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ABSTRACT 

 

Recently, a growing percentage of healthcare takes place outside the traditional 

walls of clinical care and is tightly coupled with daily experiences. The field of remote 

and decentralized patient care and precision medicine, catalyzed by the COVID-19 

pandemic, benefits from recent developments of wearable sensors and internet of things. 

Although these devices cannot replace clinical diagnosis, they are capable of 

complementing clinical care by predicting the onset of disorders that could trigger 

medical tests and assessing effectiveness of therapeutics. This research builds a suite of 

algorithms to facilitate deployment of remote health monitoring and precision medicine 

with the objective of disorder prediction and therapeutic assessment with wearable 

sensors in day-to-day life. To accomplish these objectives, we need to track minor 

changes in continuous physiological and behavioral data collected by wearables. 

However, identifying physiological changes that are not the result of external stimuli, 

such as daily activities, is challenging due to the imperfection of physiological sensing 

with wearables in uncontrolled environments. Hence, there is a need for identifying 

surrounding contexts, e.g., activities, to enable apple-to-apple comparison of 

physiological parameters. Moreover, inter-subject variabilities and personal baselines 

should be considered in the process of tracking changes in physiological parameters. 

Finally, large-scale data collection and processing with wearables is required to assess 

their effectiveness in real-world applications.  
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 In this research, the problem of context-aware sensing is specifically addressed 

in the field of activity recognition. The proposed novel extension to existing motion-

based methods enables understanding of users’ environment through freely available 

nearables. Experimental results show that leveraging contextual information improves 

the detection of complex activities that are challenging to be detected by merely motion 

sensors. A personalization framework is also designed for activity recognition models 

with a novel uncertainty quantification algorithm to maximize personalization 

performance while minimizing users’ burden. Lastly, to investigate feasibility of using 

wearables for disease monitoring, a large-scale real-world study with smartwatches and 

smart rings was conducted. A novel machine learning model is designed to identify pre-

symptoms of the disease before diagnosis. The findings validate the potential of 

wearable sensing for continuous health monitoring in day-to-day life. 
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1. INTRODUCTION* 

In recent times, a growing percentage of healthcare takes place outside the 

traditional walls of clinical care and is tightly coupled with the daily experiences [1]. For 

example, diabetes that costs the nation over $245 billion each year can be managed 

through a multitude of daily decisions and stresses that can be supported by continuous 

physiological monitoring augmented by physical and contextual measurements. 

Likewise, early diagnosis and management of chronic conditions such as infectious 

diseases, hypertension, and Parkinson disease as well as mental issues such as dementia 

and Alzheimer can be improved through continuous monitoring of patients during their 

normal daily life that also enables targeted and timely personalized interventions. 

Finally, any health and wellness-related improvements tied to behavior changes such as 

improved nutrition, exercise and sleep and the cessation of behaviors such as smoking 

require personalized interventions tailored and responsive to a person’s environmental, 

social and psychological context. 

Development of wearable sensing technology, emerging paradigms in mobile 

sensing, and recent advancements in internet of things (IoT) hold enormous opportunity 

for continuous measurement of physiological, physical, and contextual parameters. 

                                                 

*Reprinted with permission from “Data-driven Context Detection Leveraging Passively Sensed Nearables for Recognizing Complex Activities of 
Daily Living” by Ali Akbari, Reese Grimsley, and Roozbeh Jafari, 2021. in ACM Transactions on Computing for Healthcare, ACM Transactions on 
Computing for Healthcare (HEALTH), vol. 2, issue 2, pp. 12:1-12:22, ©2020 by ACM. 

Reprinted with permission from “Personalizing Activity Recognition Models through Quantifying Different Types of Uncertainty using 
Wearable Sensors” by Ali Akbari and Roozbeh Jafari, 2020. in IEEE Transaction on Biomedical Engineering (TBME), vol. 67, issue 9, pp. 2530-
2541, ©2020 by IEEE. 
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Physiological measurements could lead to early detection of infectious diseases through 

monitoring changes in vital signs during pre-symptomatic phase of the disease. 

Continuous physiological sensing could also assist physicians in monitoring progression 

of diseases such as hypertension and heart diseases. Likewise, physical and 

environmental sensing could assist physicians in monitoring progression of diseases 

such as dementia and hypertension. Physical and contextual measurements can also 

enable understanding of human activities of daily living (ADL) that is critical for 

managing dementia and for providing assistive living services to elderly and people with 

disabilities. Finally, timely intervention required in chronic situation such as diabetes, 

asthma, and epilepsy could benefit from continuous monitoring of patient’s health. 

These are only a few examples of how remote health monitoring and precision medicine 

could move the needle on healthcare outcomes and costs. 

Wearable devices cannot replace the need for clinical diagnosis; however, they 

are capable of complementing clinical care since they can provide continuous 

measurement of physiological and behavioral parameters. As Figure 1.1 shows, these 

continuous measurements can be leveraged to predict onset of disorders that could 

subsequently trigger certain medical tests for clinical diagnosis, or they can initiate 

emergency help in critical cases such as stroke or fall. In addition, as depicted in Figure 

1.1, wearables can monitor and assess effectiveness of therapeutics after the medical 

diagnosis. For example, in the case of cardiac rehabilitation, they can monitor the 

progress of the patient over time by monitoring heartrate and daily activities. 
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Figure 1.1 - Application of wearable devices in precision medicine 

 

To accomplish the aforementioned objectives, one needs to identify and track 

minor changes in physiological and behavioral data that are collected continuously and 

often times over a long period with the wearable sensors. Detecting these small changes, 

however, could be extremely challenging due to noisy nature of wearables data collected 

in uncontrolled-environments. Moreover, identifying physiological changes associated 

with health disorders and distinguishing them from external stimuli, such as daily 

activities and circadian rhythm could be difficult when the devices are used in day-to-

day life. Based on the aforementioned facts, there are several unmet needs that need to 

be addressed for precision medicine with wearable technology to be effective in day-to-

day life. First and most important aspect is multi-modal sensing that provides 

measurements not only about physiological and physical status of the users but also 

about their surrounding context such as location, activities, and social interactions. This 

multimodal-sensing requires a powerful sensor platform augmented with infrastructures 

for continuous data collection and annotation as well as data fusion techniques. Second, 

data analytics algorithms are crucial for extracting actionable information from low-level 

sensors’ data in order to understand high-level health-related information. These 

algorithms need to be personalized and adaptable to consider inter-subject variability of 

health parameters and to minimize users’ burden. Third, putting the user in the loop is 
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vital to 1) ensure high-fidelity data collection and 2) enable just-in-time adaptive 

interventions (JITAI). Fourth, large-scale data collection and processing is required to 

assess the effectiveness of precision medicine and remote health monitoring with 

wearable sensors in a real-world application. 

Considering the aforementioned requirements and unmet needs, a successful 

remote health monitoring platform based on wearable sensors requires a combination of 

data analytics techniques that can 1) address inter-subject and inter-device variability, 2) 

analyze heterogenous data from multiple sources, and 3) monitor contextual information 

with minimum efforts demanded from the end-users in order to enable apple-to-apple 

comparison of physiological data. Seamless operation of the remote health monitoring 

platform and minimizing the need for end-user’s intervention while maximizing the 

fidelity of data is crucial to keep users engaged because otherwise the users will lose 

their interest in using devices that are difficult to interact and/or maintain.  

The research presented in this dissertation aims to tackle the aforementioned 

requirements in order to facilitate the real-world utilization of wearable-based remote 

health monitoring systems and enable a functional framework for disease monitoring. 

We tackle those requirements by creating algorithms that can be adapted to new-users 

and new-devices while minimizing the need for user intervention. We also design a 

context monitoring framework for understating environmental context without demand 

for deploying extra infrastructure and hardware. Finally, we build an end-to-end fully 

functional personalized and context-aware framework based on commercial off-the-shelf 

(COTS) wearable sensors for monitoring and predicting certain diseases. In the 
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following we will get into the details of the aforementioned requirements for remote 

health monitoring and the objectives of this research. 

1.1. Remote Health Monitoring Platform Requirements 

Remote health monitoring platforms as shown in Figure 1.2 consist of sensing 

devices (i.e., personal and environmental sensors), data analytics, caregivers and the 

end-users as the most important component. Regarding each of those components, there 

are several critical factors and unmet gaps that need to be taken care of in order to build 

a successful remote health platform. Moreover, there are strong mutual interactions 

between these components in real-life scenarios. For example, the quality of the data 

analytics algorithms could potentially improve user experience and ultimately user 

compliance and similarly user intervention could enhance the performance of these 

algorithms. Likewise, intelligent data analytics techniques could compensate sensing 

hardware deficits on one hand, and on the flip side high-quality sensing hardware can 

boost up the performance of data analytics. In the following, we discuss the components 

shown in Figure 1.2 and introduce technical gaps associated with them. 

 

Figure 1.2 - Overview of remote health monitoring systems 
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1.1.1. Sensing Devices 

The complex and nonlinear nature of healthcare challenges, which is 

continuously increasing, raises the need for holistic sensing of human population. This 

includes not only physiological status of an individual that requires multimodal 

measurement of different parameters, but also their physical activities, emotions, daily 

decisions, food intake, and biological rhythm. Equally important is individual’s social 

and environmental context including but not limited to location, social interactions, and 

access to caregivers. To gain a holistic view on individual health status multitude of 

sensing devices is required.  

Wearable devices provide a great opportunity for both physical and physiological 

sensing. Various sensing modalities such as photoplethysmogram (PPG), 

electrocardiogram (ECG), Bio-impedance (Bio-Z), temperature, and inertial 

measurement unit (IMU), which is a motion sensor, have been developed in different 

form factors including wristbands, rings, smart glasses, smart textiles, etc. [2]–[5]. 

Despite the advancements in wearable sensing technology, these devices to date suffer 

from two sources of noise including improper contact with the skin and motion artifact 

due to user’s movements. Great amount of research has recently been devoted to design 

more accurate wearables [2]. In addition, many commercial wearable sensors with 

different levels of accuracy are available in the market [4], [6]. However, there is still a 

big demand for signal processing techniques that can remedy the effect of the noise 

along with robust machine learning algorithms that can address the noise problem [7]–

[9]. 
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In addition to the wearable technology, the advancement in IoT has enabled 

opportunity to capture environmental and social contexts surrounding the users. For 

example, smart homes equipped with motion cameras can track the activity of residents 

which is useful for tracking people with dementia or for fall detection for elderly [10], 

[11]. In light of rapid advancement of IoT and similar technologies, there are ubiquitous 

systems such as devices equipped with Bluetooth low energy (BLE) or Wi-Fi routers 

that can be repurposed for context monitoring (e.g., coarse of fine-grained localization) 

without the need for deploying specific sensors and infrastructure.  

Multimodal sensing can be defined in different levels including sensing 

multitude of physiological parameters, combining physiological and personal contextual 

information such as physical activities and/or food intake, and finally combining 

personal measurements with environmental contextual information. Although there have 

been a long track of research on improving the performance of the individual sensors, 

there has been less focus on building frameworks that can combine multiple sources of 

knowledge for holistic health monitoring in real-world scenarios. 

1.1.2. Data Analytics for Wearable-based Health Monitoring 

Extracting actionable information from sensors’ data requires a chain of signal 

processing and data analysis techniques. These techniques perform a wide range of 

operations including data cleaning and filtering, noise reduction, pattern recognition, 

high-level feature extraction and training machine learning models for various objectives 

including but not limited to detecting anomaly in physiological data, understanding 

human activities, detecting and predicting chronic diseases, predicting failures, and 
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monitoring disease progress [10], [12]–[14]. Rigorous data analytics techniques have 

been introduced in the body of literature for physiological monitoring with wearable 

sensors [15]–[18]; however, there are certain gaps that need further certain gaps 

associated with the real-world deployment of wearable-based remote health monitoring 

systems that triggers the need for further research: 

• The algorithms need to be context-aware in order to correctly interpret 

sensors’ raw data. For example, an elevated heart rate (HR) during exercise 

should be considered normal, whereas increased HR during the sleep could 

indicate a physiological anomaly.  

• The algorithms should be tailored to person’s physiological baseline. Given 

high level of inter-subject variability in health data, the data analytics 

algorithms should be personalized for each user. It is critical though to 

accomplish personalization with minimum effort required from the end-users 

since it can significantly affect users’ compliance.  

• The algorithms should be adaptable to new sensors and devices by leveraging 

the training algorithms on a known wearable sensor, and expanding them to 

new sensors, eliminating the need for manual training of data analytics 

algorithms. 

• The algorithms should be expandable and they should be able to work with 

multimodal sensors data. Fusing information from multiple sources is the key 

for these algorithms to achieve high accuracy health monitoring during day-

to-day life. 
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The research presented in this dissertation, specifically tackles the above gaps to 

create a functional remote health monitoring platform using wearable sensors.  

1.1.3. Interaction between Remote Health Monitoring Platform and End-users 

The end-users lie in the heart of a remote health monitoring system. Building 

data analytics and machine learning algorithms to extract actionable information requires 

annotated and labeled data that can be provided by human users. The labels and 

annotation provided by an end-user is critical for retraining and personalization of these 

algorithms. In addition, remote health monitoring systems can adapt and improve over 

time by receiving feedback from the users. However, it is vital to minimize users’ 

interaction required for data annotation since it can directly affect users’ compliance. 

Herein, we leverage intelligent data annotation algorithms that try to minimize the need 

for users’ annotation by choosing the most important part of data that needs users’ input. 

1.2. Research and Method Overview 

In the research presented in this dissertation, we focus on three components of 

remote health monitoring including context-awareness, personalization for new users, 

and end-to-end multimodal sensing for disease prediction. 

1.2.1. Research approach for Context-aware Activity Monitoring 

Human activity recognition can enhance effectiveness of mobile health 

applications. For instance, in applications such as physical fitness monitoring, diet 

monitoring, and assisted living it is required to detect complex and high-level ADLs. 

More complex ADLs, such as cooking and housekeeping that require a combination of 

physical and cognitive efficiencies are critical for independent living. For instance, 
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caregivers could view this information actionable if they would become aware that 

patients with dementia cook repeatedly or walk at home too often [19]. In Diabetes or 

obesity, it is vital to monitor for how long the person is sitting or relaxing, how often 

they engage in physical activities such as running and exercising, and where and how 

often they eat [20]. In another example, in the application of stress monitoring, it is 

critical to understand people’s daily routine and its changes over time as the progression 

of certain mental disorders are associated with less engagement in social and job-related 

activities [10]. Wearable devices have enabled a convenient way to achieve this goal 

[21]. However, wearable sensors are usually not aware of the context that they are 

working in.  

Current systems using wearables are not capable of understanding their 

surroundings, which limits their sensing capabilities. For instance, distinguishing certain 

activities such as attending a meeting or class, which have similar motion patterns but 

happen in different contexts, is challenging by merely using wearable motion sensors. 

Herein, we focus on understanding user’s surroundings, i.e., environmental context, to 

enhance capability of wearables, with focus on detecting complex activities of daily 

living (ADL). 

For an unobtrusive, scalable, and data-driven context detection we use freely 

available Bluetooth low energy (BLE) data broadcasted by devices in users’ 

surrounding. It is also known as nearables [22]. These nearables could effectively be all 

devices equipped with Bluetooth such that they are passively detectable from the 

wireless signals they transmit. It is worth mentioning that, in this study we do not need 
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to deploy any specific BLE device. Instead, we leverage the BLE data broadcasted by 

any device in the vicinity of the user and rely on the consistency of those devices over 

time to infer the context, which is further used to improve recognition of ADLs via a 

single wrist-worn motion sensor. To best of our knowledge, this is the first work that 

leverages freely available BLE information broadcasted by any device around the users 

for detection of such environmental context. Yet, free data is not necessarily good data. 

The reliable BLE devices will be observed consistently within a context, but many 

others will be inconsistent. Considering only a single outcome within the application 

space, i.e., a single ADL, we search for consistent patterns in the BLE devices scanned 

when this ADL was known to occur.  

Consistently co-present BLE devices are the basis for extracting these context 

patterns. With these useful patterns identified, we look back to the entire application 

domain to find which patterns were important to which ADLs. Using a probabilistic 

framework, we create an a-posteriori probability for each pattern-ADL pair suggesting 

the likelihood that an ADL is being performed when a context is observed. In this way, 

the passively sensed context will directly reduce the set of possible outcomes, i.e., the 

search space, the model needs to consider. The proposed system can start with a general 

activity classifier trained only on motion sensors data and learn the context from BLEs 

in an incremental and personalized fashion. It should be noted that the context training 

must be personalized since the set of BLE devices that each user visits during their daily 

living is unique and different from other people. The set of ADLs that we are targeting in 

here, are unique in a sense that it is very challenging to detect such complex and high-
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level activities with a single wrist-worn motions sensor in uncontrolled environments. It 

is important to note that the proposed context identification technique is not limited to 

ADL recognition application. 

1.2.2. Research approach for Personalization 

Data gathered by wearable sensors could be analyzed by rigorous machine 

learning models to build a system to recognize these ADLs [23], [24]. However, a given 

model trained on a certain user may not generalize well to new users due to variation in 

how people perform specific activities [25]. Therefore, it is necessary to personalize 

underlying machine learning models to new users. 

We propose an ADL recognition system with a personalization capability. We 

leverage both active learning and unsupervised learning methods to facilitate the 

retraining process. The active learning is a supervised process in which the most critical 

samples identified by the machine learning model and their labels are solicited from the 

end-user or an oracle in general; these labels are then used to retrain or fine tune the 

machine learning model [26]. For the active learning component, we leverage the 

uncertainty of the model on its decision to identify the critical samples where 

annotations should be requested and used for retraining. We propose a unified Bayesian 

deep learning framework to model and quantify data and model uncertainties (aleatoric 

and epistemic) by considering stochasticity on both the parameters of the neural network 

and the latent variables served as features. Our proposed method extracts the features 

from the time series automatically through an unsupervised deep learning framework 

and learns their posterior distribution given the input data through a variational 



 

13 

 

autoencoder (VAE) based model. To account for randomness of the model weights, we 

utilize the Dropout Bayesian network dropped [27]. To the best of our knowledge, this is 

the first work that proposes to distinguish different types of uncertainty for active 

learning via wearable sensors. Moreover, the proposed framework has the ability to learn 

from unlabeled data through the autoencoder framework, which is leveraged to retrain 

the parameters of the feature extraction neural network. 

