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ABSTRACT

The rising energy demands and the burgeoning population combined with concerns about the

risks of climate change mandate a cost-conscious transition towards low-carbon or carbon-neutral

energy, that will not limit the economic growth. Such transition introduces major challenges, and

thus requires holistic strategies and systematic approaches during its execution. In this work, pro-

cess and energy systems engineering thinking along with mathematical optimization and machine

learning are utilized to address some of the outstanding issues related to the energy transition and

the circular economy (CE) implementation.

First, a novel forecasting framework to calculate the average as well as the market (spot) price

of energy in the United States is presented. The complex energy landscape is thoroughly analyzed

to accurately determine the two key factors of this framework: the total demand of the energy

products directed to the end-use sectors, and the corresponding price of each product in the form of

either a monthly or a spot price. Spot prices are available to date, while data for the demand and the

monthly price of energy products lag several months. This issue is overcome with the introduction

of state-of-the-art forecasting methodologies that allow accurate forecasting for the demand and

the prices of the energy products up to 48 and 12 months respectively. The forecasting capabilities

of the framework are rigorously tested over a long period of 184 months, while its effectiveness is

demonstrated by addressing four policy questions of significant public interest.

Then, a literature review listing Process Systems Engineering approaches that have been de-

veloped and can be used to facilitate the transition towards CE has been conducted. Thereafter, a

novel CE system engineering framework for the modeling and optimization of food supply chains

is introduced, demonstrating efficient ways for the re-utilization of products and materials along

with the extensive usage of renewable energy sources. Due to the conflicting objectives involved,

a multi-objective optimization strategy for trade-off analysis capturing different demand scenarios

and uncertainty factors is also presented. Finally, a micro-level CE assessment framework with

sector-specific indicators as well as overall and category-based metrics is proposed, allowing the

robust and holistic assessment of multi-scale, multi-faceted, and interconnected CE supply chains.
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1. INTRODUCTION

1.1 The Energy Challenge

According to United Nations estimates, the current world population of 7.7 billion is projected

to reach 9.7 billion in 2050, and peak at nearly 11 billion in 2100 [22]. As population grows and

people seek to improve their quality of life, it is expected that by 2070 the world will be using

at least 50% more energy than it does today [23]. Nevertheless, 770 million people did not have

access to electricity in 2019 [24], while another billion was struggling with unreliable supplies

of electricity [25]. In the meantime, GHG emissions have risen at a rate of 1.5% per year in the

last decade, with the total GHG emissions reaching a record high of 55.3 GtCO2e in 2018, from

which 37.5 GtCO2e per year comes from fossil CO2 emissions related to energy and industrial

use. Without a sign of GHG emissions peaking in the next few years, United Nations projects that

by 2030 the emissions would need to be 25% and 55% lower than those in 2018 so as to put the

world on the least-cost pathway for limiting global warming to below 2°C and 1.5°C respectively

[26]. But the challenge is not just to mitigate climate change, but to do this while providing more

reliable and accessible energy supplies. Therefore, a broad transformation of global energy is

required towards achieving energy access, climate goals and air quality [25].

1.2 The Concept Circular Economy

Rising populations place huge stresses on natural resources. Extraction and depletion of raw

materials and waste created throughout the supply chain of products have enormous environmen-

tal and socioeconomic impacts. One way to reduce these impacts is through the move towards

the Circular Economy (CE) [27]. CE aims to solve resource, waste, and emission challenges con-

fronting society by creating a production - to - consumption total supply chain that is restorative,

regenerative, and environmentally benign [28]. Research challenges are highlighted and Process

Systems Engineering (PSE) research opportunities are identified so as to assist in the understand-

ing, analysis and optimization of CE supply chains. As such, a systems engineering framework
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for the optimization of food supply chains under CE considerations is presented. Moreover, a

quantitative, holistic and robust CE assessment framework at the micro level of the economy is

developed in an effort to accurately measure the various aspects of CE and identify potential areas

of improvement towards the transition to a CE economic model.

1.3 What is the Price of Energy?

It is evident that energy affects every single individual and entity in the world. Moving towards

a broad transformation of global energy, it is crucial to precisely quantify the "price of energy", and

study how it evolves through time, through major political and social events, and through changes

in energy and monetary policies. To this respect, the different types and sources of energy need

to be identified along with their corresponding economic, pricing, supply and demand attributes.

This task is complex and challenging.

Different types and sources of energy are used and produced in today’s world. Primary energy

sources include fossil fuels (i.e. petroleum, natural gas and coal), nuclear energy, and renewables,

while electricity is considered as a secondary energy source since it is generated from primary

energy sources. In addition, the energy sources are measured in different physical units. For

example: liquid fuels are measured in barrels or gallons, natural gas in cubic feet, coal in short

tons, and electricity in kilowatts and kilowatthours. Thus, one standard physical unit is required,

and in this context BTU will be used since it is commonly used for comparing different types of

energy to each other in the United States.

Similarly, the different types and sources of energy along with the various energy feedstocks

and products are governed by their unique pricing, demand and supply mechanisms. For example,

the main method for pricing crude oil in international trade is the market-related pricing system,

the adoption of which by many oil exporters in 1986-1988 opened a new chapter in the history of

oil price formation. It represented a shift from a system where the prices were administered by the

large multinational oil companies in the 1950s and 1960s and then by OPEC between 1973-1988,

to a system in which prices are set by "markets" [29]. Moreover, EIA considers seven key factors

that could influence oil markets. These factors include the supply in the OPEC and non-OPEC
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countries, the demand in the OECD and non-OECD countries, the OECD inventories, the spot

prices of oil and its products and various financial markets indicators [30].

But even though oil and natural gas are substitutes in many processes, they do not follow the

same pricing system. Although, the oil indexation became the leading pricing mechanism for

natural gas in the 20th and early 21st century in Europe, in recent years, gas-to-gas competition

seems to have become the dominant price mechanism [31]. Also, the crude oil price has a small

impact on the natural gas price, while the coal price has no effect [32]. Unlike oil, the price of

natural gas is governed mainly by supply and demand, weather conditions, availability and prices

of other fuels, and the level of economic growth [33].

These two indicative examples reveal the complexities and unique features of the energy land-

scape which cause the nonexistence of a "unified" price of energy.

1.4 Literature Review

To address the above-mentioned challenges, a detailed analysis of the fundamentals of the

energy landscape is needed. The US energy landscape is a complex and extensive network of

energy feedstocks and products across multiple sectors. This complexity is due to the fact that

the various energy feedstocks can be utilized in many different ways. More specifically, they can

be directed straight to the end-use sectors, or converted and refined to be directed to the end-use

sectors and/or to the intermediate energy consuming sector, or directed straight to the intermediate

energy consuming sector.

The requirement for energy as an input to provide products and/or services is defined as energy

demand [34]. Since some of the energy feedstocks can be directed to the end-use sectors, the term

products in this context refers to the components sent to the end-use sectors, including the primary

energy sources e.g. natural gas, coal etc. The components that are directed to the end-use sectors

should be delineated, ensuring that all energy demand is accounted for while avoiding any double

counting of any energy demand. It is of utmost importance to maintain a holistic and concrete

approach in defining and counting the various energy products so as to be precise and consistent

throughout this context. This is essential, since the total demand of the energy products directed to
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the end-use sectors along with their respective prices constitute the cornerstone of the developed

forecasting framework.

To this respect, extensive literature review has been conducted ensuring familiarity and com-

prehension of such a complex energy landscape, and presented in Chapters 2, 3 and 4. This in-

cludes research in the development of process superstructures [35, 36, 37, 38, 39, 40, 41, 42, 43,

44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55], energy supply chain analyses [56, 57, 58, 59], and

strategic planning frameworks [60, 61, 62, 63, 64, 65, 66, 67, 68, 69] that utilize single and hybrid

energy feedstocks (biomass, coal, natural gas, municipal solid waste) to produce liquid fuels and

chemicals, as well as reviews in the current state of energy technologies [70, 71, 72, 73, 74, 75, 76].

Furthermore, the role of PSE in the transition towards CE has also been studied. In particular,

a literature review that lists the PSE approaches that have been developed and can be used in

this direction is presented in Chapter 5. The literature gaps have been identified and areas with

great potential that shall be explored are suggested. In Chapter 6, the literature of food supply

chains and the necessary steps towards CE food supply chains are reviewed, while an extensive

literature review for the identification and assessment of the alternative pathways for the waste and

by-products valorization across the supply chain of coffee is demonstrated. Finally, the lack of

effective CE metrics and assessment indicators at the micro level along with the key challenges

causing this research gap are summarized and highlighted in Chapter 7.

1.5 The US Energy Landscape

The US Energy Information Administration (EIA) defines the energy consuming end-use sec-

tors as the residential, commercial, industrial and transportation sectors of the economy because

they purchase or produce energy for their own consumption and not for resale. The electric power

sector is defined as an intermediate energy – consuming sector which provides electricity to the

four major energy sectors i.e. residential, commercial, industrial and transportation [34, 77]. The

definitions of each of the four end-use sectors and the electric power intermediate energy - con-

suming sector are provided verbatim by EIA [34, 77] as follows:
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• Residential Sector: An energy – consuming sector that consists of living quarters for private

households. Common uses of energy associated with this sector include space heating, water

heating, air conditioning, lighting, refrigeration, cooking, and running a variety of other

appliances. The residential sector excludes institutional living quarters.

• Commercial Sector: An energy – consuming sector that consists of service-providing facil-

ities and equipment of businesses; Federal, State, and local governments; and other private

and public organizations, such as religious, social, or fraternal groups. The commercial sec-

tor includes institutional living quarters. It also includes sewage treatment facilities. Com-

mon uses of energy associated with this sector include space heating, water heating, air con-

ditioning, lighting, refrigeration, cooking, and running a wide variety of other equipment.

Note: This sector includes generators that produce electricity and/or useful thermal output

primarily to support the activities of the above-mentioned commercial establishments.

• Industrial Sector: An energy – consuming sector that consists of all facilities and equipment

used for producing, processing, or assembling goods. The industrial sector encompasses

the following types of activity manufacturing (NAICS*codes 31-33); agriculture, forestry,

fishing and hunting (NAICS code 11); mining, including oil and gas extraction (NAICS

code 21); and construction (NAICS code 23). Overall energy use in this sector is largely

for process heat and cooling and powering machinery, with lesser amounts used for facility

heating, air conditioning, and lighting. Fossil fuels are also used as raw material inputs to

manufactured products. Note: This sector includes generators that produce electricity and/or

useful thermal output primarily to support the above mentioned industrial activities.

• Transportation Sector: An energy – consuming sector that consists of all vehicles whose

primary purpose is transporting people and/or goods from one physical location to another.

Included are automobiles; trucks; buses; motorcycles; trains, subways, and other rail ve-

*The North American Industry Classification System (NAICS) is the standard used by Federal statistical agencies
in classifying business establishments for the purpose of collecting, analyzing, and publishing statistical data related
to the US business economy (https://www.census.gov/eos/www/naics/)
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hicles; aircraft; and ships, barges, and other waterborne vehicles. Vehicles whose primary

purpose is not transportation (e.g., construction cranes and bulldozers, farming vehicles, and

warehouse tractors and forklifts) are classified in the sector of their primary use.

• Electric power sector: An energy – consuming sector that consists of electricity only and

combined heat and power (CHP) plants whose primary business is to sell electricity, or

electricity and heat, to the public – i.e., North American Industry Classification System 22

plants.

The Figures 1.1 to 1.5 illustrate the landscape for each energy feedstock. Please note that the

gray arrows are not taken into account so as to avoid double counting (indirect use).

Figure 1.1: Landscape of Crude Oil in the United States

Figure 1.6 illustrates in detail the complete US energy landscape for the different energy feed-

stocks [78]. Each energy feedstock (source) has a unique color for easy visualization of the dif-
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Figure 1.2: Landscape of Natural Gas and Coal in the United States

Figure 1.3: Landscape of Solar and Wind in the United States

Figure 1.4: Landscape of Geothermal and Hydroelectric in the United States
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Figure 1.5: Landscape of Biomass in the United States

ferent pathways. Arrows connect energy feedstocks with the sectors that are consumed in. A gray

arrow represents indirect use of an energy feedstock in an intermediate energy sector. A colored ar-

row (other than gray) represents direct use and matches with the color of its corresponding energy

feedstock. It is also directed to the end-use sector that this energy feedstock is consumed in.

Figure 1.6: US Energy Consumption by Source and End-Use Sector
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As mentioned above, to avoid double counting, the feedstocks directed into the electric power

sector are not directly taken into account, because electricity is sold from the electric power sector

as a product to the four end-use sectors. Therefore, the arrows going into the electric power sector

are not counted, whereas the arrows leaving the electric power sector are counted.

1.6 Dissertation Objectives

This dissertation aims to address some of the outstanding questions regarding the energy tran-

sition and circular economy implementation. In particular, the main focus areas here are twofold.

First, the study and analysis of the entire energy landscape that enhances our understanding with

regards to the supply-demand and pricing mechanisms across all energy feedstocks and products.

This will ultimately enable the design and implementation of effective energy policies for mitigat-

ing climate change and empowering the energy transition. Second, the development of analytical,

systems engineering methodologies for the modeling and optimization of food supply chains un-

der CE principles, which will be supported by CE indicators and metrics to holistically assess the

alternative pathways towards circularity.

With regards to the first objective, a novel, quantitative framework that defines and quantifies

a unified price of energy is introduced. Energy Price Index - EPIC, which is determined by both

the demand and the prices of the energy products, represents the average monthly price of energy

to the end-use consumers in $/MMBtu. Having to deal with a lag of several months on data

availability, a novel forecasting framework is developed to estimate the current as well as future

values of EPIC using state-of-the-art optimization, statistical and machine learning methods. This

framework allows accurate forecasts for the demand and the prices of the energy products up to

48 and 12 months respectively. For accomplishing the first objective, potential applications of this

framework in the areas of policy, economics, finance and engineering are presented, revealing the

effectiveness of EPIC as a tool to evaluate, design and optimize different policy questions. Seeking

also to express the daily price of energy, the Energy Spot Price Index - ESPIC, is introduced. The

ESPIC quantifies the daily average market price of energy in $/MMBtu, and is also determined

by the demand and the spot prices of the energy products. Due to its inherent attributes, ESPIC
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has also enormous potential applications as a financial instrument for investors who seek to get

exposure to the entire energy market.

The second objective requires the development of novel methodologies for the implementation

of the convergence from a linear to a CE food supply chain as well as for the holistic evaluation of

this transition. As a first step, the objectives and goals of CE along with the challenges towards this

transition are presented. Since a holistic approach is required for this transition, PSE approaches

that can be readily used along with research gaps to facilitate this transition are identified. As a

second step, a novel CE system engineering framework and decision-making tool for the modeling

and optimization of food supply chains is introduced. The framework works as follows: First,

the alternative pathways for the production of the desired product and the valorization of wastes

and by-products are identified. Then, a Resource-Task-Network representation that captures all

these pathways is utilized, based on which a mixed-integer linear programming (MILP) model is

developed. This approach allows the holistic modeling and optimization of the entire food supply

chain, taking into account any of its special characteristics, potential constraints as well as different

objectives. Considering that typically CE introduces multiple, often conflicting objectives, a multi-

objective optimization strategy for trade-off analysis is deployed. A representative case study for

the supply chain of coffee is discussed, illustrating the steps and the applicability of the framework.

Single and multi-objective optimization formulations under five different coffee-product demand

scenarios are also discussed.

Additionally, and since the transition towards environmental, economic and social advance-

ments requires analytical tools for quantitative evaluation of the alternative pathways, an analytical

decision-making tool for evaluating and comparing the circularity of different companies or sce-

narios at micro level is introduced. The tool provides i) a set of indicators and metrics with sector-

specific dimensions, ii) quantitative, holistic and robust CE overall and category-based metrics,

iii) media for data visualization and analysis of CE indicators, and iv) an analytical tool to assess

multi-national businesses and the multi-scale, multi-faceted and interconnected CE supply chains.

Using a GRI-based, quantitative tool that takes into account all goals of CE holistically, compa-
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nies are able to track their transition towards CE, conduct temporal analysis, and compare and

benchmark their performance against their peers and industry’s standards. The applicability and

the capabilities of the developed CE assessment framework is demonstrated through case studies in

the Energy & Utilities, Manufacturing and Automotive sectors where category-based and overall

circularity indices are calculated over a period up to 10 years.
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2. A NOVEL FORECASTING FRAMEWORK: THE ENERGY PRICE INDEX * † ‡

2.1 Background & Motivation

Energy markets are sensitive and volatile to technological breakthroughs and innovations,

changes in monetary and fiscal policies, major global events and consumer trend changes [79,

80, 81]. Various governmental agencies, political and commercial organizations, think tanks as

well as researchers and academics worldwide, consider various energy policies and their effects

when dealing with the increasing concerns in energy independence, energy scarcity, energy sus-

tainability, and pollution caused by the utilization of energy [82, 83, 84, 85, 86, 87]. Furthermore,

with strategic political and commercial decisions and policies being assessed in economic terms, it

is of utmost importance to accurately determine the price of energy so as to evaluate their effective-

ness. Undoubtedly, energy affects every person and entity. Therefore, it is essential to accurately

quantify “the price of energy” and grasp how it is affected by major breakthroughs, political events,

as well as energy and monetary policies.

2.2 Introduction

Given the absence of such a pre-existing tool, a novel forecasting framework, the Energy Price

Index (EPIC) is introduced, which can be used as a benchmark to calculate the average price of

energy to the end-use consumers in the United States - US. The complex energy landscape of the

US has been carefully analyzed in Section 1.5 to determine the products that are directed to the

*Reprinted from "A hybrid forecasting framework with statistical and machine learning methods for the energy
sector" by S.G. Baratsas, R.C. Allen, E.N. Pistikopoulos, Computers & Chemical Engineering, 2021, with permission
from Elsevier and Copyright Clearance Center. A summary of the work is given in this chapter with additional details
provided in Appendix E.

†Reprinted from "A framework to predict the price of energy for the end-users with applications to monetary
and energy policies" by S.G. Baratsas, A.M. Niziolek, O. Onel, L.R. Matthews, C.A. Floudas, D.R. Hallermann,
S.M. Sorescu, E.N. Pistikopoulos, Nature Communications, 2021, Vol. 12, number 1, pp 1-12, with permission from
Nature Publishing Group and Copyright Clearance Center. A summary of the work is given in Chapters 2 and 4 with
additional details provided in Appendices B, C and G.

‡Reprinted from "A novel quantitative forecasting framework in energy with applications in designing energy
intelligent tax policies" by S.G. Baratsas, A.M. Niziolek, O. Onel, L.R. Matthews, C.A. Floudas, D.R. Hallermann,
S.M. Sorescu, E.N. Pistikopoulos, Applied Energy, 2021, with permission from Elsevier and Copyright Clearance
Center. A summary of the work is given in Chapters 2 and 4 with additional details provided in Appendices C, D, and
G.
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end-use sectors of the US economy. The total energy demand of these products, together with

their monthly prices, serve as the backbone of EPIC. However, the available data for both the key

components of EPIC lag several months, so a rolling horizon model that uses information from

the past so as to estimate the information that is not currently available is introduced. The initial

goal is to accurately forecast the current value of EPIC and the forecasting ability of the proposed

methodology is rigorously tested over a long period of 184 months, demonstrating remarkable ac-

curacy. Ultimately, the forecasting ability of the framework is further extended providing accurate

forecasts for the future values of both EPIC components. In particular, energy demands and energy

prices are predicted up to 48 and 12 months in the future respectively. The high level of granular-

ity of the framework allows also for the estimation of the average price of energy for the end-use

sectors through the introduction of the energy price sub-indices.

2.3 EPIC Methodology

The two key factors comprising EPIC are the total demand of the energy products that are

directed to the end-use sectors in the US along with their respective monthly prices.

2.3.1 Demand and Price Determination

Energy products consumed by the US economy originate from crude oil, natural gas, coal,

nuclear, hydroelectric, geothermal, solar, wind, and several types of biomass. The exact determi-

nation of these products, their consumption, and their monthly prices is crucial. Hence, the EIA

Monthly Energy Review Report is used as a reference point to determine the type and the amount

of products that are consumed from each sector. The full list of these energy products and the

corresponding sector that are consumed in is presented in Table 2.1.

Table 2.1: Energy Products and Sectors that are consumed in

Product No. Product Name Sector Consumed In
1 Distillate Fuel Oil Residential
2 Kerosene Residential
3 HGL (Propane) Residential
4 Distillate Fuel Oil Commercial
5 Kerosene Commercial

Continued on next page
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Table 2.1 – continued from previous page
Product No. Product Name Sector Consumed In

6 HGL (Propane) Commercial
7 Motor Gasoline Commercial
8 Petroleum Coke Commercial
9 Residual Fuel Oil Commercial
10 Asphalt and Road Oil Industrial
11 Distillate Fuel Oil Industrial
12 Kerosene Industrial
13 HGL (Propane/Propylene) Industrial
14 Lubricants Industrial
15 Motor Gasoline Industrial
16 Petroleum Coke Industrial
17 Residual Fuel Oil Industrial
18 Other Petroleum Products Industrial
19 Aviation Gasoline Transportation
20 Distillate Fuel Oil Transportation
21 Jet Fuel Transportation
22 HGL (Propane) Transportation
23 Lubricants Transportation
24 Motor Gasoline Transportation
25 Residual Fuel Oil Transportation
26 Geothermal Energy Residential
27 Solar Energy Residential
28 Biomass (Wood) Energy Residential
29 Hydroelectric Power Commercial
30 Geothermal Energy Commercial
31 Solar Energy Commercial
32 Wind Energy Commercial
33 Biomass (Wood) Energy Commercial
34 Biomass (Waste) Energy Commercial
35 Biomass (Fuel Ethanol) Energy Commercial
36 Hydroelectric Power Industrial
37 Geothermal Energy Industrial
38 Solar Energy Industrial
39 Wind Energy Industrial
40 Biomass (Wood) Energy Industrial
41 Biomass (Waste) Energy Industrial
42 Biomass (Fuel Ethanol) Energy Industrial
43 Biomass (Losses and Co-Products) Energy Industrial
44 Biomass (Fuel Ethanol) Transportation
45 Biomass (Bio-Diesel) Transportation
46 Natural Gas Residential
47 Natural Gas Commercial
48 Natural Gas Industrial
49 Natural Gas Transportation

Continued on next page
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Table 2.1 – continued from previous page
Product No. Product Name Sector Consumed In

50 Electricity Residential
51 Electricity Commercial
52 Electricity Industrial
53 Electricity Transportation
54 Coal Residential
55 Coal Commercial
56 Coal Industrial

The monthly consumption (in energy units) along with the monthly price (in $ per energy

unit) for each of these energy products are obtained from the EIA and from other sources, and are

presented in Table 2.2. Please note that the proposed framework is generic and can be applied to

(a) the US on a national level, (b) to US on a state-by-state basis, (c) regional level of multi-states,

and (d) other countries, provided that a thorough analysis of the specific energy landscape has been

conducted, the particular energy feedstocks and products have been identified, and data for their

prices and demands are available.

Table 2.2: Demands & Prices of Energy Products

Product No. Demand Data Price Data
1 EIA MER[77]: Table 3.8a EIA Petroleum and Other Liquids
2 EIA MER[77]: Table 3.8a EIA MER[77]: Table 9.7
3 EIA MER[77]: Table 3.8a EIA Petroleum and Other Liquids
4 EIA MER[77]: Table 3.8a EIA MER[77]: Table 9.7
5 EIA MER[77]: Table 3.8a EIA MER[77]: Table 9.7
6 EIA MER[77]: Table 3.8a EIA MER[77]: Table 9.7
7 EIA MER[77]: Table 3.8a EIA MER[77]: Table 9.7
8 EIA MER[77]: Table 3.8a EIA EPM[88]: Table 4.1 & 4.2
9 EIA MER[77]: Table 3.8a EIA MER[77]: Table 9.5

10 EIA MER[77]: Table 3.8b EIA SEDS: Table F2[89] & BLS Database[90]
11 EIA MER[77]: Table 3.8b EIA MER[77]: Table 9.7
12 EIA MER[77]: Table 3.8b EIA MER[77]: Table 9.7
13 EIA MER[77]: Table 3.8b EIA MER[77]: Table 9.7
14 EIA MER[77]: Table 3.8b EIA SEDS: Table F10[89] & BLS Database[90]
15 EIA MER[77]: Table 3.8b EIA MER[77]: Table 9.7
16 EIA MER[77]: Table 3.8b EIA EPM[88]: Table 4.1 & 4.2
17 EIA MER[77]: Table 3.8b EIA MER[77]: Table 9.5
18 EIA MER[77]: Table 3.8b EIA SEDS: Table F15[89] & BLS Database[90]
19 EIA MER[77]: Table 3.8c EIA MER[77]: Table 9.6 & 9.7
20 EIA MER[77]: Table 3.8c EIA MER[77]: Table 9.7

Continued on next page
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Table 2.2 – continued from previous page
Product No. Demand Data Price Data

21 EIA MER[77]: Table 3.8c EIA MER[77]: Table 9.7
22 EIA MER[77]: Table 3.8c EIA MER[77]: Table 9.7
23 EIA MER[77]: Table 3.8c EIA SEDS: Table F10[89] & BLS Database[90]
24 EIA MER[77]: Table 3.8c EIA MER[77]: Table 9.4
25 EIA MER[77]: Table 3.8c EIA MER[77]: Table 9.5
26 EIA MER[77]: Table 10.2a Lazard LCEA[91]
27 EIA MER[77]: Table 10.2a Lazard LCEA[91]
28 EIA MER[77]: Table 10.2a Lazard LCEA[91] and EIA AEO[81]
29 EIA MER[77]: Table 10.2a EIA AEO[81]
30 EIA MER[77]: Table 10.2a Lazard LCEA[91]
31 EIA MER[77]: Table 10.2a Lazard LCEA[91]
32 EIA MER[77]: Table 10.2a Lazard LCEA[91]
33 EIA MER[77]: Table 10.2a Lazard LCEA[91] & EIA AEO[81]
34 EIA MER[77]: Table 10.2a Lazard LCEA[91] & EIA AEO[81]
35 EIA MER[77]: Table 10.2a EIA MER[77]: Table 9.7 & DOE AFPR[92]
36 EIA MER[77]: Table 10.2b EIA AEO[81]
37 EIA MER[77]: Table 10.2b Lazard LCEA[91]
38 EIA MER[77]: Table 10.2b Lazard LCEA[91]
39 EIA MER[77]: Table 10.2b Lazard LCEA[91]
40 EIA MER[77]: Table 10.2b Lazard LCEA[91] & EIA AEO[81]
41 EIA MER[77]: Table 10.2b Lazard LCEA[91] & EIA AEO[81]
42 EIA MER[77]: Table 10.2b EIA MER[77]: Table 9.7 & DOE AFPR[92]
43 EIA MER[77]: Table 10.2b Lazard LCEA[91] & EIA AEO[81]
44 EIA MER[77]: Table 10.2b EIA MER[77]: Table 9.7 & DOE AFPR[92]
45 EIA MER[77]: Table 10.2b EIA MER[77]: Table 9.7 & DOE AFPR[92]
46 EIA MER[77]: Table 4.3 EIA MER[77]: Table 9.10
47 EIA MER[77]: Table 4.3 EIA MER[77]: Table 9.10
48 EIA MER[77]: Table 4.3 EIA MER[77]: Table 9.10
49 EIA MER[77]: Table 4.3 EIA SEDS: Table F19[89] & Thomson Reuters Database[93]
50 EIA EPM[88]: Table 5.1 EIA EPM[88]: Table 5.3
51 EIA EPM[88]: Table 5.1 EIA EPM[88]: Table 5.3
52 EIA EPM[88]: Table 5.1 EIA EPM[88]: Table 5.3
53 EIA EPM[88]: Table 5.1 EIA EPM[88]: Table 5.3
54 EIA MER[77]: Table 6.2 EIA SEDS: Table F24[89] & BLS Database[90]
55 EIA MER[77]: Table 6.2 EIA SEDS: Table F24[89] & BLS Database[90]
56 EIA MER[77]: Table 6.2 EIA SEDS: Table F24[89] & BLS Database[90]

2.3.2 EPIC Calculation

EPIC represents the average monthly price of energy in a given month, and as such is defined

as the summation of the price (in $/MMBtu) of each product multiplied by the weight fraction of

the demand of each product. The unit of EPIC is $/MMBtu.
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The real weight fraction based on the demand of each of the selected 56 energy products is

calculated using Equation (2.1):

wm,p =
Dm,p∑
pDm,p

∀(m, p) (2.1)

where wm,p is the weight fraction of product p in month m, and Dm,p is the demand of product p

in month m. The mathematical formulation of EPIC is presented in Equation (2.2):

EPICm =
∑
p

wm,p · Cm,p ∀m (2.2)

where EPICm represents the value of EPIC in month m, Cm,p represents the price of product p in

month m, and wm,p is the weight fraction of product p in month m.

2.4 Rolling Horizon Forecasting Framework

The data of the demands and the prices for some of the energy products become available

with a lag of one to three months. Since both the demand and prices of the energy products enter

into the EPIC calculation, a forecasting framework is required to estimate the present values for

both the demand and prices of the underlying energy products. Consequently, a rolling horizon

methodology is proposed as a forecasting framework to forecast the values of the required data

for the time period of interest, the actual values of which will not be known until a few months

later. The proposed methodology is using information from the previous three time periods, so as

to forecast the values for the time period of interest.

Figure 2.1 illustrates the general concept of the rolling horizon methodology, along with its

application over two stages in the future. Data from the three previous periods (T-3, T-2, T-1) are

used to forecast the data of interest in the current stage T. Subsequently, data from the periods T-2,

T-1, T are used for predicting the data of interest in stage T+1, and so on.

2.4.1 Forecasting of Energy Products’ Demand Weights

The demand of the energy products exhibits a lag between two to three months in data availabil-

ity. Thus, a rolling horizon based parameter estimation model is developed to forecast the weights
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Figure 2.1: Rolling Horizon Methodology in a Multistage Problem

of the demand of each energy product up to present date using the data from the previous 3 years.

The lookback period and the parameter estimation were selected considering the forecasting errors

for different schemes and lookback periods, and are shown in Appendix B. It is worth mentioning

that each month is trained separately since the energy demand is highly seasonal [77], as can be

seen in Figure 2.2 for the case of natural gas (NG).

Figure 2.2: Seasonal Volatility of Natural Gas Consumption
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A weight - based objective function is used to forecast the weights of the energy products. In

particular, the objective function aims to minimize the squared difference between the real value

of a product’s weight in the past horizon and the predicted value of product’s weight for the month

of interest. The optimization model takes into account the data from the previous 3 years and is

stated as follows:
min

∑
m

Errm

Errm =
∑
m′,p

(wm′,p − ŵm,p)
2

∑
p

ŵm,p = 1

ŵm,p ≥ 0

∀m′ | (m′ −m) = (−36) or (−24) or (−12)

(2.3)

where ŵm,p represents the forecast weight of product p in month m.

Since the data of the energy demand has a lag between two to three months, as of August 2021,

the real data until April 2021. Hence, the estimation of the weights of energy products for May

2021 requires data from May 2018, May 2019 and May 2020. Similarly, for June 2021, the data

of June 2018, June 2019 and June 2020 will be used. Figure 2.3 illustrates the monthly parameter

estimation for May 2021 and June 2021.

Figure 2.3: Monthly Weight Parameter Estimation
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The same methodology can be extended for the following months of the year. Since at this

point the real data until April 2021 is available, the weights up to April 2022 can be predicted.

However, the forecasting ability of the framework is not limited to one year, but can be further

extended by utilizing a combination of real and predicted data. More specifically, the forecasting

methodology works as follows:

• 2nd year forecasts require the deterministic data from the last two years along with the

forecasts of the first year;

• 3rd year forecasts require the deterministic data from the last one year along with the fore-

casts of the first and second years;

• 4th year forecasts require the forecasts of the first, second and third years;

Figure 2.4 illustrates the rolling horizon framework for the first, second, third and fourth year

forecasts of the weights using September 2021 as an example.

Figure 2.4: Rolling Horizon Framework up to 4 years for September 2021
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2.4.2 Forecasting of Energy Products’ Prices

The prices of the energy products are the second component of EPIC. As shown in Table

2.2, the required data are collected from a variety of sources. However, there is still a lag up

to 3 months in data availability for some of these products. Therefore, a rolling horizon based

parameter estimation model is developed so as to forecast the prices of these energy products up

to the present date. As illustrated in the following figures, some of these products demonstrate

high seasonality (Figure 2.5), while others demonstrate strong correlation with the spot prices of

various commodities (Figure 2.6).

Figure 2.5: Monthly Prices of NG and Electricity - Strong Seasonality

The first step of the forecasting methodology requires the grouping of the energy products

based on the lag of time until their prices become available. For the case of the US:
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Figure 2.6: Motor Gasoline Retail Price versus NY Harbor Gasoline Spot Price - High Correlation

• 16 renewable energy products are assumed to have constant price over a year (12 months).

Since their actual prices become available by the end of the year, until that point the values

from the previous year are used. Thus, there is no need for forecasting for these 16 products.

• The prices of the residential distillate fuel oil and residential HGL (propane) are taken from

the weekly EIA reports for the heating season (October through March), while for the rest

of the year are estimated from their corresponding spot prices using linear regression. The

price of NG in transportation sector is also taken from annual EIA reports and the monthly

prices are estimated from the Henry Hub NG spot price using linear regression. Thus, there

is no need for forecasting for these 3 products. In addition, the price of coal consumed in

the residential sector has gone to zero, since no coal is consumed in the residential sector

anymore.
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• The prices of the industrial asphalt, lubricants that are consumed in industrial and transporta-

tion sectors, other petroleum products that are consumed in industrial sector, motor gasoline

that is consumed in transportation sector, and coal in commercial and industrial sectors lag

1 month. Thus, the prices of these 7 energy products require forecast for 1 month.

• The prices of the commercial and industrial petroleum coke, and electricity for all four sec-

tors lag 2 months. Thus, the prices of these 6 energy products require forecast for 2 months.

• The prices of the remaining 23 products require forecast for 2 or 3 months depending on the

release date of the data.

Therefore, the prices of 36 energy products need to be predicted. The proposed framework

takes into account the special attributes of the energy products i.e. seasonality, correlation with

spot prices etc., so as to ensure the optimal forecasting ability. Specifically, the prices of 5 prod-

ucts (residential NG, commercial NG, residential electricity, commercial electricity, and industrial

electricity) show strong seasonal pattern. Therefore, trigonometric functional form is selected to

capture this pattern since it provides accurate forecasting ability for seasonal patterns over time.

Moreover, the availability of the spot prices of the commodities up to the present date (without any

lag) in addition to the high correlation of the price of energy products with the price of commodi-

ties, provide a great platform to accurately forecast prices up to the present date. For this purpose,

three different strategies are developed:

1. A pure trigonometric function versus time is fitted for a lookback period of 12 months for

the residential NG, commercial electricity, and industrial electricity;

2. A trigonometric function versus time along with a linear function versus the commodity with

the largest absolute correlation coefficient is fitted for a lookback period of 12 months for

commercial NG, and residential electricity;

3. The commodity with the largest absolute correlation coefficient is selected for a lookback

period of 9 months for the remaining 31 products;

23



The following energy commodities are used within the framework:

1. Crude Oil, WTI Cushing, Oklahoma
2. Crude Oil, Brent Europe
3. Conventional Gasoline, NY Harbor, Regular
4. Conventional Gasoline, US. Gulf Coast, Regular
5. RBOB Regular Gasoline, Los Angeles
6. No.2 Heating Oil, NY Harbor
7. Ultra-Low-Sulfur No.2 Diesel Fuel, NY Harbor
8. Ultra-Low-Sulfur No.2 Diesel Fuel, US Gulf Coast
9. Ultra-Low-Sulfur No.2 Diesel Fuel, Los Angeles

10. Kerosene-Type Jet Fuel, US Gulf Coast
11. Propane, Mont Belvieu, Texas
12. Natural Gas, Henry Hub

The correlation coefficient is calculated using Equation (2.9), as follows:

µm,p =

∑m
i=m−LCp,i

L
(2.4)

µm,com =

∑m
i=m−LCcom,i

L
(2.5)

where µm,p is the average price of product p in month m, µm,com is the average price of commodity

com in month m, and L is the lookback period.

σm,p =

√√√√( 1

L− 1

)
·

m∑
i=m−L

(
Cp,i − µm,p

)2 (2.6)

σm,com =

√√√√( 1

L− 1

)
·

m∑
i=m−L

(
Ccom,i − µm,com

)2 (2.7)

where σm,p is the standard deviation of product p in month m, σm,com is the standard deviation of

commodity com in month m.

covm,p,com =

∑m
i=m−L

(
Cp,i − µm,p

)
·
(
Ccom,i − µm,com

)
L− 1

(2.8)

where covm,p,com is the covariance of product p to commodity com looking back from month m.
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ρm,p,com =
covm,p,com

σm,p · σm,com

(2.9)

where ρm,p,com is the correlation coefficient of product p to commodity com looking back from

month m.

This procedure is recursively applied at each month for a lookback period of either 9 or 12

months to select the commodity with the most correlated price for each product. Since this cal-

culation is over a lookback period, the commodity with the largest price correlation, com*, is

determined for each product and each month a priori.

The general type of the proposed fitted function for the price of each product is given in Equa-

tion (2.10):

P̂m,p = am,p,com∗ · Ccom∗,m + bm,p + cm,p · sin
(π

6
m
)

+ dm,p · cos
(π

6
m
)

(2.10)

For the products whose prices do not show seasonality, the parameters c and d in Equation

(2.10) become zero, while for those with strong seasonal prices that are explained by pure trigono-

metric functions, the parameter a becomes zero.

The solution of the following optimization model provides the values of the parameters a, b, c,

and d of each product at each month.

min
∑
p

∑
m

m−1∑
i=m−L

(
Errp,m,i

)2
Errp,m,i = Cp,i −

(
am,p,com∗ · Ccom∗,i + bm,p + cm,p · sin

(π
6
i
)

+ dm,p · cos
(π

6
i
))

∀i : m− L ≤ i < m

(2.11)

The results of this optimization model provide the parameters to forecast the price of each

product for the upcoming month. For the products that require forecasts for more than one month,

the same parameters that are optimized for month m are used.
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2.5 Forecasting Results

The accuracy of the proposed forecasting framework is demonstrated in the following sections

for the weights of the demands and the prices, as well as for the overall EPIC.

2.5.1 Demand Forecasting Results

The validity of the proposed methodology for the forecasting of the weights of the demands

for the energy products is tested over a period of 184 months from January 2006 to April 2021,

by comparing the predicted value of the monthly weight of each product’s demand with its actual,

known value. For this comparison, the sum of the squared forecasting error for each month is

computed over the testing period as it is shown in Equation (2.12)

PredErrm =
∑
p

(wm,p − ŵm,p)
2 ∀m (2.12)

where wm,p is the actual weight of product p in month m, and ŵm,p is the forecast of the weight of

product p in month m.

Table 2.3 summarizes the results in the form of average sum of squared error, minimum sum

of squared error and maximum sum of squared error. It should be noted that the number of months

to be compared decreases as the year of forecasting increases. For example, the forecasts of the

second year require the forecast weights of the first year so there are less actual monthly values to

compare.

