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 ABSTRACT 

 

PTSD is a psychiatric condition experienced by individuals after exposure to a 

traumatic event such as war. PTSD is a major public health concern in the United States 

since it is among one of the most prevalent mental disorders. Over 6% of the U.S. 

population suffer from this condition at any given time. PTSD has serious consequences 

including (but not limited to) depression and anxiety which will lead to avoidance, 

intrusive thoughts and hyperarousal. Hyperarousal symptoms include hypervigilance, 

feelings of irritability, and an exaggerated startle response following a startling event.  

PTSD mostly has been assessed using subjective methods such as surveys and 

questionnaires. Although these methods are promising for PTSD diagnosis, they lack the 

capability of detecting the onset of symptoms (e.g., hyperarousal). Capturing 

hyperarousal events is specifically crucial because individuals may experience the most 

intense moments of their lives during these events when they are not with their 

clinicians. Therefore, there is a vital need to monitor hyperarousal events and provide 

timely feedback for individuals. 

In this research I tried to address this gap by 1. statistically understanding 

hyperarousal events, 2. detecting them using machine learning algorithms, and 3. 

creating an actual tool that individuals who have PTSD can use to monitor their events. 

To do so, I used heart rate since heart rate is the main physiological indicator of PTSD. 

In chapter 2, I created a framework that can be used to analyze heart rate in response to 

PTSD. In chapter 3 I used the framework to investigate specific heart rate patterns 
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associated with hyperarousal events. In chapter 4, I used these patterns along with a few 

other heart rate and body acceleration features to develop a machine learning algorithm 

that can detect hyperarousal events in real time. Finally, in chapter 5, I validated the 

developed algorithm in naturalistic settings to investigate the real world application of 

such algorithms. Altogether, this research presents a tool that can predict hyperarousal 

events in real time and has real-world validity. 
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1. CHAPTER 1 INTRODUCTION  

1.1. Overview 

Post-Traumatic Stress Disorder (PTSD) is a psychiatric condition associated with 

stress and anxiety that affects over 24 million people in the United States [1]. Veterans 

who return from war zones are particularly prone to PTSD due to their combat exposure. 

Recent estimates suggest that 17% of military veterans are affected by PTSD [2]. Other 

reports documented as much as 20% prevalence among the returning veterans from the 

current conflicts in Afghanistan and Iraq [3]. The total costs for providing medical care 

for returning veterans of Iraq and Afghanistan from 2011-2020 (excluding disability) 

were estimated to be around $40-54 billion in inflation adjusted 2010 dollars [4]. It is 

expected that such medical costs will peak 30-40 years after a major conflict. For 

Iraq/Afghanistan veterans cost of care will peak around 2035. The increase in costs were 

attributed to new conflicts and the increase in comorbid conditions resulting from PTSD, 

traumatic brain injury (TBI) and polytrauma [4].  

PTSD is characterized by a traumatic event and at least one month of re-

experiencing that traumatic event [5]. The Diagnostic and Statistical Manual of Mental 

Disorders 5th Edition (DSM-5) [5] further classifies re-experiencing symptoms into 

intrusive recollections, recurrent dreams, and flashbacks. Avoidance and hyperarousal 

are other main symptoms of PTSD. Avoidance symptoms include avoiding activities or 

cognitions associated with the traumatic event, decreased interest in daily life and an 

overall feeling of detachment from one's surroundings. Hyperarousal symptoms include 

hypervigilance or feelings of being constantly on guard, feelings of irritability, and an 
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exaggerated startle response following a startling event. Other symptoms include 

anxiety, insomnia, fatigue, anger, and aggression [6]. 

There are several methods to diagnose PTSD. The gold standard and most 

common approach for detecting and measuring the severity of PTSD symptoms is 

clinician-administered assessments. Such assessments include the Clinician-

Administered PTSD scale [7], [8] and the Structured Clinical Interview for DSM-5, 

PTSD module [8], [9]. Another approach to diagnose PTSD is to use self-reported 

measures. The Impact of Event Scale-Revised [10]; PTSD Checklist (PCL)-Civilian 

Version [11]; Trauma Screening Questionnaire [12] and the Self-Rating Inventory for 

Posttraumatic Stress Disorder [13] have shown a 90% or higher level of diagnostic 

accuracy compared to the self-reported DSM-5 PTSD detection instruments for civilian 

trauma populations. The main criteria used to measure diagnostic efficiency of such 

instruments are sensitivity, positive predictive power, negative predictive power and 

overall efficiency for the test [8], [12]. Although subjective measures are helpful, they 

have a few limitations [7], [11].  Despite commonality of self-reported measures to 

diagnose and monitor PTSD, such methods suffer from several important limitations. 

For example, self-report techniques might be subject to emotional numbing and 

dissociation [14], which may negatively affect the compliance rates to follow a 

therapeutic regimen, self-management, as well as quality and reliability of self-

administered assessments. While clinician-administered instruments may partly address 

this limitation, the effectiveness of diagnosis and treatments might depend on the 

frequency of administration. Moreover, PTSD subjective measures fail to capture 
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isolated and mild cases, and most importantly are not capable of detecting hyperarousal 

events.  

It is apparent that without objective methods for effective continuous monitoring 

of PTSD symptoms, it will be challenging to improve care due to uncertainty associated 

with between-session self-management. In line with the World Health Organization 

agenda to “Monitor the health situation and assess health trends,” there is a vital need to 

develop remote and continuous monitoring capabilities that facilitate data-driven care 

and support self-management [15]. An outcome-based research and real-time 

epidemiology for tracking veterans’ progress through their healthcare journey can guide 

therapies and preventive strategies and reduce the gap between treatments received in 

clinician sessions at one end and self-care at the other end, however, such research 

remains a gap. Early intervention and treatment may also reduce suicidal thoughts and 

avoid alcohol or tobacco abuse and may save costs arising from secondary complications 

associated with alcohol or tobacco such as alcoholic liver disease or a pulmonary 

complication [4].  

Psychophysiology might improve PTSD care and self-management by providing 

objective tools for tracking and assessing PTSD symptoms. Psychophysiology involves 

the non-invasive recording of biological processes [16]. Commonly used physiological 

measures to assess PTSD are: (1) heart rate (cardiac activity); (2) heart rate variability 

(3) Galvanic Skin Conductance (GSC); (4) Systolic Blood Pressure (SBP), and (5) 

Diastolic Blood Pressure (DBP) [16]. It has been shown that changes in these measures 

correlate with PTSD symptom severity such as a PTSD hyperarousal [16]. Such 
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physiological measures may help distinguish between patients that respond well to 

PTSD treatments and non-responders to such treatments [17] and can provide additional 

information regarding PTSD’s pathophysiology [16].  

A meta-analysis of psychophysiological variables related to PTSD conducted by  

Pole et al. (2007) [16] shows that studies have used four overarching conditions in 

laboratory environments to assess PTSD symptoms: (1) resting baseline; (2) exposure to 

startling sounds; (3) exposure to standardized trauma cues; and (4) exposure to 

idiographic trauma cues [16]. The changes in measures that are found to be reliably 

related to PTSD are: (1) higher resting heart rate; (2) larger heart rate responses to 

standardized trauma cues; and (3) for idiographic cues, facial muscle Electromyography 

(EMG) and heart rate responses. It should be noted that facial muscle EMG might be 

difficult to assess in the field discretely without people noticing. Other related changes in 

measures include elevations in GSC, SBP, and DBP. Diastolic blood pressure is more 

strongly associated with PTSD than systolic blood pressure [18]. Eye blink rate and GSC 

for startling sounds, increased GSC for standardized trauma cues and increased GSC and 

DBP for idiographic trauma cues.  

Among these variables, heart rate shows promise for its application in PTSD 

monitoring, given the prevalence of wearable and non-intrusive heart rate sensors and 

preliminary evidence suggesting its reactivity to PTSD symptoms, heart rate can be 

considered as a reliable indicator of PTSD [19]. For example, in a recent meta-analysis, 

Morris et al. [18] found that increased heart rate measured after trauma exposure is 

associated with higher PTSD symptoms. This study indicates that heart rate changes is 
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strongly associated with hyperarousal and re-collection symptoms for PTSD ([18], [20]) 

and heart rate reactivity may normalize after successful treatment [18], [21]–[23]. 

Although it is known that PTSD symptoms impact heart rate, the documented evidence 

is limited to correlational analyses and specific heart rate mechanisms or patterns 

associated with hyperarousal events remain unknown. In addition, heart rate is 

influenced by other factors such as medication, pain, underlying medical conditions [24] 

as well as activity and such potentially confounding variables need to be considered for a 

robust assessment of construct validity of using heart rate to monitor PTSD symptoms. 

It seems that developing effective heart-rate-based PTSD monitoring methods 

that work based on objective and measurable data, is contingent on investigating how 

heart rate responds to PTSD hyperarousal events. Such knowledge can then be used to 

monitor such unique responses. In response to this potential, the objectives of my 

dissertation are to answer following questions: 

• What are the unique heart rate cues, patterns, and identifiers in response 

to PTSD hyper-arousal episodes? 

• Can a machine learning algorithm detect heart rate patterns associated 

with PTSD hyperarousal events? 

• How can we operationalize the developed algorithm as a smartwatch-

based detection tool?  
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This dissertation addresses these questions in different phases as detailed below 

(Figure 1). As this dissertation is a collection of published/submitted articles, following 

elaborates on different chapters of this dissertation. 

 
Figure 1.1. Dissertation roadmap 

  

• Chapter 1: Introduction chapter or current chapter helps readers 

understand the objective and organization of this dissertation as well as background 

information about PTSD symptoms, their relationship with heart rate and provides a road 

map for this dissertation. 

 

• Chapter 2 (Article 1): This chapter elaborates on findings from a 

comprehensive literature review about understanding physiological indicators of PTSD. 
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Using Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 

framework [25], 54 articles were chosen to be included in this review. Several research 

gaps were identified from the literature review looking into the objective assessment of 

PTSD: the research is lacking in the area of naturalistic studies to assess the importance 

of heart rate measures while examining PTSD hyperarousal. Characterization of PTSD 

hyperarousal events from heart rate data seems to be a research gap. It is worth looking 

into two aspects of heart rate as a risk factor, resting heart rates in people who have 

PTSD, and heart rate patterns during hyperarousal events. A more acute characterization 

of PTSD symptoms can be implemented using continuous monitoring of instantaneous 

heart rate to improve prediction and detection of PTSD symptoms to create awareness 

towards PTSD symptoms, particularly hyperarousal. These gaps are important because 

an important aspect missing from PTSD care system today is how to deal with PTSD 

symptoms when patients are on their own or with their families. Not being able to deal 

with symptoms further isolates PTSD patients, as they know their reactions to PTSD 

symptoms might be harmful to others in the vicinity as well as themselves. As an 

overview of research gaps, there is a general lack of understanding of PTSD triggers and 

lack of continuous monitoring of PTSD patients to characterize the symptoms based on 

psychophysiological parameters. 

• Chapter 3 (Article 2): This chapter provides answers to the first question 

of the dissertation that whether heart rate provides unique cues, patterns and identifiers 

for PTSD hyperarousal episodes in the population of veterans suffering from 

polytrauma. It will provide a comprehensive understanding of heart rate responses to 
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PTSD especially during hyperarousal events. This chapter contributes to the body of 

knowledge by providing a comprehensive understanding of the correlations between 

heart rate baseline and demographic information, medications, and medical history in 

people who have PTSD. Moreover, this chapter determines significant risk factors 

associated with the accelerations and decelerations in heart rate, and elaborates on 

specific heart rate statistical features when hyperarousal events happen. The specific 

characteristics of heart rate identified in this chapter in correlation with PTSD could be 

investigated for detection of PTSD symptoms using a wearable sensor that can be 

monitored discretely. 

 

• Chapter 4 (Article 3): This chapter presents answers to the second 

research question in this dissertation. Several machine learning algorithms are developed 

that can detect PTSD hyperarousal events in real time. Based on the best performance in 

terms of accuracy, sensitivity, and specificity, one algorithm is chosen for further 

analysis. 

 

• Chapter 5 (Article 4): This chapter addresses the last research question of 

this dissertation on whether the algorithm developed in chapter 4 can detect hyperarousal 

events in real world, naturalistic settings, and with actual people who have PTSD. To 

address this question, the machine learning algorithm is integrated in the data collection 

tool and then it is validated in the real world. In this chapter I specifically looked at the 
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accuracy of the detection tool, perceived accuracy, participants’ trust in the device, and 

participants interactions with the device. 

 

• Chapter 6: This chapter represents the conclusion of this dissertation. It 

summarizes the key findings, contribution to the body of literature, limitations, and 

future work. This is the first major section of your document.  
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2. CHAPTER 2 (ARTICLE 1) BACKGROUND AND LITERATURE REVIEW1 

Overview 

Post Traumatic Stress Disorder (PTSD) is a prevalent psychiatric condition that 

is associated with symptoms such as hyperarousal and overreactions. Treatments for 

PTSD are limited to medications and in-session therapies. Assessing heart responses to 

PTSD has shown promise in detecting and understanding the onset of symptoms. To 

extract statistical and mathematical approaches that researchers can use to analyze heart 

rate data to understand PTSD. A scoping literature review was conducted to extract heart 

rate models. Five databases including Medline OVID, Medline EBSCO, CINAHL 

EBSCO, Embase Ovid, and Google Scholar were searched. Non-English studies, as well 

as the studies that did not analyze human data, were excluded. 54 articles that met the 

inclusion criteria were included in this review. We identified four categories of models: 

descriptive time-independent output, descriptive/time-dependent output, predictive/time-

independent output, and predictive/time-dependent output. Descriptive/time-independent 

output models include Analysis of Variance (ANOVA) and first-order exponential; 

descriptive time-dependent output includes classical time series analysis and mixed 

regression. Predictive time-independent output models include machine learning 

methods and analyzing heart rate-based fluctuation-dissipation theory. Finally, 

predictive time-dependent output includes time variant method and nonlinear dynamic 

                                                

1 Reprinted with permission from “Towards a taxonomy for analyzing heart rate as a 
physiological indicator of Posttraumatic Stress Disorder: systematic review and development of a 
framework” by Mahnoosh Sadeghi, Farzan Sasangohar, Anthony D McDonald, 2020, JMIR Mental 
Health 7(7), e16654. (See Appendix A for the copyright permission) 
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modeling. All of the identified modeling categories have relevance for PTSD, although 

modeling selection is dependent on the specific goals of the study. Descriptive models 

are well-founded for inference about PTSD. However, there is a need for additional 

studies in this area that explore a broader set of predictive models, and other factors 

(e.g., activity level) that have not been analyzed with descriptive models. 

2.1. Introduction 

Post-Traumatic Stress Disorder (PTSD) is a psychiatric condition that develops 

as a result of experiencing injury, severe psychological shocks, and other trauma [1]. 

Individuals with PTSD suffer from the recall of traumatic experience and often develop 

depression, anxiety, emotional instabilities, and suicidal thoughts [2]. Recent reports 

suggest that individuals with PTSD are about 5 times more likely to commit suicide than 

individuals without PTSD [3]. Approximately 10% of American women and 4% of men 

experience PTSD in their lifetime [4]. PTSD is an endemic disorder among veterans as 

well—affecting between 17% to 24% of veterans from recent conflicts [5].  

While an alarming number of individuals are afflicted with PTSD, there are 

significant barriers to care delivery [6,7]. These barriers include shortage of qualified 

clinicians and understaffed mental health clinics, geographical constraints to access 

mental health facilities, financial obstacles, and cultural factors such as the social stigma 

and limited capabilities in objective diagnosis (currently limited to self-reported 

measures such as the PTSD Checklist [PCL-5]) [8]. Studies have shown that self-

management and factors such as positivity directly affect PTSD symptoms and ease in 

dealing with them [9]. Mobile health apps (mHealth) have shown promise to facilitate 
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self-management (e.g., education, mindfulness, and self-assessment) and have the 

potential to facilitate direct communication between people who have PTSD and their 

health care providers [10]. mHealth apps deployed on wearable devices (e.g., 

smartwatches) that are equipped with an array of physiological sensors (e.g., heart rate) 

may also enable remote continuous monitoring of signs and symptoms of PTSD. Indeed, 

recent efforts have shown promising application of watch-based heart rate sensors to 

detect the onsets of PTSD hyperarousal events [11].   

Despite the recent work, the extent of knowledge on the physiological reactions 

to PTSD and, in particular, Heart Rate (HR) is limited and work is needed to better 

understand changes to HR associated with PTSD. Few models (e.g., Analysis of 

Variance, regression analysis) have been developed to relate changes in heart activity to 

disorder states. In particular, given the opportunity to collect HR data non-intrusively, it 

is important to use appropriate mathematical and statistical methods to ensure the 

accumulation of convergent knowledge in this field and to characterize and understand 

heart rate in terms of PTSD. In this article, we document the findings from a review of 

the current literature on measures and models used in various domains to analyze HR 

data. In addition to summarizing and synthesizing the HR analysis methods, we provide 

an evaluation of methods for applications relevant to PTSD detection and diagnosis. 

2.2. Methods 

2.2.1. Search Strategy 

A scoping review was conducted using the strategies outlined in the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology 
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[12]. The scoping review approach was selected because it is effective for knowledge 

evaluation and gap identification [13]. The review spanned five main databases: (1) 

Medline OVID, (2) Medline EBSCO, (3) CINAHL EBSCO, (4) Embase Ovid and (5) 

Google Scholar. Search terms included: “heart*”, “pulse*”, “Heart Rate*”, “model*”, 

“heart beat*”, and “analysis*”. All studies published in or after the year 2000 were 

included. This search was supplemented by secondary search of cited articles in the 

results.  The search was completed on January 15th, 2020. 

2.2.2. Study Selection, Inclusion, and Exclusion Criteria  

Abstracts were reviewed for relevance and articles that did not discuss heart rate 

related measures in detail and did not provide/use quantitative methods for analysis were 

excluded. Other exclusion criteria were non-English articles and articles that assessed 

non-heart-based physiology measures such as skin conductance and blood pressure. 

Further, studies that did not analyze human physiology were excluded. The inclusion 

criteria were all articles that discussed human heart rate analysis. Our initial search 

yielded 1,905 results. After removing duplicate articles and checking for eligibility using 

Rayyan (a web application for assisting literature reviews), 270 articles were further 

reviewed. Out of the 270, 138 were exclusively about non-heart-based measures 

reactions, 67 did not focus on human physiology, and 11 had duplicated content. 54 

articles from the search were included in this review based on their relevance to the 

topic.  

Further, the bibliography of references in each research paper was investigated 

thoroughly (backward search) to identify pertinent articles, and then Google Scholar 
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searches (forward search) were conducted to find the full text. Figure 1 shows the 

PRISMA flow chart for the article selection process. 

 

Figure 2.1. PRISMA flow chart for the literature review. Reprinted with 
permission from [136] 

 

2.3. Results and Discussion 

We listed the articles identified by the search process into two categories based 

on our synthesis: studies of the effects of PTSD on heart physiology and quantitative 
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modeling techniques for heart data. We further partitioned studies of PTSD effects into 

two types: (1) studies that investigate the effect of PTSD on heart rate variability and (2) 

studies that explore the effect of PTSD on heart rate. The literature on models can be 

further classified by the model’s focus on describing versus predicting data, and the 

model output. These categories and sub-divisions are discussed in the following sections. 

