

a summary of related literature). 

In the identified traffic simulation studies, various traffic microsimulation computer 

software was used, such as VISSIM (Kockelman et al., 2016, Katrakazas et al., 2019, 

Morando et al., 2018, Deluka Tibljaš et al., 2018, Rahman et al., 2019, Arvin et al., 2020, 

Mousavi et al., 2020), MATLAB, SUMO, VENTOS, and PELOPS (Bahram et al., 2014, 

Arvin et al., 2018, Arvin et al., 2019, Qin and Wang, 2019). Depending on the study 

purpose, safety was evaluated at roadway segments (Katrakazas et al., 2019, Bahram et al., 

2014, Ye and Yamamoto, 2019, Virdi et al., 2019, Qin and Wang, 2019, Zhang et al., 

2015, Sinha et al., 2020), intersections (Kockelman et al., 2016, Arvin et al., 2018, Arvin et 

al., 2019, Morando et al., 2018, Virdi et al., 2019, Rahman et al., 2019, Arvin et al., 2020, 

Mousavi et al., 2020), roundabouts (Morando et al., 2018, Deluka Tibljaš et al., 2018), or 

on/off-ramps (Kockelman et al., 2016). 

For developing the simulation scenarios, different car-following models were 

utilized for conventional vehicles and AVs. Various car-following models were 

implemented to replicate conventional vehicles’ driving behavior, such as Wiedemann 74 

(Arvin et al., 2018, Deluka Tibljaš et al., 2018, Virdi et al., 2019, Arvin et al., 2020, 

Mousavi et al., 2020), Wiedemann 99 (Katrakazas et al., 2019, Morando et al., 2018, 

Zhang et al., 2015, Sinha et al., 2020), and user-defined models (Ye and Yamamoto, 
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2019). For AVs, car following was in the form of modified built-in models, including 

modified Wiedemann models (Kockelman et al., 2016, Arvin et al., 2018, Morando et al., 

2018, Deluka Tibljaš et al., 2018, Arvin et al., 2020, Mousavi et al., 2020) or AV-specific 

models using external coding interfaces to either adjust a variable, introduce a new 

following strategy, or test various models (Bahram et al., 2014, Arvin et al., 2018, Ye and 

Yamamoto, 2019, Papadoulis et al., 2019, Virdi et al., 2019, Sinha et al., 2020). In general, 

Wiedemann characterizes the car-following behavior by look-ahead distance, look-back 

distance, and average standstill distance, while modified Wiedemann 99 also considers 

headway time (PTV, 2018).  

Based on driving behaviors, various scenarios were developed to evaluate the 

impact of AVs on safety. The majority of the studies explored different AV MPRs as the 

main variable (Katrakazas et al., 2019, Bahram et al., 2014, Rahman et al., 2019, Arvin et 

al., 2018, Arvin et al., 2019, Morando et al., 2018, Deluka Tibljaš et al., 2018, Ye and 

Yamamoto, 2019, Papadoulis et al., 2019, Qin and Wang, 2019, Arvin et al., 2020, Sinha 

et al., 2020). Depending on the study, each simulation scenario was run multiple times to 

obtain reliable outputs for evaluating traffic safety. Since simulations do not lead to any 

crash, near-miss events were used instead to assess safety, which is an important limitation 

for using traffic simulation programs (Lord et al., 2021). 

Surrogate safety measures (SSMs) were used to determine the number of near-miss 

events and, consequently, the associated level of traffic safety. The most commonly used 

SSMs in the studies were time-to-collision (TTC) and post-encroachment time (PET) 

(Kockelman et al., 2016, Katrakazas et al., 2019, Bahram et al., 2014, Arvin et al., 2018, 

Arvin et al., 2019, Morando et al., 2018, Deluka Tibljaš et al., 2018, Ye and Yamamoto, 
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2019, Papadoulis et al., 2019, Mousavi et al., 2020, Sinha et al., 2020). Acceleration rate 

and velocity difference (Ye and Yamamoto, 2019, Sinha et al., 2020), time-exposed time-

to-collision (TET) (Bahram et al.), time-integrated time-to-collision (TIT) (Bahram et al., 

2014, Qin and Wang, 2019, Zhang et al., 2015, Rahman et al., 2019), time-exposed rear-

end crash risk index (TERCRI) (Zhang et al., 2015, Rahman et al., 2019), the number of 

critical jerks (NCJ) (Rahman et al., 2019), and lane-change conflicts (Zhang et al., 2015) 

were the other types of SSMs used in these studies.  

Most of the studies concluded that by increasing the AV MPR, the number of near-

miss events decreased on-road segments (Bahram et al., 2014, Morando et al., 2018, Ye 

and Yamamoto, 2019, Qin and Wang, 2019, Sinha et al., 2020), at intersections 

(Kockelman et al., 2016, Arvin et al., 2018, Arvin et al., 2019, Morando et al., 2018, 

Rahman et al., 2019, Arvin et al., 2020, Mousavi et al., 2020), at priority intersections 

(Virdi et al., 2019), in bottlenecks, at on/off-ramps (Kockelman et al., 2016), and in 

roundabouts (Morando et al., 2018, Virdi et al., 2019). However, Deluka et al. (2018) 

indicated that an increase in the AV MPR in roundabouts led to an increase in the number 

of conflicts. Moreover, Kockelman et al. (2016) showed an increase in conflicts by 

increasing the AV MPR at intersections. On the other hand, other studies showed that low 

AV MPRs were associated with a higher number of conflicts compared to zero MPR, yet, 

the number of conflicts decreased at intersections (Arvin et al., 2018, Virdi et al., 2019) 

and diverse diamond interchange (DDI) intersections (Virdi et al., 2019) by increasing the 

MPR in the simulation environment. Katrakazas (2019) also proposed a method to enable 

AVs to determine their trajectories to enhance safety in emergency situations. Study results 

indicated that the proposed method is capable of improving safety. 
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2.3.4 Driving Simulators 

Probable challenges in human-vehicle interaction in the AV domain can take place 

in either the AV driver and AV interface stage (e.g., taking-over process) or the interaction 

between conventional vehicles and AVs (e.g., conventional vehicles entering the platoon of 

AVs). At different levels of automation, the AV driver needs to monitor or even intervene 

in the automation system to some extent in order to compensate for automation biases. On 

the other hand, AVs, at any MPR, will interact with conventional vehicles before they 

entirely dominate the future transportation system. In both cases, detailed knowledge of 

human driving behavior and reactions is necessary to evaluate AV safety. All the safety-

related scenarios in reviewed studies could be categorized as (a) vehicle-human interaction 

(take-over situations in different driving states, such as drunk driving, drowsy driving, 

distracted driving, unplanned disengagement from the ADS, planned disengagement, etc.) 

(Strand et al., 2014, Kundinger et al., 2018, Berthelon and Gineyt, 2014, Gold et al., 2018, 

Happee et al., 2017, Blommer et al., 2015, Yun and Yang, 2020, Lee et al., 2020), or (b) 

vehicle-vehicle interaction (joining a conventional vehicle to a platoon of AVs) (Gouy et 

al., 2012, Lee et al., 2018). In both categories, a hazard scenario must be designed to 

determine the driver’s performance in the evasive situation of interest. A hazard scenario is 

a situation that triggers the driver to make a maneuver and might be (a) a suddenly blocked 

lane by another vehicle(s) or an obstacle (Gold et al., 2018, Happee et al., 2017, Blommer 

et al., 2015, Yun and Yang, 2020, Lee et al., 2020), a sudden drift toward the edge of the 

road (Desmond et al., 1998), or a deceleration failure (Strand et al., 2014); or (b) safety 

challenges faced during driving, such as entering a platoon environment (Gouy et al., 2012, 

Lee et al., 2018) or controlling the vehicle while drowsy or drunk (Kundinger et al., 2018, 



 

25 

 

 

Berthelon and Gineyt, 2014). The simulator experiments included three aspects—

participants, experimental variables, and safety measurements—that had to be designed 

before the main experiment. 

Different characteristics of participants used in designing simulator experiments 

included the following: age (Berthelon and Gineyt, 2014, Gold et al., 2018, Happee et al., 

2017, Blommer et al., 2015, Gouy et al., 2012, Strand et al., 2014, Lee et al., 2018, 

Kundinger et al., 2018, Desmond et al., 1998, Yun and Yang, 2020, Lee et al., 2020), 

gender (Happee et al., 2017, Gold et al., 2018, Blommer et al., 2015, Gouy et al., 2012, 

Strand et al., 2014, Lee et al., 2018, Kundinger et al., 2018, Berthelon and Gineyt, 2014, 

Desmond et al., 1998, Yun and Yang, 2020, Lee et al., 2020), annual mileage driven 

(Strand et al., 2014), driving experience (Strand et al., 2014, Gouy et al., 2012, Berthelon 

and Gineyt, 2014, Yun and Yang, 2020, Lee et al., 2020), previous experience with 

automated driving (Strand et al., 2014, Blommer et al., 2015), prior experience with a 

driving simulator (Gouy et al., 2012, Gold et al., 2018, Happee et al., 2017), and 

mental/physical health condition (Kundinger et al., 2018, Berthelon and Gineyt, 2014, Lee 

et al., 2020). Each experiment took place in a controlled ODD and was based on a 

predefined procedure. Predesigned factors, such as (a) traffic density (Gold et al., 2018, 

Happee et al., 2017, Blommer et al., 2015, Strand et al., 2014, Gouy et al., 2012, Lee et al., 

2018, Kundinger et al., 2018, Berthelon and Gineyt, 2014), (b) MPR (Lee et al., 2018), (c) 

facility type (Gold et al., 2018, Happee et al., 2017, Blommer et al., 2015, Strand et al., 

2014, Gouy et al., 2012, Lee et al., 2018, Kundinger et al., 2018, Berthelon and Gineyt, 

2014, Yun and Yang, 2020), and (d) repetition of experiment (Happee et al., 2017, Gold et 

al., 2018, Strand et al., 2014, Gouy et al., 2012, Desmond et al., 1998, Yun and Yang, 
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2020) and controlled factors—including the facility geometry design characteristics (Gold 

et al., 2018, Happee et al., 2017, Blommer et al., 2015, Gouy et al., 2012, Lee et al., 2018, 

Berthelon and Gineyt, 2014) and speed (Gold et al., 2018, Happee et al., 2017, Blommer et 

al., 2015, Strand et al., 2014, Gouy et al., 2012, Lee et al., 2018, Kundinger et al., 2018, 

Berthelon and Gineyt, 2014, Desmond et al., 1998, Yun and Yang, 2020)—were common 

experimental characteristics found in simulator studies. Some studies conducted only one 

experiment per participant to avoid learning effect bias (Blommer et al., 2015, Kundinger 

et al., 2018, Lee et al., 2018); others repeated the experiment to extract the maximum 

information from the available resources and tried to mitigate the learning effect bias by 

incorporating it as a variable in the model. However, almost all studies conducted a trial 

run before the main experiment to familiarize the participants with the simulator 

environment. 

A metric is required to measure AVs’ performance and quantify the risks and 

benefits of AVs using simulator studies. To this end, SSMs were widely used as the 

response variable to quantify safety risks and benefits of AVs, namely 

average/maximum/minimum speed (Berthelon and Gineyt, 2014, Lee et al., 2020), time 

headway (Strand et al., 2014, Gouy et al., 2012), take-over time (TOT) (Gold et al., 2018), 

TTC (Gold et al., 2018, Happee et al., 2017, Strand et al., 2014, Lee et al., 2020), distance 

to collision (DTC) (Lee et al., 2020), time to lane change (TTL) (Yun and Yang, 2020), 

brake application (Gold et al., 2018), crash/crash probability (Gold et al., 2018, Berthelon 

and Gineyt, 2014), steering response time (Happee et al., 2017, Lee et al., 2018), response 

time (Blommer et al., 2015, Strand et al., 2014, Yun and Yang, 2020), percent of the time 

with eyes on the road (Blommer et al., 2015), clearance toward the obstacle (Happee et al., 
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2017), road clearance metric (Happee et al., 2017), steering magnitude (Lee et al., 2018), 

lateral/longitudinal control (e.g., longitudinal/lateral deceleration) (Desmond et al., 1998, 

Lee et al., 2020), standard deviation of lane position (SDLP) (Yun and Yang, 2020, Lee et 

al., 2020), steering wheel reversed (SWR) (Yun and Yang, 2020), Karolinska Sleepiness 

Scale (Kundinger et al., 2018), physical and perceptual fatigue (Desmond et al., 1998), 

skin conductance response time (SCR) (Yun and Yang, 2020), and average heart rate 

(AHR) (Yun and Yang, 2020). The point of modeling different SSMs relates to the 

difference in their ability to capture near-crash events and critical maneuvers.  

Finally, the SSMs were used to (a) find contributing factors to safety risk and 

benefits of AVs in different settings (Gold et al., 2018, Happee et al., 2017, Blommer et 

al., 2015, Strand et al., 2014, Gouy et al., 2012, Lee et al., 2018, Berthelon and Gineyt, 

2014, Yun and Yang, 2020, Lee et al., 2020), and (b) compare AV safety with 

conventional vehicle safety (Happee et al., 2017, Kundinger et al., 2018, Desmond et al., 

1998). Linear regression (Gold et al., 2018), logistic regression (Lee et al., 2018), 

univariate/multivariate analysis of variance (ANOVA) (Blommer et al., 2015, Strand et al., 

2014, Gouy et al., 2012, Lee et al., 2018, Berthelon and Gineyt, 2014, Yun and Yang, 

2020, Lee et al., 2020), Fisher’s exact test (Strand et al., 2014), analysis of covariance 

(ANCOVA) (Strand et al., 2014), and Cochran’s Q test (Strand et al., 2014) were used to 

identify significant variables that influenced AV safety. Besides the participant 

characteristics and experiment characteristics (or elements) mentioned before, other 

variables—such as time budget (Gold et al., 2018, Happee et al., 2017), lanes driven (Gold 

et al., 2018, Happee et al., 2017), type of secondary tasks (Gold et al., 2018, Happee et al., 

2017, Blommer et al., 2015, Lee et al., 2020), automation level (Strand et al., 2014), 
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disengagement scenarios (planned/unplanned) (Yun and Yang, 2020), types of take-over 

warnings (Yun and Yang, 2020), the extent of hazard scenario and challenges (e.g., 

moderate/severe/complete deceleration failure, or different time headway within the 

platoon) (Strand et al., 2014, Gouy et al., 2012), platoon size (Lee et al., 2018), and alcohol 

concentration (Berthelon and Gineyt, 2014)—were considered. Results showed that take-

over scenarios, traffic density, experiment repetition, and defined time budget were highly 

influential factors affecting SSMs (Gold et al., 2018). In addition, scheduled 

disengagement (Blommer et al., 2015), lower automation levels, lower extent of hazard 

scenarios (Strand et al., 2014), engaging in non-driving-related tasks with less cognitive 

load (Lee et al., 2020), and use of multimodal take-over warning systems (Yun and Yang, 

2020) led to better performance of drivers during the take-over situation. Drunk driving 

affected the longitudinal and lateral control of the vehicle and driver reaction to evasive 

maneuver, especially in lower automation levels (Berthelon and Gineyt, 2014). Moreover, 

in the platoon environment, the higher MPR (Lee et al., 2018) and lower time headway of 

AVs resulted in more aggressive driving behavior from conventional vehicles joining the 

platoon. To compare conventional vehicles and AVs in terms of safety risks and benefits, 

researchers mostly used ANOVA (Kundinger et al., 2018, Desmond et al., 1998) and 

Fisher’s exact test (Happee et al., 2017). Results showed that automated driving would 

negatively affect a take-over scenario in response to a risk while the vehicle is disengaged 

from the ADS (Happee et al., 2017, Desmond et al., 1998) and increase driver drowsiness 

(Kundinger et al., 2018) compared to manual driving. 