Table 2.3: Forecasting Results of Weights up to 4 years

Year of
Forecasting

Months to
Compare

Average
Sum of Squares Error

Minimum
Sum of Squares Error

Maximum
Sum of Squares Error

1st year 184 0.000375 0.000050 0.005166
2nd year 172 0.000455 0.000075 0.005070
3rd year 160 0.000530 0.000128 0.006525
4th year 148 0.000599 0.000180 0.005886

The excellent forecasting ability of the proposed methodology is clearly shown in Table 2.3,

since the reported error values are extremely low over a very long period of 184 months. This
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is better captured when the square root of the average sum of the squared errors is considered,

which is 1.94%, 2.13%, 2.30% and 2.45% for the 1st, 2nd, 3rd and 4th year respectively. The

very low forecasting error (2.45%) in the case of the 4th year where only unknown (predicted)

values have been used is of significant importance. As expected, the average sum of the squared

error increases as the year of prediction increases due to the decreasing number of months with

known values. The robustness of the forecasting framework is evident even during the COVID-19

pandemic where unprecedented challenges in the energy sector took place. The full list of data for

the sum of squared errors of weight forecasts is given in the Appendix C.1.

2.5.2 Price Forecasting Results

In this section, the accuracy of the proposed methodology for the price forecasting of the 36

energy products is evaluated. The average forecasting error for each product is defined in Equation

(2.13), by comparing the predicted value of each product’s price with its actual, known value over a

period of 184 months from January 2006 to April 2021. For this comparison, the average absolute

error for each month is computed over the testing period of 184 months.

Errp =

∑
m |Cm,p − P̂m,p|

184
(2.13)

where Cm,p is the actual price of product p in month m, and P̂m,p is the forecast of the price of

product p in month m.

Table 2.4 provides a summary of the forecasting results for the different functions and forecast-

ing periods in the form of average absolute error ($/MMBtu). The full list of the results is shown

in the Appendix C.2.

As expected, the average forecasting error always increases as the number of forecasting

months increases. Hence, the one month ahead forecasting error is lower than the two and three

months ahead forecasting error. Furthermore, the two months ahead forecasting error is lower than

the three months ahead forecasting error. Moreover, the industrial coal always demonstrates the

lowest average forecasting error with 0.069 $/MMBtu, 0.098 $/MMBtu, and 0.125 $/MMBtu re-

spectively. On the contrary, the highest average forecasting error is always illustrated with kerosene
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which is consumed in the residential, commercial and industrial sectors with 1.868 $/MMBtu,

2.472 $/MMBtu, and 2.929 $/MMBtu respectively.

Table 2.4: Summary of Price Forecasting Results from January 2006 to April 2021

No. of
Energy

Products

Forecasting
Function

Average Abs. Error Ahead ($/MMBtu)
1 month
Ahead

2 months
Ahead

3 months
Ahead

3 Pure Trigonometric
(12 months) 0.6587 0.7760 0.8593

2
Trigonometric &

Commodity based Linear
(12 months)

0.5350 0.7425 0.9170

31
Trigonometric &

Commodity based Linear
(9 months)

0.9146 1.2107 1.4228

Based on the above findings, the proposed methodology for the forecasting of the prices of the

energy products is considered quite accurate and is utilized for the estimation of EPIC up to date.

In the following sections, the forecasting framework is expanded utilizing time series forecasting

methodologies such as ARIMA, exponential smoothing, as well as advanced machine learning and

deep learning techniques, enabling the accurate forecast of the prices of energy products up to 12

months in the future.

Overall, the excellent forecasting ability along with the unique inherent attributes of EPIC

capturing both the demands and the prices of the products over the entire energy landscape in the

US, render EPIC as the ideal tool for designing, assessing and optimizing various policy decisions

of public interest. Four prime, representative policy case studies are presented in the Chapter 4.

2.5.3 Releasing and Adjusting EPIC

By utilizing the accurate forecasting methodology that is presented in the previous sections,

the up-to-date value of EPIC can be readily calculated. On the first day of each month, the value

of EPIC for the previous month is released. Since the actual weights of the demands and the prices

of the energy products are not known until a later time, the initial release of EPIC is going to be

a preliminary estimate based on the forecasts of the values of both the weights and the prices. As
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soon as the actual data of weights and prices of the energy products become available, the value of

EPIC will be re-adjusted. Since there is lag in data availability of up to three months, EPIC will be

finalized after one initial release and two re-adjustments. Figure 2.7 displays this scheme through

two indicative examples.

Figure 2.7: Scheme for Releasing and Adjusting EPIC

As of August 2021, EPIC of April 2021 is finalized and the initial release of EPIC for July

2021 is released. At the same time, the forecast for EPIC’s value for June 2021 is re-adjusted

for the first time, while EPIC’s value for May 2021 is re-adjusted for the second time. The same

approach is followed for the next month. In particular, having the initial release for July 2021 from

the previous month and since more data has become available in the meantime, the value of EPIC

for July 2021 will be re-adjusted for the first time. Similarly, the value of EPIC for June 2021 will

be re-adjusted for the second time and the value of EPIC for May 2021 will be finalized. The initial

release of EPIC for August 2021 will also take place. This scheme guarantees that EPIC is always

accurate and up to date.
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2.6 EPIC Forecasting Accuracy

The proposed forecasting framework provides accurate forecasts for both demands and prices

of the energy products, enabling the up to date estimation of EPIC. Implementing the developed

methodology, the EPIC is tracked for a period of 184 months, from January 2006 to April 2021.

Apart from the finalized value of EPIC for each month which can be computed once the actual

data become available, the initial release as well as the adjusted values of EPIC for each month

are presented. The absolute differences between the actual and the predicted values of EPIC are

also shown as a demonstration of the accuracy of the developed framework. Table 2.5 summarizes

the mean absolute error (MAE) and the mean absolute percentage error (MAPE) of the forecasting

framework over the testing period of 184 months.

Table 2.5: EPIC Forecasting Accuracy over 184 months

EPIC Forecasts
Mean Absolute Error Mean Absolute Percentage Error

($/MMBtu) (%)

Initial EPIC Release 0.5397 2.778

1st EPIC Adjustment 0.2668 1.402

2nd EPIC Adjustment 0.1952 1.026

As expected, the error decreases once more data become available. The initial EPIC release

exhibits the highest error with 0.5397 $/MMBtu and 2.778%, followed by the 1st EPIC adjustment

with 0.2668 $/MMBtu and 1.402%. The 2nd EPIC adjustment shows the lowest error with 0.1952

$/MMBtu and 1.026%. It is worth mentioning that both error metrics over a long testing period of

184 months are significantly low, with the MAPE of the initial EPIC being less than 2.8%, while

the 2nd EPIC adjustment is just 1.026%. Appendix D.1 demonstrates the actual EPIC values, the

three forecasts along with the absolute percentage errors for each month over the testing period of

184 months.

The graphical representation of the actual EPIC along with the three forecasts is shown in Fig-

ure 2.8. The last actual EPIC value is on April 2021, and the EPIC values for the next 3 months
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represent forecasts. May and June 2021 are determined through the 2nd and the 1st adjusted EPIC

values respectively, while the initial forecast for July 2021 is released. It can be clearly observed

that the distance error between the forecast values (colored markers) and actual EPIC values (blue

line) is quite small over this long testing period, and that the monthly forecasts constantly im-

prove once more data become available. Additionally, the forecasting accuracy of the framework

improves significantly over time, since more data are used to train the model.

Figure 2.8: Actual EPIC versus its Forecasts

In particular, the absolute percentage error for the initial release of EPIC has been reduced to

2.07% and 2.25% for the last 120 months (May 2011 - April 2021) and 24 months (May 2019 -

April 2021) respectively, indicating a substantial improvement from the 4.45% error of the first 24

months (January 2006 - December 2007). In 2020, and despite the extraordinary circumstances

due to the COVID-19 pandemic, the absolute percentage error for the initial release of EPIC was
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just 1.50%, demonstrating the robustness of the developed framework. This forecasting ability

within the energy sector is noteworthy.

Figure 2.9 illustrates the values of EPIC from January 2003 to July 2021 in $/MMBtu, with the

values of the last three months being forecasts.

Figure 2.9: Energy Price Index - EPIC

The EPIC framework has been incorporated into a website, Energy Price Index (EPIC) -

(https://parametric.tamu.edu/EPIC/), where the users are able to get information about EPIC’s

methodology and calculation, review historical and predicted data, as well as explore its various

functionalities, including different policy case studies and comparison of EPIC and its sub-indices

with various established and well accepted financial and economic metrics and benchmarks.
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2.7 Expanding EPIC’s Forecasting Ability - Time Series Forecasting Framework

The excellent forecasting ability of the developed framework that is presented in the previous

sections allows the calculation of the current value of EPIC. The several months lag of data avail-

ability on both the key components of EPIC is tackled by the introduced rolling horizon based

parameter estimation model that calculates the current value of EPIC. However, the future val-

ues of EPIC cannot be forecast under the present framework since the future prices of the energy

products cannot be estimated. To this respect, the forecasting framework is expanded with the in-

corporation of various statistical and machine learning forecasting methods of different nature e.g.

Exponential Smoothing, ARIMA, MLP, LSTM etc. Since EPIC consists of 56 different energy

products with 33 unique time series data (some energy products share the same time series), the

forecasting framework is applied to each one of these univariate time series individually and the

forecasting model that demonstrates the most accurate forecasting results over a testing period is

then utilized for the future forecasts.

The time series are monthly indexed and have a length between 161 and 425 months. The

forecasting horizon is 12 months, therefore the values of EPIC up to July 2022 will be predicted.

However, due to the lag in data availability for some of the energy products, the corresponding

forecasting horizon for these time series will be 13 or 14 months. The large number of unique time

series that needs to be predicted, each of which demonstrates different patterns, trends, cycles and

forecasting horizons, introduce major challenges in the forecasting process. Figure 2.10 highlights

these unique characteristics on a subset of the time series.

2.7.1 Forecasting of Energy Products’ Future Prices

The expanded forecasting framework consists of 7 groups of 40 forecasting methods [94], as it

is shown in Tables 2.6 and 2.7. The framework utilizes a variety of statistical and machine learning

forecasting methods so as to tackle such a challenging forecasting problem.
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Figure 2.10: Plots of the 9 Energy Products with the Highest Energy Demand over the last 5 years
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Table 2.6: Expanded Forecasting Framework for Future Prices

Forecasting
Group

Forecasting Method Description

Benchmark
Forecasting

fc1a Average [95, 96] forecasts based on the historical mean

fc1b Random Walk - Naïve [95, 96]
naïve forecasts equal to the most recent

observation assuming a random walk model

fc1c Seasonal Naïve [95, 96]
forecasts and prediction intervals from

an ARIMA(0,0,0)(0,1,0)m model

fc1d Random Walk with Drift [95, 96] forecasts using a random walk model with drift

fc1e
Random Walk with Drift

Transformed and Bias Adjusted [95, 96]

forecasts using a random walk model with drift,

adjusted back Box-Cox transformation

Forecasting
with

Decom-
position

fc2a Automated STL Decomposition [95, 96, 97] forecasts with automated STL decomposition

fc2b
ARIMA Automated

STL Decomposition [95, 96, 97]

STL decomposition with ARIMA seasonally adjusted data,

returns the reseasonalized forecasts

fc2c
Naïve Automated

STL Decomposition [95, 96, 97]

STL decomposition with Naïve seasonally adjusted data,

returns the reseasonalized forecasts

fc2d
Random Walk with Drift

Automated STL Decomposition [95, 96, 97]

STL decomposition with Random Walk model

with drift seasonally adjusted data,

& returns the reseasonalized forecasts

fc2e
ETS Automated

STL Decomposition [95, 96, 97]

STL decomposition, modeling the seasonally adjusted

back Box-Cox transformed data with ETS model,

& returns the reseasonalized forecasts

Exponential
Smoothing

fc3a
Simple Exponential Smoothing

[95, 96, 98, 99]
forecasts using simple exponential smoothing

fc3b Holt’s Damped Trend [95, 96, 98, 100, 99] forecasts using Holt’s linear damped trend method

fc3c Holt-Winters’ Additive [95, 96, 98, 101, 99] forecasts using Holt-Winters’ additive method

fc3d Holt-Winters’ Multiplicative [95, 96, 98, 101, 99] forecasts using Holt-Winters’ multiplicative method

fc3e Holt-Winters’ Damped Additive [95, 96, 98, 101, 99] forecasts using Holt-Winters’ damped additive method

fc3f
Holt-Winters’ Damped

Multiplicative [95, 96, 98, 101, 99]
forecasts using Holt-Winters’ damped multiplicative method

fc3g ETS [95, 96, 98, 99]
forecasts using Exponential smoothing state space model

(Error, Trend, Seasonal)

fc3h
ETS

Transformed Bias Adjusted [95, 96, 98, 99]

forecasts using Exponential smoothing state space model

(Error, Trend, Seasonal)

with adjusted back Box-Cox transformation

fc3i Bagged ETS [95, 96, 102]
forecasts using bagged model with ETS

function applied to all bootstrapped series

AutoRegressive
Integrated

Moving
Average

(ARIMA)

fc4a Manual ARIMA [95, 96]
forecasts using manually selected non seasonal

& seasonal terms in ARIMA models

fc4b Auto.arima Non Seasonal [95, 96] forecasts using automated non seasonal ARIMA model

fc4c Auto.arima Seasonal [95, 96] forecasts using automated seasonal ARIMA model

fc4d Grid Search Arima
forecasts using grid searching

for all the Arima model hyperparameters

fc4e Grid Search arima
forecasts using grid searching

for all the arima model hyperparameters
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Table 2.7: Expanded Forecasting Framework for Future Prices

Forecasting
Group

Forecasting Method Description

Advanced
Forecasting

Methods

fc5a
Dynamic Regression model

with Fourier terms [96]
forecasts using dynamic regression

model with Fourier terms

fc5b TBATS [96, 103]

forecasts using TBATS model
(Exponential smoothing state space model

with Box-Cox transformation,
ARMA errors, Trend and Seasonal components)

fc5c
Bootstrapping

ARIMA [96, 102]
forecasts using Box-Cox and Loess-based
decomposition bootstrap ARIMA models

Neural
Networks

(NN)

fc6a Feed-forward NN [95, 96]
Feed-forward neural networks

with a single hidden layer and lagged inputs
fc6b MLP_1 [104, 105] MLP with 5 hidden layers & 20 training reps
fc6c MLP_2 [104, 105] MLP with 5 hidden layers & 50 training reps

fc6d MLP_3 [104, 105]
MLP with 5 hidden layers,

12 autoregressive lags, & 50 training reps

fc6e MLP_4 [104, 105]
MLP that uses 20% validation set for the best

number of hidden nodes, max set at 8

fc6f ELM_1 [104, 105]
ELM with 100 hidden nodes, lasso with CV
output weight estimation & 50 training reps

fc6g ELM_2 [104, 105]
ELM with 100 hidden nodes, stepwise regression

with AIC output weight estimation & 50 training reps

fc6h ELM_3 [104, 105]
ELM with 100 hidden nodes, ridge regression

with CV output weight estimation & 50 training reps

fc6i ELM_4 [104, 105]
ELM with 100 hidden nodes, linear regression

output weight estimation & 50 training reps

Grid
Search

NN

fc7 MLP [106, 107]
MLP model with two hidden layers followed by

corresponding dropout layers and a final output layer

fc8 RNN [106, 107]
RNN model with two hidden layers followed by

corresponding dropout layers and a final output layer

fc9 LSTM [106, 107]
LSTM model with a single LSTM hidden layer,

followed by a dropout layer, a dense fully connected layer
followed by a dropout layer, and then a final output layer

fc10
CNN_LSTM_DNN

[106, 108, 107]

Hybrid CNN-LSTM model with two convolutional layers
for 1D inputs, followed by a pooling and a flatten layer,
two LSTM hidden layers, and then a final output layer

Before computing any forecasts, the time series are pre-processed so as to achieve stationarity

in their mean and variance, and decomposed so as to extract time series patterns such as trend,

seasonality and cycles. This is done using STL decomposition [97], Box-Cox transformation [109,
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110], first order and seasonal differencing so as to remove trend and seasonality. The goal is the

residuals, (ei = yi − ŷi), to be uncorrelated and have zero mean. The data sets are split into 80%

- 20% sets, with the first 80% of the data used for training/validating the models and the last 20%

used for testing their forecasting accuracy. Three accuracy measures are used: the Root Mean

Squared Error (RMSE), the symmetric Mean Absolute Percentage Error (sMAPE), and the Mean

Absolute Error (MAE), and are defined as follows:

RMSE =

√√√√1

h

h∑
i=1

(yi − ŷi)2 (2.14)

sMAPE =
2

h

h∑
i=1

|yi − ŷi|
|yi|+ |ŷi|

· 100% (2.15)

MAE =
1

h

h∑
i=1

|yi − ŷi| (2.16)

where h is the forecasting horizon, yi are the actual observations and ŷi are the forecasts produced

by the model at point i.

The forecasting groups and methods are briefly discussed here. The first forecasting group

"Benchmark Forecasting" consists of five methods that are rather simple but quite effective in

many cases. They are used to provide a benchmark on forecasting performance against the rest

of the forecasting groups which are more advanced and computationally expensive. The second

forecasting group "Forecasting with Decomposition" utilizes STL decomposition [97] and then

the forecasts of the STL objects are obtained by applying a non-seasonal forecasting method to the

seasonally adjusted data and re-seasonalizing using the last year of the seasonal component. The

third forecasting group "Exponential Smoothing" [100, 101] consists of nine forecasting methods,

where forecasts are weighted averages of past observations with the weights though decaying ex-

ponentially for the older observations. A complementary approach to the exponential smoothing is

the fourth forecasting group, namely "ARIMA", which combines autoregressive and moving aver-

age models, while allows differencing of the data series [111]. Seasonal and non-seasonal ARIMA

models, (ARIMA(p,d,q)(P,D,Q)m), are used. Due to the large number of hyperparameters to be
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determined, grid search is conducted in the last two methods (fc4d, fc4e) and the configuration

with the smallest AICc and AIC [96] value respectively is selected. The fifth forecasting group

consists of advanced statistical forecasting methods, including dynamic regression and TBATS

models [96, 103], along with bootstrapped time series that use the Box-Cox and Loess-based de-

composition bootstrap [102]. The last two forecasting groups consist of machine learning methods.

In the sixth forecasting group "NN", the hyperparameters of the models are pre-selected, while in

the seventh forecasting group "Grid Search NN", a grid search is applied for tuning the hyperpa-

rameters. More details about the grid searches are given in Table 2.7. In the last forecasting group,

each configuration is evaluated 3 times. The average of these values for each accuracy measure is

considered as the final one.

Table 2.7: Hyperparameter Tuning through Grid Search

Forecasting Method Description Hyperparameters

fc4d

Grid

Search

Arima

Arima function

from the forecast

package in R

p: order of the autoregressive part, p=[1...5]

d: degree of first differencing involved, d=1

q: order of the moving average part, q=[1...3]

P: order of the autoregressive part (seasonal), P=[1...5]

fc4e

Grid

Search

arima

arima function

from the stats

package in R

D: degree of first differencing involved (seasonal), D=[0...1]

Q: order of the moving average part (seasonal), Q=[1...3]

m: number of observations per year, m=18

fc7 MLP
Dense class of Keras API v2.4.3

for Python 3.9 with TensorFlow v2.5.0

Inputs: # of prior inputs to use as model input, inp=[h, 2h]

Nodes: # nodes to use in the hidden layer, nod=[32, 64]

Dropout rate = [0.1]

fc8 RNN
SimpleRNN and Dense class of Keras API v2.4.3

for Python 3.9 with TensorFlow v2.5.0

Learning rate = [1e-4]

Epochs: # of training epochs, epoch=[250]

fc9 LSTM
LSTM and Dense class of Keras API v2.4.3

for Python 3.9 with TensorFlow v2.5.0

Batches: # of samples in each mini-batch, batch=[8, 16]

Differences = [0, 1, h]

Standardization = [True, False]

fc10

CNN_

LSTM_

DNN

Dense class of Keras API v2.4.3

for Python 3.9 with TensorFlow v2.5.0

Nodes: # of LSTM units to use in a hidden layer, nodes=[64, 128]

Learning rate = [1e-4, 1e-6]

Epochs: # of times to expose the model to the whole training dataset,

epochs=[500, 1000]

Batches: # of samples within an epoch after which the weights are updated,

batches=[64]

Sequences: # of sequences within a sample, seq=[3]

Steps: # of timesteps within each subsequence, steps=[12]

Filters: # of parallel filters, filters=[128, 256]

Kernels: # of timesteps considered in each read of the input sequence,

ker=[3, 6]
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2.7.2 Future Price Forecasting Results

The first six forecasting groups of the expanded forecasting framework are implemented in R

4.1.0 and solved on an Intel 3.5GHz Quad-Core i7 Processor with 16 GB of RAM, while the last

forecasting group is implemented in Python 3.9 and solved on the Atlas cluster, 60TB shared stor-

age, 15 enrgy nodes – dual Xeon E5-2660 v2 processors, 48GB RAM. The forecasting framework

is applied to each one of the 33 time series. In each case, the forecasting model with the highest

forecasting accuracy based on the three accuracy measures is selected for the future forecasts. If

different models result from the accuracy measures, then the following process is followed: i) if

the same model results from two accuracy measures, this one is selected, ii) if a different model

results from each accuracy measure, then the model that has the highest overall ranking among all

three accuracy measures is selected e.g. fc3a: 1st RMSE, 2nd sMAPE, 2nd MAE. In case there is

still no clear winner, the model with the lowest RMSE is selected.

Table 2.8 summarizes the forecasting results for the 33 time series, while the detailed results

for the configurations of the best models for each energy products and the corresponding accuracy

measures are given in Table E.1 in Appendix E. Indicative graphs of the conducted analysis with

the historical data, the best selected models and the future forecasts for some of the energy products

are shown in Figures E.1 to E.4 in Appendix E.

Table 2.8: Selected Forecasting Models for Future Forecasts

Energy
Product

Selected
Forecasting

Method

Energy
Product

Selected
Forecasting

Method

Energy
Product

Selected
Forecasting

Method
p1 fc7 MLP p19 fc9 LSTM p45 fc9 LSTM

p2_5_12 fc9 LSTM p20 fc8 RNN p46 fc8 RNN
p3 fc8 RNN p21 fc9 LSTM p47 fc8 RNN

p4_11 fc7 MLP p24 fc9 LSTM p48 fc8 RNN
p6_13_22 fc7 MLP p26_30_37 fc9 LSTM p49 fc9 LSTM

p7_15 fc8 RNN p27 fc9 LSTM p50 fc10 CNN_LSTM_
DNN

p8_16 fc9 LSTM p28_33_34_
40_41_43 fc9 LSTM p51 fc4a Manual

ARIMA
p9_17_25 fc8 RNN p29_36 fc7 MLP p52 fc8 RNN

p10 fc9 LSTM p31_38 fc7 MLP p53 fc2d RW Drift Auto
STL Decomp

p14_23 fc9 LSTM p32_39 fc8 RNN p55 fc9 LSTM
p18 fc7 MLP p35_42_44 fc9 LSTM p56 fc9 LSTM
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The above results clearly demonstrate the superiority of the last forecasting group "Grid Search

NN" over the rest of the forecasting groups, since 31 out of the 33 energy products are modeled

more accurately using one of its four forecasting methods. In particular, LSTM is the most com-

monly used method since it is used for 15 energy products, followed by RNN, MLP and CNN-

LSTM-DNN which are used for 9, 6 and 1 energy products respectively. Just two models are

modeled from forecasting with decomposition and ARIMA groups. It is worth mentioning, that

even without considering the last forecasting group, the NNs of the sixth forecasting group would

only be used for 5 out of 33 energy products. This finding highlights the fact that NNs require

special attention and tuning before being applied to time series.

Having selected the forecasting models for the prices of the energy products, and since the

forecasts of the weights of the demands of the energy products up to four years have already been

specified in the previous sections, the forecast of EPIC for the next 12 months can be estimated.

Figure 2.11 illustrates the historical values of EPIC from January 2003 to April 2021, along with

the future forecasts until July 2022.

Figure 2.11: Energy Price Index - EPIC with Future Forecasts
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2.8 EPIC and its Sub-Indices

Apart from EPIC that covers the whole energy landscape in the US, it would be beneficial to

determine the energy prices for each of the end-use sectors. Another advantage of the proposed

methodology is the ability to calculate more indices using the existing framework and data. In

particular, four new sub-indices, one for each of the individual sectors, that represent the energy

prices on each individual sector can be calculated i.e. residential EPIC (REPIC), commercial EPIC

(CEPIC), industrial EPIC (INEPIC) and transportation EPIC (TEPIC). The weights of the demands

of the energy products are re-normalized considering the products that belong to each sector.

The general formula for the re-normalization of sector S is shown in Equation (2.17):

wS
m,p′ =

wm,p′∑
p′∈S wm,p′

∀(m, p) (2.17)

where wS
m,p′ is the weight of product p’ in the sector S during month m.

As an example, the re-normalization of the residential sector is shown in Equation (2.18):

wR
m,p′ =

wm,p′∑
p′∈R wm,p′

∀(m, p) (2.18)

where wR
m,p′ represents the weight of product p’ in the residential sector R during month m. The

rest of the sub-indices are calculated accordingly.

Figures 2.12 to 2.15 illustrate the four sub-indices of EPIC.

A couple of interesting findings can be observed from the comparison between EPIC and its

sub-indices. In general, the highest prices are observed over the summer months. REPIC and

CEPIC show a cyclical pattern over the years due to the seasonality of the products that make up

these sectors, while EPIC, TEPIC and INEPIC do not reveal such features. The value of REPIC

steadily increases over time, thus the cost of energy for the residential consumers has been in-

creased by $8.44/MMBtu or 46.04% (average of $18.34/MMBtu in 2003 to $26.79/MMBtu in

2020). The value of INEPIC is constantly lower than EPIC and the rest of the sub-indices indi-

cating that this sector has the lowest average monthly cost of energy (about 32% on average less

than EPIC). Although the price of INEPIC has been fluctuating over the period of interest, it is
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Figure 2.12: Residential Energy Price Index - REPIC

Figure 2.13: Commercial Energy Price Index - CEPIC
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Figure 2.14: Industrial Energy Price Index - INEPIC

Figure 2.15: Transportation Energy Price Index - TEPIC
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the only one that its price today is comparable with its price in 2003. TEPIC constitutes almost

40% of EPIC (basis on demand terms) and the indices demonstrate similar pattern and even similar

price range apart from two periods in which the TEPIC was considerably higher: in 2008 due to

financial crisis and from 2011 to mid 2014 due to the high oil prices. REPIC demonstrates the

highest volatility over this period, followed by CEPIC, TEPIC, EPIC and INEPIC.

Figure 2.16 illustrates the EPIC and the 4 sub-indices in one graph.

Figure 2.16: EPIC versus the 4 Sub-Indices

2.9 Comparison of EPIC with Economic and Financial Metrics

Having introduced a novel index that capture the price of energy across the energy landscape

in the US, and four novel sub-indices that represent the energy prices in the corresponding end-
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use sector, it is beneficial to compare them against established and well accepted financial and

economic metrics and benchmarks. The following figures demonstrate the normalized EPIC and

its sub-indices against various normalized such metrics (min-max normalization is used).

Figures 2.17 to 2.19 present EPIC and REPIC against CPI (Consumer Price Index). The CPI

represents changes in prices of all goods and services purchased for consumption by urban house-

holds [112]. CPI incorporates various energy products, however with an aggregate percentage

around 6-7%. As it is clearly seen in Figure 2.17, CPI tends to increase in value over time without

being significantly affected by fluctuations in energy prices in comparison to the volatile EPIC.

The CPI Energy that is displayed in Figure 2.18 reflects only the changes in the price of all goods

and services related to energy and reveals comparable trends and patterns with EPIC. This is par-

ticularly true during the ups and downs in 2008-2009, 2015-2016 and 2020-2021. It also seems

that CPI Energy lags a couple of months versus EPIC during 2011-2014, and then 2017-2019.

Figure 2.19 illustrates REPIC versus CPI Household Energy which measures the price movement

of residential energy items used for heating, cooling, lighting, cooking, and other appliances and

household equipment. REPIC demonstrates very strong seasonality due to the substantial changes

in the weights in the winter (towards natural gas) and in the summer (towards electricity). Since

the prices of natural gas and electricity are quite different, peaks are observed over the summer and

valleys over the winter in REPIC. CPI Household Energy does not show any seasonality since its

weights are fixed over the year, and never reaches the lows of REPIC. However, both reached their

highest prices during the last months.

Figures 2.20 to 2.22 depict EPIC against financial metrics. In particular, Figure 2.20 compares

EPIC versus S&P500 Energy and two related ETFs. S&P500 Energy is an index comprised of

energy companies that belong to the 500 bigger listed companies based on market capitalization.

As expected, the three financial indices demonstrate a very similar behavior overtime.
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Figure 2.17: EPIC vs CPI

Figure 2.18: EPIC vs CPI Energy
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Figure 2.19: REPIC vs CPI Household Energy

In general, EPIC shows lower values than the financial indices, with the exception of its peaks

in mid 2008, 2011 and 2021. Similar patterns can be observed over the years, which can be

attributed to the fact the EPIC tracks the average price of all energy feedstocks and products while

S&P500 Energy tracks the performance of energy companies in the stock market.

Lastly, in Figures 2.23 to 2.25, EPIC is compared against three major energy commodities (spot

prices) i.e. WTI crude oil, NY Harbor Regular gasoline, Henry Hub natural gas. The spot prices

of NY Harbor Regular gasoline are highly correlated to the spot prices of WTI crude oil, which is

attributed to the fact that gasoline is the main product of the crude oil refining. It is clear that EPIC

is greatly affected by major fluctuations in the price of oil e.g. late 2008, 2015, 2016, 2020 etc.

However, the overall behavior is quite different since EPIC is affected by several other feedstocks

and products. Figure 2.25 displays EPIC versus the spot prices of Henry Hub natural gas. There

are no clear patterns between the two, except the first period up to 2009. After that initial close

correspondence, it seems that the peaks in the price of natural gas coincide with the lows in the

price of EPIC, particularly during late 2009-early 2010, early 2012, 2014, 2017, 2018 and 2019.
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Figure 2.20: EPIC vs S&P 500 Energy

Figure 2.21: EPIC vs Vanguard Energy ETF
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Figure 2.22: EPIC vs iShares US Energy ETF

Figure 2.23: EPIC vs WTI Crude Oil
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Figure 2.24: EPIC vs New York Harbor Regular Gasoline

Figure 2.25: EPIC vs Henry Hub Natural Gas
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2.10 Conclusion

The Energy Price Index - EPIC, a novel forecasting framework, and its unique attributes have

been presented in this chapter. EPIC can be used as the benchmark to calculate the average monthly

price of energy to the end-use consumers in the US in units of dollars per million Btu ($/MMBtu).

For this study, the complete energy landscape of the Unites States, the four end-use sectors and

the intermediate electric power sector have been thoroughly analyzed so as to identify the energy

demand and the relevant prices of the energy products that serve as the backbone of EPIC. Four

sub-indices are also introduced, one for each of the end-use sectors, capturing the unique charac-

teristics of each sector.

The lag of data availability for the demands and prices of the energy products is overcome with

the introduction of a rolling horizon methodology. The forecasting of the demand of the energy

products is based on a rolling horizon approach that uses information from the previous three time

periods for each month individually, and forecasts the values for the time period of interest. This

methodology allows accurate demand forecasting not just for the lagged months, but up to the

next 4 years. The validity of this methodology is demonstrated over a long period of 184 months,

revealing a considerably low error between the actual and the predictive values. Likewise, a price

forecasting function that is based on a time (seasonal) component and a commodity spot price

component is developed to forecast the prices of energy products up to the present date. Excellent

forecasting ability is also proven here over a period of 184 months, with the average forecasting

error varying between $0.069 and $2.929/MMBtu. Before finalized, the monthly values of EPIC

are updated three times i.e. Initial EPIC release, EPIC 1st and 2nd adjustment, based on the new

information that is becoming available. As such, the mean absolute percentage error for the initial

release of EPIC is just 2.778% and decreases to just 1.026% for EPIC’s 2nd adjustment.

An expanded forecasting framework comprised of 7 groups and 40 forecasting methods is in-

troduced, enabling the accurate forecast of energy prices for all energy products up to 12 months.

Neural Networks, and particularly LSTMs, RNNs and MLPs are the main forecasting methods

selected for conducting future forecasts based on three different accuracy measures. EPIC values
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are therefore predicted until July 2022. EPIC and its sub-indices are also compared against estab-

lished and well accepted financial and economic metrics, revealing comparable trends and patterns

as well as unique behaviors.

Overall, the developed framework allows the accurate estimation of the current and future

value of EPIC, and has tremendous potential for applications in the areas of economics, finance,

and policy as will be shown in the following chapters.
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3. A NOVEL ENERGY FINANCIAL SECURITY: THE ENERGY SPOT PRICE INDEX

3.1 Background & Motivation

In Chapter 2, EPIC is introduced as a novel forecasting framework that accurately quantifies

the average monthly price of energy in the US, considering the demand and prices of energy prod-

ucts across the entire energy landscape. However, EPIC cannot quantify the daily market price

of energy, or capture the daily price variations of the energy products. Moreover, the available

financial instruments used by investors to provide exposure to the energy markets are limited to the

equity based stocks i.e. S&P 500 Energy and futures on individual energy commodities i.e. WTI

Crude Oil, Henry Hub Natural Gas etc. Furthermore, these options are predominantly associated

with the oil and gas sector, with almost zero emphasis placed on renewable energy. Given the lack

of a financial security to effectively capture the entire US energy landscape and represent the daily

average market price of energy, the Energy Spot Price Index (ESPIC) is introduced.

3.2 Introduction

Having already analyzed the complex energy landscape of the US and identified the products

that are directed to the end-use sectors of the US economy in the previous chapters, the total

demand of these products along with their corresponding spot prices have become known. This in-

formation is used to develop the ESPIC which is defined as the summation of the spot price of each

energy product multiplied by its weight fraction as it is computed from its demand. The lag of data

availability for the energy demand has been already addressed in Chapter 2, with the introduction

of the EPIC predictive framework, while the spot prices of energy products are available up to date

on daily basis. However, for the energy products with no spot prices, four different approaches are

introduced so as to tackle this issue.

The methodology is tested over a period of 184 months to illustrate the capability of accurately

determining the value of ESPIC. The proposed methodology is the first of its kind that precisely

quantifies the daily average market price of energy. As such, it can be utilized as a tradable financial
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security tool i.e. ETF, from investors who look to get exposure to the entire energy market and

hedge their investments in diversified portfolios.

3.3 ESPIC Methodology

ESPIC is comprised of the total demand of the energy products that are directed to the end-use

sectors in the US along with their corresponding daily spot prices. In the following two subsections,

the two key components of ESPIC are discussed in detail.

3.3.1 Demand and Price Determination

The type and the amount of energy products that are consumed from each end-use sector along

with the data sources that they are collected from, have been defined in Chapter 2, and their details

are provided in Tables 2.1 and 2.2. The same information and data are used to capture the demand

of the energy products which is a key element of ESPIC.

The other key element of ESPIC are the spot prices of these energy products. The spot price

of a commodity is the price at which it can be bought or sold for immediate delivery [113]. The

selection of spot prices to capture the prices of the energy products serves two purposes: first,

it provides fungible, negotiable financial instruments that are widely used to reflect the value of

energy commodities, and second, the data are available on daily basis without any lag. This allows

for the introduction of a tradable energy security. The list of energy commodities with at least one

available spot price is shown in Table 3.1, along with the number of products in ESPIC that cor-

respond to each commodity and the average weight of the demand of these products over a period

of 220 months, from January 2003 to April 2021. The daily closing prices of the commodities are

extracted from Bloomberg terminals on daily basis [114]. Appendix F.1 displays the full list of the

commodities with available spot prices.

As it is illustrated in the Table 3.1, the spot prices of 33 out of 56 energy products are readily

available, representing on average almost 90% of the total demand of energy. Thus, the remaining

23 energy products that constitute ESPIC cannot be associated with any spot price and are outlined

in Table 3.2 along with their aggregate average weight of demand in ESPIC over the same period

of 220 months.
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Table 3.1: Energy Products with Available Spot Prices

Energy Product with
Spot Price Product No. No. of Products

in ESPIC
Average Weight

in ESPIC
Motor Gasoline 7, 15, 24 3 24.12%

Natural Gas 46, 47, 48, 49 4 22.32%
Electricity 50, 51, 52, 53 4 18.19%

Diesel 20 1 8.74%
Kerosene 2, 5, 12, 21 4 4.60%

Distillate Fuel Oil 1, 4, 11 3 3.12%
Coal 54, 55, 56 3 2.75%

HGL (Propane) 3, 6, 13, 22 4 2.35%
Residual Fuel Oil 9, 17, 25 3 1.22%

Ethanol 35, 42, 44 3 1.28%
Bio-Diesel 45 1 0.18%

Total - 33 88.87%

Table 3.2: Energy Products with Non-Available Spot Prices

Energy Product with
No Spot Price Product No. No. of Products

in ESPIC
Average Weight

in ESPIC
Other Petroleum Products 18 1 3.91%

Asphalt and Road Oil 10 1 1.40%
Petroleum Coke 8, 16 2 1.05%

Lubricants 14, 23 2 0.40%
Aviation Gasoline 19 1 0.04%

Wood / Biomass / Waste 28, 33, 40,
34, 41, 43 6 3.98%

Solar Energy 27, 31, 38 3 0.24%
Geothermal Energy 26, 30, 37 3 0.08%

Hydroelectric Energy 29, 36 2 0.03%
Wind energy 32, 39 2 0.002%

Total - 23 11.13%

The unavailability of spot prices for these energy products is addressed with four different

approaches:

Approach 1: The weights of the demands of the 23 products with non-available spot prices

are neglected, and the weights of the remaining 33 products are re-normalized to add up to 1.

Approach 2: For the 23 products with non-available spot prices, the average monthly prices

from EPIC are used.
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Approach 3: The 23 products with non-available spot prices are divided into two categories:

the fossil fuel-based products and the renewable-based products. The average monthly prices from

EPIC are used for the 7 fossil fuel-based products with non-available spot prices i.e. Petroleum

Coke, Asphalt and Road oil, Lubricants, Other Petroleum Products, and Aviation Gasoline. The

prices for the remaining 16 renewable products are calculated from the renewable energy certifi-

cates (RECs) [115, 116].

Approach 4: Similarly to Approach 3, the 23 products with non-available spot prices are

divided into two categories: the fossil fuel-based products and the renewable-based products. The

spot prices of Kerosene are used for Aviation Gasoline since there is high correlation between

the two products. For the remaining 6 fossil fuel-based products, the spot prices of the most

correlated commodity are used. In particular, the absolute correlation coefficients of the average

monthly prices of each of these 6 fossil fuel-based products with the spot prices of each commodity

are calculated, and the pair energy product - commodity with the highest absolute correlation

coefficient is selected. Then, the spot prices of the commodity are assigned to its paired energy

product. Table 3.3 summarizes the results of the energy product - commodity pairing, and the

corresponding absolute correlation coefficients. For the 16 renewable-based products, their average

monthly prices are used as per Approach 2.