2.3.1. Effects of PTSD on Heart Rate Variability 

Heart rate variability (HRV) measures variations in heartbeats and is related to 

the electrical activity of the heart [14]. Common frequency domain analysis metrics for 

HRV include: High Frequency (HF), Low Frequency (LF), the ratio of LF to HF 

(LF/HF), Coherence Score (COH), the Root Mean Square of Successive Differences 

between normal heart beats (RMSSD), and the Standard Deviation of the interbeat 

interval of Normal sinus beats (SDNN) [15–18]. LF and HF are frequency bands of 

HRV that tend to correlate with parasympathetic nervous system activity. LF is the 

frequency activity in the range of 0.04–0.15Hz and HF is the activity in the range of 

0.15–0.4Hz. The quantified relative intensity of these measures is referred to as power 

[1] and such power is obtained by applying power spectral and frequency domain 

analyses [19].  

The reviewed articles found that PTSD causes sustained changes in Autonomic 

Nervous System (ANS) (part of the nervous system that is responsible for regulating 

automated functions in the body such as heart activity) [20]. The ANS consists of 

Parasympathetic Nervous System (PNS)—which regulates blood pressure and breathing 

rate during rest, and the Sympathetic Nervous System (SNS)—which adjusts blood 
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pressure and heart rate during activity. Heart activity is representative of the 

performance of these systems [21]. Various effects of PTSD on ANS have also been 

documented. Higher heart rate levels indicate lower heart rate variability and are linked 

to increased rates of mental stress and physical activity [22,23]. PTSD as a particular 

type of anxiety disorder also disturbs HR and HRV. Heart rate variability has been 

studied widely in the literature to assess PTSD (e.g., [18,24–26]). Evidence suggest that 

individuals with PTSD have lower resting HRV than individuals without PTSD when 

other factors (age, gender, and health level) are controlled [27]. According to Nagpal et 

al.’s [1] metareview, HF, a measure for the parasympathetic activity of ANS, is 

significantly lower in individuals with PTSD than individuals without PTSD (~0.6ms2). 

However, LF which assesses both sympathetic and parasympathetic activity of the ANS 

is slightly reduced in individuals with PTSD (~0.2 ms2). This results in a significant 

increase in LF/HF individuals with PTSD [1,28–30].  

RMSSD and SDNN are time domain measures of HRV. SDNN is an index for 

SNS activity [24]. SDNN is decreased in individuals with PTSD compared to healthy 

individuals (~6.7ms) showing an increase in sympathetic activity [1,31]. In addition, 

decreased levels of RMSSD was observed among individuals with PTSD (~7.5ms) that 

suggests lower vagal activity in this population [1,31].   

Although HRV analysis is common among studies of anxiety [32], some factors 

need to be considered when HRV measures are used. First, studies show that HRV is 

dependent upon heart rate and cannot be analyzed independently to represent the ANS 

activity [32,33]. In addition, prior research has linked high HRV to pathological 
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conditions related to heart deficiencies [32]. For instance, diseases such as atrial 

fibrillation increase HRV and HR, and are associated with higher mortality rates [34]. 

Hence, higher rates of HRV do not always indicate abnormal mental state. Ideally, 

measurements should take into account patient’s comorbidities such as heart deficiencies 

in addition to subjective (e.g., self-reported scales) and objective (e.g., HRV, ECG) 

methods [35]. Gender, health , age, and heart rate also affect HRV, and they need to be 

considered as covariates when HRV measures are used [24]. Aging decreases HRV time 

domain features such as SDNN [36,37]. HRV time domain features increase by 

improved health conditions [38,39]. LF and SDNN are also lower in females than in 

males; however, HF parameter of HRV is greater in women than in men [40]. Higher 

heart rate levels are also associated with decreased HRV [41], because when the heart 

beats faster, beat to beat intervals are smaller. Other factors such as climate, job 

satisfaction, lifestyle, and medications can also affect HRV and should be considered as 

an influential factor when HRV is analyzed [42]. 

2.3.2. Effect of PTSD on Heart Rate 

Heart Rate (HR) is the count of heartbeats per 60 seconds. Normal heart rate 

differs among individuals based on age and gender, health level, and respiratory activity 

[43]. Both HR and HRV are modulated by ANS [44]. As the SNS activates, PNS activity 

decays; therefore HR increases and HRV decreases [45]. As a result, there is an inverse 

relationship between HR and HRV [33].  
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PTSD can affect heart rate (HR) in two modalities: resting, and fluctuation tone 

[1,46–48]. Studies suggest that resting heart rate can be between 5 to 6.6 beats higher in 

individuals with PTSD than individuals without PTSD depending on the type of 

population (e.g., veteran, civilian) [49–51]. For example, resting HR is roughly 5 beats 

per minute higher in civilians with PTSD than civilians with no PTSD, and this number 

increases to 6.6 beats per minute difference in the veterans population [51,52]. In the 

non-resting state, evidence suggests that heart rate increases in the exposure of PTSD 

stressors [1].  

Another heart rate measure that has been investigated in terms of PTSD is heart 

rate fluctuations (changes in heart rate levels) in the presence of stimuli [53]. There are 

conflicting findings on the comparison of this measure between individuals with and 

without PTSD. While the study by [54] show that heart rate changes are higher in people 

with PTSD than people without PTSD, [55] claims the opposite.  

Heart rate models 

Based on our synthesis of the existing literature, we categorized mathematical 

models of heart rate into descriptive and predictive models, both of which could provide 

insight relevant to understanding the psychophysiological responses to PTSD. 

Descriptive methods can be used to describe and make inferences about a dataset, while 

predictive ones can be applied to forecast trends and patterns in the data. Predictive and 

descriptive models can be further characterized by their type of output—time-

independent or time-dependent (Figure 2). Time-dependent outputs use time as one of 

the descriptive variables to analyze the dependent variable(s) or output(s). Time-
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independent output, however, does not depend on time and does not change over time. 

While the models reviewed below are summarized and synthesized for relevance to 

PTSD-related analysis, these methods are not limited to PTSD and anxiety disorder 

domains. 

 

Figure 2.2. Taxonomy of heart rate analysis methods. Reprinted with permission 
from [136]  

 

2.3.3. Descriptive Models 

2.3.3.1. Time-independent output 

Analysis of Variance (ANOVA) 

Linear regression, and in particular ANOVA, is a statistical model used for 

analysis of HR in several articles (Table 1). ANOVA can be used to compare HR trends, 

and group means in experimental studies [56,57]. Studies used ANOVA to account for 

the effectiveness of treatments in individuals with PTSD as measured by HR [58]. Some 
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studies chose ANOVA as their method of analysis to show that resting heart rate is 

higher in individuals with PTSD than individuals without PTSD [57]. For example, the 

study by Gelpin et al. [59] compared the resting HR in individuals pre- and post-

treatment to measure the success of therapy sessions. Buckley et al. [52] used ANOVA 

to compare resting HR in PTSD patients with that of healthy controls, finding that PTSD 

patients, in general, have significantly higher resting HR levels (~6 beats per minute 

difference). While using ANOVA for the analysis of time-independent HR data, it is 

limited in several respects. ANOVA has strong assumptions and is ill-suited to model-

dependent measures with strong temporal correlations. For instance, independency of 

observations is one of the main assumptions of ANOVA; however, consecutive heart 

rate real time-based data is a highly correlative type of data. Thus ANOVA should not 

be used to make time-based HR predictions [60]. 

2.3.3.2. First-order exponential model 

A first-order exponential model provides a function with a sustained growth or 

decay rate [61]. In terms of heart rate analysis, first order exponential models have been 

used to generate a nonlinear regression model for HR based on Heart Rate  

Recovery (HRR) [62]. Heart Rate Recovery (HRR) is an indicator of vagal 

reactivation and SNS deactivation [63].  

 Bartels-Ferreira et al. [63] used first order exponential method to measure 

postexercise time-independent HRR based on heart rate decay curves. Recovering from 

the onset of PTSD symptoms is associated with activation of vagal tone and withdrawal 

of SNS activity, both of which are correlated with HRR [64]. While this method shows 
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promise in assessment of heart rate fluctuations associated with PTSD, the reviewed 

literature (Table 1) examined ANS in the context of physical acitivity and HR decay 

after activity was curve fitted by a first order exponential function ([63]). In this case the 

goodness of fit was moderate (R2~0.65), which warrants additional research. Another 

limitation associated with this method is that the exponential functions show erroneous 

patterns for very small (30-second) and very large (600-second) time windows [61]. For 

instance, Bartels-Ferreira et al. [63] found that the least goodness of fit was for the 

smallest time window which was 30 seconds (r^2=0.42). Conversely, when the length of 

the window of time is a moderate number (~360 seconds) a relatively better goodness of 

fit was obtained (~0.69). This shows that HRR curve fitted by first order exponential 

models performs better (higher R2) when windows of times are neither too big nor too 

small. Table 1 shows a summary of articles that studied descriptive models with time-

independent output. In this table, domain is the field of the study. Independent variables 

are factors that are controlled by researchers, and dependent variable are dependent on 

them. “Independent Variables” are used to describe/classify dependent variable.  
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Table 2.1. Results studies that used descriptive models with time-independent 
output. Reprinted with permission from [136] 

Method Authors Domain Independent Variables Dependent 
Variable 

ANOVA 
 Shalev et al. 

(1998) [57] 
PTSD Gender, age, heart rate, trauma 

history, event security 
HR 

 Strath et al. (2000) 
[65] 

Physical 
Activity 

Heart rate, Oxygen intake, age, 
fitness 

HR 

 Romero-Ugalde et 
al. (2017) [66] 

Physical 
Activity 

Accelerometer, energy 
expenditure, heart rate 

HR 

 Khoueiry et al. 
(2012) [67] 

Medical Heart rate, hospitalization 
duration, age 

HR 

 Tonhajzerova et 
al. (2012) [68] 

Physiology Resting HR, Major depressive 
disorder 

HR 

First order exponential 
 Bartels et al. 

(2015) [63] 
Physical 
activity 

Heart rate peak, resting heart rate, 
heart rate recovery 

HR 
Variation 

 

 

2.3.3.3. Time-dependent output 

Classical time series analysis 

Classical time series analysis is a common statistical method that can analyze 

time-dependent data trends by looking into linear relationships. Classical time series 

analysis is also a promising method for analyzing HR and HR fluctuations since these 

measures are time-based [69,70].  

Peng et al. [70] applied time series analysis to look into longterm correlation 

within heart rate data and its relation to heart diseases such as cogestive heart failure. 

Using this method, the authors showed that there is some independency between beat to 

beat HR fluctuations in healthy people that does not exist in cardiovascular disease 

patients. The findings further suggest that classical time series analysis is a promising 

direction for PTSD hyperarousal analysis because similar HR changes have been 
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documented in PTSD patients compared to healthy people in the presence of stimuli 

[71].  

Beyond the analogous use case, classical time series has several benefits 

compared to ANOVA. Since the model explicitly considers autocorrelation, it does not 

require the assumption of independence of observations [72]. The models also have 

predictive capability and are well validated for illustrating trends and forecasting [73]. 

However, one drawback of this method is the stationary assumption (constant mean 

value of the series), which is not always reasonable in HR data (e.g., when data is 

collected before and during exercise).  

Mixed regression model 

Mixed regression analysis has been used in the literature to evaluate 

physiological responses to energy expenditure [74]. This type of modeling can be 

applied with correlated observations. Thus, it is beneficial for psychophysiology 

analyses that need to account for individual similarities in responses that make these 

reponses correlated [60]. Multiple regression typically proceeds in a stepwise process 

with a focus on identifying two main effects: the population-fixed effect and the random 

effect. The population effect explains similarities in the dataset (for instance HR), while 

random effect represents the differences among observations (the error term). For 

instance, Gee et al. [75] used respiration as a random effect to estimate heart rate and 

ultimately predict episodes of bradycardia in infants. Using mixed regression method 

and accounting for respiration as a covariate in this case has increased accuracy of the 

measured heart rate by 11%. 
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The ability of mixed regression models to account for individual differences 

makes them an advantageous choice for modeling PTSD. Several studies have identified 

significant individual differences in people with PTSD [1,57,76,77]. Specifically, HR 

and heart rate variability levels are significantly affected by individual differences such 

as age, general health, and gender [24].  

This type of modeling might produce similar results to ANOVA in many cases. 

However, in comparison with ANOVA, mixed regression models are more effective for 

datasets with missing values and multiple random effects [78]. This is important since in 

real world and naturalistic studies, datasets with high rates of missing values are 

common and can be challenging to deal with [79]. For comparison of time-dependent 

output methods, see Table 2. 
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Table 2.2. Results from studies that used descriptive models with time-dependent 
output. Reprinted with permission from [136] 

Method Authors Domain Independent Variables Dependent Variable 

Classical time series 

 Chen et al. 

(2016) [69] 

Healthcare 

(patient data) 

HR, resting heart rate Heartbeat 

 Kazmi et 

al. (2016) 

[33] 

Physiology HR, HRV, time Heart rate 

 Zakeri et 

al. (2012) 

[80] 

Physical 

activity 

Heart rate, energy 

expenditure, accelerometer, 

age 

Energy expenditure 

 Peng et al. 

(1995) [70] 

Medical Heart rate, heartbeat, time Heart rate 

Mixed regression 

 Gee et al. 

(2017) [75] 

Biomedical Heart rate, heartbeat, 

respiration, time 

Heart rate 

 Bonomi et 

al. (2015) 

[81] 

Physical 

activity 

Heart rate, energy 

expenditure, 

photoplethysmographi, 

accelerometer 

Heart rate 

 Xu et al. 

(2015) [82] 

Physical 

activity 

Heart rate, energy 

expenditure, different 

training paradigms, age, 

height, weight 

Energy expenditure 
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2.3.4. Predictive Models 

2.3.4.1. Time-independent output 

Machine learning methods 

Machine learning methods refer a set of training and predictive algorithms that 

use data to learn complex trends assoicated with labels (e.g., symptom presence) in a 

dataset. Machine learning analysis is a multiple step process consisting of dividing a 

dataset into training and testing data (or leveraging re-sampling techniques such as 

cross-validation), developing a model from the training data, and evaluating the model 

on the testing data. This approach is advantageous relative to approaches that use all of 

the data for training a model (e.g., ANOVA) and approximate metrics to evaluate 

generalizability (e.g., Adjusted R2). Furthermore, the ability of machine learning 

algorithms to identify complex patterns in datasets make them a promising approach for 

analyzing physiological data that is often noisy[cite the review paper on HRV etc. for 

stress].  

The success of applying machine learning methods depends on the data used to 

train and evaluate the algorithm. Machine learning algoriths typically require large 

training sets—several thousand observations—and they implicitly assume that the data 

and assoicated labels are of equal quality. In cases where the data is noisy or labels are 

unreliable, machine learning training algorithms may fail to converge to a generalizable 

solution. Further, if the training data examples are biased (e.g., non-representative 

population samples) the machine learning algorithms trained on the data may also be 

similarly biased. It is often difficult to identify these issues through standard training and 
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testing processes of machine learning algorithms, thus machine learning analyses should 

be accompanied by descriptive analyses to obtain better understanding of the data and 

potential errors or bias [83]. 

Most of the reviewed studies used heart rate variability along with machine 

learning algorithms to predict the stress level in individuals [84–86]. Machine learning 

studies evaluating HR primarily have focused on energy expenditure[87,88]. One 

exception is McDonald et al. [11] who evaluated several machine learning algorithms—

neural networks, decision trees, support vector machines, convolutional neural networks, 

and random forests—to predict the onset of PTSD symptoms for the veteran population. 

This study used heart rate data with 1HZ frequency (1 observation per second) as the 

input of these algorithms. While the raw 1Hz data was used to train the neural network-

based models, additional feature generation and selection was performed before training 

the decision tree, support vector machine, and random forest  algorithms. This feature 

generation identified linear trends, Fouier Transforms, and change quantiles as relevant 

features for PTSD symptom onset detection. Among all machine learning methods, 

support vector machines and random forest algorithms performed best (i.e., had the 

highest area under the Receiver Operating Characteristic (ROC) curve: 0.67). While 

machine learning shows promise for inferential analysis of HR data for PTSD research, 

explaining the purpose of machine learning componenets may be difficult, and often 

predictive results have limited rational explanation [89].  

Fluctuation-dissipation theory 
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Fluctuation-dissipation Theory (FDT) is a common approach in thermodynamics 

that is used to predict system behavior by breaking the system responses into small 

forces [90]. This theorem that follows thermodynamic rules can model heart rate 

response after stress moments.  

Chen et al. [91] used FDT to predict patients’ HR reactions to pre- and post- 

spontaneous breathing trial treatment. They used this method to divide the system (in 

this case, treatment process) into different phases, including pre-treatment, mid-

treatment, and post-treatment. After breaking the entire treatment process to these small 

phases, each phase was modeled separately. The reactions to treatments in each phase 

were modeled with HRR measures. All models were then combined to make the final 

comprehensive model. Chen et al. [91] found that thermodynamic rules can also model 

HR response after stress moments. This is because of the similar effect of stress and 

spontanous breathing trials on organs (common clinical procedure used to assess 

ventilation performance of patients). These researchers suggest dividing the system into 

pre and post stress moments, modeling each phase and finally assembling a model for 

final prediction. They further suggest that the HRR extracted from this type of modeling 

can be used to personalize care as HR can be remotely monitored through noninvasive 

hospital devices.  

In terms of mathematical concepts, this type of modeling has a powerful 

predictive capability by grouping individuals and therefore minimizing error rate [91]. 

This approach requires significantly less data than other methods such as time-variant 

modeling of heart rate. Hence, it enables researchers to include more variables in their 
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model. Moreover, Chen et al. [91] claim that while models that use Gaussian functions 

have around 65% error rate to predict patients’ response to spontaneous breathing trial, 

implementing FDT decreases this error rate by over 10%. Therefore, this approach 

provides more accurate results than methods that use Gaussian function such as some 

machine learning algorithms (e.g., ANFIS). A potential reason for this could be that by 

using FDT the system is broken down into smaller pieces where each part has its own 

specific and defining features. However, in ANFIS the system was considered as a 

whole, and a set of features was defined for the entire system overlooking dissimilarities 

within the system. Also, unlike most of the statistical approaches that make assumptions 

about the data, this method is assumption-free and is considered more robust to 

assumptions (e.g., normality of residuals, independency of measurements). Despite its 

promising application to anaylsis of HR and the lack of restrictive assumptions, FDT is 

computationally intense. This means that the model needs a high levels of proficiency in 

understanding mathematics and statistics behind FDT. Esepcially in comparison to 

approaches such as ANOVA, classical time series and mixed regression using this 

approach requires higher levels of domain knowledge. For example studies in machine 

learning and FDT methods, see Table 3. 
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Table 2.3. Results from example studies that used predictive models with time-
independent output. Reprinted with permission from [136] 

Method Authors Domain 
Independent 

Variables 

Dependent 

Variable 

Machine learning 

 
Kolus et al. (2016) 

[87] 

Biomedical 

(Energy 

expenditure) 

Heart rate, oxygen 

consumption, work 

rate 

Work Rate 

 
McDonald et al. 

(2019) [11] 
PTSD 

Heart rate, 

subjective stress 

moments 

Stress moment 

 
Healey et al. 