1.2.3. Research approach for Wearable-based Health Monitoring 

Despite the ability of the wearables to capture high-resolution, continuous and 

real-time actionable physiological information, a number of unmet gaps and unaddressed 

challenges remain in identifying diseases such as infection with wearables: 1) inter- and 

intra-subject variability of physiological responses to the disease, 2) sensor noise and 

artifacts, and 3) other external stimuli that can lead to physiological changes similar to 

those caused by the disease. 4) access to commercial wearable devices and collation of 

real-time data. We conducted a study that covers the largest number of physiological 

observations integrated across a dual platform of commercial off-the-shelf (COTS) 

wearables including smart ring and a smartwatch. 

The details of this study cannot be revealed per Texas A&M Engineering 

Experiment Station (TEES) instructions due to confidentiality concerns.  

1.3. Research Contributions 

This research addresses context monitoring and personalization as critical issues 

in the field of remote health monitoring and designs an end-to-end wearable sensing 
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system for disease detection. In this section, we introduce contributions of this research 

in each of those areas. 

1.3.1. Context-aware Activity Monitoring 

For an unobtrusive, scalable, and data-driven context detection we use freely 

available Bluetooth low energy (BLE) data broadcasted by devices in users’ 

surrounding. Detecting location and interaction-related context through Bluetooth low 

energy nearables and use that to narrow down search space. It is worth mentioning that, 

in this study we do not need to deploy any specific BLE device. Instead, we leverage the 

BLE data broadcasted by any device in the vicinity of the user and rely on the 

consistency of those devices over time to infer the context, which is further used to 

improve recognition of ADLs via a single wrist-worn motion sensor. To best of our 

knowledge, this is the first work that leverages freely available BLE information 

broadcasted by any device around the users for detection of such environmental context. 

Contributions of this research are as follows:  

• An unsupervised pattern extraction method for detecting contextual patterns 

in static and mobile nearables.  

• A probabilistic model leveraging the mutual relationship of context and the 

application domain such that the application helps build context and the 

resulting context improves performance of the application. 

• Search space reduction based on the present context, permitting the context-

aware application to use smaller models with higher accuracy rates. 
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• A case study on recognizing complex ADLs in the wild, built on 100+ days 

worth of real-world data collected with smartwatches, to demonstrate the 

effectiveness of our methods without constraining the environment. 

1.3.2. Personalized Health Monitoring 

In this research, we propose a personalization model applied to the application of 

ADL recognition with wearable motion sensors. We leverage supervised active learning 

and unsupervised learning methods to facilitate the personalization process. We designed 

a new architecture of deep neural networks to quantify data and model-dependent 

uncertainties for wearable motion sensors. We then designed a technique to choose the 

most critical samples based on the model uncertainty to be labeled by the user for model 

retraining.  

The contributions of this study are as follows:  

• We design a unified framework for automatic feature extraction, 

classification, and estimation of uncertainty of the classifier to 

incorporate active learning in human activity recognition.  

• We propose a method for quantifying both mode and data uncertainties 

and demonstrate how differentiating them is essential to achieve a more 

effective active learning. 

• We design a new framework for deep learning for activity recognition 

that incorporates uncertainty quantification and unsupervised retraining. 
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• We design an active learning technique leveraging quantified 

uncertainties with the ability to consider limited capacity of the users to 

respond to external prompts and solicitation of labels. 

• We show how the proposed personalization framework can adapt itself to 

new users more effectively and quickly compared to the existing 

paradigms. 

1.3.3. Wearable-based Disease Prediction 

The details of this study cannot be revealed per Texas A&M Engineering 

Experiment Station (TEES) instructions due to confidentiality concerns.  
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2. PRELIMINARIES* 

This section expands on some background topics to better contextualize the research 

described in subsequent sections. We first introduce common wearable sensors for 

physiological and physical monitoring required for remote health and wellness 

monitoring. We then define the notion of context in the application of remote health and 

wellness monitoring. It is followed by discussion about human activity recognition as a 

critical context for health monitoring with wearables. Afterwards, the concept of inter-

subject variability is defined as one of the most important issues in health analytics. 

Finally, we explain disease prediction through continuous health monitoring via 

wearables. 

2.1. Wearable Sensors for Remote Health Monitoring 

Advances in wearable sensing has enabled opportunity to sense different health-

related parameters outside of clinics. Wearable sensors are available in different form 

factors such as smartwatches, smart rings, smart phones, wrist-band sensors, sports 

shoes, smart glasses, and sensors embedded in clothing. Various physiological and 

physical parameters can be measured by these wearables from different body locations.  

Given the importance of these systems in modern healthcare, many companies 

have commercialized different types of wearable sensors with diverse sensing 

capabilities. These COTS wearables provide opportunity for large-scale data collections 

                                                 

*Reprinted with permission from “Data-driven Context Detection Leveraging Passively Sensed Nearables for Recognizing Complex Activities of 
Daily Living” by Ali Akbari, Reese Grimsley, and Roozbeh Jafari, 2021. in ACM Transactions on Computing for Healthcare, ACM Transactions on 
Computing for Healthcare (HEALTH), vol. 2, issue 2, pp. 12:1-12:22, ©2020 by ACM. 
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although they provide researchers with less flexibility compared to custom built 

research-grade wearable sensors. For example, Garmin smartwatches by Garmin Ltd. 

(Olathe, Kansas, USA) continuously estimates physiological parameters in a round-the-

clock fashion as it is worn. The set of parameters and features collected by the device 

includes heartrate (HR), respiration rate (RR), pulse oximetry, motion intensity, and 

sleep reports. Oura rings by Oura Ltd. (Oulu, Finland) provides HR, inter-beat interval 

(IBI), root mean square of successive differences (RMSSD, i.e., a measure of HRV), 

RR, temperature, coarse-grained activity, and sleep reports. These are only a few 

examples of many wearable sensors available in the market.  

Physiological sensors worn on different body locations can provide 

measurements of HR, HRV, RR, pulse oximetry, body temperature, and blood pressure 

that are required for diagnosis and disease monitoring. These sensors usually work based 

on photoplethysmography (PPG), Bio-impedance (Bio-Z) or in rare cases 

electrocardiogram (ECG) signals since ECG is challenging to be acquired from wearable 

sensors. 

Other sensors that can measure physical activity and sleep are also important as 

they provide important contextual information required for remote health monitoring. 

Inertial measurement units (IMUs) are motion sensors that can measure acceleration and 

angular velocity. These sensors are embedded in almost all wearable devices as well as 

smart phones. Using motion sensors one can monitor activities of daily living or coarse-

grained activity level which provides important context not only about the user by also 

about the quality of the data of the physiological sensors. The quality of the data 
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captured by warble physiological sensors degrades drastically due to motion artifact 

when the user engages in intense activities. 

2.2. Contextual Measurements for Remote Health Monitoring 

The context is a broad term that includes any additional information that could 

help better understand a specific situation. Depending on the main objective the main 

and the contextual measurements can change. For example, activity can serve as context 

for health monitoring, but in the application of activity recognition the activity is the 

main measurement and location of the user (e.g., home versus at work) and their social 

interaction can serve as contextual information. Contextual knowledge helps identify the 

most probable outcomes within an application domain based on the user’s history within 

that context. 

Working with wearable sensors in remote health monitoring applications, the 

context plays an important role for accurate understanding of the physiological data. In 

this application, as opposed to clinical data collection, the data is collected while the user 

can engage in their normal daily activities. In addition to the daily activities, other 

external stimuli such as stress, daily decisions, food and alcohol consumption can affect 

the physiological parameters measured by wearables. Therefore, it is critical for 

wearable-based remote health monitoring systems to be aware of the situation at which 

the data is collected. Moreover, the knowledge of the contextual information such as 

location and time is critical for intervention and decision-making systems to make the 

right decision at the right time. In the specific application of remote health monitoring, 
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the most important contextual information includes activity type and intensity, location, 

sleep, social interaction, time, and food intake. 

2.3. Activities of Daily Living Recognition 

Monitoring activities of daily living (ADL) provides vital contextual information 

for various applications including health monitoring, assisted living, security and 

surveillance, and mobile services [28], [29]. For instance, in applications such as 

physical fitness monitoring, diet monitoring, assisted living, and remote health 

monitoring it is required to detect complex and high-level activities of daily living 

(ADL). More complex ADLs, such as cooking and housekeeping that require a 

combination of physical and cognitive efficiencies are critical for independent living. 

Therefore, there is a need to monitor those activities, especially among elderly and 

people with certain diseases and/or disabilities. For instance, caregivers could view this 

information actionable if they would become aware that patients with dementia cook 

repeatedly or walk at home too often [19]. In Diabetes or obesity, it is vital to monitor 

for how long the person is sitting or relaxing, how often they engage in physical 

activities such as running and exercising, and where and how often they eat [20]. In 

another example, in the application of stress monitoring, it is critical to understand 

people’s daily routine and its changes over time as the progression of certain mental 

disorders are associated with less engagement in social and job-related activities [10]. 

Wearable devices have enabled a convenient way to achieve this goal [21]. 

Rigorous machine learning and deep learning algorithms have been designed in 

conjunction with wearable motion sensors for automatic detection of various ADLs [5], 
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[13], [19], [30], [31].For the goal of ADL recognition with wearables, there is usually a 

labeled dataset available collected with motion sensors, which is used to train machine 

learning algorithms, and it is collected under a certain sensing condition including the 

type and number of the sensors, sensor quality, sensor placement, subjects, and activities 

to be recognized. All these conditions are possible to be changed in real life.  

Researchers have shown that different type of sensors are suitable for 

recognizing various type of activities. To recognize ambulatory movements such as 

walking, running, sitting, standing, and climbing stairs using the data collected by 

accelerometers placed on the body have achieved reasonable accuracy [32], [33]. Recent 

research has proved the ability of a smartphone to be used for activity recognition goal. 

Researchers have used phones to recognize gestures and basic activities [34], [35]. For 

high-level activities that are not as easily distinguishable by body sensors alone, 

researchers have used environmental sensors to capture interaction between users and 

different objects [36]–[38]. 

2.4. Inter-subject Variability  

Despite the fact that a wearable device will always aim to measure the same 

physiological behavior, sensor capabilities will vary between users due to differences in 

demographics, body composition, health state, and physical attributes. Consequently, 

performance of the machine learning models trained on these data will vary for a 

generalized model and will dramatically suffer when it attempts to analyze wearable 

signals for a new user whose data were not included in the training set. Hence, there is a 

need for retraining the models for different users. 
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User-specific variations exist in all physiological and physical measurements. 

For example, in Figure 2.1 we show the data Bio-Z and ECG signals collected by 

wearable sensors from 10 participants in steady state. First, we discuss the variations of 

ECG that are present in this data. Figure 2.1-a shows sample ECG instances collected by 

wearables that exist for each subject. Here, we show that each subject possesses unique 

characteristics that impact both the scale and morphology of their typical cardiac cycle 

characteristics, which are due to both the unique cardiac behaviors that exist within a 

subject and also by the quality of sensing during data collection. 

 

 

Figure 2.1 - Inter-subject variability of physiological measurements 

 

(a) 
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Now, to consider the variation in Bio-Z signals, we refer to Figure 2.1. We also 

observe that although general morphology is similar, each signal per subject will vary 

with respect to amplitude, phase, or delay. Furthermore, similar to the ECG instances, 

these will also vary from beat-to-beat. This distinctness of Bio-Z signals is best 

exemplified by the fact that Subjects 5 and 6 have relatively similar ECG types, but their 

corresponding Bio-Z signals are quite different with respect to scale. As another 

example, we observe that despite the fact that Subjects 6 and 7 have relatively similar 

Bio-Z signals, their corresponding ECG types are very different. These types of 

challenging cases will be best handled with personalized models. 

2.5. Disease Monitoring with Wearables 

Wearable sensors can be used for continuous monitoring of several diseases 

including but not limited to diabetes, asthma, Parkinson, dementia, stress, seizure, 

hypertension, heart failure, and infection [18], [39]–[44]. Here, we focus on explaining 

the potential of wearable sensing in detecting infection, specifically COVID-19, that its 

recent pandemic in 2020-2021 has led to millions of deaths worldwide. 

Infectious diseases are one of the leading causes of death worldwide [45], [46]. 

COVID-19 caused by the SARS-CoV-2 virus, affecting the upper and lower respiratory 

tract [47], [48], led to more than 2,360,000 deaths between January 2020 and February 

20211.  SARS-CoV-2 is highly contagious and given its long incubation period (2-14 

days [49], [50]) it can be easily spread by an infected person prior to observing any 

symptoms, and in some cases, the infected individual remains asymptomatic. Due to this 

silent transmission period, the spread of the virus became exponential, and the number of 
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positive cases passed 107 million in one year1. Although it may take a number of days to 

observe the symptoms, there is an opportunity to identify pre-symptomatic signs, 

through small physiological changes, e.g., a slight elevation in heart rate (HR) or 

reduction in certain heart rate variability (HRV) measures could be observed [51]. If an 

impending infection could be identified pre-symptomatically in a timely manner, 

potential guidance on self-isolation could reduce the exponential spread of the virus, 

reduce the burden of contact-tracing on the public health workforce, and provide 

opportunities for early intervention in high-risk populations. 

Infection can cause a chain of symptomatic reactions, negatively impacting vital 

organs. Although levels of the infection and the viral load might vary for each 

individual, reports indicate a consensus in the symptoms associated with COVID-19 

[52]. The SARS-CoV-2 virus, for example, can damage the cardiovascular and 

respiratory system in multiple ways [53]. The fever increases evaporative fluid losses 

which cause the heart to beat faster as blood volume contracts. In addition, the infection 

inflames the lungs [54], which decreases the oxygenation of the blood. This introduces 

an extra burden for the heart that is responsible for providing sufficient oxygen to the 

circulation. These chains of reactions cause elevations in both HR and RR. All these 

parameters can be continuously measured by wearable devices. Therefore, wearable 

sensors that can measure these parameters are a good candidate for detecting 

physiological anomalies associated with infection [55].  
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Early warning of exposure to infectious diseases, such as COVID-19, is essential 

to preventing their spread1. This is possible through the continuous analysis of 

physiological observations captured with wearable devices [56]. 
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3. RELATED WORK* 

3.1. Activity monitoring 

There is an abundance of prior research in the field of ADL recognition. 

Different machine learning algorithms have been utilized to perform human activity 

recognition with varying types of wearable and environmental sensors [57]–[65]. 

Although promising results have been achieved in these works, two main challenges 

have not been addressed well: 1) Most of the previous works have focused on hand-

crafted features that are useful for simple or low-level human activities such as sitting or 

walking. While detecting complex ADL needs more complicated features and patterns to 

be recognized which is not a simple task using the manual features. 2) Most of these 

systems are designed based on a fixed set of sensors, users, and activities. They have not 

considered different variations in the distribution of data due to the user or sensor 

changes, or they have considered just one type of variation. Thus, lacking a robust 

framework that can address different kinds of variations and can adapt itself to new 

situations is significant. 

Researchers have shown that different type of sensors is suitable for recognizing 

different type of activities. To recognize ambulatory movements such as walking, 

running, sitting, standing, and climbing stairs using the data collected by accelerometers 

                                                 

*Reprinted with permission from “Data-driven Context Detection Leveraging Passively Sensed Nearables for Recognizing Complex Activities of 
Daily Living” by Ali Akbari, Reese Grimsley, and Roozbeh Jafari, 2021. in ACM Transactions on Computing for Healthcare, ACM Transactions on 
Computing for Healthcare (HEALTH), vol. 2, issue 2, pp. 12:1-12:22, ©2020 by ACM. 

Reprinted with permission from “Personalizing Activity Recognition Models through Quantifying Different Types of Uncertainty using 
Wearable Sensors” by Ali Akbari and Roozbeh Jafari, 2020. in IEEE Transaction on Biomedical Engineering (TBME), vol. 67, issue 9, pp. 2530-
2541, ©2020 by IEEE. 
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placed on the body have achieved reasonable accuracy [32], [33]. Recent research has 

proved the ability of a smartphone to be used for activity recognition goal. Researchers 

have used phones to recognize gestures and basic activities [34], [35]. For high-level 

activities that are not as easily distinguishable by body sensors alone, researchers have 

used environmental sensors to capture interaction between users and different objects 

[36]–[38]. Accelerometers and RFID tags are used in these works. Other researchers 

utilized other environmental sensors including motion detectors and door contact sensors 

to recognize ADL [66]–[68]. 

To address the challenge of extracting informative features for complex 

activities, deep learning has been recently used. Several prior investigations used data 

from inertial measurement units (IMU) or motion sensors to automatically extract 

features and detect human gestures and activities using convolutional neural networks 

(CNN). In one study, axes of the IMUs were treated like different channels of an image 

provided to a three-layer CNN and outperformed traditional machine learning algorithms 

with respect to the accuracy [23]. A CNN based approach that captures temporal 

dependency of a signal was proposed to perform activity recognition with a cell phone’s 

accelerometer [69]. These investigations used 1D convolutional units which can only 

consider temporal patterns of the signal but not the relationship between different axes of 

a sensor. To overcome this problem, data from an accelerometer and a gyroscope were 

converted into images to be used in a CNN for detecting basic human activities, which 

outperformed state-of-the-art in terms of both recognition accuracy and computational 

efficiency [70]. Experimental results showed that CNN achieved significant speed-up in 
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computing and detecting the final class while also improving overall classification 

accuracy compared to the state-of-the-art models such as support vector machine (SVM) 

[71]. 

Deep learning methods that use more than just CNN for ADL recognition have 

also been developed. A combination of CNN and recurrent neural network (RNN) was 

used to detect modes of locomotion as well as hand gestures [72]. In this article, four 

convolutional layers were used to extract features of the signal and two recurrent layers 

were used to model temporal behavior. The article showed that using RNN in addition to 

CNN could slightly increase accuracy. However, the authors did not evaluate how 

adding RNN increases the computational complexity of the model, and they did not 

explain the tradeoff between improving accuracy vs. increasing computational time. 