Table 3.3: Energy Product - Commodity Correspondence based on Correlation of Monthly Prices

Energy Product with
NO Spot Price

Commodity with
Spot Price

Abs Correlation
Coefficient

Other Petroleum Products
NYH Gasoline 83.5

Octane CBOB
0.96

Asphalt and Road Oil
NYH Jet Fuel 54

Prompt Spot
0.81

Petroleum Coke
Bloomberg Low Sulfur Compliance

Coal/Big Sandy Barge Fob
0.69

Lubricants Henry Hub Natural Gas 0.73

A REC is a market based instrument that represents the property rights to the environmental,
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social and other non-power attributes of renewable electricity generation. It is issued once one

megawatt-hour (MWh) of electricity is generated and delivered to the electricity grid from a re-

newable energy source [116]. It is a tradable market instrument that is used in both compliance

and voluntary markets so as to track and quantify the environmental and social benefits of gener-

ation and use of the renewable energy [117]. RECs can be sold either unbundled (separate from

electricity) or bundled (included with the sale of electricity) [115]. RECs are not necessarily tied

to the actual delivery of electricity, and can be considered as the premium of producing renewable

energy. For this context in Approach 3, the overall average premium is taken at $0.019/kWh [118],

which is added on top of the price of electricity for the calculation of the price of the 16 renewable

energy products, as it is shown in Equation (3.1). A representation of the electricity generation

market is shown in the Figure 3.1 [119].

rrenewable = relec + rrec (3.1)

Figure 3.1: Representation of the Electricity Generation Market
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3.3.2 ESPIC Calculation

ESPIC represents the daily average market price of energy in the US, and as such is defined as

the summation of the spot price (in $/MMBtu) of each product multiplied by the weight fraction

of the demand of each product. The unit of ESPIC is $/MMBtu.

Using the demands of the 56 energy products as defined in Chapter 2, the real weight fraction

based on the demand of each energy product is calculated using Equation (2.1):

wm,p =
Dm,p∑
pDm,p

∀(m, p) (2.1)

where wm,p is the weight fraction of product p in month m, and Dm,p is the demand of product p

in month m.

Since by definition, ESPIC represents daily values, the daily weight fraction of each product is

calculated from its monthly weight fraction, assuming that the monthly weight fraction is constant

on daily basis. Thus, for a given month m, all daily weight fractions wd,p are equal.

The mathematical formulation of ESPIC is presented in Equation (3.2):

ESPICd =
∑
p

wd,p · Cd,p ∀d (3.2)

where ESPICd represents the value of ESPIC on day d, and Cd,p represents the spot price of

product p on day d.

The ESPIC can also be calculated on monthly basis, using Equation (3.3):

ESPICm =
∑
p

wm,p · Cm,p ∀m (3.3)

where ESPICm represents the value of ESPIC in month m, and Cm,p represents the spot price of

product p in month m.

As it has been discussed in the previous sections, the data availability of the demand of energy

products normally exhibit a lag between two to three months. This is true for EPIC since the
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monthly value of EPIC is released on the first day of each month and refers to the previous month.

For example, the value of EPIC for January is released on February 1st. But this is not the case for

the daily ESPIC, since it is released on daily basis. Thus, the lag of data for the demand of energy

products increases to four months. This issue is addressed by taking advantage of the excellent

forecasting ability of the framework that is presented in section 2.4.1 and refers to the forecasting

of the demands of energy products up to 4 years (48 months) [120]. The accuracy of the first year’s

forecasts that is of interest for the case of ESPIC are shown in Table 3.4.

Table 3.4: Weight Forecasting Results for the 1st Year

Year of Forecasting
Months to
Compare

Average
Sum of Squares Error

Minimum
Sum of Squares Error

Maximum
Sum of Squares Error

1st year 184 0.000375 0.000050 0.005166

3.4 ESPIC Figures

ESPIC is calculated for a period of 184 months, from January 2006 to April 2021, using the

methodology with the four different approaches that is presented earlier in the chapter.

Approach 1 is used as the benchmark for comparison against the other three approaches.

Figure 3.2 demonstrates the values of ESPIC on a daily basis for all four approaches. The high

spikes that are observed are caused by increases in electricity prices. These spikes are greater in

the third approach where the prices of the renewables are estimated as the sum of the electricity

prices and an average premium of RECs. The first approach shows the lowest prices of energy in

comparison to the other three approaches over the 15-year period. On the contrary, and apart from

the days with the sharp spikes, the second approach reveals higher energy prices in comparison to

the other three approaches over the testing period.

The average prices of ESPIC over this period are shown in Table 3.5. It is worth mentioning

that the current prices of energy are significantly reduced in comparison to those of the past 15

years. Specifically, the average value of ESPIC in 2021 (up to April 21st) is between 24.49% and

28.40% lower than the average value of ESPIC over the last 15 years (January 2006 to December

2020), depending on the selected approach.
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Figure 3.2: Daily Energy Spot Price Index - Daily ESPIC

Table 3.5: Comparison between Historical and Current Prices of ESPIC

Approach

No.

Average of ESPIC

from 2006 to 2020

Average of ESPIC

in 2021

Percentage

Difference

($/MMBtu) ($/MMBtu) (%)

Approach 1 10.234 7.327 -28.40

Approach 2 12.746 9.624 -24.49

Approach 3 12.263 8.953 -26.99

Approach 4 11.846 8.805 -25.67
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Figures 3.3 to 3.5 present the values of ESPIC with different data indexing.

In particular, Figure 3.3 illustrates the values of ESPIC on a weekly basis for all four ap-

proaches. The high spikes are still observed, however the period is much shorter due to the weekly

indexing of the data. Similarly, Approach 2 tends to have higher energy prices over the 15-year

period. Approach 4 used to have lower energy prices than the other two approaches (2 & 3) un-

til 2018. But, over the last three years the price difference between Approach 3 and 4 has been

reduced. This is mainly because the electricity prices have shown a steep downward trend this

period, directly affecting the REC prices of the renewables in Approach 3. On the contrary, the

prices from EPIC that are used for the renewables in Approach 4 are independent of the electricity

prices, and have declined moderately. Approach 1 is still the one demonstrating the lowest energy

prices.

Figure 3.3: Weekly Energy Spot Price Index - Weekly ESPIC
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Figure 3.4 displays the values of ESPIC on a monthly basis for all four approaches. The fluc-

tuations become even smoother in comparison to the daily and weekly figures, due to the monthly

indexing of the data. Approaches 2 and 3 result in higher energy prices due to the more expensive

products (i.e. renewables). However, the drop in electricity prices the last couple of years has

affected the prices of the renewables in Approach 3 (i.e. REC), decreasing the price difference be-

tween Approaches 3 and 4. Overall, Approach 2 shows the highest prices, apart from the periods

of surging electricity prices which cause the spikes in the prices of Approach 3.

Figure 3.4: Monthly Energy Spot Price Index - Monthly ESPIC

Finally, Figure 3.5 depicts the values of ESPIC on an annual basis for all four approaches.
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Approach 1 and 2 show the lowest and the highest prices of energy over the 15-year period respec-

tively, while the price difference between Approach 3 and 4 decreases over time. In this figure,

it is even more evident that the current energy prices are at the lowest point in the testing period.

There is substantial decrease in the energy prices from 2018 on-wards, with the prices of 2020 for

all four approaches being at their lowest levels.

Figure 3.5: Annual Energy Spot Price Index - Annual ESPIC

3.5 Conclusion

Energy Spot Price Index - ESPIC is a novel framework that is able to capture the entire US

energy landscape and represent the daily average market price of energy, in units of dollars per
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million BTU ($/MMBtu). The two key factors of this framework are the total demand of the

energy products that are directed to the end-use sectors along with their corresponding spot prices.

The spot prices allow the estimation of the daily market price of energy without any lag, and at

the same time they provide a fungible, negotiable financial reference to capture the value of energy

commodities. These two features are essential in the establishment of ESPIC as a novel tradable

financial security.

Taking advantage of the thorough analysis that has been conducted for the four end-use sectors

and the intermediate electric power sector in the US economy, the demand of energy in the US

has been carefully counted. The spot prices of the energy products are extracted from Bloomberg

or estimated using four different approaches. The lag of data availability for the case of energy

demand is increased to four months. This issue is overcome with the utilization of the forecasting

framework that is introduced in Chapter 2 and is based on a rolling horizon approach that trains

each month individually using information from the previous three time periods, to forecast the

values for the time period of interest. The accuracy of the developed methodology is tested over a

period of 184 months, demonstrating excellent forecasting results up to 48 months. This enables

the estimation of the up-to-date value of ESPIC on daily basis.

Being composed of spot prices of commodities, ESPIC can be considered as a tradable index

in the stock market and used as a tradable financial security for investors who look for exposure

to the entire energy landscape, and as a benchmark for measuring the overall cost of energy in the

US. Nevertheless, the future values of ESPIC cannot be calculated without the future prices of the

commodities that are used within the framework. Therefore, the expanded forecasting framework

that is presented in Chapter 2 can be utilized to forecast the future prices of these commodities

individually as well as the future prices of ESPIC as a whole.
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4. APPLICATIONS OF THE NOVEL FORECASTING FRAMEWORK † *

4.1 Background & Motivation

Energy prices in many countries do not reflect environmental degradation, notably climate

change, air pollution and various health related side effects, so targeted fiscal policies should be

designed and applied to address this issue [121]. In addition, there is an imbalance in the countries’

fiscal objectives with excessive emphasis being put on general income, payroll and consumption

taxes and limited emphasis on use of energy taxes. Nevertheless, environmental charges on fuel

and energy use have a powerful incentive effect on economic behavior for different reasons [122].

First, they are the most effective at exploiting opportunities of reducing harmful health and envi-

ronmental side effects. Second, they achieve environmental protection at the lowest overall cost

to the economy. Third, they strike the right balance between environmental benefits and costs

[122]. Moreover, by setting appropriate charges on energy use, other taxes could be cut. Thus, the

environmental, health and fiscal benefits are enhanced. Therefore, a tax reform towards energy-

intelligent taxes is required. These policies are designed and imposed based on quantitative, dy-

namic and holistic analyses, taking into account environmental, economic and social objectives.

The ability to generate accurate forecasts considering various what-if scenarios is another key

characteristic of energy-intelligent tax policies.

To support this argument, a recent publication from the World Bank [123] suggests that well-

designed environmental tax reforms can mitigate climate change while raising well-being, having

positive effects on poverty and equity, and enabling countries and firms to become more climate

*Reprinted from "A framework to predict the price of energy for the end-users with applications to monetary
and energy policies" by S.G. Baratsas, A.M. Niziolek, O. Onel, L.R. Matthews, C.A. Floudas, D.R. Hallermann,
S.M. Sorescu, E.N. Pistikopoulos, Nature Communications, 2021, Vol. 12, number 1, pp 1-12, with permission from
Nature Publishing Group and Copyright Clearance Center. A summary of the work is given in Chapters 2 and 4 with
additional details provided in Appendices B, C and G.

†Reprinted from "A novel quantitative forecasting framework in energy with applications in designing energy
intelligent tax policies" by S.G. Baratsas, A.M. Niziolek, O. Onel, L.R. Matthews, C.A. Floudas, D.R. Hallermann,
S.M. Sorescu, E.N. Pistikopoulos, Applied Energy, 2021, with permission from Elsevier and Copyright Clearance
Center. A summary of the work is given in Chapters 2 and 4 with additional details provided in Appendices C, D, and
G.
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resilient and productive. Consequently, fiscal and monetary policies shall be leveraged to drive

climate action. Thus, it becomes crucial to accurately quantify the "price of energy" and understand

the effects that fiscal and monetary policies will have in energy.

4.2 Introduction

In Chapters 2 and 3, the novelty and the uniqueness of the proposed forecasting framework are

presented. In this chapter, the effectiveness of this framework in assessing, designing and opti-

mizing various policy rules and questions is demonstrated by addressing four contemporary policy

questions that have raised substantial public and governmental interest. Specifically, the effects of

a gasoline tax hike (up to 25 cents per gallon) on EPIC as well as the effects of different forms of

a carbon tax on EPIC are investigated [124]. Moreover, the effects of a crude oil tax (up to $25

per barrel) on EPIC are demonstrated. Finally, the effects of renewable energy production targets

and subsidies on energy consumers are examined parametrically over a wide range of different

weights of the energy feedstocks, as well as for tax credits ranging from 0 to 9 $/MMBtu. For all

policy questions, the expected change in the price of energy along with the environmental impact

under different scenarios is estimated both for the past i.e. what would have happened, as well as

for the future i.e. what will happen. Also, the generated revenue or the budget required for the

implementation of each scenario is calculated, taking advantage of the powerful forecasting ability

and flexibility of the proposed methodology. The high level of granularity of the framework allows

for the estimation of the financial burden per household for each of these policies. It is important

to note that these are just four of the potential applications while several other policy questions

related to energy can be investigated. At the same time the analysis of the policy questions can be

further extended thanks to the capabilities of the proposed framework.

4.3 Policy Case Study for Federal Gasoline Tax

The federal gasoline tax has remained unchanged at 18.4 cents per gallon† since 1993. In the

meantime, the construction and maintenance costs have increased significantly while the consump-

†1 US liquid gallon = 0.00378541 m3
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tion has reduced due to the improvement in vehicle fuel efficiency and the popularity of hybrid and

electric vehicles. As a result the purchasing power of the gasoline tax has sliced by almost two-

thirds [125]. According to the American Society of Civil Engineers, one out of every five miles

of highway pavement is in poor condition and the chronic underfunding of the highway systems

has resulted in a $836 billion backlog of capital need [126]. The situation becomes even worse

considering that the funding gap over the next 10-year in infrastructure needs totals more than $1

trillion [127]. Therefore, a sustainable and long-term funding source for the Highway Trust Fund

is needed.

The US Chamber of Commerce recently proposed an increase of the gasoline tax by a total of

25 cents per gallon along with indexing the tax for inflation and for future increases in fuel econ-

omy [128]. Such a policy could generate a combination of financial and environmental benefits

[129], since increases in gasoline taxes may result in significant reductions in gasoline consump-

tion [130, 131]. However, the extent to which the gasoline taxes should be increased to result in

meaningful changes in the consumption pattern over the short and long run are still debatable [132].

According to recent published studies [133, 134, 135, 136, 137, 138, 139, 140, 141], gasoline is a

relatively inelastic product, meaning changes in prices have little influence on demand. This im-

plies that the reduction in the gasoline consumption will not be important without a substantial tax

hike [139]. The Congressional Budget Office reports that a 46 cents per gallon increase on federal

gasoline tax would attain a 10% reduction in gasoline consumption in the long run [142].

Data of the annual household expenditure for gasoline [143], the annual household gasoline

consumption [144] and the average price of gasoline [145] over the last two decades confirm the

inelastic behavior of gasoline, as it is shown in Figure 4.1. Despite the fluctuations in the average

price of gasoline, the consumption of gasoline remained rather constant. This is true even when the

highly fluctuating annual expenditure of gasoline per household is considered; the consumption of

gasoline remained stable. For instance, the price of gasoline declined by 28% and 27% between

2008-2009 and 2014-2015 respectively, but the consumption of gasoline increased by just 1% and

4% over these periods. On the contrary, the price of gasoline rose by 22% and 26% between
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2004-2005 and 2010-2011 respectively, but the consumption of gasoline decreased by 2% and 4%

over these periods. Such a steady gasoline consumption indicates that people’s behavior does not

change drastically in response to changes in gasoline prices.

Figure 4.1: Annual Household Expenditure and Consumption for Gasoline vs Average Price of
Gasoline per gallon, 2000-2019

The applicability and effectiveness of the proposed framework in designing, assessing and op-

timizing various policy rules is demonstrated by examining parametrically the effect an increase in

the federal gasoline tax would have on the overall cost of energy (EPIC) and on the overall cost in 3

energy sectors (TEPIC, INEPIC, CEPIC). First, EPIC and its three sub-indices are recalculated for

the period from January 2003 to January 2021 considering different scenarios of federal gasoline

tax hikes i.e. 5, 10, 15, 20 and 25 cents per gallon. In this study as a reference approach, it is

assumed that the introduction of a relatively small gasoline tax hike (i.e. 5, 10, 15 cents per gallon)

does not affect the consumption of gasoline, while the introduction of a higher gasoline tax hike

(i.e. 20 and 25 cents per gallon) results in a slight reduction in gasoline’s consumption (i.e. 1%

and 1.5% respectively).

Figure 4.2 illustrates the recalculated values of EPIC from January 2003 to January 2021. The

recalculated values of the three sub-indices are presented in the Figures 4.3 to 4.5.
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Figure 4.2: Recalculated EPIC with Parametric Gasoline Tax Hikes from January 2003 to January
2021

Figure 4.3: Recalculated TEPIC with Parametric Gasoline Tax Hikes from January 2003 to January
2021
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Figure 4.4: Recalculated INEPIC with Parametric Gasoline Tax Hikes from January 2003 to Jan-
uary 2021

Figure 4.5: Recalculated CEPIC with Parametric Gasoline Tax Hikes from January 2003 to January
2021
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The average monthly difference and percentage increase from the nominal EPIC and its sub-

indices for the different taxes over the same period is presented in Table 4.1. A tax hike of 10 cents

per gallon in gasoline increases EPIC by $0.194/MMBtu or 1.067%, TEPIC by $0.478/MMBtu or

2.446%, while the increase in INEPIC and CEPIC is negligible (just 0.081% and 0.066% respec-

tively). Even the highest tax hike of 25 cents per gallon which results in a 1.5% reduction in the

consumption of gasoline, increases EPIC and TEPIC by 2.638% and 6.080% respectively, while

the increase in INEPIC and CEPIC is still negligible (just 0.200% and 0.163% respectively).

Table 4.1: Average Monthly Difference ($/MMBtu) and Percentage (%) Increase from Nominal
Indices with No Tax Hike from January 2003 to January 2021

Gasoline Tax Hike EPIC TEPIC INEPIC CEPIC
(cents/gal) ($/MMBtu) (%) ($/MMBtu) (%) ($/MMBtu) (%) ($/MMBtu) (%)

5 0.097 0.533 0.239 1.223 0.005 0.041 0.007 0.033
10 0.194 1.067 0.478 2.446 0.010 0.081 0.014 0.066
15 0.291 1.600 0.717 3.669 0.015 0.122 0.021 0.100
20 0.386 2.118 0.953 4.873 0.020 0.161 0.028 0.131
25 0.480 2.638 1.188 6.080 0.025 0.200 0.035 0.163

The amount of revenue that would have been generated by such a tax policy over the same

period in the past is displayed in Table 4.2. The average annual revenue is $6.751 billion for every

5 cents increase in the motor gasoline tax hike, up to a tax of 15 cents per gallon. For the higher

tax hikes, the average annual revenue does not increase linearly since the consumption is reduced.

As such, a 20 cents per gallon tax hike generates an annual revenue of $26.753 billion. Also,

even though a 25 cents per gallon tax hike increases EPIC and TEPIC by just 2.638% and 6.080%

respectively, it creates a substantial average annual revenue of $33.250 billion.

Table 4.2: Revenue (million $) generated with Parametric Gasoline Tax Hikes from January 2003
to January 2021

Gasoline
Tax Hike

Commercial
Sector

Industrial
Sector

Transportation
Sector

Total Revenue
from Jan. 2003
to October 2020

Annual
Average

(cents/gal) million $ million $ million $ million $ million $
5 1,116.07 2,016.69 118,952.70 122,085.45 6,751

10 2,232.14 4,033.38 237,905.39 244,170.90 13,502
15 3,348.21 6,050.07 356,858.09 366,256.36 20,253
20 4,419.64 7,986.09 471,052.67 588,815.83 26,735
25 5,496.63 9,932.19 585,842.03 601,270.85 33,250
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The powerful forecasting ability of the EPIC framework can be utilized so as to determine

parametrically the impact of the investigated gasoline tax hike on future energy prices. As it has

been shown in Chapter 2, the weights of the demand of the energy products can be predicted with

excellent accuracy of up to four years in the future. Hence, the change in EPIC and its sub-indices

over the next four years can be estimated using the forecasts for the weights of the demands. The

mathematical formulation for the estimation of EPIC in the future considering parametric gasoline

tax hikes is shown in Equation (4.1):

EPICTaxPar
m =

∑
p∈P\′gsl′

wm,p · Cm,p + wm,′gsl′ · (Cm,′gsl′ + TaxPar) (4.1)

where wm,′gsl′ stands for the weight of gasoline "gsl" in month m, Cm,′gsl′ stands for the price of

gasoline ’gsl’ products in month m, and TaxPar stands for the parametric gasoline tax.

The change in EPIC in the future is calculated as shown in Equation (4.2):

∆EPICm = TaxPar · wm,′gsl′ (4.2)

where TaxPar stands for the parametric gasoline tax and wm,′gsl′ stands for the weight of gasoline

"gsl" in month m.

Following the retrospective calculations, it is assumed that the introduction of a relatively small

gasoline tax (i.e. 5, 10, 15 cents per gallon) will not affect the consumption of gasoline in the

future. However, higher gasoline tax hikes (i.e. 20 and 25 cents per gallon) will marginally reduce

the predicted consumption of gasoline in the future (in comparison to the original forecasting

scenarios without tax hikes) by 1% and 1.5% respectively.

Figure 4.6 and 4.7 illustrate the change in EPIC and TEPIC over the next four years (February

2021 to January 2025) respectively by taking into account the proposed motor gasoline tax hikes

parametrically.

A 25 cents per gallon increase in the gasoline tax will raise EPIC between $0.3833/MMBtu and

$0.5186/MMBtu, while TEPIC will rise even more (up to $1.1765/MMBtu). It is worth noting that

the change in TEPIC is rather steady for each tax hike. Even with the highest tax hike, TEPIC rises
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Figure 4.6: Change in EPIC with Parametric Gasoline Tax Hike from February 2021 to January
2025

Figure 4.7: Change in TEPIC with Parametric Gasoline Tax Hike from February 2021 to January
2025
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between $1.1177/MMBtu and $1.1765/MMBtu, due to the relatively constant percentage (around

60%) of motor gasoline in the transportation sector. Assuming that the future monthly values of

EPIC and TEPIC are equal to the average monthly known values of the last four years (February

2017 to January 2021), the average monthly percentage increase over the next four years (from

February 2021 to January 2025) are shown in Table 4.3. For a motor gasoline tax increase of 15

cents per gallon, EPIC increases roughly 1.662% while TEPIC increases approximately 4.165%.

Table 4.3: Average Monthly Percentage (%) Increase from Nominal indices with No Tax Hike
from February 2021 to January 2025

Gasoline Tax Hike EPIC TEPIC
(cents/gal) (%) (%)

5 0.554 1.388
10 1.108 2.777
15 1.662 4.165
20 2.199 5.532
25 2.738 6.901

The future revenue that will be generated by this gasoline taxation policy over the next four

years can also be calculated using the demands of the gasoline energy products that have been

estimated from the EPIC framework along with the projections for the total annual energy demand

from the EIA Annual Energy Outlook 2021 - Reference case [81]. The average annual revenue

generated for every 5 cents per gallon increase (up to 15 cents per gallon) in the gasoline tax hike

is $6.837 billion. The revenue does not increase linearly for the higher tax hikes, resulting in

$27.138 and $33.790 billion average annual revenue for the tax hikes of 20 and 25 cents per gallon

respectively.

The average US household expenditure on gasoline in 2019 was estimated to be about $2,094

according to the US Bureau of Labor Statistics [143]. By using the recalculated values of TEPIC

for the new gasoline tax, the annual increase in the average US household expenditure is calculated.

In particular, for 2019 the estimated average US household expenditure would have been $2,117

(or 1.12% higher) for the case of 5 cents per gallon tax hike, and $2,209 (or 5.50% higher) for the

case of 25 cents per gallon increase in a gasoline tax.

74



4.4 Policy Case Study for the Carbon Tax

The second policy case study for the design of energy-intelligent taxes investigates the effects

on the price of energy as well as on the energy consumption from the implementation of a carbon

tax. The Intergovernmental Panel on Climate Change (IPCC) and the International Monetary Fund

(IMF) in recent reports [146, 147] argue that carbon taxes are the most powerful and efficient tools

to mitigate climate change. In particular, a carbon tax scheme allows customers to identify the

most effective ways of reducing energy consumption by shifting to more environmentally friendly

alternatives while it generates a significant amount of revenue that can be used to offset the affected

macroeconomic variables e.g. unemployment, or fund initiatives such as those described in the

United Nations Sustainable Development Goals [148]. Carbon taxes can also generate substantial

domestic environmental benefits and at the same time are straightforward to administer. However,

the effects of a carbon tax in the economy are subject to the utilization of the generated revenues

since the actual impacts can vary significantly depending on the selected policies. For instance,

revenues can be directed towards reducing budget deficits, decreasing current marginal tax rates or

offsetting the burden from the imposed tax on taxpayers [149].

A review of the current status of global carbon pricing initiatives reveals a mixed picture with

regards to the type and stage of carbon pricing initiatives as well as to the level of pricing of these

initiatives. Although there is a rising number of jurisdictions that are implementing or planning to

implement a carbon tax or an emission trading system (ETS), only 22% of global greenhouses gas

emissions are covered by a carbon price. Most notably, less than 5% of those initiatives are priced at

levels consistent with achieving the temperature goals that have been set in the Paris Agreement [2].

In the US currently there is no federal carbon tax, with only twelve states (California and eleven

Northeast states) having active carbon pricing schemes [150]. Even though numerous federal

carbon pricing plans were proposed over the last few years, none has become law [151]. Therefore,

strategic and long-term action plans for carbon pricing must be established from all jurisdictions

across the globe as part of their climate policies.

An overview of the global carbon pricing initiatives is shown in the Appendix G (Figures G.1,
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G.2). Only 61 carbon pricing initiatives have been implemented or scheduled for implementa-

tion globally, with an extremely wide range of pricing in existing initiatives from $1/tCO2e to

$119/tCO2e [2]. Thus, a parametric approach is needed to quantitatively evaluate and optimize

the carbon pricing initiatives. The EPIC framework offers this functionality along with an agile

platform that can incorporate different dynamic models for capturing the impacts of the subject

policies realistically. A federal carbon tax policy is investigated, addressing the key questions of

what would have happened (retrospective analysis) and what will happen (prospective analysis) by

the introduction of a federal carbon tax. In particular, the effects of an incremental carbon tax in

the price of energy as well as in the reduction of the CO2 emissions are estimated, along with the

generated revenue from such a taxation policy.

Figure 4.8 highlights the effects of an incremental carbon tax in the price of energy as well as in

the reduction of the annual CO2 emissions from January 2007 until April 2021. The same effects

are assessed for the next 10 years (May 2021-April 2031) in Figure 4.9. Both scenarios involve an

incremental annual rise of $5 per metric ton of CO2 emitted starting from year 1, along with two

sub-scenarios each demonstrating the impact of this escalating taxation policy on the annual CO2

emissions. Since there are no actual data on the effects that a carbon tax could have on the CO2

emissions on a federal level in the US, a rather moderate case study based on the findings in the

literature is considered [149, 152, 153, 154]. This is also in line with similar studies from other

countries such as Canada, and China [155, 156]. Nevertheless, the key outcome is that EPIC is a

versatile tool that can analyze different policy scenarios and quantitatively evaluate their effects in

energy and economy. It is also worth noting that regardless of the sub-scenario that is selected, the

increase of the values of EPIC remain similar.

The difference between the two sub-scenarios lies in the estimation of the revised CO2 emis-

sions upon the introduction of the taxation policy. In sub-scenario A the CO2 emissions are cal-

culated as an adjustment on their historical monthly values, while in sub-scenario B the CO2

emissions are calculated independently of their historical monthly prices having only the CO2

emissions of year 0 as a reference point. Specifically, in sub-scenario A, it is assumed that the
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Figure 4.8: Effects of an Incremental Carbon Tax in EPIC ($/MMBtu) and CO2 emissions from
January 2007 to April 2021

historical monthly CO2 emissions would have decreased by 3% starting from year 1 and continue

to decrease by 3% compounded annually for the next years. For the first scenario that covers the

period from January 2007 to April 2021, the hypothetical CO2 emissions of 2007 would have been

3% less than their historical ones, while the CO2 emissions until April 2021 would have reduced

by approximately 36.7% from their historical values (red line in Figure 4.8). In sub-scenario B, it

is assumed that the introduction of the $5 per metric ton of CO2 emitted taxation in year 1 would

have caused an immediate decrease of 3% on the historical CO2 emissions of year 0. So, for the

first scenario again (January 2007-April 2021), the hypothetical CO2 emissions of 2007 would

have been 3% less than those of 2006, the hypothetical CO2 emissions of 2008 would have been

3% less than the hypothetical ones of 2007 and so on (green line in Figure 4.8).

As a result of this policy, the price of energy from January 2007 to April 2021 would have

increased on average about 11.90% and 13.37% for sub-scenario A and B respectively. Over

the same period, the total revenue generated from this incremental carbon increase is $2,2682

billion and $2,528 billion for sub-scenario A and B respectively, while the average annual revenue
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over this period is $158.25 billion and $176.38 billion respectively. The total amount of CO2

reduced over this period is 16,028 million metric tons, or an annual average decrease of 1,118

million metric tons for sub-scenario A. For sub-scenario B, the total reduction of CO2 emissions

from the atmosphere is 10,499 million metric tons or 733 million metric tons on average annually.

Therefore, if this policy was implemented, the reduction that would have been achieved represents

a 19.74% decrease from historical CO2 emissions for sub-scenario A and 12.93% decrease for

sub-scenario B.

The effects of an incremental carbon tax in the future are also investigated using the same

principles over the next 10 years. Figure 4.9 demonstrates the change of EPIC in $/MMBtu over

this period. The projected CO2 emissions as well as the projected annual energy demand for the

reference case from the EIA’s Annual Energy Outlook of 2021 are used [81]. The incremental

annual increase of $5 per metric ton of CO2 emitted in the carbon tax starts in May 2021 and

escalates up to $55 per metric ton by April 2031. The same sub-scenarios A and B are also

considered. In sub-scenario A, the hypothetical CO2 emissions of 2021 will be 3% less than

their projected values in the outlook report, while the CO2 emissions of 2031 will be reduced by

approximately 28.5% (compounded annually) from their projected values in the outlook report

(blue dots in Figure 4.9). In sub-scenario B, the hypothetical CO2 emissions of 2021 will be 3%

less than the actual CO2 emissions of 2020, the hypothetical CO2 emissions of 2022 will be 3%

less than the hypothetical ones of 2021 and so on. Thus, the projected CO2 emissions from the

outlook report are not considered in sub-scenario B (red dots in Figure 4.9). The average increase

in EPIC’s values over the next 10 years is around $1.5/MMBtu regardless of the selected sub-

scenario. The increasing annual tax has a stronger effect on EPIC in comparison to the reduced

CO2 emissions, causing only positive changes in EPIC’s values.

The total revenue generated from this incremental carbon increase over the next 10 years is

calculated to be $1,1877 billion and $1,1472 billion for sub-scenario A and B respectively. The

total amount of CO2 reduced over the next 10 years is 8,081 million metric tons and 9,794 million

metric tons for sub-scenario A and sub-scenario B respectively. Therefore, the implementation
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Figure 4.9: Change in EPIC ($/MMBtu) due to the Proposed Incremental Carbon Tax and CO2

Emissions Reduction over the next 10 Years

of this policy from May 2021 and for the next 10 years is estimated to decrease CO2 emissions

by approximately 15.86% for sub-scenario A and by approximately 19.23% for sub-scenario B in

comparison to the projected CO2 emissions without any tax.

4.5 Policy Case Study for Crude Oil Tax

A potential tax in crude oil is investigated as an alternative policy for mitigating climate change

and concurrently generating substantial revenue that is required for climate finance. Such a policy

of $ 10.25 per barrel tax on crude oil was also proposed by US President Barack Obama back in

2016 to support new transportation systems designed to reduce carbon emissions and congestion

[157].

The effects of a crude oil tax ranging from $2.5 per barrel up to $25 per barrel in EPIC are

parametrically examined. The amount of revenue that could be generated by such a policy from

January 2003 until June 2020 is also calculated. Taking advantage of the excellent predictive

ability of the proposed EPIC framework, the changes in EPIC in the next four years along with the
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future revenue that will be generated by such a policy are estimated. It is assumed that crude oil

has a heating content of 5.721 MMBtu per barrel [77] and a petroleum refinery efficiency of 90%.

Moreover, the amount of petroleum and petroleum products being sent for electricity generation is

assumed to be negligible (≈ 0.57% over the last year). Crude oil demand is considered as inelastic

in the short-run, with long-run values of elasticity being generally higher in absolute values but

still well below 1 [158, 159, 160, 161].

The average monthly difference (in $/MMBtu) and the average monthly percentage increase of

EPIC in comparison to its reference values from January 2003 to June 2020 are presented in Table

4.4 for the different values of crude oil tax. Since crude oil is inelastic, the investigated crude oil tax

has not affected the historical values of crude oil consumption. As can be seen, a $10.25 per barrel

of crude oil tax increases EPIC by $1.019 per MMBtu or 5.60%, while a $25 per barrel of crude

oil tax rises EPIC by $2.484 per MMBtu or 13.66%. Table 4.4 also summarises the amount of

revenue generated from the investigated crude oil tax scenario over the same period (January 2003

- June 2020). The average annual revenue from a $10.25 per barrel of crude oil tax is estimated to

be $70.962 billion or $17.308 billion for every $2.5 per barrel rise of crude oil tax. Figure G.3 in

appendix G illustrates the recalculated EPIC for the above-mentioned values of crude oil tax along

with the reference value of EPIC without tax for easy comparison, over the same period (January

2003 to June 2020). As expected, the higher the crude oil taxes, the greater the increase in EPIC

values.

The average increase in energy related expenses per household as a result of the proposed

increase in crude oil tax are calculated, using data from the relevant survey published by EIA [162]

in conjunction with the EPIC findings from our previous analysis. According to the 2015 survey

data, the annual energy consumption per household is 77.1 MMBtu while in 2015 the average value

of EPIC is $18.01/MMBtu. Using this information, the average annual energy related expenses per

household for 2015 are estimated to be $1,389.06. Taking into consideration the effects on EPIC

from the increase in the crude oil taxation, a $2.5 per barrel increase in crude oil tax would have

led to an average rise of $0.2432/MMBtu or 1.35% in EPIC for 2015. Therefore, the projected
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average annual energy related expenses per household would have increased by $18.76, up to a

total of $1,407.82. Similarly, an increase of $10.25 per barrel in crude oil tax would have burdened

the average energy related expenses per household by $76.90 or 5.54%, up to a total of $1,465.95.

Table 4.4: Average Monthly Difference ($/MMBtu), Percentage Increase (%) and Revenue Gener-
ated ($ billion) from January 2003 - June 2020

Crude Oil Average monthly EPIC
difference

Average monthly EPIC
percentage increase

Total
revenue

Average annual
revenue

($/barrel) ($/MMBtu) (%) ($ billion) ($ billion)
2.5 0.248 1.37 302.886 17.308
5.0 0.497 2.73 605.772 34.616
7.5 0.745 4.10 908.658 51.923
10.0 0.994 5.46 1211.545 69.231

10.25 1.019 5.60 1,241.833 70.962
12.5 1.242 6.83 1,514.431 86.539
15.0 1.491 8.19 1,817.317 103.847
17.5 1.739 9.56 2,120.203 121.154
20.0 1.987 10.92 2,423.089 138.462
22.5 2.236 12.29 2,725.975 155.770
25.0 2.484 13.66 3,028.862 173.078

The effects on EPIC from the investigated policy during the next four years is demonstrated

in Figure 4.10, using the predictive weights of demand of the energy products for this period.

Similarly, with the results for the past period, the increase of EPIC in the future is investigated

parametrically for different values of the crude oil tax.

According to Figure 4.10, a $10.25 per barrel of crude oil tax raises EPIC over the next four

years by $0.977/MMBtu on average, whereas a $25 per barrel of crude oil tax surges EPIC by

$2.384/MMBtu on average in the same period. Using the weights of the demand of the petroleum

energy products that have been estimated from the EPIC framework along with the projections

for the total annual energy demand from the EIA Annual Energy Outlook 2021 - Reference case

[163], the future revenue that will be generated by the crude oil taxation policy over the next four

years can be estimated. As a result, a total of $147.882 billion revenue is generated for every $5

per barrel increase in the crude oil tax over the next four years.

81



Figure 4.10: Change in EPIC with Parametric Crude Oil Tax over the next 4 years (July 2020 to
June 2024)

4.6 Policy Case Study for Renewable Energy Production Targets and Subsidies

The renewable energy has been selected as the fourth policy case study since it plays a grow-

ing role in the global energy mix. The electric power sector is heavily dominated (around 67%)

by fossil fuels (coal, natural gas, petroleum, and other gases), while nuclear and renewable en-

ergy sources contribute about 17% and 16% of the remaining electricity generation respectively

[164] (see Table G.1). As a result, the electric power sector emits about 31.5% of the total US

energy-related CO2 emissions [77]. Thus, coordinated efforts for new policies and technologies

are required so as to lessen the dependence on fossil fuels and subsequently reduce CO2 emis-

sions. To accomplish such reduction, the share of renewable energy within the electric power

sector should be increased. This can be achieved either by setting a target renewable energy share

for each power feedstock (analogous to the State based Renewable Portfolio Standards) and/or by

providing subsidies to the renewable energy generation (analogous to the Public Benefits Funds

for Renewable Energy).
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As of 2020, 30 US states, Washington D.C., and three US territories have adopted a Renewable

Portfolio Standard (RPS), while seven US states and one US territory have set renewable energy

goals for electricity generation [165]. The National Renewable Energy Laboratory (NREL) indi-

cates that these standards are most successful drivers of renewable energy projects when combined

with tax credits [166]. However, the impact of these standards on the ratepayer are not clear and

should be carefully evaluated. Although some reports claim that the benefits outweigh the costs of

these standards [167, 168], EPIC is an excellent tool to quantitatively analyze the costs of different

renewable standards to the government and to the end-use consumers.

Therefore, in this policy case study, six non-fossil fuel feedstocks that are used in the electric

power sector (nuclear, hydroelectric power, biomass, geothermal, solar and wind) are investigated

over a range of different target weights with tax credits/subsidies ranging from 0 to $9/MMBtu.

The main assumptions for this policy case study are:

• The effect of the policy is investigated independently for each feedstock.

• The production targets/subsidies affect only the electric power sector, so only the relative

weights within the electric power sector change.

• The target weights are attainable with the existing resources and at the current production

costs.

• When a specific target weight is enforced on an electricity energy feedstock, the remaining

feedstock weights are normalized to add up to 1.

• The levelized cost of the energy feedstocks is taken from Lazard’s Levelized Cost of Energy

Analysis report for the period 2008 to 2013 [169, 170, 171, 172, 173, 174] and the EIA

Annual Energy Outlook for period 2014 to 2020 [175, 176, 177, 178, 179, 180, 181], with

the exception of data for the petroleum liquids, which are also taken from Lazard’s Levelized

Cost of Energy Analysis reports. The data from 2008 are used for the period from 2003 to

2007 (Table G.1).
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• The future effects (up to 2024) are assessed using the predicted values for the weights of the

electricity products applying the methodology that is described in the Chapter 2.

• The future annual demand as well as the future nominal weights within the electric power

sector are estimated using data from the EIA Annual Energy Outlook 2020 - Reference

case[163].

Once a target weight for a renewable feedstock has been set, all other weights within the electric

power sector are re-normalized as follows:

wnorm,f = wold
f ·

1− wtarget
f ′

1− wold
f ′

(4.3)

where f’ represents the feedstock investigated and f represents all other feedstocks.

The change in EPIC due to the new target weight is then calculated as follows:

∆EPIC1 = welec · [
∑
f

Costf ∗ (wnorm,f − wold
f ) + Costf ′ · (wtarget

f ′ − wold
f ′ )] (4.4)

where welec stands for the aggregate weight of electricity (i.e. products 50-53) while Costf ′ and

Costf stand for the levelized cost of electricity production from feedstock f’ and f respectively.

When this delta term becomes positive, meaning that the value of EPIC increases, the cost of the

targeted feedstock is higher than the average cost of the displaced feedstocks. On the contrary,

when this delta term becomes negative, the cost of the targeted feedstock is lower than the average

cost of the displaced feedstocks, and so the value of EPIC decreases.