(2005) [86] 
Driving 

Heart rate, HRV, 

skin conductance, 

muscle activity, 

Muscle tension, 

breathing rate 

To detect 

stress 

 
Kolus et al. (2016) 

[88] 

Physical 

activity 

Heart rate, Max 

heart rate, oxygen 

consumption, body 

type, work rate 

Work rate 

 
Zhang et al. (2012) 

[92] 

Physical 

activity 

Heart rate, body 

attitude information, 

body movement 

HR 
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Table 2.3. Continued. 

Method Authors Domain 
Independent 

Variables 

Dependent 

Variable 

Fluctuation-dissipation Theory 

 
Chen et al. (2013) 

[91] 
Healthcare 

Hear rate recovery, 

blood pressure, 

instantaneous heart 

rate 

HR 

 

2.3.4.2. Time-dependent output 

Time-variant modeling 

Time-variant modeling is a mathemathical approach used to analyze time-

dependent datasets, and provides time-dependent output. Time-variant models of HR can 

generate heart rate recovery measures in real time. Some studies suggest that measuring 

heart rate recovery in real time can especially help assess arousals and arousability in 

different individuals in response to mental stressors [93]. This shows promise for PTSD 

research given its potential to enable the comparison between the effect of internal 

stimuli (stressors generated through memory) to external stimuli (stressors generated 

from the environment) on PTSD patients’ arousability. 

Although time-variant modeling has been replicated in the literature and has 

showed promise in analyzing heart rate data [33,94], it is computationally intense. The 

process of solving the equations within the model includes defining multiplex matrices 

for each variable, which is time- and space-consuming. Moreover, time-variant modeling 
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requires large datasets of high frequency (e.g., 100 Hz ) HR data which is often not 

feasible for real-time data collection instruments such as wearable devices which record 

continuous data for large windows of time (e.g., more than 30 minutes). 

Nonlinear dynamic modeling 

Nonlinear dynamic modeling of HR consists of depicting HR as the output of a 

non-linear dynamic system [95].  

Nonlinear dynamic modeling of HR can be a promising method to assess arousal 

patterns by measuring SNS activity [96]. Hence, this approach may be useful for 

analyzing PTSD hyperarousal patterns since they are associated with SNS activity. 

Despite the advantages of this model, it requires high-frequency HR data (e.g., 100 Hz) 

or even instantaneous HR [96]. Instantaneous HR is an HR measure derived from HRV, 

which is different from raw HR measured by wearable devices. Instantaneous HR can be 

extracted from multiplying RR intervals by the number 60 and needs to be measured 

with high frequency (>250HZ), whereas smart watches collect heart rate data with much 

lower frequency (<5HZ) [96]. 

This model accounts for the natural nonlinearity and time-dependent features of 

heart rate data. Also, the learnability and predictability of this method can help detect the 

onset of symptoms in PTSD patients. A limitation of this method to characterize PTSD 

aspects is the assumption of invertibility [97]. This assumption indicates that all the 

variable matrices used in equations are required to be invertible. In many cases, and 

mainly in non-laboratory settings, this assumption cannot be met [97]. Moreover, these 

methods are relatively slow and more intense computationally compared to other 
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methods like machine learning (for both training and testing the model) because they 

involve solving multiple complex mathematical equations [66]. For examples of 

predictive models with time-dependent output, see Table 4. 

Table 2.4. Results from studies that used predictive models with time-dependent 
output. Reprinted with permission from [136] 

Method Authors Domain Independent Variables Dependent 

Variable 

Time-variant 

 Lefever et al. 

(2014) [94] 

Sports science - 

biomedical 

Heart rate, 

participants’ input 

power, road gradient, 

HR Variation 

 
Olufsen et al. 

(2013) [98] 

Biology, Healthcare Heart rate, resting 

heart rate, blood 

pressure 

Heart rate 

regulations 

Nonlinear-dynamic 

 Chen et al. 

(2016) [69] 

Healthcare (Patient 

data) 

Resting HR, ABP 

(Arterial Blood 

Pressure), heart rate, 

heart rate variability 

Heart Beat 

 Kazmi et al. 

(2016) [33] 

Biophysics Human normal sinus 

rhythm (NSR), human 

Congestive heart rate 

failure (CHF) 

HRV (they look 

at the correlation) 
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2.3.5. Descriptive Framework Based on the Summary of Findings  

We categorized methods used to analyze heart rate data in to two categories: 

descriptive and predictive. In the context of PTSD, descriptive models may be used to 

characterize PTSD triggers and the factors that affect their occurrence, whereas 

predictive models may be useful to predict PTSD onset to facilitate timely intervention. 

The extracted models provide methods of evaluating, describing, comparing, interpreting 

and understanding patterns in the HR data. However, interpreting the data in a 

meaningful way depends on the specific objectives of the study. The data at hand can be 

analyzed with one or multiple of the reviewed models based on the goal of the study and 

the assumptions of models. Each model corresponds to the distinct type of output and 

different interpretation of the data with different assumptions. Based on the process of 

data collection, number of observations, and variables in the data, researchers might 

choose one or a combination of models provided. Table 5 provides a framework for 

choosing a model based on the limitations, assumptions, and features of each model and 

the data at hand. Further, table 5 represents the articles that used a specific method. 
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Table 2.5. Descriptive framework for the HR-related analysis methods extracted 
from the literature. Reprinted with permission from [136] 

Model Assumptions Features Limitations Cases 

Descriptive, time-independent output 

Analysis of 

Variance 

(ANOVA) 

• Normal 

distribution of 

residuals 

• Constant 

variance of 

populations 

• Independence 

and identically 

distributed 

observations 

• Capable of comparing 

groups and looking at 

trends 

• Computationally 

simple 

• Restrictive 

assumptions 

• Type 1 error 

• Just applicable to 

linear analysis 

[65], [66], 

[67], 

[47], 

[57],[52],[58]

,[59], 

[53],[68],[54]

,[99], 

[100],[101],[1

02] 

A first-order 

exponential 

model 

• Continuous 

observations 

• Observations 

should be identical 

(e.g., no age, 

gender difference) 

• Environmental 

effects are 

constant 

• Easy to apply and 

learn 

• Gives higher weights 

to recent observations 

• Not repeated in 

studies 

• Higher error rates 

than classical time 

series and mixed 

regression 

• Does not show 

trends 

• Not accurate for 

very small and very 

large windows of 

time 

[63] 
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Table 2.5. Continued 
Model Assumptions Features Limitations Cases 

Descriptive, time-dependent output 

Classical 

time series 

analysis 

• Stationary 

observations 

(constant mean 

values of series) 

• Advantageous for 

analyzing time-based 

trends 

• Does not require 

independence of data 

points 

• Used in the literature 

to analyze 

cardiovascular disease 

• Includes linear and 

nonlinear analysis 

• Requires 

stationary datasets 

[69], [33], 

[80], [70] 

Mixed 

regression 

model 

• Normality of 

residuals 

distribution 

• Accounts for 

differences between 

individuals (e.g., age, 

gender),  

• Can be used for 

analyzing repeated 

measures 

• Can be applied to 

non-normal data 

• Cannot be used for 

nonlinear models 

[75], [81], 

[82], [66], 

[103], [80], 

[50], [67], 

[104], 

[105],[106],[1

07] 
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Table 2.5. Continued 
Model Assumptions Features Limitations Cases 

Machine 

learning 

methods 

• Limited 

dependencies of 

the observations 

(each machine 

learning algorithm 

has its 

assumptions that 

need to be 

checked) 

• Proactive algorithm 

(can be used for 

action-reaction type of 

datasets) 

• Powerful predictive 

method 

• Rapid analysis 

prediction, and 

processing, 

• Simplifies time-

intensive computations 

• Can over fit- 

under fit data 

• Cannot be applied 

to datasets with 

highly dependent 

variables 

• The process has 

little rational 

explanation 

[88], [87], 

[11], [92], 

[86],[108],[10

9],[110] 

Fluctuation-

dissipation 

theory 

• Equilibrium 

system (the 

system and 

observations are 

not changing) 

• Powerful predictive 

capability,  

• Does not have 

restrictive assumptions 

such as normality of 

residuals 

• Significantly less data 

needed compared to 

general data fitting 

approach 

• Computationally 

intense 

• Time-consuming  

[91], [70], 

[111] 
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Table 2.5. Continued 
Model Assumptions Features Limitations Cases 

Predictive, time-dependent output 

Time-variant 

modeling 

• Requires big 

datasets with high-

frequency data 

points (more than 60 

HZ) 

• Can be used to 

describe data as well 

as forecasting the 

future 

• Computationally 

intense 

• Slow process 

[33], [112], 

[94], [113], 

[98], [114], 

[96], [115], 

[116],[93] 

Nonlinear 

dynamic 

modeling 

• Invertible matrices • Very accurate 

• Replicated multiple 

times in studies 

• Computationally 

intense 

• Slow process 

• Requires 

invertible matrices 

that is not always 

feasible in 

naturalistic settings 

[66], [33], 

[113], [117], 

[98], [96], 

[112], [118], 

[116], [104], 

[119], [120], 

[121] 

Model Assumptions Features Limitations Cases 

Descriptive, time-independent output 

Analysis of 

Variance 

(ANOVA) 

• Normal distribution 

of residuals 

• Constant variance 

of populations 

• Independence and 

identically 

distributed 

observations 

• Capable of 

comparing groups 

and looking at trends 

• Computationally 

simple 

• Restrictive 

assumptions 

• Type 1 error 

• Just applicable to 

linear analysis 

[65], [66], 

[67], [47],  

[57], [52], 

[58], [59], 

[53],[68],[54],[

99],[100],[101

],[102] 
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Table 2.5. Continued 
Model Assumptions Features Limitations Cases 

A first-order 

exponential 

model 

• Continuous 

observations 

• Observations 

should be identical 

(e.g., no age, gender 

difference) 

• Environmental 

effects are constant 

• Easy to apply and learn 

• Gives higher weights 

to recent observations 

• Not repeated in 

studies 

• Higher error rates 

than classical time 

series and mixed 

regression 

• Does not show 

trends 

• Not accurate for 

very small and 

very large 

windows of time 

[63] 

Descriptive, time-dependent output 

Classical 

time series 

analysis 

• Stationary 

observations 

(constant mean 

values of series) 

• Advantageous for 

analyzing time-based 

trends 

• Does not require 

independence of data 

points 

• Used in the literature 

to analyze 

cardiovascular disease 

• Includes linear and 

nonlinear analysis 

• Requires 

stationary datasets 

[69], [33], 

[80], [70] 
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Table 2.5. Continued 
Model Assumptions Features Limitations Cases 

Mixed 

regression 

model 

• Normality of 

residuals distribution 

• Accounts for 

differences between 

individuals (e.g., age, 

gender),  

• Can be used for 

analyzing repeated 

measures 

• Can be applied to non-

normal data 

• Cannot be used 

for nonlinear 

models 

[75], [81], 

[82], [66], 

[103], 

[80],[50], 

[67], [104], 

[105], [106], 

[107] 

Predictive, time-independent output 

Machine 

learning 

methods 

• Limited 

dependencies of the 

observations (each 

machine learning 

algorithm has its 

assumptions that 

need to be checked) 

• Proactive algorithm 

(can be used for action-

reaction type of 

datasets) 

• Powerful predictive 

method 

• Rapid analysis 

prediction, and 

processing, 

• Simplifies time-

intensive computations 

• Can over fit- 

under fit data 

• Cannot be 

applied to datasets 

with highly 

dependent 

variables 

• The process has 

little rational 

explanation 

[88], [87], 

[11], [92], 

[86], [108], 

[109], [110] 
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Table 2.5. Continued 
Model Assumptions Features Limitations Cases 

Fluctuation-

dissipation 

theory 

• Equilibrium system 

(the system and 

observations are not 

changing) 

• Powerful predictive 

capability,  

• Does not have 

restrictive assumptions 

such as normality of 

residuals 

• Significantly less data 

needed compared to 

general data fitting 

approach 

• Computationally 

intense 

• Time-consuming  

[91], [70], 

[111] 

Predictive, time-dependent output 

Time-variant 

modeling 

• Requires big 

datasets with high-

frequency data 

points (more than 60 

HZ) 

• Can be used to 

describe data as well as 

forecasting the future 

• Computationally 

intense 

• Slow process 

[33], [112], 

[94], [113], 

[98], [114], 

[96], [115], 

[116], [93] 

 

2.3.6. Fit Assessment 

Fit assessment can be conducted to examine the efficiency of each method in 

modeling a specific dataset. Fit assessment is especially promising for comparing 

different methods if they are applied to the same dataset. However, considering the wide 

range of applicable fit indices, researchers might struggle comparing them. In the 

category of descriptive models, R2 and adjusted R2 are the main indices of fit 
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assessment. R2 indicates the degree of variation in the dependent variable caused by the 

independent variable(s). Adjusted R2 is a revised version of R2 that accounts for the 

number of independent variables in a model [122]. Generally, adjusted R2 is more 

promising than R2 as it is more robust to overfitting [122]. In the prediction methods 

category, a variety of measures other than R2 and adjusted R2 were used to assess quality 

of fit. Some of these measures include sensitivity, specificity, accuracy, and Area Under 

the Receiver Operating Characteristics Curve (AUC)-ROC. Sensitivity is the number of 

true positives divided by the total number of observations and specificity is the number 

of true negatives divided by the total number of observations [123]. Accuracy is the 

number of true predictions divided by total number of predictions. Error rate is 1 minus 

accuracy or the number of wrong detections divided by the total number of observations 

[124]. Finally, AUC-ROC is a curve that plots true positive rate (Y axis) vs false positive 

rate (X axis) to measure the performance of the model. It is important to bear in mind 

that fit indices are data dependent; therefore, comparisons are best made by fitting 

multiple models to the same dataset.  

In statistical analysis of data in the PTSD domain, fit assessments have been used 

to show the efficiency of results. For instance, McDonald et al. [11] used ROC curves 

along with accuracy to show that random forest works better than other machine learning 

methods to predict hyperarousal moments in people with PTSD. Shalev et al. [125] used 

sensitivity and specificity to predict development of PTSD based on their instant 

responses to trauma. Bartels et al. [63] applied adjusted R2 to assess the goodness of fit 
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for their proposed exponential model. Examples of fit adjustments are summarized in 

Table 6. 

Table 2.6. Examples of fit assessment for different methods used in studies. 
Reprinted with permission from [136] 

Study Method Variables Fit measure 

Strath et al. (2000) 

[65] 

ANOVA Heart rate, oxygen intake, 

age, fitness 

R2=0.87 

Zakeri et al. (2012) 

[80] 

Classical time 

series 

Heart rate, energy 

expenditure, accelerometer, 

age 

R2=0.84 

McDonald et al. 

(2019) [11] 

Machine learning Heart rate, subjective stress 

moments 

AUC (area under 

receiver operating 

characteristics 

curve) = 0.67 

Healey et al. (2005) 

[86] 

Machine learning Heart rate, HRV, skin 

conductance, muscle activity, 

muscle tension, breathing 

rate 

Accuracy=97% 

Chen et al. (2013) 

[91] 

Fluctuation 

dissipation theory 

Hear rate recovery, blood 

pressure, instantaneous heart 

rate 

Error rate= 25% 

Chen et al. (2016) 

[66] 

Nonlinear dynamic Resting HR, ABP (Arterial 

Blood Pressure), heart rate, 

heart rate variability 

Sensitivity: 0.941 

Predictability: 0.988 
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2.3.7. Methodological Considerations for Heart Rate Assessments 

The models identified in this review represent several promising directions for 

future exploration, but they also illustrate a hidden complexity in the use of HR data as 

model input. HR is impacted by individual charactristics including age, sex, health, 

resting HR, respiration, and lifestyle [24]. Maximum HR typically decreases with age. 

Females have higher HR levels than men [126]. Athletes have lower HRs levels than 

sedentary people [127]. Resting HR is lower in more active people, and lower resting 

heart rates result in lower HR levels [128]. Since the respiratory system affects heart 

activity, studies suggest that incorporating respiration as a factor in HR models improves 

HR estimation significantly [78]. Lifestyle such as smoking habits affect heart rate as 

well; people who smoke have higher heart rate than non-smokers [129]. 

Beyond these general characteristics, it is important to consider the type of 

physical activity in the analysis. Physical activity significantly affects HR [130], where 

high-intensity activities such as running and cycling affect HR differently from low 

intense activities such as sitting and lying down [99]. Concerns regarding activity were 

common in the reviewed studies, particularly in energy expenditure domain [131]. Green 

et al. [131] suggest that body acceleration is a reliable indicator of physical activity and 

should be included in all analyses as a covariate or constraint. While activity is directly 

related to energy expenditure outcomes, it is also relevant for studies investigating stress. 

While some of the reviewed studies on stress included body acceleration in their analysis 

[100], many neglected this factor [46,132]. 
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2.3.8. Heart Rate Assessments in Anxiety Domains 

Heart rate data has been widely investigated in the domain of physical activity 

and energy expenditure. Although there are some differences between the effects of 

mental stress on HR and the effects of physical activity on HR, there are many 

similarities that make these domains connected. Physical activity affects SNS 

performance in the short term and PNS performance in the long term [133]. As a result, 

heart rate elevates during physical activities (due to SNS activation), and resting heart 

rate is lower in athletes who have higher rates of physical activity (because of PNS 

performance) [133].  

Similarly, in terms of mental stress, while acute stress or immediate response to 

stressors activates SNS, chronic stress increases the vagal and parasympathetic activity 

[134]. These similarities enable researchers in mental stress domains to employ models 

and pathways that are extracted in physical activity domains. For instance, one main 

measure that is used broadly to examine energy expenditure is heart rate recovery 

(HRR). This measure is an accepted indicator of SNS deactivations and PNS activation. 

Recovering from acute stress and arousability is also associated with withdrawal of SNS 

and activation of PNS. As a result, HRR can be a proper measure to be considered in 

studies that examine acute stress.  

2.3.9. Limitations 

This scoping review attempted to include all articles that analyzed heart rate; 

however, it is still likely that some were overlooked. Further, the authors categorized the 

heart rate models based on their own synthesis of literature and relevance to PTSD. 
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These models can be listed and categorized in a variety of ways such as deterministic vs. 

stochastic.  

Another limitation in this review is that while the identified models have been 

applied across various domains (e.g., energy expenditure, general stress prediction), to 

our knowledge only two papers [11,57] directly applied these methods to data from 

patients diagnosed with PTSD. In particular, only one study [11] used a predictive 

approach in the PTSD domain. Other studies were primarily limited to linear descriptive 

statistics such as the t-test or ANOVA [60,65–67]. These methods are valid for making 

inferences about PTSD and comparing its effects on HR among different groups. 

However, there is a need for additional studies in this area that explore a broader set of 

predictive models and other factors (e.g., activity level) that have not been analyzed with 

descriptive models. 

Beyond the specific application of these models to PTSD, there are several more 

general challenges. The reviewed research often proceeded independently with few links 

between the various studies. This diversity makes comparison across studies difficult. 

Studies have used different datasets with different variables based on individual goals. 