Another similar deep neural network with the ability to detect concurrent activities was 

introduced that offered a new type of layer called a coding layer to allow the deep 

learning model to simultaneously make predictions for all activities in progress [73]. A 

multimodal multi-stream deep learning framework to tackle the egocentric activity 

recognition problem was proposed [74]. This model used the data from both the video 

and wearable sensors including an accelerometer and a gyroscope. CNN was used to 

extract features from video and RNN were used to model wearable sensors’ signal, and 

finally, a two-layer fusion approach was proposed to combine different modalities and 

detect human activities. Although all these studies showed the ability of deep neural 

network to use different sensors and extract the features automatically as well as its 

superiority over traditional methods, none focused on the robustness aspects of the 
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systems with respect to the heterogeneity of sensors and human activities. In fact, the 

investigators proposed a fixed model trained for specific sensor and users and did not 

investigate the effect of changes on their algorithms.  

Multiple prior investigations focused on transfer learning for activity recognition 

in order to address the challenge of sensor or user changes. A CNN-based model for 

ADL recognition was proposed that was able to adapt itself to each individual with a 

small amount of additional data. This model inserted a special layer with a small number 

of free parameters between each of two CNN layers and estimated the free parameters 

using a small amount of data from each new subject [75]. This technique needs to collect 

at least a few labeled data of the new setup to retrain the deep network that could be 

burdensome for the users and is not truly seamless. There are many other studies that 

enabled the concept of transfer learning in this area using traditional machine learning 

approaches, but not deep learning.  

A transfer learning technique was proposed based on unsupervised clustering of 

new data in order to personalize an ADL model for new users [76]. The activity 

recognition knowledge of one IMU sensor was transferred to a newly worn IMU in 

another study. In this work, a label propagation technique was utilized to refine the 

labels using both old (supervised) and new sensor (unsupervised) data and then the 

modified labels were used for training a new model for the new sensor from scratch [77]. 

The authors showed that their technique improved the performance compared to using 

the labels that are generated by the old sensor for training the new one. An unsupervised 

similarity-based method for integrating new sensors was proposed by a group of 
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researchers. They established a similarity metric between data points in the space of new 

sensor by building a similarity graph using the features from the old and new sensor. 

This was used for moving the labels assigned by the original classifier if they are not 

consistent with similarity considerations, and the adjusted labeled data were used to train 

a new classifier [78]. However, with these techniques, a new model needs to be trained 

from scratch using the generated labels. The classification step was formulated under 

covariate shift, which assumes that the distributions of input points change between the 

training and testing phases, to adapt classification model to the data of new users by 

estimating the class-posterior probability [79]. However, this technique relies on the 

assumption that the class-posterior probability does not change in between training and 

test phases that might not be correct in the case of changing the sensors. Challenges of 

an opportunistic ADL recognition system to train a newly added sensor with the 

available sensing devices to recognize activities at runtime were investigated [80]. All 

these attempts used handcrafted features that affect both performance and the 

computational efficiency of the techniques as well as re-deploying the algorithms for 

new ADL recognition scenarios. 

While most of the aforementioned studies evaluated the performance of their 

algorithms under controlled experiments in which the participants were asked to perform 

only the desired activities, a couple of researchers tried to apply ADL recognition 

algorithms on real-life scenarios. A smart home project running in Washington State 

University collected the data of several residents living in different smart homes 

equipped with motion, temperature, and water/gas usage sensors. Using this dataset the 
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researchers recognized and tracked functional activities that people perform in their own 

homes and everyday settings [81]. In this paper, they looked at approaches to perform 

real-time recognition of ADL with focus on recognizing independent and joint activities 

among multiple residents. However, they did not take into account the challenge of 

sensor or user variations. Moreover, they could not achieve high accuracy (66% on 

average) because of the limited sensors that were used. Simple environmental sensors 

were the only type of sensor used in this study while adding wearables could 

significantly increase the performance. Using the same smart home data, researchers 

tried to recognize the activities that do not belong to a predefined class [82]. They used 

hidden Markov models (HMM) to recognize the activities. However, this challenge is 

addressed with binary sensors, while it is more difficult to solve such a problem using 

continuous sensors. There are other works that tried to design ADL recognition for smart 

homes and tested the system in real life scenarios [83]–[87]. However, all of them 

assumed that all sensors are always available. Thus, lack of a robust framework that can 

leverage a considerable set of heterogeneous sensors for ADL recognition and can adapt 

itself to different sensor and user variations hinders developing context-aware 

applications in smart healthcare. 

3.2. Contextual Information 

Context-awareness in mobile computing is considered an integral component of 

the ubiquitous computing paradigm, i.e., the third-wave of computing [88], [89]. The 

idea that an understanding of the current situation will help computational models is by 

no means a new one. There has been much work into the structure of context and its 
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usage such that it can be applied to various applications through a centralized framework 

[90], [91]. Often, these studies build context or suggest building context by merging the 

output of heterogeneous sensors, e.g., GPS, proximity sensors, and microphone into 

some structured yet flexible format, such as an ontology, for other applications to use 

[19], [92]. Since we fixate on the user-centric context, we consider what the user’s 

mobile devices are capable of sensing. 

A common approach to context detection is to use technology embedded in the 

infrastructure of the interesting contexts, such as specific rooms in the home or the user’s 

desk and common meeting rooms at work [93], [94]; these may be considered “logical” 

or “semantic” locations. Prior investigations have studied using Bluetooth 

beacons/metadata to detect location [95], social interaction [96], and activity recognition 

[19], in both supervised and unsupervised manners. Bluetooth-based localization was 

used to push mobile advertisements to user’s cellphones [95]. This system performs 

localization based on the presence of a known Bluetooth device in the vicinity of a fixed 

Bluetooth sensor. Therefore, this system needs to know user’s Bluetooth address and 

phone number as well as specific location of the Bluetooth sensor. Another study 

proposed a probabilistic matrix factorization method for identifying both time 

characteristic and people involved in a person’s social circle using Bluetooth scans [96]. 

Although this is an unsupervised method that reveals the social circles in which a person 

is involved, this system assumes that all the Bluetooth packets belong to the cellphones 

of the study participants. In other words, it ignores the BLE packets coming from 

stationary devices such as a smart TV. Another study on ADL recognition placed one 
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known BLE beacon into each room, and used the RSSI from each beacon as an input 

feature for classification; the classifier thus indirectly uses context [19], [93]. Yet if the 

location and identity of each beacon is a priori knowledge, it becomes trivial to 

determine the user’s logical location [19]. This paper used BLE beacons placed in 

known locations to identify context, and using that it could extensively improve the 

current activity recognition systems by detecting complex and fine-grained ADLs, which 

are challenging to be detected via only motion sensors. They explored activities such as 

sitting and eating, sitting on sofa vs. bed, standing and using sink vs. talking, walking 

outdoor to indoor vs. indoor to outdoor, and lying on bed vs. sofa. They showed that by 

adding location information to the motion data, the accuracy improved from ~78% to 

~85%. However, the primary issue here is that the user must deploy infrastructure and 

provide corresponding information to the context detection system. In all these studies, 

some prior knowledge about the type of devices and their owners is assumed to be 

accessible. In contrast our proposed system does not leverage any prior knowledge about 

the type of BLE devices and their specific location. Moreover, it does not need one to 

deploy any device in particular locations. 

Sensing absolute location via a GPS sensor is another option [97]–[99]. The 

location captured by GPS has been used to narrow down the search space for classifying 

the type of food from images [91]. However, several issues preclude GPS from being a 

good context sensor: 1) it only detects location and is not capable of detecting user 

interactions as well as other environmental information, 2) it requires line of sight and 
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thus, cannot be used indoors, 3) absolute location has a privacy stigma, and 4) it is not 

power efficient [100].  

Another approach to coarse-grained localization for context detection is through 

unsupervised fingerprinting of Wi-Fi Access Points [101], [102]; this does not require 

the user to place infrastructure in their environment, but is only applicable to locational 

context. These studies facilitate automatic detection of context on passively sensed data. 

Yet the problem is that they cannot identify social aspects of context well, if at all. While 

it might be possible to determine social context by passively scanning all Wi-Fi packets, 

this would require unattainable permissions on commercial devices or specialized 

hardware [103]. In addition, these techniques need recalibration for each new location 

that puts extra burden on users. Prior works have attempted to use Bluetooth devices on 

their own, but for constrained scenarios. These studies often perform statistical feature 

extraction on Bluetooth scans for use in a classifier [94], [104]. However, just like 

studies which used known devices as features, whether by presence alone or RSSI value, 

this will at best lead to an indirect learning of context within the model. These 

techniques may place high importance on specific features whose values depend on 

context. Over time, the context may evolve, meaning the model may lose its 

effectiveness over time. To our knowledge, few studies in general exist which facilitate 

purely data-driven detection of context. Further, no such studies exist for automatically 

detecting both locational and social contexts using passively observed nearables. We 

note that our algorithm does not explicitly derive social interactions from BLE beacons. 

In fact, since our proposed algorithm considers all regularly observed BLEs from any 
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devices around the user for context modeling, the identified contexts could potentially be 

related to interaction between users (e.g., when the BLE comes from a friend’s device), 

actual location (e.g., when BLE belongs to a stationary device such as a smart TV in the 

living room), or objects and devices (e.g., when BLE belongs to user’s vehicle). 

However, our algorithm is blind to the exact type of social interaction. In fact, the main 

advantage of the proposed method over existing BLE-based methods is learning the 

context from all BLE packets possible instead of limiting the system to a set of pre-

known BLE devices or placing BLE beacons in particular locations. 

3.3. Personalization 

ADL recognition has become an important component of context-aware systems 

in the last decade [105]. This contextual information provides valuable knowledge to 

better interpret biomedical signals, diagnose with more confidence, intervene and treat 

more efficiently, detect emergency situations, make proper decisions based on the 

context, assist people with chronic disabilities to perform their daily activities 

independently, and monitor patients more precisely [106], [107]. Accurate and robust 

recognition of human activities requires gathering massive amount of labeled data to 

train powerful machine learning models [58], [59]. Different machine learning 

algorithms have been utilized to perform human activity recognition with various types 

of wearable and environmental sensors [64], [108], [109]. All these investigations have 

focused on hand-crafted features that are useful for simple or low-level human activities 

such as sitting or walking. However, detecting complex ADL needs more complicated 
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features and patterns which cannot be executed easily with manually handcrafted 

features. 

To address the challenge of extracting informative features for complex 

activities, deep learning has been recently used [13], [21], [73]. Several prior 

investigations have used data from inertial measurement units (IMU) or motion sensors 

to automatically extract features by leveraging convolutional neural networks (CNN) for 

detecting human gestures and activities [23], [69], [71], [72]. In all these efforts, the 

principal aim has been to create generalized models for all users. The performance of 

these systems, however, degrade significantly when they are used for a new user who 

performs the activities differently form the set of training subjects [110]. 

To address the problem of inter-subject variability in human activities, the 

researchers have designed personalization techniques [111], [112]. An unsupervised 

retraining technique based on an ensemble model was designed for personalizing activity 

recognition models [113]. In this study, the model trained on the data of old subjects was 

used to assign labels to the data of a new subject, and then these data were used to 

update the ensemble model. However, it has been shown that with using merely 

unsupervised data it is hard to achieve high accuracy in personalization [114]. Active 

learning is a widely used technique in this area that seeks to identify important samples 

and interacts with the user to acquire labels for those samples. Those labeled data is then 

used to fully or partially retrain the classification models [115], [116]. Active learning 

techniques based on the entropy and the random forest committee of classifiers were 

investigated in prior studies. The entropy-based methods typically select data samples to 
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solicit a label on the basis of the highest information gain. In random forest-based 

methods, a forest of 100 trees was trained and the disagreement between the output of 

those trees for each sample was used to select the samples to obtain label for [117].  

Uncertainty of the classifier is a widely used criterion to identify vital samples 

that require label [118], [119]. An active learning technique based on the uncertainty of 

the SVM model was developed for detecting exercise activities [118]. A logistic 

regressor was cascaded to the SVM’s output to estimate the SVM classifier’s 

uncertainty. This work, however, does not take into account user’s burden associated 

with soliciting labels, does not consider different types of uncertainty, and it uses 

handcrafted features. A prior study provided an active learning method under 

constrained query budget [120]. All these works only rely on the labeled data solicited 

from the user and they do not take advantage of abundance of unlabeled data available in 

the ADL recognition platforms. A personalization method integrating both unsupervised 

and supervised retraining was developed using model uncertainty for active learning 

[111]. This study quantifies the uncertainty using the similarity between the new data 

and the training data in dense regions. However, neither this work nor other uncertainty-

based active learning methods consider the source of uncertainty when designing the 

active learning technique. 

There are mainly two types of uncertainties present in sensor data. Aleatoric or 

data-dependent uncertainty is related to noisy sensor measurements and cannot be 

mitigated by increasing the training data, whereas the epistemic or model-dependent 

uncertainty is due to lack of enough training data and it can be alleviated by enhancing 
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the training set. Therefore, considering the source of uncertainty is critical to identify the 

vital samples that can enhance the performance of personalization. In deep learning, 

often Softmax functions is used at the end of the pipeline to measure model uncertainty; 

however, it has been shown that it does not always capture model uncertainty [27], 

[121]. A framework has been designed to learn mappings from input data to aleatoric 

uncertainty in image recognition [27]. The authors compose these together with 

epistemic uncertainty approximations. However, this model learns aleatoric uncertainty 

based on the assumption that in the training phase they have access to examples of the 

disturbed data (e.g., highly textured input images or far objects) to train the system, 

which is not always the case in ADL recognition. In ADL recognition, the disturbance in 

sensor measurements could be the result of electrical noises or sensor movements with 

respect to the body, where examples of such a noisy data may not be available during the 

training phase. Therefore, the system should be able to estimate the aleatoric uncertainty 

with no need to observe the examples in the training phase. To address the 

aforementioned issues and to maximize the effectiveness of personalization while 

minimizing the user interaction, we propose a deep learning assisted method for 

measuring different types of uncertainties. 

3.4. Infectious Disease Detection with Wearables 

Various wearable sensors have been used for predicting and/or detecting 

infection through monitoring changes in vital signs associated with various infections 

[122]. Several wearable-based systems tried to address detection and prediction of the 

novel coronavirus (SARS-CoV-2) that led to a pandemic (2020-2021) due to its highly 
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contagious nature and resulted major disruption to public health and a huge loss of 

human life [123]. 

A wearable-based framework was designed to facilitate daily and pervasive 

detection of SARS-CoV-2/COVID-19 by combining off-the-shelf wearables with deep 

neural networks [123]. This study used synthetic data generation to alleviate the need for 

large datasets. They leveraged a fully dense network with no convolutional layers for 

feature extraction purposes. The notion of context and noise in wearable data was not 

addressed in this paper. Another study designed a smartphone app to collect smartwatch 

data as well as self-reported symptoms for infection detection [124]. A novel score based 

on RHR normalized by step count measured by smartwatches was proposed for 

detecting infection [51]. A CNN-based model was designed based on the data collected 

with Fitbit devices for detecting infection using RHR, HRV, and RR [125]. Based on 

self-reported symptoms alone, they could also predict the need for hospitalization.  

Although prior studies have conducted compelling analysis on the physiological 

changes associated with COVID-19, only some pursued the prognosis of infection in the 

pre-symptomatic phase [51]. Furthermore, most of these investigations considered a 

limited set of physiological parameters and a single wearable device or provided limited 

evaluation of their proposed framework. We conducted a study that covers the largest 

number of physiological observations integrated across a dual platform of smartring and 

a smartwatch. 

A few other studies reported the effect of the infection on physiological 

measurements provided by wearables without designing any machine learning model for 



 

40 

 

infection detection/prediction. It was shown that the resting heartrate (RHR) rises 

significantly in 2 days surrounding the symptoms onset, and the step count remains 

lower than normal for days after the symptom onset [55]. Another study determined 

whether a watch measuring wrist temperature could accurately identify patients who are 

infected [126]. They showed that there was a significantly higher average maximum 

temperature in infected people compared with healthy people. Changes in respiratory 

rate was also analyzed to predict the risk of COVID-19 infection. RR, RHR, and HRV 

were measured using a strap and a gradient boosted classifier was trained for infection 

detection and prediction. This study leveraged the measurements during the sleep time to 

reject motion noise but it did not consider physical activities that could be an important 

contextual information indicating if an individual is sick.  
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4. DATA-DRIVEN CONTEXT DETECTION LEVERAGING PASSIVELY-SENSED 

NEARABLES FOR RECOGNIZING COMPLEX ADL* 

 

In this section we study usage of passively-sensed nearables for identifying 

environmental context and leveraging that for detecting complex and high-level 

activities of daily living (ADL). Wearable sensors are usually not aware of the context 

that they are working in. The context is a broad term that includes any additional 

information that could help better understand a specific situation. For activity 

recognition with motion sensors’ data, this extra information could be the location of the 

user (e.g., home versus at work), their social interaction, and the time of day. Since the 

set of possible activities in each of these contexts could be different, understanding this 

contextual information improves the ability of the system to detect activities with 

complex motion patterns.  

4.1. Context-aware Activity Recognition 

Current state-of-the-art systems that use wearables are not capable of 

distinguishing a large number of complex activities, which may appear similar regarding 

movement of the hand but with vital differences in context, such as bicep curl exercise 

versus eating or running in the gym versus running in home. With the development of 

IoT technology, a wide range of information could be accessible from the devices in a 

                                                 

*Reprinted with permission from “Data-driven Context Detection Leveraging Passively Sensed Nearables for Recognizing Complex Activities of 
Daily Living” by Ali Akbari, Reese Grimsley, and Roozbeh Jafari, 2021. in ACM Transactions on Computing for Healthcare, ACM Transactions on 
Computing for Healthcare (HEALTH), vol. 2, issue 2, pp. 12:1-12:22, ©2020 by ACM. 
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particular environment [93]. Our goal is to leverage freely available data from 

“nearables” to identify context that could be associated to the user’s surroundings, i.e., 

location, social groups, and nearby objects, in order to reduce the search space for the 

application of recognizing complex ADLs. 