The change in EPIC due to subsidies is calculated as follows:

∆EPIC2 = welec · wtarget
f ′ · Taxcred (4.5)

where Taxcred represents the subsidy in $/MMBtu.
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The revised EPIC from the subject policy case study is estimated for the past as well as for the

future as follows:

Past : EPICpolicy = EPIC + ∆EPIC1 + ∆EPIC2 (4.6)

Future : ∆EPICpolicy = ∆EPIC1 + ∆EPIC2 (4.7)

Table 4.5 illustrates the grid of investigated target weights for each of the non-fossil feedstocks

based on their nominal weights within the electric power sector.

Table 4.5: Investigated Weights for the Non-Fossil Fuel Feedstocks within the Electric Power
Sector

Feedstock Minimum weight
(%)

Increment increase
(%)

Maximum weight
(%)

Nuclear 18.0 3.0 30.0
Hydroelectric Power 8.0 2.0 16.0

Wind 5.0 2.0 13.0
Biomass 0.5 0.25 1.5

Solar 1.0 1.0 5.0
Geothermal 0.3 0.1 0.7

Table 4.6 summarises the results of this policy case study in terms of percentage change in

EPIC at the maximum weight target for each non-fossil fuel feedstock in the past period (January

2003 to June 2020). It can be observed that nuclear energy causes a minor increase to EPIC at no

tax credit, but as the tax credit increases, EPIC decreases significantly, for a maximum decline of

-2,549% corresponding to a tax credit of $9/MMBtu. Also, solar energy requires a subsidy of at

least $6/MMBtu in order to lower the value of EPIC. It is also worth noting that increases either

in the weights or in the tax credits of wind, hydroelectric, biomass and geothermal energy always

lead to a reduction in EPIC. This is also true even without a tax credit. For example, wind energy

decreases EPIC from 0.177% up to 0.929% as the weight target increases with no tax credit, and

from 0.621% up to 2.085% depending on the targeted weight with $9/MMBtu tax credit.

In Table 4.6, the average annual budget ($ million) required to provide subsidies at the max-

imum weight target for each non-fossil fuel feedstock in the same period (January 2003 to June
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2020) is also presented. Clearly, the target weight and the tax credit are the key factors, affecting

the annual budget. As either the target weight of each feedstock or the tax credit rises, the annual

budget required to provide the relevant subsidy rises. Nuclear energy requires the highest sub-

sidy budget (due to its maximum weight of 30%), but the corresponding decline in EPIC is also

substantial (-2.549%) at the maximum level of tax credit.

Table 4.6: Average % Change in the EPIC and Average Annual Budget ($ million) at the Maximum
Weight Target from January 2003 to June 2020

Tax Credit
nuclear hydroelectric biomass geothermal solar wind
(0.30) (0.16) (0.015) (0.007) (0.05) (0.13)

($/MMBtu) (%) ($ mil) (%) ($ mil) (%) ($ mil) (%) ($ mil) (%) ($ mil) (%) ($ mil)
0 0.118% 0 -0.602% 0 -0.026% 0 -0.032% 0 0.257% 0 -0.929% 0
1 -0.178% 3,787 -0.760% 2,020 -0.041% 189 -0.039% 88 0.208% 631 -1.058% 1,641
2 -0.475% 7,573 -0.918% 4,039 -0.056% 379 -0.046% 177 0.158% 1,262 -1.186% 3,282
3 -0.771% 11,360 -1.076% 6,059 -0.071% 568 -0.053% 265 0.109% 1,893 -1.315% 4,923
4 -1.067% 15,147 -1.234% 8,078 -0.086% 757 -0.060% 353 0.059% 2,524 -1.443% 6,564
5 -1.364% 18,933 -1.392% 10,098 -0.100% 947 -0.067% 442 0.010% 3,156 -1.572% 8,204
6 -1.660% 22,720 -1.550% 12,117 -0.115% 1,136 -0.073% 530 -0.039% 3,787 -1.700% 9,845
7 -1.956% 26,507 -1.708% 14,137 -0.130% 1,325 -0.080% 618 -0.089% 4,418 -1.828% 11,486
8 -2.253% 30,293 -1.866% 16,156 -0.145% 1,515 -0.087% 707 -0.138% 5,049 -1.957% 13,127
9 -2.549% 34,080 -2.024% 18,176 -0.160% 1,704 -0.094% 795 -0.187% 5,680 -2.085% 14,768

Taking advantage of the excellent predictive ability of EPIC, the previous analysis can be ex-

tended to the future. As such, Figure 4.11 demonstrates the effect on EPIC of various levels of

tax credit applied to wind energy, for various weight levels of wind. The results for the remaining

non-fossil feedstocks at different target weights and tax credits are presented in Figures G.4 to G.8.

At the lower end of tax credit (0 or 1$/MMBtu), the weight of the wind energy needs to be

at least 11% so as to decrease the EPIC value, whereas at the higher end of tax credit (8 or

9$/MMBtu), the EPIC value decreases even when weight contribution of wind energy is mini-

mum (5%). Interestingly, as the percentage weight of wind energy increases within the electric

power sector, EPIC decreases since the levelized cost of wind energy is rather low. As an example,

even without any tax credit, EPIC decreases by 0.143% when wind energy provides 13% of the

electric power. Moreover, at the higher end of tax credit, the average decrease in EPIC exceeds

$0.23/MMBtu.

Table 4.7 summarises the average percentage change in EPIC and the average annual budget ($
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Figure 4.11: Wind Power at different Target Weights (size of the bubble) and Tax Credits (x-axis),
2020-2024. At maximum weight (13%) and without tax credit, EPIC decreases by 0.143% with no
budget required, whereas at maximum weight (13%) and maximum tax credit ($9/MMBtu), EPIC
decreases by 1.341% requiring around $16.5 billion annually from the government’s budget.

million) required to provide the relevant subsidies in the future period from July 2020 to June 2024.

The results are analogous with those from past period. More specifically, hydroelectric, wind, solar

and geothermal power cause a drop of 0.198%, 0.143%, 0.090% and 0.019% respectively in EPIC

prices even with no tax credit. On the contrary, nuclear and biomass require a tax credit of at

least $3/MMBtu and $4/MMBtu respectively so as reduce the value of EPIC. The most significant

declines in EPIC are associated with potential subsidies of $9/MMBtu in the nuclear, hydroelectric

and wind power, resulting in a decline of 2.107%, 1.672% and 1.341% respectively. Nuclear

energy is again expected to need the highest budget to provide the required subsidy, due to its

maximum weight of 30%.
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Table 4.7: Average % Change in the EPIC and Average Annual Budget ($ million) at the maximum
weight target from July 2020 to June 2024

Tax Credit
nuclear hydroelectric biomass geothermal solar wind
(0.30) (0.16) (0.015) (0.007) (0.05) (0.13)

($/MMBtu) (%) ($ mil) (%) ($ mil) (%) ($ mil) (%) ($ mil) (%) ($ mil) (%) ($ mil)
0 0.657% 0 -0.198% 0 0.054% 0 -0.019% 0 -0.090% 0 -0.143% 0
1 0.350% 4,223 -0.362% 2,252 0.039% 211 -0.026% 99 -0.141% 704 -0.276% 1,830
2 0.043% 8,445 -0.525% 4,504 0.023% 422 -0.033% 197 -0.192% 1,408 -0.409% 3,660
3 -0.265% 12,668 -0.689% 6,756 0.008% 633 -0.040% 296 -0.244% 2,111 -0.542% 5,489
4 -0.572% 16,891 -0.853% 9,008 -0.007% 845 -0.047% 394 -0.295% 2,815 -0.675% 7,319
5 -0.879% 21,113 -1.017% 11,260 -0.023% 1,056 -0.055% 493 -0.346% 3,519 -0.808% 9,149
6 -1.186% 25,336 -1.181% 13,513 -0.038% 1,267 -0.062% 591 -0.397% 4,223 -0.941% 10,979
7 -1.493% 29,559 -1.344% 15,765 -0.053% 1,478 -0.069% 690 -0.448% 4,926 -1.075% 12,809
8 -1.800% 33,781 -1.508% 18,017 -0.069% 1,689 -0.076% 788 -0.500% 5,630 -1.208% 14,639
9 -2.107% 38,004 -1.672% 20,269 -0.084% 1,900 -0.083% 887 -0.551% 6,334 -1.341% 16,468

4.7 Conclusion

Four of the potential applications of the proposed forecasting framework are presented in this

chapter, demonstrating the effectiveness of the framework as an excellent tool to design, assess

and optimize contemporary governmental policies with a focus on energy-intelligent taxes. In par-

ticular, the effects of various gasoline tax hikes, the effects of different carbon taxes, the effects of

a crude oil tax and the effects from the implementation of subsidies and production targets on re-

newable energy on the price of energy are examined. Retrospective as well as prospective analyses

are conducted under different scenarios where apart from the change of the price of energy and the

tax burden in a household, the generated revenue and the environmental impacts are estimated.

As expected, the transportation EPIC is affected greatly by potential increases in the gasoline

taxes, much more so than the other indices (the percentage increase is more than double of that in

EPIC). An estimated annual revenue of $6.751 billion will be generated for a gasoline tax hike of

just 5 cents. A more aggressive tax hike of 25 cents per gallon is expected to generate an annual

revenue of $33.250 billion, providing financial sources to tackle the chronic underfunding of the

highway systems. For this analysis, the historic gasoline consumption is considered unchanged

after the introduction of low and moderate taxes. The introduction of higher taxes though, results

in a reduction in the consumption of gasoline. Additionally, the framework is flexible enough to

incorporate different dynamic models that describe the relation between the gasoline consumption
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and tax rates, providing a quantitative platform for various policy analyses. The framework can

also be used as a quantitative policy tool to estimate the optimum tax rate given a specific target of

annual revenue.

Similarly, the introduction of an incremental carbon tax that would result in a reduction of CO2

emissions is estimated to increase on average the price of energy by $1.5/MMBtu over the next 10

years. It will also generate more than $110 billion in annual revenue and will decrease the emitted

CO2 by 8,081-9,794 million metric tons over the same period. Since EPIC can quantitatively

estimate the impacts of different policy scenarios in the energy and economy sectors, it can be used

as a tool for sensitivity analysis and identification of the optimum combination of economic (carbon

tax) and environmental (CO2 emissions) variables. Having accurate estimations for different policy

case studies allows the government to make quantitative based decisions regarding course of action

with respects to socioeconomic aspects.

Additionally, an increase of $10.25 per barrel in crude oil tax would have burdened the average

energy related expenses per household by 5.54% in 2015, while $10.25 per barrel of crude oil tax

will raise EPIC over the next four years by $0.997/MMBtu on average and will generate more

than $300 billion over the same period. Increasing the percentage share of nuclear and renewable

energy in the electric power sector will also assist towards tackling policy issues related to climate

change. Moreover, the design of the policy case study using the EPIC framework has proved

the unique ability of EPIC to determine the trade-offs among different energy sources within the

electric power sector. The results have shown that hydroelectric, wind, solar and geothermal power

will cause a drop in energy prices even with no tax credit. Hydroelectric and wind power should

be the main areas of interest due to their higher impact in reducing the cost of electrical energy

without requiring any subsidies.

Living in an era where the mitigation of climate change with sustainable solutions has become

a key target globally, the developed framework provides a mathematical tool to accurately quantify

and evaluate different policies.
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5. UTILIZING PROCESS SYSTEMS ENGINEERING TOWARDS CIRCULAR ECONOMY*

5.1 Background & Motivation

Natural resources, the environmental impact of manufacturing, and the economics of produc-

tion play critical roles in the development and wealth of societies. Preservation, impact reduction,

and economic efficiency are vital for the provision of manufactured goods, energy, food, shelter,

transport, and – more generally – almost all basic functions of society. Population growth, eco-

nomic growth, and increasing requirements for the standard of living mean that more and better

goods are in demand, which in turn require more natural resources and manufacturing activity.

Such developments, if not carefully designed, can lead to resource depletion/degradation, more

landfill waste, higher levels of pollutants, and increased environmental impacts, such as climate

change.

The concept of "Sustainability" has been gaining traction as climate change, resource depletion

and biodiversity loss are becoming more and more evident. Even though this term is highly used

by businesses, governments and the research community, it lucks implementation specificity as it

is open to a wide interpretation. This has lead to vagueness of the term, while Circular Economy

(CE) can be viewed as an operational tool with specific goals, aimed for businesses as a means to

achieve economic, environmental and social sustainability.

5.2 Introduction

CE aims to solve resource, waste, and emission challenges confronting society by creating a

production-to-consumption total supply chain that is restorative, regenerative, and environmentally

benign. It does this by keeping products, components, and materials at their highest utility and

value with minimal to non-existent waste at all times.

The transition towards CE requires four areas of system improvements: reuse, repair, re-

*Reprinted from "Circular Economy-A challenge and an opportunity for Process Systems Engineering" by S.
Avraamidou, S.G. Baratsas, Y. Tian, E.N. Pistikopoulos, Computers & Chemical Engineering, 2020, 133, p.106629,
with permission from Elsevier and Copyright Clearance Center. A summary of the work is given in this chapter, with
additional details provided in Appendix H.
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manufacturing, and recycling. Although these actions help close loops and connect discrete stages

of the supply chain, interconnections among the diverse supply chain elements, stakeholders, and

regulatory environments, they also pose significant challenges for decision making. In addition to

these strategic actions and goals, there is still a lack of quantitative metrics to define the targets of

CE. For example, what is considered as a proper baseline metric for waste recovery rate achieved

via CE? Also, how is the assessment of waste recovery rate defined, e.g. based on available wastes

or their re-usability factor? Thus, it is clear that a holistic systems engineering approach is needed

to quantitatively navigate and fully consider the multi-scale, multi-faceted and interconnected CE

supply chain, to identify opportunities for beneficial improvement, to systematically explore inter-

actions and trade-offs, as well as to assist quantitative assessment and decision making.

Process engineering could play a crucial role in providing the required tools and methods for

the transition towards CE. There is a large overlap between the objectives widely explored by the

Process Systems Engineering (PSE) community and the CE reported goals [182, 183], which are

presented in the following sections and Appendix H. Additionally, a systems engineering frame-

work for the optimization of food supply chains under circular economy considerations is demon-

strated in Chapter 6.

5.3 Literature Review Process Systems Engineering and Circular Economy

Since a holistic systems engineering approach is required for the transition towards a CE, PSE

could provide many of the necessary tools and methods assisting to this direction. Therefore, a

literature review on PSE tools and research areas focusing on achieving the objectives of CE is

presented in this section and in Appendix H.4 .

Figure 5.1 illustrates the large overlap between the objectives widely explored by the PSE

community and the CE reported goals, showing that most of the CE reported goals have been

explored by the PSE community. Even though these objectives have not been tackled holistically,

or at the scale to be directly applicable for CE, the methodologies and tools developed by the PSE

community (Figure H.1) have the potential to assist decision-makers in the transition towards a

CE.
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Figure 5.1: Explored Objectives in Process Systems Engineering and Set Goals of Circular Econ-
omy

Tables 5.1 includes indicative contributions by the PSE community for the achievement of

different CE goals as reported in [182] and [183]. From this table, it is clear that different PSE

approaches have already been applied for decision making regarding most of the goals of CE. It

is also evident that the PSE community has a lot of expertise in some areas and goals of CE, even

though these were not addressed holistically and their original intent was not explicitly for CE. But,

at least to my knowledge, no effort or developments have been reported by the PSE community

for the maximization of the durability and reliability of the products, which is a key goal of CE

- even though many PSE tools can have the potential to include this consideration (Figure H.1).

This indicates an obvious gap in PSE research and exploring this can have a high impact towards

the transition to a CE.

Appendix H.5 provides a selection of some of the most important PSE tools and methods that

can be utilized towards a CE.

However, PSE faces several challenges and scientific needs towards this transition to a CE.

Appendix H.6 highlights these challenges and presents some of them in detail.
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Table 5.1: Indicative PSE Contributions for Achieving Different CE Goals

PSE Field
Circular Economy Goal

1 2 3 4 5

Multi-Objective
Optimization

[184]
[185]

[186] [184]
[187] [185]

[188] [189] [190]

[184] [191]
[185] [189]

[190]

[186] [192] [193]
[194] [184] [195]
[188] [196] [190]

Multi-Scale Modeling
and Optimization

[197] [198] [198]

Supply Chain
Optimization

[199]
[200] [59]

[186] [187]
[201] [188]

[199] [202]
[186] [192]

[199] [202] [193]
[194] [188] [196]

Optimization under
Uncertainty

[203] [204] [205] [201] [206] [195] [206]

Mixed-Integer
Optimization

[199] [207]
[208] [200]
[209] [184]
[210] [59]

[186] [199]
[207] [184]

[187] [188] [189]

[199] [184]
[189] [211]

[210]

[186]
[192] [199] [193]
[207] [194] [184]
[188] [196] [210]

Resource
Management

[207]
[212] [213]

[207] [212] [207]

Food-Energy-Water
Nexus

[207]
[214] [184]

[207] [215]
[184] [187] [189]

[215]
[184] [189]

[207] [184]

Process Integration
and Intensification

[216] [210]
[217] [218]

[219]
[216] [217]

[211] [210]
[220] [218]

[219]

[216] [221]
[210] [222]

[223] [218] [219]
Sustainable Process

Synthesis and Design
[216] [199] [216] [199] [199] [202]

[199] [202]
[194] [224]

Life Cycle
Assessment

[216] [225]
[199] [226]

[216] [225]
[186] [199] [190]

[225]
[199] [190]

[225] [186] [199]
[193] [196] [190]

1 - Reduce Material Losses/Residuals, 2 - Reduce Input and Use of Natural Resources,
3 - Increase Energy Efficiency and the Share of Renewable, 4 - Reduce Emission Levels,

5 - Increase the Value Durability of Products
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5.4 Motivating Case Study - The Supply Chain of Coffee

The aforementioned challenges and opportunities of PSE transitioning to a CE are illustrated

through the supply chain of coffee. The coffee supply chain is selected since it produces a lot

of waste and uses a lot of resources, thus it is highly relevant and easily understandable for the

transition towards a CE. More details about the efficient transition towards a CE coffee supply chain

are illustrated in the next chapter, where the newly developed systems engineering framework for

the optimization of food supply chains under CE considerations is applied into the coffee supply

chain.

Coffee is one of the most popular beverages worldwide with more than 167 million 60-kg bags

of coffee being consumed yearly worldwide [227, 228]. The global coffee supply chain creates an

estimated 23 million tons of organic coffee waste per year [229]. In fact, just one cup of coffee

(containing about 10g dry coffee), produces through its entire supply chain about 49g of CO2

emissions [230], 9.9g of dry spend coffee waste, 6.9g of dry coffee pulp, husk and skin waste [3]

and plastic used for packaging, cups, straws and stirrers. Furthermore, just for one cup, 140 liters

of water (mainly for irrigation) [7] and 0.13 kWh of energy [230] are needed.

The following subsections and Appendix H.7 present the linear and circular coffee supply

chain, discuss the challenges that arise from the transition and the opportunities for PSE to assist

in this transition.

5.4.1 The Transition from a Linear to a Circular Coffee Supply Chain

The produced wastes and the used resources can be minimized when linear coffee supply chain

evolves into a CE structure. Figure 5.2 illustrates a simplified coffee supply chain. Energy, mainly

from fossil fuels, is used for every process in the supply chain, while water is used and contami-

nated in many processes (highly based on the coffee processing methods).

Moreover, waste is created at every stage; W1 corresponds to the wastes and emissions created

when fossil fuels are used for the generation of energy, W2 corresponds to the water contaminated

with fertilizers during irrigation processes, W3 are bad coffee berries collected during harvesting,

W4 are berry parts (the coffee pulp, coffee husk, and silver skin) that are discarded during process-
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ing, W5 corresponds to spillages and degradation during packaging, W6 corresponds to plastic

waste, W7 corresponds to expired and degraded packaged coffee, W8 corresponds to expired cof-

fee, spent coffee and plastic packaging and W9 corresponds to the plastic cups, straws, and stirrers.

Figure 5.2: Supply Chain of Coffee in a Linear Economy

Figure 5.3: Supply Chain of Coffee in a Circular Economy

The transition towards a CE coffee supply chain (Figure 5.3) would require the transition to

renewable energy resources and reusable packaging solutions. Processes that are more energy

efficient, produce less waste and contaminate less water, will need to be chosen. It would also

require the collection of all created waste and their processing to produce alternative products.
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In addition, natural resources (water and nutrients) need to be returned to their source, thereby,

closing the loops and creating a CE that is closed in terms of material flows and open in terms of

energy flows.

5.4.1.1 Coffee Organic Wastes and Alternative Waste Management Pathways

Coffee production generates waste from the coffee berries responsible for more than 50% of the

fruit mass [231], while spent coffee (the residue obtained during the brewing process) constitutes

about 99% of the dried roasted coffee bean. In most of the soluble coffee producing industries,

the waste is collected at a cost and disposed or, in limited cases, it is used as a raw material for

different purposes. A selection of the different products that can be produced form organic coffee

waste is illustrated in Figure H.3. These different pathways can reduce not only the economic and

environmental costs of disposal but also to generate revenue from an undervalued material.

5.4.1.2 Challenges and Opportunities for PSE towards a Circular Coffee Supply Chain

The transition of the coffee supply chain from a linear to a CE consists of many challenges

but at the same time many opportunities for PSE. Advanced modeling and novel optimization

techniques can be used for the assessment and identification of multiple and alternative pathways,

while process integration and intensification could lead to more efficient processes. Therefore, a

methodology that combines CE assessment metrics along with superstructure optimization shall be

developed, enabling the evaluation of the different supply chain pathways and their technologies.

The coffee supply chain also involves multiple stakeholders at multiple levels. Hence, hierarchical

modeling and multi-objective optimization is needed for such a complex supply chain. Addition-

ally, the multi-spacial and multi-temporal nature of the coffee supply chain complicates even more

the situation, requiring new multi-scale modeling approaches and effective decomposition methods

for a supply chain of such scale.

Appendix H.7.1 summarizes some of these challenges and the corresponding research oppor-

tunities for PSE.
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5.5 Conclusion

Circular economy (CE) is considered as an approach that effectively matches the economic

growth with sustainable economic, environmental and social development, providing an alterna-

tive, cyclical flow model to the conventional linear economy models [28]. A systems engineering

approach can have a big impact on the understanding, analysis, and optimization of the multi-scale,

multi-spacial and multi-temporal interconnected CE supply chains that are governed by multiple

stakeholders with conflicting objectives, under uncertain and dynamic conditions. The goal re-

mains the convergence of different disciplines towards a common vision of CE. The move towards

such an economy model can result in many challenges but also many opportunities for PSE due

to the inherent complexities of this model. Thus, this work serves as a first step for the identifica-

tion of these challenges and a review of the literature gaps on the necessary methodologies, which

along the existing techniques will allow the transition towards a CE.

In the next two chapters, two such frameworks that utilize PSE methodologies towards the

CE transition are presented. The first one refers to a systems engineering framework for the opti-

mization of food supply chains under CE considerations, with a detailed case study on the coffee

supply chain. The second one demonstrates a quantitative and robust CE assessment framework

that holistically assess circularity at the micro level.
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6. A SYSTEMS ENGINEERING FRAMEWORK FOR THE OPTIMIZATION OF FOOD

SUPPLY CHAINS UNDER CIRCULAR ECONOMY CONSIDERATIONS*

6.1 Background & Motivation

Rising populations across the world [232] seek to improve their standards of living, placing

huge stresses on natural resources and supply chains [233]. Energy and operational efficiency,

improvement in manufacturing processes, quantitative management of food-energy-water nexus

[234, 235, 184], and economic growth are vital to fulfill the increasing demand for goods, food

and services [120], however they still lead to natural resource degradation [236], substantial waste

generation [237], water contamination [238], and surging greenhouse gas emissions [239, 240,

241, 242]. Thus, economic expansion shall be combined with sustainable development, ensuring

the advancement of our societies while preserving the environment [243, 244, 245]. This requires

a fundamental transformation of our economic model [246] that promotes the "take-make-use-

dispose-pollute" concept to a more "sustainable" one [247, 248].

Circular Economy (CE) has emerged as a potential solution for such a transition, with extreme

emphasis being put towards improvement in reuse, remake, repair and recycling [249]. [250] de-

fines CE as a combination of production-consumption systems that maximizes the output services

in a sustainable manner, without violating the natural reproduction rates, while utilizing cyclical

material flows, and renewable energy sources and flows. CE aims to solve resource, waste, and

emission challenges confronting society by creating a production - to - consumption total supply

chain that is restorative, regenerative, and environmentally benign [28]. Eco-effectiveness, through

a holistic optimization of all components, along with a great emphasis on the design and systems

thinking, is the main focus of CE [249, 27]. As it has been been highlighted in the previous chapter

and Appendix H, the goals and key characteristics of CE [182] are summarized as follows:

*Reprinted from "A systems engineering framework for the optimization of food supply chains under circular
economy considerations" by S.G. Baratsas, E.N. Pistikopoulos, S. Avraamidou, Science of Total Environment, 2021,
Vol. 794, pp 148726, with permission from Elsevier and Copyright Clearance Center. A summary of the work is given
in this chapter, with additional details provided in Appendix I.
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1. Reduction of material losses/residuals: Waste and pollutants minimization through the re-

covery and recycle of materials and products.

2. Reduction of input and use of natural resources: The reduction of the stresses posed on

natural resources through the efficient use of natural resources (e.g. water, land, and raw

materials).

3. Increase in the share of renewable resources and energy: Replacement of non-renewable

resources with renewable ones, limiting the use of virgin materials.

4. Reduction of emission levels: The reduction in direct and indirect emissions/pollutants.

5. Increase the value durability of products: Extension of product lifetime through the redesign

of products and high-quality recycling.

CE can contribute to all dimensions of sustainable development, but it should not be confused

with sustainability since they have different goals, motivations, prioritizations, institutionaliza-

tions, beneficiaries, time-frames, and sense of responsibilities [251]. The successful and inclusive

economic, environmental, and social integration is fundamental for sustainability and sustainable

development. Although, the term is quite ambiguous and lacks implementation specificity, it refers

and applies to a variety of contexts and time horizons. On the contrary, CE is viewed as an opera-

tional tool to enforce sustainability [252] through economic prosperity, environmental quality and

social equity considering earth as a closed and circular system where economy and environment

coexist in equilibrium. Even though the CE concept is still relatively new, with little scientific guid-

ance regarding its successful implementation and its effective evaluation [253, 254], the economic,

environmental and social aims are evident from its adoption into national laws at international and

regional levels (macro and meso systems), as well as at the level of private corporations and busi-

nesses (micro system). However, the extensive and universal nature of CE introduces significant

challenges for the decision-making which are exacerbated from the interconnections among the

diverse supply chain elements, stakeholders, and regulatory environments. Therefore, a holistic
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systems engineering approach is required to quantitatively navigate and thoroughly address the

multi-scale, multi-faceted and interconnected CE supply chains [255].

6.2 Introduction

Food loss and waste throughout the supply chains represent about one-third of the food that

is produced, although more than 820 million people remain chronically undernourished [256].

The annual economic costs of this food waste are estimated at $ 1 trillion, skyrocketing to $ 2.6

trillion on annual basis when environmental and social costs are accounted for [257]. Likewise, the

contributions of food loss and waste to climate change are also significant, accounting for about

8% of global greenhouse gas (GHG) emissions [258].

Innovative, collaborative and drastic approaches must be deployed to tackle such a challeng-

ing issue. The 2030 Agenda for Sustainable Development from the United Nations has identified

and promoted two Sustainable Development Goals (SDGs), particularly SDG 2 and SDG 12 for

targeting a Zero Hunger world and ensuring sustainable production and consumption patterns re-

spectively [148]. The implementation of sustainable agriculture will assist towards food security

and enhanced nutrition while reducing food loss and waste would result to more efficient land use

and improved water resource management with beneficial effects on climate change and liveli-

hoods. Thus, intergovernmental and international collaborations to promote such transformations

and advocate new policies are required. Moreover, coordination among the various stakeholders

of the food supply chains (FSCs) with parallel switch of the shopping and consumption habits will

accelerate this transition [259].

6.2.1 CE Food Supply Chains - (CE FSCs)

The concept of CE is of extreme importance in this direction since by definition it is associated

with optimization of resources and energy utilization while preserving the environment. CE-FSCs

imply minimization of the waste and GHG emissions generated at the various stages of the supply

chain. This can be achieved through recovery and recycle, valorization of food waste and by-

products as well as by re-using food and recycling nutrients through behavioral change of the
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consumers, integration of renewables and efficient use of natural resources. Moreover, advanced

preservation techniques and reliable storage shall be utilized to increase the lifetime and quality of

products. The loop of the nutrients and other materials shall be closed; while the loop of energy

shall be open. This "zero-waste" approach is a key differentiating factor between CE and the other

sustainability thinking approaches [260].

Governments, industry and academia have demonstrated a growing interest towards CE over

the recent years, however it is still at an early stage. Fassio and Tecco [261] conducted a thorough

analysis in 40 case studies evaluating the effectiveness of various CE actions towards integration of

SDGs into the food systems. Although, the concepts of optimization performance and efficiency

along with regenerative and loop actions have emerged, however the practical implementation of

CE into the food systems is still missing, while socio-economic and environmental considerations

are often omitted. Innovation for circularity and sustainability have become not only a necessity

due to climate change and economic environment, but a fundamental for all involved parties to

maintain and/or improve their competitive advantage in the 21st century. The intrinsic complexity

and comprehensive nature of CE mandates multidisciplinary and collaborative efforts. Process

systems engineering (PSE) accompanied by environmental engineering and horticultural sciences

could play a crucial role in providing the required tools towards the transition to CE-FSCs [255].

To this respect, the foundations of a systems engineering framework and quantitative decision-

making tool for the analysis and trade-off optimization of interconnected FSCs, governed by the

CE principles are presented [262]. The explicit incorporation of CE goals and objectives into the

design and operation of FSCs is a key contribution of the proposed framework. FSCs demonstrate

unique characteristics, restrictions, objectives and challenges in comparison to the other product or

service supply chains. In particular, FSCs consist of several interdependent steps such as farming,

processing, distribution, retailing, in a domino type transition. Humans ingest food for nourish-

ment, and as such issues related with perishability, preservation requirements, quality decay, short

shelf life and delivery restrictions, necessitate the highest standards of safety and quality for the

delivered products [263]. FSCs are also confronted with soaring consumer demand, leading to
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huge stresses on natural resources and the environment, significant energy requirements as well as

substantial waste generation at the various stages. The recent movements towards improved food

quality, increased food shipping traceability, along with the emerging ethical dilemmas such as

the utilization of biomass for food or fuel and the rising sustainability concerns, set a new scene

around the globe, calling for transformational changes across the multi-spacial and multi-temporal

FSCs.

The proposed CE-FSC framework combines data and information from the academic and in-

dustrial literature, along with mixed-integer modeling to establish the interconnections among dif-

ferent stages of the circular FSCs as well as multi-objective optimization to consider all CE ob-

jectives and analyze trade-offs. It is flexible since the set of resources and tasks, as well as the

supply and demand information can be constantly updated, reflecting recent trends and develop-

ments. Apart from systematically capturing the extensive, up-to-date set of production, processing

and valorization pathways, the proposed CE-FSC framework contributes to the literature in a dual

manner. First, it enables the identification and selection of the optimal tasks from the list of all

alternative processes based on certain CE objectives. On top of that, it allows the identification of

the least efficient processes or even sections of the network, which introduce potential bottlenecks

within the supply chain. This is a key feature that refocuses the interest and promotes the research

and development on the less developed sections of the supply chain. Furthermore, users from a

variety of backgrounds can benefit from the proposed framework. Academics and experimentalists

could concentrate on the improvement of existing processes or on the creation of completely new

ones, while private corporations could evaluate the circularity of parts or their entire supply chains.

Governmental policymakers could determine areas that require improvement, and thus promote

legislative actions and allocate funding towards these areas.

The supply chain of coffee is used as a case study to illustrate the effectiveness and applica-

bility of the proposed framework. The current linear coffee supply chain is transformed into a

circular one under different supply and demand scenarios. Due to the competing nature of CE

objectives and supply chain’s stakeholders, a multi-objective optimization approach is developed,
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and solved to optimality by generating different pareto fronts. Therefore, the case study highlights

the usefulness of the framework as a decision-making tool that incorporates all sets of tasks and

resources under various design and operational criteria and conditions.

6.3 Circular Economy Food Supply Chain Framework

The necessity of the transition to a sustainable food system through the application of CE

principles has been recognized and discussed in the literature [259]. Potential barriers and promis-

ing solutions have been considered, including economic and environmental [264, 265], regulatory

[266], technological [267], and sector specific [268] obstacles. In addition, theoretical and practi-

cal insights along with strategic aspects of the CE supply chains in general have also been reviewed

[269]. Business and governmental leaders have initiated collective efforts to accelerate the tran-

sition towards CE for the food system and FSCs, by setting objectives, identifying barriers and

proposing solution strategies [270]. The interest though is focused on the theoretical and qualita-

tive analysis of this transition, primarily for individual supply chains, without providing a holistic,

quantitative framework.

The developed framework comes to address this gap through a holistic systems engineering

approach, enabling the navigation and fully consideration of any multi-scale, multi-faceted and

interconnected CE-FSC. It provides a systematic way to identify opportunities for beneficial im-

provement, and exhaustively explore interactions and trade-offs. Specifically, it addresses the fol-

lowing problem:

"Given a specific food supply chain, the framework determines the optimal production and

processing network based on all CE criteria and different supply and demand scenarios."

The proposed CE systems engineering framework for FSCs consists of five steps. 1) Produc-

tion and Processing Pathways. This step is used to model all the stages for the production and

processing of the existing supply chain, and then identify and assess all the alternative pathways

for the production of the desired product. 2) Waste, Loss and By-Products Valorization Pathways.
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This step involves the identification and assessment of all the alternative pathways for the waste

valorization and food losses minimization. 3) Resource-Task-Network (RTN). In this step, a RTN

superstructure representation that includes all the various alternative pathways shall be designed.

4) Mixed-Integer Linear Programming (MILP) Model. This step involves the formulation of the

MILP model that captures the entire FSC, its objectives and its constraints into a mathematical

modeling representation. 5) Single or Multi-Objective MILP Optimization and Assessment. This

last step translates the decision-making process into a single or multi-objective MILP optimization

problem, allowing for simultaneous consideration of economic, energy efficiency and environmen-

tal criteria. The framework is summarized in Figure 6.1. Each step is discussed in detail in the

following sections.

Figure 6.1: CE-FSC Framework

6.3.1 Step 1: Production and Processing Pathways

Agricultural commodities such as crops and livestock are produced when farmers, fishers, and

ranchers combine their land, water and labor resources with capital, machinery and manufactured

inputs [271]. Then, food can be sold either directly to the end-consumers, or is handled and pro-
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cessed by other sectors before being consumed. The optimization of any FSC considering CE

goals and objectives, requires the detailed identification and assessment of all possible stages of

the supply chain, including any alternative pathways along with the involved resources. The initial

step requires the identification of the input, intermediate, and output resources. Then, a superstruc-

ture representation of the FSC must be developed that involves all the stages from harvesting and

processing to production and distribution of the final desired product(s), including the conversion

factors among these stages. Having determined the resources and processes that are required to

produce, process and distribute the final product(s), then any alternative pathways that improve

circularity have to be identified and incorporated within the supply chain. The exacerbated nutri-

ents and water imbalances among supply chains and countries driven by the increasing demand for

nutrients, especially phosphorus, the massive nutrient losses, the water scarcity and pollution, and

the globalized structural development of industrialized agriculture [272] must be thoroughly inves-

tigated. Under the current linear FSCs, the majority of the waste generated at the different stages

are sent to landfills, while the CE-FSC has a zero-waste vision. The goals and key characteristics

of CE as described above, should be the guide for this transition towards CE. As such, minimiza-

tion of the usage of new materials and valorization of wastes through recycling and recovering as

well as improving the efficiency of processes or introducing new more efficient ones, should be

the priority. New technologies and processes that promote a restorative and regenerative design of

FSCs taking advantage of renewable resources and energy must be considered. Having a thorough

and inclusive perception of the production and processing pathways of a particular FSC along with

the state-of-the-art new developments require a comprehensive literature and business review.

6.3.2 Step 2: Waste, Losses and By-Products Valorization Pathways

In continuation to the previous step, the superstructure representation is extended to capture

all the waste, losses and by-products pathways. CE aims to close the material loops and turn

the outputs of one supply chain or a manufacturer into inputs for another [273], treating waste

as a secondary resource [27]. To this direction, it is necessary to have a clear and unambiguous

hierarchy of the food waste (FW), surplus (FS) and losses (FL), which will allow the selection of
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the most environmentally-efficient end-of-life treatment.

The prevention of FS should be the top priority, followed by reuse of food for human consump-

tion and then reuse for animal feed, before considering material recycling, nutrient and energy

recovery and having as the last step the food disposal only if it is unavoidable [274]. However, and

despite the efforts, a certain amount of food will end up as waste and/or loss. Thus, it is important

to incorporate into the CE-FSC framework the concepts of edibility and possibility of avoidance,

which eventually leads to six distinct categories for FS, FW and FL, as proposed by Teigiserova

et al. [274]: i) edible - (FS), ii) naturally inedible - (FW), iii) industrial residue - (FW), iv) ined-

ible due to natural causes - (FW), v) inedible due to ineffective management - (FW) and vi) not

accounted for - (FL).

Treating waste, losses and by-products as a resource into the CE-FSCs, enables an indefinite

use of natural materials and resources [266]. An extensive literature and technological review

needs to be conducted for the identification and assessment of alternative pathways for the waste

and by-products valorization across the supply chain. Technological innovations, superior pro-

cesses, optimized sequences for the design, processing, packaging, distribution of food products,

must be integrated into the original FSCs to ensure the successful implementation of the "zero-

waste" goal. By determining the input - output relationships and the conversion factors among the

processes, the energy and material footprints of the FSCs are modeled and calculated. Equally im-

portant is the extent of utilization of model approximations within the framework which is directly

related to the data availability, data acquisition and handling as well as the degree of acceptance of

approximate representations [275]. Various sources could provide significantly different or even

contradicting technological, environmental and economic information, thus minimum and maxi-

mum limitations are taken into consideration. Ideally, the CE-FSCs would demonstrate alternative

pathways that will utilize any waste and by-products for the production of high added value prod-

ucts, such as energy and new materials.
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6.3.3 Step 3: Resource-Task-Network (RTN) formulation

Having completed the identification of the alternative pathways for production, energy and

waste valorization, the next step of the CE-FSC framework involves the construction of a Resource-

Task-Network (RTN) representation. The RTN representation is a generic and simple mathemat-

ical formulation of the interactions between tasks and resources that lead to a bipartite directed

graph. Resources include equipment, materials, energy, utilities, manpower, warehouses, distribu-

tion locations etc., and are represented as a circle in the RTN, and can be classified as renewable

and non-renewable. As non-renewable resources are considered all kinds of materials, utilities,

manpower etc., whereas as renewable resources are considered any technological resources in the

supply chain network such as production facilities, warehouses, distribution centers, transportation

vehicles. Resources are also characterized by their location, enabling the identification of distances

between units, which is essential for the modeling of the material transfers within the supply chain

network. Therefore, a facility that involves multiple tasks is modeled implicitly, not explicitly,

through its associated equipment and technologies at a particular location. A task, represented as

a rectangle, is actually an abstract operation that can produce, transform, transport, store, and/or

supply resources, with the resources being treated uniformly. As such, tasks may purchase, sell, or

store resources, transform one set of resources into another, produce or consume resources at any

point of time etc. [276]. Figure 6.2 provides an example of the RTN representation. In this case,

Resource1 and Resource3 are consumed in Task 1 for the production of Resource4. Similarly,

Task2 consumes Resource1 and Resource4 for the production of Resource6 and so on.