Further, the reviewed work often focused on testing one specific model rather than a 

broad comparison. Often critical details, such as the model and parameter selection 

process, were not reported in the articles. Another critical detail often not addressed in 

the reviewed studies was the mismatch between the model requirements and the 

sampling rates, which may result in conditions such as overfitting [135].  
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Collectively these limits suggest a need for substantial additional work in 

modeling the relationship between HR and PTSD. Future studies should consider 

comparisons between several models, analyze or explicitly discuss decisions made 

throughout the modeling process, and comprehensively document their HR data 

collection. As future studies are conducted that enact these criteria, the utility of the 

modeling approaches identified here will become clearer, and the path to more effective 

PTSD treatments will become more attainable. 

2.4. Conclusions 

The goals of this review were to identify and characterize quantitative heart rate 

models for relevant applications in PTSD. One of the gaps in this area is the absence of a 

framework that researchers can use before, during, and after their data collection to 

choose a method to analyze heart rate data. In this regard, we developed a descriptive 

framework that can be used to determine the method to apply to heart rate data in order 

to achieve more efficient results. We identified four broad categories of methods: 

descriptive time-independent output, descriptive time-dependent output, predictive time-

independent output, and predictive time-dependent output. Descriptive time-independent 

output models include ANOVA and first-order exponential while descriptive time-

dependent output includes classical time series analysis and mixed regression. Predictive 

time-independent output includes machine learning methods and analyzing heart rate-

based fluctuation-dissipation theory. Finally, predictive time-independent output 

includes time variant method and nonlinear dynamic modeling.  



 

 

 

52 

All of the identified modeling categories have relevance for PTSD, although 

modeling selection is highly dependent on the specific goals of the modeler. For 

instance, one might use ANOVA to look at the differences in resting heart rate in 

individuals with PTSD vs without PTSD [54].  
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3. CHAPTER 3 (ARTICLE 2) INVESTIGATING HEART RATE REACTIONS2 

Overview 
We collected naturalistic heart rate data from veterans diagnosed with Post-

Traumatic Stress Disorder (PTSD) to investigate the effects of various factors on heart 

rate. Veterans were recruited during five cycling events in 2017 and 2018 to record 

resting and activity-related heart rate data using a wrist-worn device. The device also 

logged self-reported PTSD hyperarousal events. Regression analyses were performed on 

demographic and behavioral covariates including gender, exercise, antidepressants, 

smoking habits, sleep habits, average heart rate during reported hyperarousal events, age, 

glucocorticoids consumption and alcohol consumption. Heart rate patterns during self-

reported PTSD hyperarousal events were analyzed using Auto Regressive Integrated 

Moving Average (ARIMA). Heart rate data were also compared to an open-access non-

PTSD representative case. Of 99 veterans with PTSD, 91 participants reported at least 1 

hyperarousal event, with a total of 1,023 events; demographic information was complete 

for 38 participants who formed the subset for regression analyses. The results show that 

factors including smoking, sleeping, gender, and medication significantly affect resting 

heart rate. Moreover, unique heart rate patterns associated with PTSD symptoms in 

terms of stationarity, autocorrelation, and fluctuation characteristics were identified. Our 

findings show distinguishable heart rate patterns and characteristics during PTSD 

                                                

2 Reprinted with permission from “Understanding heart rate reactions to pot-traumatic stress 
disorder (PTSD) among veterans: a naturalistic study” by Mahnoosh Sadeghi, Farzan Sasangohar, 
Anthony D McDonald, Sudeep Hegde, 2021, Human Factors, 00187208211034024. (See Appendix B for 
the copyright permission) 
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hyperarousal events. These findings show promise for future work to detect the onset of 

PTSD symptoms. 

3.1. Introduction 

Post-traumatic Stress Disorder (PTSD) is a psychiatric disorder affecting 

approximately 11% of the United States population and 24.5% of combat veterans [1]. 

PTSD is characterized by at least one month of re-experiencing a traumatic event 

followed by avoidance symptoms and hyperarousal events [2]. Avoidance symptoms 

include, decreased interest in daily life, and an overall feeling of detachment from one's 

surroundings. Hyperarousal symptoms include hypervigilance, feelings of irritability, 

and an exaggerated startle response following a traumatic event. Other symptoms 

include anxiety, insomnia, fatigue, anger, and aggression [3]. The secondary and tertiary 

comorbidities of PTSD are depression, substance abuse, smoking, heart disease, obesity, 

diabetes, chronic fatigue, and increased dementia [4].   

PTSD is typically diagnosed and monitored using subjective self-report tools, 

such as the Davidson Trauma Scale (DTS; [5]), PTSD-Checklist 5 (PCL-5; [6]) or 

questionnaire-based interviews, such as the Clinician Administered PTSD Scale (CAPS; 

[6]). However, objective means for assessment of PTSD symptoms are largely absent. 

Given the known limitations of subjective and self-reported measures, there is a timely 

need to investigate objective methods for monitoring PTSD symptoms. The rapid growth 

of physiological monitoring methods and mobile health (mHealth) applications provide 

an opportunity for the application of human factors and ergonomics to the design of 

user-centered PTSD monitoring technologies. However, the foundational knowledge of 
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psychophysiological characteristics of PTSD reactions required for continuous 

monitoring and detection of PTSD symptoms, is limited [7].  

PTSD is correlated with several physiological measures including heart rate 

variability, blood pressure, respiratory rate, skin conductance, and of particular interest 

in this study, heart rate ([8], [9]). It is known that individuals who develop PTSD after a 

traumatic incident, such as a motor vehicle crash, have higher resting heart rate than 

those without PTSD [10]. Shalev et al. (1998) [11] found that compared to healthy 

adults, individuals with PTSD had elevated heart rate immediately after a traumatic 

incident and one week after, though the effects dissipated after one month. More recent 

studies have found that elevated heart rate post-trauma and heart rate at the time of 

hospital admission are predictors of PTSD even four months after the incident [12]. 

Among veterans, those with PTSD have consistently higher heart rate than veterans with 

comparable combat experience who do not suffer from PTSD [13]. The findings on heart 

rate have been replicated in laboratory studies. Blanchard et al. (1986) [14] induced 

hyperarousal among combat veterans using triggers such as combat noises, and 

measured physiological reactions including heart rate reactivity to such stimuli. Rizzo et 

al. (2017) [15] used virtual reality to simulate combat scenarios to assess the relationship 

between PTSD symptoms and physiological variables. Both studies found strong 

positive correlation between heart rate and hyperarousal among veterans diagnosed with 

PTSD. However, these studies were mostly correlational and did not describe or model 

the heart rate patterns associated with PTSD.  
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A major limitation of the aforementioned work is the gap in naturalistic 

investigation of physiological reactions to PTSD symptoms. Given the sporadic nature 

of hyperarousal incidents and ethical issues related to inducing trauma in the lab setting, 

investigating PTSD in patients’ natural work-life environment seems necessary. 

However, there are only a few documented naturalistic attempts ([10], [16], [17]). 

Buckley et al. (2004) [10] used heart rate monitors placed on occlusion cuffs worn by 

participants on their non-dominant hand at the level of the heart. Heart rate was 

measured every 20 minutes during waking hours and every 120 minutes during sleeping 

hours. Their findings suggest that participants diagnosed with PTSD have a higher 

resting heart rate than those without PTSD. Green et al. (2016) [16] used ECG sensors to 

measure heart rate changes in participants over a 24-hour period. They found elevated 

heart rate for PTSD patients at higher distress levels compared to baseline. McDonald et 

al. (2019) [17] used a smart watch-based application to record heart rate and activity as 

well as self-reported PTSD hyperarousal events. The data were used to develop a 

machine learning algorithm for detection of the onset of PTSD symptoms. Post-hoc 

analysis of that algorithm showed that the algorithm associated increases in heart rate 

with PTSD symptom onset.  

Despite the considerable evidence suggesting a positive correlation between heart 

rate and PTSD hyperarousal events, objective clinical assessment of PTSD and detection 

of its onset requires a deeper understanding of the nature of the change in heart rate. 

While the relationship between heart rate rhythms (patterns) and various cardiovascular 

diseases have been studied [18], to our knowledge such relationship is an important 
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research gap for PTSD. Addressing this gap will advance the knowledge of 

psychophysiological properties of PTSD. The aim of the current research is to address 

the gap in knowledge about descriptive and mathematical modeling of heart rate patterns 

during PTSD hyperarousal events. In this paper, we document our findings from a 

naturalistic study that investigated heart rate profiles associated with PTSD hyperarousal 

events, as well as the relationship between heart rate and demographic and behavioral 

factors among a large sample of veterans with PTSD. We first present our evaluation of 

the general characteristics of heart rate among participating veterans diagnosed with 

PTSD. We then discuss the relationship between factors such as age and gender; lifestyle 

factors such as sleeping habits, exercise routines, alcohol consumption; and medications 

such as antidepressants with resting heart rate. Finally, we document our descriptive and 

statistical evaluation of heart rate time-dependent data during PTSD hyperarousal events. 

A sample of heart rate data of healthy subjects as a representative composite is used to 

illustrate differences. The results presented in this paper provide critical insight into 

heart rate co-variates and patterns in individuals with PTSD which can be used to 

improve and personalize the design of mHealth applications, and improve the treatment 

of PTSD. 

3.2. Method 

Naturalistic data collection was conducted during Project Hero’s United 

Healthcare Ride 2 Recovery (R2R) events to evaluate the heart rate patterns associated 

with PTSD. Project Hero is a non-profit organization committed to helping veterans and 

first responders diagnosed with PTSD by coordinating recreational events such as group 
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biking as part of a social therapy effort. During each event, veterans rode bicycles in 

groups between key destinations for an average duration of three to seven days. The 

activity involved an average of eight hours biking each day with the remaining time for 

resting, relaxing, and social events. The research team joined a total of five events in 

2017 and 2018—in California, Washington DC, Minneapolis, Texas, and Nevada—and 

recruited participants from each event. The study was approved by the Institutional 

Review Board (IRB) at Texas A&M University (IRB2017-0210D).  

3.2.1. Participants 

A voluntary response sample of 99 Project Hero R2R riders (from a population 

of about 500 eligible participants) were recruited to participate in the study across the 

five events. All 99 participants consented to complete the study. Cardiac data were 

collected from all 99 participants and were used for analysis of heart rate patterns. 

However, due to the voluntary nature of participation, strict anonymity protocols, and 

the sensitivities involved in studying mental health, completion of demographics 

information was unsupervised and opportunities to follow up with participants were 

limited. Consequently, association between demographics data and cardiac data was 

only possible for 38 out of 99 participants. Thus, regression analyses accounting for 

demographics included only those 38 participants. To investigate the representativeness 

of this subset, their cardiac data (mean and standard deviation of count of reported 

hyperarousal events) (M = 9.78, SD = 10.67) was compared to participants with 

incomplete demographic data (n=61) (M = 10.48, SD = 11.12) and the results showed no 

significant differences; t(4) = 0.15, p = 0.9. The mean age of all participants (n=99) was 
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45.5 years (SD = 10, Range = 22-75). The mean age of participants with complete 

demographic data (n=38) was 46 years old (SD = 11, Range = 27-74). Out of 99 

participants, 82 were male and 17 were female. In terms of race and ethnicity, 44 people 

were White, 15 were Black/African American, 26 people were Hispanic/Latino, four 

were American Indian or Alaska Native, one was Native Hawaiian, one was Asian, and 

eight reported their ethnicity as Other. Out of the 38 participants used for the regression 

analysis, 25 were male and 13 were female, 18 were White, 9 were Black/ African, 8 

were Hispanic/Latino and 3 reported their ethnicity as Other. In addition, participants 

were asked about current usage of antidepressants (Yes/No) and anxiolytics (drugs used 

to treat anxiety-based disorder symptoms; Yes/No), smoking habits (Currently 

Smoking/Non-smoker), current alcohol consumption (Yes/No), and sleep quality (0-6 

hours per night/More than 6 hours per night), exercise (Yes/No), alcohol consumption, 

and glucocorticoids usage (Yes/No). 

3.2.2. Procedure 

Project Hero provided their events’ attendees with information about the study 

and invited them to participate during the event registration. Participants who agreed to 

participate were asked to complete informed consent and were then provided with an 

Apple Watch Series 2, 3, and 4 (for studies in Texas and California) or an Android 

smartwatch (MOTO 360 Gen 1 and Gen 2 [Motorola Inc], for the remainder of 

locations) equipped with a data collection application. The participants were then trained 

to operate the smartwatch application. Participants were instructed to wear the watch at 

all times unless they were swimming, bathing, or charging the watch.   
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The data collection app was developed by the research team and served several 

purposes including providing a summary of heart rate activity (beats per minute [bpm]) 

of the user as well as mindfulness features. It also included a function which allowed the 

user to report PTSD hyperarousal events by tapping their finger anywhere on the watch 

face twice in quick succession (i.e., a double tap) which created a time-stamped self-

reported event. The smartwatches were equipped with accelerometers and gyroscopic 

sensors which allow kinematic data, including linear and angular acceleration, to be 

captured. The app ran continuously in the background and used the smartwatch’s sensors 

to measure heart rate and accelerometer data. Participants could interact with the 

application throughout the course of the event. Four sets of data were collected using 

smartwatches in all five events: 1) real-time heart rate data (1 Hz), 2) reported 

hyperarousal events based on double taps recorded by the watch, 3) real-time angular 

accelerator data (1 Hz), and 4) real-time linear accelerator data (1 Hz). Overall, about 

25% of heart rate data is considered missing. While many reasons contributed to non-

sampling, including issues with the devices, defective sensors, and improper fit, the exit 

interviews revealed that the majority of the missing data is due to the time required to 

charge the devices. As shown in Figure 1, most participants confirmed that they charged 

their devices at night before going to bed.  
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Figure 3.1. Percentage of missing cardiac data (on average) by hour of the day. 
Reprinted with permission from [51] 

 

3.2.3. Analysis 

Activity classification: Since the data collection occurred during events that 

included physical activities, the accelerometer data were used to classify periods 

involving physical activity (e.g., riding bicycle or exercising) compared to resting by 

processing the linear acceleration data with the validated algorithm developed by Ravi et 

al. (2005) [19]. This algorithm; which is a combination of Decision Trees, Naïve Bayes, 

and K nearest neighbors; uses the single triaxial accelerometer data to classify resting 

states (standing) and activities including running and walking with over 84% accuracy. 

We used this algorithm to differentiate between periods involving activity and those 

without to calculate the resting heart rate. 
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Resting heart rate: For both Apple Watch and Android devices we developed a 

method similar to Venkatraman & Yuen (2015) [20] to calculate resting heart rate based 

on activity levels. In this method, resting heart rate is obtained by taking the average 

heart rate during the moments that individuals are considered to be least active 

physically based on Ravi et al.’s (2005) [19] algorithm.  

Correlation and regression analysis: Data from the 38 participants who provided 

a complete dataset including demographic data, heart rate data, acceleration data, and 

reported stress moments was used to conduct a Pearson correlation analysis [21]. A 

linear regression model was built to investigate if resting heart rate was affected by 

gender, exercise, antidepressants, smoking habits, sleep habits, average heart rate during 

reported hyperarousal events, age, glucocorticoids consumption or alcohol consumption. 

Assumptions of normality, multicollinearity and homoscedasticity were checked 

according to Weisberg’s (2005) [22] guidelines. In addition, given the potential 

variability in self-reports due to emotional numbness ([23], [24]), leverage analysis was 

conducted to identify influential observations [25]. 

Time series analysis of heart rate: To investigate heart rate patterns and 

statistical characteristics of heart rate data during the self-reported hyperarousal events, 

windows of heart rate data including 600 seconds of observations (100 seconds before 

the first recorded trigger and 500 seconds after the recorded trigger) were extracted for 

all 99 participants and a time-series analysis was conducted. The heart data were 

analyzed using Autoregressive Integrated Moving Average (ARIMA) models which are 

widely used for forecasting time-series data [26] with applications in medical domains 
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due to their utility in enabling descriptive and predictive analyses on non-stationary 

time-series [27]. An important advantage of using ARIMA relative to non-temporal 

analysis methods like ANOVA is that it explicitly models time-dependent measures 

[28]. The fitted ARIMA models were used to assess the stationarity, fluctuation, and 

autocorrelation of the data.  

Stationarity—an index of the consistency of the mean and variance of a time-

series—was assessed with the Dickey-Fuller test [29] to investigate irregularities (non-

stationarity) in heart rate rhythms. Previous research indicates that healthy subjects’ 

heart rate data include long stationary stretches under various conditions including 

resting and activity [30]. The Dickey-Fuller test was conducted on each window of heart 

rate and the average test is reported in the results section. Autocorrelation—a statistical 

feature representing the correlation of a time-series with itself as a function of delay—

was used to investigate the repeating heart rate patterns. The autocorrelation test was 

conducted on each window of heart rate data and the average autocorrelation values was 

plotted for comparison. Detrended Fluctuation Analysis (DFA)—a statistical method 

that has been used for analyzing changes in heart rate data  ([31], [32]) —has shown 

promise to understand irregularities in time series data with stochastic features that show 

long-term correlation [33]. DFA assesses self-affinity of time series data which indicates 

data variation and changes within a time window. DFA also evaluates the turbulence 

(i.e., irregular changes) in the data. DFA was applied to each window of heart rate data 

and DFA values were calculated and averaged over all windows of PTSD hyperarousal 

events. To make meaningful comparisons with fixed baselines and describe hyperarousal 
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events, ARIMA was used to illustrate the differences between heart rate during a PTSD 

hyperarousal event and heart rate data for a sample of healthy individuals with neither 

mental nor pathological disorder. The data were obtained from the MIT-BIH (Beth Israel 

Hospital) Arrhythmia database [34], and PhysioNet ([32], [35]) open-access community 

resources on clinical and physiological data.  

All data analyses were conducted using RStudio 3.5.1, and Python 3.7.4. The 

ggplot2 package in R was used to develop visualizations [36]. The nonlinear T-series 

package was used for fluctuation analysis [37]. 

3.3. Results 

In this section, we first describe the overall characteristics of the heart rate data 

for the sample of veterans with PTSD followed by our findings related to statistical 

characteristics of heart rate time-series during PTSD hyperarousal events. Finally, we 

illustrate the differences between the identified heart rate profiles and a representative 

heart rate profile of a healthy subject. 

3.3.1. Characteristics of Heart Rate and Hyperarousal Events 

PTSD hyperarousal events and heart rate: Ninety-one (91) of the 99 participants 

reported at least 1 hyperarousal event, and a total of 1,023 events were reported (M = 

10.23 per participant, SD = 11, Median = 5; Figure 2 [left]). For events that occurred 

heart rate ranged from 57-191 bpm (M = 93.98, SD = 21.32). However, when 

participants were riding bikes, their heart rate during self-reported hyperarousal was 

between 71-164.5 bpm (M = 105.75, SD = 21.66), and when they were not riding, their 

heart rate ranged from 57-192 (M = 91.2, SD = 20.61). As shown in the density function 
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of heart rate in Figure 2 (right), most reported heart rates during hyperarousal events 

peaked between 80-90 bpm (Median = 89 bpm).  

Resting heart rate: Our findings show that resting heart rates for PTSD patients 

ranged from 61-120 bpm (M = 81.99, SD= 10.07) with a median of 80.46 bpm.  