Detecting more complex ADLs with merely motion sensors is extremely 

challenging, if even possible, due to similarity in motion signature of various activities 

[19]. There is a lack in studies on detecting complex ADLs in the body of literature. To 

distinguish between those complex activities, understanding the users’ surrounding is the 

key. In this case, knowing the context helps to narrow down the set of probable 

activities, which in turn facilitates the activity classification. Understanding the context 

can similarly assist wearables in any other sensing and recognition tasks. 

For an unobtrusive, scalable, and data-driven context detection we use freely 

available Bluetooth low energy (BLE) data broadcasted by devices in users’ 

surrounding. It is also known as nearables [22]. These nearables could effectively be all 

devices equipped with Bluetooth such that they are passively detectable from the 

wireless signals they transmit. It is worth mentioning that, in this study we do not need 

to deploy any specific BLE device. Instead, we leverage the BLE data broadcasted by 

any device in the vicinity of the user and rely on the consistency of those devices over 

time to infer the context, which is further used to improve recognition of ADLs via a 

single wrist-worn motion sensor. To best of our knowledge, this is the first work that 

leverages freely available BLE information broadcasted by any device around the users 

for detection of such environmental context. 
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The creation of context in a completely unsupervised way is not a trivial task; it 

becomes significantly more difficult if many elements used to build the context are 

unreliable. This is the case when considering passively sensed devices in the user’s 

vicinity because many nearables could be mobile. For the given application of activity 

recognition, a particular activity may occur in several different contexts; further, there 

may be multiple distinct activities possible within the same context. In this way, the 

relation between the user’s action and context may not be 1:1. Here we focus on 

complex ADLs such that motion signals alone are not enough to distinguish all 

activities. Examples include attending a meeting or class, cooking, eating, working at 

one’s desk, etc. Knowledge of the environment can help alleviate this issue. Figure 4.1 

shows the effect of context w.r.t. ADL recognition. No context is used in Figure 4.1-a 

where any of n activities may be detected by the model. However, context helps estimate 

which activities are actually feasible, shown in Figure 4.1-b. In this study, contextual 

knowledge is derived from passively sensed BLE devices.  

 

Figure 4.1 - Classification search space (a) without and (b) with context 
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4.2. Methodology 

We assume that there is a general activity classifier trained on the data of the 

motion sensor embedded in a smartwatch. This classifier has a limited accuracy due to 

similarity in the motion patterns of complex activities. As the users start using the 

smartwatch during their normal daily life, the system starts to learn the context by 

looking at the patterns of BLE devices around the user. The overview of the proposed 

system is shown in Figure 4.2. When a new user starts using the device, the general 

activity classifier is used to assign labels to each sample using motion data, and the most 

certain labels are chosen for context learning.  

 

 

Figure 4.2 - Overview of the proposed system for context learning 
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In addition to motion data, we collect BLE scans broadcasted by devices in the vicinity 

of the user. After a period of data collection, as shown in Figure 4.2-a, the context is 

created separately for each possible action the user may take based off of patterns 

extracted from BLE devices scanned while that action was being performed. A 

probabilistic model then relates these possible outcomes to the observed contexts which 

is used to narrow the search space to probable actions only. A separate classifier is 

trained for each set of actions that share context that is called context-specific classifier. 

For a new sample then, as shown in Figure 4.2-b, the set of satisfied patterns is identified 

based on observed BLE devices. Using the probabilistic model, the patterns are then 

mapped to the set of probable actions; these are used to select the appropriate context-

specific classifier, which is trained only on that reduced set of possible outcomes. When 

a new unknown context is observed, again the most reliable labels generated by the 

general classifier are gathered to retrain the context patterns. In fact, the context learning 

is an ongoing process that never stops. The ongoing training is required because the set 

of BLE devices around a user can dynamically change over time. In the following, we 

first explain our context training approach including BLE preprocessing, extracting 

context patterns and associating them to the activities in a probabilistic fashion. Lastly, 

in Section 4.2.3, we explain the process of labeling the data on-the-fly by leveraging 

general activity classifier and context-specific activity classifier. Before introducing the 

details of our approach, notation definitions are summarized in Table 4.1 to enhance the 

readability of the equations. 
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Table 4.1 - Term definition for context detection 

Term Definition 

M Set of all observed BLE beacons during data collection 

mj The MAC address of the jth element in M 

R 
The set of BLE MAC addresses (i.e., record) scanned during some one-minute 

segment of time 

Bi A binary vector of size |M| representing the BLE record at the ith timestamp 

bj A binary element corresponding to jth  MAC in M 

xi Sensor readings at ith timestamp 

y The output label at ith timestamp 

L Total number of possible output labels 

A Set of output labels 𝐴 = {1, … , 𝐿} 

a An output label where 𝑎 ∈ 𝐴 

na Total number of samples with label a 

pk kth context pattern which is composed of one or more BLE beacons 

K Total number of context patterns 

𝐶𝑜𝑝
𝑎 

The coverage of pattern p for label a; i.e., the percentage of samples labeled a for 

which context pattern p is observed 

𝛷 
An L by K matrix that includes the probability of action ai given context pattern pj in 

ith row and jth column 

𝑃𝑅 Set of patterns satisfied by record R 

𝜙𝑅 A subset of columns in 𝛷 that corresponds to the patterns 𝑃𝑅 satisfied by record R 

𝛩 A small lower threshold to filter out patterns that are rarely present during an action 

𝐼𝑜𝑈(𝑝1, 𝑝2) Intersect over union calculated between two patterns 

𝑁𝑝1
 Number of samples/instances in which pattern 𝑝1 is observed 

Su Motion signal, i.e., either acceleration or angular velocity, along axis u 

 

4.2.1. BLE Representation and Preprocessing 

Many BLE devices periodically transmit ‘advertisement’ packets containing 

basic information about a ‘beacon’, allowing us to collect a small amount of data about 

each advertising device in the user’s vicinity without any handshaking between the 

transmitter and receiver. Traditionally, beacons are BLE devices whose primary purpose 

is to advertise information about the environment; for this study, we refer to all BLE 

devices as beacons because we are only interested in their advertisement packet which 

indicates their presence in the environment. BLE is an appropriate modality for detecting 
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both the social and locational components of environmental context because it is a 

protocol common to both static and mobile devices. The former may be telemetry 

beacons, infrastructural sensors or other stationary electronics while the latter may be 

smartphones, wireless headphones, wearable electronics, etc. Clearly, static devices 

would be effective for determining location similar to studies using Wi-Fi Access Point 

fingerprints [100], [101], [104], and mobile devices, when exhibiting consistent patterns 

with respect to each other, could help determine social groups [96]. However, 

distinguishing between static and mobile devices is difficult as both the user and the 

BLE device could be mobile. Please note that the main assumption here is that there is 

no information available about the type of the device when its BLE packet is received. 

This is a realistic assumption because: 1) many BLE packets include the MAC id of the 

device but there is no information about the type of the device in their packet, and 2) 

relying on the type of the devices will significantly limit scalability of the system. Thus, 

we choose to model all beacons as equivalently purposed, and we refer to all BLE 

devices as ‘beacons’ regardless of their physical purpose.  

We log the 6-byte MAC address of each device that we scan. Collecting all MAC 

addresses of beacons over many days will nonetheless result in noisy data. For instance, 

many people encountered in a public place will not be seen again. Clearly, most of these 

beacons will be noise. We use a simple rule to filter out beacons which are obvious 

noise: if a device is present for a short period of time (less than 15 minutes a day in our 

study) then it is not useful. This simple filtering rule removes a large portion of beacons; 

for example, for one of our subjects, we filter from around 20,000 beacons detected 
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across seven days down to around 8,200. With this reduced set of beacons, we aim to 

find patterns in the BLE records to help understand the user’s context.  

 

Figure 4.3 - Mobility of user and nearby BLE beacons 

 

As depicted in Figure 4.3, the user’s context may be represented by the devices 

near them at a point in time. This provides a fingerprint of the user’s context. However, a 

single scan may miss some nearby beacons due to differences in the scanning period 

versus advertisement intervals. For this reason, we represent the user’s current 

environment using the set of BLE beacons that are detected over multiple scans within a 

relatively short interval of time (one minute for this study based on the limitations of the 

smartwatch device to complete a scan of all nearby BLE devices). Let us consider this 

one-minute scan to be a BLE ‘record’. Intuitively, we can represent a record simply by 

making a binary vector 𝐵 of length |𝑀| where 𝑀 is the set of all observed beacons 

during data collection period after filtering. Each element of a binary vector corresponds 

to a MAC address such that an element corresponding to beacon 𝑏𝑖 is 1 if MAC address 

𝑚𝑖 was present and zero otherwise. Equation 4.1 formalizes this, where 𝑅 is the set of all 

MAC addresses scanned during a one-minute segment.  
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𝐵 = (𝑏1, 𝑏2, … , 𝑏|𝑀|)       ,      𝐵[𝑖] = 𝑏𝑖 = {
  1  , 𝑚𝑖 ∈ 𝑅      

0 , 𝑜. 𝑤.        
        (4.1) 

4.2.2. Data-Driven Context Detection  

When the user consistently visits a particular context, certain patterns should 

exist in the BLE scans corresponding to that particular context. The context patterns 

should be generalizable in the sense that they should not be too sensitive to the 

requirement of many observed beacons being co-present. For instance, in the training 

data, we might see three beacons that are always present together when the user is at 

home. If one of those beacons is no longer present during the testing time, the system 

should still be able to recognize the home context. At the same time, the patterns should 

also be selective. Beacons that are present in too many different contexts, such as the 

cellphone of the user, are not selective enough since they cannot distinguish different 

contexts. Therefore, we are interested in extracting consistent, selective, and generalized 

patterns of beacons that help understand the users’ surrounding and facilitate ADL 

recognition. 

4.2.2.1. Context Pattern Formulation 

Recall that in this study, “context” refers to information about the user’s 

surroundings; we assume that there is no provided information available about the true 

context of the user. In other words, there is no supervision and consequently, no labels 

available for the context which is a realistic assumption in real-world scenarios. In 

general, we use no a priori knowledge about the context. Although we have knowledge 

on the user’s actions, which herein is provided by a pretrained motion-based activity 

classifier (or it can be provided by the user, see Section 4.2.3), there is not a 1:1 
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correlation between a possible action outcome and the context. Thus, we build the 

context for each outcome separately from the others. That is, for each action, we 

describe the context in which that action might be performed by extracting patterns from 

BLE records. 

A BLE context pattern is a set of different BLE beacons that are consistently 

present in a specific context. To be formal, assume that (X,Y) is all of the training data 

where xi∈X, i=1,…,n is the sensor readings, e.g., accelerometer and gyroscope, for ith 

data sample and yi∈Y is the label for ith sample. Y= {1,…,L} where L is the total number 

of possible labels. Please note that the label yi could either be generated by a pretrained 

motion sensor-based activity classifier or provided by any external source such as the 

user. In Section 4.2.3, we will explain how we leverage the labels generated by the 

motion-based classifier to avoid burdening the users. We assume that there is a context 

associated with each sample, which is unknown and should be learnt for each user. In 

addition to the input data xi, we have a set of observed beacons Bi where 

Bi=(b1
i
,b2

i,…,b|M|
i) is a vector of beacons in which bj

i is 1 if jth beacon is present in ith 

sample and 0 otherwise. 

 Definition 3.1 (Context Pattern). 𝑝𝑘 is called a “context pattern” consisting of a 

set of specific beacons. Here k=1,…,K is the index of the pattern where K is the total 

number of context patterns extracted from the data. With this definition, one might 

consider a context pattern as an atomic location or environment; for instance, each 

pattern may indicate a different room, device or person around the user. 
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There is always a trade-off between the selectivity and generalizability of context 

patterns as mentioned before. To deal with this tradeoff, we design a modified version of 

hierarchical agglomerative clustering (HAC) to generate the patterns, termed 

accumulative hierarchical agglomerative clustering (AHAC), along with a probabilistic 

framework for mapping the context patterns to the actions w.r.t. the application domain 

using an action-context probability (ACP) estimation algorithm. AHAC allows us to 

have general and selective patterns at the same time. By estimating the probability of 

user actions given contexts (Section 4.2.2.3), we prioritize the probable actions then to 

narrow down the search space. 

4.2.2.2. Context Pattern Learning 

This section discusses how to extract meaningful patterns that are both 

generalized and selective from an abundance of observed BLE beacons. Recall that we 

create the context patterns for each possible outcome separately. For an action a, assume 

that ℬ𝑎 is the set of all training records that have label a where ℬ𝑎={B1
a, …, Bna

a,} and 

na is the total number of samples with label a. Recall that B is a BLE record represented 

as a one-hot-encoded vector that contains |M| beacons, where |M| is the total number of 

different beacons in the dataset. We first remove the beacons that are rarely seen during 

action a using Equation 4.2: 

𝑃𝑎 = {𝑗: (
1

𝑛𝑎
∑ 𝐵𝑘

𝑎[𝑗]𝑛𝑎
𝑘=1 ) > Θ}   , 𝑗 = 1, … , |𝑀| }  (4.2) 

where 𝑗 is the 𝑗𝑡ℎ beacon in the record, 𝑃𝑎 is the set of all beacons that we keep 

to generate patterns for action a, and 𝛩 is a constant threshold.  
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After this stage, one can just keep the single beacons as representation of the 

context for action a. However, such a basic method has a poor selectivity as it fails to 

deal with beacons such as the user’s cellphone that is present in many different contexts. 

To address this issue, we can merge beacons that are often present together in order to 

create more specific and representative patterns. For this goal, we can utilize a clustering 

algorithm to put beacons into clusters whose contents represent more specific context 

patterns. We modify the hierarchical agglomerative clustering (HAC) to fit into our 

problem and call it Accumulative HAC (AHAC).  Algorithm 4.1 shows the steps of 

AHAC algorithm that is done only during the offline training phase. Intuitively, AHAC 

elects to keep the unmerged components of a cluster in the entire set rather than 

removing them once they are merged. In fact, we grow the set of patterns to contain both 

generalized and selective patterns altogether. Later, by looking at the distribution of 

patterns in various actions we can effectively select the most probable context and set of 

activities subsequently. This method, starts by putting every single beacon in Pa into a 

single cluster. This means that at the beginning, the number of clusters is equal to |Pa|, 

each of which contains a single BLE beacon. We use the words ‘cluster’ and ‘pattern’ 

interchangeably because once we finish clustering, we use each cluster as a context 

pattern. We consider a pattern to be satisfied if all beacons within its cluster are present 

in a data sample. To merge two clusters together at each step of AHAC, we use the 

intersect over union (IoU) between the two clusters as the measure of similarity. 
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Again, note that we have a separate set of clusters for each possible activity label. 

Equation 4.3 shows how IoU is calculated for two patterns. This measure tells us about 

the proportion of co-occurrence of two patterns. Higher IoU means that the two patterns 

(i.e., set of BLE beacons) are consistently present simultaneously, which increases the 

likelihood that they belong to the same context.  

𝐼𝑜𝑈(𝑝1, 𝑝2) =
𝑁𝑝1,2

𝑁𝑝1+𝑁𝑝2−𝑁𝑝1,2

               (4.3) 

In Equation 4.3, 𝑁𝑝1
 and 𝑁𝑝2  are the number of samples that pattern p1 and p2 

apply to, respectively, and 𝑁𝑝1,2
 is the number of records that apply to both patterns, i.e., 

both patterns are present at the same time. 

At each iteration of clustering, the two patterns/clusters with the maximum IoU 

are chosen to be merged together. The two selected patterns are merged and added to the 

whole set of patterns. Here we make a modification to HAC by keeping all the original 

ALGORITHM 4.1: AHAC 

Input: all training records ℬ𝑎 for action a and its sample size 𝑛𝑎 

Output: set of patterns (i.e., clusters) Pa for action a 

1- Pa = [ ] 

2- for (every beacon j = 1 to |M|) do: 

3- if (
1

𝑛𝑎
∑ 𝐵𝑘

𝑎[𝑗]𝑛𝑎
𝑘=1 ) > 𝛩) 

4-    Pa ← j 

5- end if 

6- end for 

7- IoU = 1  

8- Assign each element of Pa to a cluster 

9- while ( IoU > 0.75 ) 

10- find clusters i and j with max IoU(i ,j) 

11- Pa ← [cluster i , cluster j] 

12-  IoU = IoU(i , j) 

13- end while 
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clusters and adding the merged cluster to the total set, meaning the cluster count 

increases by one with each iteration. In this way, we refer to our pattern extraction 

technique as Accumulative HAC (AHAC). We make this change because if we remove 

patterns p1 and p2 when they are merged, as is the case with unmodified HAC, we 

progressively create overly specific patterns such that it becomes more difficult to fit our 

dataset reliably, especially for new data. As opposed to the normal HAC where the 

number of clusters decreases by one at each iteration, this number increases by one in 

AHAC, meaning this process will not naturally terminate itself. In our approach, 

clustering is finished once the maximum IoU of any two previously unmerged patterns is 

below a threshold, which is set to 75% for our study. This process is done in offline 

training to create a set of important context patterns.  

In fact, this approach can be seen as an iterative clustering algorithm. In first 

iterations, the BLE beacons are combined together, but as the algorithm proceeds, the 

clusters (patterns), which are a set of mutually observed beacons measured by Equation 

4.3, are combined to create more specific patterns. Each pattern generated in this way 

could potentially be a combination of people and/or static devices in a particular 

location. 

During the testing for a new sample, a single BLE scan/record is evaluated to 

find which patterns are satisfied; a pattern is satisfied when all beacons within that 

pattern are present in the record. Then, the action-context probability (ACP) estimation 

engine creates the probability of actions given the satisfied context patterns, selects the 
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best classifier for the set of possible activities, and then sensor data is fed into that 

chosen classifier to recognize the action.  

4.2.2.3. Action-Context Probability Estimation 

This method aims to estimate the probability that a particular outcome (i.e. an 

activity) occurs given a particular context pattern 𝑝 is seen. Algorithm 4.2 formalizes 

this procedure for generating action-context probability matrix; it populates this matrix 

using Bayes rule to measure the probability of some action given a context pattern. 

Algorithm 4.3, then formalizes the ACP estimation procedure in which the distribution 

of action-context probabilities for context patterns that are satisfied by a BLE record are 

used to decide which actions are probable such that the search space may be reduced. 

We use Bayes theorem to represent these action-context probabilities in Equation 4.4.  