More details on the reviewed driving simulator studies can be found in Table A4. 
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2.3.5 System Failure Risk Assessment 

System operation failure is one probable risk that AVs encounter (Koopman and 

Wagner, 2016). Malfunctioning sensors in detecting objects (pedestrians, bikes and 

cyclists, vehicles, obstacles, etc.), misinterpretation of data, and poorly executed responses 

can jeopardize AVs’ reliability and have serious safety consequences in an automated 

environment (Bila et al., 2017). The failure rate of each component of AVs was 

synthesized by Bhavsar et al. (2017). To this end, each component of the ADS and ADAS 

was examined individually, and the failure rate was determined for each component based 

on the evidence from the existing literature. The researchers developed a hierarchical 

model to synthesize AV failure risks associated with the vehicle and infrastructure. The 

communication system’s failure risks, hardware system (sensor and integration platform 

failure), and software system were ranked the highest, with 9.5%, 4.2%, and 1.0% failure 

probability, respectively. The failure probability of an AV involved in a crash with a non-

AV was also calculated by multiplying the risk of failure of AVs and the crash probability 

of conventional vehicles.  

2.3.6 AV Safety Effectiveness 

AV safety effectiveness can be defined using AV SSMs and crash rates. For 

example, the safety effectiveness of AVs can be estimated as (Equation 2.1: 

Safety Effectiveness = 1 −
AVs′crash rate

Conventional vehicles′ crash rate
 

(Equation 2.1) 
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However, decisions about AV safety effectiveness or AV safety validity cannot be 

based on the results of a single study because results typically vary from one study to the 

next (see Sections 4.3.3 and 4.3.4 for more details). Rather, a mechanism is needed to 

synthesize data across studies. Wang et al. (2020) synthesized the results of previous 

simulation and field experiments that estimated safety effectiveness by performing a meta-

analysis of 89 studies. They estimated the safety effectiveness of nine ADASs, in 

descending order: intersection movement assists, pedestrian collision and mitigate 

(PCAM), lane-departure warning (LDW), lane-change warning (LCW), forward collision 

warning (FCW), electronic stability control (ESC), blind-spot warning, automated 

emergency braking (AEB), and adaptive cruise control (ACC). 

Wang et al. (2020) further designed a target crash population study to implement 

the estimated ADASs’ safety effectiveness rates and quantify the potential impacts of CVs 

and AVs on different crash types. The results of their analyses showed that 3.4 million 

crashes could be prevented between 2012 to 2016; this figure represented a significant 

reduction in crashes in India (54.24%), Australia (51.55%), the United States (48.07%), 

New Zealand (45.36%), Canada (44.71%), and the UK (40.95%).  

2.4 Comparing AV Safety Evaluation Approaches 

Six approaches for quantifying AV safety were identified in this review. The 

identified approaches were investigated in terms of their input, output, and level of safety 

implications they address. The identified approaches' inputs included predefined 

information on AVs’ functionality, conventional vehicle crashes, AV road test crashes and 

errors, study-specific observations, and assumptions and speculations regarding AV 

implementation. This review showed that the target crash population approach could be 
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used to estimate the number of preventable crashes for evaluating AV safety at the 

transportation system and society level. Road test data analysis, which mainly focuses on 

AV crashes' characteristics, compares system failure and crash frequencies of AVs with 

conventional vehicles. The road test data analysis approach can be used for evaluating AV 

safety at the transportation system and society levels. Driving simulators and traffic 

simulation studies can be used for evaluating AV safety in terms of SSMs under different 

implementation scenarios. While driving simulators investigate AV safety and its potential 

operational challenges (e.g., disengagement from ADS) at the vehicle level, traffic 

simulation studies consider AVs’ performance and their interactions with other vehicles in 

a fleet at the transportation system level. The driving simulator studies also unveil some 

information regarding the user’s behavior, such as car-following behavior, that is later used 

as an input in the traffic simulation studies. AVs’ safety effectiveness is estimated as a 

result of synthesizing the simulator and simulation studies and statistically analyzing their 

outputs. Although safety effectiveness was defined for ADASs in the literature, this 

method can be used to evaluate the safety of ADS as well. The estimated safety 

effectiveness (from traffic simulations or driving simulators) is then used to provide 

insights into AV safety at both the transportation system and society levels. The system 

failure assessment approach can evaluate AVs’ safety at the vehicle level in terms of the 

system components’ failure rate. Figure 2.3 summarizes the inputs, outputs, and potential 

applications of the identified approaches. 
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Figure 2.3. Summary of the inputs, outputs, and potential application of AV safety 

quantification methodologies (Reprinted with permission from Sohrabi et al. 

2021) 

The AV safety quantification approaches vary in terms of (a) availability of input 

data, (b) suitability for evaluating different levels of automation, and (c) reliability of 

estimations. Figure 2.4 shows the trade-off between AV safety quantification methods 

based on their relative capabilities in terms of these three criteria. This qualitative analysis 

is based on a comprehensive review of the literature and a detailed evaluation of each 

approach’s capabilities rather than quantitative analyses. 

 The road test data analysis method is able to evaluate the safety of higher levels of 

automation with minimal uncertainty; however, it requires extensive and reliable AV crash 

data. The target crash population method needs relatively fewer input data and can estimate 
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the safety benefits of lower automation levels; nevertheless, considerable uncertainty exists 

in the estimates. The traffic simulation, driving simulator, safety effectiveness, and system 

failure assessment approaches can be used to evaluate all levels of automation.  

 

Figure 2.4. Trade-offs between relative availability of data, suitability for evaluating 

levels of automation, and reliability of estimations (Reprinted with permission 

from Sohrabi et al. 2021) 

2.5 AV Safety Evaluation Challenges 

We identified four challenges to AV safety evaluation:  

1. Limitations in the existing quantification methodologies 

2. Uncertainties in AV implementations and their impacts on AV safety 

3. Potential riskier behaviors of AV passengers as well as other road users 

4. New safety issues related to AV implementations 
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2.5.1 Limitation in the Existing Quantification Methodologies  

Certain limitations in existing AV safety quantification methodologies can 

jeopardize the safety evaluation of this new technology. The target crash population studies 

did not account for the risky scenarios that AVs might cause (e.g., disengagement or 

system failure) and totally disregarded probable new crashes. The mixed traffic safety 

issues (interaction of AVs and conventional vehicles) and the way an AV driver reacts to 

hazards were not considered in the target crash population methodology as well. Thus, this 

method is expected to represent a theoretical upper bound (or optimistic estimations) of 

AVs’ potential safety benefits, as opposed to their expected actual benefits.  

Driving simulator studies were designed to evaluate AVs’ potential safety 

challenges. Traffic simulation studies can also be used to account for both AV and 

conventional vehicles’ driving behaviors and mixed traffic safety issues. Nevertheless, 

driving simulators and traffic simulation studies have certain limitations. They are subject 

to biases from a variety of sources, such as participants (e.g., driving behavior and fatigue), 

simulator and simulation environment (e.g., physical fidelity and functional fidelity), and 

SSM selection. Employing different SSMs to evaluate AV safety in simulators and 

simulations makes it almost impossible to directly compare the literature, although a 

general comparison in terms of the overall safety trend of AVs could be conducted using 

SSMs. Another challenge in simulator and simulation studies is the limitations in 

calibration and validation of experiment results since AV road test data—which is the 

ground truth data—are limited. Because safety effectiveness estimations are based on the 

results of simulation and simulator studies, they carry remarkable uncertainty as well. 
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The system failure assessment methodology was used to quantify the crash risks 

associate with the failure probability of ADASs/ADSs technologies. However, looking at 

the system failure rates individually can result in overestimating AV failures, given that 

other components can compensate for the failure of the deficient components. For 

example, in the event of an AV radar malfunction, the camera vision can help to activate 

the collision prevention system and avoid a collision. Moreover, system failure assessment 

relies on system failure rates from private companies. Collecting accurate system failure 

rates is challenging since this information should be collected from the manufacturer and 

might be underreported.  

The road test data analysis was purported to be the most reliable method for 

evaluating AV safety. However, existing road tests are limited, and more data are required 

to draw reliable conclusions on AV safety. Accounting for AVs’ safety implications at 

different MPR levels is another limitation of road test data, given that higher MPR cannot 

be expected in the near future. Also, a decisive comparison between AV and conventional 

vehicle crashes is subject to accurate and reliable information about the AV testing 

environment (ODD and fallback-ready user) as well as conventional vehicle crashes (non-

reportable crashes). Increases in AV road test analysis studies in recent years (Figure 3) 

can be associated with larger and more reliable road test datasets. However, quantifying 

AV safety with road test data has been criticized because they expose road users to road 

hazards (Kalra, 2017).   

2.5.2 Uncertainties in AV Implementations and Their Impacts on AV Safety 

AV impacts on transportation go beyond safety impacts. By offering a safer, 

cheaper, and more comfortable travel option to individuals with disabilities, AVs may 
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induce additional transportation demand and encourage longer trips. AVs can also 

encourage shifting from public transit and active transportation (walking and cycling) to 

private cars (Fagnant and Kockelman, 2015). Transportation and land use are tightly linked 

in urban areas (Rodrigue et al., 2016); consequently, changes in transportation can 

ultimately result in urban sprawl (i.e., migrating to areas with lower density and 

consequently spreading a city’s boundaries). Urban sprawl increases total VMT (Childress 

et al., 2015) and negatively influences accessibility in an urban area (Milakis et al., 2017). 

In addition, the uncertainties in AVs’ intention of use and disproportionate ownerships will 

affect transportation systems, travel patterns, and urban design. 

Changes in VMT and modal shifts, along with the level of MPR, are factors that 

can impact traffic safety at the transportation system and society levels. Therefore, these 

changes need to be considered in AV safety evaluations to attain accurate insights into AV 

safety implications. Full-chain assessment of AV safety—including AV adoption 

modeling, urban growth modeling, travel demand modeling, and safety analysis—can be a 

potential avenue to address the uncertainties associated with AV implementations in the 

transportation system, travel patterns, and urban design.  

2.5.3 The Potential Risky Behaviors of AV Passengers and Other Road Users 

Changes in AV and conventional vehicle users’ behavior need to be considered in 

AV safety evaluation. Based on research conducted by AAA Foundation, a substantial 

minority of early adopters of braking assistance systems reported having had a crash or 

near-crash while driving a vehicle without this technology, supposedly because of incorrect 

expectations from the unequipped vehicle to provide warnings (Jenness et al., 2007). Gouy 

et al. (2012) ran a driving simulator experiment and showed that the conventional vehicles 
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would be driven more aggressively if joining a platoon of AVs. The riskier behavior of 

drivers during interaction with AVs can be explained by the risk homeostasis hypothesis 

(Wilde, 1998). Based on this hypothesis, every person has an acceptable amount of risk 

that they find tolerable. According to Wilde (1998), “If the perceived level of risk in one 

part of a person’s life changes, they will compensate by either reducing or increasing the 

risks they take―all in order to maintain an equilibrium of perceived risk.” 

2.5.4 New Safety Issues Related to AV Implementations 

Cybersecurity is another potential concern related to AV operation because hacking 

and vehicle misuse can result in catastrophic crashes (Lee, 2017, Taeihagh and Lim, 2018, 

Cui et al., 2019). A car hacking experiment conducted by (Jafarnejad et al., 2015) 

demonstrated that electric vehicles could be easily controlled remotely by mobile 

applications that forced the vehicles to go forward or backward, limited their speed, and so 

on. In addition, the ethical dilemma associated with AV reactions during unavoidable 

situations introduces another challenge in AV operation (Goodall, 2014, Awad et al., 2018) 

that requires further attention. Although AVs’ ethical issues cannot directly impact AV 

safety evaluation, they concern about the liability of AVs in crashes, which requires 

judiciary attention. 

2.6 Chapter Summary 

This chapter has documented the scoping review methodology used for 

synthesizing the AV safety quantification methods. The chapter first identified and 

provided an evaluation of the quantification methods and uncovered the gaps and 

challenges in AV safety evaluation. The AV safety quantification methods were 
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categorized into six groups: target crash population, road test analysis, traffic simulation, 

driving simulator, safety effectiveness estimation, and system failure assessment. This 

review showed that existing methodologies for AV safety evaluation carry certain 

shortcomings and cannot be used for reliable evaluation of AV safety. In addition, the 

major challenges in AV safety evaluations are discussed, including uncertainties in AV 

implementations and their impacts on AV safety, potential riskier behavior of AV 

passengers as well as other road users, and emerging safety issues related to AV 

implementations. The next chapter describes the proposed methodology for quantifying the 

safety performance of AVs and its contribution to the literature. 
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3 CHAPTER 3   

AUTOMATED VEHICLE SAFETY EVALUATION METHODOLOGY 

 

 

This chapter introduces the proposed AV safety evaluation methodology. In the 

following sections, first, the motivations behind proposing a new methodology and how it 

addressed the limitations of AV safety evaluation methodologies (extensively discussed in 

the comprehensive literature review conducted in Chapter Two) are highlighted. Then, the 

researcher skims over the survival analysis and its history in crash prediction models. 

Then, the survival function for the AV safety evaluation problem is formulated, and the 

proposed AV safety evaluation methodology, and the theory behind it, are then explained.  

3.1 Motivations and Contributions to the Literature 

In Chapter Two, the comprehensive review of the existing AV safety evaluation 

methodologies identified six approaches through which AV safety can be quantified. Each 

approach was further analyzed and evaluated in terms of: 

1- required inputs and availability of data,  

2- output and metrics through which they measure AV safety, 

3- their application for vehicle, system, and society level safety evaluations,  

4- their suitability for diffident levels of automation safety evaluation, and  

5- the reliability of the estimation. 

As a result, the gaps and limitations of AV safety evaluation methodology and 

challenges in AV safety evaluations were identified. Among the identified evaluation 

approaches, road test analysis was discussed to result in the most reliable estimations of 
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AVs safety since it automatically considers AV safety challenges such as riskier behavior 

of AV users, risks of AV interaction with human-driven vehicles, and system failure risk. 

To achieve reliable estimations using road test data analysis, AVs are required to be tested 

extensively on roads. Although AV road tests are permitted in many states, the potential 

safety concerns associated with AV operation persuades decision-maker to hinder immense 

road tests of AVs. This “chicken or egg” paradox urges the need for safety evaluation of 

AVs in the meantime, with limited road test data. The existing road test analysis literature 

assumes conventional vehicle safety as the benchmark and evaluates AV safety using this 

benchmark. Conventional vehicles and AV safety were mainly measured using the rate of 

crashes per VMT. This analysis can be biased given that (1) conventional vehicle crashes 

are underreported, and comparing AV and conventional vehicle crashes will be unfair, and 

(2) the rate of crashes provides limited information about AV safety, especially when 

dealing with small datasets. This resulted in biased, unreliable analysis of AV crashes in 

the literature.  