Such a representation enables the modeling of the supply chain resources and tasks as an op-

timization model, integrating all the design and planning characteristics of the particular supply

chain. The resources and tasks along with their interrelationships need to be identified from the

postulated set of alternative options. Processing equipment units are treated explicitly, which

means that units in different conditions e.g. "clean" or "dirty" shall be treated as different re-

sources, although in general, the defining attributes of a resource type depend on the content and

the detail of modeling [276, 277]. This superstructure representation provides a generic design
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methodology that can be applied to any type of FSCs.

Figure 6.2: Resource-Task-Network (RTN) representation [1]

6.3.4 Step 4: Mixed-Integer Linear Programming (MILP) model formulation

Taking advantage of the previous step where the FSC is represented as a RTN superstructure,

here this information is translated into a mathematical model of the supply chain. The mathemati-

cal model consists of variables, parameters, constraints and mathematical relationships. Variables

can take different values reflecting different states of the supply chain. These values can be con-

tinuous, integer, or a mixed set of continuous and integers. On the contrary, the parameters have

specific, one or multiple, fixed values with each one of those representing different models of the

system. Restrictions and limitations of the supply chain are expressed through constraints. The

logical conditions among the variables, along with the equality and inequality expressions define

the mathematical relationships of the system [278].

Based on the RTN superstructure representation both continuous and integer variables are re-

quired to capture the entire FSC, economic and environmental objectives and constraints. The

selection (or not) of any task, meaning any process, technology and/or equipment, within the math-
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ematical model is governed by a binary variable. The same applies for the selection (or not) of a

resource, i.e. material, energy etc. Therefore, a binary variable yj is introduced in the model to

represent the selection (or not) of a task (process, technology or equipment) and a binary variable

yi is introduced for the selection (or not) of a resource (material, energy etc.) as follows:

yj =


1, if the corresponding task (process, technology or equipment) is selected

0, otherwise

yi =


1, if the corresponding resource (material, energy etc.) is selected

0, otherwise

Then, continuous variables are used to reflect the design and operational decisions that need to

be made. For example, the amount of material that is used as input or output of a process, or the

amount of material that is consumed during a process are modeled through continuous variables.

All the mass and energy characteristics of the tasks that arise from the mass and energy balances

are governed by linear relationships with respect to the inputs / outputs and conversion rates.

The various constraints that govern a FSC are also captured through the introduction of equality

and inequality constraints. Typically, these constraints are imposed by the conservation of mass or

energy (mass and energy balances) within the supply chain, the conversion rates of a task/process,

raw material availability, and/or capacity and technological limitations. For example, limited sup-

ply of resources for a production process leads to constraints derived from the relationship between

this supply and its possible utilization by different tasks. Constraints may be also introduced from

externalities such as governmental policies, market restrictions etc., in a form of limitations in the

supply of resources and/or demand of products. Finally, big-M constraints are used to ensure that

a process is not operational unless it is built. If it is built, then certain limitations are enforced to

the model e.g. operating levels of a process may not exceed an upper bound of M.

The existence of both continuous and integer variables in approximated linear forms lead to the

formulation of the FSC model as a mixed-integer linear programming (MILP) problem. The per-
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formance criterion is denoted as objective function, and can involve economic, energy efficiency

and/or environmental features. Here, the objective functions are matched with the aforementioned

goals and characteristics of CE as can be seen in Table 6.1. Therefore, the reduction of material

losses and residuals is explored through the minimization of the generated waste, and the like. In

case non-linear terms are required either in the objective function and/or in the constraints to repre-

sent the involved phenomena, then the model is classified as mixed-integer nonlinear programming

(MINLP) problem. This implies a number of difficulties associated with the modeling and the so-

lution of such problems, which must be carefully addressed [278, 279], and are beyond the scope

of the proposed framework.

Table 6.1: Formulating the Objective Functions based on the CE Goals

# CE Goals & Key Characteristics Objective Functions

1
Reduction of material losses/residuals: Waste and pollutants minimization

through the recovery and recycle of materials and products.
↔

Minimization of generated waste,

Maximization of recycling

2
Reduction of input and use of natural resources: The reduction of the stresses

posed on natural resources through the efficient use of natural resources.
↔

Minimization of consumed raw materials and

natural resources

3
Increase in the share of renewable resources and energy: Replacement of

non-renewable resources with renewable ones, limiting the use of virgin materials.
↔

Maximization of total energy and/or

renewable energy output

4
Reduction of emission levels: The reduction in direct and

indirect emissions / pollutants.
↔ Minimization of GHG emissions

5
Increase the value durability of products: Extension of product lifetime

through the redesign of products and high-quality recycling.
↔

Maximization of product, equipment

and packaging durability

6.3.5 Step 5: Single or Multi-Objective Optimization and Assessment

The final step of the CE-FSC framework involves the optimization of the model developed

in the previous steps, considering single or multi-objectives. In case of a single objective, the

optimal solution is easily determined against other solutions by comparing their objective function

values. When more than one objective function is involved and must be optimized systematically

and simultaneously, then the problem is called multi-objective optimization. In general, there is

no single global solution for this type of problems but rather a set of solutions that define the

best trade-off among the competing objectives. The set of these non-dominated solutions over the

entire feasible space is called pareto-optimal set, and a pareto efficient front is generated from the

boundary of this set.
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The most commonly used methods for solving multi-objective optimization problems are the

weighted sum method and the ε-constraint method [280, 281]. In the first method, the multi-

objective problem is transformed into a single objective one by adding weighted objectives. The

weights used reflect the relative importance of each objective. The second method involves the

optimization of one of the objective functions using the rest of the objective functions as constraints

of the problem [282, 283]. In the developed CE-FSC framework the ε-constraint method is used,

ensuring that the pareto solutions are evenly distributed over the solution space, while attaining a

precise representation of the efficient set. The user can even specify the number of the generated

efficient solutions by adjusting the number of intervals on the feasible region.

6.4 Case Study: Circular Economy Supply Chain of Coffee

In continuation to the motivating case study that is presented in the previous chapter, the supply

chain of coffee is selected for demonstrating the applicability and effectiveness of the proposed

CE-FSC framework, as a tool for designing and optimizing the transition from the current linear

supply chain of coffee to a circular one. Coffee has been selected here since it is one of the

most popular beverages globally with more than 167 million 60-kg bags of coffee being consumed

yearly worldwide [284]. This is translated into over 2 billion cups of coffee being consumed

on daily basis [228, 285]. As a result, the global coffee supply chain creates an estimated 23

million tons of organic coffee waste per year [229], while it requires a considerable amount of

resources such as energy and water. Coffee industry has also an enormous impact in the economy,

representing approximately 1.6% of the total US GDP [286]. Therefore, such as global supply

chain that produces a lot of waste and uses a lot of resources, is ideal for the demonstration and

application of the proposed framework towards CE.

A typical coffee supply chain is shown in Figure 6.3. Coffee cherries are harvested and then

processed in two different ways, the dry and the wet process, resulting in different coffee products

and by-products as well as products of different quality. In the dry process, the cherries are dried

for a period up to three weeks (i.e. Drying) and then the outer and the inner shells are mechanically

removed (i.e. Hulling), producing the desirable green coffee beans along with the husk as a by-
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product [287]. Conversely, the wet process requires excessive amount of water and is conducted

in multiple stages. The process start with the removal of the outer skin that covers the beans (i.e.

Pulping), and then continues with the complete removal of the mucilage from the parchment (i.e.

Fermentation & Washing). Then, the parchment is dried either naturally under the sun or techni-

cally in a dryer (i.e. Drying) until its moisture level reaches about 10%. Finally, the parchment

is removed mechanically (i.e. Peeling & Polishing), producing the desirable green coffee beans

[3, 15, 287]. Green coffee beans require further processing before become available for consump-

tion. As such, the green coffee beans must be roasted (i.e. Roasting), acquiring a characteristic

flavor and aroma, and becoming available for consumption as whole beans. The roasted coffee

is then grounded and can be consumed either as a brew beverage (i.e. Coffee Beverage), after

brewing, or further treated by extraction, evaporation/concentration, and drying and consumed as

Soluble/Instant Coffee [287]. Caffeine is responsible for the stimulating effect of coffee, and so

decaffeination is an extra step that must be taken before roasting the green coffee beans, so as to

remove caffeine from the beans.

Apart from the desirable products, wastes and by-products, namely, husk, pulp, mucilage,

parchment, silverskin etc. are generated during the coffee supply chain, while significant amounts

of resources such as energy and water are also consumed. The overall life cycle burdens of even

just one cup of spray dried soluble coffee, equivalent to 4.44 g of green coffee, are significant,

with approximately 1 MJ of primary non-renewable energy and up to 400 ltr of water consumed,

70 g of CO2eq released [6], 3 g of spent coffee and 12 g of coffee by products (pulp, mucilage,

parchment) generated [3]. Moreover, plastics are used in various stages of the coffee supply chain

introducing another substantial environmental burden.

With the current linear supply chain model (see Figure I.1 in Appendix I), only a small fraction

of these burdens are reused or recycled even though there are plenty of studies demonstrating

sustainable alternatives [3, 20, 288]. Hence, as the coffee consumption increases, so does the

amount of organic coffee waste and the amount of resources used, aggravating both the waste,

water and energy management problems.
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A solution to this problem would be the transition to a circular supply chain (see Figure I.2 in

Appendix I), where renewable energy resources and more efficient processes will be utilized; water

consumption will be reduced and wastewater treatment will be applied; waste generation will be

minimized, and all wastes will be collected and utilized for the production of alternative products.

The material flows ultimately shall be closed, while the energy flows shall be opened. However, it

is evident that the transition to a CE model while tackling the challenges from the multi-scale and

multi-faceted coffee supply chain require a holistic systems engineering approach. Therefore, the

proposed CE-FSC framework can be utilized in this direction, ensuring an effective and efficient

transition. The following sections demonstrate step by step the application of the framework in the

supply chain of coffee.

6.4.1 Step 1: Production & Processing Pathways

As an initial step, the coffee supply chain is modeled by identifying the inputs and outputs

along with the processes that take place so as to produce the desirable end-products. In this supply

chain, three are the desirable end-products i.e. the whole beans, the coffee beverages and the

soluble/instant coffee (Figure 6.3), while coffee cherries and water are considered as the main

inputs. Moreover, the alternative pathways for the production of the desired product have to be

identified and assessed, i.e. wet or dry method for the production of green beans [20], decaffeinated

or caffeinated coffee. As it is shown in the following steps, the selected pathway(s) might be

different each time, depending on the objective(s) of the optimization problem. This complexity

requires extra care during the modeling process.

6.4.2 Step 2: Waste, Loss & By-Products Valorization Pathways

As a second step, the waste, losses and by-products of the coffee supply chain must be iden-

tified. Coffee husk is the main pre-roasting by-product from the dry processing method, while

coffee pulp, mucilage and parchment are the by-products of the wet processing method. Silver

skin is the by-product from roasting the green beans, and spent coffee grounds (SCG) are the final

by-products from either brewing or extraction processes. The majority of the wastewater is gener-
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ated during pulping and fermentation. Thus, a waste waste-treatment facility is considered so as to

properly treat this water either for re-use in in the coffee supply chain or for safe discharge back to

the environment. Similarly, to the previous step, the alternative pathways for the valorization of the

wastes have to be identified and assessed. Thus, an extensive literature review shall be conducted.

The following tables highlight such alternative pathways for the valorization of the coffee wastes

and by-products for the production of energy (Table 6.2), as well as for the production of value

added products (Table 6.3). This analysis, in conjunction with feedback from experimentalists, can

help towards the identification of sustainable CE coffee supply chain alternatives.
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6.4.3 Step 3: Resource-Task-Network (RTN)

In the previous steps the main along with the alternative pathways of the coffee supply chain

have been identified, and so the next step involves the generation of a Resource-Task-Network

(RTN) representation that incorporates all these pathways. Here, and for demonstrating purposes,

only the alternative pathways for the production of bio-energy are considered. Figure 6.4 illustrates

such a RTN representation of the supply chain of coffee, capturing the sections in the production

as well as in the consumption countries, the conversion coefficients of the various processes, along

with waste valorization alternatives for the production of energy.

The part of the supply chain from the plantation of the coffee cherries, to the production of

green coffee beans through the dry or wet processing methods, typically takes place in the produc-

tion countries, while the rest of the supply chain, that includes the production of the final products,

takes place in the consuming countries. The coffee producing countries consume significant re-

sources in the form of raw materials, energy, and water while the generated wastes and by-products

constitute a source of severe contamination and environmental threat. The consuming countries

face similar problems, with the most challenging being related with the waste management of the

coffee by-products and wastes.

The conversion coefficients of the various processes are another crucial factor within the coffee

supply chain. On average, just 190 kg of green coffee are produced per ton of coffee cherries

[11, 12, 15], due to the mass reduction that occurs during the drying process as a result of the high

moisture of coffee beans, along with the considerable waste that is generated during the dry or

wet processes [5, 17]. Moreover, on average one ton of green coffee generates 370 kg of coffee

beverages or 370kg of soluble/instant coffee [14, 13], and about 650 kg of SCG or about 2 kg of

wet SCG from each kg of soluble/instant coffee produced [8, 3, 10].

About 23 kg of CO2eq per ton coffee cherries and 76 kg of CO2eq per ton coffee cherries are

released during the dry and wet processes respectively, while substantial is also the environmental

burden during the brewing and extraction processes, with 1.38 ton of CO2eq per ton of roasted

coffee and 3.28 ton of CO2eq per ton of roasted coffee respectively [6]. It is worth mentioning, that
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no CO2 emissions are released to the atmosphere during any of the waste valorization processes.

Similarly, wet method requires substantial more power consumption (2.735 MWh per ton of coffee

cherries) in comparison to the dry method (0.103 MWh per ton of coffee cherries). Minimal

is the energy requirement for the roasting process (0.042 MWh per ton of green coffee) [19],

while coffee extraction process [19] is more energy intensive (4.68 MWh/ton instant coffee) than

brewing process (1.87 MWh/ton coffee beverages) [6]. Finally, the water conversion coefficients

are estimated based on [7], with 10.5 cubic meters of water per ton of roasted coffee been used

during brewing process, and 11.67 cubic meters of water per ton of roasted coffee been used during

the extraction process. As expected, zero water is consumed during the dry process, while 9.7 cubic

meters of water per ton of coffee cherries is consumed during the wet process.
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6.4.4 Step 4: Mixed-Integer Linear Programming (MILP) Model

First, all available types of resources I, including material and energy resources, as well as all

available types of tasks J, including the primary coffee production processes, the waste valorization

and the waste treatment processes, are denoted as follows:

I = {i1, i2, . . . , i|I|},

and

J = {j1, j2, . . . , j|J |}

Also, the following subsets are denoted:

IWS waste resources, i ∈ IWS

IWT water resources, i ∈ IWT

Then, the resource and task parameters are defined. The supply and demand of the various

resources form the resource parameters, while the conversion coefficients of the various processes,

along with the CO2 emissions coefficients and the energy consumption or generation coefficients

form the process parameters. In particular,

supi resource supply parameter, i ∈ I

demi resource demand parameter, i ∈ I

pci,j process conversion coefficient, i ∈ I, and j ∈ J

co2j CO2 conversion coefficient, j ∈ J

pwj energy conversion coefficient, j ∈ J

lsupi lower bound of supply resource i

usupi upper bound of supply resource i
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ldemi
lower bound of demand resource i

udemi
upper bound of demand resource i

Moreover, the design and operational decisions are governed by the following positive vari-

ables:

pi amount of resource i purchased or supplied, ∀i ∈ I {lsupi ≤ pi ≤ usupi}

si amount of resource i sold or demanded, ∀i ∈ I {ldemi
≤ si ≤ udemi

}

xj production level of task j, ∀j ∈ J {0 ≤ xj ≤ ∞}

Finally, the selection or not of a process is governed by the following binary variable:

yj 1 if the corresponding task is selected, 0 otherwise, ∀j ∈ J {0 ≤ yj ≤ 1}

The following two equations express the constraints that govern the coffee supply chain. Equa-

tion (6.1) represents the total mass balance of the coffee supply chain. For any resource i in the

model, the amount of resource purchased or supplied (Pi) plus the amount of resource produced

or consumed by the tasks j, (
∑

j∈J pci,j · xj) must be equal to the amount of resource sold or

demanded (Si).

pi +
∑
j∈J

pci,j · xj = si ∀ i ∈ I (6.1)

Equation (6.2) represents the big-M constraint for the production level of task j. The coefficient

M introduces a very large number in the equation, which actually dictates specific outcomes or

limitations to the model e.g. a task is selected only if it is built, and then an upper bound M is

enforced to the production level of this task.

xj ≤M · yj ∀ j ∈ J (6.2)
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6.4.5 Step 5: Single or Multi-Objective Optimization and Assessment

The final step involves a multi-objective optimization strategy to obtain trade-offs among mul-

tiple CE objectives, such as maximizing the energy output while minimizing the coffee cherries

consumption, under different demand scenarios for the final products i.e. coffee beverages, in-

stant coffee and whole beans, while considering the subject constraints. A variety of single or

multi-objective functions can be optimized depending on the scenario under consideration. For the

design of a CE-FSC, and as is discussed in section 6.3.4 and presented in Table 6.1, the objective

functions are matched with the CE goals and key characteristics.

Therefore, by looking to increase the share of the renewable resources and energy, the energy

output of the supply chain (CEO) is maximized, while by looking to reduce the input, the coffee

cherries consumption (CCC) is minimized. Likewise, by targeting the reduction of natural re-

sources, the consumption of water (CWC) is minimized, while the reduction of material losses and

emission levels will be achieved through minimizing the waste generation (CWG) and the CO2

emissions (CEM) respectively.

Equation (6.3) – (6.7), contemplate the goals of CE-FSC as five different single objective func-

tions.

Objective 1 : min CWG = min
∑

i∈IWS

si

s.t. Eqs. (6.1)− (6.2)

(6.3)

Objective 2 : min CCC = min pcherries

s.t. Eqs. (6.1)− (6.2)

(6.4)

Objective 3 : min CWC = min
∑

i∈IWT

pi

s.t. Eqs. (6.1)− (6.2)

(6.5)
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Objective 4 : max CEO = max
∑
j∈J

pwj · xj

s.t. Eqs. (6.1)− (6.2)

(6.6)

Objective 5 : min CEM = min
∑
j∈J

co2j · xj

s.t. Eqs. (6.1)− (6.2)

(6.7)

Equation (6.8) – (6.12) contemplate the same CE goals, but this time simultaneously as a multi-

objective optimization problem. For example, Equation (6.8) describes the minimization of coffee

cherries consumption, while maximizing the total energy output.

Multi-Objective 1 : min CCC & max CEO

s.t. Eqs. (6.1)− (6.2)

(6.8)

Multi-Objective 2 : min CCC & min CWG

s.t. Eqs. (6.1)− (6.2)

(6.9)

Multi-Objective 3 : min CWG & max CEO

s.t. Eqs. (6.1)− (6.2)

(6.10)

Multi-Objective 4 : min CWC & max CEO

s.t. Eqs. (6.1)− (6.2)

(6.11)

Multi-Objective 5 : min CEM & max CEO

s.t. Eqs. (6.1)− (6.2)

(6.12)

The multi-objective optimization problems are solved using the ε-constraint method [282, 283],

which converts the multi-objective optimization problem to a series of single-objective optimiza-

tion sub-problems. As an example, for solving multi-objective problem 1, the first step requires

124



the solution of the problem using only one objective function f1, in this case described by Eq. 6.4.

This leads to an optimal solution, denoted as x∗1. The minimum of the second objective function

f2 (Eq. 6.6) is obtained at this optimal point x∗1, since any value lower than this for f2 will not

increase the value of f1. Hence, the minimum of f2 is denoted as θL = f2(x∗1).

The next step involves the solution of another optimization problem, this time with only the

other objective function f2, as it is described by Eq. 6.6. Similarly, another optimal solution is

obtained, denoted as x∗2, which is the maximum of f2, so it is denoted as θU = f2(x
∗
2). Thus, the

feasible region of f2 is defined as [θL, θU ]. This region is divided equally into N intervals, and

so θ ∈ [θL, θU ]. Hence, the original multi-objective problem can be converted into the following

single objective optimization problems:

min CCC

s.t. CEO ≥ θ

Eqs. (6.1)− (6.2)

(6.13)

6.5 Results and Discussion

The CE-FSC mixed-integer optimization model is implemented in Python and solved utilizing

Gurobi V9.0.2 default solver [305] on an Intel 3.5GHz Quad-Core i7 Processor with 16 GB of

RAM. For the multi-objective function problems (Eqs. (6.8) – (6.12)) under one scenario, the

model features 138 equations, 58 continuous variables, and 18 binary variables, and the average

time to solve it is 0.01 seconds.

Five different scenarios for the supply of coffee cherries and the demand of final coffee prod-

ucts are investigated for each of the single or multi-objective optimization problems. They are

chosen so as to demonstrate the applicability and effectiveness of the framework in conducting

quantitative analysis of any food supply chain under circular economy considerations while cap-

turing even the most extreme cases. The supply and the demand values are arbitrarily selected for

illustration purposes. For easy comparison, the maximum supply of coffee cherries stays the same

among the scenarios at 100,000 tons. For scenarios 1 and 2, the demand for the three final products
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is set at 2,000 tons and 1,000 tons respectively. Scenario 3 involves only demand for coffee bever-

ages without any demand for the other two products. Similarly, scenario 5 involves only demand

for whole beans without any demand for the other two products. Finally, the demand for instant

coffee in scenario 4 is set higher or equal to 6,000 ton with zero demands for the other two prod-

ucts. Scenario 4 requires a specific demand target to be met since the production of instant coffee

introduces higher environmental and production burdens in comparison to the other two products,

thus under an optimization perspective, there will be no incentives to generate any amount, unless

a specific target is set. Please also refer to Appendix Table I.1.

By utilizing the CE-FSC framework that is described in the previous sections, the solution of

each single objective optimization problem as well as the pareto fronts of each multi-objective

optimization problem are generated. The solutions of the single objective optimization problems

are shown in Figures I.3 to I.7 in Appendix I. Here, the results of multi-objective optimization

problems 1 (Eq. (6.8)) and 4 (Eq. (6.11)) are presented, whereas the results of the rest of the multi-

objective optimization problems are shown in Figures I.8 to I.10 in Appendix I. Figures I.11 and

I.12 in Appendix I expand the results of the trade-off analysis for the multi-objective optimiza-

tion problems 1 and 3 respectively, by incorporating three different values (low: 0.1034, average:

0.7281 (+604%), high: 1.3528 (+1,208%), unit: MWh/ton coffee cherries) for the parameters re-

lated to the drying process [19, 306].

Figure 6.5 reveals the results of such a trade-off analysis for the multi-objective problem 1 of

minimizing the coffee cherries consumption while maximizing the total energy output (minCCC &

maxCEO), subject to the constraints of the coffee supply chain which are described by Eqs. (6.1) –

(6.2). The colors in Figure 6.5 represent different demand scenarios for the final products.The

low values of the parameters in the drying process are used. Since this is a multi-objective op-

timization problem, a pareto of solutions is generated and each bubble demonstrates a different

optimal solution from the pareto. An optimal solution refers to the selection of specific values for

the binary and continuous variables so that the imposed constraints are satisfied and the objective

functions are optimized. Practically, each bubble represents a specific operational profile of the
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Figure 6.5: Pareto Analysis for Problem 1: Max Energy Output & Min Cherries Consumption &
Normalized CO2 Emissions

coffee supply chain, while the size of a bubble depicts the normalized CO2 emissions (min-max

normalization). As it is also discussed in section 6.3.5, the ε-constraint method is used for the solu-

tion of the multi-objective optimization problem. The pareto solutions for each demand scenario,

meaning the bubbles with the same color, are evenly distributed over the solution space and here

the number of generated efficient solutions has been specified to 10.

An upper bound of available cherries has been set at 100,000 tons for all 5 scenarios. Scenarios

1 and 2 require certain demands to be met for all 3 final products. As expected, the higher the

consumption of cherries, the higher the energy produced. Once the target demands are met, the

excessive amount of cherries is converted to whole beans, while the excessive amount of coffee

by-product is used to produce more energy. This is because even though whole beans can be sold

as a final product to the market, they require further processing, either brewing or extraction, so as
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to yield the end coffee drink. Thus, producing just whole beans is favorable in terms of energy and

environmental footprint.

The operating profiles of scenario 1 (with higher energy demands) are more to the left on the

graph than those of scenario 2, because the extra demand of coffee beverages and instant coffee

requires more brewing and extraction, which are both energy intensive processes. The rest of the

scenarios represent instances where the demand of only one final product is specified. In particular,

scenario 5, even rather unrealistic since it refers exclusively to demand of whole beans and requires

further processing to produce the coffee drinks, it demonstrates the best-case scenario in terms of

both energy and environmental performance. On the contrary, scenario 4, with only instant coffee

as a deliverable, is the worst-case scenario both in terms of energy and environmental efficiency.

Just one operating profile is produced since the optimal solution for both objectives refers merely to

the satisfaction of demand. Finally, in scenario 3 that describes the case of demand solely coming

from coffee beverages, the operating profiles demonstrate a steeper slope in comparison to the ones

from the other scenarios. This behavior is attributed to the different energy and environmental

benefits that coffee beverages have in comparison to the other coffee products. Figures I.11 and

I.12 in Appendix I highlight the effects uncertain parameters related to the drying process have on

the multi-objective optimization process. As the values of drying parameters increase, the optimal

solutions require more energy to meet the demand scenarios.

The second trade-off analysis is highlighted in Figure 6.6 for the multi-objective problem 4 of

minimizing the water consumption while maximizing the total energy output (min CWC & max

CEO), subject to the constraints of the coffee supply which are described by Eqs. (6.1) – (6.2).

Similarly to the previous problem, every color in Figure 6.6 represents a different demand scenario

for the final products, while the size of the bubbles represents the CO2 emissions. Likewise, the

ε-constraint method is utilized to solve this multi-objective problem, resulting in the generation of

a pareto of solutions. The maximum supply of coffee cherries has been bounded to 100,000 ton.

In Scenarios 1 and 2, the demand of coffee beverages and instant coffee are just met and the

excess is converted in whole beans because this is environmentally preferable. On the contrary,
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Figure 6.6: Pareto Analysis for Problem 4: Max Energy Output & Min Water Consumption &
CO2 Emissions

scenario 3 produces up to 7,000 ton of coffee beverages, because the consumption of more coffee

beverages results into more spent coffee, which ultimately results in more energy generation. How-

ever, the trade-off between energy output and water consumption is clear in this scenario, since an

increase in energy output of just over 7,000 MWh requires the consumption of more than 155,000

ton of water. Thus, the user is able to select its operational profile considering the environmental

effects. An interesting case is revealed in scenario 4, where the optimal solution is reached once

the demand is met, since it is not beneficial neither in terms of energy nor in terms of water to

produce more instant coffee. This scenario also, demonstrates the higher burden with respect to

CO2 emissions. Lastly, in scenario 5, even though no water is consumed, the production reaches

17,000 tons of whole beans. The produced energy is generated from the waste of husk, as a re-

sult of the dry processing method, however and as it is mentioned before, this scenario is rather
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unrealistic since further processing is required for the production of the end coffee drinks. In this

multi-objective optimization problem, a pareto with distinct optimal solutions is generated only for

scenario 3. For the rest of the scenarios, there is only one optimal solution that satisfies the subject

constraints, resulting in just one bubble for each scenario.

6.6 Conclusions

The dissemination and implementation of CE is fundamental for the fruition of the social, en-

vironmental and economic benefits of the 2030 Agenda and the Paris Agreement, along with the

sustainable recovery from COVID-19. A systems engineering framework and decision-making

tool for the analysis and trade-off modeling and optimization of interconnected FSCs considering

the principles and goals of CE is presented. It aims to provide a holistic quantitative tool that

assists towards the transition to CE-FSCs by efficiently tackling the plethora of newly introduced

challenges. This is achieved through the modeling and systematic integration of recent technolog-

ical, experimental, academic and industrial knowledge in the design and operation of FSCs using a

RTN superstructure representation. The resulting MILP model incorporates all the unique charac-

teristics of the FSC network, any constraints along with all the alternative production, processing

and valorization pathways, and is optimized under single or multi-objective CE criteria. Since

CE introduces conflicting or competing objectives, the multi-objective optimality is critical, and is

implemented through the generation of the pareto optimal set over the entire feasible space.

The developed framework contributes to the literature by explicitly incorporating all CE goals

and objectives into the design and operation of FSCs. It also serves a dual role, since it does not

only allow the identification and selection of the optimal tasks from the list of alternatives under

specific CE objectives, but also enables the identification of any potential bottlenecks. This feature

promotes the research and development of certain, less efficient parts of the supply chain. The

framework is also flexible since the set of resources and the corresponding available supply of

inputs as well as the target demands of the final products can be constantly updated, reflecting

new trends and developments. It can be also utilized from users with different backgrounds and

considerations. Academics and experimentalists could focus more on the improvement of existing
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tasks, or the creation of completely new ones, private corporations could focus on optimizing

their entire FSCs through the lens of CE holistically, and finally governmental policymakers could

quantitatively identify areas that require funding and/or specific legislative actions.

The supply chain of coffee has been selected as an indicative case study for demonstrating the

unique features of the proposed framework. In particular, the effectiveness and the applicability

of the framework in transforming the linear supply chain to a circular one while analyzing dif-

ferent supply and demand scenarios, under CE objectives simultaneously is demonstrated. Since

the objectives of CE and its stakeholders are usually competing, a multi-objective optimization

approach is utilized. The computational results prove that the MILP problem can be optimally

solved, producing different pareto fronts depending on the CE objectives. Therefore, it can be

used as a decision-making tool that captures all the potential sets of resources and tasks under any

design and operational criteria and/or external conditions.
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7. A QUANTITATIVE AND HOLISTIC CIRCULAR ECONOMY ASSESSMENT

FRAMEWORK AT THE MICRO LEVEL*

7.1 Background & Motivation

The unprecedented economic development and the social advancement that occurred over the

last centuries were inextricably linked to a "take-make-waste extractive" industrial model, which

inevitably placed huge stresses on the natural resources and led to enormous environmental and so-

cioeconomic impacts [27, 233]. The concept of Circular Economy (CE) has emerged as a potential

solution to this challenging issue contributing to all dimensions of sustainable development [307].

It promotes the transition to renewable energy sources [308, 309, 310], designs out waste and pol-

lution [311, 312, 313], and focuses on improving recycling processes [314, 315, 316]. Moreover,

it decouples growth from the consumption of natural resources [317], and eventually leads to the

regeneration of natural systems [27, 284, 262]. To this direction, the full exploitation of synergies

among pioneering business models, revolutionary products’ design and new systemic conditions is

necessary [27, 184, 120]. In parallel, systematic and quantitative approaches are needed to iden-

tify, exploit and assess alternative pathways for production, distribution and recycling, ensuring

that the CE goals related to the optimization of resources’ consumption and minimization of the

environmental burden are thoroughly captured and implemented [318, 319, 320].

Despite the fact that CE has gained a lot of attention across various disciplines and it seems a

rather straightforward concept, it still generates confusion among the involved parties. This is due

to the vagueness of the definition, its extensive and universal nature as well as its lack of specificity

in the implementation [252, 321]. Therefore, and before proceeding with any further analysis, it is

important to clarify this vagueness.

*Reprinted from "A quantitative and holistic circular economy assessment framework at the micro level" by S.G.
Baratsas, E.N. Pistikopoulos, S. Avraamidou, Computers & Chemical Engineering, 2021. A summary of the work is
given in this chapter, with additional details provided in Appendix J.
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7.1.1 Circular Economy vs. Sustainability

CE was founded on the principles of the triple bottom line (TBL) [322] as an intentionally

designed restorative, regenerative and environmentally benign system that promotes the concepts

of reduction, reuse, recycling and recovery. CE aims to attain sustainable development through

innovation and disruption at different systemic levels i.e. micro level (product, individual enter-

prises, consumers), meso level (industrial symbiosis) and macro level (city, region, nation and

beyond) [27, 323, 324]. Ultimately, nature must be preserved and enhanced by optimizing the re-

circulation of materials, resources and products, while improving the integration and efficiency of

renewable resources. Any negative externalities should be eliminated [325] and the loops should

be closed.

However, CE should not be muddled with sustainability but rather perceived as a roadmap or a

toolbox to achieve sustainability. This can be done through the utilization of CE targeted practices

and synergies towards the implementation of the majority of the sustainability goals [326]. Geiss-

doerfer et al. (2017) [251] concluded that academic researchers deem three relationships between

CE and sustainability: 1) CE being a condition for sustainability, 2) CE and sustainability having a

beneficial relationship, or 3) a trade-off relationship between CE and sustainability. This can lead

to the inference that a subset relation between the two concepts is adequate, which also coincides

with the general understanding of CE as a concept that entails two of the three dimensions of sus-

tainability, while lacks social considerations [252, 327]. Recent literature reviews of CE metrics

and indicators are also in agreement with this argument, claiming that the social dimension is the

least covered one [328, 323, 329].

7.2 Introduction

The effective and the successful implementation of the transition towards CE on a global scale

requires systematic assessment of the alternative pathways and scenarios along with the develop-

ment of holistic metrics to evaluate the different aspects of CE [255, 330]. This presumes a clear

and solid understanding of what needs to be measured and assessed, before considering how this
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will be measured, what are the metrics to be used and against what benchmarks the CE implemen-

tation should be evaluated and the CE targets must be set [331].

To this respect, in this chapter a quantitative, holistic and robust CE assessment framework for

the micro level is presented. "MICRON" (MIcro CirculaR ecOnomy iNdex) is a GRI-based tool

that takes into consideration all goals and objectives of CE holistically. Based on these goals and

objectives, a set of principal categories is defined so as to establish transparency and clarity in the

scope and goal setting. Four sectors are introduced to classify the economic activity and to improve

granularity. Then, sector specific indicators and metrics that are matched with GRI standards are

used for each of the principal categories. This structure enables the assessment of circularity at the

category’s level, leading to the derivation of the Category-based Circularity Index. The linear aver-

age of the category-based indices constitutes the Overall Circularity Index. As such, the framework

provides i) a set of indicators and metrics with sector-specific dimensions, ii) quantitative, holistic

and robust CE overall and category-based metrics, iii) media for data visualization and analysis of

CE indicators, and iv) an analytical tool to assess multi-national businesses and interconnected CE

supply chains.

The explicit incorporation of CE goals and objectives as assessment criteria, the classification

of economic activity into distinct parent sectors, the conception of GRI matched, sector specific in-

dicators and metrics are key contributions of the proposed framework to the literature. The metrics

are normalized and standardized using sector specific relevant information, ensuring that assess-

ments are up-to-date and dynamically adjusted. Overall, the high level of granularity covering all

CE goals, the comprehensive nature of the framework and the enhanced interpretability are key

features and important contributions of the framework.

7.3 Literature Review

A plethora of approaches and metrics have been proposed in the literature to measure differ-

ent aspects of CE [332, 333, 183, 334, 335], without consistency in their objectives, scopes, and

potential applications [323]. Nevertheless, the CE assessment still lacks standardized methods

[336, 337, 328, 329], while even the used terminology has not be formalized yet, i.e. metrics
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vs. indicators. Such a plethora of different approaches and metrics create confusion and ambigu-

ity to the involved parties [338, 336], and set a barrier towards the prevalence of the CE concept

[339]. Undoubtedly, CE related measuring and assessment tools at the different systemic levels

are necessary for the transition towards CE systems [340, 341, 342], and eventually sustainable

development [343, 323, 337]. Despite that numerous CE indicators, metrics and assessment tools

have been reviewed and proposed over the last years, the research and discussion is still ongoing at

every level [329]. Here, some of the key outcomes from reviewing the recent literature are briefly

discussed.

Elia et al. (2017) [183] highlighted a lack of CE indicators, measuring tools and standard-

ized ways to assess circularity, especially in the micro level, which is in line with the findings of

other researchers [323, 344, 337, 336]. Elia et al. (2017) [183] proposed a four level framework

for CE assessment at the micro level, which did not capture all the CE characteristics, since the

main focus was in the environmental evaluation. Saidani et al. (2019) [323] categorized 55 indi-

cators from the academic and business world into 10 groups based on the main CE features and

characteristics as well as their potential usage i.e. level of implementation, performance, usage,

degree of transversality etc. A CE indicator selection tool based on user’s requirements was also

presented. Parchomenko et al. (2019) [332] analyzed 63 CE metrics based on 24 CE elements

using a Multiple Correspondence Analysis (MCA). They assessed the interconnections of metrics

and elements as well as the most and least frequently elements used, but their analysis did not

recommend what CE characteristics need to be evaluated. Waste disposal, primary vs. secondary

use of resources, resource efficiency/productivity and recycling efficiency were the most popular

CE elements assessed, while preservation of value and product and system dynamic elements were

poorly represented.

Moraga et al. (2019) [345] developed a classification framework based on six CE strategies

and three measuring scopes in line with the Life Cycle Thinking (LCT) by considering the CE as

an umbrella concept without been limited by indicators’ definitions. Nevertheless, the proposed

framework cannot adequately capture the causality between CE and sustainability development,
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while it cannot support neither the distinction of CE indicators for inputs and outputs nor for the

retention of functions. Sassanelli et al. (2019) [328] presented another classification framework

for CE assessment metrics using the product life-cycle stages, variables and circularity degree as

criteria. Based on the results from its application in 45 papers, they proposed a framework for

evaluating the circularity of companies under the TBL concept. The analysis revealed a lack of

an overall CE evaluation with just half of the cases been analyzed under a mixed lifecycle stages

perspective and a rather strong concentration on the environmental and material aspects. Similar

findings were reported by Corona et al. (2019) [254], with none of the assessed metrics been able to

fully capture the CE or the three dimensions of sustainability, while little emphasis was put towards

reviewing the scarcity and multi-functionality of materials or the importance of introducing new

waste valorization techniques.

After reviewing 137 articles published over the last 20 years, De Pascale et al. (2020) [329]

identified 61 CE indicators using a double classification that takes into account the spatial dimen-

sions of sustainability i.e. micro, meso, and macro, as well as the 3Rs core principles i.e. reduce,

reuse, and recycle. The lack of systematic and standardized methodologies to evaluate and as-

sess CE comprehensively at the different levels along with the known vagueness on what needs

to be measured was reaffirmed. It was also shown that less than half of the indicators cover all

the sustainability dimensions or all the 3Rs principles while none focus specifically on the social

dimension. Also, just 13 CE indicators cover simultaneously all the sustainability dimensions and

3Rs core principles, with only one though been used at the micro level. Thus, it appears that the

assessment and evaluation of CE and sustainable development at the company/product/consumer

level is more challenging.

Concentrating the analysis at the micro level, Kristensen and Mosgaard (2020) [337] reviewed

30 CE indicators and also inferred that the attention was directed mainly to the economic dimen-

sion of CE while the environmental and notably the social dimensions were considered to a lesser

extent. The majority of the reviewed CE indicators, from single quantitative ones to more complex

indicator sets, put emphasis on the recycling, end-of-life management, and re-manufacturing, with
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less focus towards life-time extension, waste management, disassembly and resource-efficiency.

In addition, the CE indicators at the micro level primarily evaluate single products and materials,

so they provide a unique decision-making tool for the companies [346]. At the same time, they

introduce a challenge since the transition to circular solutions normally affects not just single prod-

ucts but rather the entire supply chain. A myopic approach could lead to sub-optimal solutions and

therefore undermining the holistic CE viewpoint. To this respect, Pauliuk (2018) [347] suggested

the utilization of CE relevant information in conjunction with CE indicators so as to extent the

CE coverage, although such a scheme would launch new challenges due to complexity issues and

the inability for information disaggregation. An attractive suggestion by Kristensen and Mosgaard

(2020) [337] was the development of industry specific indicators, which will boost the prevalence

of CE within the various industries and promote the respective indicators.