 

Figure 3.2. Reported stress moments frequency numbers (left); the dashed vertical 
line represents the median; estimated distribution function of recorded heart rate 
during PTSD hyperarousal events (right). Reprinted with permission from [51] 

 

Figure 3 (left) shows the frequency of reported hyperarousal events by time of 

the day. Fewer than 5% of events were reported between midnight and 6 am. However, 

most participants reported using that period to charge their devices (as illustrated in 

Figure 1). Figure 3 (right) shows heart rate values at the time of the self-reported event 

vs time of the day. 
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Figure 3.3. Frequency of stress moments reported by time of the day (left); the 
dashed vertical line shows the mean value for time of reported events; heart rate 
scatter plot with confidence ellipse (right); the vertical blue lines show riders’ 
riding time intervals (9am – 5pm approximately). Reprinted with permission from 
[51] 

 

Hyperarousal events and activity: Figure 4 shows the number of reported 

hyperarousal events by activity classification (based on the Ravi et al.’s 2005 [19] 

classification). The figure illustrates that the majority of stress events (87%) occurred 

when participants were resting.  

 

Figure 3.4. Number of PTSD triggers during active or resting phases (NActive = 133, 
NResting = 890). Reprinted with permission from [51] 
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3.3.2. Effects of Medications, Sleep, Age, Gender, Smoking, and Alcohol 

Consumption on Resting Heart Rate 

It is well-documented that resting heart rate has a strong correlation with 

cardiovascular risk, and in general elevated resting heart rate is a reliable indicator of 

clinical events [38]. However, the relationships between resting heart rate, 

demographics, and other lifestyle and health variables such as sleep, medication, 

smoking, and alcohol consumption in patient populations with PTSD have not been 

well-documented. Understanding these relationships is critical to developing human-

centered mHealth applications that are robust to individual differences. 

Correlation analysis: Resting heart rate and average heart rate during reported 

PTSD hyperarousal events were significantly correlated (r (36) = 0.58, p < .001). 

Smoking (r (36) = 0.44, p = 0.005), antidepressant use (r (36) = 0.38, p = 0.019), age (r 

(36) = -0.34, p = 0.038), and sleep (r (36) = -0.37, p = 0.046) were also significantly 

correlated with heart rate.  

Linear regression: The multiple linear regression was calculated to predict 

resting heart rate based on gender, anti-depressants, anxiolytics, smoking habits, 

sleeping habits, average heart rate during PTSD hyperarousal events, age, 

glucocorticoids, exercise, and alcohol consumption (Table 1). A significant regression 

equation was found (F(10,27) = 6.635 ,  p < 0.001), with an adjusted R2 of 0.61. 

Participants’ predicted resting heart rate is equal to 61.04 - 3.656 (GENDER) + 10.394 

(ANTIDEPRESSANTS) – 3.312 (ANXIOLYTICS) + 9.158 (SMOKING) – 2.919 

(SLEEPING) + 0.374 (AVERAGE HEART RATE) – 0.001 (AGE) – 1.236 
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(GLUCOCORTICOIDS) – 1.560 (EXERCISE) + 0. 430 (ALCOHOL 

CONSUMPTION), where gender is coded as 0 = Male, 1 = Female, antidepressants 

were coded as 0 =  not taking antidepressants, 1 = taking antidepressants, smoking was 

coded as 0 = not smoking, 1 = smoking, sleeping was coded as 0 = less than 6 hours of 

reported sleep per day, 1 = more than 6 hours of reported sleep per day, average heart 

rate during PTSD hyperarousal events are measured in beats per minute, age was 

measured in years, glucocorticoids was coded as 0 = not taking glucocorticoids 

medicine, 1= taking glucocorticoids medicine, exercise was coded as 0 = not exercising 

regularly, 1 = exercising regularly, and alcohol consumption was coded as 0 = not 

consuming alcohol, 1 = consuming alcohol.  Participants’ resting heart rate increased by 

about 3.7 bpm for females compared to their male counterparts. Resting heart rate also 

increased by about 10.4 bpm for participants who used antidepressants compared to 

those who did not use antidepressants. Participants' resting heart rate who used 

anxiolytics decreased by 3.3 bpm compared to those who did not use anxiolytics. 

Smokers’ resting heart rate was 9.1 bpm higher than non-smokers resting heart rate. 

Participants who had more than 6 hours of sleep per day had about 2.9 bpm lower resting 

heart rate compared to participants who had fewer sleep hours. The resting heart rate was 

0.4 bpm higher for each 1 bpm increase in the average heart rate during hyperarousal 

events. For each 1 year increase in age, the resting heart rate decreased by 0.001 bpm. 

Participants who took glucocorticoids medicine had on average 1.2 bpm lower resting 

heart rate than those who did not take glucocorticoids. The ones who exercised regularly 

had 1.5 bpm lower resting heart rate on average than the ones who did not exercise on 
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regular basis. Finally, participants who consumed alcohol had roughly 0.4 bpm higher 

resting heart rate than those who did not consume alcohol. However, from these 

variables only gender, antidepressants, smoking, sleeping, and average HR were 

significant predictors of resting heart rate (Table 1).  

Table 3.1. Results of the Full Model Analysis (Overall model R2 adjusted = 0.61). 
Reprinted with permission from [51] 

Variable B E t p β 

Gender -3.6563 2.3825 -1.535 0.0131 -0.1772 

Antidepressants 10.3944 2.6684 3.895 0.0005 0.4514 

Anxiolytics -3.3119 2.6146 -1.267 0.216 -0.1692 

Smoking 9.1576 3.7607 2.435 0.0217 0.2871 

Sleeping -2.9185 1.6326 -1.788 0.0443 -0.2204 

Average HR during 

hyperarousal events 

0.3740 0.0961 3.891 0.0005 0.485 

Age -0.0014 0.1126 -0.013 0.9897 0.0016 

Glucocorticoids -1.2355 2.4662 0.501 0.6204 -0.0608 

Exercise -1.5602 3.4020 0.459 0.6501 -0.0538 

Alcohol consumption 0.4301 2.2901 0.188 0.8524 0.0204 

 

3.3.3. Heart Rate Profiles During PTSD Hyperarousal Events 

Heart rate rhythm: A healthy window of heart rate data in resting position is 

steady with normal sinus rhythms [39]. Such healthy rhythm is characterized using 

sinusoidal waves with no significant deviations between successive waves [40]. 
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However, our finding suggests that when individuals experience PTSD hyperarousal, 

their heart rate rhythm is irregular and sporadic. More specifically, in most cases heart 

rate continues to accelerate immediately after the perceived (self-reported) PTSD 

hyperarousal event for an average of 21 bpm for 107 seconds on average with clear 

deceleration after about 81 seconds on average (up to 200 seconds for some participants) 

for an average of 26 bpm which may suggest the recovery from the event. However, we 

observed a large variability in such abnormal rhythms with no uniform gradient in heart 

rate arousal or recovery in PTSD windows. Figure 5 shows a sample 10-minute window 

of heart rate data for a healthy individual compared to heart rate data during a PTSD 

hyperarousal event in our study.  

 
Figure 3.5. Heart rate patterns in a healthy subject (left) compared to a PTSD 
trigger (right). The red circle represents the self-reported event. Reprinted with 
permission from [51] 
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Stationarity. The results from the Dickey-Fuller stationarity test [29] suggest that 

heart rate during onset of PTSD symptoms are highly non-stationary (Dickey-Fuller = -

1.137 p = 0.92 for PTSD windows, where the null hypothesis was that the time series 

data is not stationary). Furthermore, a visual inspection of the stationarity graphs 

suggests that while both healthy windows and PTSD windows of heart rate data are non-

stationary, windows of heart rate data with PTSD events have higher fluctuation rates 

compared to healthy counterparts. This observation was later validated using Detrended 

Fluctuation Analysis (DFA; see below). 

Autocorrelation. Figure 6 shows the autocorrelation function for 11 healthy heart 

rate windows and aggregated PTSD trigger windows. As shown in the figure, for healthy 

windows of heart rate, the direction of the correlation changes faster (from positive to 

negative); however, for PTSD hyperarousal windows of heart rate, the correlation 

coefficient is positive for a longer period of time. For instance, in Figure 6, the direction 

of correlation changes multiple times before a lag of 100 seconds in healthy windows of 

heart rate data, but this direction does not change for PTSD windows of heart rate data. 

Also, this correlation is 0 for PTSD windows of time when participants reported an event 

(lag 100) meaning that heart rate behaves in a more chaotic manner close to the reported 

event. 
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Figure 3.6. Autocorrelation graphs for healthy windows of heart rate (left) and 
PTSD windows of heart rate (right). Reprinted with permission from [51] 

 

Detrended Fluctuation Analysis (DFA): Figure 7 shows DFA profiles plotted in 

R for samples of 600 seconds of 11 healthy windows and samples of 600 seconds of 

PTSD hyperarousal windows. As shown in Figure 7, the DFA function values measured 

in the PTSD hyperarousal windows are much higher compared to the corresponding 

values in the healthy window especially for longer time windows (>200 seconds).  
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Figure 3.7. DFA graph for healthy windows of heart rate and PTSD hyperarousal 
windows of heart rate. Reprinted with permission from [51] 

 

3.4. Discussion 

 The goal of this study was to investigate the effects of various factors on 

heart rate in veterans who are diagnosed with PTSD, as well as to model and describe 

heart rate patterns during PTSD hyperarousal events. To our knowledge, this is the first 

study to report on self-reported hyperarousal events as well as the characteristics of heart 

rate (other than correlations) during onset of PTSD symptoms in longitudinal and 

naturalistic settings. Our results showed that all 99 veterans who participated in this 

study experienced at least one PTSD hyperarousal event every three days with some 

experiencing an alarming rate of such events (up to 45 events over 6 days).  
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Although most participants reported not wearing the device between midnight 

and 6am, about 5% of hyperarousal events were reported during this timeframe which 

may suggest a significant underestimation of occurrence during sleep. This may support 

findings by others (e.g., [41]) who found poor sleep quality and reduced sleep duration 

and efficiency among PTSD patients. Another interesting finding was related to the 

occurrence of PTSD during the riding activities compared to resting. Our findings 

suggest that frequency of hyperarousal events is almost 7 times higher during resting 

periods compared to periods involving physical activity. This may support Oppizzi and 

Umberger’s (2018) [42] review that showed a reduction of PTSD symptoms when 

engaged in physical activity especially for those who are resistant to therapy. This 

finding also has significance for the design of PTSD monitoring technologies—our 

findings suggest the need to optimize designs for detection and interaction during rest 

periods. However, more work is needed to investigate individual characteristics that 

result in differences in outcomes related to physical activity as well as different types 

and duration of activity.    

Our results also showed that demographic factors such as smoking and use of 

medications such as anti-depressants may increase resting heart rate in veterans who 

suffer from PTSD. In addition, females had higher resting heart rate compared to males 

and those who reported more hours of sleep per night had significantly lower resting 

heart rate. While we are not aware of any comparative studies for the veteran population, 

these findings are partly in line with previous research that shows similar effects of 

gender [43], smoking [44] and anti-depressants [45] on resting heart rate in the civilian 
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population. Although all these parameters have known effects on the resting heart rate of 

healthy individuals, to our knowledge this is the first study that documents these effects 

in PTSD patients. Given the emergence of heart-rate-based PTSD symptom detection 

technologies (e.g., [17]), our findings suggest that machine learning algorithms that do 

not account for changes in heart rate attributable to gender, smoking, medication use, 

and sleep behavior, may introduce unintended biases. The effect of these biases should 

be investigated in future work. 

 While the application of ARIMA to investigate heart rate patterns is not 

novel, our findings show promise for the development of descriptive models of PTSD 

hyperarousal based on identification of unique heart rate markers. In particular, our 

findings suggest that heart rate patterns during PTSD hyperarousal events exhibit unique 

non-stationary and high fluctuation characteristics compared to healthy heart rate 

patterns. We believe this novel application of ARIMA with the preliminary evidence of 

efficacy presented here is an important contribution to the literature on 

psychophysiology of PTSD and an important first step in describing the heart rate 

response to PTSD hyperarousal events. While more work is needed to verify the 

identified heart rate patterns, this preliminary evidence shows potential heart-rate sensor-

based tools for detection of PTSD symptoms. Such detection may play a vital role in 

supporting just-in-time self-management, digital therapeutics and coaching technologies.  

When autocorrelation analysis was used to compare heart rate during PTSD 

hyperarousal events and within healthy windows of heart rate, significant differences in 

periodicity was observed. This result and the pattern observed is similar to the findings 
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from Peng et al. (1995) [32] that show dependency in heart rate data of healthy people 

that does not exist in the heart rate data of people who have cardiovascular disease. 

Given the evidence suggesting the higher risk of heart attacks and other cardiovascular 

diseases for PTSD patients ([46], [47], [48]), our findings may support such link 

between PTSD and higher rates of heart diseases.  

The results from the DFA analysis suggest that the heart rate fluctuates widely 

during a perceived PTSD hyperarousal event. Given known associations between high 

fluctuation in heart rate and cardiac autonomic dysfunction in individuals [49], our 

results may suggest a potential link between PTSD and higher rates of cardiovascular 

diseases. However, further investigation is needed to validate this assumption.  

This study had several notable limitations that may affect the generalizability of 

findings. While naturalistic testing enjoys a high level of external validity, the self-

reported data collected is prone to subjectivity and individual differences. In particular, 

participants might have over- or under-reported events, or some hyperarousal events 

may have been inadvertently reported (e.g., tapping twice on the interface when a single 

tap was intended). Another issue related to collecting data in naturalistic settings was the 

high number of missing values especially during the first three HERO events. In general, 

Apple Watches proved to be more reliable and provided a more complete dataset 

compared to Moto 360 devices. This is in line with El-Amrawy and Nounou (2015) [50] 

who also suggest a near-perfect accuracy of Apple Watch’s heart rate sensor (92.8%) 

compared to Moto 360s when the two were compared to professional clinical pulse 

oximeters. Smartwatches provided a discreet and non-intrusive platform for soliciting 
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self-reported events. However, future work may use other wearable sensors with higher 

sampling rate and accuracy, including chest straps. Another important limitation of this 

study was that the cardiac data related to PTSD hyperarousal events was collected during 

group events that involved extended physical activity (which was associated with 

considerably lower reporting of hyperarousal events) and may not generalize to all 

contexts. Future work may replicate this study for patients who are not involved in 

physical activities and/or who are in a home environment. Finally, we did not investigate 

differences between smartwatch heart rate and accelerometer sensors used in different 

studies. Therefore, the findings need to be interpreted as a preliminary case study, and 

future work is needed to evaluate the resulting patterns while comparing different 

devices.  

3.5. Conclusion 

PTSD is a prevalent condition among returning combat veterans and is 

negatively affecting their quality of life. Despite efforts and advances in therapeutics 

methods and medications used to treat this condition, self-management is challenging 

and remains largely unsupported. In an effort to investigate objective methods for 

detection of PTSD symptoms, a naturalistic study was conducted to investigate the 

impact of hyperarousal events on heart rate patterns. Our findings show distinguishable 

heart rate patterns and characteristics during PTSD hyperarousal events. While our 

understanding of psychophysiology of PTSD is still at its infancy, understanding the 

dynamics of this prevalent condition and its effect on physiology is critical to develop 
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therapeutic tools that fit human needs and may set the stage for advanced real-time 

detection of onsets and digital therapeutics. 
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4. CHAPTER 4 (ARTICLE 3) MACHINE LEARNING ALGORITHM3 

Overview 

Treatment for PTSD typically consists of a combination of in-session therapy and 

medication. However; patients often experience their most severe PTSD symptoms 

outside of therapy sessions. Mobile health applications may address this gap, but their 

effectiveness is limited by the current gap in continuous monitoring and detection 

capabilities enabling timely intervention. The goal of this article is to develop a novel 

physiological and activity-based machine learning algorithm to detect PTSD symptom 

onset. Physiological data including heart rate and body acceleration as well as self-

reported hyperarousal events were collected using a tool developed for commercial off-

the-shelf wearable devices from 99 United States veterans diagnosed with PTSD over 

several days. The data were used to develop four machine learning algorithms: Random 

Forest, Support Vector Machine, Logistic Regression and XGBoost. The XGBoost 

model had the best performance in detecting onset of PTSD symptoms with over 83% 

accuracy and an AUC of 0.70. Post-hoc SHapley Additive exPlanations (SHAP) additive 

explanation analysis showed that algorithm predictions were correlated with average 

heart rate, minimum heart rate and average body acceleration. Findings show promise in 

detecting onset of PTSD symptoms which could be the basis for developing remote and 

continuous monitoring systems for PTSD. Such systems may address a vital gap in just-

                                                

3 This manuscript authored by Mahnoosh Sadeghi, Anthony D McDonald, and Farzan Sasangohar 
was submitted to Plos One Journal in September 2021, and is currently under review. 
Also submitted to arXiv. 
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in-time interventions for PTSD self-management outside of scheduled clinical 

appointments.  

4.1. Introduction 

Over 70% of the U.S. population will experience a traumatic event in their 

lifetime of whom 20% will subsequently develop Post-Traumatic Stress Disorder 

(PTSD). PTSD is a psychiatric condition experienced by individuals after exposure to 

life-threatening events, such as physical assault, sexual abuse, and combat exposure [1]. 

PTSD symptomology includes avoidance, hyperarousal, and reexperiencing trauma 

through dreams and recollections [1]. Avoidance symptoms include circumventing 

activities or thoughts associated with the traumatic event, decreased interest in daily life, 

and an overall feeling of detachment from one's surroundings. Hyperarousal symptoms 

include hypervigilance, feelings of irritability, and an exaggerated response following a 

startling event. Other symptoms of PTSD include anxiety, insomnia, fatigue, anger, and 

aggression [2]. 

Combat veterans are particularly prone to PTSD, with recent estimates of 

prevalence as high as 24% [3]. Veterans with PTSD are also at a greater risk of suicide 

[4], and suicidal thoughts [5]—an average of 20 veterans per day commit suicide, with a 

majority of cases linked to PTSD [6]. Beyond personal costs, PTSD has an enormous 

societal cost associated with healthcare service utilization. The costs of caring for war 

veterans usually peaks 30-40 years following a major conflict. For example, for 

Iraq/Afghanistan conflicts, it is estimated that costs of veterans’ care will peak around 

2035 [7]. This increased healthcare use is estimated to cost the United States over $60 
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billion each year. The costs are also expected to increase due to secondary and tertiary 

comorbidities including depression, substance abuse, smoking, heart disease, obesity, 

diabetes, chronic fatigue, and increased dementia [7].  

PTSD is typically managed by a combination of therapeutic and pharmaceutical 

treatments, although many cases go undiagnosed or untreated potentially due to mental 

illness stigma and care shortages [8]. Therapeutic methods include eye movement 

desensitization and reprocessing; exposure therapy; cognitive therapy; cognitive 

restructuring therapy; cognitive processing therapy; stress inoculation therapy as part of 

stress management therapy [9]; and the trauma-focused cognitive behavioral therapy 

[10]. While these methods are effective [11], [12], there are several barriers to care 

access including geographical, financial, and cultural constraints, and limited care 

delivery resources [13], [14]. In addition, most intense symptoms of PTSD are often 

experienced outside clinical environments and in-between therapeutic sessions [15]. 

Therefore, there is a critical need for tools and methods for real-time monitoring and 

detection of PTSD signs and symptoms, as well as mechanisms to support self-

management of such symptoms. Recent advances in wearable physiological sensors and 

mobile health (mHealth) technologies may provide a viable alternative to address this 

need.  