Another application of road test data is identifying and assessing the factors that 

contribute to AV crashes. Although the existing econometrics methodologies for crash 

predictions can examine the impacts of road characteristics and environmental conditions 

on AV crashes frequency at the road segment level, the impacts of vehicle-level factors 

remain unclear. For instance, the safety impacts of AV technology improvements can be of 

interest to manufactures which cannot be considered in traditional econometrics 

methodologies used in road test analyses. The contribution of AV driver’s characteristics 

(in levels 1, 2, and 3) to crash frequency is another example in which the existing road 
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segment-level methodologies cannot be used for investigating vehicle-level contributing 

factors. 

Analysis of road test data can be used to support efficient safety effectiveness 

estimation of AVs, given that the safety challenges of AV operations are reflected in road 

test data. In this case, the road test data analysis can be used for AV safety evaluations not 

only at the vehicle level but also transportation system and society level.  

In this research, the limitations in the existing AV safety evaluation and road test 

analysis method are addressed by rethinking the AV safety evaluation problem and 

proposing a new safety performance evaluation methodology based on survival analysis. 

The proposed methodology could be used for evaluating AV safety with limited data. On 

the basis of the proposed methodology, new metrics can be defined to estimate the safety 

effectiveness of AVs and support their safety validations. The new methodology can 

further expand to study the impacts of vehicle-level contributing factors to AV crashes, 

such as safety technologies.  

3.2 Background 

This section contains an introduction to survival analysis and its application in 

traffic safety and road crash analysis. 

3.2.1 An Introduction to Survival Analysis 

The first survival analysis can be traced back to the 17th century, where it was 

organically used in biomedical science, and then, it has been used in many disciplines, 

including engineering (Liu, 2012). Survival analysis refers to methods to investigates the 

length of time to occurrence of an event in a specific observation period. Survival is the 
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process or the life span from a specific starting time to an event. While events in survival 

analysis evoke morbidity or mortality, they were also defined as divorce or collapse of the 

political system in social science and system failure or product deficiency in engineering. 

An example of survival analysis can be exploring the association between breast and 

coping strategies among Black and white women (Reynolds et al., 2000). In this example, 

patients’ survival is studied in an observation period interval, and the event can be defined 

as deaths from breast cancer. 

More formally, survival analysis enables us to make predictions not only based on 

events but also “time-to-event.”  Unlike comparing the rate of an event between two 

datasets, survival analysis explores another layer of information, the time of a particular 

event. Suppose that in the breast cancer survival example, Black and white patients have 

similar rates of death in an observation period, but the events are observed sooner among 

Black patients. While the two datasets are similar in terms of the rate of event, considering 

the time-to-event would distinguish these two datasets. This implies that survival analysis 

considers information about the event frequency as well as the time that event occurred. If 

we consider an event as a change in status, survival prediction models resemble the 

qualitative choice analysis models, such as logistic, logic, and probit models (Train, 2009). 

However, in survival analysis, another layer of information, time-to-event, is incorporated 

in predictions.  

Back to the women breast cancer example, the survival of patients was examined in 

a specific observation period. Therefore, the survival analysis includes the events that 

occur within the observation period, although some patients may die after. In this case, the 

patient information cannot be included in the survival analysis. Another example can be 
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losing contact with the patient throughout the longitudinal survival analysis. The loss of 

observation in the survival analysis is referred to as censoring. Censoring would result in 

incomplete survival data, which adds complexities to survival analysis. 

To this point, the discussion about survival function was limited to a homogeneous 

population. But the survival function needs to be adjusted in a heterogeneous population 

using explanatory variables. In the women’s breast cancer example, the patients have 

different characteristics (age, race, tumor stage, study location, etc.) that can be associate 

with the event. The time to event, in this case, can be characterized using such factors. In 

this case, age, race, tumor stage, and study locations will be the explanatory variables that 

can address the heterogeneity in the population.   

3.2.2 Survival Analysis in Traffic Safety 

Survival analysis in the context of traffic safety and crash analysis can be traced 

back to the 80s, where Jovanis and Chang (1989) studied the probability of accident 

occurrence on individual trips. They further defined a general structure for studying 

accident occurrence using survival analysis (Chang and Jovanis, 1990). In the 90s, Lin et 

al. (1993) explored the safety impacts of driving-hour regulations on less-than-truckload 

carriers, and Mannering (1993) examined the role of gender in crash risk using survival 

analysis. Since then, survival analysis was revisited for different types of traffic safety 

analyses―including investigating drink and drive events (Ferrante et al., 2001), assessing 

pedestrian risk exposure at signalized intersections (Tiwari et al., 2007), exploring 

contributing factors to driving-under-influence crashes (Fu, 2008), examining the risk of 

driving for older drivers (Caragata Nasvadi and Wister, 2009), comparing intersections and 

local road crashes (Bagloee et al., 2016), contributing factors to motorcycle crashes (Chen 
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et al., 2018, Balusu et al., 2020) and contributing factors to sever crash events (Xu et al., 

2018).  More recently, Xie et al. (2019) have used survival analysis for evaluating the 

impacts of safety treatments in before and after studies. Table 1 represents a summary of 

survival analysis in the context of traffic safety. 

Survival analysis in the context of traffic safety was limited to road user (driver or 

pedestrian) (Mannering, 1993, Ferrante et al., 2001, Tiwari et al., 2007, Caragata Nasvadi 

and Wister, 2009, Balusu et al., 2020), crash type (Fu, 2008, Xu et al., 2018), and road 

infrastructure (Bagloee et al., 2016, Xie et al., 2019) perspective. Also, in the previous 

time-to-event analyses, “time” and “event” were defined based on the research questions. 

Time (mainly in the form of the number of days to an event) was mainly used (Jovanis and 

Chang, 1989, Lin et al. 1993, Mannering, 1993, Ferrante et al., 2001, Tiwari et al., 2007,  

Fu, 2008, Caragata Nasvadi and Wister, 2009, Xu et al., 2018, Xie et al., 2019, Balusu et 

al., 2020) to represent the longitudinal data while Bagloee et al., (2016) considered the 

distance of crash to the intersection as the longitudinal parameter in survival analysis. The 

events were considered as the occurrence of crash (Jovanis and Chang, 1989, Lin et al. 

1993, Mannering, 1993, Ferrante et al., 2001,  Fu, 2008, Caragata Nasvadi and Wister, 

2009, Bagloee et al., 2016, Xu et al., 2018, Xie et al., 2019, Balusu et al., 2020), unsafe 

intersection passing events (Tiwari et al., 2007), Driving Under Influence (DUI) arrest 

(Ferrante et al., 2001). 

3.3 Survival Process of a Vehicles   

While the literature about survival analysis in the context of traffic safety is limited 

to the road user-level, crash type-level, and road infrastructure-level analyses, survival 

analysis can be used for vehicle-level analysis, considering patients as vehicles. In this 
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case, the survival of a vehicle can be studied, and those vehicles that cannot be tracked will 

be censored. In the context of AV safety evaluation, vehicle-level survival analysis would 

be challenging given the limitation in the available data. To overcome such issues and the 

need for censored survival analysis and its complexities, we can aggregate individual 

vehicles to the type of vehicle and assume the lifetime is shorter than the duration of the 

experiment. If we consider crashes as the events and VMT as the time, time-to-event can 

be defined as miles-to-crash. Suppose 𝑋 is the number of miles to crash with a distribution 

function 𝑓(𝑥). The cumulative distribution of 𝑓(𝑥), 𝐹(𝑥) = Pr(𝑋 < 𝑥), represents the 

probability that a crash occurred before 𝑥 miles. The probability of survival beyond 𝑥 

miles can then be defined Equation 3.1 (Liu, 2012):  

 

𝑆(𝑥) = Pr(𝑋 > 𝑥) = ∫ 𝑓(𝑡)d𝑡

∞

𝑥

 (Equation 3.1) 

 

where 𝑆(𝑥) is the survival function. Since 𝑋 is a continuous variable, the survival 

function is a strictly decreasing function. The cumulative distribution function of MTC is 

the complement of the survival function (Equation 3.): 

 𝐹(𝑥) = 1 − 𝑆(𝑥) (Equation 3.2) 

If we consider that survival function represents the safety reliability of vehicles, 

then 𝐹(𝑥) can be referred to as the failure function. Unlike the survival function, the 

failure function is strictly increasing. Failure function represents the likelihood of a vehicle 

to be involved in a crash after being driven for a given number of miles. Hereafter, the 

main discussion is around failure functions rather than survival functions for the sake of 

more tangible interpretations.  
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3.3.1 Hazard function 

The instantaneous rate of failure (crashes) can be estimated using the hazard 

function. The hazard function, ℎ(𝑥), can be estimated as the instantaneous rate of failure 

relative to the survival rate at time 𝑥 (Washington et al., 2020):  

ℎ(𝑥) = −
1

𝑆(𝑥)

d𝑆(𝑥)

d𝑥
=

𝑓(𝑥)

𝑆(𝑥)
 (Equation 3.3) 

Interpreting the hazard rate can be challenging since the vehicles are expected to 

maintain a constant hazard rate λ throughout their operation. This implies that the 

exponential survival function (with constant hazard rate) can accurately and sufficiently 

characterize the survival function. In the context of AVs, however, there are certain 

scenarios under which the hazard rate can be a function of mile driver 𝜆(𝑥), i.e., it can 

change over the number of miles driven by the vehicle. For example, one can resemble the 

learning process of AVs with a human driver. Over time as the number of miles driven 

increases, the human driver is expected to gain more experience and drive safer, as do 

AVs; hence the hazard rate decreases. Therefore, we can characterize the learning curve 

for AVs by hazard function (a function of the number of miles driven). Also, from the 

manufacturing life cycle point of view, defective vehicles will be failed early on in the life 

cycle. Once they are removed from the testing sample, the hazard rate decreases over time.  

It can be shown that for hazard rate 𝜆(𝑥), the survival function will be 𝑒− ∫  𝜆(𝑦)𝑑𝑦
𝑥

0  

(see (Klugman et al., 2012) for derivation). The failure function and the distribution of the 

number of miles to crash can also be derived as (Klugman et al., 2012): 

𝐹(𝑥) = 1 − 𝑒− ∫  𝜆(𝑦)𝑑𝑦
𝑥

0  (Equation 3.4) 
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𝑓(𝑥) = 𝜆(𝑥)𝑒− ∫  𝜆(𝑦)𝑑𝑦
𝑥

0  (Equation 3.5) 

Respectively, the hazard function can be estimated using Equation 3.3. 

3.3.2 Parametrized survival function 

While empirical (non-parametric) distributions are informative and flexible, the 

parametric distribution can help to describe a theoretical problem. It would be specifically 

helpful when dealing with a smaller dataset, which its parametrization will result in a 

smooth function.  

The maximum likelihood estimation (MLE) method can be used for estimating the 

parameters of the parametric failure function. Suppose that random variables 𝑥1, 𝑥2, … , 𝑥𝑛 

have joint probability function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛|𝜃), where 𝜃 represents the parameters of the 

density function. Then, the likelihood of 𝜃 as a function of 𝑥1, 𝑥2, … , 𝑥𝑛: 

 𝐿(𝜃) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛|𝜃) 
(Equation 3.6) 

The MLE of 𝜃 would be the value that maximizes 𝐿(𝜃). For observed values 𝑋𝑖 =

𝑥𝑖, where 𝑖 = 1, 2, … , 𝑛, if 𝑋𝑖 is identically independently distributed (𝑖. 𝑖. 𝑑. ), then the 

joint probability function is the product of marginal probabilities: 

𝐿(𝜃) = ∏ 𝑓(𝑋𝑖|𝜃)

𝑛

𝑖=1

 (Equation 3.7) 

To solve the maximization problem and find 𝜃, the log-likelihood function will be 

maximized: 

 𝑙(𝜃) = ∑ log [𝑓(𝑋𝑖|𝜃)]

𝑛

𝑖=1

 (Equation 3.8) 
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The goodness-of-fit (GOF) of the fitted parametric distribution to the empirical 

failure functions can be examined in terms of Akaike information criterion (AIC) and 

Bayesian information criteria (BIC), and visuality using quantile-quantile plot (Q-Q plot) 

and probability-probability plot (P-P plot). Moreover, the fitted distribution functions 

should be statistically significant, which is examines using hypothesis tests. Section 3.3.3 

discusses the hypothesis testing in more detail.  

The choices of parametric distribution functions should be in line with the theories 

behind the changes in hazard rate over time. As discussed earlier, for conventional 

vehicles, the hazard rate cannot change over time and therefore is assumed to be constant. 

In this case, the distribution of the number of miles to crash can be shown to follow an 

exponential distribution. On the other hand, for AV, the hazard rate can vary over time, 

and therefore, the survival function can be characterized by Weibull, log-normal, log-

logistics, and gamma distribution functions.  

3.3.3 Hypothesis test 

To validate AV safety, we can test the hypothesis that automated and conventional 

vehicles’ failure functions are statistically consistent. Two powerful statistical tests, 

Kolmogorov-Smirnov (K-S) test and Anderson-Darling (A-D) test, are suggested to test 

this hypothesis (Razali and Wah, 2011). K-S and A-D tests are two sample tests that can be 

used for comparing both parametric and non-parametric failure functions. 

The hypothesis that whether the AVs parametric failure function 𝐹𝐴𝑉(𝑥) is the 

same as the conventional vehicles failure function 𝐹𝐶𝑉(𝑥) or not need to be examined, i.e., 

the null hypothesis being that the two parametric distributions are identical: 
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𝐻0: 𝐹𝐴𝑉(𝑥) = 𝐹𝐶𝑉(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 

𝐻𝐴: 𝐹𝐴𝑉(𝑥) ≠ 𝐹𝐶𝑉(𝑥) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥 

According to the K-S test, the test statistic would be the maximum distance of two 

distributions:  

 𝐷1,2 = Sup
𝑥

|𝐹𝐴𝑉(𝑥) − 𝐹𝐶𝑉(𝑥)| (Equation 3.9) 

where “Sup” stands for Supremum function. The K-S test statistic 𝐷1,2 is then 

compared to critical values 𝐷1,2,𝛼 for desired significance level. The critical values are 

estimated from the Kolmogorov distribution. If 𝐷1,2 exceeds the 𝐷1,2,𝛼, then the null 

hypothesis (𝐻0) can be rejected and we conclude the 𝐹𝐴𝑉(𝑥) and 𝐹𝐶𝑉(𝑥) are different 

distributions.   

Unlike the K-S test, the A-D test finds the difference between two distributions 

giving more weight to the differences between the tails of distributions 𝐹𝐴𝑉(𝑥) and 𝐹𝐶𝑉(𝑥). 