𝑃𝑟(𝑎|𝑝) =
(𝑃𝑟(𝑝|𝑎)𝑃𝑟 (𝑎))

∑ 𝑃𝑟(𝑝|𝑎) 𝑃𝑟 (𝛼)𝛼∈𝐴
    (4.4) 

where 𝑃𝑟 (𝑎) is the prior probability of action a, for which we consider a uniform 

distribution, A is the set of all possible actions, and 𝑃𝑟(𝑝|𝑎) is the probability of 

observing context pattern p while performing action a, which can be estimated from the 

training data as shown in Equation 4.5. 

𝑃𝑟(𝑝|𝑎) = 𝐶𝑜𝑝
𝑎 =  

# 𝑜𝑓 𝑎𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒 𝑜𝑓 𝑝 𝑖𝑛 𝑎

# 𝑜𝑓 𝑎𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎
   (4.5) 

We call 𝐶𝑜𝑝
𝑎 the ‘coverage’ of pattern p for action a, i.e., the percentage of 

samples labeled a for which context pattern p was satisfied. Assume that for all the L 

actions possible in the chosen application domain, we have a total of K different context 

patterns. Then, we use the entire training dataset to generate an L by K matrix, Φ,  which 

is a matrix containing all action-context probabilities.  In the ith row and jth column of 
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this matrix, we put the probability of action ai given context pattern pj as shown in 

Equation 4.6.  

𝛷𝑖,𝑗 = 𝑃𝑟(𝑎𝑖|𝑝𝑗)     (4.6) 

 

We retrieve a subset of this matrix’s columns to generate a temporary matrix for 

the BLE record of the current sample based on the patterns PR satisfied in the current 

record R. The retrieval of this matrix is shown in Equation 4.7 as well as Algorithm 4.3, 

and allows us to estimate the set of possible actions for the record R that may share 

context. These actions are called the ‘Shared Context Set’. 

ALGORITHM 4.2: Creating ACP Matrix 

Input: all training samples, set of user actions, set of all patterns,  

Output: action-context matrix Φ 

1- for (each action a = 1 to L) do: 

2- for (each pattern p = 1 to K) do: 

3-  Φ𝑎,𝑝 = 𝐶𝑜𝑝
𝑎 ∑ 𝐶𝑜𝑝

𝛼𝐿
𝛼⁄      //calculated by Equation 4.4 and 4.5       

4- end for 

5- end for 

 

 

ALGORITHM 4.3: ACP Estimation  

Input: the observed record R for the current sample, Φ 

Output: Set of mostly probable activities Action_set 

1- Action_set = [ ] 

2- 𝜙𝑅 = [ ] 

3- for (each pattern 𝑝𝑗) do: 

4- if (𝑝𝑗 ∈ 𝑅): 

5-  add column j of Φ to 𝜙𝑅 

6- end if 

7- end for 

8- for (each action a = 1 to L) do: 

9- Proba = mean ath row of 𝜙𝑅 

10- if ( Proba > 
𝟏+𝜺

𝑳
 ): 

11-  Action_set ← a 

12- end if 

13- end for 
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𝜙𝑅 = (𝚽𝑗: 𝑝𝑗 ∈ 𝑃𝑅 , 𝑗 ∈ {1, … , 𝐾} )       (4.7) 

For this goal, we calculate the mean probability for each possible outcome based 

on the probabilities of that action given each pattern in 𝑃𝑅. In other words, we take the 

average value over the columns in matrix 𝜙𝑅 for each row. We pick the actions for 

which this average is greater than a threshold as shown in Equation 4.8. The threshold in 

our study is one plus a parameter 𝜀 to reduce sensitivity (in our study 𝜀 = 0.25) over the 

total number of actions, L. 

𝑆ℎ𝑎𝑟𝑒𝑑 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 𝑆𝑒𝑡𝑅 =  {𝐴𝑖:
1

|𝑃𝑅|
∑ 𝜙𝑖𝑗

𝑅|𝑃𝑅|

𝑗=1 >
1+𝜀

𝐿
}   (4.8) 

The set of possible actions are identified based on the outcome of Equation 4.8. 

In offline training phase, we identify possible sets of actions for all training samples and 

use them to train context-specific classifiers as explained in Section 4.2.3. In online 

testing phase, we first determine the set of possible actions for each new sample based 

on the context using Algorithm 4.3, and then pick appropriate context-specific classifier 

from the pool of classifiers. 

4.2.3. General and Context-specific Classification 

The context training needs to be personalized since the set of BLE devices 

around each user could be different. Moreover, for a user, the set of observed BLEs in a 

certain location may change over time. To account for this, the system should be able to 

learn the context for each user incrementally and the context learning should be a non-

stop process. We assume that, at the beginning, there is a general activity classifier 

available that is trained merely on motion sensors’ data with no contextual knowledge. 

This general classifier is trained solely on the motion data, but its accuracy obviously 
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affects the performance of the system (see Section 4.3.3), so the best performance could 

be achieved if the motion-based classifier is trained or fine-tuned for the data of each 

user. The system starts learning the context when it is used by a new user and the context 

learning is updated periodically. Context training process begins with an empty set of 

patterns for each action a, and there is no context-specific classifier available when the 

user starts using the device for the very first time. For a couple of days, seven days in 

this study, the system only stores all the motion sensors as well as BLE data and uses the 

general motion-sensor-based classifier to assign labels to those samples. The samples 

about which the general classifier is confident, i.e., its confidence score is above a 

threshold, are selected as the samples for extracting context patterns as described in 

Section 4.2.2 and training the context-specific classifiers. Based on the output of ACP 

algorithm during this offline training, we end up with multiple lists of user actions, 

where all share context, i.e. Shared Context Sets. Consider an example: based on training 

data we realize that one subject’s activities of ‘eating’, ‘cooking’, and ‘cleaning’ fall into 

one list as all of them happen in the same location. For each reduced set of probable 

outcomes, determined using the context, we train a distinct context-specific classifier. 

Since the context-specific classifiers are trained on a reduced set of activities and they 

also leverage contextual features, they are more accurate than the general classifier, 

which may confuse activities with similar motion signature. 

After the first period of context learning, the context-specific classifiers are ready 

to be used to narrow down the list of activities to be classified. In the testing phase, for 

each sample i, we look at the observed BLE record Ri and retrieve the set of satisfied 
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patterns. If there is any pattern p satisfied by the record Ri, the appropriate context-

specific classifier is chosen using Algorithm 4.3 and used to detect the activity label. In 

this case, if the label generated by the general classifier is not in the list of probable 

activities that are determined by the context, and if the general classifier is confident 

about its decision, then that sample and the label generated by the general classifier will 

be stored for context retraining in future. This is important because there might be cases 

that the user performs a new activity in a previously known context. Please note that, the 

proposed ACP algorithm that maps the context to the probability of activities, considers 

the frequency of occurrence of the activity in each context; therefore, if the user 

randomly performs an activity in a specific context just for a very short time and non-

consistently, that outlier will not affect the outcome of the algorithm. If there is no 

pattern satisfied by 𝑅𝑖, which means the user is visiting a previously unknown context, 

that sample along with the label generated by the general classifier will be stored for 

context retraining only if the confidence of the general classifier is high. These data that 

are collected during the testing time are fed into algorithms 1-3 to update patterns and 

action-context matrix. It should be noted that after every three days of data collection the 

context training is updated with the new set of labeled data. 

Although we select the most confident samples labeled by the general classifier, 

the overall accuracy of this general classifier can impact the output of the algorithm. The 

required labels of the activities, however, can be provided by any external source such as 

the users themselves depending on the availability of that source. For example, the user 

could provide the labels for all the activities within the first week of data collection for 
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context training and then the system will sporadically ask the user when it faces an 

unknown context or less confident predictions. In Section 4.3.3, we compare the effect 

of getting labels from a reliable source such as the user versus the general motion-based 

classifier. 

For our case study on ADL recognition, we use SVM (with regularization 

parameter set to 1) as the classifier and use the probability scores as the measure of 

confidence of the classifier [127]. We extract a set of various time and frequency domain 

features from accelerometer and gyroscope sensors along with statistical features from 

BLE beacons as shown in Table 4.2 [128]. The features from motion sensors are 

calculated for each of X, Y, and Z axis along with the magnitude of the signals, 

calculated by Equation 4.9, which is orientation independent [109].  

𝐴 =  √𝑆𝑥
2 + 𝑆𝑦

2 + 𝑆𝑧
2     (4.9) 

In Equation 4.9, A is the magnitude of the signal, and Su could be either acceleration or 

angular velocity signal around axis u measured by accelerometer and gyroscope 

respectively.  

Table 4.2 - Context-aware ADL recognition input features 

IMU Features 

BLE 

Features 

Mean Min Variance 

Power in 0-0.5, 

0.5-1, 1-2, and 2-

5 Hz bins 

Mean-cross-rate 

Number of 

devices 

Standard 

Variation 

Max 

Root mean 

square 

Frequency of 

maximum FFT 

Autoregressive 

coefficients of 

order 10 

Turnover 

(Beacon Change 

Rate) 
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For the BLE statistical features, we consider the number of devices present and 

the ‘turnover’ of beacons. Turnover is effectively the change rate of beacons: by looking 

at how much the set of nearby beacons changes, we can get a rough idea of how much 

the environment is changing. If the subject is traveling or stays in a public place, there 

would be a high rate of changes. We calculate turnover as the IoU (Equation 4.3) 

between the current record and the previous one. In total we have 180 features that are 

normalized to range [0, 1]; 176 of these are calculated from motion signals.  

It should be noted that the length and frequency of each activity was very 

different in this study depending on person’s routine. This results in a very unbalanced 

training dataset. Our strategy to mitigate the effect of unbalanced training data is to 

reweight the cost functions for each class. Explicitly, we calculate the weights wi as 

shown in Equation 4.10, where ci is the number of instances of activity i in the training 

set. These weights are used in the cost function for SVM classifier to mitigate the effect 

of unbalanced samples. 

𝑤𝑖 =  
𝑚𝑎𝑥

𝑗
𝑐𝑗

𝑐𝑖
     (10) 

 

4.3. EXPERIMENTAL RESULTS  

In this section we validate our proposed framework by showing how the 

environmental context helps recognize high level activities of daily living that could be 

nearly impossible to distinguish with merely wrist-worn motion sensors. Five subjects 

were equipped with smart watches and asked to collect data and labels on their daily 
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activities. Each subject collected data for approximately 20 days. All data for this study 

were collected in the wild while users performed their normal daily activities. For data 

collection in this study, we used a commercial smart watch, a Polar M600 running the 

Android’s smart watch operating system, Wear OS 2.0, based on Android 8.0. We 

collected accelerometer, gyroscope, and passive BLE data with a custom Android 

application. This app features a simple interface shown in Figure 4.4 for the user to start 

and stop data collection, as well as a list of labels that will log the label and time stamp 

when an entry in the list is tapped as shown by the pop-up in the figure.  

 

 

Figure 4.4 - Data collection app interface 

 

We collected around 100+ days worth of data, which includes more than 580 

hours, from all the subjects. The data from first two subjects were used for training the 

general motion-sensor-based classifier while the data of other subjects were used for 

context training as explained in Section 4.2.2. Table 4.3 shows the full list of all 

activities assessed in this study. In this study, the participants provided the labels for 

only the listed activities and we ignored the label of other activities not included in Table 

4.3. It should be noted that this is an extensive set of ADLs compared to the existing 
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literature in activity recognition. In fact, detecting such complex ADLs without 

leveraging contextual information and by merely using motion sensors would be very 

challenging and inaccurate. In the following, we first show the importance of context in 

recognizing these complex activities. We then compare our context modeling approach 

with baselines since there is no similar work in modeling the context from freely-

available BLE beacons. Finally, we assess the effect of the general classifier’s accuracy 

on the overall performance and the impact of having more reliable source of labeling 

such as the user. It should be noted that there is no similar study or publicly available 

dataset in the literature that includes all the BLE scans for a couple of days in 

uncontrolled environments. 

Table 4.3 - Set of activities 

Activities 

Biking Working Eating Cooking Relaxing 

Exercising Class attending  Cleaning Getting Ready  

Walking Meeting Shopping Driving  

 

4.3.1. General versus context-specific activity classification 

We start by demonstrating the need for context by comparing performance of 

ADL recognition using the general activity classifier that does not leverage the context 

with our system that uses the context. We first show that contextual information is 

essential for detecting complex ADLs. For many people, daily activities consist of long 

stretches of sedentary positions. For instance, during working or attending a class, there 

may be minor movements like typing on a keyboard, using a smartphone, or turning 
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pages of a book, but the overall motion characteristics of largely immobile activities are 

likely to be similar if not indistinguishable. Attempting to recognize activities using only 

features from motion data, will perform poorly due to the similarity of the signals. 

Figure 4.5 shows the acceleration signal from five minutes of attending a class, working, 

and meeting activities. In our findings, most parts of signals for more sedentary 

activities, i.e., class, working, meeting, exhibit periods of inactivity with short, 

intermittent bursts of motion activity. If the duration and intensity of these bursts is to 

vary across instances of these activities, then there is little to distinguish said activities 

using motion alone. 

 

Figure 4.5 - Acceleration signal during three activities with extended periods 

of sedentary activity 

 

 In contrast motion signals during walking, running, and driving show more 

unique characteristics that are likely sufficient for classification with merely motion 

sensors. In truth, experiments have shown acceptable performance for high-mobility 

activities like walking, biking, and exercising, yet low-mobility ADLs perform poorly 

when only motion signals are used. Several other examples of such complex ADLs are 

investigated in [19] by placing pre-known BLE beacons in specific locations in user’s 
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home.  This poor performance has a dramatic effect on the total accuracy of the system 

given that sedentary activities usually occur over long portions of time as discussed later 

in Section 4.3.2.   

To remain fair in comparing our method using context identification with general 

activity classifier that does not leverage context, for the general classifier we use both 

the motion features as well as BLE statistical features as listed in Table 4.2. However, in 

the case of general activity classifier there is a single classifier that attempts to detect all 

the activities. In contrast, by modeling the context we have a series of context-specific 

classifiers each of which works on a specific set of activities. Figure 4.6 depicts the F1-

score for each activity for the three subjects when context is or is not applied to reduce 

the search space of possible activities. It is clear that including context affects some 

activities much more than others. Generally, activities which have a greater degree of 

motion, such as ‘biking’, ‘exercising’ or ‘walking’, do not change much when context is 

included. In these cases, there is ample information in the motion features alone to 

confidently decide which activity the user is performing. However, we see this is not the 

case for sedentary activities such as attending ‘class’, ‘meeting’ or ‘working’. In each of 

these, the motion and a few statistics from BLE scans are not enough to consistently 

choose the correct activity; however, an understanding of the context makes it much 

easier to detect the correct activity.  
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Figure 4.6 - Comparison of class-based F-1 score between the general 

activity classifier (without context) and context-specific classifier 

 

For instance, including context results in F-1score improvement of 0.17 in attending 

‘class’, 0.11 in ‘working’, 0.12 in ‘meeting’, 0.18 in ‘cleaning’ and 0.21 in ‘shopping’ on 

average. Note that the worst performing activity is ‘meeting’: this activity shares context 

with many instances of ‘working’ activity and has few distinguishing motion patterns of 

its own, making it extremely difficult to recognize this activity consistently, regardless 

of context knowledge. Also, modes of transportation such as ‘driving’ and ‘walking’ 

have lower performance (around 0.62 and 0.68, respectively) than would be expected 

given the amount of motion. The reason is two-fold: firstly, there were few instances of 

these activities in the dataset, so even a few misclassifications are highly damaging, and 

secondly, instances near the time of departure or arrival may detect context patterns from 

the previous activity, causing them to be incorrectly placed into a context model that 

does not consider the true activity as a possible outcome.  Generally, these locomotive 

activities were found to have no detectable context.  
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Nonetheless, we see the weighted average of F-1 score increases from 0.72 to 

0.80 on average. In addition to F1-score which considers both the precision and recall, 

the overall accuracy of activity classification is shown in Figure 4.7. By modeling the 

context and using it to narrow down the search space of activity recognition, the average 

accuracy increases from 73% to 82% compared to using a single classifier for activity 

recognition, although it is fed with both motion and BLE statistical features. It is without 

doubt we can claim context is advantageous to this application domain. Please note that 

the activities studied in this research are mostly complicated activities of daily living 

where detecting all of them with merely motion sensors is very challenging and nearly 

impossible [19]. 

 

 

Figure 4.7 - Comparison of overall accuracy between the general activity 

classifier (without context) and context-specific classifier 
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Examples of such activities in this study are attending class, meeting, relaxing, working 

as well as cooking, shopping, cleaning, and getting ready. This is a significant 

improvement regarding the list of activities to be detected compared to the existing 

works in the field of activity recognition with wearable sensors. Moreover, it should be 

mentioned that there is no similar study and/or dataset in the literature that contains the 

BLE data from all the devices in the environment for detecting such high-level ADLs 

with a single wrist-worn sensor to compare with our method.  In this study we did not 

include short-term activities such as toileting or hygiene, although these activities of 

daily living are very important in healthcare monitoring. It would be an important future 

direction to expand this work by collecting more data with a more exhaustive set of 

labeled activities. Since most of these activities happen in a certain location, the BLE 

would be helpful to narrow down the search space of activities so that motion sensors 

can easily differentiate them without confusing with other similar activities. 

4.3.2. Context Learning Performance 

In Section 4.3.1 we saw that using context for explicitly narrowing the search 

space achieves a higher accuracy than training a single model for the entire set of 

activities. In this section, we assess different components of our context modeling 

system and their impact on the performance of detecting the ADLs. It should be 

mentioned again that the studies that used BLE for complex ADL recognition all rely on 

setting up known BLE beacons in specific locations, which limits their scalability and 

convenience [19]. There is no study and/or dataset in the literature that contains BLE 

readings from all the devices without need to setting up specific hardware. As there are 
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few related works whose methods can be applied here for a direct comparison, and also 

to demonstrate the importance of each component of our context training system, we 

compare our methods with respect to several more basic methods. In our approach, we 

build a set of patterns for each activity as described in Section 4.2.2.2. We refer to this 

method as Accumulative Hierarchical Agglomerative Clustering (AHAC), formally 

expressed in Algorithm 4.1. We relate patterns with activities probabilistically, i.e., the 

action-context probability (ACP), and use the distribution of these probabilities to infer 

context and narrow the set of possible activities as shown in Algorithms 4.2 and 4.3. 