Prior work has shown that PTSD is correlated with several physiological 

measures including heart rate, heart rate variability, blood pressure, respiratory rate and 

skin conductance [16]. Among these, heart rate has shown promise as a reliable correlate 

of PTSD [17]. [18] used the Autoregressive Integrated Moving Average (ARIMA) 
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analysis to model veterans’ heart rate patterns during PTSD hyperarousal events. Their 

results indicated strong correlation between heart rate characteristics such as 

autocorrelation and fluctuation and hyperarousal events. Recent efforts have utilized 

supervised machine learning tools to detect perceived stress using heart rate, other 

physiological metrics, and self-reported measures with reported accuracies ranging 

between 67%-92%  [19]–[23], however, to our knowledge, only one study [19] used 

machine learning algorithms to predict the onset of PTSD symptoms among veterans 

based on heart rate data.  

In their study, [19] investigated self-reported periods of hyperarousal to extract 

heart rate time-dependent features and developed five machine learning algorithms: a 

Conventional Neural Network, Neural Network, Support Vector Machine (SVM), 

Random Forest, and Decision Tree. Among these methods, the SVM showed the highest 

accuracy (over 70%). While this study provided preliminary evidence supporting the 

efficacy of using heart rate to detect hyperarousal events, using heart data alone may be 

subject to significant noise associated with movement or physical activity [24], [25]. In 

line with previous research (e.g. [21], [22], [26]). [19] suggested that body acceleration 

data might improve the accuracy of machine learning algorithms and enable algorithms 

to distinguish between heart rate fluctuations due to physical activity and heart rate 

fluctuations due to mental stress. Therefore, the objective of this article is to expand [19] 

study to machine learning algorithms that uses body acceleration and heart rate data to 

predict PTSD hyperarousal events in veterans. In addition, in an effort to improve the 
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interpretation of the algorithm, we further analyze the developed model to investigate 

significant factors contributing to model’s detection output. 

4.2. Method 

Four machine learning algorithms were trained using self-reported data collected 

naturalistically from veterans to predict PTSD hyperarousal events: Random Forest, 

XGBoost, Logistic Regression and non-linear SVM.  

4.2.1. Participants 

Participants were recruited from Project Hero’s United Healthcare Ride 2 

Recovery (R2R) challenges. Project Hero is a non-profit organization dedicated to help 

veterans and first responders diagnosed with PTSD. In each challenge, veterans rode for 

an average of 7 days between key destinations in California, Washington DC, 

Minneapolis, Texas, and Nevada. Each day of the challenge involved approximately 8 

hours of biking with the remaining time for resting and socializing. The research team 

joined a total of 5 rides in 2017, 2018 and 2019.   

Data from 99 veteran participants (82 male; 17 female) were used in this study. 

Participants’ age ranged from 22 to 75 years old (M = 45.5, SD = 10). Majority of 

participants reported Veterans Affairs disability rating of over 90% related to PTSD. 

Table 1 summarizes other relevant demographics.  
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Table 4.1. Participants' demographics, the numbers show the number of veterans 
per each group 

Gender Ethnicity Branch VA Disability Rating  

Female 82 
American Indian 

or Alaska Native 
4 Air Force 5 40% 2 

Male 17 Asian 1 Army 68 50% 4 

  Black/African 

American 
15 Navy 2 70% 5 

  
Hispanic/Latino 26 

Marine 

Corpse 
4 80% 6 

  
Native Hawaiian 1 NA 6 ≥ 90% 74 

  
White 44   

  

  Other 8     

 

4.2.2. Data Collection 

The data collection application (app) for smart wearable devices utilized in [19]. 

[19] was used. Participants were asked to wear smart watches (MOTO 360 Gen 1 or Gen 

2, Apple Watch series 3 or 4) with the app installed on them. The app ran continuously 

in the background and connected to participants’ phones for the purpose of data transfer. 

The app had the ability to continuously and remotely collect physiological data including 

heart rate and acceleration from participants at the frequency of 1 Hz. The app included 

functionality which allowed the user to report a hyperarousal event (symptomatic of 

PTSD) through a simple ‘double tap’ anywhere on the watch face which created a time-
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stamped self-reported event. These events were used for training the machine learning 

algorithm. 

4.2.3. Data Preprocessing 

All data analysis including data preprocessing and machine learning were 

conducted in Python 3.8.2 and R 3.6.2. The data preprocessing included four main steps: 

(1) imputation, (2) windowing and labeling, (3) dividing the data into training and 

testing, and (4) resampling the training dataset.  

Data Imputation 

Kalman filter imputation was used to impute missing acceleration and heart rate 

data. Kalman filter imputation is an established method for time-series data imputation 

[27], especially for heart rate data [28]. To determine the cut off range, we calculated the 

average Mean Square Error (MSE) of the imputed data and corresponding actual values. 

A cut off range of 15 MSE for estimating the randomly dropped values is suggested by 

[28]. Based on Kalman filter imputation analysis, we chose 5 as the maximum 

imputation range because it was the greatest value among a set of successive values to 

have the highest MSE less than 15 [19].  

Windowing and labeling 

To investigate the patterns of hyperarousal events, the data was divided into 60-

second sliding windows with 30 seconds overlap, chosen based on prior work [20] to 

predict stress severity based on physiological reactions. Each window was assigned a 

label based on the presence or absence of reported hyperarousal events. If a hyperarousal 

event occurred anywhere in the window, it was labeled as hyperarousal event; otherwise, 



 

 

 

111 

it was labeled as non-hyperarousal event. All windows with over 80% missing values 

were dropped from the dataset. The final dataset included 530 and 13,554 instances of 

hyperarousal and non-hyperarousal events, respectively. 

4.2.4. Training, Testing, and Upsampling 

To validate the algorithm, the data was separated into training (70%) and testing 

(30%) sets. Table 1 shows the initial dataset classifications. One of the challenges of 

training the algorithm to detect PTSD hyperarousal events was the imbalanced dataset—

96.2% of the windows were labeled non-hyperarousal events. To address this issue, we 

upsampled the training data. Upsampling was selected because it decreases the 

information lost in the quantification process, thereby reducing the noise and increasing 

the resolution of the results [29], [30]. Based on a sensitivity analysis comparing 

different resampling ratio including 1-1, 2-1, 3-1, 3-2, and 4-3, a ratio of 4 (non-

hyperarousal events) to 3 (hyperarousal events) windows was used for upsampling 

(Table 4.2). 

Table 4.2. Training and testing datasets after and before resampling 
   Label Training set Test set 

Training and testing 

datasets before 

resampling 

 Non-hyperarousal events 9486 4068 

 Hyperarousal events 372 158 

Training and testing 

datasets after resampling 

 Non-hyperarousal events 9486 4068 

 Hyperarousal events 7114 158 
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4.2.5. Feature Generation and Selection 

Heart rate data 

Previous research has shown that that time domain features of heart rate are 

strongly correlated with PTSD [31]. We extracted time domain features of heart rate 

including maximum heart rate (bpm), minimum heart rate (bpm), heart rate standard 

deviation (bpm), heart rate range (max-min) (bpm), and average heart rate (bpm) from 

each window of time to use for PTSD hyperarousal prediction. Key features were 

extracted based on recommendations from a review article by [32]on detecting 

psychological stress using bio signals [32]. 

Acceleration data 

Research on stress prediction have used scalars of body acceleration to estimate 

body activity and to remove noise from the data [21], [23], [33], [34]. [33] used time 

domain and frequency domain features of acceleration to predict stress in participants in 

real work environments. [21] used body acceleration to classify activity and extracted 

time domain features of body acceleration such as average and standard deviation to feed 

machine learning algorithms. 

In line with these approaches, we calculated the vector of body acceleration for 

each moment using the following widely used formula.  

!"#$	&''()(*&+,"- = 	/&01 + &31 + &41 

Where &0 is the body acceleration in X direction, &3is body acceleration in Y 

direction, and &4 is body acceleration in Z direction.  
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Further, based on previous research (e.g., [21], [33]), time domain features of 

body acceleration including average body acceleration (m/s2), maximum body 

acceleration (m/s2), minimum body acceleration (m/s2), and range of body acceleration 

(m/s2) were extracted to feed machine learning algorithms.  

4.2.6. Model Assessment 

We then generated a confusion matrix to assess the performance of each model. 

Model comparisons were conducted with a 5x2 cross validation test following the 

recommendations in [35] to minimize the type 1 error. This method uses p values and t 

statistics to compare the algorithms. The null hypothesis indicates that there is no 

significant difference between the algorithms in terms of performance (average 

accuracy) where the alternative hypothesis shows that one algorithm is more accurate 

than the others. Algorithms were further assessed with the Area Under the receiver 

operating characteristic (ROC) Curve (AUC).  

4.2.7. Feature Importance and Model Interpretation 

The complexity of black box machine learning models and the need to make 

these models explainable necessitate an evaluation of the influence of algorithm’s 

features on algorithm predictions. In this study, we used Shapley Additive exPlanations 

(SHAP) to address this. SHAP uses game theoretic concepts to allocate values to 

features in a model based on their importance in prediction [36]. SHAP values indicate 

how much each feature contributes to the prediction of the machine learning algorithm. 

SHAP value summary plots generate a feature importance list along with the distribution 

of each feature and shows how each value affects the output of the model. This method 
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is computationally efficient, consistence with human intuition, and interpretable for 

explaining class differences [37]. Using SHAP values to interpret machine learning 

algorithms has several advantages over using more traditional methods such as 

dependency plots [37]. For example, dependence plots do not usually show features’ 

distributions, which may lead to misinterpreting regions with significant missing data. 

Conversely, SHAP plots show feature distributions. SHAP values also indicate how 

much a feature affects the output of the prediction by considering interaction effects, 

whereas partial dependence plots do not account for interactions between features.  

4.3. Results 

4.3.1. Model Performance and Comparison 

Figure 1 shows the ROC curves for each algorithm along with the AUC values.  

As shown in the plots, XGBoost had the highest AUC (0.70). Random Forest, Logistic 

Regression, and non-linear Kernel SVM had AUC of 0.63, 0.62, and 0.61, respectively. 

Table 3 shows confusion matrices for developed algorithms at three probability cutoffs. 

The first confusion matrix prioritizes hyperarousal detection, the second confusion 

matrix balances the true positives and false positives rate, and the third matrix prioritizes 

minimizing false positive rates. The pairwise 5*2 cross validation test results showed 

that XGBoost significantly outperformed the Random Forest (t = -13.25, p < 0.001), 

SVM (t = -13.02, p < 0.001), and Logistic Regression (t = -11.97, p < 0.001). Based on 

the results from this table, XGBoost showed the best performance in detecting PTSD 

hyperarousal events.  
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Figure 4.1. AUC-ROC empirical (left) and smooth (right) curves for algorithm 
 

Table 4.3. Confusion matrices for all models at different probability cut offs.  
Design 

Performance 

Algorithm TP FN FP TN TPR FPR 

Prioritize 

hyperarousal 

detection 

(TPR=1) 

XGB 158 0 821 47 1 0.94 

RF 58 0 853 05 1 0.95 

GLM 58 0 4066 2 1 0.99 

SVM 58 0 4065 3 1 0.99 

Balanced 

priorities 

(TPR=0.5) 

XGB 79 79 1064 3004 0.5 0.26 

RF 88 70 1322 2746 0.55 0.33 

GLM 79 79 1467 2601 0.5 0.36 

SVM 79 79 1401 2667 0.5 0.34 

Prioritize false 

positive 

minimization 

(FPR=0.1) 

XGB 46 112 420 3648 0.29 0.1 

RF 29 129 205 3863 0.18 0.1 

GLM 38 120 410 3658 0.24 0.1 

SVM 30 128 409 3659 0.19 0.1 
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4.3.2. Model Interpretation 

Figure 2 shows the SHAP summary plot for the XGBoost model. In this figure, 

the Y-axis shows the feature as well as the mean SHAP values ordered from top to 

bottom, the color shows the significance of the feature’s value in predicting the output, 

and the X-axis indicates how the feature affects the output of the model (whether that 

feature with that specific value is contributing to experiencing a hyperarousal event or 

not). The X axis further indicates log-odds of perceiving a PTSD hyperarousal event. 

According to the SHAP analysis, the most important body acceleration features are 

average body acceleration (linaccmean) and minimum body acceleration (linaccmin). 

The most important heart rate time-domain features for predicting PTSD hyperarousal 

events are minimum heart rate and heart rate standard deviation.  

 

Figure 4.2. SHAP summary plot, Y axis shows each of the variables, and X axis 
shows log odds of perceiving a hyperarousal event. 
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SHAP dependence plots show contribution of a specific feature to a model based 

on the feature’s distribution.  In this plot each point shows an observation from the 

dataset, the X-axis line shows the value of the feature in that row, and the Y-axis shows 

the SHAP value for that feature that indicates the effect of that feature with that specific 

value on the prediction. The unit of X-axis is the same as the unit of the feature (for 

instance for heart rate measures it is beats per minute), and the unit of the Y-axis is log-

odds of perceiving a PTSD hyperarousal event. In Figure 3, we provided SHAP 

dependence plots for the two most important acceleration and heart rate features.  

 

 

Figure 4.3. SHAP dependence plots, a) SHAP plot for average body acceleration 
(m/s2), b) SHAP plot for minimum body acceleration (m/s2),  c) SHAP plot for 
minimum heart rate (bpm), and d) SHAP plot for heart rate standard deviation 
(bpm) 

 

a) b)

c) d)
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Figure 4 shows that hyperarousal events are more likely to be observed with 

higher minimum heart rate values over the window. When the minimum heart rate is 

over 140 the risk of perceiving hyperarousal events increases. Also, as the average body 

acceleration and minimum body acceleration increase, the odds of the detecting PTSD 

hyperarousal events decrease. Finally, higher heart rate standard deviation, i.e. higher 

heart rate fluctuation, increases the risk of hyperarousal events. 

4.4. Discussion 

This study developed, evaluated, and explicated machine learning algorithms to 

predict PTSD hyperarousal events among veterans using smartwatch based naturalistic 

heart rate and accelerometer data. The ground truth was subjectively-reported PTSD 

hyperarousal events. After preprocessing the data, we trained four different algorithms 

including Random Forest, SVM, Logistic Regression and XGBoost. Among the 

developed algorithms, the XGBoost was the most robust algorithm which yielded an 

AUC of 0.70 and over 81% accuracy. We sorted the most important features in the 

prediction process. The top three body acceleration features included average body 

acceleration, minimum body acceleration and range of body acceleration. The top three 

heart rate time domain features were minimum heart rate, standard deviation of heart 

rate and maximum heart rate. The initial analysis from the SHAP summary plot and 

SHAP dependence plots show that heart rate and body acceleration features have 

nonlinear relationships with PTSD episodes. A deeper look into SHAP plots indicate that 

as the body acceleration increases, indicating more activity from the participant, the 

algorithm is less likely to predict a PTSD hyperarousal events. This result is consistent 
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with prior studies demonstrating a significant relationship between increased physical 

activity and a reduction in PTSD hyperarousal events [38]–[40].  

The SHAP dependence plot for the average heart rate data corroborates that 

when the heart rate is between 60-70 bpm, PTSD hyperarousal events are more likely to 

happen cf. [41]. The SHAP summary plot indicates that heart rate standard deviation was 

one of the most important features contributing to the odds that the algorithm will 

predict PTSD hyperarousal event manifestation. In particular, our findings suggest that 

as the heart rate standard deviation increases, i.e., as heart rate fluctuates more and in 

higher ranges, the odds of detecting a PTSD hyperarousal event increases. This result 

supports the findings from [18] and [42] who showed that during PTSD hyperarousal 

events, participants experience increased heart rate acceleration and fluctuation.  

The results documented in this paper show an improvement in the machine 

learning algorithm performance compared to the findings from [19]. While there were 

differences in data processing methods used in this study, the current findings may 

suggest that the addition of acceleration data as well as using XGBoost algorithms to 

train the machine learning model may result in a considerable increase in the PTSD 

hyperarousal detection accuracy (81% in this study compared to 70 % in [19]). Results 

are in line with previous work on stress detection indicating that adding acceleration data 

decreases the noise in the data by differentiating heart rate changes due to physical 

activity versus fluctuations due to stress [23].  

Several limitations of this study should be addressed in future work. First, stress 

and PTSD hyperarousal events are highly idiosyncratic. A stimulus that triggers one 
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individual may or may not trigger someone else. Because of the subjective and sustained 

characteristics of stress, defining the start, end, duration, and intensity of a hyperarousal 

event is an uncertain task [43]. As a result, it is significantly complex and difficult to 

define and measure a ground truth for stress. Hyperarousal events might have been over- 

or under-reported due to the subjectivity of the perceived events. Individual differences 

such as gender, age, lifestyle and other factors can affect PTSD hyperarousal events; 

therefore, personalizing machine learning algorithms might boost their performance. 

Another issue in this study was the high number of missing values due to the naturalistic 

nature of the study.  Lastly, although machine learning algorithms work in theory, 

external validation of these algorithms are necessary to proof the applicability of these 

algorithms in the real world settings. Further laboratory and naturalistic studies are 

needed to complete and verify the accuracy of this study.  

This article provides preliminary evidence of efficacy for data-driven real-time 

PTSD hyperarousal detection tools that can be used beyond clinic walls to remotely and 

continiously monitor veterans suffering from PTSD. In addition to the promise shown by 

the machine learning algorithm, in this article we utilized analytical techniques to which 

identifies most important features contributing to such detection, hence, improving the 

interpretation of the outcomes and moving towards explainable ML tools for PTSD 

monitoring. Although other machine learning algorithms exist to detect stress, to the best 

of our knowledge, the algorithm documented in this paper is one of very few algorithms 

that is specific to PTSD. The work is in progress to validate this algorithm in real world 

using smart watches and smart phones. 
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5.  CHAPTER 5 (ARTICLE 4) NATURALISTIC VALIDATION4 

5.1. Introduction 

Post-Traumatic Stress Disorder (PTSD) is a psychiatric condition experienced by 

individuals after exposure to life-threatening events such as combat exposure, physical 

assault, and sexual abuse [1]. PTSD is becoming a major public health concern and one 

of the most prevalent mental health disorders in the United States. According to previous 

research, over 70% of the U.S. population will experience a traumatic event in their 

lifetime, and 20% of those affected will go on to develop PTSD, which translates into 

more than 13 million Americans suffering from this condition at any given time [2]. 

PTSD is even more common among combat veterans [3] with a recent study suggesting 

over 24% prevalence [4].  

Post-Traumatic Stress Disorder (PTSD) is a psychiatric condition experienced by 

individuals after exposure to life-threatening events such as combat exposure, physical 

assault, and sexual abuse (Kessler et al., 2005). PTSD is a major public health concern 

and one of the most prevalent mental health disorders in the United States;  over 70% of 

the U.S. population will experience a traumatic event in their lifetime, and 20% of those 

affected will go on to develop PTSD, which translates into more than 13 million 

Americans suffering from this condition at any given time (Sidran Institute, 2018). 

                                                

4 This manuscript authored by Mahnoosh Sadeghi, Farzan Sasangohar, and Anthony D McDonald 
is in preparation for submission to Human Factors in Health Care Journal. 

Also submitted to arXiv. 
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PTSD is even more common among combat veterans (Kilpatrick et al., 2013) with a 

recent study suggesting over 24% prevalence (Stefanovics et al., 2020).  