While the test hypothesis is defined similar to the K-S test, the difference between the 

distributions can be defined as (Anderson, 2011):  

𝑊𝑛
2 =  𝑛 ∫ [𝐹𝐴𝑉(𝑥) − 𝐹𝐶𝑉(𝑥)]

2
∞

−∞

𝜓 (𝐹𝐶𝑉(𝑥)) 𝑑𝐹𝐶𝑉(𝑥) (Equation 3.10) 

where 𝜓(𝑧) is the weight function such that 𝜓(𝑧) > 0 and 𝜓 = [𝐹𝐶𝑉(𝑧) (1 −

𝐹𝐶𝑉(𝑧))]
−1

. When 𝑈 = 𝐹(𝑥) is a random variable with distribution function 𝑢 = Pr (𝑈 <

𝑢 = Pr(𝐹(𝑥) < 𝑢}},  0 ≤ 𝑢 < 1, Anderson and Darling (1954) showed that the Equation 

10 can be written as: 

𝐴𝑛
2 =  −𝑛 −

1

𝑛
∑ (2𝑗 − 1)[log 𝑢(𝑗) + log𝑛

𝑗=1 (1 − 𝑢(𝑛−𝑗+1))] 
(Equation 3.11) 
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where 𝑢(𝑗) = 𝐹𝐶𝑉(𝑥(𝑗)) and 𝑥(1) < 𝑥(2) < ⋯ < 𝑥(𝑛) is the ordered sample. The A-

D test critical values are estimated for different distribution functions (Jäntschi and 

Bolboacă, 2018). Similar to K-S test, null hypothesis is rejected if A-D test statistics (𝐴𝑛
2 ) 

exceed the critical values. 

In addition, the suggested hypothesis test can be used to examine the GOF of the 

parametric distribution functions to the empirical distribution functions. The fitted 

functions should be statistically significant.  

3.3.4 Automated vehicle safety effectiveness 

In addition to graphical comparison and interpretation of the survival curves, 

Restricted Mean Survival Time (RMST) is another informative metric used in the survival 

analysis literature to compare survival functions (Royston and Parmar, 2013, Harhay et al., 

2018). The RMST of a random variable 𝑇, µ(𝑥∗), is the expected value of 

min(𝑋, 𝑥∗)―i.e., the area under the survival curve 𝑆(𝑥) up to 𝑥∗: 

 µ(𝑥∗) = 𝐸(min(𝑋, 𝑥∗)) = ∫ 𝑆(𝑥)d𝑥
𝑥∗

0

= ∫ (1 − 𝐹(𝑥))d𝑥
𝑥∗

0

 (Equation 3.12) 

Since 𝑋 is the number of miles to a crash, RMST can be interpreted as the no-crash 

expectancy until 𝑥∗ miles. For example, AV no-crash expectancy in the next 1 million 

miles can be 0.5 million miles, which means no-crashes are expected after 0.5 million 

miles of driving in the next 1 million miles of AV operation. The no-crash expectancy can 

be defined similarly for conventional vehicles. To compare the conventional vehicle and 

AV safety at 𝑥∗, RMST is estimated for, and their ratio is calculated. For entire AV and 
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conventional vehicle operations, when 𝑋 → ∞, the calculated ratio resembles the safety 

effectiveness (𝑆𝐸) of AVs in comparison to conventional vehicles: 

 
𝑆𝐸 =

𝑅𝑀𝑆𝑇𝐴𝑉

𝑅𝑀𝑆𝑇𝐶𝑉
=

µ𝐴𝑉(𝑋)

µ𝐶𝑉(𝑋)
=

E𝐴𝑉(𝑋)

E𝐶𝑉(𝑋)
= 

(Equation 3.13) 

 
       =

𝐴𝑉 𝑛𝑜– 𝑐𝑟𝑎𝑠ℎ 𝑒𝑥𝑝𝑒𝑛𝑡𝑒𝑛𝑐𝑦 

𝐶𝑉 𝑛𝑜– 𝑐𝑟𝑎𝑠ℎ 𝑒𝑥𝑝𝑒𝑛𝑡𝑒𝑛𝑐𝑦
 

 

where 𝑋 is the miles to crash (MTC), E𝐴𝑉(𝑋) is expected value of AV’s MTC and 

E𝐶𝑉(𝑋) is the expected value of conventional vehicles MTC. If 𝑆𝐸 is larger than 1, then it 

is assumed that AVs are safer; otherwise, conventional vehicles are safer. 

3.3.5 Automated vehicle crash contributing factor 

The contributing factors to AV crashes can be investigated at the vehicle level road 

segment level. The survival analysis allows us to conduct vehicle-level safety analysis. 

However, at the road segment level, considering hazard rate as a function of time would 

violate the assumptions behind existing crash prediction models in the road safety 

literature (Lord et al., 2005, Lord and Mannering, 2010). We further discuss each level of 

AV safety analysis in the subsequent sections.   

3.3.5.1 Vehicle-level safety analysis 

The hazard function can also be estimated as the ratio of the condition probability 

at 𝑥 given the condition 𝑋 ≥ 𝑥 over an infinitesimal time change (Liu, 2012): 

ℎ(𝑥) = lim
𝛥𝑥→0

Pr{X ∊ (𝑥, 𝑥 + 𝛥𝑥]|𝑋 ≥ 𝑥}

𝛥𝑥
 (Equation 3.14) 

Therefore, the hazard rate is the conditional probability of failure with respect to 

the limit of a time interval.  
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Now, let us associate the failure at mile 𝑥 with a vector of explanatory variables 

𝒁 = (𝑍1, … , 𝑍𝑝), where 𝒁 includes vehicle characteristics such as vehicle make, vehicle 

age, driver skill, vehicle safety technology, etc. The effect of explanatory variables can be 

captured by classical linear regression, modeling the natural logarithm of the survival time 

𝑌 = ln(𝑋). However, the linear regression approach requires assumptions regarding the 

distribution of survival time. An alternative approach can be modeling the condition hazard 

rate as a function of the explanatory variables. In this case, the condition hazard rate with 

covariate vector 𝒛 is a product of baseline hazard rate ℎ0(𝑥) and non-negative function of 

covariates (Liu, 2012):  

ℎ(𝑥|𝒛) = ℎ0(𝑥)𝑐(𝛽𝑡𝒛) (Equation 3.1) 

where 𝛽𝑡 is the coefficient of covariates (explanatory variables). In these models, 

the hazard rate of two individuals with a distinct value of 𝒛 is proportional at mile 𝑥. For 

instance, for covariate values 𝒛1 and 𝒛2 we have the constant and independent of time ratio 

of:  

ℎ(𝑥|𝒛1)

ℎ(𝑥|𝒛2)
=

ℎ0(𝑥)𝑐(𝛽𝑡𝒛𝟏)

ℎ0(𝑥)𝑐(𝛽𝑡𝒛𝟐)
=

𝑐(𝛽𝑡𝒛𝟏)

𝑐(𝛽𝑡𝒛𝟐)
 

(Equation 3.16) 

In the Cox proportional regression, the link function 𝑐( ) is considered as an 

exponential function (a monotonic increasing function) (Liu, 2012, Washington et al., 

2020). Unlike classical regression models, the Cox proportional hazards model is a semi-

parametric model, with no assumptions about the shape of the baseline hazard function. 

However, other assumptions such as independence and linear association between the 

natural logarithm of the hazard rate and covariates exist. 
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3.3.5.2 Road-segment level safety analysis 

It is shown that the fundamental crash process follows a Bernoulli trial with an 

unequal probability of independent events, also known as the Poisson process (Lord et al., 

2005). Three postulates of Poisson processes are listed below: 

1- The changes occurring in non-overlapping intervals are independent. 

2- The probability of two or more changes taking place in sufficiently small intervals is 

essentially zero. 

3- The probability of exactly one change in a short interval (𝑥, 𝑥 + 𝛿) is approximately 𝜆𝛿 

where 𝛿 is sufficiently small and 𝜆 is positive constant.  

If we relax the third assumption and assume the hazard rate 𝜆 as a function of the 

number of miles  𝜆(𝑥), then the AV crash occurrence can be considered as a non-

homogeneous Poisson process. In this case, the ubiquitous Poisson and Negative binomial 

regression models can be effectively used for AV crash prediction at the road-segment 

level. For instance, if the mile-to-crash distribution follows the Weibull distribution, the 

hazard rate function will become 𝜆(𝑥) =
𝛼

𝛽
(

𝑥

𝛽
)𝛼−1. In case α = 1, the hazard rate becomes 

constant and AV crash occurrence follows the Poisson process. When the parameter α < 1, 

the failure rate decreases over time, which can represent the learning curve of AV over the 

number of miles traveled or be used to model life cycle of AV from the manufacturing 

perspective. 

3.4  Chapter Summary 

This chapter introduced the proposed AV safety methodology on the basis of 

survival analysis. The proposed methodology addresses some of the limitations and gaps in 

AV safety evaluations. First, the proposed model adds a new layer of information (time of 

the crash) to the analysis that addresses the limited availability of road test data and 
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uncertainties in their analyses. Second, in light of rethinking AV safety evaluation using 

survival analysis, a new metric is defined, no-crash expectancy, which can support AV 

safety effectiveness estimations for system-level and society-level safety evaluations. 

Third, the posed methodology can be used for vehicle-level crash contributing factor 

analysis. Fourth, we showed that the existing road safety analysis methods must be 

revisited in the era of automation to account for the decreasing AV hazard rate over time 

(number of miles the vehicle is operated). An empirical study is designed to examine the 

proposed methodology and evaluate the safety of existing AVs under road tests while 

conducting a fair comparison between AV and conventional vehicle crash frequencies. The 

empirical study is discussed in the next chapter.  
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4  CHAPTER 4 

EMPIRICAL STUDY DESIGN 

In this chapter, the researcher describes the rational motivation and rationale behind 

designing an empirical study for AV safety evaluations. This chapter contains an 

introduction about the data used in the empirical study, including an overview of the 

available AV crash data is presented along with the source of conventional vehicles 

crashes data. The researcher further elaborates on the designed empirical study 

architecture, including the process of creating the datasets, examining the proposed 

methodology, and comparing AV and conventional vehicle safety using the proposed 

methodology. 

4.1 Motivation 

An empirical study is designed to evaluate AV safety with two objectives. First, the 

empirical study targets the false equivalency between automated and conventional vehicles 

crashes stemmed from the limitations in the availability of conventional vehicles’ non-

police-reportable crashes (discussed in chapters 2 and 3). To this end, the fallacy in 

comparison between automated and conventional vehicles crash rates is addressed by 

sourcing the conventional vehicle crashes from the NDS database, which included both 

minor and major crashes―hence making it comparable to AV crashes reported by the 

automakers. Second, the proposed methodology is examined using comparable automated 

and conventional vehicle crash datasets. The limitations in data availability do not allow 

applying the proposed method thoroughly, e.g., the applicability of Cox proportional 
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regression for exploring the contributing factors to the crashes and AVs hazard rate 

estimations. Nevertheless, the applicability of survival analysis for AV safety evaluations 

is investigated. 

Given the scarcity of AV test drives and lack of transparency in AV road tests, the 

empirical study faced multiple challenges. The NDS data are available for purchase upon 

the Institutional Review Board (IRB) approval. The data availability and data sources are 

explained in the subsequent sections. 

4.2 AV Crash Data 

Automated driving road tests have been growing in recent years. According to 

NHTSA’s AV test initiative, 25 AV manufacturers and developers are testing their cars on 

United States public roads6. As shown in Figure 4.1, AVs are tested in 21 states (have 

submitted AV test information to NHTSA). A total number of 93 AV test sites are 

recognized by NHTSA, which the majority of sites are public streets (Figure 4.2a). 

Shuttles and cars are mainly testes on these sites (Figure 4.2b).  

 
6  Sourced from: https://www.nhtsa.gov/automated-vehicle-test-tracking-tool (May 2021) 

https://www.nhtsa.gov/automated-vehicle-test-tracking-tool
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Figure 4.1. States where AVs were tested on public roads (source: NHTSA AV test 

initiative) 

  
(a) (b) 

Figure 4.2. AV test sites (a) road types and (b) vehicle types 

Although AV companies are not required to report their vehicle information based 

on federal rules, state regulations can help to keep road tests transparent or make data 

available for the public. For example, the California Department of Motor Vehicles (CA 
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DMV) Autonomous Vehicle Tester (AVT) program in 2014 with the aim of testing 

autonomous vehicles with fallback users (test vehicles require a human in the driver seat 

who can take control of the vehicle at any time). According to this program, all 

manufacturers testing AVs on public roads are mandated to report crashes involving an AV 

within ten days after the collision.  

AV crash data are sourced from the CA AVT program. Crashes that occurred in 

one year of AVs operation on CA public roads are investigated. As of November 2020, 59 

permit holders are testing their AV under this program. CA AVT program defined AVs as 

“a vehicle that has been equipped with technology that is a combination of both hardware 

and software that, when engaged, performs the dynamic driving task, but requires a human 

test driver or a remote operator to continuously supervise the vehicle’s performance of the 

dynamic driving task.”7 According to this definition, vehicles equipped with one or more 

ADAS (Levels 1 and 2 of automation) are not tested in this program, and the AVT 

program is limited to testing level 3 of automation.   

Based on CA AVT regulations, AV companies are mandated to report AV-

involved crashes in fewer than ten days after the time of the crash, and so it can be 

assumed that the crash reports contain all AV-involved crashes. The crash reports consist 

of information regarding the crash time, cause of the crash, crash type, crash severity, and 

whether the crashes occurred under ADS operation or manual driving. Also, the annual 

mileage of each vehicle’s operation on public roads must be reported by the end of the 

year. The mileage dataset includes the vehicle identification number (VIN) and the number 

 
7 Sourced from https://www.dmv.ca.gov/portal/uploads/2020/06/Adopted-Regulatory-Text-2019.pdf (May 

2021) 

 

https://www.dmv.ca.gov/portal/uploads/2020/06/Adopted-Regulatory-Text-2019.pdf
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of miles it was operated during each month. No information regarding the environment 

under which AVs were test is publicly available. 

As of the time of developing this study, AV road test data were available until 

November 2020. Figure 4.3 represents the distribution of crashes and VMT from January 

2019 to November 2020. The data for the year 2019 is used, given the restriction in AV 

testing, and road traffic in general, because of the global pandemic in the year 2020.  

 

Figure 4.3. Distribution of AV crashes and VMT in 2019 and 2020 

AV testing data in 2019 includes 651 unique VIN from 30 AVT permit holders. 

The tested AVs were driven 2,849,850 miles in 2019 and were involved in 105 crashes. 

The crash data were manually extracted from the crash reports. Table 4.1 represents the 

share of companies in testing AVs and AV crashes.   
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Table 4.1. AV road test under CA AVT program in 2019 

Company Drive Test Mileage Number of Crashes 

Miles Percentage Count Percentage 

Waymo LLC 1302109.6 46.6% 25 23.8% 

CRUISE LLC 875744.5 31.3% 61 58.1% 

PONY.AI, INC. 202476.3 7.2% 2 1.9% 

Baidu USA LLC 106243.5 3.8% 0 0.0% 

Nuro 72146.8 2.6% 0 0.0% 

Zoox, Inc 70458.0 2.5% 8 7.6% 

Lyft 46864.1 1.7% 6 5.7% 

AutoX Technologies, Inc. 40802.0 1.5% 0 0.0% 

Mercedes Benz Research & 

Development North America, Inc. 