Therefore, we compare our methods to more basic ones based on the two 

aforementioned components of pattern creation and pattern usage to show the 

importance of each component of our framework. One basic approach is to use all 

singular beacons as patterns if they exceed the minimum coverage threshold in Equation 

4.2. We refer to these as “Single-Beacon Patterns.” In fact, in this approach we ignore 

the AHAC module and assume each single beacon is associated with a context. Another 

basic approach is to ignore probabilistic association between the context and activities 

and use the patterns such that if a single pattern is discovered from an activity’s records, 

then we consider that activity as a candidate for recognition in that context. This is 

similar to building a look up table that assumes an activity a is probable in context p if 

there is even one observation of a at p. We refer to this as “Basic Pattern Usage.” One 

other approach uses a single classifier where each beacon’s presence is encoded as a 

binary feature in addition to the same set of IMU and BLE statistical features used in all 

the other classifiers. We also show results when patterns are extracted using the typical 



 

70 

 

hierarchical agglomerative clustering (HAC) instead of our proposed modification 

(AHAC). 

In order to account for probable noise in the detected nearables, mimic some 

real-world scenarios, and better evaluate our proposed method in response to challenging 

cases where BLE beacons can change drastically over time, we add or remove some 

beacons to/from the BLE records. To summarize these real-world scenarios, we simulate 

1) a personally owned device by adding a specific beacon to 80% of all records, 2) 

beacons owned by friends or coworkers who span multiple contexts by adding specific 

beacons to 50% of instances of activities that may happen in the same context such as 

exercising and attending class, and 3) removal of some of the highly consistent beacons. 

We then compare our method with those described in the previous paragraph as shown 

in Figure 4.8. 

 

Figure 4.8 - Overall performance of different context detection approaches 

on noisy BLE data 
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 According to Figure 4.8, our approach to pattern usage consistently outperforms 

the other approaches to context detection. Clearly, Basic Pattern Usage, in which only a 

single context pattern must be satisfied for an activity to be considered a possible 

outcome, performs most poorly as it is very susceptible to outliers. The mobile devices, 

such as subject’s personal device causes different activities that do not naturally happen 

in the same environment to be considered probable, meaning that the model will perform 

little better than a single classifier using IMU and BLE statistics as input features.  The 

difference in accuracy and F-1 score, for approaches that use ACP but different pattern 

sets are due to the more nuanced problems AHAC pattern extraction is designed to 

address. Patterns developed with AHAC can associate the mobile beacons with static 

beacons (or other consistent mobile beacons) from a particular context, thereby reducing 

the adverse effects that mobile beacons have on the distribution of ACPs when said 

beacon is also present in other contexts. However, AHAC will produce multi-beacon 

patterns composed of beacons that are frequently co-present. From these multi-beacon 

patterns, we get a more defined estimate of the set of feasible activities because these 

multi-beacon patterns will be more selective than their individual components. Even 

when important static beacons are not present, the combinations of multi-beacon patterns 

often still provide enough information to narrow the search space.  

Using the single classifier, for subject 1, not a single instance of ‘cooking’ is 

recognized. Here, there was likely much reliance on specific beacons such that features 

from motion signals were entirely ignored. Moreover, for the single classifier, ‘class’ 

and ‘working’ are commonly confused with each other. We also observed that numerous 
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instances of ‘working’ were misclassified as ‘walking’. This is a surprising result due to 

the sedentary nature of working. Upon close inspection, we found that the subject 

walked enough within the building they work in to have a meaningful effect on the 

context models. This means that some beacons from their typical ‘working’ contexts also 

contain beacons considered important to walking. When we remove some highly 

consistent beacons from activities labeled ‘working’, some of those central to a context 

for walking still remain, causing the wrong context model to be chosen. However, when 

we use AHAC to extract patterns, that beacon which has a significant connection to 

walking forms multi-beacon patterns with beacons consistent with the ‘working’ 

activity. This more often causes the model to select the classifier trained on ‘working’ or 

both ‘working’ and ‘walking’.  In any case, the weighted-average F1-score of AHAC 

compared to Single-Beacon patterns is 0.78 compared to 0.70, suggesting AHAC has a 

substantial benefit.  

To generalize these results, we see that noisier context data necessitates a clever 

usage of patterns. Our ACP estimation approach is effective at ignoring much of this 

noise by focusing on the overall set of patterns and how they relate to individual 

outcomes in the application domain. The means by which patterns are extracted is also 

important but plays a lesser role than their exact usage; we note that this is highly 

dependent on the data set. To quantify this, Figure 4.8 shows that Basic Pattern Usage 

has an average weighted F1-score of 0.70 and accuracy of 73% on average across all 

subjects, while applying ACP to those same patterns results in an increase to 0.76 F-1 
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score and 80% accuracy; this further increases to 0.78 and 82% when AHAC is used for 

pattern extraction, suggesting ACP to be the more influential part of our approach.  

It should be noted that the use of BLE devices for context identification in the 

literature is limited to deploying pre-known BLE beacons in specific places for 

localization purposes. First, this approach is burdensome for users as they need to deploy 

the hardware in their living environment. Second, extra infrastructure is needed to 

integrate the beacons. Third, it is limited to localization in specific places such as user’s 

home. On the other hand, our proposed method leverages all the freely available BLE 

devices in user’s locale, which could be very noisy information, but can account for both 

the location and the people and/or devices around the user. For example, when a user 

attends a class, the context may be identified as other students in the same class rather 

than the physical location of the classroom. Since this study is one of the first attempts 

towards modeling the context from freely available BLE devices broadcasted by any 

device around a user, we could not provide quantitative comparison with other context 

identification models. However, this study shows the feasibility of modeling context 

based on freely available BLE devices, which can enable new paradigms in detecting 

complex activities of daily living with wearable sensors. 

4.3.3. Impact of Activity Labeling on Context Learning 

As explained in Section 4.2, our proposed framework does not require to use any 

direct label of the context for the purpose of context learning. This is a realistic 

assumption since it is not feasible to get such labels from users about the details of their 

surrounding context all the time. Instead our algorithm leverages the labels of the 
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activities to learn the context in order to narrow down the search space. To achieve this 

goal, in Section 4.2.3, we described how the system can use the most confident labels 

generated by the general motion-based classifier. In this section, in Figure 4.9, we show 

how the accuracy of that general classifier can impact the overall performance of context 

learning. Moreover, we demonstrate the improvement that can be achieved by getting 

the correct activity labels from the user in Figure 4.10.  

 

(a)                                                             (b) 

Figure 4.9 - Impact of activity labeling on context learning; (a) The effect of 

threshold for choosing most confident samples for context learning on the 

performance of the system; (b) The impact of general classifier’s accuracy on the 

performance of the system 

 

 

Figure 4.10 - The impact of getting label from the user on the overall 

performance of the system 
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Figure 4.9-a shows that varying the threshold, which is used to select the most 

confident decisions from the general classifier for context learning (see Section 4.2.3), 

affects the overall accuracy of the model. The Y axis in this figure is the weighted F-1 

score averaged over all the subjects. As the figure shows, very low threshold reduces the 

accuracy because the system ends up using samples that can be misclassified by the 

general classifier, which results in learning inaccurate context. Similarly, higher 

threshold causes choosing very small number of biased samples which results non-

sufficient context learning. Based on this figure, we chose threshold of 0.8 as a 

reasonable number to keep the confident samples for context training given our collected 

dataset. Figure 4.9-b shows that as the error of the general classifier increases, the 

accuracy of the context-based activity recognition decreases because the system ends up 

associating context to incorrect activities. In this figure, the X axis shows the percentage 

of labels to which we assigned a randomly incorrect label to mimic the error in general 

classifier, and Y axis is the F-1 score averaged over all the subjects. Therefore, more 

accurate motion-based classifier can help to better context learning, which in turn helps 

to more accurate recognition of activities. 

A possible limitation of this approach is that when BLE devices are added or 

removed to/from the subject's surroundings, the system should relearn the changed 

context. This is a challenge since the BLE devices around a user can dynamically change 

over time as the person visits new places and people. Therefore, this system must always 

be updated via an online learning approach. It could also be combined with a supervised 
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online learning in which the annotations can be queried from the user for more accurate 

training. The need for user intervention, however, could be minimized by detecting 

consistently observed BLE patterns and then query the user for annotation. Hence, most 

part of this online learning can be automated without the need for extensive user 

interference. This inspires an excellent future work in this area. 

Figure 4.10 shows the performance when the labels of activities for context 

learning are provided by the user, which can be interpreted as the upper bound of the 

accuracy. As this figure shows, the overall accuracy of the system can be increased to 

0.88 when the reliable labels are provided, which is 0.08 more than the accuracy when 

the labels are supplied by the general motion-based classifier. 

4.4. Conclusion 

We explored data-driven context detection on passively observable devices in the 

user’s daily environment. Our approach relies on knowledge within a chosen application 

domain for training the context model. In this work, the application is recognition of 

ADLs, and context is built from passively-sensed BLE devices. Our approach builds an 

offline context model by leveraging the consistency at which individual BLE devices are 

observed near the user when a particular action of the user, i.e., activity, is being 

performed. This consistency is used to generate a set of context patterns which are then 

mapped probabilistically back to the actions to aid performance via a reduction in the set 

of probable outcomes. Using this method, we achieved an average F-1 score of 0.80 for 

detecting ADLs from data collected in real-world as the users went about their daily 

lives. This method offers a significant improvement over a single classifier approach for 
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the same input features and has been shown to be more robust to realistic types of noise 

than similar methods. Important advantages of our proposed method compared to the 

state-of-the-art environmental context detection approaches are that it does not require 

one to deploy additional hardware and infrastructure, reduces users’ burden, and can 

potentially infer the context related to both physical location and people and/or devices 

around a user. The proposed technique enhances the capabilities of wearable sensors by 

helping them understand their working environment. It also enables detecting complex 

ADLs with a single wrist-worn motion sensor. 
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5. PERSONALIZING ACTIVITY RECOGNITION MODELS THROUGH 

QUANTIFYING DIFFERENT TYPES OF UNCERTAINTY* 

 

Data gathered by wearable sensors could be analyzed by rigorous machine 

learning models, such as context-aware models, to build a system to recognize ADLs 

[129]. However, a given model trained on a specific user may not generalize well to new 

users due to variation in how people perform specific activities [130]. Therefore, it is 

necessary to personalize the underlying machine learning models to new users.  

5.1. Adaptable Machine Learning Models 

Supervised and unsupervised learning approaches contain promising methods to 

design adaptable machine learning models with personalization capabilities [63], [131], 

[132]. Supervised learning requires the gathering of annotated data from a new user to 

retrain the machine learning models. However, this collection process is time consuming 

and burdensome. In fact, it is shown that user compliance to the wearable devices decay 

over time, particularly, when the collection system requires constant interaction [133]. 

Therefore, it is vital to personalize the machine learning models for new users with 

minimum labeled data available from the users in order to minimize the burden on the 

users. Unsupervised retraining approaches attempt to assign pseudo labels to unlabeled 

data by leveraging cross-user similarities, and then use them for retraining the model 

                                                 

*Reprinted with permission from “Personalizing Activity Recognition Models through Quantifying Different Types of Uncertainty using 
Wearable Sensors” by Ali Akbari and Roozbeh Jafari, 2020. in IEEE Transaction on Biomedical Engineering (TBME), vol. 67, issue 9, pp. 2530-
2541, ©2020 by IEEE. 
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parameters [76]. Consequently, training and adapting the models in this manner is often 

less accurate than supervised approaches, especially, in the presence of significant inter-

subject variability. However, in the field of ADL recognition, there is typically an 

abundance of unlabeled data available; thus, leveraging these algorithms effectively 

could improve and accelerate the personalization process [134]. 

Another promising solution known as active learning may be oriented in a 

supervised fashion by identifying the most critical data samples and soliciting their 

labels from the users to retrain the machine learning models [118]. The uncertainty of 

the classification models is one of the mostly used metrics for identifying those critical 

samples. These methods, however, suffer from a few limitations: 1) They do not 

consider different sources of uncertainty in their models. For example, the model may 

experience high uncertainty due to temporary noise in sensor measurements. In this case, 

the model will make an unnecessary request for labels while it is not reasonable to use it 

for training [111]. 2) They also do not limit the number of interactions with the user and 

so do not consider their limited capacity in responding to external prompts for labeling, 

which introduces aforementioned burden. This becomes a prevalent issue when the 

model experiences noisy measurements for an extended period of time [118]. 3) Lastly, 

they often solely rely on the labels acquired from the user and ignore all other unlabeled 

data which could potentially be further leveraged in the retraining process [117]. 

Typically, there are two types of uncertainties surrounding wearable recognition 

systems. The first is referred to as aleatoric uncertainty, which is data dependent and is 

related to any noise present in sensor measurements such as sensor displacement and 
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sensor movements with respect to the body. Such uncertainty cannot be mitigated by 

increasing the training data. The second type is known as epistemic uncertainty which is 

related to the inability of the model to recognize certain variations of data samples due to 

the lack of sufficient diversity in the training data. This increases as the model receives 

input samples with unfamiliar characteristics. This can be mitigated by enhancing the 

training data, therefore, epistemic uncertainty should be strongly considered for active 

learning tasks.  

In this study, we propose an ADL recognition system with personalization 

capability. We leverage both active learning and unsupervised learning methods to 

facilitate the retraining process. For the active learning component, we leverage the 

uncertainty of the model on its decisions to identify the critical samples where 

annotations should be requested and used for retraining. We propose a unified Bayesian 

deep learning framework to model the aforementioned types of uncertainties (aleatoric 

and epistemic).  

5.2. Methodology 

5.2.1. Overview 

In this study we propose a framework for personalization of machine learning 

models for the applications of ADL recognition using wearable sensors. This unified 

framework can quantify different types of uncertainty of wearable sensors in order to 

provide an effective active learning model. Moreover, it allows for leveraging unlabeled 

data samples within an unsupervised autoencoder-based model to boost the 

personalization process. Figure 5.1 illustrates the overall proposed framework. Figure 
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5.1-a shows the training phase of the model using the labeled training data available 

from certain users, while Figure 5.1-b shows the personalization procedure.  

 

Figure 5.1 - The overall flow of the proposed model for personalizing ADL 

recognition models 

 

In Figure 5.1-a, the encoder extracts features from the motion signals 

automatically through multiple convolution layers. The decoder is then responsible to 

ensure that the features generated by the encoder learn the intrinsic structure of the input 

data regardless of the associated activity labels. These two components create a 

variational autoencoder (VAE) framework that is necessary for estimation of data-

dependent uncertainty (i.e., aleatoric) (see Section 5.2.3.1). We add a classifier network 

in addition to this VAE framework to ensure that the extracted features remain 

discriminative for the ADL recognition task. It is important since the learned features 
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should not only be task specific (discriminative), but also be able to retain the intrinsic 

structure of the data regardless of their task-specific labels [135].  

In Figure 5.1- b, during the personalization phase, the model-dependent 

uncertainty (i.e., epistemic) is used to identify the vital samples for which we should 

acquire labels from the user. This uncertainty is used in conjunction with a score 

function to limit the amount of user interaction while also considering other parameters 

into account (see Section 5.2.3). Essentially, the critical samples for which the model is 

highly uncertain are identified by this module and labels are queried. However, the 

labels are not queried for the samples about which the model is confident. Those 

unlabeled samples are used to retrain the feature extraction layers in an unsupervised 

manner (see Section 5.2.4), while the labeled samples are used to fine-tune the 

classification layers. 

5.2.2. CNN for Automated Feature Extraction and Classification 

Convolutional neural network (CNN) is a widely used model for different 

classification tasks due to its ability to extract features automatically. The network is fed 

with raw signal x, and it maps x to a latent variable z, which serve as the features that are 

extracted from a raw input signal. In a typical neural network f, we can write    f = h o g 

where g : x → z  maps raw inputs to a higher level feature space z and h : z → y is a 

discriminative function that maps the features to desired class labels. A deep CNN with 

multiple layers extracts features from raw input signals by using kernels that can be 

interpreted as filters applied to the signal via a convolution operation. The trainable 
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weights of CNN kernels (Wg) and the weights of the classifier (Wh) are learnt through the 

training of the neural network. 

In classification setting, the network outputs a vector of unaries, where each 

unary corresponds to a class, and the vector obtained by the concatenation of all the 

unaries would be passed through a Softmax function to yield an estimation of probability 

distribution over classes. It has been shown that the Softmax does not provide a reliable 

and precise estimation of the actual model uncertainty [27], [136]. Equation 5.1 shows 

the Softmax function where fi(x) is the network output for ith class before the Softmax 

layer and N is the total number of classes. 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓𝑖(𝑥)) =
𝑒𝑓𝑖(𝑥)

∑ 𝑓𝑗(𝑥)𝑁
𝑗=1

                     (5.1) 

5.2.3. Supervised Active Learning 

Sd Supervised retraining of classification models can end up with a higher 

accuracy than unsupervised retraining. However, it creates a huge burden on the user to 

provide lots of labeled training data for the system. On the other hand, a fully 

unsupervised retraining paradigm does not require such an extensive data collection and 

annotation but it does not have an ideal performance. To leverage both advantages, we 

propose a supervised active learning paradigm to select the most important samples and 

query the user only for those samples to minimize user's burden; in addition, our 

proposed system can make use of unsupervised retraining (Section VI). This can reduce 

the interaction of the system with the user drastically while the performance 

improvement after personalization would be still significant. 
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In order to select the most important samples to query from the user, the model 

needs to understand the uncertainty/confidence about its decision. To be more specific, 

samples of which the model is not confident need to be identified to fine-tune the 

classifier parameters [111]. However, it is also important that the model understands if it 

is uncertain due to lack of training or due to the noisy sensor data. The former, known as 

epistemic uncertainty, is essential for designing an effective active learning model while 

the latter is not. In fact, the model should query the label for the samples of which it is 

uncertain due to the lack of training. However, when the model is uncertain due to 

temporary noise in sensor data, it is not helpful to use those samples for retraining. Using 

those noisy samples for retraining could even degrade the performance of the classifier 

and lead to overfitting. In this section, we first explain our methodology for quantifying 

different types of uncertainty and then explain how the critical samples are identified to 

be labeled by the user for model retraining. 