Likewise, Vinante et al. (2020) [336] reviewed 365 CE metrics at the micro level and intro-

duced a classification based on value chain framework, composed of 23 categories. This frame-

work associates CE metrics with company’s functions and structure, enabling the disaggregation

of the CE assessment. Moreover, the generalized nature of most CE metrics, along with their ap-

plicability in evaluating CE procedures regardless of company’s specific characteristics, offset any

contingency factors. The extensive literature review uncovers also the fragmentation of the current

CE assessment at the micro level, along with the diverging interpretations of CE’s goals. The dom-

inance of environmental metrics in comparison to the shortage of social metrics was reaffirmed,

with the former demonstrating a more quantitative approach as opposed to the more qualitative

approach of the latter.

7.4 Circular Economy Assessment Framework for the Micro Level

The vast majority of CE and sustainability analyses focus on the macro and meso levels, cre-

ating a shortage of CE assessment methods and tools at the micro level [183, 323, 344, 337, 348,

349]. This is attributed to some of the intrinsic characteristics of circularity assessment at micro

level. In particular, Kristensen and Mosgaard (2020) [337] pointed out that reuse, repair or main-

tenance dimensions of CE that are considered major contributors to TBL principles require greater
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consideration. Also, CE indicators frequently concentrate on just a subset of CE principles, miss-

ing the bigger picture and leading to sub-optimal results. This further exacerbates the inherent issue

of CE indicators at micro level which are mainly designed with a narrow focus to specific products

and materials, leading again to sub-optimal solutions due to the lack of a systems perspective. The

plethora of different aspects and types under CE consideration at the micro level, introduce extra

obstacles for companies and organization who want to pursue CE, and thus potentially jeopardize

the overall succession of CE concept. To this respect, "MICRON" (MIcro CirculaR ecOnomy iN-

dex) is developed, as a quantitative, holistic and robust CE assessment framework for the micro

level. This is an attempt to address the generic challenges related to the CE assessment as well as

those arise from the application specifically to the micro level.

According to the Gabrielsen and Bosch (2003) [350], a proper indicator should have the fol-

lowing features: i) communicate with simplicity complex and critical matters, ii) be interpretable

and traceable, iii) be used as a point of reference, iv) provide a systems analysis perspective, v)

reflect all causality relations and driving forces. On top of these features, CE indicators should

equally reflect on material and energy aspects, with extra care for critical raw materials and re-

source efficiency [343]. They should also raise public awareness on local and global effects of

human activities through the lens of TBL concept.

7.4.1 Structure of the framework

Figure 7.1 summarizes the key steps undertaken for the development of the proposed frame-

work. The known issues of CE metrics and indicators are overcame by designing five principal

categories of indicators which are selected and matched with the goals and key characteristics of

CE [182]. Table 7.1 shows the correspondence between CE goals and key characteristics with

principal categories of indicators. This is a necessary first step towards transparency in the scope

and goal setting. Identifying and setting specific boundaries and targets of what must be measured

and evaluated is crucial before establishing the indicators and metrics [351]. An extra principal

category, named "Organization" is also used for providing general information about a company’s

business activity e.g. company’s revenue, number of products sold etc.
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Four parent sectors are introduced to represent the economic activity, namely Energy and Util-

ities (EnU), Services (SrV), Manufacturing (MaN), and Automotive (AuT). A series of industries

is assigned to each of the parent sectors based on their primary business activity. For example,

the industries Energy, Energy Utilities, Waste Management, and Waste Utilities are assigned to the

Energy and Utilities sector. The list of industries is taken from the GRI sustainability Disclosure

Database [352].

Figure 7.1: Step by step Analysis of Circularity Assessment Framework MICRON

Table 7.1: Matching of the Principal Categories with CE Goals

# CE Goals & Key Characteristics Principal Categories
of Indicators

1
Reduction of material losses/residuals: Waste and pollutants minimization

through the recovery and recycle of materials and products. ↔ Waste

2
Reduction of input and use of natural resources: The reduction of the stresses

posed on natural resources through the efficient use of natural resources. ↔ Water, Procurement

3
Increase in the share of renewable resources and energy: Replacement of

non-renewable resources with renewable ones, limiting the use of virgin materials. ↔ Energy

4
Reduction of emission levels: The reduction in direct and

indirect emissions / pollutants. ↔ Emissions, Spillages

5
Increase the value durability of products: Extension of product lifetime

through the redesign of products and high-quality recycling. ↔ Durability
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The breakdown of sectors and industries is shown in Table 7.2.

Table 7.2: Classification of the Economic Activity into Parent Sectors

Energy & Utilities
(EnU)

Services
(SrV)

Manufacturing
(MaN)

Automotive
(AuT)

Energy Aviation Agriculture Automotive
Energy Utilities Commercial Services Chemicals

Waste Management Financial Services Computers
Water Utilities Healthcare Services Conglomerates

Logistics Construction
Media Construction Materials

Non-Profit / Services Consumer Durables
Public Agency Equipment

Railroad Food and Beverages Products
Real Estate Forest and Paper Products
Retailers Healthcare Products

Telecommunications Household and Personal Products
Tourism / Leisure Metals Products

Universities Mining
Technology Hardware
Textiles and Apparel

Tobacco
Toys

Each sector consists of a number of industries and has its own unique assessment indicators

and quantitative metrics which cover all principal categories, so as to capture the special character-

istics of each company and the industry that belongs under CE and sustainability considerations.

The developed assessment framework should not be confused with Life Cycle Assessment (LCA)

which is an inherent attribute towards analysis, modeling, implementation and/or assessment of

the CE [255]. Since the terminology is not standardized in the literature and in order to maintain

consistency throughout the document, here the relevant terms are defined as follows:

As indicator is defined the smallest unit of information that must be measured and evaluated

under a CE goal, standard or principal category, e.g. total renewable energy consumed within

the company. As metric is defined the composite, normalized measure of an indicator to gauge

company’s level of business activity and productivity, e.g. total renewable energy consumed within

the company over company’s revenue. This is essential to capture the progress and efficacy of

a company’s circularity year over year, as well as to conduct meaningful comparisons among

companies [353]. The term category refers to the upper level grouping of indicators within the

framework, e.g. Waste, Energy etc. If a category is broken down further so as to reflect a particular

theme, e.g. environmental, economic etc., then the sub-categories will be called aspects [353].

Aspects may refer to a single indicator or a group of indicators depending on the scheme.
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The indicators determine the type of information and data that must be collected and reviewed

for each principle category over a specific period of time, normally one full year. Then metrics

are defined to mathematically express and interpret the information and data that is stored in the

indicators over the period of interest. For easy and objective comparison, metrics are normalized.

The CE assessment of each principal category is based on the weighted average of its metrics, and

is called Category-based Circularity Sub-Index of this particular principal category. For example,

three different metrics are used to assess the circularity of principal category of Water on yearly

basis. The annual Circularity Sub-Index of Water is calculated from the weighted average of the

corresponding metrics (weights of metrics may not be equal). The varying levels of significance of

the metrics are contemplated using weighted averages. The linear average of the category-based

sub-indices determines the Overall Circularity Index for each company, product or supply chain.

7.4.2 Selection of indicators and metrics

The selection of appropriate indicators and metrics for each principal category is critical since

they must incorporate all the characteristics that mentioned earlier, while successfully capture the

dynamics of companies and industries at different levels. The indicators have been also matched

with the Global Reporting Initiative (GRI) Standards [354], ensuring uniformity in the reported

results while providing a reference guide for those who want to use the proposed index. Different

indicators are used for the different sectors. This increases the flexibility and the universal nature

of the framework while improves the specificity in the implementation. Having specific indica-

tors to measure over predetermined periods of time facilitates the data collection process and the

comparisons among peers. Large companies with diversified activities in multiple countries may

decide to split their CE assessment to individual business segments or regions for better bench-

marking and accurate planning, which can be readily accommodated within the framework. As

such, these companies will be able to measure the effectiveness of circular strategies deployed at

international, national and regional levels or at each business segment individually. Table 7.3 il-

lustrates the complete set of indicators for all principal categories and sectors. The sector specific

indicators individually are shown in Tables J.1 to J.4 in Appendix J.
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Table 7.3: CE Indicators with Sector Allocation [EuN: Energy and Utilities, MaN: Manufacturing,
Au: Automotive], SrV: Service]

Principal
Categories Indicators GRI Standards

Correspondence
Sectors

Allocation
Revenues [million $] GRI-201-1 EuN MaN AuT SrV

Total social investment for environmental sustainability and circular economy
[million $] GRI-203-1 EuN MaN AuT SrV

Products sold [weight or volume] GRI-301-3 MaN
Number of products sold [# of products] GRI-301-3 AuT
Full time employees (FTE) [# of people] GRI-401-1 AuT SrV

Organization

Operational building/facilities space GRI-302-3 SrV
Waste generated - Hazardous [weight] GRI-306-3 EuN MaN AuT SrV

Waste generated - Non Hazardous [weight] GRI-306-3 EuN MaN AuT SrVWaste
Diverted waste from disposal (reused, recycled, recovered) [weight] GRI-306-4 EuN MaN AuT SrV

Water withdrawal [volume] GRI-303-3 EuN MaN AuT SrV
Fresh water discharge (<= 1,000mg/L TDS) [volume] GRI-303-4 EuN MaN AuT SrV
Other water discharge (>= 1,000mg/L TDS) [volume] GRI-303-4 EuN MaN AuT SrVWater

Water recycled or reused [volume]
GRI-303-3

(2016) EuN MaN AuT SrV

Non-renewable material used [volume or weight] GRI-301-1 AuT SrV
Non-renewable packaging material used [volume or weight] GRI-301-1 MaN

Renewable material used [volume or weight] GRI-301-1 AuT SrV
Renewable packaging material used [volume or weight] GRI-301-1 MaN

Recycled input material used [volume or weight] GRI-301-2 AuT SrV
Recycled packaging material used [volume or weight] GRI-301-2 MaN

Reusable, compostable or recyclable material [%] GRI-301-3 AuT
Reusable, compostable or recyclable packaging material [%] GRI-301-3 MaN

Paper consumption [weight] GRI-301-1 SrV

Procurement:
Production

&
Packaging

Single-use plastics consumption [weight] GRI-301-1 SrV
Total energy generated [joules or multiples] GRI-302-1 EuN

Total non fossil fuel energy generated [joules or multiples] GRI-302-1 EuN
Total energy consumed [joules or multiples] GRI-302-1 MaN AuT SrV

Renewable energy consumed [joules or multiples] GRI-302-1 MaN AuT SrV
Energy

Certified buildings and facilities i.e LEED [%] GRI-302-3 SrV
Direct GHG emissions (Scope 1) [tCO2e] GRI-305-1 EuN MaN AuT SrV

Energy indirect GHG emissions (Scope 2) [tCO2e] GRI-305-2 EuN MaN AuT SrV
Total use of products (Scope 3) [metric tons CO2 equivalent (tCO2e)] GRI-305-3 EuN MaN AuT SrV

Average specific CO2 emissions [gCO2/km] GRI-305-4 AuT
Emissions neutralized by carbon offset projects [tCO2e] GRI-305-5 EuN MaN AuT SrV

Emissions of ozone-depleting substances (ODS)
[metric tons of CFC-11 equivalent] GRI-305-6 EuN MaN AuT SrV

GHG
Emissions

Nitrogen oxides [NOx], sulfur oxides [SOx] & other significant air emissions
[kg or multiples] GRI-305-7 EuN MaN AuT SrV

Environmental fines [$] GRI-307-1 EuN MaN AuT SrV
Volume of flared hydrocarbon [tCO2e] GRI-306-3 EuN

Spillages
&

Discharges Volume of vented hydrocarbon [tCO2e] GRI-306-3 EuN
Packaging Material to be reclaimed/recovered [# of products or %] GRI-306-2 MaN

Material to be reclaimed/recovered [%] GRI-306-2 AuTDurability
Average lifespan of product or Warranty provided [years] GRI-306-2 AuT

Similarly, one or more metrics are chosen to standardize the indicators of each principal cate-

gory. Different metrics are determined for each principal category of each sector of the economy

in an attempt to reflect accurately the specific features and attributes of each sector. As an example,

three or four different metrics are utilized in GHG Emissions principal category depending on the

sector. Table 7.4 illustrates the complete set of metrics for all principal categories and sectors. The

sector specific metrics individually are shown in Tables J.5 to J.8 in Appendix J.
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Table 7.4: CE Metrics with Sector Allocation [EuN: Energy and Utilities, MaN: Manufacturing,
AuT: Automotive, SrV: Service]

Principal
Categories Metric Upper

Bound
Formula

Used
Sectors

Allocation
1a % of Hazardous waste over Total waste generated 100% 100%-1a EuN MaN AuT SrV
1b % of Diverted waste over Total waste generated 100% 1b EuN MaN AuT SrV
1ca Waste generated over Products sold [kg waste over tons of product] 200 1-norm[1ca] MaN
1cb Waste generated over Number of products sold [kg waste over # of products] 1500 1-norm[1cb] AuT

Waste

1cc Waste generated over Full Time Employees [kg waste over # of FTE] 1000 1-norm[1cc] SrV
2a % of Recycled/reused water over Total water withdrawal 100% 2a EuN MaN AuT SrV
2b % of Other water discharge over Total water discharge 100% 100%-2b EuN MaN AuT SrV
2c % of Water consumed over Total water withdrawal 100% 100%-2c EuN MaN AuT SrV
2da Water withdrawal over Products sold [m3 water over tons of product] 10 1-norm[2da] MaN

2db
Water consumption over Number of products sold

[m3 water over # of products] 30 1-norm[2db] AuTWater

2dc
Water consumption over Full Time Employees

[m3 water over # of FTE] 100 1-norm[2dc] SrV

2paa % of Recycled input material used 100% 2paa AuT SrV
2pab % of Recycled packaging material used 100% 2pab MaN
2pba % of Renewable material used 100% 2pba AuT
2pbb % of Renewable packaging material used 100% 2pbb MaN
2pca % of Reusable, compostable or recyclable material used 100% 2pca AuT
2pcb % of Reusable, compostable or recyclable packaging material used 100% 2pcb MaN
2pd Paper consumption over Full Time Employees [kg over # of FTE] 365 1-norm[2pd] SrV

Procurement:
Production

&
Packaging

2pe
Single-use plastics consumption over Full Time Employees

[kg plastic over # of FTE] 50 1-norm[2pe] SrV

3aa % of Non fossil fuel energy generated over Total energy generated 100% 3aa EuN
3ab % of Renewable energy consumed over Total energy consumed 100% 3ab MaN AuT SrV

3ba
Total energy consumed over Products sold
[joules or multiples over tons of product] 10 1-norm[3ba] MaN

3bb
Total energy consumed over Number of products sold

[joules or multiples over # of products] 15 1-norm[3bb] AuT

3bc
Total energy consumed over Operational space

[joules or multiples over surface area] 1 1-norm[3bc] SrV
Energy

3bd % of Certified buildings and facilities i.e LEED 100% 3bd SrV

4aa
Net total emissions over Total energy delivered

[tCO2e over joules or multiples] 600 1-norm[4aa] EuN

4ab
Net total emissions over Products sold

[tCO2e over tons of product] 500 1-norm[4ab] MaN

4ac
Net total emissions over Number of products sold

[tCO2e over # of products] 2,000 1-norm[4ac] AuT

4ad Net total emissions over Operational space [tCO2e over surface area] 300 1-norm[4ad] SrV

4ba
Emissions of ODS over Total energy delivered

[metric tons of CFC-11 eq. over joules or multiples] 0.1 1-norm[4ba] EuN

4bb
Emissions of ODS over Products sold

[metric tons of CFC-11 eq. over tons of product] 0.1 1-norm[4bb] MaN

4bc
Emissions of ODS over Number of products sold
[metric tons of CFC-11 eq. over # of products] 0.1 1-norm[4bc] AuT

4bd
Emissions of ODS over Operational space

[metric tons of CFC-11 eq. over surface area] 1 1-norm[4bd] SrV

4ca
NOx, SOx, and other significant air emissions over Total energy delivered

[metric tons over joules or multiples] 1.0 1-norm[4ca] EuN

4cb
NOx, SOx, and other significant air emissions over Products sold

[metric tons over tons of product] 1 1-norm[4cb] MaN

4cc
NOx, SOx, and other significant air emissions over Number of products sold

[metric tons over # of products] 10 1-norm[4cc] AuT

4cd
NOx, SOx, and other significant air emissions over Operational space

[metric tons over surface area] 0.05 1-norm[4cd] SrV

GHG
Emissions

4d Average specific CO2 emissions [gCO2/km] 200 1-norm[4d] AuT

4da
Environmental fines over Total energy delivered

[$ over joules or multiples] 1.0 1-norm[4da] EuN

4db Environmental fines over Products sold [$ over tons of product] 10 1-norm[4db] MaN
4dc Environmental fines over Number of products sold [$ over # of products] 10 1-norm[4dc] AuT

Spillages
&

Discharges 4dd Environmental fines over Operational space [$ over surface area] 0.5 1-norm[4dd] SrV
5a % of Packaging material to be reclaimed/recovered 100% 5a MaN
5b % of Material to be reclaimed/recovered 100% 5b AuTDurability
5c Average lifespan of product or Warranty provided [years] 20 norm[5c] AuT
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Equal weights are used for the calculation of the Category-based Circularity Sub-Index of

Waste, Water, Procurement, and Durability across the sectors. One metric with 100% weight is

used for the Energy principal category in Energy and Utilities sector, while for the Manufacturing

and Automotive sectors, higher weight (75%) is assigned to the metric related to the evaluation of

renewables utilization, and lower weight (25%) is assigned to the metric related to the energy effi-

ciency. In the Service sector, an extra metric is used to evaluate the performance and leadership of

companies towards CE for their buildings and facilities, with an assigned weight of 25% (which is

subtracted from the renewables utilization metric that becomes 50% for this sector). Furthermore,

three plus one metrics are used within the GHG Emissions & Spillages principal categories in the

Energy and Utilities, Manufacturing and Service sectors. The highest emphasis is put towards the

Net Emissions Intensity (50-55%), followed by lower weights for the rest of the metrics i.e. 5% -

20%. In the Automotive sector, the Average Specific CO2 Emissions metric is introduced, which

gets the highest weight (40%), followed by the weight in the Net Emissions Intensity metric (35%),

while for the rest of the metrics the weights range from 5% to 10%.

7.4.3 Collection and analysis of data

A key advantage of the proposed framework originates from the explicit definition of the spe-

cific indicators and metrics that prevents vagueness and ambiguity on the data to be collected as

well as on the type of data that are needed. The data are generally easily accessible from a variety

of sources and trackable over a long period of time. Here, each company’s annual "Sustainabil-

ity", "Environmental-Social-Governance (ESG)" and "Financial" reports are recommended as the

main sources of data. Each company’s data from multiple years are collected and analyzed based

on the proposed indicators and metrics so as to calculate the annual "Category-based Circularity

Sub-Index" and the annual "Overall Circularity Index" for each principal category e.g. 2019 "Cir-

cularity Index for Energy", "Circularity Index for Waste", 2019 "Overall Circularity Index" etc.

Therefore, a company’s Overall "Circularity" as well as its "Category-based Circularity" versus

every CE goal can be tracked on annual basis and/or against its peers.

The values of the "Overall Circularity Index" and its sub-indices lie between 0 and 1, with the
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target value of circularity being always 1 or 100%. Thereby, a value of 1 for either the Overall

or any of the sub-indices reflects perfect circularity on the assessed company or principal category

while a value of 0 reflects perfect linearity on the assessed company or principal category. The

formulas used for each metric have been designed to reflect to the target of 1 or 100% and are

shown in Table 7.4. For example, metric 1a that captures the percentage of hazardous waste over

total waste generated shall be preferably 0, but since our target is 1 then the formula 100%-1a

is used. On the contrary, metric 1b that tracks the percentage of diverted waste over total waste

generated shall preferably approaches 1, and thus the formula used is 1b.

In case data for a metric are not available for a specific period of time, then the corresponding

metric gets a value of 0 for this particular period. The metrics that are not expressed as percent-

ages and have different units are normalized using an upper bound value, and then the formula

is selected based on the target value. As such, only metric 5c that reflects the average lifespan

of product or warranty provided and shall preferably approaches 1 is calculated based on the for-

mula norm[metric]. The rest of the normalized metrics shall approach 0, and hence the formula

1-norm[metric] is used. The upper bound value of each metric is estimated as 1.5 times higher

than the average of the already collected data so as to reflect a reasonable and realistic upper bound

for each principle category. Clearly, this is a parameter of the framework that is updated once more

data become available and companies use the framework. For example, the upper bound of metric

4d that captures the average specific CO2 emissions (gCO2/km) of vehicles is set at 200 gCO2/km

based on analysis of data from various automotive manufactures. A hypothetical measurement of

100 gCO2/km results to a 4d metric of 0.5. In case the value of a metric is higher than its upper

bound and in order to avoid negative (when formula 1-norm[metric] is used) or larger than 1 (when

norm[metric] is used) index numbers, the final normalized metric is set to 0 or 1 respectively.

7.4.4 A holistic and robust CE assessment framework

The developed quantitative framework combines data and information from the academic and

industrial literature along with a novel structure to effectively assess the circularity at the micro

level in any sector of the economy. It provides media for data visualization and analysis at dif-
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ferent levels of granularity and is an analytical tool to assess the multi-scale, multi-faceted and

interconnected CE supply chains and business activities. This structure provides a holistic ap-

proach in capturing both the CE and sustainability attributes across the different sectors while it

improves the interpretability and traceability of the integrated CE within the various aspects of a

business. It also enhances the robustness of the framework allowing the successful treatment of

outliers which is crucial for comparison among peers or among different industries and sectors as

well as for tracking year over year performance. Specific CE targets and benchmarks can be set by

taking advantage of the high level of granularity, having a positive impact on the decision-making

at different operational levels and investment time horizons (short or long term).

Figure 7.2 demonstrates the schematic of the proposed CE assessment framework - MICRON.

For demonstration purposes, arbitrary values are assigned to the Category-based Circularity Sub-

Indices while the Overall Circularity Index is calculated as their linear average.

Illustrative Example

Let’s assume that a company wants to assess its overall circularity performance, compare its

performance against its competitors, track its progress over the years, and identify areas of poten-

tial improvement. First, the company is classified into one of the four economic sectors according

to its business activities. For this example, let’s assume that the company belongs to the Manu-

facturing sector. Next, the company provides annual data for a variety of indicators in 7 plus 1

principal categories. As such, the annual data of "Total energy consumed, in GJ" and "Renewable

energy consumed, in GJ" must be provided for the Energy principal category, the "Waste gener-

ated - Hazardous, in metric tons", "Waste generated - Non Hazardous, in metric tons" and "Diverted

waste from disposal, in metric tons" must be provided for the Waste principal category, and so on

(Table 7.3). The data provided are then used for the calculation of the various standardized and

normalized metrics of each principal category. The metrics are dimensionless, with values close

to zero reflecting linear behavior while values close to one (or 100%) reflecting circular behav-

ior. For the case of the Energy principal category, two metrics are calculated: "% of Renewable

energy consumed over Total energy consumed", and "Total energy consumed over Products sold,
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in GJ per ton product". The first metric is a percentage so no further processing is required, but

the second metric needs to be normalized, thus an upper bound value is used. Since this metric

captures the energy consumption per unit sold, this implies that a value close to zero is preferable

in circularity terms. Therefore, the normalized value is subtracted from 1. As indicative values

for this example for the years 2018 and 2019, let’s assume that the first metric has values of 0.20

and 0.25, and the second metric has values of 0.80 and 0.85 with an upper bound of 10 GJ per

ton product. The same process is followed for the rest of the metrics in the remaining principal

categories (Table 7.4). Having estimated the normalized metrics for all principal categories, then

the Category-based Circularity Sub-Indices using weighted averages are calculated. In particular,

for the Energy principal category, the first metric gets a 75% weight, while the second metric gets

a 25%. Given the previous mentioned values, the 2018 "Circularity Index for Energy" is 0.35,

which increased to 0.40 in 2019. Conducting the analogous process for the rest of the principal

categories, the annual Circularity Sub-Index for each principal category is calculated. The linear

average of all annual Circularity-based Sub-Indices leads to the Overall Circularity Index, in this

case being 0.46 and 0.49 for 2018 and 2019 respectively. Finally, data visualization, benchmarking

and various comparisons can be conducted and indicative analysis is shown in the next Section 7.5

Case Studies.
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7.5 Case Studies

Leading companies from the Energy and Utilities, Manufacturing, and Automotive sectors are

used as working examples to illustrate the extent, use and applicability of the proposed framework.

7.5.1 MICRON applied in Energy and Utilities (EnU) sector

First, the developed CE assessment framework is applied to Energy Utilities companies which

operate in Energy and Utilities sector so as to estimate their Overall Circularity Index as well

as their Category-based Circularity Sub-Indices. In particular, the circularity of the following

companies over the a number of years are evaluated: PG&E (2014-2019), NextEra (2016-2019)

and Uniper (2016-2019). The data used for the subject calculations and analysis are taken from

the following sources: PG&E: "Corporate Responsibility and Sustainability" reports (2015-2020),

NextEra: "Environmental, Social and Governance" report (2020) and "Sustainability: By the Num-

bers" report (2014-2018), Uniper: "Sustainability" reports (2017-2019) and "2019 Annual Report

- Financial Results" [355, 356, 357, 358, 359]. First, the annual metrics of each indicator are cal-

culated using the methodology described in sections 7.4.2 and 7.4.3, and are summarized in Table

7.5.

Table 7.5: CE Metrics of Energy Utilities Companies (2014-2019) - Energy and Utilities Sector

Principal
Categories / Year

Waste Water Energy GHG
Emissions

Spillages and
Discharges

1a 1b 2a 2b 2c 3aa 4aa 4ba 4ca 4da
Weights 50% 50% 33.33% 33.33% 33.33% 100% 50% 20% 20% 10%

Company PG&E
2014 0.4104 0.4630 0.0000 0.0000 0.9999 0.7893 0.6952 0.0000 0.9883 0.9893
2015 0.2072 0.2712 0.0000 0.0000 0.9997 0.7621 0.6799 0.0000 0.9872 0.3866
2016 0.2466 0.2741 0.0000 0.0000 0.9997 0.8294 0.7539 0.0000 0.9894 0.5954
2017 0.4166 0.4343 0.0000 0.0000 0.9997 0.8361 0.7777 0.0000 0.9890 0.9187
2018 0.3225 0.4452 0.0000 0.0000 0.9997 0.8068 0.7674 0.0000 0.9900 0.7160
2019 0.3519 0.3328 0.0000 0.0000 0.9996 0.8133 0.7745 0.0000 0.9901 0.8611

Company NextEra
2016 0.0000 0.0000 0.0032 0.0000 0.9855 0.4838 0.6028 0.0000 0.9167 0.0000
2017 0.9972 0.9797 0.0022 0.0000 0.9851 0.5103 0.6211 0.0000 0.9219 0.0000
2018 0.9985 0.9879 0.0027 0.0000 0.9850 0.5066 0.6366 0.0000 0.9392 0.0000
2019 0.9990 0.9934 0.0035 0.0000 0.9819 0.4871 0.5985 0.0000 0.9300 0.0000

Company Uniper
2016 0.9516 0.1252 0.0000 0.0000 0.9983 0.1788 0.1113 0.0000 0.3410 0.0000
2017 0.9072 0.2597 0.0000 0.0000 0.9940 0.1912 0.1210 0.0000 0.3121 0.0000
2018 0.9716 0.1600 0.0000 0.0000 0.9917 0.1896 0.1048 0.0000 0.3207 0.0000
2019 0.9330 0.3164 0.0000 0.0000 0.9934 0.2288 0.2216 0.0000 0.4151 0.0000
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PG&E scores almost the maximum (100%) with regards to the water preservation metric (2c

- percentage of water consumed over water withdrawal), but data for the other two Water metrics

are not available. One of the environmental GHG emissions intensity metrics (4ca - NOx, SOx,

and other significant air emissions over Total energy delivered) demonstrates almost perfect score

(100%) over this period, while no data are available for the third environmental GHG emissions

intensity metric (4ba - Emissions of ODS over Total energy delivered). The spillages intensity

metric (4da - Environmental fines over Total energy delivered) fluctuates dramatically over this

period.

The majority of the required data are not available for NextEra in 2016. NextEra is the only one

of the three companies which reports recycled water values, although the reported values are close

to 0. It does not report any values for the spillages and discharges (4da), percentage of other water

discharges (2b), and ODS emissions (4ba). NextEra scores almost 100% in the Waste principal

category, the water preservation metric (2c), and one of the environmental GHG emissions intensity

metrics (4ca). Finally, despite the increase in Energy and Net emissions intensity (4aa) metrics in

2017, both metrics did not improve over the years.

Data availability for Uniper is similar to PG&E, with the only difference that spillages and

discharges are also not available. The company performs poorly in multiple metrics, including

diverted waste (1b), Energy (3aa) and GHG emissions (4aa, 4ca).

7.5.2 MICRON applied in Manufacturing (MaN) sector

The second application of MICRON framework is at the Food and Beverages industry which is

classified under the Manufacturing sector. Here, the category-based and overall circularity of the

following companies from 2010-2019 are assessed: Nestle (2010-2019), General Mills (2010-

2019), Tyson (2015-2019) and Ferrero (2016-2019).

The following sources are used for collecting data for the analysis: Nestle: "Progress Report"

(2018-2019) and "Consolidated Nestle Environmental Performance Indicators" (2019), General

Mills: "Global Responsibility" report (2016-2020) and "Annual Report to Shareholders" (2020),

Tyson: "Sustainability" reports (2012-2019), and Ferrero: "Sustainability" reports (2017-2019)
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[360, 361, 362, 363, 364, 365]. The annual metrics of each indicator are calculated using the

methodology described in sections 7.4.2 and 7.4.3, and are summarized in Table 7.6.

Table 7.6: CE Metrics of Food and Beverages Companies (2010-2019) - Manufacturing Sector

Principal
Categories /

Year

Waste Water
Procurement: Production

and Packaging
Energy GHG Emissions

Spillages
and

Discharges

Durability

1a 1b 1ca 2a 2b 2c 2da 2pab 2pbb 2pcb 3ab 3ba 4ab 4bb 4cb 4db 5a

Weights 33.33% 33.33% 33.33% 25% 25% 25% 25% 33.33% 33.33% 33.33% 75% 25% 50% 20% 20% 10% 100%

Company Nestle

2010 0.9951 0.7140 0.8454 0.0339 0.6178 0.6555 0.6685 0.0000 0.0000 0.0000 0.1190 0.7959 0.6746 0.2112 0.6036 0.0000 0.0000

2011 0.9967 0.7631 0.8414 0.0335 0.6172 0.6530 0.6818 0.2710 0.2801 0.0000 0.1200 0.8001 0.6778 0.6887 0.6331 0.9929 0.0000

2012 0.9972 0.7757 0.8500 0.0341 0.5759 0.6106 0.7105 0.2710 0.2801 0.0000 0.1250 0.8108 0.6973 0.7223 0.6705 0.9986 0.0000

2013 0.9979 0.8273 0.8551 0.0337 0.6133 0.5958 0.7084 0.2710 0.2801 0.0000 0.1340 0.8099 0.6966 0.8052 0.6446 0.9781 0.0000

2014 0.9984 0.8511 0.8549 0.0374 0.5899 0.6019 0.7244 0.2680 0.2837 0.0000 0.1450 0.8186 0.7148 0.8197 0.6837 0.9853 0.0000

2015 0.9986 0.8954 0.8534 0.0390 0.5817 0.5835 0.7426 0.2810 0.2769 0.0000 0.1530 0.8275 0.7280 0.6491 0.7091 0.9853 0.0000

2016 0.9996 0.9352 0.8504 0.0370 0.5657 0.5759 0.7520 0.2740 0.2587 0.0000 0.1690 0.8328 0.7546 0.8813 0.7157 0.9757 0.0000

2017 0.9998 0.9620 0.8503 0.0476 0.5624 0.5907 0.7633 0.2870 0.2821 0.0000 0.1930 0.8357 0.7764 0.8714 0.7303 0.9911 0.0000

2018 0.9998 0.9790 0.8472 0.0463 0.5618 0.5939 0.7668 0.2360 0.2504 0.0000 0.2190 0.8372 0.7826 0.8883 0.7505 0.9844 0.0000

2019 0.9998 0.9913 0.8424 0.0397 0.4765 0.5585 0.7718 0.2600 0.2701 0.8700 0.2020 0.8341 0.7886 0.8935 0.7631 0.9951 0.0000

Company General Mills

2010 1.0000 0.0000 0.8163 0.0000 0.0000 0.0000 0.7832 0.0000 0.0000 0.0000 0.0008 0.8080 0.5917 0.0000 0.0000 0.0000 0.0000

2011 1.0000 0.0000 0.8176 0.0000 0.0000 0.0000 0.7889 0.0000 0.0000 0.0000 0.0031 0.8080 0.5872 0.0000 0.0000 0.0000 0.0000

2012 1.0000 0.0000 0.8298 0.0000 0.0000 0.0000 0.7859 0.0000 0.0000 0.0000 0.0076 0.8100 0.5872 0.0000 0.0000 0.0000 0.0000

2013 1.0000 0.0000 0.8296 0.0000 0.0000 0.0000 0.7094 0.0000 0.0000 0.0000 0.0501 0.8110 0.6208 0.0000 0.0000 0.0000 0.0000

2014 1.0000 0.0000 0.8339 0.0000 0.0000 0.0000 0.7178 0.0000 0.0000 0.0000 0.0488 0.8120 0.6381 0.0000 0.0000 0.0000 0.0000

2015 1.0000 0.8800 0.8258 0.0000 0.0000 0.0000 0.7148 0.4900 0.0000 0.8400 0.0494 0.8130 0.6415 0.0000 0.0000 0.0000 0.0000

2016 1.0000 0.8500 0.7860 0.0000 0.0000 0.0000 0.6803 0.4200 0.0000 0.8800 0.0418 0.8140 0.6616 0.0000 0.0000 0.0000 0.0000

2017 1.0000 0.8700 0.7775 0.0000 0.0000 0.0000 0.7053 0.4300 0.0000 0.8800 0.0468 0.8090 0.6593 0.0000 0.0000 0.0000 0.0000

2018 1.0000 0.9000 0.7601 0.0000 0.0000 0.0000 0.7154 0.4500 0.0000 0.8900 0.0445 0.8120 0.6664 0.0000 0.0000 0.0000 0.0000

2019 1.0000 0.9200 0.7029 0.0000 0.0000 0.0000 0.7365 0.4700 0.0000 0.8800 0.0376 0.8110 0.6805 0.0000 0.0000 0.0000 0.0000

Company Tyson

2015 0.0000 0.9055 0.5594 0.0000 0.0000 0.0000 0.3031 0.0000 0.0000 0.0000 0.0166 0.7581 0.3320 0.0000 0.0000 0.7547 0.0000

2016 0.0000 0.8976 0.5604 0.0638 0.0000 0.0000 0.2555 0.3000 0.0000 0.0000 0.0215 0.7453 0.2760 0.0000 0.0000 0.9405 0.0000

2017 0.0000 0.8879 0.5077 0.0627 0.0000 0.0000 0.2022 0.3000 0.0000 0.0000 0.0135 0.6585 0.2400 0.0000 0.0000 0.8625 0.0000

2018 0.0000 0.8111 0.2993 0.0634 0.0000 0.0000 0.2240 0.2990 0.0000 0.0000 0.0075 0.6542 0.2400 0.0000 0.0000 0.0000 0.0000

2019 0.0000 0.8675 0.0505 0.0637 0.0000 0.0000 0.2537 0.3550 0.0000 0.0000 0.0077 0.6135 0.2800 0.0000 0.0000 0.9772 0.0000

Company Ferrero

2016 0.0000 0.9500 0.5535 0.7406 0.0620 0.7406 0.6279 0.3900 0.3700 0.0000 0.0994 0.1000 0.0326 0.2580 0.0000 0.0000 0.0000

2017 0.0000 0.9500 0.5727 0.7319 0.0590 0.7319 0.6319 0.3600 0.3700 0.0000 0.1202 0.1000 0.0851 0.4076 0.0000 0.0000 0.0000

2018 0.9877 0.9465 0.5503 0.6385 0.0510 0.6385 0.5697 0.3390 0.3690 0.8170 0.1371 0.1600 0.0000 0.8661 0.0000 0.0000 0.0000

2019 0.9854 0.9677 0.5892 0.6318 0.0530 0.6318 0.5620 0.3420 0.3690 0.8170 0.1900 0.1600 0.0000 0.9178 0.0000 0.0000 0.0000

Nestle demonstrates a continuous improvement with regards to circularity in almost all princi-

pal categories. Waste is the best performing category, with close to perfect scores. As an example,

the company reports on average 30 kg of total waste per ton of product produced (1ca) over the

decade. The metrics for GHG Emissions & Spillages also reveal an upward trend, with about 35%

decrease in the net emissions per ton of product sold metric (4ab), and even higher reductions in

the ODS and other significant emissions per ton of product sold (4bb, 4cb) during the same period.

The environmental fines are constantly minimal in comparison to the level of production. On the
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contrary, and despite the advancements over the years, there are significant opportunities for im-

proving circularity in the Energy principal category, since just 20% of the energy consumed comes

from renewable resources.

Similar findings are observed from the circularity assessment of General Mills. The introduc-

tion of recycling and reusing initiatives for the waste handling (1b) in 2015 resulted in a substantial

improvement in the corresponding category. There are enormous enhancement possibilities for the

rest of the principal categories, since for example less than 5% of energy consumed comes from

renewable resources (3ab), or the water withdrawal per product sold has raised by 22% without

any provision for recycling or reusing initiatives (2da).

Tyson is the least circular from the assessed companies in the Food and Beverages industry. As

an example, the total waste generated per ton of product sold (1ca) more than doubled within five

years while the GHG emissions per product sold (4ab) grew by more than 7% over this period. The

portion of renewable energy in company’s portfolio is less than 1% (3ab), and the energy efficiency

(3ba) has deteriorated by almost 60% since 2015.

Ferrero illustrated a slightly better circular performance in comparison to Tyson. Despite the

significant increase of 91% in the share of renewables sources (3ab), renewables still provide less

than 20% of the total energy requirements, while GHG emissions intensity (4ab) grew by more

than 30% over the last four years. The water consumed as a percentage of water withdrawal (2c)

and the water withdrawal per product sold (2da) increased by almost 40% and 20% respectively.

Finally, it is worth highlighting that none of the reviewed companies in this sector reported

data related to the Durability. This will be another contribution of the proposed framework towards

enhancing the awareness of companies with regards to specific overlooked or under-reviewed cat-

egories, that are inextricably linked with the CE concept.

7.5.3 MICRON applied in Automotive (AuT) sector

The Automotive industry has some unique characteristics that differentiate it from the rest of

the industries and require its classification into a separate sector, the Automotive sector. These

characteristics refer to the output of the industry which is counted in vehicles with distinct features
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and as such affects all the intensity metrics, the environmental aspects of the produced vehicles,

and the lifespan or the warranty that is provided by the automotive companies for their vehicles.

Here, the category-based circularity sub-indices and the overall circularity index of the follow-

ing companies from 2012-2019 are evaluated: Daimler (2012-2019), Ferrari (2016-2019), Audi

(2014-2019) and BMW (2015-2019).