16011.4 0.6% 0 0.0% 

Aurora Innovation, Inc. 13852.1 0.5% 1 1.0% 

Apple Inc. 8192.9 0.3% 1 1.0% 

NVIDIA 7179.0 0.3% 0 0.0% 

AImotive Inc. 6386.0 0.2% 1 1.0% 

WeRide Corp 5920.0 0.2% 0 0.0% 

SF Motors, Inc. 3453.6 0.1% 0 0.0% 

Drive.ai Inc 3201.4 0.1% 0 0.0% 

Nissan North America, Inc 2329.4 0.1% 0 0.0% 

Nullmax 2201.0 0.1% 0 0.0% 

Qualcomm Technologies, Inc. 2182.9 0.1% 0 0.0% 

SAIC Innovation Center 2143.9 0.1% 0 0.0% 

Toyota Research Institute 2111.0 0.1% 0 0.0% 

Phantom AI, Inc. 1125.0 0.0% 0 0.0% 

PlusAI, Inc. 962.0 0.0% 0 0.0% 

Udelv, Inc 695.1 0.0% 0 0.0% 

Valeo North America Inc. 99.6 0.0% 0 0.0% 

BMW of North America 21.4 0.0% 0 0.0% 

Telenav, Inc. 21.0 0.0% 0 0.0% 

Tesla, Inc. 12.2 0.0% 0 0.0% 
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Since the crash reports do not include the VIN, the daily AVs VMT is estimated 

using the monthly VMT reports, assuming no variations in daily VMT in a month. The 

MTC is then approximated using the daily VMT and the time of the crash.  

4.3 NDS data 

NDS data are collected as part of the second Strategic Highway Research Program 

(SHRP2) program. In the SHRP2 study, more than 3,100 volunteer drivers in six locations 

had their cars equipped with cameras, radar, and other sensors to capture data as they went 

about their usual driving tasks. The six sites where NDS data were collected are Seattle, 

WA; Bloomington, IN; Buffalo, NY; State College, PA; Durham, NC; and Tampa, 

FL. The NDS includes the volunteer driver’s information, the vehicle they drive, and their 

trip information, as well as the potential crash and near-crash events that occurred in each 

trip. The NDS dataset consists of more than 5.4 million miles, more than 1 million hours of 

recorded videos, and more than 1,500 crashes. 

NDS study consists of four types of data and can be requested using the query tool 

available on the Insight website.  Time series or vehicle kinematics data include the data 

collected from each instrumented vehicle while it is being driven. Video data include the 

data collected from the cameras installed in the participant’s vehicle. Driver survey and 

questionnaire data include answers to questionnaires, vision test results, and the results of 

brief physical tests described in the consent agreement. Event data include the crash, near-

crash, and baseline event data. This data also includes follow-up investigations of selected 

crashes with answers to an interview with the driver by one of the SHRP 2 researchers and 

the police report resulting from the crash.  
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In this study, the NDS dataset should be consistent with the AV’s crash and VMT 

dataset in terms of the total VMT. A sample of consecutive trips is randomly selected; as 

such, the total number of miles driven would be equal to 3 million miles. Consequently, 

509,338 trips were included in the dataset, and a total number of 130 crashes were 

observed in these trips. Table 4.2 reports the characteristics of trips and crashes in the NDS 

data. The length of trips varies from less than a mile to 382.4 miles, with an average of 6.8 

miles. The average number of miles before a crash is calculated as 9.9. Given that the time 

of crashes is known, MTC is calculated using the trip lengths in the NDS dataset. To this 

end, the total VMT in the sample for consecutive crash reports is accumulated.  

Table 4.2. NDS data trips characteristics 

 Min Max Median Mean 

Trip Length 0.0 382.4 3.0 6.8 

Trips Length before a Crash 0.0 215.6 5.0 9.9 

4.4 Empirical Study Design 

The empirical study is designed in three steps (Figure 4.4). First, despite the 

challenges in AV crash availability, a database is created by sourcing AV crashes from CA 

DMV (as discussed in section 4.2) and combining them with conventional vehicle crashes 

from NDS. In the second step, the proposed methodology in this study is examined using 

the created database. In this step, the empirical and parametric failure functions for AV and 

conventional vehicles are estimated. Third, the safety performance of AV and conventional 

vehicles are evaluated by (1) testing the hypothesis of whether AV failure function is the 
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same as the conventional vehicle failure functions, and (2) estimating the no-crash 

expectancy of AV and conventional vehicle and the safety effectiveness of AVs. 

 

 

Figure 4.4. The designed empirical study architecture 



 

64 

 

 

4.5 Chapter Summary 

An empirical study is designed to conduct a fair comparison between AV and 

conventional vehicle safety using the proposed methodology in this study. Although AVs 

are testing on United States’ public roads in several states, the CA DMV is the only 

program that mandates AV manufacturers and developers to publicly share their road test 

data publicly, even though limited data lacks detail about AV test settings and 

environment. Despite AV road test data availability challenges, a crash database is created 

by sourcing AV crashes from the CA DMV AVT program and combining it with NDS 

crashes. Following the empirical study architecture, the created database is further used to 

examine the proposed AV safety evaluation methodology and evaluate AVs’ safety under 

road tests compared to conventional vehicles. This chapter included the details of the 

designed empirical study and the datasets used in the empirical study. In the next chapter, 

the empirical study is analyzed, and the results are reported. 
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5   CHAPTER 5 

RESULTS OF THE EMPIRICAL STUDY 

 

 

This chapter documents the results of the 3-step empirical study, described in 

Chapter Four. The chapter sections follow the steps of the empirical study and report (1) 

characteristics of the created database, (2) the results of applying the proposed 

methodology on the empirical data, and (3) the comparison between conventional vehicles 

and AVs safety.  

5.1 Dataset Characteristics 

A descriptive analysis of AV and conventional vehicle crash datasets show a higher 

crash rate was observed for conventional vehicles comparing to AVs. In 2,849,50 miles of 

driving conventional vehicles, 130 crashes were observed, which is higher than 105 

crashes AVs were involved in while driving the same millage. Consequently, the rate of 

AV crashes is 20% lower than conventional vehicles. The average of AV’s MTC is higher 

than conventional vehicles, where on average, AVs were involved in crashes every 27,399 

miles in comparison with 21,634 miles for conventual vehicles. Table 5.1 summarizes 

crash frequency and MTC statistics. 

 

 

 

 

 



 

66 

 

 

 

Table 5.1. Autonomous vehicles and conventional vehicles crash rates 

Descriptive Statistics 

Conventional 

Vehicles Crash 

Dataset 

Autonomous Vehicles 

Crash Dataset 

Number of crashes 130 105 

Number of miles driven (million miles) 2,849,850 2,849,850 

Rate of crashes (per million miles) 45.6 36.8 

Mean MTC 21,634 27,399 

Minimum MTC 12 4,212 

Maximum MTC 112,975 134,023 

Median MTC 12,679 15,767 

5.2 Apply the Proposed AV Safety Evaluation Method 

This section represents the estimated empirical and parametric failure functions for 

AV and conventional vehicles. 

5.2.1 Empirical failure function estimation 

The cumulative distribution of MTC in Figure 5.1 represents the empirical failure 

function, 𝐹(𝑥). The likelihood of AV and the conventional vehicle being involved in 

crashes can be compared using the empirical failure functions. For example, after 50,000 

miles, the likelihood of involving in a crash was observed to be 86% and 84% for 

conventional vehicles and AV, respectively. In this regard, the survival probability, as a 

complement of failure probability, would be 14% and 16% for conventional vehicles and 

AVs. The probability of crashes was higher than 50% for AVs after driving 15,000 miles, 
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in contrast with 13,000 for conventional vehicles. Although from Figure 5.1, AV crash 

likelihood is lower than conventional vehicles at (almost) every mile of driving, the 

significance of this difference needs to be investigated statistically.  

 

 

Figure 5.1. Estimated empirical failure function, 𝑭(𝒙), for autonomous vehicles and 

conventional vehicles 

5.2.2 Parametric failure functions estimation 

Using the MLE method, we fitted the distribution function to automated and 

conventional vehicles failure functions. As discussed in section 2.2, the exponential 

distribution function is fitted to the conventional vehicle failure function to meet the 

constant hazard rate assumption. For AVs, however, we test five parametric failure 

𝐹𝐶𝑉(50000) = 86% 

𝐹𝐴𝑉(50000) = 84% 
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functions: exponential, gamma, log-normal, Weibull and log-logistic distribution 

functions. are consistent with AIC and BIC.  

Table 5.2 depicts the estimated parameters and their standard error along with the 

AIC and BIC of the fitted distribution functions. The results of visual evaluations of 

distributions’ fit considering Q-Q and P-P plots (Figure 5.2) are consistent with AIC and 

BIC.  

Table 5.2. Estimated parametric failure functions 

Sample 

Parametric 

Distribution 

Parameters Goodness of fit 

Shape 

(SE) 

Scale 

(SE) 

Rate 

(SE) 

Expected 

Value 

(SE) 

Standard 

Deviation 

(SE) 

AIC BIC 

Conventional 

Vehicles 

Failure 

Exponential NA NA 
4.62⨯10−5 

(4.10⨯10−6) 

NA NA 

2835.09 

 

2837.95  

 

Autonomous 

Vehicles 

Failure 

Weibull 
1.12 

(8.82⨯10−2) 

2.87⨯104 

(2.56⨯103) 
NA NA NA 2335.03 2340.32 

Gamma 
1.05 

(2.00⨯10−1) 

3.82⨯10−5 

(8.13⨯10−6) 

NA NA NA 2335.93 2341.22 

Exponential NA NA 
3.65⨯10−5 

(3.71⨯10−6) 

NA NA 2335.40 2338.04 

Log-normal NA NA NA 
9.8 

(8.76⨯10−2) 

0.09 

(6.22⨯10−2) 

2316.36 2321.65 

Log-logistic 
1.85 

(1.56⨯10−1) 

17212.03 

(1.58⨯103) 

NA NA NA 2324.25 2329.54 

NA: Not Applicable 
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(b) 

Figure 5.2. Visual comparison of Weibull, Gamma, Exponential, and Log-normal 

distribution functions goodness-of-fit to failure functions for (a) conventional 

vehicles and (b) autonomous vehicles  

For more accurate evaluations, the K-S and A-D GOF tests are performed with a 

95% confidence interval (The estimated one-way sample test statistics for the examined 

distributions show that the A-D and K-S tests reject the null hypothesis when the data 

sample follows a specific parametric distribution. 
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Table 5.3). The estimated one-way sample test statistics for the examined 

distributions show that the A-D and K-S tests reject the null hypothesis when the data 

sample follows a specific parametric distribution. 

 

 

 

 

Table 5.3. Parametric distribution functions goodness-of-fit test 

Parametric 

Distribution 

Conventional Vehicles Crashes  Autonomous Vehicles Crashes 

Test Statistic Test Statistic 

K-S  

(Critical value) 

A-D  

(Critical value) 

K-S (Critical value) A-D (Critical value) 

Weibull NA NA 0.17** (0.13‡) 3.14** (0.757) 

Gamma NA NA 0.14** (0.13) 2.87** (0.752) 

Exponential 0.12** (0.11) 2.78** (1.32) 0.14** (0.13) 2.97** (1.32) 

Log-normal NA NA 0.18** (0.13) 2.18** (0.752) 

Log-logistic NA NA 0.16** (0.11) 2.23** (0.32) 

* The test Statistic is lower than the critical value → Cannot reject the null hypothesis; the sample 

follows the specified distribution 

** The test Statistic is larger than the critical value → Reject the null hypothesis 

† Calculated for sample size equal to 130 

‡ Calculated for samples size equal to 105 
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5.2.3 Comparing Failure Functions 

In the previous section, the parametric distribution functions were fitted to 

automated and conventional vehicle failure functions. Evaluating the parametric functions 

GOF and hypothesis tests, it was concluded that failure functions could not be 

parameterized. This section reports the results of testing the hypothesis that the AV 

empirical failure function is statistically different from the parametric conventional vehicle 

failure function with 95% confidence, using two-sample non-parametric K-S and A-D 

tests.  As shown in Table 5.4, the K-S test statistics are higher than the critical value in a 

95% confidence interval, which rejects the null hypothesis, the AV failure function 𝐹𝐴𝑉(𝑥)

is consistent with the AV estimated failure function 𝐹𝐶𝑉(𝑥). Similarly, the comparison

between the A-D test statistics and critical value in a 95% interval rejects the null 

hypothesis. Consequently, it can be concluded that the AV failure function is statistically 

inconsistent with the conventional vehicle failure function and, therefore, with 95% 

confidence, AV failure probability is lower than conventional vehicles’ failure probability. 

Table 5.4. Comparing autonomous vehicles and conventional vehicles failure 

functions 

Goodness of Fit Tests 
Critical Value 

for 95% Confidence Interval 
Test Statistics 

K-S test 0.009 0.261 

A-D test 2.492 9.715 
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5.2.4 Safety effectiveness and no-crash expectancy estimation 

The no-crash expectancy for each type of vehicle can be estimated at a given 

mileage. Table 5.5 compares the automated and conventional vehicle no-crash 

expectancies at different mileage. The results show that in the next 10,000 miles of driving, 

the no-crash expectancy for a conventional vehicle is ~4,000 miles while comparing to 

~7,500 miles of no-crash expectancy for AVs, an 93% improvement is observed. 

 In the next 150,000 miles of driving, the no-crash expectancy would be increased 

by ~6,000 miles when shifting from conventional vehicles to AVs. In other words, in 

comparison with a conventional vehicle, on average, an AV can drive an additional 6,000 

miles before observing a crash which represents a 27% statistically significant advantage in 

favor of vehicle automation. Consequently, the safety effectiveness of AVs is estimated as 

1.27.  

Table 5.5. AV and conventional vehicles no-crash expectancy and safety effectiveness 

Mileage 

Conventional 

Vehicle 

No-crash 

Expectancy 

(miles) 

Automated 

Vehicle No-

crash 

Expectancy 

(miles) 

Difference 

in Miles  

Difference in 

Percentage  

AV Safety 

Effectiveness 

10,000 3884.3 7499.6 3615.3 93% - 

25000 8026.8 11724.0 3697.2 46% - 

50,000 13730.1 16863.4 3133.3 23% - 

100,000 20256.89 24812.9 4556.01 22% - 

150,000 21611.98 27398.9 5786.92 27% 1.27 
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5.3 Chapter Summary 

The proposed AV safety evaluation methodology is implemented on a designed 

empirical study, using AV and conventional vehicles’ crashes. The primary analysis of AV 

and conventional vehicle crash datasets showed that AVs’ crash rates are 20% lower than 

convention vehicles. On average, AVs were driven 27,399 miles before being involved in a 

crash which is higher than the 21,634 miles for conventional vehicles. Also, a comparison 

of AV and conventional vehicle’s empirical distribution of MTC represent the lower 

failure (crash) probability for AVs. Parametric distributions were fitted to the failure 

function of AVs and conventional vehicles, and it was shown that no parametric 

distribution could characterize AV and conventional vehicle failure function. Using two 

samples K-S and A-D tests, the hypothesis of whether the AV failure function is different 

from the conventional vehicles’ failure function was examined. It can be concluded that the 

difference between AVs and conventional vehicles’ failure function is statistically 

significant based on the 95% confidence interval level. The findings of the analysis 

presented in the paper imply that Level 3 of automation testing in California is safer than 

conventional vehicles with 95% confidence. Also, comparing the no-crash expectancy 

between the conventional vehicle and AV shows a 27% improvement in a 150,000 miles of 

operation. The next chapter summarizes this research and highlights the limitations of this 

work as well as avenues for future research. 
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6    CHAPTER 6 

SUMMARY AND DISCUSSION 

 

 

This chapter comprises three sections. First, previous chapters are summarizing, 

and the conclusions of this research are highlighted. Second, in the discussion section, the 

researcher discusses the strengths and limitations of this research and underlines its policy 

implications. Finally, the potential avenues for future research are pointed out. 