5.2.3.1. Uncertainty Quantification 

In this section, we propose a unified framework to quantify both aleatoric and 

epistemic uncertainties in the classification model introduced in Section 5.2.2. To take 

into account the epistemic uncertainty, which is a measure of the model’s uncertainty, 

we treat the weights of the discriminative function (function h in Section 5.2.2) as 

random variables instead of deterministic ones.  Moreover, to capture the aleatoric, 

which is a data-dependent uncertainty, we consider the latent variable z as random 

variables instead of deterministic values. By considering the randomness on the weights 
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and latent variables and treating them as random values and considering their 

distribution, the final label inference can be written as Equation 5.2.  

𝑝(𝑦𝑖|𝑥) =  ∫ 𝑝(𝑦𝑖|𝑊ℎ, 𝑥, 𝑧)𝑝(𝑊ℎ, 𝑧|𝑥)𝑑𝑧𝑑𝑊ℎ                        (5.2) 

 

where 𝑝(𝑦𝑖|𝑊,𝑥,𝑧)is the likelihood function of ith class, which is calculated as the output 

of the neural network with a Softmax function in our classification task using Equation 

5.1. p(Wh) are p(z|x) is the posterior distribution of weights and features given input data, 

respectively. The latent variable z in Equation 4.2 is independent of the weights Wh and 

also Wh  is independent of the input data  x, so Equation  4.2 can be written as Equation 

4.3. 

   p(yi |x ) = p(yi |Wh, x, z)p(Wh |D)p(z| x)dzdWh        (4.3) 

where D is the whole training dataset. Calculating the integral in Equation 3 is 

challenging but it can be approximated through Monte Carlo estimation as shown in 

Equation 4: 

𝑝(𝑦𝑖|𝑥) =  
1

𝑛
∑ 𝑝(𝑦𝑖|𝑊ℎ,̂ 𝑥, �̂�)               (4.4) 

𝑊ℎ̂~𝑝(𝑊ℎ)                 �̂�~𝑝(𝑧|𝑥) 

Here, z is used to model the aleatoric uncertainty of the data. Wh distribution, on 

the other hand, is used to model the epistemic uncertainty. 

In order to sample from the weight distribution, Dropout variational inference is 

a practical approach for approximation inference [27]. In this approach a dropout layer is 

used after every dense layer, and the dropout is applied at test time to sample from the 

approximate posterior of the weights (stochastic forward passes, referred to as Monte 
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Carlo dropout [27]). It has been shown that dropping the weight randomly in the testing 

time is equivalent to sampling from the distribution of the weights [27]. To accomplish 

the sampling, in the testing phase, each sample is passed through the network multiple 

times (n times) and in every pass the weights of network are dropped randomly with the 

probability of pdrop. The output of the network for all n passes are calculated and the 

average is interpreted as the Monte Carlo estimation for Bayesian inference. 

Estimating the posterior distribution of latent variables/features p(z|x) is then 

required to complete the calculation in Equation 4.3 and estimate the uncertainty of the 

model. Note that z is an unobserved latent variable while our observation is x.  The 

Bayesian analysis can be directly used to calculate p(z|x) as; however, this leads to an 

intractable integral for calculating the denominator. In order to address this problem, we 

approximate p(z|x) with a variational distribution q(z|x) from a Gaussian distribution 

family and try to find the parameters of q(z|x) such that it closely estimates the p(z|x). To 

find the parameters of the variational estimation q(z|x), we could minimize the Kullback-

Leibler divergence (DKL) between the two distributions [137]: 

min DKL {q(z| x)||p(z| x)} 

This minimization can then be written as follows: 

DK L {q(z| x)||p(z| x)} = Ez∼q[log q(z| x) − log p(z| x)] =         (4.5) 

Ez∼q[log q(z| x) − log p(x |z) − log p(z) + p(x)] 

where p(x) is derived from the expectation as it does not depend on z. By 

rearranging Equation 4.5 we have: 

log 𝑝(𝑥) −  𝐷𝐾𝐿{𝑞(𝑧|𝑥)||𝑝(𝑧|𝑥)} = 𝐸𝑧𝑖~𝑞[log 𝑝(𝑧|𝑥)] − 𝐷𝑘𝑙{𝑞(𝑧|𝑥)||𝑝(𝑧)]    (4.6)                                                              
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To minimize the KL divergence between q(z|x) and p(z|x) we can minimize the 

right hand side of Equation 4.6. This is exactly the objective function of a variational 

autoencoder [137]. The first term on the right hand side of Equation 4.6 is the loss of 

reconstructing input x from the latent variable z and the second term is the divergence 

between the variational approximation with the prior distribution of z. For this prior 

distribution we use a standard Gaussian distribution with the mean of zero and variance 

of one. Therefore, by training a variational autoencoder and leveraging the latent 

variable z as the features that are provided to a classifier, we can approximate the 

posterior distribution of the features to accomplish the inference in Equation 4.4. In a 

typical VAE, the encoder estimates the variational approximation q(z|x) and the decoder 

estimates the first term on the right-hand side of Equation 4.6. The output of the encoder 

in a VAE is the mean and standard deviation that serve as the parameters of a Gaussian 

distribution that models the posterior distribution of z given x. Given the posterior 

distribution of features, we can sample from it to calculate the Monte Carlo estimation of 

Equation 4.4. 

   A typical VAE containing convolutional layers in the encoder can extract 

informative features from a signal in an unsupervised manner. In a typical VAE 

framework, the only concern is to extract features that can retain the structure of the 

input data. However, in a supervised classification problem the features should be 

discriminative regarding the labels given in the training data. Based on this intuition, we 

propose a new framework of deep neural network as shown in Figure 5.2 by modifying 

the typical VAE objective function as follows: 
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𝐿 = 𝑝(𝑦|𝑥) + 𝐸𝑧~𝑞[log 𝑝(𝑧|𝑥)] − 𝐷𝑘𝑙{𝑞(𝑧|𝑥)||𝑝(𝑧)]                   (4.7) 

 

Figure 5.2 - The architecture of the proposed neural network for feature 

extraction and uncertainty estimation 

 

In fact, maximizing the p(y|x) is added to the typical VAE objective function in 

Equation 4.6 to produce the new objective function in Equation 4.7. This objective 

function guides the VAE to produce latent features that not only can reproduce the input 

data but also discriminate between different class labels. The encoder, which serves as a 

feature extractor, estimates the parameters of the posterior distribution of the features. 

The decoder ensures that the latent variable z is able to retain the structure of the input 

data, and is discarded after the training. The classifier samples from the distribution of 

the features, which is approximated by the encoder, and maps those samples to the class 

labels. 

It should be mentioned that this framework can be considered in line with the 

idea of pre-training an autoencoder in an unsupervised manner and replacing the decoder 
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with a classifier to improve the performance [138]. The authors in [138] share this 

observation that features created by the autoencoder are a good representative for 

training datasets that support better generalization of the trained models [139]. What 

distinguishes our work is that we embed the two processes of the classifier learning and 

the data-dependent feature extraction in a single framework, which improves the 

discriminative power of our features compared to the case of unsupervised pre-training. 

The procedure for estimating the label and the confidence of the classifier is 

shown in Algorithm 5.1 for the trained neural network as shown in Figure 5.2. In 

Algorithm 5.1, OneHotEncoding(.) is a function that returns the one hot encoding of a 

vector and std(.) calculates standard deviation. To predict the class label for each input 

data, the n samples are acquired from the distribution of the features, the weights of the 

classifier are dropped randomly, and labels are generated by the classifier. n is a 

hyperparameter of the model that is determined empirically through cross-validation in 

the training phase. In our datasets n=100 ended up with the best cross-validation 

accuracy. The final decision of the classifier is the average of the outputs. Moreover the 

standard deviation of the generated outputs is the measure of uncertainty. Intuitively, the 

classifier would generate more consistent labels for the samples that it is confident on, 

while for non-confident samples it would generate distinct labels that leads to higher 

standard deviations. The uncertainty calculated by Algorithm 5.1 is called the combined 

uncertainty as it contains both aleatoric and epistemic uncertainties. To only consider the 

epistemic uncertainty, we use the mean of z in step 4 of Algorithm 5.1, instead of 

sampling from the posterior distribution of the features. In fact, in this uncertainty we 
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only consider the randomness of the weights of the classifier network and do not care 

about the randomness of z, which explains the aleatoric (i.e., data-dependent) 

uncertainty. On the other hand, to only consider the aleatoric uncertainty, we do not drop 

the weights during the testing time as shown in step 3 of Algorithm 5.1, which leads to 

ignoring the randomness on the model’s weights. Leveraging this approach, we establish 

a method where we discard the model uncertainty and we only take into account the 

uncertainty over latent variables z which is data dependent. 

 

Algorithm 5.1 Label and uncertainty estimation 

Input: test data x, encoder network g, classifier network h, pdrop, number of labels N, parameter n 
Initialize prediction = zeros(n,N) 
Output: classifier decision �̂�, Uncertainty 
1- for j = 1 to n do: 
2- Take a sample zj ~ g(x) 
3- Drop weights of h with the probability of pdrop 

4-  y j = h(zj)     // the output of Softmax function 
5- prediction [j,:] = OneHotEncoding(yj) 
6- end for 

7- �̂� =
1

𝑛
∑ 𝑦𝑗𝑛

𝑗=1  

8- Uncertainty = std(prediction) 

 

5.2.3.2. Deep Neural Network Implementation 

In this section, we discuss the details of all neural networks for various 

components used in this study. The detail of all encoder and classification layers are 

presented in Table 5.1. For the encoder network as shown in Figure 5.2, we use three 

layers of CNN followed by one   fully connected (FC) layer for each of mean and 

standard deviation estimation. Based on our experiments using less number of layers did 

not offer an acceptable accuracy and using more layers does not offer significant 
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improvement in the performance of the system while it increases model complexity. For 

the classifier network we used three fully connected layers. The decoder contains three 

deconvolution layers. Re-parametrization trick is used for t handling the sampling from a 

Gaussian distribution when training the network with backpropagation algorithm. 

In the preprocessing phase, the data is normalized to retain zero mean and single 

variance (centered and scaled) and segmented prior to supplying it into the CNN. We 

utilize a fixed-size window with a length of one seconds and overlap of 50%.  

Table 5.1 - Characteristics of the proposed neural networks 

 Layer # of kernels/ neurons Activation function 

 

Encoder 

Conv2d_1 32 ReLU 

Conv2d_2 64 ReLU 

Conv2d_3 100 ReLU 

FC_mean 20 Sigmoid 

FC_std 20 Sigmoid 

 

Classifier 

FC_1 64 ReLU 

FC_2 128 ReLU 

FC_3 200 ReLU 

FC_classifier Same as the #  of classes Softmax 

 

5.2.3.3. Identifying Critical Samples 

Our primary goal is to determine the most important samples that can contribute 

to improving the retraining process for model personalization. Here, we define such 

samples as the ones of which the model is uncertain due to the lack of training data. 
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Therefore, we need to identify the source of uncertainty for test samples and pick the 

ones with maximum epistemic uncertainty. During the training phase, we calculate the 

average combined, aleatoric, and epistemic uncertainties over all the correctly and 

misclassified samples shown as 𝜎𝑐𝑜𝑟
𝑐𝑜𝑚𝑏, 𝜎𝑐𝑜𝑟

𝑎𝑙𝑒, 𝜎𝑐𝑜𝑟
𝑒𝑝𝑖

, 𝜎𝑚𝑖𝑠
𝑐𝑜𝑚𝑏, 𝜎𝑚𝑖𝑠

𝑎𝑙𝑒 , and 𝜎𝑚𝑖𝑠
𝑒𝑝𝑖

 respectively. 

For a test sample we also calculate the three uncertainties calling them as 𝜎𝑡𝑒𝑠𝑡
𝑐𝑜𝑚𝑏, 𝜎𝑡𝑒𝑠𝑡

𝑎𝑙𝑒 , 

𝜎𝑡𝑒𝑠𝑡
𝑒𝑝𝑖

 . The process of identifying samples starts by picking samples that have combined 

uncertainty above a threshold. This threshold is determined empirically. Afterwards, we 

calculate the ratio between the increase in epistemic to the aleatoric uncertainty 

compared to the correctly classified samples as shown in Equation 4.8. 

𝜎𝑟𝑎𝑡𝑖𝑜 =
𝜎𝑡𝑒𝑠𝑡

𝑒𝑝𝑖
−𝜎𝑐𝑜𝑟

𝑒𝑝𝑖

𝜎𝑡𝑒𝑠𝑡
𝑎𝑙𝑒 −𝜎𝑐𝑜𝑟

𝑎𝑙𝑒                               (4.8) 

However, the uncertainty is not the only parameter to consider to determine when 

labels need to be solicited. Using merely the uncertainty might lead to querying the user 

too frequently. To further control this process, we define a parameter qlimit that indicates 

the total number of questions allowed to be asked within a certain period of time. The 

system keeps track of how many questions it has asked so far as qinquired. The model 

becomes stricter in querying the user as the number of questions previously asked 

increases. In fact, the likelihood of asking more questions should decrease as the model 

asks more question. We model this behavior as a linear function of the number of 

remaining queries. The final score function to select samples to be queried from the user   

is shown in Equation 4.9. 

𝑠 = 𝜎𝑟𝑎𝑡𝑖𝑜 + 𝛽
𝑞𝑙𝑖𝑚𝑖𝑡−𝑞𝑖𝑛𝑞𝑢𝑖𝑟𝑒𝑑

𝑞𝑙𝑖𝑚𝑖𝑡
                       (4.9) 
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where s is the score assigned to each sample, and β is a tuning constant that is 

determined empirically during the training phase. In addition to the aforementioned 

parameters, a good sample to query from the user is the one with higher occurrence. 

Note that   for ADL recognition we need to segment the sensor data into windows of a 

fixed length. Therefore, a label queried from the user can be typically assigned to one 

segment of data. However, we argue that if there are multiple consecutive segments of 

the data of which the system is consistently uncertain, then the queried annotation can be 

used to label all those segments with a higher chance that the label applies to all 

segments due to the expected consistently in temporal distribution of ADLs. To 

incorporate this assumption and observation, at each time step, we calculate the 

proposed score s for all segments within the last five minutes and query the user only if   

the value is higher than the threshold for all of them. The threshold can be set 

empirically through cross validation in the training phase for online active learning. 

Lastly, the labeled data queried from the user is used to fine tune the weights of 

the classifier. In fact, when using these labeled data, we freeze all the weights of the 

encoder and decoder networks, and only retrain the weights of the classification layers. 

This is important because the amount of the labeled data is very small and is not enough 

to retrain all the feature extraction layers. Moreover, it is shown that usually the first 

layers, which are responsible for feature extraction, are more generalizable and 

transferable, while the last layers are more task specific and less transferable between 

different users. 
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5.2.4. Unsupervised Retraining 

Scarce-labeled data is not sufficient to retrain all feature extraction layers 

including the encoder and the decoder networks since they require to be extensively 

trained to learn appropriate features of motion signals. However, due to our autoencoder 

structure, we can leverage the huge amount of unlabeled data to retrain the encoder 

component which produces the hidden state that represents the patterns and features of 

the new data. When this occurs, we keep the weights of the classification layers 

unchanged as the encoder/decoder weights   are updated. This unsupervised retraining 

allows the feature extraction layers to adapt to the patterns and morphology of the 

signals of a new user.  

When combining this unsupervised retraining of the feature extraction layers, 

with the supervised fine-tuning of the classification layers through the active learning 

process, the whole network is adapted effectively to the data of a new user. So, feature 

extraction layers are updated to capture the patterns of the new signal, while the 

classification layers are updated to learn how to map those features to the desired 

activity classes. Consequently, we must first accomplish the unsupervised retraining to 

update the encoder-decoder weights before we perform the supervised fine-tuning of the 

classifier’s weights using the labels gathered by the active learning module. 

5.3. Results 

S We evaluate the effectiveness of our methods for personalization of deep 

learning ADL recognition system on the new users. In this section, we start by 

introducing the datasets used for the evaluation and then presenting the performance of 
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our personalization method on detecting ADLs and compare it to baselines and state-of-

the-art approaches. Afterwards, we deeply analyze our uncertainty modeling by 

investigating its behavior in response to different sources of uncertainty to understand 

how it can improve the effectiveness of active learning designs. Finally, we investigate 

how personalization accuracy is affected upon presence/absence of each component of 

the proposed framework, including the supervised fine tuning of classification layers 

through active learning and the unsupervised retraining of the feature extraction layers. 

The purpose of this investigation is to show the importance of each of those components 

in the personalization process. 

To demonstrate the effectiveness of our proposed framework, we used two 

publicly available datasets including PAMAP2 [140], and MoST [141]. PAMAP2 

comprises of 18 physical activities measured by three wearable inertial measurement 

units (IMUs) with the sampling frequency of 100 Hz performed by 9 different subjects. 