The sources of data and information for our analysis are as follows: Daimler: "sustainability"

reports (2012-2019) and "GRI" (2017-2019), Ferrari: "Sustainability" reports (2017-2019) and

"Annual" reports (2017-2019), Audi: "Sustainability" reports (2014-2019), and BMW: "Sustain-

ability Value" reports (2015-2019) and "GRI" (2017-2019) [366, 367, 368, 369, 370, 371, 372].

The annual metrics of each indicator are calculated using the methodology described in sections

7.4.2 and 7.4.3, and are summarized in Table 7.7.

Table 7.7: CE Metrics of Automotive Companies (2012-2019) - Automotive Sector

Principal
Categories /

Year

Waste Water
Procurement: Production

and Packaging
Energy GHG Emissions

Spillages
and

Discharges

Durability

1a 1b 1cb 2a 2b 2c 2db 2paa 2pba 2pca 3ab 3bb 4ac 4bc 4cc 4d 4dc 5a 5b

Weights 33.33% 33.33% 33.33% 25% 25% 25% 25% 33.33% 33.33% 33.33% 75% 25% 35% 10% 10% 40% 5% 50% 50%

Company Daimler

2012 0.9257 0.9266 0.6406 0.0000 0.0000 0.0000 0.7674 0.0000 0.0000 0.8500 0.0000 0.6734 0.2411 0.0000 0.6989 0.2415 0.0000 0.9500 0.3500

2013 0.9104 0.9055 0.6525 0.0000 0.0000 0.0000 0.7847 0.0000 0.0000 0.8500 0.0000 0.6868 0.2871 0.0000 0.7065 0.2770 0.0000 0.9500 0.3500

2014 0.8623 0.8542 0.6426 0.0000 0.0000 0.0000 0.8062 0.0000 0.0000 0.8500 0.0000 0.7159 0.3576 0.0000 0.7429 0.3039 0.0000 0.9500 0.3500

2015 0.9111 0.9088 0.6456 0.0000 0.0000 0.3816 0.8001 0.0000 0.0000 0.8500 0.0000 0.7078 0.3527 0.0000 0.5382 0.3328 0.0000 0.9500 0.3500

2016 0.9251 0.9129 0.6780 0.0000 0.0000 0.3608 0.8022 0.0000 0.0000 0.8500 0.0000 0.7146 0.4227 0.0000 0.5171 0.3305 0.0000 0.9500 0.3500

2017 0.9291 0.9236 0.6825 0.0000 0.0000 0.3921 0.8247 0.0000 0.0000 0.8500 0.0000 0.7163 0.4456 0.0000 0.5749 0.3175 1.0000 0.9500 0.3500

2018 0.9307 0.9623 0.6652 0.0000 0.0000 0.4111 0.8186 0.0000 0.0000 0.8500 0.0000 0.7072 0.4448 0.0000 0.5558 0.2927 0.0000 0.9500 0.3500

2019 0.9288 0.9696 0.6636 0.0000 0.0000 0.4079 0.8185 0.0000 0.0000 0.8500 0.0000 0.6962 0.4923 0.0000 0.5428 0.2742 1.0000 0.9500 0.3500

Company Ferrari

2016 0.6765 0.4148 0.0828 0.0000 0.0000 0.5382 0.0000 0.0000 0.0430 0.8500 0.0468 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.9500 0.7500

2017 0.7204 0.4325 0.0260 0.0000 0.0000 0.5041 0.0000 0.0000 0.0430 0.8500 0.0517 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.9500 0.7500

2018 0.7497 0.4583 0.1912 0.0000 0.0000 0.5742 0.0000 0.0000 0.0430 0.8500 0.0541 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.9500 0.7500

2019 0.7605 0.4429 0.2646 0.0000 0.0000 0.5899 0.1550 0.0000 0.0380 0.8500 0.0655 0.0000 0.0000 1.0000 0.1056 0.0000 1.0000 0.9500 0.7500

Company Audi

2014 0.8979 0.9674 0.8424 0.0000 0.0000 0.4058 0.9295 0.0000 0.0000 0.0000 0.2747 0.8715 0.8233 0.0000 0.8794 0.3450 1.0000 0.0000 0.5000

2015 0.9023 0.9683 0.8390 0.0000 0.0000 0.4012 0.9272 0.0000 0.0000 0.0000 0.2646 0.8644 0.8237 0.0000 0.8887 0.3700 1.0000 0.0000 0.5000

2016 0.9040 0.9766 0.8309 0.0000 0.0000 0.3731 0.9269 0.0000 0.0000 0.8500 0.2493 0.8592 0.8143 0.0000 0.8948 0.3700 1.0000 0.9500 0.5000

2017 0.9031 0.9773 0.8327 0.0000 0.0000 0.3510 0.9267 0.0000 0.0000 0.8500 0.2456 0.8558 0.8078 0.0000 0.9098 0.3650 1.0000 0.9500 0.5000

2018 0.9033 0.9838 0.8393 0.0000 0.0000 0.3656 0.9271 0.0000 0.0000 0.8500 0.2993 0.8643 0.8357 0.0000 0.9286 0.3550 1.0000 0.9500 0.5000

2019 0.8973 0.9913 0.8423 0.0000 0.0000 0.3541 0.9378 0.0000 0.0000 0.8500 0.3553 0.8636 0.8422 0.0000 0.9366 0.3450 1.0000 0.9500 0.5000

Company BMW

2015 0.9515 0.9884 0.7772 0.0000 0.0000 0.6450 0.9747 0.0000 0.0200 0.8500 0.0449 0.8508 0.6780 0.0000 0.8780 0.3650 1.0000 0.9500 0.3500

2016 0.9540 0.9896 0.7839 0.0000 0.0000 0.6602 0.9758 0.0000 0.0200 0.8500 0.0447 0.8490 0.6971 0.0000 0.8860 0.3800 1.0000 0.9500 0.3500

2017 0.9473 0.9885 0.7880 0.0000 0.0000 0.7162 0.9806 0.0000 0.0200 0.8500 0.0830 0.8552 0.7713 0.0000 0.8970 0.3600 1.0000 0.9500 0.3500

2018 0.9469 0.9875 0.7880 0.0000 0.0000 0.6328 0.9733 0.0000 0.0200 0.8500 0.0400 0.8612 0.7757 0.0000 0.9070 0.3600 1.0000 0.9500 0.3500

2019 0.9367 0.9875 0.7949 0.0000 0.0000 0.6606 0.9759 0.0000 0.0200 0.8500 0.0319 0.8627 0.8151 0.0000 0.9150 0.3650 1.0000 0.9500 0.3500

Waste and Durability are the top performing circularity principal categories for Daimler over a

period from 2012 to 2019, followed by Emissions & Spillages and Water & Procurement, with En-
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ergy being the worst performing category. The amount of waste that is diverted from disposal (1b)

continued to increase over the years, while the hazardous waste remained minimal as a percentage

of the total waste (1a). Both metrics of Durability remain constant over the years, which is also

the case for the rest of the automotive companies considered, with the exception of Audi, which

started reporting information for the percentage of the material that is reclaimed and/or recovered

(5a) in 2015. Emissions demonstrate a mix picture since the net total GHG emissions per vehicle

sold (4ac) are reduced by 33% while on the other hand, the NOx, SOx and other significant air

emissions per vehicle sold (4cc) have increased by 52% over the same period. The water con-

sumption per vehicle sold (2db) declined by 22%. The company did not report any total renewable

energy consumption.

With the exception of Durability metrics, the rest of Ferrari’s circularity principal categories

reveal room for substantial improvement. Energy is by far the worst performing circular category,

with the energy consumption per vehicle sold (3bb) being 11x to 25x times higher than the other

three companies. Similar results are reported for Emissions, with Ferrari’s GHG emissions per

vehicle sold (4ac) being between 10x to 33x times higher than the other three companies. Water &

Procurement and Waste categories have slowly progressed over the years, but further improvements

towards circularity are required.

Audi scores close to the maximum with regards to the Waste metrics, followed by Durability

and Emission & Spillages. A significant improvement in Durability category occurs after 2016,

once the company reported that 95% of the materials used are reclaimed and/or recovered (5b).

The share of renewable energy in the total mix of consumed energy (3ab) has grown to almost

36%, while the energy efficiency in vehicle production (3bb) remains the highest in the sector.

Water & Procurement is the worst performing circularity category despite the improvement caused

by the reported high percentages of reusable and/or recyclable materials (2pca) after 2016.

BMW reveals a very similar circular behavior with Daimler, scoring almost excellent in Waste

metrics. GHG Emissions per vehicle sold (4ac) decreased by more than 42%, while 30% was the

reduction in the NOx, SOx and other air emissions per vessel sold (4cc) over the same period.
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On the contrary, Water & Procurement metrics remain rather unchanged since 2015. Renewable

energy remains a minor percent of the total energy consumed (3ab), while the energy efficiency in

vehicles’ production (3bb) has increased by 8%.

7.6 Results and Discussion

Having considered the individual metrics of each principal category in the previous section,

here the Category-based Circularity Sub-Index and the Overall Circularity Index for each com-

pany in the three sectors are computed and assessed. Initially, the analysis is performed per sector,

estimating the Category-based Circularity Sub-Index for the companies within the sector and con-

ducting a comparison between peers. Then, the Overall Circularity Index of each company within

the same sector is calculated, and a comparison between peers at this higher level is presented,

enabling the identification of areas that require improvement. As it was discussed earlier, this is an

advantage of the proposed framework that allows the CE assessment at different operational and

structural levels and monitoring the progress towards CE goals in due time. Also, benchmarking

against peers from the same industry and/or sector, or even from different sectors can be conducted.

7.6.1 Category-based and Overall Circularity Indices for Energy and Utilities (EnU) Sector

The following figures illustrate the annual Category-based Circularity Sub-Indices (Figure 7.3)

and annual Overall Circularity Index (Figure 7.4) for three companies that operate in the Energy

& Utilities sector from 2016 to 2019, using the weights described in previous sections. According

to Figure 7.3, PG&E scores higher than the other two companies in circularity in the Energy and

Emissions principal categories over the years, in comparison to Waste category in which NextEra

is by far the best performing company. All three companies reveal the same steady performance in

Water category. PG&E scores on average 62% and 30% higher than NextEra, and 309% and 362%

higher than Uniper in the Energy and Emissions categories respectively. Conversely, NextEra

outperforms on average Uniper and PG&E by 68% and 159% respectively in the Waste category

between 2017-2019, while no data are available for NextEra in 2016. Figures J.1 to J.3 present

Category-based Circularity Sub-indices for the three Energy Utilities companies for multiple years,
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while Figure J.4 in Appendix J highlights the Category-based Circularity Sub-indices for the En-

ergy & Utilities sector for 2019.

Figure 7.3: Category-based Circularity Sub-Indices in the Energy & Utilities sector (2016-2019)

The annual Overall Circularity Index for each company represents an aggregate of the annual

category-based circularity metrics. As it is shown in Figure 7.4, NextEra’s improvement in 2017

places the company in the top of the comparison among industry peers, with an Overall Circularity

Index just below 60% of the target. The significantly lower price of NextEra’s overall index in 2016

is attributed to the non availability of data for the Waste principal category that resulted in zeroing

of the corresponding category. On the contrary, Uniper is the least circular company from the three

under consideration. With the exception of NextEra in the Waste category, there are opportunities

for enhancement in all aspects of CE for these companies.

7.6.2 Category-based and Overall Circularity Indices for Manufacturing (MaN) Sector

Figure 7.5 and Figure 7.6 highlight the category-based circularity sub-indices and the overall

circularity indices of four companies from the Food and Beverages industry, which is classified

within the Manufacturing sector. Figure 7.5 displays only the period from 2016-2019, due to the
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Figure 7.4: Overall Circularity Indices in the Energy & Utilities sector (2016-2019)

non-availability of data for two of the assessed companies for the previous period. An interesting

finding is that none of the companies report any information or data that can be used to assess

Durability. Thus, the Durability metrics for these companies are zero. Similar to the Energy &

Utilities sector, companies score very well in the Waste category, with Nestle and General Mills

been very close to each other and around 0.9. Ferrero achieved a major improvement the last two

years with a 62% jump in this category. This is mainly attributed to the reporting of excellent

handling of hazardous wastes over this period. On the contrary, Tyson’s performance with regards

to Waste shows a declining pattern with a 37% decrease in just four years, as a result of the

deterioration of the waste generated per ton of product sold (1ca), which has more than double in

such a short period of time.

Emissions & Spillages and Energy categories reveal similar trends. More specifically, Nestle is

the leading company in both categories, achieving more than 0.8 in the Emissions & Spillages cat-

egory, and being 143% higher than the second company of the list. Tyson performs slightly better

than Ferrero in these two categories. In the Energy category, the gap between the first two compa-

nies is much smaller around 51%. Tyson and Ferrero demonstrate opposite paths in circularity in

this category, with the former declining and the later increasing in values, and eventually managing
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to cover the initial 100% difference in just four years. In the Water & Procurement category, Fer-

rero has the lead, followed by Nestle, General Mills, and then Tyson. Ferrero’s improvement in the

last two years is attributed to the high percentage of recyclable, reusable and compostable packag-

ing materials that was reported. A similar finding is observed also for Nestle in 2019. Figures J.5

to J.8 display the Category-based Circularity Sub-indices for the four Food and Beverages com-

panies for multiple years, while Figure J.9 in in Appendix J shows the Category-based Circularity

Sub-indices for the Manufacturing sector for 2019.

Figure 7.5: Category-based Circularity Sub-Indices in the Manufacturing sector (2016-2019)

Figure 7.6 summarizes the overall circularity assessment of the four companies since 2010.

Three out of four companies demonstrate an improving upward trend in their overall circularity,

with Tyson being the only one whose performance has deteriorated. More specifically, Nestle and

General Mills achieved a 47% and 37% increase in their overall circularity respectively over the

decade. Ferrero improved even more (up to 60%) almost reaching General Mills, while Tyson

dropped by 17%. Despite the difference between the top two performing companies which is 47%
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in 2019, and the rising trend of CE performance over the years, there is still big room for CE

improvement for all companies, as it was also observed for the Energy & Utilities sector.

Figure 7.6: Overall Circularity Indices in the Manufacturing sector (2010-2019)

7.6.3 Category-based and Overall Circularity Indices for Automotive (AuT) Sector

Waste is the best performing circularity sub-index for three of the assessed companies, having

reached and maintained values close to 0.9, as it can be seen in Figure 7.7. Audi and BMW lead the

category, followed by Daimler, while Ferrari despite the improvement over the last two years, still

scores almost 75% less than Daimler. However, Ferrari scores 0.85 in Durability sub-index, 17%

more than Audi which comes second, and 31% higher than Daimler and BMW. This is attributed to

the fact that Ferrari’s vehicles have longer lifespan and they are considered collectibles. Audi and

BMW are also the top performers in the GHG Emissions & Spillages category, scoring almost 50%

higher than Daimler. Audi scores 71% and 72.5% higher than Daimler in net total GHG emissions

per vehicle sold (4ac) and NOx, SOx, and other significant air emissions per vehicle sold (4cc)

respectively. The average specific CO2 emissions of Audi vehicles are also about 10% lower than

those of Daimler. Even though Audi scores less than 0.5 in Energy sub-index, nevertheless its
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difference with the second in line is around 0.24.

Daimler’s lack to report total renewable energy sources resulted in poor performance in this

category, while Ferrari scores on average less than 0.05 due to its minimal exposure to renewable

energy sources (3ab), as well as its energy intensive production (3bb). Thus, even a minor increase

in both companies renewable energy footprint will boost their circularity. Water & Procurement

sub-indices demonstrate a rather stable profile for all companies, with the difference gap among

them being minimal. Figures J.10 to J.13 present the Category-based Circularity Sub-indices for

the four automotive companies for multiple years, while Figure J.14 in Appendix J features the

Category-based Circularity Sub-indices for the Automotive sector for 2019.

Figure 7.7: Category-based Circularity Sub-Indices in the Automotive sector (2016-2019)

The Overall Circularity Indices in the Automotive sector are displayed in Figure 7.8, revealing

an upward pattern over the years. As expected from the previous analysis, Audi demonstrates

the highest Overall Circularity Index the last four years, following a 26% rise in 2016 which

is attributed to the improvement in Durability and Procurement principal categories. BMW and
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Daimler rank second and third with an increase of just 2% and 10% respectively. Ferrari is the

least circular automotive company from the ones evaluated over this period.

Figure 7.8: Overall Circularity Indices in the Automotive sector (2012-2019)

7.7 Conclusions

MICRON has been developed as a quantitative CE framework for assessing circularity at the

micro level, in an effort to accurately measure the various aspects of CE and identify potential

areas of improvement towards the transition to a CE economic model. First, principal categories

are designed based on the goals and key characteristics of CE. Then, clearly specified indicators

and readily measurable metrics are selected for each of these principal categories so as to provide

accurate CE assessment at different operational and structural levels, along the different CE goals.

This is achieved through weighted average Category-based Circularity Indices that are calculated

to evaluate the CE performance of companies at each of the principal categories. The linear av-

erage of these indices constitutes the Overall Circularity Index of each company that is a numeric

value between 0 and 1, with 0 representing perfect linearity and 1 representing perfect circular-

ity. It is a holistic approach that utilizes various sector specific indicators and metrics so as to
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effectively capture all CE aspects across different business segments. Its structure enables better

interpretability and traceability of the integrated CE characteristics, while identifying key areas

that require improvement. Moreover, it is a robust framework that allows the effective capture and

fair evaluation of extreme cases e.g. Ferrari, easy comparison among peers, benchmarking within

business segments/industries/sectors, and tracking of CE performance on year-over-year basis. As

such, it can be utilized as a decision-making tool at different operational levels and investment time

horizons.

The capabilities and applicability of the subject framework are demonstrated through case stud-

ies in three sectors, namely Energy & Utilities, Manufacturing and Automotive. An upward trend

is observed in most of the assessed companies, reaffirming the progress of CE across different in-

dustries and sectors of the economy. It is also evident that the aggregate prevalence of the CE con-

cept is still far away, but important steps have already been made, and accurate assessment tools

are critical to this direction. The proposed framework can act as an organization’s internal CE

and sustainability assessment tool, providing information about company’s Category-based and

Overall Circularity Indices, along with visualization mechanisms for tracking periodic progress,

benchmarking against peers, and identification of areas for improvement.

The classification of industries into certain sectors, and the introduction of sector specific in-

dicators and metrics that are matched with GRI standards are key features and contributions to

the literature from the proposed framework. Furthermore, the normalization and standardization

of metrics utilizing upper bounds which are derived from the statistical analysis of the given data,

underline essential contributions and differentiating factors of the methodology, providing also a

dynamic perspective. Ultimately, the metrics will evolve once more data become available and

more CE initiatives and strategies are realized. Additionally, high level of granularity covering

all CE goals, the wide range of parameters assessed, the simplicity of metrics with values ranging

from 0 to 1, and the conception of the Category-based and the Overall Circularity Indices are also

important contributions of the framework.

However, the non-availability or non-reporting of data complicates the evaluation process, po-
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tentially routing to misleading results. Also, social aspects are not directly captured in the current

form of the framework, but can be incorporated in the future. Conglomerates or companies with

diverse operations may not accurately assessed due to the extensive nature of their businesses. In

such case, it might be more appropriate to assess individual segments of the company matching

their activities with the proposed classification.
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8. CONCLUSION AND FUTURE WORK

8.1 Conclusion

In this dissertation, various imminent challenges towards the energy transition and the suc-

cessful implementation of circular economy concept are discussed. Even though there are many

outstanding issues and as a society we still have a long way to go before claiming these issues

as resolved, the goal here is to present a few ideas and demonstrate systematic and quantitative

ways to address some of the challenges. Towards the energy transition, an extensive analysis and

study of the US energy landscape was conducted and a quantitative forecasting framework that

allows the accurate estimation of the price of energy for the end-use consumers are presented. By

incorporating the demand and prices of all energy feedstocks and products of the energy landscape

within the framework and by introducing a state-of-the-art forecasting methodology that includes

optimization and machine learning techniques, a dual objective is achieved: a) the energy market

dynamics are closely monitored and analyzed, and b) various policies of significant public and

governmental interest can be designed, assessed and optimized.

Towards the circular economy implementation, two unique, quantitative frameworks are pre-

sented. The first one illustrates a system engineering approach and a decision-making tool for

the analysis and trade-off modeling and optimization of interconnected food supply chains con-

sidering the principles and goals of circular economy. The second one introduces a holistic and

robust methodology for assessing circularity at the micro level, and a decision-making tool at dif-

ferent operational levels and investment time horizons. Various applications of both frameworks

are discussed, highlighting their applicability and capabilities.

The following are the key questions that are addressed in this dissertation:

What is the price of energy to the end-users in the United States? The response is the En-

ergy Price Index or EPIC, the benchmark to calculate the average price of energy to the end-use

consumers in the United States in units of $/MMBtu.
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What is the daily market price of energy to the end-users in the United States?The response is

the Energy Spot Price Index or ESPIC, the benchmark to calculate the daily average market price

of energy to the end-use consumers in the United States in units of $/MMBtu. ESPIC can be used

as a financial tradable security for investors who look to hedge their investments against the overall

energy market.

How can we monitor and analyze the energy market dynamics? By utilizing EPIC that is com-

prised of the demands and prices of all energy feedstocks and products within an energy network.

The excellent forecasting methodologies for both the demands and the prices of these energy prod-

ucts facilitate such analysis to be extended into the future.

Can we estimate the impact of different policies in energy to the end-users? Yes, by using

EPIC, a comprehensive, reliable and easily interpretable instrument for policymakers to determine

the quantitative effects of various policies. With its accurate forecasting capabilities, EPIC can

be utilized not only for retrospective analyses, but most importantly for prospective ones, up to

10 years in the future. The change of the price of energy, the tax burden in a household, the

generated revenue and the environmental impacts are some of the features that can be estimated

under different scenarios.

How can we redesign supply chains using circular economy principles? By utilizing frame-

works like the one presented here for the food supply chains. Process Systems Engineering tools

and optimization techniques are used for the modeling and systematic integration of recent tech-

nological, experimental, academic and industrial knowledge in the design and operation of food

supply chains while explicitly considering circular economy goals and objectives.

Can we evaluate circularity at the company’s or products level? Yes, by using MICRON, a

robust, holistic and quantitative framework that accurately measures the various aspects of circular

economy across different business segments through sector specific indicators and metrics while

identifies potential areas of improvement towards the transition to a circular economy model. It

also allows the effective capture and fair evaluation of extreme cases, easy comparison among

peers, benchmarking within business segments/industries/sectors, and tracking of circular econ-

omy performance on year-over-year basis.
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8.2 Key Contributions

The key contributions of the dissertation are summarized as follows:

1. EPIC represents the average price of energy over the entire energy landscape covering all

the different energy sources and feedstocks (non-renewables and renewables) as well as the

end-use sectors. It is region agnostic, and can be applied from a state level to international

level. As such, it is not just a representative price of a sub-section of the energy land-

scape such as the price of electricity in the residential sector or the price of oil products

in the industrial sector which is common in the existing literature. Secondly, the proposed

formulation collectively captures the two key attributes of energy, the supply and demand

mechanisms along with the prices of the energy feedstocks and products across the entire

energy landscape. This is another unique feature since the methodologies in the literature

generally focus on specific energy sectors. Thirdly, the excellent forecasting ability of the

proposed mathematical framework allows the estimation of the current value of EPIC, thus

the current price of energy, overcoming the issue of the non-availability of actual data. In

contrast, the forecasting frameworks in the literature focus on specific energy sectors with

generally much shorter forecasting horizon. Finally, an extended forecasting framework that

incorporates state-of-the-art statistical and machine learning techniques and requires mini-

mum user interference has been presented so as to accurately forecast future prices for all

energy feedstocks and products.

2. The EPIC/ESPIC framework demonstrates novel features not only for the academic liter-

ature but also for the financial world. The various energy indices are primarily capital-

ization weighted indices, capped market capitalization indices, price weighted indices and

world production weighted indices, covering mainly oil and gas sectors. On the contrary,

EPIC/ESPIC capture the prices of all energy feedstocks while the weights are calculated

from the actual demands of these energy feedstocks, thus reflecting and capturing the dy-

namics of the entire energy landscape. ESPIC has the potential to become a novel tradable
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financial security.

3. EPIC is a quantitative approach to evaluate, design and optimize different policy questions of

significant public interest. Four key policy case studies have been illustrated. The scenarios

have been investigated parametrically for the past and the future where apart from the change

of the price of energy and the tax burden in a household, the generated revenue or budget

required and the environmental impacts are estimated.

4. Research challenges and PSE research opportunities to assist in the understanding, analysis

and optimization of CE supply chains have been identified. A motivating example on the

supply chain of coffee is introduced to illustrate the challenges of the transition towards a

CE and to propose PSE research opportunities.

5. The explicit incorporation of CE goals and objectives into the design and operation of FSCs

is a key contribution of the proposed CE-FSC framework. Apart from systematically cap-

turing the extensive, up-to-date set of production, processing and valorization pathways, the

proposed CE-FSC framework also contributes to the literature in a dual manner. First, it

enables the identification and selection of the optimal tasks from the list of all alternative

processes based on certain CE objectives. It also allows the identification of the least effi-

cient processes or even sections of the network, which introduce potential bottlenecks within

the supply chain. This is a key feature that refocuses the interest and promotes the research

and development on the less developed sections of the supply chain. Additionally, different

users can benefit from the framework e.g. academics and experimentalists by focusing on

the improvement of existing processes or introduction of new ones, policymakers by deter-

mining areas of improvement etc.

6. The explicit incorporation of CE goals and objectives as assessment criteria, the classifica-

tion of economic activity into distinct parent sectors, the conception of GRI matched, sector

specific indicators and metrics are key contributions of MICRON. The metrics are normal-

ized and standardized using sector specific relevant information, ensuring that assessments
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are up-to-date and dynamically adjusted. Overall, the high level of granularity covering all

CE goals, the comprehensive nature of the framework and the enhanced interpretability are

key features and important contributions of the framework.

8.3 Future Work

There are plenty of challenges that need to be addressed towards energy transition and the im-

plementation of CE. By no means, these challenges can be addressed through a single dissertation.

A non-exhaustive list of future research directions is highlighted below.

8.3.1 EPIC Forecasting Framework

EPIC framework has been applied so far to the US energy landscape. Therefore, it can be

applied to other energy landscapes of different size, from state and/or regional level to national

and/or international level. This would provide new insights into the dynamics of the energy markets

as well as the factors that affect the pricing of energy feedstocks.

It would also be interesting to investigate the effects of key economic and monetary indica-

tors such as GDP growth, inflation, currency exchange rates etc. on the price of energy. Having

better understanding on these relationships would allow more accurate forecasts and policy stud-

ies. Future work can expand further the forecasting capabilities of the framework by incorporating

multivariate time series forecasting techniques along with different statistical and machine learning

methods. Moreover, it would be of great interest to integrate the findings from the analysis of the

key economic and monetary indicators and how they affect the price of energy into the forecasting

tools. Since machine learning techniques proved to be the most accurate ones, research work to-

wards increasing their interpretability as well as into incorporating uncertainty shall be contacted.

Currently, the uncertainty of the forecasts is not properly addressed. Additionally, the lack of un-

derstanding on how these methods work and how the corresponding forecasts are generated, create

a barrier for their acceptance within the research community. As such, improving the transparency

and comprehension of machine learning methods will have a positive impact in a variety of ways

i.e. assisting towards understanding better the strengths and weaknesses of models, providing new
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insights on the data, allowing the integration of domain expertise within the models, and finally

increasing their adoption from the community [373, 374].

Future work can also address different policy questions, such as how EPIC would respond to

financial or monetary shocks, natural disasters and other disruptions, as well as to technological

advancements. To address such questions, a simultaneous evaluation of multiple energy sources

within the same framework across different production targets and subsidies would be required,

taking into consideration potential limitations on the availability and production of each energy

source. The vulnerability of the energy systems to dynamically changing conditions and the re-

silience of the energy infrastructure to potential disruptions can be incorporated and studied within

the EPIC framework, allowing the identification of potential bottlenecks in the existing networks

and the investigation of their cascading effects on the demand and price of energy. Moreover,

modelling of the up-to-date technological solutions for accurate representation of the prices and

levelized costs would be beneficial. The goal remains EPIC to be used for the design and opti-

misation of a federal energy policy for mitigating climate change, while ensuring that the price

of energy remains affordable so as to not have a negative impact on short-term economic activity.

To this respect, EPIC can be integrated with a multi-scale energy systems methodology [275] and

a circular economy systems engineering methodology [262, 375], introducing a novel modeling,

optimization and scenario analysis framework. Such a framework, as it is shown in Figure 8.1,

would include i) detailed data and models for the description of the energy landscape and the vari-

ous supply chains along with their corresponding main and alternative processes, ii) identification

and assessment of alternative pathways for the production of the products and the valorization of

the wastes under circular economy objectives, iii) a detailed time-varying scheduling model [376],

iv) a library of surrogate modelling techniques, for both the nonlinear process models, as well as

scheduling decisions, and v) an effective multi-period, multi-location mixed-integer optimization

solution strategy, coupled with environmental, risk and uncertainty analysis.
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Figure 8.1: Energia Systems Engineering Framework

8.3.2 Systems Engineering Framework for Circular Economy Food Supply Chains

The proposed framework can be utilized in other food supply chains, ensuring their effective

transition towards circularity. Moreover, extra constraints in the modeling can be introduced to

capture inherent characteristics of FSCs systematically, such as perishability and quality decay of

dairy, meat-poultry, vegetable products. The identification of valorization techniques to eliminate

wastes and produce new valuable products along with the ability to simulate different demand and

supply scenarios provide a powerful tool towards circularity.

Future work may expand into other classes of problems, including phenomena, objective func-

tions and/or constraints with non-linear terms, thus resulting into mixed-integer nonlinear pro-
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gramming (MINLP) problems. In addition, uncertainty issues related to system’s externalities or

inherent characteristics such as weather conditions, consumer preferences, demand and supply

fluctuations and so on [377, 378], can be also taken into consideration in future work by incor-

porating sensitivity analysis, parametric optimization, stochastic and robust optimization into the

framework [379, 380, 381]. Finally, the current framework considers a central planner deciding

for the entire supply chain. Future work would involve the decomposition of the supply chain into

its different stakeholders, resulting into multi-agent optimization formulations, and requiring other

optimization approaches for its solution [382, 383].

Future developments on the illustrative case study of the coffee supply chain could include

valorization pathways for the utilization of wastes and by-products for the production of high added

value products. Scaling issues from the laboratory and proof of concept levels to the full scale and

product release levels must be always taken into consideration. Hence, analytical process design

and synthesis along with feedback from experimentalists are crucial. The model approximations

could be also revisited, and high-fidelity models can be developed for proper testing. Validation

strategies through energy systems engineering optimization approaches will be also required for

the efficient design and operation of the most promising processes.

8.3.3 MICRON: Circular Economy Assessment Framework at Micro level

Advanced data analytics can be incorporated into the framework, enabling the faster and more

accurate execution of the evaluation process. Ideally, the framework will be embedded into a web-

site as a web-based index calculator where the users will be able to i) measure a firm’s "circularity",

ii) track firm’s periodic progress, iii) benchmark against firm’s peers, and iv) visualize the analysis

online. The collection of more data from companies in different industries and sectors, and their

evaluation within the framework would provide more insights about the effectiveness of the current

indicators and metrics. The non-availability or non-reporting of data complicates the evaluation

process, potentially routing to misleading results. Therefore, it would be interesting to explore

ways to handle such cases. Also, social aspects are not directly captured in the current form of the

framework, and must be incorporated in the future.
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Conglomerates or companies with diverse operations may not accurately assessed due to the

extensive nature of their businesses. In such case, it might be more appropriate to assess individual

segments of the company matching their activities with the proposed classification. Future work

could introduce a new sector that would reflect and capture the special characteristics of this type

of companies. In addition, future research should focus on conducting similar analysis at the

meso and macro levels, especially in relation to the alignment between CE indicators and the

three dimensions of sustainability. This can be done by investigating the interconnections of these

dimensions with indicators and metrics at the meso and macro level.
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APPENDIX A

ENERGY CONVERSION CALCULATIONS

Table A.1: Conversion Factors

Fuel Units Approximate Heat Content

Asphalt and Road Oil MMBtu per bbl 6.636

Aviation Gasoline MMBtu per bbl 5.048

Biodiesel MMBtu per bbl 5.359

Diesel MMBtu per bbl 5.770

Distillate Fuel Oil MMBtu per bbl 5.817

Ethanol MMBtu per bbl 3.563

Gasoline MMBtu per bbl 5.222

HGL MMBtu per bbl 3.841

Kerosene MMBtu per bbl 5.670

Lubricants MMBtu per bbl 6.065

Petroleum Coke MMBtu per bbl 6.124

Residual Fuel Oil MMBtu per bbl 6.287

Electricity BTU per kWh 3,412

Coal MMBtu per short ton 38.2425
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APPENDIX B

LOOKBACK PERIOD AND PARAMETER ESTIMATION SCHEMES

Energy demand is highly seasonal [77] (see Figure 2.2), so each month needs to be trained

separately. Thus, all the schemes involve the parameter estimation for each month individually,

so as to capture the seasonality effects which are crucial for accurate forecasting. Four different

approaches for minimizing the sum of the squared error were tested over four different lookback

periods (24months, 36months, 48months, 60 months), with each month being trained separately.

Approaches 1 and 2 are “weight-based”, while approaches 3 and 4 are “demand-based”. The

mathematical formulations are shown below for the lookback period of 36 months. Table B.1

summarises the results for the four approaches and four lookback periods.

Approach 1 - (weight-based)

min
∑
m

Errm

Errm =
∑
m′

(EPICm′ − ÊPICm′)2

ÊPICm′ =
∑
p

(Cm′,p ∗ ŵm,p)

EPICm =
∑
p

(Cm,p ∗ wm,p)

∑
p

ŵm,p = 1

ŵm,p ≥ 0

∀m′ | (m′ −m) = (−36) or (−24) or (−12)
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Approach 2 - (weight-based)

min
∑
m

Errm

Errm =
∑
m′,p

(wm′,p − ŵm,p)
2

∑
p

ŵm,p = 1

ŵm,p ≥ 0

∀m′ | (m′ −m) = (−36) or (−24) or (−12)

where ŵm,p represents the predicted weight of product p in month m.

Approach 3 - (demand-based)

min
∑
m

Errm

Errm =
∑
m′,p

(Dm′,p − am,p ∗m′ + bm,p)
2

am,p ∗m+ bm,p ≥ 0

ŵm,p =
am,p ∗m+ bm,p∑
p′ am,p′ ∗m+ bm,p′

∀m′ | (m′ −m) = (−36) or (−24) or (−12)
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Approach 4 - (demand-based)

min
∑
m

Errm

Errm =
∑
p

(Dm−12,p − (am,p ∗Dm−24,p + bm,p ∗Dm−36,p))
2

am,p ∗Dm−12,p + bm,p ∗Dm−24,p ≥ 0

ŵm,p =
am,p ∗Dm−12,p + bm,p ∗Dm−24,p∑
p′ am,p′ ∗Dm−12,p′ + bm,p′ ∗Dm−24,p′

where Dm,p represents the demand of product p in month m, am,p and bm,p represent the fitted

parameter 1 and 2 of product p in month m respectively.

Table B.1: Results on Prediction of Weights (Different Lookback Periods)

lookback_24 lookback_36

App1 App2 App3 App4 App1 App2 App3 App4

Min Error 0.052% 0.049% 0.064% 0.067% 0.058% 0.053% 0.051% 0.127%

Max Error 0.263% 0.221% 0.410% 0.351% 0.292% 0.228% 0.290% 0.624%

Average Error 0.106% 0.099% 0.147% 0.154% 0.121% 0.104% 0.127% 0.336%

lookback_48 lookback_60

App1 App2 App3 App4 App1 App2 App3 App4

Min Error 0.064% 0.057% 0.052% 0.233% 0.064% 0.065% 0.054% 0.394%

Max Error 0.265% 0.209% 0.289% 0.776% 0.261% 0.196% 0.255% 0.839%

Average Error 0.137% 0.107% 0.120% 0.454% 0.158% 0.113% 0.115% 0.536%

As it can be seen, approaches 1 and 2 outperform approaches 3 and 4, regardless of the look-

back period. Between the weight-based approaches, approach 2 is the one with the lowest errors
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regardless of the lookback period, so it is the one selected. With regards to the lookback periods,

the cases for 24 and 36 months produce the lowest errors in comparison to the 48 and 60 months.