6.1 Summary and Conclusions 

This research targeted the safety evaluation of AVs and sought the answer to three 

fundamental questions:  

1) How can AV safety be validated, and what are the research gaps in the existing 

safety evaluation methods? 

2) What methodologies are required to validate AV safety, evaluate their safety 

performance and investigate the contributing factors to AV crashes? 

3) How safe are the existing AVs in comparison with conventional vehicles? 

First, a scoping review methodology was conducted to (systematically) synthesize 

the AV safety quantification methods. The identified evaluation methods are compared, 

and the gaps and challenges in AV safety evaluation are uncovered. As a result of the 

scoping review, the AV safety evaluation methods were categorized into six groups: target 

crash population, road test analysis, traffic simulation, driving simulator, safety 

effectiveness estimation, and system failure assessment. We ran two evaluations on the 
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identified approaches.  First, we investigated each approach in terms of its input, output, 

and application to estimate AVs’ safety implications at the vehicle, transportation system, 

and society levels. Second, we qualitatively compared them in terms of three criteria: 

availability of input data, suitability for evaluating different automation levels, and 

reliability of estimations. The comparison presented in this review can be used as a 

guideline for future research when choosing the appropriate AV safety evaluation method 

based on the study objective and limitations. This review identifies four challenges in AV 

safety evaluation: (a) shortcomings in methodologies for evaluating and quantifying AV 

safety, (b) uncertainties in AV implementations and their impacts on AV safety, (c) 

potential riskier behavior of AV passengers as well as other road users, and (d) emerging 

safety issues related to AV implementations. These challenges need to be addressed for a 

clearer perception of AV safety. 

In Chapter Two, it was discussed that road test data analysis is the most reliable 

method for evaluating AV safety since it can address the AV safety challenges. However, 

the reliability of results is contingent upon the availability of data. Also, the road test data 

is limited to transportation and system-level safety evaluation, while vehicle-level safety 

evaluations would be necessary for improving AV technologies. To address the limitations 

of the road test analysis method for AV safety evaluation, we proposed a new methodology 

based on survival analysis for evaluating AV safety. As a result, AV and the conventional 

vehicle's failure function can be estimated, representing the likelihood of involving in a 

crash at a certain mileage of driving. The inconsistency of failure function can be further 

analyzed using a statistical method that can support the assessment of analogy between AV 

and conventional vehicle safety. In addition, on the basis of the vehicles’ failure function, a 
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new metric no-crash expectancy is defined that provides a better perception regarding the 

vehicles’ safety performance. Further investigation of theories behind traditional crash 

prediction models shows that they are not effective for AVs. 

We further designed an empirical study to collect and create reliable and 

comparable AV (Level 3 of automation) and conventional vehicle crash datasets (collected 

from a naturalistic study for conventional vehicles). As a result of implementing the 

proposed methodology on AV and conventional vehicle crashes, we showed that AVs are 

safer than conventional vehicles with 95% confidence. Also, AVs showed a higher no-

crash expectancy and 1.27 safety effectiveness comparing to conventional vehicles. This 

study indicates a safer performance of Level 3 of automation than conventional vehicles 

applying the proposed method on comparable crash datasets. However, the results of our 

analysis are subject to the accuracy of AV crash data, the assumptions regarding AV road 

tests environment, and AV crash mileage. Future research is required to address the 

limitations of this study and explore our simplifying assumption. Moreover, the proposed 

methodology can be used to evaluate the safety of AV technologies and different levels of 

automation and MPR.  

6.2 Discussion 

The strengths and limitations of the conducted literature review, the proposed 

methodology, and the empirical study, as well as the potential policy implications of this 

study, are presented in this section. 
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6.2.1 Strengths and Limitations 

The results of synthesizing AV safety evaluation literature are expected to serve as 

a stop knowledge point and future research avenues to contribute to AV safety evaluation. 

However, the conducted review has some limitations. First, this study focuses on AV 

safety quantification methods; therefore, I did not include the literature that evaluated 

ADAS safety implications or proposed frameworks and conceptual models for AV safety 

evaluation rather than quantifying the impacts. Both ADAS safety evaluation methods and 

proposed frameworks for AV safety evaluation might have the potential to address some of 

the limitations of the existing quantification methods. Second, the AV safety evaluation 

methodologies were examined qualitatively and relatively. Future research can provide a 

more accurate comparison between the methods by running quantitative analyses. Thirds, 

the literature review only includes peer-reviewed publications and white paper and AV 

manufacturer reports are not included in our review. Fourth, the focus of this review was 

on methodologies that quantified AVs’ substantive safety rather than the nominal safety 

and perceived safety. Nominal safety refers to whether or not a vehicle is fulfilling all 

standards and laws that apply to the vehicle and the nominal safety of AVs needs to be 

investigated in accordance with standards (Kalra and Paddock, 2016). The perceived safety 

of a vehicle is how the general public experiences the safety of the vehicle, which the 

perceived safety of AV was targeted by conducting survey studies (Moody et al., 2020). 

The safety of vehicles should be evaluated based on three definitions of safety. Even 

though AV safety can be comparable to that of conventional vehicles, users’ degrading 

perceptions of AV safety may hinder the adoption of this new technology. Future research 

is required to review the literature and examine the methodologies used for evaluating AV 
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nominal safety and perceived safety for more accurate evaluations and understanding of 

AV safety. Moreover, this study was not intended to synthesize the results of AV safety 

quantifications but rather to explore the methodologies. 

This study proposed a novel methodological framework for evaluating AV safety in 

comparison with conventional vehicles. The proposed framework is transferable and can 

be used to evaluate levels of automation and ADAS. The designed empirical study 

employs NDS crash data that included both police reportable and non-reportable crashes 

and, therefore, can be considered to contain all crashes, similar to the AV crash dataset. To 

the best of the authors’ knowledge, to date, no study has conducted such a fair comparison 

between automated and conventional vehicles safety. The accuracy of road test data 

analysis is heavily subject to the accuracy of reported crashes from AV manufactures, 

automation level and operation design domain (ODD) under which AVs were tested, and 

fallback users’ characteristics. Another disadvantage of automated driving road tests is that 

they may be exposing road users to the risk of crashes from under-developed AVs, as 

discussed by Kalra (2017). Such a safety issue may limit road tests and, consequently, the 

applicability of the proposed framework. Analyzing road test data can provide insights into 

how AV interacts with other road users, including other AVs; however, investigating AV 

safety in higher levels of MPR can be challenging, given that a limited number of AVs are 

operating on the roads. Although the proposed method can be used for evaluating the 

vehicle-level crash contributing factors, the potential heterogeneity in the road test data 

should be addressed. Drivers’ behavior and characteristics, vehicles’ characteristics (size, 

type, mechanical features, etc.), and road test environment are some of the factors that can 

cause heterogeneity in the road test data. Future models can control for observable factors 
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and account for unobservable factors using more advanced variations of the hazard 

proportional cox-regression (e.g., random-parameter models (Balusu et al., 2020)).  

Our empirical analysis has certain limitations as well. First, some limitations are 

inherited in road test data analysis. As CA DMV mandates AV manufacturers, it was 

assumed that they reported all crashes, and the crash dataset consists of all AV crashes 

tested in California in 2019. According to CA DMV, the AVT program is limited to testing 

Level 3 of automation, and so the analysis presented in this study can only evaluate the 

safety of Level 3 of automation. Although there is no information regarding the AV testing 

ODD, since Level 3 of automation is designed to operate in unlimited ODD (SAE, 2018), 

it was assumed that AVs were tested on roads with different functional classifications and 

are comparable with conventional vehicles. Level 3 of automation requires fallback users 

to intervene in certain situations. The disengagement from the ADS imposes a considerable 

risk of crashes (Happee et al., 2017). Depending on the experience and awareness of 

fallback users, this risk can be lower or higher. Since the AV crash dataset is collected as 

part of the AVT program, it is expected that the fallback users are both experienced and 

constantly pay attention to AVs performing the DDT. In conclusion, the empirical study 

may overestimate AV safety since the disengagement risk could not be measured 

accurately. Second, given that AVs’ crash report does not include the time of the crash and 

the vehicle mileage, the estimated miles-to-crash is rounded up to the miles driven in a day 

on which the crash occurred. Having access to the exact millage of vehicles would resolve 

this issue and result in a smoother failure function for AV. Nevertheless, we do not 

anticipate it would affect the conclusions of this study. Third, the empirical study was 

conducted using one year of AVs operation, which can be translated into 2.8 million miles. 
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While 2.8 million miles are expected to be sufficient to capture miles-to-crash and failure 

probability distribution, future studies can expand their timeframe and examine our 

expectations in this regard. Fourth, to be able to analyze AV safety using the limited 

available data, we assumed a homogeneous crash dataset. This assumption needs to be 

revisited. Fifth, the designed empirical study targeted the substantive safety of AVs in 

terms of crash frequency. Therefore, our results do not provide insights into the nominal 

safety or perceived safety of AVs. Sixth, this study explored AV safety in terms of crash 

frequencies. Nevertheless, AV’s contributions to the severity of crashes need to be 

investigated as well. While the severity of AV crashes was studied in the literature (Xu et 

al., 2019, Wang and Li, 2019), the proposed framework can be used to compare AV failure 

function by crash severity once enough road test data is available. Finally, it is expected 

that NDS data may be impacted by the self-selection bias (participants who are selected to 

be monitored may change their behavior), which could change the comparison of the risk 

between AVs and human-driven vehicles. The magnitude of the effects is currently not 

known but is probably not very large.  

6.2.2 Policy and research implications 

The availability and accuracy of road test data are a fundamental need for 

evaluating AV safety under different environments and with different market penetration 

rates, regardless of the evaluation methodology. As discussed previously, conclusions from 

the proposed methodology in this study were contingent upon the accuracy of AV crash 

data and could be improved if more detailed data were available. As such, federal, state, 

and local laws are required to not only support automated driving road tests but also 

promote the transparency of road test programs. To date, in the United States, no federal 
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law mandates AV manufacturers to publicize their road test results. Although many states 

allowed AVs to be tested on their roads, a few mandated manufactures to report their data 

(as discussed above, this may change soon).  

Some pitfalls and limitations are inherent in automated driving road tests. Exposure 

of the road users to the safety risks associated with vehicles under development is one of 

the pitfalls that look inevitable. Authorizing rules to monitor the road test and increasing 

the liability of manufactures in time of a crash can be some remedies to lessen the road test 

disadvantages. In addition, to assure the reliability of the results, road tests must 

encompass the AVs’ ODD while examining real-world safety challenges that AVs might 

encounter. This incentivized researchers to generate road testing scenarios (Feng et al., 

2020b, Feng et al., 2020a). 

Despite the previous efforts, Milakis et al. (2017) pointed out that AV safety 

requires further investigations for policy-making purposes. Besides, Pettigrew et al. (2018) 

showed that the public is not aware of AVs’ safety advantages and is quite skeptical 

regarding AV safety. Standards are required to define to what degree AVs should be safer 

than conventional vehicles to be able to find their way on the roads. The timing of AV 

introduction is crucial since postponing it would hinder access to AVs’ benefits. 

This study proposes rethinking safety evaluations in the era of vehicle automation. 

While we proposed a new method for evaluating AV safety and touched on the theories 

behind crash prediction models and how AVs can impact them, future research is required 

to further investigate the theories proposed in this paper once more data is available. We 

consider this study as a research agenda for future research on AV safety.  
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The new AV safety evaluation metric, no-crash expectancy, can be used for 

comparing the safety performance of different automated cars. Environmental Protection 

Agency’ (EPA) provides the fuel economy data that is used on the fuel economy label on 

all new cars and light trucks that can be used for comparing the vehicle fuel economy. 

Similarly, NHTSA can use the proposed methodology and vehicle safety metrics test 

vehicles and report the information regarding vehicle safety. Figure 12 illustrates a sample 

label for AV safety.  

 
(a) 

 
(b) 

Figure 3. An illustration of (a) EPA’s fuel economy label and (b) suggested vehicle 

safety label  
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6.3 Future Studies 

The synthesized literature in this study has various implications for the future 

direction of AV safety research. First, identified approaches have some shortcomings and 

limitations that need to be addressed. Mix-traffic issues, system failure, and fallback user 

errors have not been considered in the target crash population approach. Accounting for 

these factors can potentially lead to more accurate estimations of AV safety implications. 

Driving simulators and traffic simulation studies can benefit from ground truth data (e.g., 

AV road test data) to verify their assumptions and study findings. AV system failure 

assessments should be revisited using more reliable data on AV system failure rates. 

Running statistical analyses on a large amount of AV road test data in future studies can 

provide more reliable conclusions regarding AV safety. Second, AV safety studies do not 

generally account for uncertainties in AV implementations—i.e., AV MPR and its role in 

urban areas, trip patterns, and transportation systems. Future research can address this 

limitation in order to assess the safety impact of AVs at the society level. Third, since a 

riskier behavior of AV passengers as well as other road users is expected after AV 

implementation, further investigations of the risk homeostasis hypothesis are needed to 

measure and govern the potential safety impacts. Fourth, the emerging safety issues related 

to AVs, including cybersecurity and AVs’ reactions during unavoidable crashes, should be 

studied further. In addition, future studies should address the limitations of this review, 

namely (a) defining a broader review question, (b) evaluating the identified methodology 

quantitatively, and (c) investigating AVs’ nominal and perceived safety implications. 

Table 6.1 shows the potential list of future research directions, the study topics, and the 

level of safety impact these studies can address.  
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Table 6.1. Suggested future studies 

Research topic Study subtopics 
Level of safety 

impact 

Address the limitations of 

existing AV safety 

quantification methods 

Consider mix-traffic issues, system 

failure, and the risk associated with 

fallback-ready user reaction at the time 

of AV disengagement from ADS in the 

target crash population approach 

Transportation system 

+ Society  

Evaluate traffic simulation and driving 

simulator results using AV road test data 

Vehicle + 

Transportation system 

Collect and analyze reliable system 

failure rates 

Vehicle  

Perform reliable statistical analysis on a 

larger AV dataset  

Society  

Perform full-chain 

assessment of AVs’ safety 

implications 

Account for AV MPR and its influence 

on urban areas, trip patterns, and 

transportation systems 

Society  

Investigate the potential 

risky behavior of AV users 

Examine the risk homeostasis hypothesis Transportation system 

+ Society 

Study the emerging safety 

issues associated with AV 

implementations 

Address AVs’ cybersecurity issues Vehicle 

Preprogram AVs to follow the best 

course of action during unavoidable 

crashes 

Vehicle 

 

Future studies are required to address some of the limitations of the conducted 

empirical study. As extensively discussed in Section 6.2.1, future research is required to 

(1) evaluate AV safety using more reliable road test data (AV crash data), including details 

about ODD and fallback-user characteristics, (2) incorporate a higher resolution road 

operation data for estimating MTC, (3) using a larger database for analysis, (4) including 

the crash severity into the analysis. Analyzing more reliable AV crash reports (once 



 

86 

 

 

available) and considering crash severity into analyses are suggested. The researcher 

suggests examining the safety of other levels of ADS and ADAS using the proposed 

methodology. This requires sufficient road test data along with information regarding the 

number of miles driven by the target vehicle before an incident.  