PTSD leads to a significant increase in the utilization of healthcare services, 

especially among combat veterans. The cost of caring for combat veterans usually peaks 

30-40 years after a major conflict. For the Iraq/Afghanistan conflicts, it is estimated that 

cost of veterans’ care will peak around 2035  at an estimated $60 billion each year 

(Geiling et al., 2012). The costs are also expected to increase due to comorbidities 

including depression, substance abuse, smoking, heart disease, obesity, diabetes, chronic 

fatigue, and increased dementia.  

Major symptoms of PTSD include avoidance, hyperarousal, and reexperiencing 

the trauma (American Psychiatric Association, 2015). Avoidance symptoms include 

avoiding activities or cognitions associated with the traumatic event, decreased interest 

in daily life, and an overall feeling of detachment from one's surroundings. Hyperarousal 

symptoms include hypervigilance, feelings of irritability, and an exaggerated startle 

response following a startling event. Other symptoms include anxiety, insomnia, fatigue, 

anger, and aggression (Carlson et al., 2011). The Diagnostic and Statistical Manual of 

Mental Disorders (DSM) (American Psychiatric Association, 2015) further divides re-

experiencing symptoms into intrusive recollections, recurrent dreams, and flashbacks. 

Traditionally, PTSD has been diagnosed using self-reported tools, such as 

surveys and health questionnaires (e.g., PTSD Checklist for DSM-5 or PCL-5) 

(American Psychiatric Association, 2013) . However, self-reported measures fail to 

capture isolated and mild cases, and most importantly are not suitable for monitoring or 
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detecting the onset of symptoms (e.g., hyperarousal). Monitoring PTSD hyperarousal 

events is particularly important because patients may experience intense and severe 

hyperarousal episodes outside a clinical facility or therapy session. In addition, a major 

barrier in providing PTSD care is the uncertainty associated with self-management and 

adherence to therapeutics or medication routines (Rodrigues-Paras et al., 2017). 

Therefore, there is a vital need to develop effective monitoring systems that provide real-

time PTSD hyperarousal detection capability and facilitate data-driven care.  

Prior work has shown that several physiological measures including heart rate, 

heart rate variability, blood pressure, respiratory rate and skin conductance may be 

correlated with PTSD symptoms (Zoladz & Diamond, 2013). Among these variables, 

heart rate has shown promise as a reliable PTSD correlate (McDonald et al., 2019; 

Sadeghi, Sasangohar, & McDonald, 2020; Sadeghi et al., 2019)f and a few studies 

(Galatzer-Levy et al., 2014, 2017; Saxe et al., 2017) have focused on understanding 

specific relationships between heart rate and PTSD . However, to our knowledge, only 

one study has focused on investigating heart rate patterns associated with hyperarousal 

events (Sadeghi, Sasangohar, Hegde, et al., 2020, 2021; Sadeghi, Sasangohar, 

McDonald, et al., 2021). That study found that heart rate shows specific patterns during 

hyperarousal events in terms of fluctuation, stationarity and autocorrelation that is 

distinct from a typical healthy heart rate pattern in the resting position. Similarly, studies 

(Galatzer-Levy et al., 2014; Leightley et al., 2019; Liu & Salinas, 2017) have attempted 

to detect or predict early indicators of PTSD using machine learning algorithms. These 

studies mostly focused on predicting chances of developing PTSD after a traumatic 
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event. For instance, in one study (Galatzer-Levy et al., 2014) researchers tried to forecast 

chronic PTSD in individuals based on their early symptoms within 10 days of a 

traumatic incident. However, all of these studies focused on forecasting and predicting 

PTSD, and only two studies (McDonald et al., 2019; Sadeghi, McDonald, et al., 2021) 

focused on PTSD hyperarousal detection based on time and frequency domain features 

of heart rate and built a machine learning tool for real-time detection of such symptoms.  

5.2. Methods 

To evaluate the efficacy of heart-rate-based machine learning tools to monitor 

PTSD and assess the perceived accuracy of one such tool, the PTSD hyperarousal 

detection tool developed by Sadeghi et al. (2021) was integrated in an application 

designed for iOS smartphones and smartwatches. In what follows, we summarize the 

machine learning tool, the integration process, and details of a home study conducted for 

naturalistic validation of the tool. 

5.2.1. Machine Learning Algorithm  

The machine learning tool documented in Sadeghi et al. (2021) used the 

XGBoost algorithm to detect irregular heart rate patterns associated with hyperarousal 

events (see Sadeghi et al., 2021 for more details). This algorithm was trained based self-

reported hyperarousal events of 99 combat veterans who were diagnosed with PTSD. 

The algorithm had an overall accuracy of 85% on a held aside test set. In addition to 

heart rate features reported in (Sadeghi, Sasangohar, & McDonald, 2020; Sadeghi et al., 

2019), this algorithm used body acceleration to reduce noise in the classification and 
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distinguish between heart rate elevations related to stress and heart rate elevations 

related to physical activity.  

5.2.2. Integration into a Wearable Device 

The XGBoost algorithm was integrated in an iOS application (app) for iPhones 

and iWatches which was previously designed and developed by the Applied Cognitive 

Ergonomics Lab (ACE-lab) at Texas A&M University (Rao & Sasangohar, 2021).  The 

app was designed exclusively for PTSD self-management. To integrate the machine 

learning algorithm into the app, we used CoreMLtools function, a framework used for 

integrating machine learning predictive tools into iOS devices (Marques, 2020; Sahin, 

2021), from CoreML package in Python which allows deployment of trained machine 

learning models on iOS devices. The advantage of CoreML compared to similar 

frameworks such as TensorFlowlite is its ability to optimize memory usage, and 

conserve battery life (Tran, 2019).  

The pretrained algorithm integrated in the app could identify irregular patterns in 

heart rate associated with PTSD hyperarousal events based on real time data collected 

through iWatch sensors (e.g., heart rate and accelerometer). Upon detection of a 

hyperarousal event, the tool triggered a notification on the watch interface that asked the 

user if they perceived any hyperarousal events (Figure 1, top). The users were asked to 

respond “Yes” or “No” to confirm whether they felt a hyperarousal event or not. The app 

also had the functionality of self-reporting hyperarousal events by tapping on a specific 

icon (bell-shaped icon) on the watch face and then confirming that the event happened 

(Figure 1, bottom). Users could also check their heart rate in real-time by tapping on the 
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heart-shaped icon on the watch interface. Users had to have the application running on 

their watch at all times, and the app had to be continuously on the watch face to be able 

to send notifications and collect their data. The app could not be used simultaneously 

with other activity tracking applications. 

 

Figure 5.1. Illustration of the detection and self-reporting interfaces on iWatch 
 

5.2.3. Study Process 

Participants 

Twelve participants were recruited from the Texas A&M University students, 

staff and faculty population to participate in the study through campus bulk mail. The 

mean age of all participants was 28 years old (SD = 11.37, range = 18-57). Out of 12 

participants, 10 were female and 2 were male. Participants were required to be clinically-

diagnosed with PTSD, be over 18 years old, and already own an iPhone (6S or newer) 

and an Apple iWatch (2nd Gen or newer). Participants were provided with a demographic 

questionnaire, consent forms, and an Anxiety and Depression Association of America 

(ADAA) form (cf. American Psychiatric Association, 2015; Screening for Posttraumatic 

Stress Disorder (PTSD) | Anxiety and Depression Association of America, ADAA, n.d.) 
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to prescreen their PTSD diagnosis. In the demographic questionnaire, participants 

answered questions about their age, gender and PTSD diagnosis. The study was 

approved by the International Review Board at Texas A&M University (IRB2020-

0955DCR). 

Procedure 

Virtual orientation in one-on-one sessions were scheduled with each participant 

separately. During sessions participants were given instructions on how to install the app 

on their phone and their watch. Further, participants were instructed on how to interact 

with the app and the pop-up notifications. Participants were asked to wear the watch 

continuously for 21 days (between December 20th 2020 – January 25th 2021) and 

respond to notifications except for when they wanted to charge their devices. They were 

asked to self-report any instances of hyperarousal. We also emailed participants detailed 

information about the app installation process and its functionalities. Participants were 

provided with a list of local licensed therapists to contact in case of an emergency. 

Data collection 

For each participant, we collected data including detected events, participants’ 

responses to symptom detection events (Yes or No), self-reported symptom onset, 

continuous heart rate data and body acceleration data in three axes: X, Y, and Z. To 

facilitate and enable data monitoring, we synced the developed the app with Amazon 

Web Services (AWS). The app stored and uploaded the collected data automatically on 

AWS at the end of each day of data collection when the user’s phone was connected to 
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Wi-Fi. We checked the data on daily basis for each participant to ensure that they are 

using the app and the detection tool consistently.  

5.2.4. Quantitative Analysis 

Perceived precision was measured by calculating the ratio of correctly detected 

events (as reported by the user) or true positives to the total number of automated 

detected events. The equation for perceived accuracy is: 

Perceived precision = Number of True Positives / (Number of True Positives+ 

Number of False Positives) 

Where number of true positives is when the tool detected an event and the user 

responded “Yes” to the notification, and false positive is when the tool detected an event 

and the user responded “No” to the notification. To investigate time-series trends in the 

perceived precision , a MannKendall trend test was applied to evaluate the monotonic vs. 

significant increasing/decreasing trends in the time-series data. For this analysis, we used 

the Kendall library version 2.2 in RStudio version 3.5.1. 

5.2.5. Interviews and Qualitative Analysis 

At the end of study, we conducted exit interviews with each participant. The 

interviews were semi-structured with a focus on user’s experience with the detection 

tool. The participants were asked questions about the accuracy of the tool, their 

willingness to use this tool, their trust in the detection capability, any issues or barriers 

related to interaction with the tool, and their expectations from the tool for monitoring of 

PTSD symptoms. All interviews were virtual through Zoom and were recorded. 

Additionally, notes were taken during each interview and were later checked with the 
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recorded videos for accuracy. We first transcribed the recordings. We then found a 

number of themes in the transcriptions and categorized that we will discuss in the results 

section. Table 1 shows the list of questions used in the interviews.  

Table 5.1. List of exit interview questions  
How was your overall experience with the app and the detection tool? 

Overall, do you think the tool can accurately detect hyperarousal events? 

Do you trust the hyperarousal detection capability of the tool? Why/why not? 

How many notifications a day did you receive on average?  

What percentage of these notifications do you think were false alarms? 

Do you find this level of false alarm to be acceptable? 

My data shows you responded (either said yes or no) to notifications X percent of the 

time. Can you describe why you didn’t respond to some alerts? [Probe: were you 

engaged in any sort of activity? What were some of these common activities?] 

Can you describe what you feel during a hyperarousal event? what happens to you 

physiologically? Are there any effects on your heart rate? 

Let’s discuss the alert message itself. What type of message do you expect to see on 

the alert when the tool detects a hyperarousal moment? 

What would you expect from a tool (for example a mobile app or smartwatch app) to 

do for you when it detects a hyperarousal event? 

Overall, was it helpful to be reminded of your hyperarousal events? 

Would you use this detection tool on a daily basis? What are some of the barriers in 

using this tool continuously? 
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5.3. Results 

5.3.1. Quantitative Results 

During 21 days of the data collection 1244 (M = 114.33, SD = 94.68) 

hyperarousal events were detected and 128 (M = 10.67, SD = 10.86) were reported. Out 

of the 1244 detected events, users responded “Yes” 788 (M = 65.66, SD = 74.02) times 

to the pop-up notifications indicating a true positive event, and 456 (M = 38.01, SD = 

38.55) times participants reported “No” indicating a false alarm. Figure 2 shows the true 

positives, false positives, and self-reported events for each participant.  

 

Figure 5.2. Count of Yes, No, and Self-Reported events for each participant. 
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Based on the analysis, the median perceived accuracy for all participants was 

65.27% (SD = 25.9%) ranging from 22.9% to 99.1%. Figure 3 shows the perceived 

accuracy for each participant and the probability density of perceived accuracy for all 

participants.  

 

Figure 5.3. Perceived accuracy for each participant 
 

Further, we investigated heart rate during recorded events. Our findings show 

that heart rate averaged over a 20 second window (10 seconds before and 10 seconds 

after the detected events) ranged from 60-182 (M = 82.04, SD = 21.49) with a median of 

76. Figure 4 shows the probability distribution for heart rate during hyperarousal events.  
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Figure 5.4. Heart rate distributions during detected events 
 

Trend analysis 

To investigate perceived precision trends, we conducted Mann-Kendall trend 

analysis on daily perceived precision. The results showed a significant increasing trend 

for the perceived precision for 11 out of 12 participants (tau = 0.735, p < .001). The only 

exception was a participant who had over 95% perceived precision and their perceived 

precision did not alter and was uniform throughout the study. We did not observe the 

same trend for the number of true positives or the number of false positives. Figure 5 

shows average perceived precision trend for all participant during 21 days of the study. 



 

 

 

140 

 

Figure 5.5. Average perceived accuracy trend for all participant during 21 days of 
the study. 

 

5.3.2. Qualitative Results 

During exit interviews participants were asked questions about their experience 

with the tool including their trust in the detection capability, their willingness to use the 

tool, their expectations from the tool, and main issues with the tool.  

Overall experience 

All participants (12/12) mentioned that they had a positive experience with the 

detection tool and the app. Participants further commented that the app was easy to use 

and intuitive. 

“It was pretty good. It was simple to use, didn’t have any problem with it. I 

enjoyed being able to go back and look back at my data.” - Participant 9. 
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The majority of participants (10/12) mentioned that it was helpful for them to be 

aware and mindful of their hyperarousal events. 

“I liked that it kind of pinged me to try to think about it. It was right most of the 

times. It provides another opportunity for you to stop and reflect, but again, 

depending on how deeply in the therapy that person is or how aware that person 

is, the app can do so much. The rest of it is on the use to sit and think about it.” 

Participant 2. 

“I thought that it was helpful, especially one of the things that I’m working on in 

therapy right now is actually gauging my stress and anxiety level and how to 

cope appropriately, so I thought that it was definitely helpful” Participant 9. 

“Yes, I think it was helpful in the fact that it made me more aware of what was 

going on, and I was able to recognize it, be aware of the moment, and bring 

myself back down, or maybe even figure out what was causing stress and what 

not.” Participant 10. 

However, 2 participants explained that being reminded of hyperarousal events 

has a negative reinforcement effect. 

“I think it made me hypersensitive of it, so I would notice it more usually than I 

would.” Participant 1. 

“For me because the way I experience PTSD is to shut down, I think it would be 

helpful maybe to just receive a report at the end of the day that says hey these are 

all the times today that we noticed hyperarousal instead of being notified in the 

moment where it might amplify it more than it should” Participant 3. 
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Perceived precision  

Most participants (11/12) mentioned that the tool could accurately detect their 

hyperarousal events. These participants reported that they trust the tool’s detection 

capability for hyperarousal events. 

“Yes definitely! I am personally grounded in my routines, just one day my 

girlfriend and I were getting dinner. She forced me to try something new and the 

app immediately asked if I was [hyperaroused].” Participant 7. 

“I think it’s relatively trustworthy, there were a couple of times that it detected 

that weren’t accurate but other than that it was incredibly consistent.” 

Participant 9. 

In particular, participants perception of percentage of false alarms ranged from 0-

50% with an average of 18.58%. This number is roughly 16% lower than the reported 

false alarm rates from the self-reports (34.73%) (i.e., percentage of No responses to the 

detection notification). Three participants (3/12) reported that they did not receive any 

false alarms, one of whom had an objective perceived precision of almost 100% (i.e., 

responded YES to all detection notification). Despite such perception, the data from 

these three participants showed up to 10% reported false alarms. All participants (12/12) 

found the frequency of false alarms to be acceptable. Participants commented that 

notifications were easy to respond to and not interruptive. 

“I would say like it was just a quick Yes or No, it was not interruptive because it 

was so quick, and I just had to look at my watch to say Yes or No” Participant 11. 
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“Yeah, it is acceptable. I think that with any stress detection tool there is going to 

be certain levels of inaccuracy that you have to understand and account for. This 

was a low-enough number.” Participant 9. 

Some participants (3/12) mentioned that the app sometimes falsely notified them 

when they were engaging to an activity; while others mentioned that they received false 

alarms when they were in relaxed position.  

“I think most of the times it was when I was sitting down, and I was like probably 

in a conversation with somebody, or I was trying to figure out a work project, or 

just thinking about my day. I don’t think that I was doing any sort of active thing” 

Participant 7. 

“I was usually engaged in an activity doing something like cleaning out the 

garage, you know, that was moving around. And most of the other times was 

frustration with work.” Participant 8. 

However, one participant mentioned difficulties in assessing the accuracy of 

detected events due to issues related to lack of self-awareness. 

“I don’t know! It requires the person to be self-aware enough to know that they 

are stressed. I have to sit in and check with myself to see if I am having a 

hyperarousal moment.” Participant 2. 

Interaction with notifications 

Overall, 3.57% of detection notifications did not receive a response. Over 50% of 

the participants (7/12) mentioned that they missed notifications because of their 

surrounding situation such as discreetness or the time that they received notifications.   
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“It’s just very hard to respond to something like that, and also just when people 

are around, sometimes it’s just you don’t want them to see, you know, because 

people ask questions about it” Participant 5. 

“A lot of these notifications came at night, and I was not sure, so I dismissed 

them” Participant 2. 

Expectations for notifications 

Over 50% of the participants (7/12) indicated that they liked the visual 

notification and the vibration. Participants explained that the notification message was 

clear, the vibration was sensible, and it was easy to respond to notification. 

“I like how it was Yes or No, just didn’t have to think about it that much, it was 

just simple. I like the vibration because like when my watch detected something I 

could sense it. I also prefer vibration to -sound and other things because other 

things stress me out more.” Participant 4. 

“I liked the message and can’t think about a way that I would change it. I like the 

vibration more I think than something like a sound. Because other people can 

hear the sound. I had a friend in town and I told him about this app, and it got to 

the point that when I did have the sound on then he knew that I was stressed and 

I did not want anybody else to know. And the sound can sometimes be triggering” 

Participant 6. 

A few participants (4/12) commented that they did not like that the notification 

message stayed on their watch face since it was noticeable by others. 
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“I liked the vibration, but I didn’t like how the alert stayed on the screen, just 

because everybody could see it.” Participant 1. 

A few participants (4/12) elaborated that the vibration was not strong enough and 

they missed notifications because of that. 

” I think during the day the amount of vibration is fine, but during the night if you 

want to catch somebody sleeping it needs to be stronger.” Participant 2. 

“I think the vibration could have been a little stronger. I am a very active person 

and I use my hands a lot at work, so I think sometimes the motion outweighs the 

vibration” Participant 6. 

“It was a pretty low vibration sensation and so if I had been like in class or 

something like that, it probably would have been a lot harder to pick up on. I’d 

like to get a second notification shortly after if there is no response to the 

initial.” Participant 9. 

Expectations for post-detection interaction 

Most participants (10/12) expected the tool to support users develop coping skills 

post-detection. Among the coping skills, breathing exercises (8/12), and meditation such 

as focusing exercises (5/12) were mentioned by some.  

“I think telling me to breathe would be good or maybe a message that says you 

are OK right now, or some type of encouraging message that will bring you back 

to reality.” Participant 3. 
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However, a few participants (2/12) mentioned that improving self-awareness 

through using the detection tool is sufficient for them and the scope of the tool should be 

limited to awareness rather than being directed to coping activities.  