IMUs were worn on three different body parts: the wrist of the dominant hand, the chest, 

and the ankle of the dominant foot. In this study, we used eight out of 18 activities, 

which have the greatest number of samples. We used 3D acceleration and gyroscope 

sensors that results in 18 axes of data. MoST dataset, collected by our own group, 

contains 23 daily activities captured by six IMUs working at the frequency of 200 Hz 

placed on the arm, wrist, chest, ankle, and both legs. The data was collected from 20 

healthy subjects. Since, several activities in this dataset are similar, we grouped them as 

one activity and once again, removed the classes with small training data. Table 5.2 

represents the list of activities used in this study. 
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Table 5.2 - Set of activities 

 PAMAP2 MoST 

 Biking 

Sitting 

Standing 

Walking 

Stair climbing 

Lying down 

Running 

Rope jumping 

Sit-to-stand  

Sitting 

Standing 

Walking 

Grasping floor 

Lying down 

Turning 90° 

Jumping 

# of samples 17000 7500 

 

5.3.1. Personalization Results 

We assume that there is a large amount of labeled training data available for 

certain subjects, called primary subjects, that can be used to train the initial ADL 

recognition model. We aim to personalize the model that is trained on the primary 

subjects to a new subject to achieve the highest performance possible. For each dataset, 

we exclude one subject as the new subject and use the remaining subjects as the primary 

subjects to train the initial model. For the excluded subject, i.e., the test subject, we used 

50% of the data for personalization (i.e., retraining) and used the remaining 50% for 

testing the accuracy of the personalized model. We repeat the experiments by changing 

the excluded subject to cover all the subjects. In other words, in our experiments, each 

subject has been treated as the new subject once. All reported results in this section are 

the average over all repetitions. 
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Table 5.3 shows the results of comparing our model to other baseline and 

existing methods regarding personalization accuracy. The first row in Table 5.3 

represents the accuracy of the ADL recognition when the model is trained on primary 

subjects and it is tested on the same subjects. This shows the upper bound of training, 

when the testing and training data come from the same subjects. The second row shows 

the performance of the system when it is trained on primary subjects but it is tested on a 

new subject with no retraining and/or personalization of the model. This shows how the 

performance drops when the model is used for a new subject and also emphasizes the 

necessity of personalization in such systems. The third row shows the results of using all 

the labeled data of the new user for personalization through retraining of the whole 

neural networks. This case represents another upper bound, which achieving that in real-

world scenarios is impossible due to high burden on the users. The fourth row represents 

the performance of personalization when the labels are queried for random samples. This 

is a baseline to show why smart active learning is required. The fifth row represents 

another baseline for active learning by using the output of Softmax function as a 

measure of uncertainty. In this approach, a query for a label is submitted to the user 

when the output of the Softmax is less than a threshold. Based on our experiments 

setting that threshold to 0.7 obtains the best results in our study. The sixth row of the 

table shows the results of a state-of-the-art active learning method using entropy. Based 

on this model, the samples with the highest entropy are the most informative samples for 

the classifier and their label are acquired from the user [117]. The seventh row shows 

another state-of-the-art method that uses the agreement between the labels generated by 
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different trees in a random forest classifier as a measure of uncertainty to select most 

uncertain samples for label solicitation [117]. Finally, the last row shows the 

performance of our proposed method for personalization. It should be noted that in this 

experiment, the total number of questions allowed to be asked is set to 200 for all the 

algorithms, which means that we query the labels for 200 samples of new data. 

As Table 5.3 shows, our method outperforms all the baseline methods by 14.3% 

and existing methods by 8%. This shows the superiority of our method that is due to 

more effectively quantifying the uncertainty and the unsupervised retraining of feature 

encoder weights. In fact, we distinguish between different types of uncertainty and try to 

ask questions when the system is uncertain due to lack of training rather than facing 

noisy sensor measurements. Figure 5.3 reveals the importance of differentiating between 

different types of uncertainties for more effective active learning. For this analysis we 

add a synthetic Gaussian noise to our sensor measurements to understand the importance 

of the uncertainty decomposition. We add different level of noise to different data 

samples using Equation 4.10. 

𝑥𝑛𝑜𝑖𝑠𝑦 = 𝑥𝑐𝑙𝑒𝑎𝑛 + 𝛼. 𝜖                                (4.10) 

𝜖~𝑁(0,1)      𝛼~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,0.1) 

where α is the amplitude of the noise that is different for each data sample, and s 

is a white noise. As Figure 5.3 shows, querying the label for the samples that are chosen 

based off of epistemic (i.e., model dependent) uncertainty provides highest improvement 

compared to using the combined or aleatoric (i.e., data dependent) uncertainty. 

Moreover, the ratio proposed in our method in Equation 4.8 achieves the highest 
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personalization performance. The reason for this is as follows: the two uncertainty 

metrics have a complementary nature to some extent meaning that in presence of novel 

data, both epistemic and aleatoric uncertainties increase. However, the increase in 

epistemic uncertainty in this case is much more significant than the aleatoric uncertainty 

as the novel data is associated with model dependent uncertainty (see Section 5.3.2). 

 

Figure 5.3 - Effect of using different uncertainty metrics on personalization 

 

The uncertainty ratio proposed in Equation 4.8 takes this observation into 

account and helps the model to better understand if it is facing uncertainty due to lack of 

training rather than noisy measurements. In conclusion, Figure 5.3 provides the 

indication on the importance of distinguishing between the types of uncertainty for 

active learning tasks. 
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Table 5.3 - Personalization accuracy [%] 

Method PAMAP2 MoST 

Primary subjects 

New subjects with no retraining 

Use all labeled data for retraining 

Query labels for random samples 

Active learning with Softmax 

Entropy-based active learning [117] 

RF-based active learning 

Our personalization method 

94.2 

53.7 

93.8 

76.2 

74.9 

79.3 

80.0 

89.6 

91.8 

64.6 

91.9 

70.0 

77.2 

82.3 

81.4 

88.7 

 

Figure 5.4 depicts the performance of personalization vs. the number of queries 

form the user averaged over all the subjects within each dataset. As the figure shows, our 

proposed method achieves the highest accuracy compared to the other methods, 

especially when the number of questions is very small. There are two reasons: first, our 

method attempts to choose the most important samples by taking into account the 

limitation on the number of questions; second, it uses unlabeled data along with the 

queried labels to adapt the feature extraction layers to the new data. Based on Figure 5.4, 

by querying at least 60 and 140 data points from the user, in MoST and PAMAP2 

datasets, respectively, our method can achieve more than 20% improvement in the 

performance of the system compared to the case of using no personalization for the new 

users. Moreover, the acquired accuracy from the personalization by querying only 200 

data points from the new user is only 3.7% less than the upper bound of using all labeled 

data from the new user (i.e., 1700 datapoints in PAMAP2 and 400 data points in MoST 

dataset on average). 
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Figure 5.4 - Personalization performance vs. number of queried samples 

through 

 

5.3.2. Uncertainty Metrics 

To assess the quality of our uncertainty measurement technique and to better 

understand how they are associated with different sources of uncertainty in sensor data, 

we investigate three questions: 
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• How do epistemic and aleatoric uncertainties change when the system is 

dealing with novel data? 

• How do these types of uncertainty behave when dealing with noisy sensor 

measurements? With last two questions, we investigate whether these two 

types of uncertainties are separable. 

• Is there a relationship existing between these uncertainties and 

misclassifications? 

First, we analyze the behavior of the quantified uncertainties when the system is 

presented with novel data. The novel data is the data drawn from a different distribution 

compared to the training data, and it could come from new activities for which the 

system has not been trained, or new users that perform activities differently. A good 

measure of uncertainty must increase when the system is provided with novel unfamiliar 

data. Herein we compare the uncertainty in three different cases including testing on data 

same as the training data, data of new subjects, and data of new activities, for which the 

results are shown in Figure 5.5. In the first case (the navy bar in Figure 5.5), we test the 

model with data from the same distribution as the training (non-novel data). In other 

words, the model is tested on the data of the same subjects and with the same activities 

as in the training set. In this figure, it is seen that all combined (Figure 5.5-a), epistemic 

(Figure 5.5-b) and aleatoric (Figure 5.5-c) uncertainties are smaller compared to when 

the model is tested on the data of new subject or new activities (novel data). To test the 

model on novel data, in the second case (the yellow bar), the model is trained on all but 

one subject and is tested upon the data of the excluded (new) subject. In the last case (the 
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gray bar), we test the model with the data of new activities that were not used in the 

training.  

 

Figure 5.5 - The uncertainty when the model is tested on novel data 

(averaged over all the subjects). (a) combined uncertainty; (b) epistemic 

uncertainty; (c) aleatoric uncertainty 

 

Expectedly, as Figure 5.5 shows, all combined (Figure 5.5-a), epistemic (Figure 5.5-b) 

and aleatoric (Figure 5.5-c) uncertainties increase when the model faces novel data 

(yellow and gray bars in comparison to the navy bar). However, this increase is much 

more significant in the epistemic uncertainty (Figure 5.5-b) compared to the aleatoric 

uncertainty (Figure 5.5-c). This confirms the initial hypothesis about the type of 

uncertainties and it is in line with prior reports [142]. In fact, it shows that the epistemic 

uncertainty, which considers the model uncertainty, is much more sensitive to the lack of 

training data compared to the aleatoric uncertainty. By measuring this uncertainty, we 

can realize if the input data is not familiar for the model. In such cases, it is reasonable to 

solicit the user to get more information about the activity label for retraining the model 
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Figure 5.6 - The uncertainty of the model in presence of different noise levels 

averaged over all the subjects). X axis corresponds to values of α in Equation 4.10 

 

Second, we expect the uncertainty to increase in response to noisy sensor 

measurements too. Thus, the second experiment is devoted to the analysis of the effect 

of sensor noise on each type of uncertainties quantified in this study as shown in Figure 

6. We seek to understand whether the uncertainty sourced by the noisy data is 

distinguishable from the uncertainty of the model sourced by lack of sufficient training 

data. We add synthetic noise to data where varying level of noise is represented in the X 

axis of Figure 5.6. Each axis of raw sensor data is corrupted with a Gaussian noise, as 

described in Equation 4.10, with the only difference here being that we use various 

constant values for 𝛼 as depicted on the X-axis of Figure 5.6. It should be noted that we 

chose the range [0,0.4] for 𝛼  to better show how the uncertainty changes in response to 

different levels of noise in the data. We did not use larger values for  𝛼 because the noise 

dominates the signal and the data becomes non-informative. As Figure 5.6 shows, the 
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aleatoric uncertainty (dashed navy line), which corresponds to the data, increases 

consistently as the noise magnitude (and power) increases. Contrarily, the epistemic 

uncertainty (dotted red in Figure 5.6) does not show an increasing pattern as consistent 

as the aleatoric uncertainty. However, we naturally expect to see an increase in the 

uncertainty when the system is fed with noisy data, and that is what is observed with the 

aleatoric as well as the combined uncertainty, which is dominated by the aleatoric. 

Hence, the decreasing pattern in the epistemic uncertainty, as shown in Figure 5.6, 

indicates that this type of uncertainty is not measuring the true data-dependent 

uncertainty due to noisy signals. Combined uncertainty (solid navy line in Figure 5.6), 

similar to aleatoric uncertainty, shows a steady increase which is desired since the noisy 

data introduces challenges for the predictions. This shows that the uncertainty increases 

when the system is presented with noisy sensor measurements while it can still capture 

the fact that this uncertainty is not caused by the model not knowing the data but because 

the data is noisy. 

Figure 5.5 and Figure 5.6 show that the proposed measures of uncertainty are 

sensitive to different sources of uncertainty and this allows the system to understand 

which type of uncertainty is being observed. Now we investigate the change in the 

uncertainties when the output of the model is correct versus when the predictions are 

incorrect. We expect to observe an increase in the uncertainty when the classifier makes 

a mistake. If this appears to be the case, then the system will be able to detect potential 

errors and appropriately intervene. Figure 5.7 depicts the aleatoric, epistemic and 

combined uncertainties, averaged for both correctly and incorrectly classified data 
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samples. According to the figure, the uncertainties in the correctly classified data 

samples (the navy bar) are steadily lower than the ones that are misclassified (the yellow 

bar). This indicates that the model makes more mistakes on the data samples on which it 

is less certain. Therefore, the uncertainties developed here can serve their true purpose. 

 

Figure 5.7 - Comparing the uncertainty for the samples that are correctly 

classified by the classifier and the samples that are misclassified (a) combined 

uncertainty; (b) epistemic uncertainty; (c) aleatoric uncertainty 

 

To further investigate the effectiveness of the proposed uncertainty metrics, we 

compare it to the Softmax output. To accomplish this comparison, we first determine 

0.075 as a threshold on our combined uncertainty for distinguishing between certain vs. 

uncertain data samples based on Figure 5.7-a. Surprisingly, 45% of all misclassified 

samples that are labeled as uncertain by our system (i.e., their uncertainty is above the 

threshold) have a Softmax output of higher than 0.95. This shows that, even the 

misclassified samples that are not located close to the decision boundary of the neural 

network (i.e., Softmax is very certain about them) can be detected by the proposed 

uncertainty metric. In other words, the proposed uncertainty is capable of capturing the 
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uncertainty even for the samples that are far from the decision boundaries of the 

classifier. Moreover, from all the misclassified samples, only 13% have the Softmax 

output of below 0.95, which shows the inability of Softmax in detecting uncertainty 

corresponding to misclassification, while 47% of them have been detected as uncertain 

by our model. This shows the superiority of our algorithm over Softmax regarding 

detecting the uncertainty to mark misclassified samples. 

5.3.3. Evaluating Components of the Proposed Model 

The proposed personalization framework for human ADL recognition consists of 

unsupervised retraining of the feature extraction layers and supervised fine-tuning of the 

classification layers using the labels that are acquired by the active learning. In this 

section, we aim to analyze the effect of each of those two components on the 

personalization performance. Figure 5.8 compares the personalization performance of 

our method when various components are disabled. As the figure shows, in one hand, the 

accuracy of the ADL recognition for new user (i.e., personalized model) drops by 5.4% 

when we do not retrain the feature extraction layers in an unsupervised manner, and we 

only rely on supervised fine-tuning of the classification layers. On the other hand, the 

performance drops by 9.5% when we ignore the supervised fine-tuning with the labels 

acquired by active learning, and we only rely on unsupervised retraining. This 

demonstrates the importance of supervised fine-tuning in personalization. Overall, 

Figure 5.8  shows that the unsupervised retraining of feature extraction layers and the 

supervised fine-tuning of the classification layers using the labels acquired by active 
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learning are complementary, and both techniques are required to obtain effective 

personalization.  

 

Figure 5.8 - The effect of different components of the proposed method on 

personalization performance 

 

5.4. Conclusion 

We proposed a personalization framework for ADL recognition using deep 

learning. The proposed method consists of supervised fine-tuning of classification layers 

as well as unsupervised retraining of feature extraction layers. For the supervised fine-

tuning we proposed an active learning technique to acquire labels for most important 

samples. To achieve a more effective supervised active learning, we designed a unified 

deep Bayesian neural network to detect different types of uncertainties. Through 

experimental analysis, we demonstrated how data-dependent and model-dependent 

uncertainties could be distinguished and measured by the proposed method. We 
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leveraged the model dependent uncertainty to identify the samples that are important to 

gain maximum accuracy through fine-tuning the classification model. Our experiments 

showed that in general, personalization is critical when an ADL recognition system is 

used for a new user. Moreover, using unlabeled data as well as labeled data acquired by 

active learning, understanding the source of uncertainty, and limiting the amount of 

interaction with the user to solicit labels while designing the active learning method are 

vital components to achieve the maximum personalization performance while 

minimizing the burden on the users. The proposed method is important to improve 

usability of ADL recognition systems that provide important contextual information for 

many mobile health and wellness service applications such as patient monitoring, 

assisted living, dietary and fitness monitoring. 
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6. REAL-WORLD EXPERIMENTATION: DISEASE ONSET PREDICTION WITH 

WEARABLES 

 

The details of this study cannot be revealed per Texas A&M Engineering 

Experiment Station (TEES) instructions due to confidentiality concerns.  
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7. CONCLUSIONS 

This dissertation document described the research that tackled three practical 

challenges associated with remote health and wellness monitoring through wearables 

including context measurement, personalization, and large-scale machine learning 

deployment for disease prediction.  

To address the need for measuring context for health monitoring, we used freely 

available nearables, i.e., passively observable Bluetooth-enabled devices in the user’s 

daily environment, to estimate users’ location and interaction opportunistically. We 

leveraged that contextual information for detecting complex activities of daily living that 

cannot be detected merely with motion sensors. We designed an offline context model 

training method by leveraging BLE devices that are observed consistently in the vicinity 

of the user when a particular action of the user, i.e., activity, is being performed. This 

consistency was used to generate a set of context patterns that were then mapped 

probabilistically back to the actions to aid performance via a reduction in the set of 

probable outcomes. We collected data from several participants over more than one 

month to train and validate our model. A significant improvement was achieved in 

detecting complex activities such as shopping, meeting and cleaning by leveraging 

context to narrow down the search space of activities. An important feature of our 

proposed approach is the fact that it requires no extra infrastructure and no user 

intervention for deployment of new sensors and devices. The proposed technique 

enhances the capabilities of wearable sensors by helping them understand their working 

environment, which is a vital information to better interpret physiological data. 



 

112 

 

Personalization is another vital factor in machine learning algorithms designed 

for healthcare data due to inter-subject variabilities. These variabilities exist in both 

physiological as well as behavioral and contextual parameters. We studied the notion of 

personalization for detecting ADLs with motion sensors. We designed a Bayesian deep 

convolutional neural network with stochastic latent variables to estimate both aleatoric 

(data-dependent) and epistemic (model-dependent) uncertainties in recognition task. We 

leveraged these uncertainties to design an efficient active learning model that chooses 

the most important and informative samples to solicit the user to label them. These 

labeled samples are used to fine-tune the activity classifier. In addition, the feature 

extraction is performed automatically in this framework through the stochastic latent 

variable. The specific design of this module based on variational autoencoder enables 

opportunity for leveraging unsupervised/unlabeled data to update the model too. These 

two components, namely active learning for acquiring labeled data for supervised 

retraining and the capability for unsupervised retraining, significantly improved the 

performance of the model to adapt to new users with minimum number of labels 

solicited from the users (in comparison to the state-of-the-art). We also showed how 

distinguishing between the two aforementioned sources of uncertainty leads to more 

effective active learning paradigms. The proposed method is important not only to 

improve the performance of the machine learning models but also to enhance user 

compliance since it allows them to adopt new devices with minimum intervention 

required. Therefore, the proposed method improves usability of ADL recognition 

systems that provide important contextual information for many mobile health and 
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wellness service applications such as patient monitoring, assisted living, dietary and 

fitness monitoring. 

With addressing context-awareness and personalization needs for wearable 

sensing, to show effectiveness of wearables in a real-world remote health monitoring 

application, we investigated the changes in continuous physiological data collected by 

wearables in day-to-day life and showed that wearables can effectively predict onset of 

certain diseases. Further details of this work cannot be revealed per Texas A&M 

Engineering Experiment Station (TEES) instructions due to confidentiality concerns.  

Findings of this work can help alleviate the most important roadblocks to 

continuous, pervasive remote health and wellness monitoring through wearables. It can 

also unlock new sensing and data analytics paradigms that improve quality of healthcare 

services and makes them accessible to underserved population.  
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