From the methodological standpoint, further research is required to (1) explore the 

applicability of the proposed method and cox proportional regression for investigating the 

vehicle-level characteristics of AVs in their safety performance, (2) incorporate the 

unobserved heterogeneity in AV safety performance evaluation, and (3) research the 

functional form of hazard rate and its impacts on crash prediction models in the era of 

vehicle automation. 

6.3.1 Vehicle-level safety analysis 

Although the existing econometrics methodologies for crash predictions can 

examine the impacts of road characteristics and environmental conditions on AV crashes 

frequency at the road segment level (Lord et al., 2021), the impacts of vehicle-level factors 

remain unclear. For instance, the safety impacts of AV technology improvements can be of 

interest to manufacturers that cannot be investigated using traditional econometrics 

methodologies in the context of road test analyses. The contribution of AV driver’s 

characteristics (in levels 1, 2, and 3) to crash frequency is another example in which the 

existing road segment-level methodologies cannot be used for investigating vehicle-level 

contributing factors. The proposed cox proportional regression model in this study can be 

used to study the vehicle-level contributing factors―namely, specific safety technologies, 

vehicle design, fallback-user characteristics, vehicle ODD, etc. This also suggests that the 

implications of the proposed vehicle-level safety evaluation methodology go beyond AV 
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safety evaluations can be used to explore the safety impacts of other vehicle-level 

characteristics such as vehicle type, vehicle age, vehicle maintenance status, braking 

system status and technology, etc. 

6.3.2 Heterogeneity in automated vehicle crashes 

The crash data is not homogeneous, and the heterogeneity needs to be addressed for 

efficient estimates and accurate predictions. While accounting for contributing factors can 

address the heterogeneity to some extent, the unobserved heterogeneity requires further 

attention by the researcher when sufficient automated driving road test data is available. 

Random parameter models have been widely used in the literature to address the 

unobserved heterogeneity (Lord and Mannering, 2010, Washington et al., 2020). 

6.3.3 Automated vehicle hazard rate 

While the survival functions were assumed as exponential in this study to fulfill the 

constant hazard rate for vehicles, future studies need to investigate the feasibility of 

constant hazard rate for vehicle-level safety evaluations. In addition, we discussed the 

impacts of considering hazard rate as a function of the number of miles driven on the AV 

crash occurrence process and elaborated on the theories behind crash prediction models in 

the era of vehicle automation. Further research is required to formulate a non-

homogeneous Poisson process for AV crashes. 
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APPENDIX   

The appendix provides more details regarding the literature review.  

Table A1. Summary of target crash population studies (Reprinted with permission from Sohrabi et al. 2021) 

Author 
ADS/AD

AS 
Target Crashes 

ODD 

Significant Results 
Road Type 

Road 

Surface 

Condition 

Weather 

Condition 

Lighting 

Condition 
Speed  Effectiveness 

Kusano and 

Gabler (2014)  

FCW, 

PCAM, 

LDW 

18 pre-crash 

scenarios 
NA NA NA NA NA NA 

• Safety systems can mitigate 20% and 26% 

of serious injury and fatal crashes, 

respectively. 

Lee and 

Kockelman 

(2016)  

CACC, 

LKA, 

ESC 

37 pre-crash 

scenarios 
NA NA NA NA NA NA 

• Reduction of crash costs by 126 million 

annually. 

• Reduction of functional human-years lost 

by nearly 2 million (per year). 

Detwiller and 

Gabler (2017)  
AEB 

Transportation-

related 

pedestrian 

crashes 

Urban area NA NA NA  100% 
• Employing two different sets of rules 

resulted in a reduction or mitigation of 40% 

and 95% of crashes, respectively. 

Yanagisawa 

and Rau 

(2017)  

Level 2 to 

Level 4 

37 pre-crash 

scenarios 

Intersection, 

ramp, highway, 

work zone 

    100% 
• L2 to L4 can address 35–250 billion dollars 

in comprehensive costs and 1100–11,000 

fatal crashes annually. 

Hendrickson 

and Harper 

(2018) 

BSM, 

LDW, 

and FCW 

Lane-change 

crashes, lane-

departure 

crashes, and 

rear-end 

collision 

NA NA NA NA  100% 
• All technologies together can mitigate 1.3 

million crashes annually, including 133,000 

injury and 10,000 fatal crashes. 

Lubbe et al. 

(2018)  

AEB, 

LCW, 

LKA*, 

ESC 

30 pre-crash 

scenarios 
NA   NA  100% 

• Fatality reduction from 12–13% (using 

passive safety systems only) to 45–

63% (using advanced ADAS and assuming 

cautious driving). 

• Reduction of vulnerable road user fatalities 

by 33–41%.   
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Agriesti et al. 

(2019)  
Level 3 

Distracted 

driving, 

insufficient 

safety distance, 

speeding, 

skidding, road 

departure 

Highways 

 
    100% 

• 66% of crashes involving AVs and 6.6% of 

crashes involving conventional vehicles 

(considering 10% MPR) could be avoided. 

Combs et al. 

(2019)  

Pedestria

n 

detection 

Transportation-

related 

pedestrian 

crashes 

Urban/rural, 

intersection/not 

intersection,  

freeway/not 

freeway 

NA NA NA  

100% 

except for 

adverse 

condition 

(20%) 

• Different combinations of sensors can lead 

to a 30% to 90% reduction of fatal 

pedestrian crashes. 

Note: NA = Not Applicable. 

* LKA: Lane Keeping Assistant 
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Table A2. Summary of AV road test data analysis studies (Reprinted with permission from Sohrabi et al. 2021) 
Study Type of Analysis Data Source Approach Significant Results 

Schoettle 

and 

Sivak 

(2015) 

Frequency; 

characteristics of 

the incident 

CA DMV (2014–

2015) and Google 

self-report (2012–

2014) 

(11 crashes) 

• Comparing AV and conventional cars’ crash 

rates after adjusting for underreporting. 

• Descriptive analysis of crash characteristics 

(vehicle motion at the time of the crash, crash 

type, and crash severity) and comparison to 

conventional vehicles. 

• Most of the crashes happened while the AV’s speed was less 

than 5 mph. 

• The rate of rear-end crashes in AVs is higher than 

conventional cars. 

• The severity of AV crashes is lower than conventional cars. 

• The rate of AV crashes is 8 times higher than conventional 

vehicles. 

Kalra 

and 

Paddok 

(2016) 

Reliability Accident rates in the 

US (2013) 

 

 

 

• Estimating number of failure-free miles AVs 

should drive to reach conventional cars’ 

failure rate using survival analysis. 

• Estimating the required total number of miles 

driven to evaluate AVs’ failure rate. 

• Estimating the total number of miles AVs 

need to drive to demonstrate their failure rate 

is statistically lower than conventional cars. 

• AVs need to drive 1.6 million miles failure-free to be as safe 

as conventional cars. 

• AVs need to drive 51 and 61 million miles to be able to test 

their failure rate and statistically examine if their failure rate is 

lower than conventional cars, respectively.  

(Teoh 

and 

Kidd, 

2017) 

Frequency CA DMV (2009–

2015)* 

 

• Comparing AV (police-reportable) crash rate 

to conventional cars’ crash rate. 

• Google self-driving cars are safer than conventional human-

driven passenger vehicles (2.19 vs. 6.06 per million VMT). 

Favarò et 

al. (2017) 

Frequency; 

characteristics of 

the incident; 

reliability 

CA DMV 

(September 2014 to 

March 2017) 

(5326 

disengagements and 

26 accidents) 

• Descriptive analyses of crashes by collision 

type, location, and manufacturer. 

• Comparing AV crash rate and number of 

miles driving until an accident to conventional 

cars’ crash rate and number of miles driving 

until an accident.  

• The rate of crashes was lower for AVs than conventional cars, 

and AVs will drive longer before an accident (~42,000 vs. 

500,000 miles). 

• Most of the AV crashes happened at intersections. 

• Rear-end crashes are higher for AVs than for conventional 

cars. 

Matysiak 

and 

Razin 

(2018) 

Frequency CA DMV (2015–

2017) 
• Comparing AVs’ disengagement data to 

injury and fatal crashes in Europe and US. 

• AVs’ crash rate is 2 to 3 times higher than conventional cars.  

• AVs should drive more than 442 million km fatal-free to be 

considered safer than human-driven cars. 

Banerjee 

et al. 

(2018) 

Frequency; 

characteristics of 

the incident; 

reliability 

CA DMV 

(September 2015 to 

November 2017) 

• Comparing AVs’ disengagement rate to 

conventional cars’ accident rates. 

• Analyzing the cause of disengagement from 

manufacturer report (after excluding unknown 

causes). 

• Comparing to other safety-critical autonomous 

systems. 

• Conventional vehicles were 15−4000 times less likely 

(depending on the AV manufacturer) than AVs to have an 

accident.  

• 64% of disengagements were the result of problems in, or 

untimely decisions made by, the machine learning system.  

• In terms of reliability per mission, AVs are 4.22 times worse 

than airplanes and 2.5 times better than surgical robots. 
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Xu et al. 

(2019) 

Characteristics of 

the incident 

 

CA DMV (January 

2015 and June 2018) 

(73 crashes) 

• Using bootstrap-based binary logistic 

regressions to investigate the factors 

contributing to the collision type and severity 

of CAV-involved crashes. 

• Rear-end and sideswipe crashes are the two predominant 

collision types, which account for 57.5% and 28.8% of CAV-

involved crashes, respectively. 

• AV driving mode, collision location, roadside parking, rear-

end collision, and one-way road are the main factors 

contributing to the severity level of CAV-involved crashes.  

• CAV driving mode, CAV stopped or not, CAV turning or not, 

normal vehicle turning or not, and normal vehicle overtaking 

or not are the factors affecting the collision type of CAV-

involved crashes. 

Wang 

and Li 

(2019) 

Characteristics of 

the incident 

 

CA DMV (2017 to 

2018) 

(107 crashes) 

NTSB (2017 to 

2018) 

(6 crashes) 

• Investigating the factors contributing to AV 

crash collision types and severity using 

logistic regression and decision tree. 

• The highway and automated driving mode were identified as 

the location where severe injuries are likely to happen due to 

high travel speed.  

• Collision types of AV-related crashes depend upon the driving 

mode, location, and whether crashes are associated with 

yielding to pedestrians/cyclists.  

• Both ordinal logistic regression and the decision tree models 

show consistent results. 

Li and 

Zhai 

(2019) 

Reliability The accident rate on 

China highways 

(2008–2015) 

• Finding the minimum fault-free distance of 

AVs to be as safe as conventional cars by 

inferring the overall distribution from the 

sample distribution and calculating how much 

sample size is needed at minimum. 

• With a 95% confidence interval, AVs need to drive fault-free 

for ~226 million km and should be tested for 115,972 million 

km to be considered as safe as conventional cars. 

Petrović 

et al. 

(2020) 

Characteristics of 

the incident 

CA DMV (2015–

2017) 

(53 accidents) 

• Analyzing the type of collision frequencies 

using descriptive statistics of crash data. 

• The rear-end type of collision is statistically more 

significantly frequent in traffic accidents with AVs. 

Boggs et 

al. (2020) 

Characteristics of 

the incident 

CA DMV (2014–

2018) 

(113 crashes) 

• Frequentist and Bayesian binary logit model 

to examine the factors contributing to the AV 

crashes. 

• Speed of conventional vehicle, missing speed, on-street 

parking, speed limit, driving through arterial and collector, 

and intersections were positively associated with AV crash 

assurance.  

• The number of lanes marked with a centerline and clear 

weather conditions increase the risk of crashes. 

Das et al. 

(2020) 

Characteristics of 

the incident 

CA DMV (2014–

2019) 

(151 crashes) 

• Bayesian latent class model to classify AV 

crashes and to examine the factors. 

contributing to each class of crashes.  

• Text mining of AV crash narratives. 

• Six classes of AV crashes were identified and associated with 

turning, multivehicle collisions, dark lighting conditions with 

streetlights, and sideswipe. 

• More detailed collision narratives are required to draw reliable 

conclusions. 

* Only Google self-driving car crashes. 
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Table A3. Summary of traffic simulation studies (Reprinted with permission from Sohrabi et al. 2021) 

Authors 

Simulation Information Driving Behavior Model 

SSM Results 
Facility Type Length Software Technology MPR 

Conventional 

Vehicle 
AV 

Bahram et al. 

(2014) 

Four-lane 

highway 

6000 m PELOPS Highly 

automated 

vehicles (HAVs) 

0%, 50%, and 100%  The model of HAV controller 

developed in Simulink; the 

model is coupled via Xface2 to 

the interface in PELOPS 

• TTC 

• TET (lower values represent 

safer situations) 

• TIT (lower values are 

associated with higher level of 

safety) 

• TTC = 3.0 sec: 1440, 729, and 16 conflicts for MPRs of 0%, 50%, and 100%, respectively. 

• At 50% MPR of HAV, the critical situation < 1.5 sec increased remarkably compared to the 

base scenario.  

• MPRs of 0%, 50%, and 100% are associated with the TET of 144.1 sec to 72.9 sec and 1.6 sec, 

respectively.  

• By increasing the MPR from 0% to 50% and 100%, the TIT changed from 66 to 76.29 and 1.10 

sec^2, respectively.  

• MPR of 50% is not as safe of the other cases since AVs tend to follow other vehicles closely. 

Zhang et al. 

(2015) 

Four-lane 

freeway 

7 km VISSIM CAV 0%, 10%, 20%, and 30% Wiedemann 99 Car-following and lateral lane-

change decisions coded in C++ 
• TET 

• TIT 

• TERCRI 

LCC 

• Compared to the base scenario: 

- Providing 1 or 2 exclusive lanes led from −1.8% to −87.1% and −2.1% to −85.3% of lateral 

conflicts. 

- Installing 1 or 2 exclusive lanes resulted in +42.4% to −52.90% and +45.7% to −55.2% of 
longitudinal risk. 

• Only MPRs of 10% and demands < 6000 veh/h providing exclusive lanes had mainly adverse 

effects on longitudinal conflicts ranging from 1.8 to −40.4, but for other scenarios with different 

MPRs and traffic demands, the overall safety improved. 

Kockelman et 

al. (2016) 
•  Intersection 

• Freeway 

on/off-ramp 

NA VISSIM AV 25%, 50%, 75%, and 100% NA NA TTC • Bottleneck: 40–88% reduction in the number of conflicts by increasing the AV MPR from 0% 

to 100%. 