“For me it was just enough to acknowledge and like actively press something that 

said Yes I am feeling the stressful moment instead of just like trying to keep it in, 

for me that was enough.” Participant 2. 

“I don’t really expect it to do anything. I think it brings the awareness to myself 

you know that its detecting something. I’ll be able to bring myself back down” 

Participant 10. 

Acceptance and barriers to adopt 

All participants (12/12) mentioned that they would use the tool on a daily basis 

with a few adjustments. The main issue that prevented most participants from using the 

app continuously was the battery life. Continuous monitoring of physiological data 

through watch sensors affects the battery life significantly. Most participants (10/12) 

commented on this issue and explained that they had to charge their watch more 

frequently (e.g., 1 to 2 times a day compared to once every 48 hours).  

“I really would use it. I liked monitoring my heart rate and I liked it really 

pointing out the event, cause then I could sit there and almost predict them and 

then be able to deal with them from there.” Participant 12. 

“Yeah, I would like to use the app on a daily basis. I guess the only thing is that it 

takes up a lot of battery power when I’m wearing it. That was the main issue like 

having to charge it every night.” Participant 4. 
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“I would definitely use it, I think it would be helpful. The downside was the 

battery life. It would be nice if it did not drain the battery so you could wear it for 

a longer period of time.” Participant 8. 

5.4. Discussion 

This work describes a novel mixed-methods analysis for naturalistic validation of 

a machine learning algorithm to detect PTSD hyperarousal events. While PTSD 

treatments and psychophysiological assessments in the laboratory setting have been well 

documented, there is a need for additional research to bridge the gap in continuous 

monitoring of PTSD symptoms to improve self-management and inform therapeutic 

care. Although naturalistic studies have been conducted to develop machine learning 

tools to detect PTSD hyperarousal events (e.g., McDonald et al., 2019), to our 

knowledge, this study is the first to evaluate the perceived precision of real-time PTSD 

hyperarousal detection in naturalistic settings.  

Our findings suggest that the average perceived precision of the detected events 

was about 65%, indicating that majority of participants agreed with the automated real-

time detection of an irregular heart rate pattern associated with PTSD hyperarousal. The 

range of the perceived precision showed substantial between participants’ variability in 

perception of accuracy (Range: 23%-99%) with false alarm rates as high as 77%. 

However, our qualitative suggest that false alarms were tolerated well and accepted by 

the users.   

These findings highlight the importance of naturalistic evaluation and validation 

of machine learning tools. While common approaches in machine learning accuracy 
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measurements and performance evaluation may provide initial evidence of objective 

efficacy, in applications involving interactions with humans, subjective perceptions may 

be exhibit misalignment with empirical evidence. This misalignment has been shown in 

various comparisons of objective and subjective evidence (Chellappa et al., 2018; 

Kosmadopoulos et al., 2017). In particular, in our study, we noticed a significant 

disparity between the theoretical precision for the developed machine learning algorithm 

and the users’ perceived precision (70% vs. 65% for the algorithm used in this study, 

respectively). Therefore, sole reliance on theoretically-driven performance metrics 

without accounting for users’ perception of accuracy may result in negative impacts on 

sustainable usage and acceptance of machine-learning-based tools. 

 Another interesting finding was that perceived precision increased over 

time for majority of participants. Given the known correlation between perceived 

precision of automation and trust (Findley, 2015; Merritt, 2011), this finding may 

suggest that while users may have initially distrusted the tool, longitudinal exposure to 

true positives increased and calibrated their trust in the tool’s capability in detecting 

hyperarousal events. Such initial mistrust of automation has been shown in other 

research (Fowler, 2021; Tenhundfeld et al., 2019). This is also supported by findings 

from the exit interviews. Several participants elaborated on the process of trust-building 

over time. For example, participant 12 explained that: “the first week I was denying 

notifications because I didn’t think they were stressful enough to be considered stressful 

events, and then I realize all of them probably were stressful events, but I think I 

mentally have a threshold of what is considered a hyperarousal event. In that thought, I 
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don’t think there were any real false positives”. This important finding highlights the 

importance of conducting naturalistic validation studies longitudinally. While we did not 

notice a decline in trust or usage over time, future work may use longer study durations 

to understand users’ behavior over an extended period. Future improvements in 

personalized and reinforcement learning (i.e., adjusting the detection based on 

participants’ responses) may also improve the calibration in trust and needs to be 

examined.  

The results provided preliminary evidence that the tool detected hyperarousal 

events, albeit with a high false alarm rate. However, overall, the tool was received well, 

and most participants found it helpful in increasing self-awareness and being mindful of 

hyperarousal events. This is in line with previous research indicating that stress 

awareness facilitates and improves stress management (Morris et al., 2010). However, a 

few participants elaborated on the negative reinforcement of the detection tool’s 

notifications to trigger further stress. It is well documented that alarms and notifications 

may result in a startle effect or further stress (Taylor et al., 1996). Additionally, false 

alarms might trigger panic attacks and put the body in a fight-or-flight episode which 

may exacerbate anxiety and stress (Fowles, 2019). While this study focused on 

subjective validation and perceived precision of detection, more work is warranted to 

investigate user-centered design of notifications and alerts and other interactive features 

to identify and mitigate stress-inducing design factors and improve users’ experience. In 

addition, while majority of participants in this study valued real-time notifications, a few 
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preferred on-demand access to such information. This may suggest the importance of 

personalized notification settings to tailor interventions to variety of users. 

There are several limitations that impose constrains on the generalizability of the 

findings reported in this work. First, the sample size was small, limiting the ability to 

conduct inferential statistics. We tried to partly address this limitation by conducting a 

longitudinal study over 21 days. However, more work is needed to confirm our findings 

with a larger sample size. Second, we did not account for the PTSD severity or other co-

morbidities. Third, the analysis of perceived precision assumes a collectively-exhaustive 

account of all perceived hyperarousal events. While we emphasized the importance of 

self-reporting to our participants, events may have been under-reported. Finally, while 

this study addresses an important gap in naturalistic evaluation of machine-learning-

based tools for detecting PTSD hyperarousal events (and broadly stated “stress”), there 

are several limitations and barriers associated with conducting a home study using 

wearables. For example, real-time monitoring required significant computational power 

which had significant impact on the smartwatch battery life. This barrier resulted in but 

also potential impact on participants’ self-reporting behavior and overall impressions of 

the tool. More work is warranted to optimize the machine learning tools for 

computational efficiency and improve the integration into wearables technologies. 

5.5. Conclusion 

Non-intrusive monitoring tools for PTSD hyperarousal events to improve self-

management and self-awareness is a timely need and a general gap in research. This 

paper contributes to the body of literature by providing preliminary evidence of efficacy 
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for one such tool while highlighting the importance of naturalistic evaluation of 

machine-learning-based detection tools accounting for users’ perceptions and 

interactions. Future work in utilizing user-centered design methods and just-in-time 

evaluation techniques will help improving the design of effective PTSD continuous 

monitoring and self-management tools that address an important gap in current PTSD 

care models and is expected to have a positive impact on quality of life and PTSD health 

outcomes.  
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6. CHAPTER 6 CONCLUSION 

6.1. Summary of Key Findings 

This chapter elaborates on key findings of this dissertation, its contributions to 

the body of knowledge, limitations of this work, and future work in related research 

agendas. In this dissertation, I documented a series of studies aimed at understanding 

heart rate reactions to PTSD. In particular, three research questions were addressed: 1- 

Does heart rate show unique patterns during PTSD hyperarousal events? 2- Can these 

patterns be used to develop an algorithm that can detect hyperarousal events in real 

time? and 3- How can the developed algorithm be operationalized as a smartwatch-based 

detection tool?  

To answer question 1, first, a comprehensive review of literature was conducted 

to investigate the previous research on the relationship between heart rate and PTSD as 

well as methods to analyze heart rate. In chapter 2, I documented a new framework that 

contains various types of descriptive and predictive analysis methods to analyze heart 

rate. Findings from this literature review were published in an article titled “Toward a 

Taxonomy for Analyzing the Heart Rate as a Physiological Indicator of Posttraumatic 

Stress Disorder: Systematic Review and Development of a Framework” in JMIR Mental 

Health [1]. The framework also informed my analyses to identify unique patterns in 

heart rate during hyperarousal events. In particular, I collected data from over 100 

combat veterans who were diagnosed with PTSD in a series of naturalistic studies using 

momentary self-reports enabled by a mobile platform (detailed in chapter 3). Next, I 

used ARIMA; a classical time series analysis method; to compare heart rate patterns 
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during 1034 hyperarousal events with heart rate patterns from 11 healthy participants. 

The results indicated that heart rate has unique measurable statistical characteristics 

during hyperarousal events. More specifically, ARIMA analysis showed that during 

hyperarousal events, heart rate is more nonstationary with higher fluctuations rates and 

higher autocorrelation compared to healthy heart rates, suggesting that there are some 

statistical dependencies between consecutive heart rate measures during hyperarousal 

events that do not exist in healthy resting heart rates.  

One of the interesting findings of this study was that most hyperarousal events 

happened when the heart rate was in a healthy range (75-85 bpm) which may suggest 

that threshold-based analysis of heart rate, commonly used in stress detection, may fall 

short in hyperarousal detection which requires advanced pattern-based analysis methods. 

Further, to understand the effects of lifestyle and demographic on the resting heart rate I 

conducted mixed regression analysis. The results indicated that smoking, sleeping habits, 

antidepressants use, anxiolytics use, and gender affect resting heart rate in people who 

have PTSD. For instance, I found out that using antidepressants and smoking increase 

the heart rate by 10 bpm and 9 bpm respectively [2], [3]. This finding is in line with 

findings from These findings (documented in chapter 3) are disseminated in an article 

titled “Understanding heart rate reactions to post-traumatic stress disorder (PTSD) 

among veterans: a naturalistic study” in Human Factors [4]. 

To address the second research question, I used the ground truth collected in the 

aforementioned naturalistic studies to develop an XGBoost machine learning model that 

utilized some of the features found in pattern recognition analysis (e.g., heart rate 



 

 

 

159 

fluctuations or standard deviation) as well as time domain features of heart rate, and time 

domain features of body acceleration. The accuracy of this detection tool in theory was 

84%. Further in this chapter, I interpreted these major contributors to machine learning 

results using SHAP values. The results showed that the average body acceleration and 

heart rate standard deviation are the most important features to detect hyperarousal 

events. Details on the developed XGBoost algorithm and how each of the features 

contribute to the prediction are provided in chapter 4 and the resulting article titled “x” is 

under review in PlosOne.   

To address the third research question, I used the algorithm documented in 

chapter 4 to create a mobile health application for PTSD hyperarousal monitoring. I 

deployed the machine learning algorithm on an iOS application and validated the 

perceived accuracy of this tool’s detection accuracy by conducting a longitudinal home 

study with 12 participants diagnosed with PTSD. The results showed over 65% of 

detected hyperarousal events were perceived as accurate. The results further indicated an 

increasing level of trust in the device throughout the study as users interacted more with 

the detection tool. All participants found the device helpful and mentioned that they 

could trust the device for detecting their hyperarousal events. The findings from this 

study are detailed in Chapter 5 of this dissertation and in preparation for submission to 

Human Factors in Health Care Journal. 

6.2. Dissertation Contributions 

This dissertation advances the body of knowledge in psychophysiology by 

providing several contributions and motivating for further research. 
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The first contribution of this dissertation is the in-depth statistical analysis of 

heart rate patterns during PTSD hyperarousal events. While comprehensive work has 

been done to investigate heart rate variability reactions to PTSD [5]–[8], there is limited 

knowledge on how heart rate reacts to PTSD. Investigating heart rate reactions to PTSD 

is specifically important due to the practicality of using heart rate measures for real-

world applications including availability of and non-intrusiveness of heart rate sensors. 

Currently, while most wearable devices are able to measure heart rate with high 

accuracy, there are very few off-the-shelf wearables that can gauge heart rate variability. 

Even the wearables that commercially claim to do so (e.g., Apple iWatch, Fitbit) are 

subjected to several restrictions including limited accuracy, limited time windows (e.g., 

iWatch can capture HRV for just 30 seconds), and limited frequency of capturing heart 

rate variability [9], [10]. Considering these limitations in terms of collecting heart rate 

variability data, my research adds to the body of knowledge by analyzing heart rate 

instead of HRV.  

Second, while previous research has investigated heart rate changes in relation to 

PTSD [1], [11], [12], describing and modeling heart rate patterns during PTSD 

hyperarousal events is novel and a major contribution to the body of knowledge on 

PTSD psychophysiology. Specifically, a unique contribution of this dissertation (detailed 

in chapter 3) is using the ARIMA method to probe specific patterns in heart rate during 

hyperarousal events. The evidence presented in this dissertation documenting unique 

statistical characteristics of heart rate patterns in PTSD patients in terms of 

autocorrelation and fluctuation is novel, and although preliminary, may provide 
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foundational knowledge to advance the understanding of psychophysiology of PTSD. 

More specifically, the results from autocorrelation analysis suggested that there are some 

dependencies in the heart rate during hyperarousal events that do not exist in the healthy 

heart rates. The results from detrended fluctuation analysis showed higher fluctuation 

rates in heart rate during hyperarousal events compared to the heart rate of healthy 

subjects. Previous work has shown that higher heart rate fluctuations is associated with 

hyperactivity of the sympathetic nervous system and therefore clinical manifestation of 

cardiovascular diseases [13], [14]. Moreover, the results showed strong connections 

between lifestyle and resting heart rate. Resting heart rate is an indicator of health level 

and cardiovascular risk in individuals [15]. While previous work has shown correlations 

between the resting heart rate and demographics such as gender and use of medication in 

healthy individuals [16]–[19], the findings documented in this dissertation is the only 

evidence connecting such demographics to PTSD among veterans. In particular, my 

research suggests that antidepressants, smoking, and sleep deprivation might have 

effects on the health of veterans who have PTSD by elevating their resting heart rate 

significantly.  

Third, this research contributes to the body of knowledge naturalistic evaluation 

of PTSD hyperarousal events. Collecting data in such settings leads to results with 

higher external validity and generalizability. Most research on objective assessment of 

PTSD has been conducted in controlled lab settings by inducing external stimuli, e.g., 

[20]–[22]; however; a majority of PTSD stimuli are internally generated [23]. Failing to 

capture hyperarousal events related to internal stimuli might affect the validity, 
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precision, and generalizability of the results. My research addresses this limitation by 

collecting longitudinal data in real life settings. 

Fourth, although several studies have looked into detecting mental stress using 

machine learning algorithms and physiological indicators e.g., [24]–[26], only one study 

by McDonald et al. (2019) [27] has investigated PTSD hyperarousal detection using 

machine learning algorithms. I enhanced and expanded the findings from McDonald et 

al.’s study by adjusting several important factors. First, I added data collected from two 

additional field studies to the analysis. Second, I used time domain features of heart rate 

instead of frequency domain features for better application (e.g., integration in iOS 

applications) and interpretation [28]. Additionally, I added body acceleration features to 

the developed machine learning algorithm to account for both the noise in the data and 

differentiation between heart rate changes due to PTSD hyperarousal and heart rate 

fluctuations due to activity. I used upsampling for data preprocessing analysis instead of 

downsampling to address another limitation mentioned in McDonald et al. These 

changes increased the accuracy of the developed algorithm by 10% (from 70% to 80%). 

I then interpreted the algorithm using SHAP values to investigate the contribution of 

each of the factors. In line with the results from chapter 3, SHAP analysis in chapter 4 

showed that heart rate standard deviation or fluctuation is one of the critical 

characteristics of heart rate that needs be considered closely when probing hyperarousal 

events. Both chapters 3 and 4 further suggested that heart rate demonstrates non-linear 

behavior with explicit patterns during hyperarousal events.  
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Last, this research contributes to the body of knowledge on practical PTSD 

monitoring by developing a machine-learning-enabled mobile health application that can 

detect hyperarousal events in real-time. While there are a few apps that help coping with 

PTSD (e.g., PTSD Coach), to my knowledge this is the first tool that can detect PTSD 

hyperarousal events in real time non-invasively and continuously. Being able detect 

these events in real life might have a promising impact on the direction of treating 

PTSD. This chapter further highlights the need for naturalistic validation of machine 

learning tools to account for human interaction and perception.  

6.3. Limitations and Future Work 

Several limitations might affect the generalizability of the results and need to be 

addressed in future work. First and foremost, the hyperarousal events used in this work 

are self-reported and subjected to individual biases. Participants might have over- or 

under-reported the events they perceived. For instance, there was a participant who 

reported 10 hyperarousal events within a 5 minutes time frame. Although I attempted to 

address this limitation by implementing a comprehensive data preprocessing and 

imputation procedure, future work might minimize this limitation by conducting 

controlled lab studies along with naturalistic field studies to understand and address such 

biases. 

There were also a few limitations associated with the data collection method. 

Naturalistic data collection approach led to a high number of missing values in datasets. 

Almost 25% of the data was missing in the datasets. I tried to address this issue by 

applying a variety of imputation methods such as Kalman imputation to the data to 
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estimate the missing values; however, data imputation might have added additional 

biases to the results [29]. Future work should use more advanced heart rate and 

accelerometer sensors with higher sampling frequency and better accuracy to minimize 

the number of missing values in data collection processes. Moreover, naturalistic data 

collection (detailed in chapters 3 and 4) happened during Project Hero R2R challenges 

that involved intensive activity including roughly eight hours of bike riding per day. The 

study needs to be replicated in the future work by collecting data in other environments 

with low-intensity activity or during normal daily life activities.  

Further, I did not account for individual differences in pattern recognition 

analysis and the developed XGBoost algorithm. Every PTSD patient has a specific and 

individualized set of triggers and stimuli [30]. Heart rate measures are also affected by 

individuals’ characteristics. Therefore, future work should account for these differences 

and add between-subject variability to the analysis. Another future direction of this 

research is developing customized machine learning algorithms to boost detection 

accuracy. By performing active learning methods and interactively adjusting the 

algorithm based on the user’s input, each user can have a specific detection algorithm 

that works based on their own hyperarousal patterns. Using these active learning 

methods might eventually decrease number of false alarms, increase count of correctly 

detected events, and finally improve perceived accuracy. 

Furthermore, my research found connections between PTSD and increased 

cardiovascular disease through pattern analysis. Future work should attempt to clarify 
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these connections and look toward preventive strategies to minimize risks of 

cardiovascular diseases as a comorbidity of PTSD.  

Finally, while the validation study (detailed in chapter 5) showed promise, the 

small sample size was small (12 participants). Future work should include larger sample 

sizes to verify these results and shed more light on practicality and sustainability of 

using continuous PTSD monitoring tools as well as the perceived accuracy over longer 

periods.  

While this research contributed to and informed the design of PTSD hyperarousal 

detection technologies, more work is warranted to evaluate how such detections can lead 

to effective therapeutics or self-management capabilities. For example, the developed 

machine learning algorithm has over 80% of theoretical accuracy and 65% of perceived 

accuracy. During the interviews of the detection tool study, a majority of participants 

requested for receiving coping skills upon correct detection of a hyperarousal event. As 

for the future directions, researchers should add coping skills such as breathing exercises 

to the developed detection tool to expedite recovery from hyperarousal events. 

Addressing the limitations through this proposed future work will eventually help 

recovering from PTSD, decrease public expenditure on mental health, and finally 

promotes mental health of the society.   
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