• 4-leg intersection: 4% reduction in the number of conflicts by increasing the AV MPR from 0% 

to 100%. 

• 77% and 31% reduction in the number of conflicts for two other intersections.  

• 17% increase for another intersection. 

•  Freeway on-ramps/off-ramps: 49% reduction in the conflicts by increasing the MPR from 0% 

to 100. 

Deluka et al. 

(2018) 

Roundabout NA VISSIM AV 0%, 10%, 25%, and 50% Wiedemann 74 Calibrated Wiedemann 74 TTC and PET •  By increasing the AV MPR from 0% to 50%: 

- Omisalj roundabout: number of conflicts increased from 0 to 45; the majority of them were rear-

end conflicts. 

• Malinska roundabout: the conflicts increased from 2 to 5, with all the conflicts being rear-end. 

Morando et 

al. (2018) 
• Signalized 

intersection 

• Roundabout 

NA VISSIM AV Level 4 0%, 25%, 50%, 75%, and 

100% 

Wiedemann 99 

car-following 

model with 

default 

parameters 

Modified Wiedemann 99 TTC •  Intersection: AVs reduced the number of conflicts by 20% to 65%, with an AV MPR of 

between 50% and 100%.  

•  Roundabout: the number of conflicts was reduced by 29% to 64% with 100% AV penetration 

rate.  

Arvin et al. 

(2018) 

Intersection NA SUMO AV Levels 3 and 

5 

0%, 7%, 15%, 40%, 60%, 

80%, and 100% 

(for MPR 100, different 

combinations of AV Level 

3 and AV Level 5 were 

used) 

Wiedemann 74 Modified Wiedemann 74 TTC • Cases with human-driven vehicles, Level 3 and Level 5 AVs: the average crashes decreased 

from 9 to 0 by increasing the MPR from 0% to 100%. 

• Cases with AV Level 5 and human-driven vehicles: at low AV MPR (below 40%), the number 

of crashes increased from 9 to 10.  

• Cases with AV Level 5 and human-driven vehicles: by increasing the AV MPR (over 40%), the 

number of crashes reduced from 10 to 0. 

Papadoulis et 

al. (2019) 

Three-lane 

motorway 

section 

4.27 

km 

PTV VISSIM 

9.0 and API 

CAV 0%, 25%, 50%, 75%, and 

100% 

Wiedmann 99 External CAV driver model API 

written in C++ 
• TTC 

PET 

• Reduction in conflicts by 12–47%, 50–80%, 82–92%, and 90–94% for MPRs of 25%, 50%, 

75%, and 100%, respectively. 

Arvin et al. 

(2019) 

Intersection NA VENTOS HAVs and low-

level AVs 

(LAVs) 

Various combinations of 

conventional vehicles, 

LAVs, and HAVs 

ACC model Wiedemann • TTC 

• Driving volatility 

• For AV MPR of 0%, an average of 9.43 conflicts was observed. 

• At AV MPR of 100%, there was a 90.1% improvement compared to the baseline. 

• Where all the vehicles were HAVs: the intersection became conflict-free. 

• By increasing the MPR of LAVs and HAVs, the volatility decreased from 8.5 to 5.5 for 

acceleration. 

• By increasing the MPR of LAVs and HAVs, the speed volatility decreased from 6.9 to 3.8. 
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Katrakazas et 

al. (2019) 

A section of 

highway 

4.52 

km 

VISSIM AV NA Wiedemann 99 NA • TTC • The artificial and the real-world datasets indicated that: 

- If the network-level, real-time collision risk indicates a situation as conflict-prone traffic, the 
probability of detecting if a vehicle poses a threat to an AV increases by 10%. 

- When traffic conditions were marked as safe, the prediction did not improve the probability of a 

road user being a threat for the ego-vehicle. 

• By using disaggregated traffic data (i.e., 30 seconds), the probability of a traffic participant 

posing a threat to the ego-vehicle was enhanced by about 6%. 

• The proposed method allows AVs to change their trajectory, reduce their speeds, or even prompt 

a passenger to take the controls to ensure safety even when other sensor systems fail since 

network-level predictions utilize data at a higher temporal interval than the sampling frequency. 

Virdi et al. 

(2019) 

Intersection NA VISSIM CAV 0% to 100% (10% 

incremental) 

Wiedemann 74 

and Wiedemann 

99 

Virdi CAV control protocol 

algorithm 
• TTC 

• PET 

•  The first 20% MPR of CAVs resulted in:  

- +22% change in conflicts at signalized intersections. 

- 87% reduction in conflicts at priority intersections. 

- −62% change in conflicts at roundabouts. 

- 33% increase in conflicts at DDI intersections. 

• At high CAV MPR, a global reduction in conflicts occurred such that the 90% CAV MPR was 

accompanied by: 

- −48% change in conflicts at signalized intersections. 

- 100% reduction in near-miss events at priority intersections. 

- −98% change in near-crash events at roundabouts. 

• 81% reduction in conflicts at DDI intersection. 

Rahman et al. 

(2019)  
• Arterial 

segment 

• Intersecti

on 

3.8 

miles 

VISSIM CV and CV 

lower-level 

automation 

(CVLLA) (two 

automated 

features such as 

automated 

braking and 

lane-keeping 

assistance) 

0%, 40%, 60%, 80%, and 

100% 

Wiedemann C++ programming • TTC 

• TET 

• TIT 

• TERCRI 

• LCC 

• NCJ 

• Segment: by increasing the MPR from 0% to 100%: 

- TET decreases from approximately 1750 to 1450 and 1370 for CV and CVLLA, respectively. 

- TIT decreases from 445 to 345 and 310 for CV and CVLLA, respectively. 

- TERCRI reduces from 390 to 308 and 265 for CV and CVLLA, respectively.  

- LCC decreases from 520 to 455 and 405 for CV and CVLLA, respectively. 

• Intersection: for different evaluated values of TTC and PET thresholds: 

- Total number of conflicts were decreased by 21–24% for CV technologies compared to base 
scenario. 

• Total number of conflicts were reduced by 31–34% for CVLLA compared with that of base 

condition. 

Ye 

and Yamamo

to (2019) 

Two-lane 

road segment 

10 km NA CAV 10%, 20%, 30%, 40%, 

50%, 60%, 70%, 80%, and 

90% 

 

User-defined User-defined • TTC 

• Acceleration rate 

• Velocity difference 

• Reduction in the number of dangerous situations by increasing the MPR depends on traffic 

density and TTC. 

• By increasing the MPR from 0% to 100%, the reduction in the dangerous situations falls within 

0% and 97%.  

Qin 

and Wang 

(2019) 

Freeway 20 km MATLAB CAV Different MPRs NA NA • TET 

• TIT 

• Average reduction of 75% to 95% depending on the number of feedback links by increasing the 

CAV MPR. 

• By increasing the feedback links from 1 to 2, average reduction in collision risks changes from 

75% to 95%. 

• There is not a significant reduction in the number of conflicts between 2, 3, and 4 links. 

Mousavi et al. 

(2020) 

Urban 

unsignalized 

intersections 

NA VISSIM AV 0% and 100% Wiedemann 74 Modified Wiedemann 74 • TTC • Overall, regardless of the traffic LOS, AVs are capable of decreasing the total number of 

conflicts by 3.16. 

• The higher the traffic congestion, the better the performance of AVs compared to conventional 

vehicles.  

Sinha et al. 

(2020) 

Freeway NA VISSIM CAV 0%, 10%, 20%, 30%, 40%, 

50%, 60%, 70%, 80%, 

90%, and 100% 

Wiedemann 99 User-defined driving behavior • TTC, PET, relative speed • Manual vehicle–manual vehicle crash rate decreased from 0.9 to 0.0 by increasing the CAV 

MPR from 0% to 100%. 

• CAV–manual vehicle crash rate started escalating to 0.3 by increasing the CAV MPR to 90%.  

• The overall crash rate dropped from 0.9 to 0.0 by increasing the CAV MPR from 0% to 100%.  
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Note: NA = Not Applicable. 

 

Arvin et al. 

(2020) 

Intersection NA VISSIM AV 

CAV 

0%, 10%, 20%, 30%, 40%, 

50%, 60%, 70%, 80%, 

90%, and 100% 

Wiedemann 74 AVs: ACC and cooperative 

ACC (CACC) models 

CAVs: modified Wiedemann  

• Number of longitudinal 

conflicts 

• Driving volatility 

•  Number of conflicts: 

- Implementing only AVs resulted in a reduction in the number of conflicts from 10 to zero by 
increasing the MPR from 0% to 100%. 

- At AV MPR of 10%, the number of conflicts increased compared to the AV MPR of 0%. 

- By adding coordination into AVs, the number of conflicts decreased steadily from 10 to zero for 

CAV MPRs of 0% and 100%. 

- Overall, from MPR of 10% to 90%, the CAV scenarios had fewer number of conflicts than the AV 
scenarios. 

• Speed volatility: 

- For the AV environment, the speed volatility experienced two peaks at MPRs of 40% and 80%. 

-  AV MPRs of 0% and 100% experienced seven and zero conflicts. 

- For the CAV environment, the number of conflicts decreased constantly from MPR of 0% to 100%. 

• Speed volatilities in the CAV environments were lower than the AV environments. 
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Table A4. Summary of driving simulator studies (Reprinted with permission from Sohrabi et al. 2021) 

Author 

Participants’ Information Experiment Factors 

AV Challenge Scenario Parameters Statistical Tool Response Variable Significant Results 
Age 

Annual 

mileage 

Driving 

experience 
Facility Speed Traffic Repetition 

Desmond 

et al. 

(1998) 

18–27  2 to 8 years of 

driving experience 

Not 

considered 

80 km/h   Fatigue Perturbing events  ANOVA  • Physical fatigue items, perceptual 

fatigue items, boredom/apathy 

• Lateral control such as heading 

error, deviation of the vehicle 

• A similar level of workload. 

• Better performance recovery in manual driving. 

• Automated driving results in undermobilizing driver’s 

effort. 

Gouy et 

al. (2012)  

20–63 2000–

56,000 

km 

Experience with a 

driving simulator, 

at least 1 year of 

driving experience 

Three-lane 

highway 

90 km/h   Platoon 

environment 

Time headway within the 

platoons 

ANOVA Time headway • Smaller average and minimum time headway when 

driving adjacent to AV platoons with short time headway. 

Bertholen 

and 

Gineyt 

(2014) 

21–29  At least 2 years of 

driving experience 

Three-lane 

highway 

Highway: 

110 km/h 

Urban 

scenario: 

70–90 km/h 

With/ 

without 

 Drunk driving Driving environment 

(urban area, car following, 

highway), different 

alcohol concentration 

ANOVA  Number of collisions, mean speed • Lateral and longitudinal control of the AV is more likely 

to be impaired compared to strategies adopted in evasive 

situation. 

Strand et 

al. (2014) 

24–65 >10,000 

km 

No automated 

driving experience 

& > 5 yr driving 

experience 

Two-lane 

undivided 

rural road 

70 km/h   System failures Automation level, extent 

of system failure 

(moderate/ 

severe/completely) 

ANOVA, 

ANCOVA, 

Fisher’s exact 

tests 

Minimum TTC, minimum time 

headway, response time, point-of-no-

return, number of collisions 

• Further automation leads to lower performance of driver. 

• Drivers performed better at controlling the lower extent of 

system failure. 

Blommer 

et al. 

(2015) 

40 (24 < 45 

yr and 16 > 

45 yr) 

 

 No experience of 

automated driving  

Four-lane 

undivided 

roadway 

50–70 mph Light 

traffic 

 Disengagement Continuous and scheduled 

automated driving,  

secondary tasks 

ANOVA Response time, eye glance behavior, 

percent eyes-on-road time  
• Radio listeners responded significantly faster. 

• The scheduled driver engagement strategy performed 

better when visual distraction was used. 

Happee 

et al. 

(2017)  

33.5  

(SD = 9) 

 Familiarity with 

the driving 

simulator  

Three-lane 

highways  

120 km/h With (30 

veh/km)/ 

Without 

traffic 

 Disengagement Time budget, lane driven, 

traffic density, secondary 

tasks 

Linear 

regression, 

Fisher’s exact 

tests 

In total, 19 performance metrics in 

terms of risk, braking, and steering, 

such as TTC, clearance toward the 

obstacle and the roadside, peak 

accelerations, overshoot, etc.  

• AV can cause delayed initial steering and braking, lower 

TTC, and stronger braking or steering. 

• No difference between cognitive and visual distraction. 

• The precision of maneuver remained unaffected.  

Gold et 

al. * 

(2018) 

19–79  At least 1 year of 

driving experience  

Three-lane 

highways  

120 km/h 0, 10, 20, 

30 

veh/km 

 Disengagement Time budget, lane driven, 

traffic density, secondary 

tasks, repetition of the 

experiment 

Generalized 

linear regression 

TOT, TTC, crash, brake application •  Traffic density (negatively), repetition (positively), and 

time budget were highly influential. 

• TOT, TTC, and crash probability showed reliable results. 

Lee et al. 

(2018)  

23 below 

and 7 above 

50 years of 

age 

 Not considered Three-lane 

highway 

100 km/h   Platoon 

environment 

Platoon size, different 

MPR 

ANOVA,  

logistic 

regression 

Steering magnitude, 

steering velocity, 

lane-change duration, 

lane-change (success/failure) 

• Smaller average and minimum time headway when 

driving adjacent to AV platoons with short time headway. 

Kundiger 

et al. 

(2018)  

18–64  Not considered Three-lane 

highway 

MV: 

120 km/h 

AV: 

110 km/h 

Light 

traffic 

 Drowsiness Age group, different time 

of the day, different 

sleepiness category 

ANOVA  Karolinska Sleepiness Scale • Time and driving mode have a significant effect on the 

development of drowsiness. 

(Yun and 

Yang, 

2020) 

 

22–33  At least 6 months 

of driving 

experience 

Four-lane 

highway 

100 km/h   Disengagement Diverse warning 

combinations (visual, 

auditory, haptic), 

disengagement scenarios 

(planned/unplanned)  

MANOVA • Human behavior metrics: response 

time, TTL 

• Vehicle control metrics: SDLP, SRR 

• Psychological metrics: SCR, AHR  

• The multimodal warning method showed superiority over 

unimodal warnings. 

• Each modality is preferred in a specific situation (e.g., 

haptic and auditory modality elicits a more immediate and 

stable warning, respectively). 

• Response time in unplanned disengagement is faster than 

planned events. 

(Lee et 

al., 2020) 

25–39  More than 1 year 

of driving 

experience 

    Disengagement Different secondary tasks 

with different 

physical/visual/cognitive 

loads 

Non-parametric 

ANOVA 
• Mean longitudinal/lateral 

acceleration, maximal 

longitudinal/lateral acceleration, 

maximum speed, minimum speed, 

DTC, TTC, SDLP  

• Resource allocation associated with each of the non-

driving-related tasks did not significantly affect the take-

over quality. 

• The cognitive load of the non-driving-related tasks more 

effectively affect the longitudinal and lateral control than 

their physical and visual attributes. 

* This study used a series of driving simulator experiments with the same design. 