Since, the results for the 24 and 36 months are comparable, the longer lookback period is selected,

which will capture better the increasing volatility of the energy demand in the future. Therefore,

the methodology selected is Approach 2 with 36 months lookback period.
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APPENDIX C

FORECASTING RESULTS FOR THE DEMANDS AND PRICES OF ENERGY PRODUCTS

Table C.1: Sum of Squared Errors for the Forecasting of the Weights

Year of Forecasting 1st year 2nd year 3rd year 4th year

2006 January 0.00169025 0.00000000 0.00000000 0.00000000

2006 February 0.00058085 0.00000000 0.00000000 0.00000000

2006 March 0.00021295 0.00000000 0.00000000 0.00000000

2006 April 0.00023641 0.00000000 0.00000000 0.00000000

2006 May 0.00023087 0.00000000 0.00000000 0.00000000

2006 June 0.00016016 0.00000000 0.00000000 0.00000000

2006 July 0.00027143 0.00000000 0.00000000 0.00000000

2006 August 0.00025395 0.00000000 0.00000000 0.00000000

2006 September 0.00017492 0.00000000 0.00000000 0.00000000

2006 October 0.00017026 0.00000000 0.00000000 0.00000000

2006 November 0.00018149 0.00000000 0.00000000 0.00000000

2006 December 0.00064226 0.00000000 0.00000000 0.00000000

2007 January 0.00015041 0.00060949 0.00000000 0.00000000

2007 February 0.00043464 0.00026794 0.00000000 0.00000000

2007 March 0.00008725 0.00017743 0.00000000 0.00000000

2007 April 0.00015412 0.00020004 0.00000000 0.00000000

2007 May 0.00013978 0.00024963 0.00000000 0.00000000

2007 June 0.00021104 0.00030346 0.00000000 0.00000000

2007 July 0.00012475 0.00024875 0.00000000 0.00000000

2007 August 0.00017119 0.00029990 0.00000000 0.00000000

2007 September 0.00014788 0.00018094 0.00000000 0.00000000

2007 October 0.00017521 0.00020705 0.00000000 0.00000000

2007 November 0.00010496 0.00011980 0.00000000 0.00000000

2007 December 0.00009077 0.00010847 0.00000000 0.00000000
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Table C.1 continued from previous page

Year of Forecasting 1st year 2nd year 3rd year 4th year

2008 January 0.00032132 0.00024880 0.00018570 0.00000000

2008 February 0.00016441 0.00027061 0.00014792 0.00000000

2008 March 0.00017691 0.00018144 0.00020354 0.00000000

2008 April 0.00017740 0.00021688 0.00020193 0.00000000

2008 May 0.00024392 0.00026156 0.00028559 0.00000000

2008 June 0.00023788 0.00031761 0.00039532 0.00000000

2008 July 0.00030059 0.00030920 0.00039746 0.00000000

2008 August 0.00031008 0.00038352 0.00040577 0.00000000

2008 September 0.00023943 0.00029728 0.00028647 0.00000000

2008 October 0.00023759 0.00023697 0.00032100 0.00000000

2008 November 0.00030642 0.00036109 0.00041720 0.00000000

2008 December 0.00059325 0.00069510 0.00048058 0.00000000

2009 January 0.00108481 0.00140707 0.00119094 0.00055285

2009 February 0.00029712 0.00037806 0.00053460 0.00055477

2009 March 0.00027061 0.00037076 0.00045481 0.00060045

2009 April 0.00055190 0.00063837 0.00069210 0.00076995

2009 May 0.00069059 0.00080875 0.00087938 0.00101184

2009 June 0.00044950 0.00054766 0.00073642 0.00089440

2009 July 0.00039833 0.00041351 0.00045663 0.00067383

2009 August 0.00040358 0.00056169 0.00066491 0.00071660

2009 September 0.00030008 0.00038579 0.00047867 0.00052521

2009 October 0.00047339 0.00059461 0.00058672 0.00067339

2009 November 0.00046843 0.00057918 0.00066024 0.00073549

2009 December 0.00044028 0.00076489 0.00089168 0.00054722

2010 January 0.00050146 0.00095165 0.00138620 0.00111124

2010 February 0.00020387 0.00025136 0.00038191 0.00067702

2010 March 0.00019686 0.00020734 0.00029272 0.00034912

2010 April 0.00035647 0.00038397 0.00043434 0.00041693

2010 May 0.00017466 0.00027801 0.00044686 0.00048967
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Table C.1 continued from previous page

Year of Forecasting 1st year 2nd year 3rd year 4th year

2010 June 0.00016701 0.00021507 0.00039571 0.00052869

2010 July 0.00022884 0.00028372 0.00049476 0.00052390

2010 August 0.00019238 0.00018884 0.00031042 0.00049674

2010 September 0.00012943 0.00016054 0.00028821 0.00043820

2010 October 0.00012734 0.00027152 0.00039537 0.00046585

2010 November 0.00025037 0.00029519 0.00054799 0.00068644

2010 December 0.00042858 0.00070206 0.00115439 0.00134016

2011 January 0.00021389 0.00038182 0.00093742 0.00155177

2011 February 0.00013790 0.00024556 0.00026940 0.00040602

2011 March 0.00017760 0.00028759 0.00024051 0.00035482

2011 April 0.00022301 0.00033708 0.00030631 0.00044203

2011 May 0.00031429 0.00041710 0.00043910 0.00075276

2011 June 0.00021235 0.00029840 0.00029525 0.00058370

2011 July 0.00020819 0.00032540 0.00037061 0.00061394

2011 August 0.00037387 0.00053666 0.00039633 0.00057551

2011 September 0.00021589 0.00029985 0.00027488 0.00047573

2011 October 0.00024626 0.00028698 0.00038359 0.00061847

2011 November 0.00032169 0.00047778 0.00042772 0.00072872

2011 December 0.00038633 0.00038742 0.00045440 0.00059754

2012 January 0.00057636 0.00054090 0.00047292 0.00043356

2012 February 0.00067800 0.00073623 0.00077378 0.00075570

2012 March 0.00123748 0.00135595 0.00165884 0.00163334

2012 April 0.00041933 0.00058776 0.00091836 0.00086678

2012 May 0.00027936 0.00044817 0.00063041 0.00074209

2012 June 0.00023195 0.00035312 0.00052385 0.00047865

2012 July 0.00034525 0.00047865 0.00072545 0.00064491

2012 August 0.00014917 0.00023680 0.00037191 0.00040482

2012 September 0.00027757 0.00041687 0.00057491 0.00062005

2012 October 0.00025045 0.00039858 0.00044428 0.00065313
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Table C.1 continued from previous page

Year of Forecasting 1st year 2nd year 3rd year 4th year

2012 November 0.00037108 0.00057765 0.00088953 0.00082820

2012 December 0.00036841 0.00058808 0.00058131 0.00064413

2013 January 0.00010127 0.00027885 0.00029095 0.00035500

2013 February 0.00010706 0.00015261 0.00021184 0.00037195

2013 March 0.00082384 0.00045289 0.00047756 0.00058032

2013 April 0.00028868 0.00031848 0.00049716 0.00056462

2013 May 0.00009598 0.00015510 0.00031695 0.00053958

2013 June 0.00008989 0.00015755 0.00027637 0.00045884

2013 July 0.00012326 0.00017354 0.00027117 0.00042244

2013 August 0.00014871 0.00022407 0.00026159 0.00037983

2013 September 0.00007371 0.00009969 0.00020611 0.00035424

2013 October 0.00011646 0.00022361 0.00038529 0.00046822

2013 November 0.00017070 0.00034287 0.00055814 0.00099078

2013 December 0.00039171 0.00040291 0.00043969 0.00094699

2014 January 0.00057984 0.00057454 0.00043747 0.00075951

2014 February 0.00047937 0.00057258 0.00030567 0.00040910

2014 March 0.00079868 0.00136995 0.00070764 0.00083020

2014 April 0.00010063 0.00018766 0.00028241 0.00059331

2014 May 0.00008448 0.00013227 0.00019535 0.00047191

2014 June 0.00008456 0.00013527 0.00026661 0.00051652

2014 July 0.00023581 0.00031970 0.00038393 0.00048197

2014 August 0.00018367 0.00027932 0.00036830 0.00039371

2014 September 0.00005026 0.00007510 0.00015449 0.00037376

2014 October 0.00008603 0.00010004 0.00012764 0.00027284

2014 November 0.00018230 0.00028655 0.00053636 0.00085352

2014 December 0.00014036 0.00012652 0.00021581 0.00056836

2015 January 0.00005743 0.00018343 0.00019034 0.00029665

2015 February 0.00061479 0.00099938 0.00117982 0.00065863

2015 March 0.00012664 0.00032864 0.00082904 0.00030563
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Table C.1 continued from previous page

Year of Forecasting 1st year 2nd year 3rd year 4th year

2015 April 0.00012457 0.00015214 0.00019489 0.00041076

2015 May 0.00009819 0.00011612 0.00017901 0.00029074

2015 June 0.00009817 0.00011147 0.00015043 0.00029612

2015 July 0.00008353 0.00013741 0.00022390 0.00033523

2015 August 0.00008172 0.00009634 0.00014406 0.00023443

2015 September 0.00019669 0.00019709 0.00017889 0.00025847

2015 October 0.00034115 0.00040917 0.00036567 0.00032838

2015 November 0.00071305 0.00064959 0.00053344 0.00038099

2015 December 0.00096012 0.00110267 0.00069011 0.00109389

2016 January 0.00020630 0.00021139 0.00014699 0.00019528

2016 February 0.00116565 0.00074876 0.00040817 0.00038036

2016 March 0.00184829 0.00171524 0.00096200 0.00037059

2016 April 0.00015478 0.00018638 0.00018682 0.00019884

2016 May 0.00013943 0.00017763 0.00019108 0.00022649

2016 June 0.00013494 0.00016383 0.00017843 0.00021491

2016 July 0.00018386 0.00019399 0.00020255 0.00023609

2016 August 0.00015108 0.00020368 0.00017272 0.00020652

2016 September 0.00012569 0.00021716 0.00022069 0.00024754

2016 October 0.00013478 0.00021873 0.00026180 0.00027459

2016 November 0.00056906 0.00097518 0.00078647 0.00059570

2016 December 0.00016671 0.00014584 0.00017481 0.00023973

2017 January 0.00045718 0.00064802 0.00061956 0.00029457

2017 February 0.00159470 0.00257694 0.00171943 0.00097086

2017 March 0.00014028 0.00052119 0.00045170 0.00026143

2017 April 0.00025569 0.00035292 0.00043381 0.00039786

2017 May 0.00007100 0.00010955 0.00016608 0.00019561

2017 June 0.00009699 0.00016182 0.00019772 0.00021556

2017 July 0.00006016 0.00011393 0.00013784 0.00019388

2017 August 0.00007710 0.00010518 0.00015797 0.00024488
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Year of Forecasting 1st year 2nd year 3rd year 4th year

2017 September 0.00007262 0.00011236 0.00019369 0.00021705

2017 October 0.00015230 0.00022606 0.00031845 0.00038520

2017 November 0.00017257 0.00020567 0.00033253 0.00025249

2017 December 0.00041363 0.00058545 0.00029348 0.00026426

2018 January 0.00017560 0.00011151 0.00013114 0.00017954

2018 February 0.00017124 0.00042569 0.00107039 0.00051946

2018 March 0.00031268 0.00032542 0.00022566 0.00025018

2018 April 0.00089452 0.00069845 0.00067844 0.00061453

2018 May 0.00017771 0.00021000 0.00024117 0.00032392

2018 June 0.00009946 0.00013556 0.00021927 0.00027993

2018 July 0.00010703 0.00011836 0.00019312 0.00025247

2018 August 0.00009161 0.00011507 0.00019802 0.00032078

2018 September 0.00023493 0.00026516 0.00029111 0.00036375

2018 October 0.00032381 0.00034609 0.00039674 0.00036155

2018 November 0.00101193 0.00117265 0.00068887 0.00034122

2018 December 0.00010260 0.00024116 0.00040453 0.00029445

2019 January 0.00011171 0.00018582 0.00014774 0.00026694

2019 February 0.00079592 0.00080607 0.00032463 0.00037609

2019 March 0.00061980 0.00090504 0.00082239 0.00021272

2019 April 0.00013723 0.00015497 0.00016199 0.00024742

2019 May 0.00012416 0.00018282 0.00023362 0.00026705

2019 June 0.00009340 0.00012781 0.00014591 0.00022097

2019 July 0.00007390 0.00012145 0.00013615 0.00024600

2019 August 0.00007350 0.00009100 0.00014265 0.00023201

2019 September 0.00008590 0.00016635 0.00018172 0.00024659

2019 October 0.00006140 0.00014909 0.00021073 0.00031819

2019 November 0.00042966 0.00096256 0.00116242 0.00059594

2019 December 0.00010884 0.00013570 0.00024827 0.00044538

2020 January 0.00033701 0.00034522 0.00029330 0.00060895

227



Table C.1 continued from previous page
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2020 February 0.00009060 0.00021529 0.00024230 0.00036097

2020 March 0.00060887 0.00070588 0.00089502 0.00092804

2020 April 0.00516623 0.00507030 0.00652467 0.00588608

2020 May 0.00259839 0.00276708 0.00293191 0.00285565

2020 June 0.00134370 0.00133813 0.00142056 0.00137575

2020 July 0.00105790 0.00108082 0.00121768 0.00123202

2020 August 0.00094581 0.00095579 0.00102573 0.00094769

2020 September 0.00069657 0.00073136 0.00088994 0.00090819

2020 October 0.00077923 0.00086822 0.00117532 0.00121506

2020 November 0.00060094 0.00057358 0.00076594 0.00105741

2020 December 0.00087452 0.00090562 0.00109122 0.00164638

2021 January 0.00045517 0.00041579 0.00051259 0.00072194

2021 February 0.00164641 0.00168494 0.00274646 0.00275953

2021 March 0.00025026 0.00036102 0.00033686 0.00046802

2021 April 0.00044854 0.00025617 0.00031994 0.00053150

Table C.2: Average Absolute Error of Prices up to 3 months

Product

No.

Average Abs. Error Ahead

($/MMBtu)

Forecasting

Required
Forecasting Function

(Rolling Horizon)
1 month 2 months 3 months (months)

2 1.868 2.472 2.929 3
Trigonometric & Commodity

based linear (9 months)

4 0.757 0.977 1.107 3
Trigonometric & Commodity

based linear (9 months)

5 1.868 2.472 2.929 3
Trigonometric & Commodity

based linear (9 months)

6 1.025 1.404 1.712 3
Trigonometric & Commodity

based linear (9 months)
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Product

No.

Average Abs. Error Ahead

($/MMBtu)

Forecasting

Required
Forecasting Function

(Rolling Horizon)
1 month 2 months 3 months (months)

7 0.773 0.954 1.024 3
Trigonometric & Commodity

based linear (9 months)

8 0.233 0.328 0.389 3
Trigonometric & Commodity

based linear (9 months)

9 0.605 0.783 0.902 3
Trigonometric & Commodity

based linear (9 months)

10 1.386 1.945 2.413 1
Trigonometric & Commodity

based linear (9 months)

11 0.757 0.977 1.107 3
Trigonometric & Commodity

based linear (9 months)

12 1.868 2.472 2.929 3
Trigonometric & Commodity

based linear (9 months)

13 1.025 1.404 1.712 3
Trigonometric & Commodity

based linear (9 months)

14 1.457 2.158 2.836 1
Trigonometric & Commodity

based linear (9 months)

15 0.773 0.954 1.024 3
Trigonometric & Commodity

based linear (9 months)

16 0.233 0.328 0.389 2
Trigonometric & Commodity

based linear (9 months)

17 0.605 0.783 0.902 3
Trigonometric & Commodity

based linear (9 months)

18 1.27 1.697 1.861 1
Trigonometric & Commodity

based linear (9 months)

19 1.053 1.315 1.397 3
Trigonometric & Commodity

based linear (9 months)
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Product

No.

Average Abs. Error Ahead

($/MMBtu)

Forecasting

Required
Forecasting Function

(Rolling Horizon)
1 month 2 months 3 months (months)

20 0.42 0.577 0.664 3
Trigonometric & Commodity

based linear (9 months)

21 0.371 0.481 0.558 3
Trigonometric & Commodity

based linear (9 months)

22 1.025 1.404 1.712 3
Trigonometric & Commodity

based linear (9 months)

23 1.457 2.158 2.836 1
Trigonometric & Commodity

based linear (9 months)

24 0.919 1.151 1.208 1
Trigonometric & Commodity

based linear (9 months)

25 0.605 0.783 0.902 3
Trigonometric & Commodity

based linear (9 months)

35 0.994 1.233 1.399 3
Trigonometric & Commodity

based linear (9 months)

42 0.994 1.233 1.399 3
Trigonometric & Commodity

based linear (9 months)

44 0.994 1.233 1.399 3
Trigonometric & Commodity

based linear (9 months)

45 1.189 1.452 1.572 3
Trigonometric & Commodity

based linear (9 months)

46 0.855 0.984 1.075 3 Pure Trigonometric (12 months)

47 0.414 0.579 0.729 3
Trigonometric & Commodity

based Linear(12 months)

48 0.514 0.648 0.781 3
Trigonometric & Commodity

based linear (9 months)

50 0.656 0.906 1.105 2
Trigonometric & Commodity

based Linear(12 months)
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Product

No.

Average Abs. Error Ahead

($/MMBtu)

Forecasting

Required
Forecasting Function

(Rolling Horizon)
1 month 2 months 3 months (months)

51 0.573 0.699 0.788 2 Pure Trigonometric (12 months)

52 0.548 0.645 0.715 2 Pure Trigonometric (12 months)

53 1.144 1.512 1.803 2
Trigonometric & Commodity

based linear (9 months)

55 0.102 0.147 0.188 1
Trigonometric & Commodity

based linear (9 months)

56 0.069 0.098 0.125 1
Trigonometric & Commodity

based linear (9 months)
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APPENDIX D

ACCURACY OF EPIC FORECASTS

Table D.1: Actual versus Forecasts values of EPIC

Month
Actual
EPIC

Initial
EPIC

Release

Initial
Release

Abs
Percent
Error

1st
EPIC
Adj.

1st
Adj.
Abs

Percent
Error

2nd
EPIC
Adj.

2nd
Adj.
Abs

Percent
Error

$/MMBtu $/MMBtu % $/MMBtu % $/MMBtu %
2006 January 17.165 13.661 20.42 15.039 12.39 16.217 5.52
2006 February 16.928 14.631 13.57 15.53 8.26 16.182 4.41

2006 March 16.895 15.883 5.99 16.368 3.12 16.655 1.42
2006 April 18.296 17.499 4.36 17.892 2.21 18.09 1.13
2006 May 19.296 17.79 7.80 18.862 2.25 18.754 2.81
2006 June 19.754 18.787 4.89 19.105 3.28 19.512 1.22
2006 July 20.494 19.259 6.03 19.645 4.14 20.146 1.69

2006 August 20.537 19.05 7.24 19.938 2.92 20.13 1.98
2006 September 18.784 17.87 4.87 18.679 0.56 18.88 0.51

2006 October 17.023 16.822 1.18 17.495 2.77 17.221 1.16
2006 November 16.665 17.148 2.89 16.792 0.76 16.579 0.52
2006 December 16.837 17.324 2.90 16.744 0.55 16.657 1.07
2007 January 16.462 16.006 2.77 16.244 1.33 16.334 0.78
2007 February 16.493 16.435 0.36 16.524 0.18 16.505 0.07

2007 March 17.646 17.085 3.18 17.246 2.27 17.324 1.82
2007 April 18.765 18.32 2.37 18.476 1.54 18.664 0.54
2007 May 19.945 19.093 4.27 19.755 0.95 19.684 1.31
2007 June 20.387 19.739 3.18 20.197 0.93 20.328 0.29
2007 July 20.653 20.826 0.84 20.662 0.04 20.363 1.40

2007 August 20.134 19.65 2.40 19.678 2.27 19.892 1.20
2007 September 19.929 20.111 0.91 19.635 1.48 19.805 0.62

2007 October 19.864 19.643 1.11 19.502 1.82 19.526 1.70
2007 November 20.246 19.799 2.21 19.832 2.04 19.743 2.49
2007 December 19.629 19.405 1.14 19.164 2.37 19.475 0.78
2008 January 19.499 19.115 1.97 19.411 0.46 19.492 0.04
2008 February 19.708 19.04 3.39 19.507 1.02 19.571 0.70

2008 March 21.194 20.92 1.29 21.072 0.58 21.254 0.28
2008 April 22.773 22.26 2.25 22.686 0.38 22.706 0.29
2008 May 24.861 24.574 1.15 24.793 0.27 24.866 0.02
2008 June 26.843 25.664 4.39 26.495 1.29 26.74 0.38
2008 July 27.556 25.992 5.67 27.029 1.91 27.356 0.72

2008 August 25.989 23.987 7.70 25.318 2.58 25.763 0.87
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Month
Actual
EPIC

Initial
EPIC

Release

Initial
Release

Abs
Percent
Error

1st
EPIC
Adj.

1st
Adj.
Abs

Percent
Error

2nd
EPIC
Adj.

2nd
Adj.
Abs

Percent
Error

$/MMBtu $/MMBtu % $/MMBtu % $/MMBtu %
2008 September 25.072 22.655 9.64 24.468 2.41 24.555 2.06

2008 October 22.082 18.972 14.08 20.852 5.57 21.319 3.46
2008 November 18.009 15.434 14.30 16.874 6.30 17.857 0.85
2008 December 16.076 15.147 5.78 15.686 2.43 15.758 1.98
2009 January 16.183 15.596 3.63 15.697 3.00 15.993 1.18
2009 February 16.186 16.29 0.65 15.996 1.17 16.22 0.21

2009 March 16.008 16.816 5.05 16.617 3.81 16.195 1.17
2009 April 16.377 17.757 8.43 16.903 3.21 16.571 1.19
2009 May 17.569 19.279 9.73 17.848 1.59 17.581 0.07
2009 June 19.459 20.331 4.48 19.65 0.98 19.439 0.10
2009 July 19.683 20.018 1.71 19.581 0.51 19.38 1.54

2009 August 20.041 21.034 4.95 20.006 0.18 19.69 1.75
2009 September 19.399 19.506 0.55 19.121 1.43 19.034 1.88

2009 October 18.772 19.633 4.58 18.986 1.14 18.801 0.16
2009 November 18.609 18.877 1.44 18.579 0.16 18.223 2.07
2009 December 17.907 18.465 3.11 17.983 0.42 17.842 0.36
2010 January 18.175 18.657 2.65 17.929 1.36 17.87 1.68
2010 February 18.163 17.65 2.82 17.772 2.15 17.877 1.58

2010 March 18.926 18.352 3.03 18.634 1.54 18.595 1.75
2010 April 19.795 19.204 2.99 19.478 1.60 19.569 1.14
2010 May 20.242 19.51 3.61 20.006 1.16 19.988 1.25
2010 June 20.512 20.01 2.45 20.091 2.05 20.204 1.50
2010 July 20.923 20.451 2.26 20.534 1.86 20.569 1.69

2010 August 20.922 20.553 1.76 20.571 1.68 20.731 0.91
2010 September 20.302 20.614 1.54 20.344 0.21 20.473 0.84

2010 October 20.106 20.402 1.47 20.198 0.46 20.084 0.11
2010 November 19.344 19.709 1.89 19.523 0.93 19.598 1.31
2010 December 19.109 19.303 1.02 19.312 1.06 19.142 0.17
2011 January 19.239 18.952 1.49 19.095 0.74 19.258 0.10
2011 February 19.927 19.544 1.92 19.708 1.10 19.788 0.70

2011 March 21.737 20.923 3.75 21.523 0.98 21.816 0.36
2011 April 23.43 23.021 1.75 23.698 1.14 23.485 0.24
2011 May 24.328 23.476 3.50 24.538 0.86 24.408 0.33
2011 June 24.576 23.9 2.75 24.528 0.19 24.56 0.06
2011 July 24.916 25.104 0.75 24.969 0.21 24.959 0.17

2011 August 24.745 24.452 1.18 24.57 0.71 24.607 0.56
2011 September 24.26 23.875 1.59 24.164 0.40 24.16 0.41

2011 October 22.888 22.901 0.06 23.054 0.72 23.096 0.91
2011 November 21.901 21.704 0.90 22.003 0.47 21.956 0.25
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Month
Actual
EPIC

Initial
EPIC

Release

Initial
Release

Abs
Percent
Error

1st
EPIC
Adj.

1st
Adj.
Abs

Percent
Error

2nd
EPIC
Adj.

2nd
Adj.
Abs

Percent
Error

$/MMBtu $/MMBtu % $/MMBtu % $/MMBtu %
2011 December 20.613 20.676 0.31 20.63 0.08 20.657 0.21
2012 January 20.465 20.626 0.78 20.376 0.44 20.428 0.18
2012 February 21.265 21.124 0.67 20.984 1.33 21.005 1.22

2012 March 23.049 21.305 7.56 22.586 2.01 22.502 2.37
2012 April 23.469 22.439 4.39 23.57 0.43 23.53 0.26
2012 May 23.644 23.352 1.24 23.942 1.26 23.702 0.24
2012 June 23.11 23.298 0.82 23.526 1.80 23.261 0.65
2012 July 23.358 24.234 3.75 23.76 1.72 23.69 1.42

2012 August 24.27 24.904 2.61 24.54 1.11 24.456 0.77
2012 September 24.293 23.851 1.82 24.471 0.73 24.494 0.83

2012 October 23.321 22.622 3.00 23.404 0.36 23.391 0.30
2012 November 21.361 21.917 2.60 21.617 1.20 21.751 1.83
2012 December 20.41 20.647 1.16 20.458 0.23 20.487 0.37
2013 January 20.084 20.318 1.17 20.126 0.21 20.115 0.15
2013 February 21.149 21.281 0.62 21.093 0.27 21.183 0.16

2013 March 21.5 21.771 1.26 21.989 2.28 22.077 2.68
2013 April 22.24 22.251 0.05 22.419 0.81 22.374 0.60
2013 May 23.295 23.009 1.23 23.157 0.59 23.26 0.15
2013 June 24.007 23.637 1.54 23.843 0.68 24.049 0.18
2013 July 24.325 24.56 0.96 24.357 0.13 24.572 1.02

2013 August 24.177 24.083 0.39 24.335 0.65 24.405 0.94
2013 September 23.841 23.561 1.18 23.75 0.38 23.835 0.03

2013 October 22.511 22.482 0.13 22.526 0.07 22.559 0.21
2013 November 20.756 21.35 2.86 21.129 1.80 21.198 2.13
2013 December 20.206 20.73 2.59 20.463 1.27 20.467 1.29
2014 January 20.104 19.823 1.40 20.03 0.37 20.284 0.90
2014 February 20.979 20.494 2.31 20.674 1.45 21.044 0.31

2014 March 21.962 21.379 2.66 21.662 1.37 21.867 0.43
2014 April 22.943 22.934 0.04 22.884 0.26 22.913 0.13
2014 May 23.91 23.237 2.81 23.755 0.65 23.828 0.34
2014 June 24.566 24.255 1.27 24.497 0.28 24.677 0.45
2014 July 24.658 24.117 2.19 24.657 0.00 24.8 0.58

2014 August 24.231 23.738 2.03 24.126 0.43 24.251 0.09
2014 September 23.603 23.367 1.00 23.461 0.60 23.612 0.04

2014 October 22.051 21.351 3.17 21.783 1.22 21.683 1.67
2014 November 19.629 20.315 3.50 19.621 0.04 19.838 1.07
2014 December 18.224 18.256 0.18 17.945 1.53 17.999 1.24
2015 January 16.333 16.034 1.83 16.404 0.44 16.408 0.46
2015 February 16.666 17.591 5.55 17.124 2.75 17.17 3.03
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Month
Actual
EPIC

Initial
EPIC

Release

Initial
Release

Abs
Percent
Error

1st
EPIC
Adj.

1st
Adj.
Abs

Percent
Error

2nd
EPIC
Adj.

2nd
Adj.
Abs

Percent
Error

$/MMBtu $/MMBtu % $/MMBtu % $/MMBtu %
2015 March 17.6 17.815 1.22 17.896 1.68 17.722 0.69
2015 April 18.036 18.578 3.01 18.335 1.66 18.17 0.74
2015 May 19.523 20.129 3.11 19.792 1.38 19.607 0.43
2015 June 20.199 20.396 0.97 20.35 0.75 20.161 0.19
2015 July 20.465 20.1 1.79 20.354 0.54 20.309 0.76

2015 August 19.727 19.047 3.45 19.537 0.96 19.637 0.46
2015 September 18.913 18.328 3.09 18.71 1.07 18.803 0.58

2015 October 17.746 17.247 2.81 17.711 0.19 17.601 0.81
2015 November 16.379 16.64 1.59 16.43 0.31 16.333 0.28
2015 December 15.565 16.043 3.08 15.536 0.18 15.298 1.71
2016 January 14.511 15.262 5.18 14.703 1.33 14.589 0.54
2016 February 14.353 15.061 4.93 14.293 0.42 14.24 0.79

2016 March 15.239 15.762 3.43 15.16 0.51 15.152 0.57
2016 April 15.804 16.727 5.84 16.199 2.50 16.131 2.07
2016 May 17.049 18.097 6.14 17.387 1.98 17.168 0.70
2016 June 18.349 18.674 1.77 18.332 0.09 18.245 0.57
2016 July 18.305 18.424 0.65 18.156 0.82 18.028 1.51

2016 August 18.165 18.254 0.49 17.906 1.42 17.936 1.26
2016 September 18.118 18.042 0.42 17.803 1.74 17.833 1.58

2016 October 17.452 17.651 1.14 17.417 0.20 17.383 0.40
2016 November 16.441 16.305 0.82 16.262 1.08 16.294 0.90
2016 December 16.096 16.531 2.70 16.392 1.84 16.325 1.42
2017 January 16.298 16.107 1.17 15.917 2.34 15.916 2.34
2017 February 16.842 16.026 4.84 15.93 5.42 16.208 3.76

2017 March 16.835 16.421 2.46 16.516 1.90 16.727 0.64
2017 April 17.626 17.092 3.03 17.322 1.73 17.36 1.51
2017 May 17.959 17.543 2.32 17.819 0.78 17.901 0.32
2017 June 18.534 18.069 2.51 18.213 1.73 18.414 0.65
2017 July 18.786 18.553 1.24 18.603 0.98 18.745 0.22

2017 August 19.042 19.028 0.08 18.88 0.85 19.109 0.35
2017 September 19.602 19.049 2.82 19.478 0.63 19.681 0.41

2017 October 18.581 18.072 2.74 18.452 0.70 18.555 0.14
2017 November 17.687 17.754 0.38 17.907 1.24 17.955 1.52
2017 December 16.878 17.318 2.61 17.378 2.96 17.238 2.13
2018 January 17.307 17.334 0.16 17.202 0.60 17.182 0.72
2018 February 17.828 17.268 3.14 17.343 2.72 17.444 2.16

2018 March 17.822 17.872 0.28 17.899 0.43 18.094 1.53
2018 April 18.578 18.831 1.36 19.249 3.61 19.158 3.12
2018 May 20.399 20.129 1.32 20.509 0.54 20.362 0.18
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Month
Actual
EPIC

Initial
EPIC

Release

Initial
Release

Abs
Percent
Error

1st
EPIC
Adj.

1st
Adj.
Abs

Percent
Error

2nd
EPIC
Adj.

2nd
Adj.
Abs

Percent
Error

$/MMBtu $/MMBtu % $/MMBtu % $/MMBtu %
2018 June 21.074 20.82 1.21 21.013 0.29 20.986 0.42
2018 July 21.375 21.262 0.53 21.286 0.41 21.335 0.19

2018 August 21.377 21.166 0.99 21.276 0.47 21.311 0.31
2018 September 20.965 21.133 0.80 21.182 1.04 21.149 0.88

2018 October 20.311 20.209 0.50 20.602 1.43 20.557 1.21
2018 November 18.329 17.685 3.51 18.674 1.88 18.809 2.62
2018 December 17.238 16.963 1.60 17.285 0.27 17.165 0.42
2019 January 16.587 17.051 2.80 16.588 0.01 16.627 0.24
2019 February 17.084 17.578 2.89 17.171 0.51 17.218 0.79

2019 March 17.674 18.255 3.29 17.978 1.72 17.995 1.81
2019 April 19.378 19.315 0.32 19.244 0.69 19.14 1.23
2019 May 19.944 19.54 2.03 20.03 0.43 20.024 0.40
2019 June 20.037 19.487 2.74 20.178 0.70 20.276 1.19
2019 July 20.668 19.928 3.58 20.71 0.20 20.701 0.16

2019 August 20.179 19.914 1.31 20.138 0.20 20.18 0.01
2019 September 19.763 19.913 0.76 19.785 0.11 19.829 0.34

2019 October 19.01 19.081 0.38 19.219 1.10 19.15 0.74
2019 November 17.681 18.023 1.93 18.1 2.37 18.126 2.52
2019 December 17.052 17.243 1.12 17.27 1.28 17.153 0.59
2020 January 17.063 16.835 1.33 16.724 1.99 16.746 1.86
2020 February 16.63 16.845 1.29 16.705 0.45 16.786 0.94

2020 March 16.194 15.47 4.47 16.165 0.18 15.986 1.29
2020 April 15.215 15.261 0.30 15.324 0.72 15.012 1.33
2020 May 15.767 16.203 2.76 15.362 2.57 16.005 1.51
2020 June 17.659 17.511 0.83 17.63 0.16 17.207 2.56
2020 July 18.481 18.467 0.08 18.056 2.30 17.898 3.16

2020 August 18.302 18.121 0.99 17.927 2.05 17.908 2.15
2020 September 17.917 17.251 3.72 17.456 2.57 17.664 1.41

2020 October 16.881 16.73 0.89 16.75 0.77 16.768 0.67
2020 November 16.258 16.171 0.53 15.889 2.27 15.933 2.00
2020 December 16.108 16.234 0.78 15.978 0.81 15.984 0.77
2021 January 16.44 16.287 0.94 16.187 1.54 16.394 0.28
2021 February 18.381 17.467 4.98 17.269 6.05 18.345 0.20

2021 March 19.231 17.576 8.60 18.333 4.67 18.792 2.28
2021 April 19.625 18.121 7.67 19.25 1.91 19.438 0.95
2021 May NA 20.122 NA 20.71 NA 20.583 NA
2021 June NA 21.488 NA 22.255 NA NA NA
2021 July NA 22.568 NA NA NA NA NA
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APPENDIX E

RESULTS OF FUTURE FORECASTS

Table E.1: Selected Forecasting Models, Best Configurations and their Accuracy Measures

Energy
Product

Selected
Forecasting

Method

Best
Configuration

Average
RMSE

Average
sMAPE

Average
MAE

$/MMBtu % $/MMBtu

p1 fc7

# of indices tested = 74,
# of MLP inputs = 12,

# of nodes = 32,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 16,

differences taken = 1,
data scaled = False,
future horizon = 12

1.4363 4.7603 1.0025

p2_5_12 fc9

# of indices tested = 85,
# of LSTM inputs = 28,

# of nodes = 64,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 16,

differences taken = 1,
data scaled = True,
future horizon = 14

3.4035 8.9818 1.9617

p3 fc8

# of indices tested = 70,
# of RNN inputs = 12,

# of nodes = 32,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 8,

differences taken = 12,
data scaled = True,
future horizon = 12

1.4301 5.0035 1.1110
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Table E.1 continued from previous page

Energy
Product

Selected
Forecasting

Method

Best
Configuration

Average
RMSE

Average
sMAPE

Average
MAE

$/MMBtu % $/MMBtu

p4_11 fc7

# of indices tested = 85,
# of MLP inputs = 14,

# of nodes = 32,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 8,

differences taken = 1,
data scaled = True,
future horizon = 14

1.0247 4.2619 0.7747

p6_13_22 fc7

# of indices tested = 85,
# of MLP inputs = 14,

# of nodes = 32,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 16,

differences taken = 1,
data scaled = True,
future horizon = 14

1.0137 4.2411 0.7674

p7_15 fc8

# of indices tested = 85,
# of RNN inputs = 14,

# of nodes = 32,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 8,

differences taken = 1,
data scaled = True,
future horizon = 14

1.0497 4.1301 0.8243

p8_16 fc9

# of indices tested = 32,
# of LSTM inputs = 14,

# of nodes = 32,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 8,

differences taken = 1,
data scaled = True,
future horizon = 14

0.2323 9.7916 0.1941
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Table E.1 continued from previous page

Energy
Product

Selected
Forecasting

Method

Best
Configuration

Average
RMSE

Average
sMAPE

Average
MAE

$/MMBtu % $/MMBtu

p9_17_25 fc8

# of indices tested = 51,
# of RNN inputs = 28,

# of nodes = 64,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 16,

differences taken = 1,
data scaled = True,
future horizon = 14

0.7083 5.8563 0.5456

p10 fc9

# of indices tested = 45,
# of LSTM inputs = 13,

# of nodes = 64,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 8,

differences taken = 1,
data scaled = False,
future horizon = 13

1.0687 7.4925 0.8343

p14_23 fc9

# of indices tested = 45,
# of LSTM inputs = 13,

# of nodes = 64,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 8,

differences taken = 1,
data scaled = True,
future horizon = 13

1.0437 7.4431 0.8291

p18 fc7

# of indices tested = 42,
# of MLP inputs = 26,

# of nodes = 64,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 16,

differences taken = 1,
data scaled = False,
future horizon = 13

1.0852 6.6006 0.8166
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Table E.1 continued from previous page

Energy
Product

Selected
Forecasting

Method

Best
Configuration

Average
RMSE

Average
sMAPE

Average
MAE

$/MMBtu % $/MMBtu

p19 fc9

# of indices tested = 51,
# of LSTM inputs = 28,

# of nodes = 32,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 16,

differences taken = 1,
data scaled = False,
future horizon = 14

1.6683 4.9817 1.2286

p20 fc8

# of indices tested = 51,
# of RNN inputs = 28,

# of nodes = 64,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 16,

differences taken = 1,
data scaled = True,
future horizon = 14

0.8356 3.8567 0.6634

p21 fc9

# of indices tested = 51,
# of LSTM inputs = 14,

# of nodes = 32,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 8,

differences taken = 1,
data scaled = False,
future horizon = 14

1.0712 5.7650 0.7710

p24 fc9

# of indices tested = 51,
# of LSTM inputs = 26,

# of nodes = 32,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 16,

differences taken = 1,
data scaled = False,
future horizon = 13

1.0196 3.9501 0.8130
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Table E.1 continued from previous page

Energy
Product

Selected
Forecasting

Method

Best
Configuration

Average
RMSE

Average
sMAPE

Average
MAE

$/MMBtu % $/MMBtu

p26_30_37 fc9

# of indices tested = 26,
# of LSTM inputs = 24,

# of nodes = 64,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 8,

differences taken = 1,
data scaled = False,
future horizon = 12

0.5268 0.5100 0.1254

p27 fc9

# of indices tested = 26,
# of LSTM inputs = 12,

# of nodes = 32,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 16,

differences taken = 1,
data scaled = False,
future horizon = 12

0.4836 0.2802 0.1570

p28_33_34_40_41_43 fc9

# of indices tested = 26,
# of LSTM inputs = 12,

# of nodes = 32,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 16,

differences taken = 1,
data scaled = True,
future horizon = 12

0.1756 0.2995 0.0825

p29_36 fc7

# of indices tested = 26,
# of MLP inputs = 12,

# of nodes = 32,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 16,

differences taken = 1,
data scaled = False,
future horizon = 12

0.4676 1.6008 0.2058
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Table E.1 continued from previous page

Energy
Product

Selected
Forecasting

Method

Best
Configuration

Average
RMSE

Average
sMAPE

Average
MAE

$/MMBtu % $/MMBtu

p31_38 fc7

# of indices tested = 26,
# of MLP inputs = 12,

# of nodes = 64,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 16,

differences taken = 1,
data scaled = False,
future horizon = 12

1.0348 0.9974 0.3488

p32_39 fc8

# of indices tested = 26,
# of RNN inputs = 24,

# of nodes = 64,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 16,

differences taken = 1,
data scaled = False,
future horizon = 12

0.0887 0.3646 0.0433

p35_42_44 fc9

# of indices tested = 49,
# of LSTM inputs = 14,

# of nodes = 32,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 16,

differences taken = 1,
data scaled = False,
future horizon = 14

1.0941 3.7128 0.8561

p45 fc9

# of indices tested = 37,
# of LSTM inputs = 28,

# of nodes = 64,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 16,

differences taken = 1,
data scaled = True,
future horizon = 14

1.4440 5.0645 1.1654
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Table E.1 continued from previous page

Energy
Product

Selected
Forecasting

Method

Best
Configuration

Average
RMSE

Average
sMAPE

Average
MAE

$/MMBtu % $/MMBtu

p46 fc8

# of indices tested = 85,
# of RNN inputs = 28,

# of nodes = 32,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 16,

differences taken = 1,
data scaled = False,
future horizon = 14

0.5969 4.1835 0.4676

p47 fc8

# of indices tested = 85,
# of RNN inputs = 28,

# of nodes = 64,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 16,

differences taken = 0,
data scaled = True,
future horizon = 14

0.2628 2.6852 0.2044

p48 fc8

# of indices tested = 49,
# of RNN inputs = 28,

# of nodes = 32,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 8,

differences taken = 0,
data scaled = False,
future horizon = 14

0.8913 8.8456 0.3935

p49 fc9

# of indices tested = 59,
# of LSTM inputs = 12,

# of nodes = 32,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 16,

differences taken = 0,
data scaled = True,
future horizon = 12

0.6111 4.2230 0.4015
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Table E.1 continued from previous page

Energy
Product

Selected
Forecasting

Method

Best
Configuration

Average
RMSE

Average
sMAPE

Average
MAE

$/MMBtu % $/MMBtu

p50 fc10

# of indices tested = 49,
# of nodes = 64,

learn_rate = 1e-06,
# of epochs = 1000,
# of batches = 64,

# of sequences = 3,
# of steps = 12,

# of filters = 256,
# of kernels = 3,

future horizon = 14

0.5506 1.1251 0.4301

p51 fc4a Arima(2, 1, 0)(2, 1, 0) 12 0.6510 1.1150 0.3540

p52 fc8

# of indices tested = 49,
# of RNN inputs = 28,

# of nodes = 64,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 8,

differences taken = 0,
data scaled = True,
future horizon = 14

0.8101 1.9149 0.3896

p53 fc2d stlf(method = "rwdrift"") 0.6640 1.8550 0.5320

p55 fc9

# of indices tested = 51,
# of LSTM inputs = 13,

# of nodes = 32,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 8,

differences taken = 1,
data scaled = False,
future horizon = 13

0.0592 0.9531 0.0418

p56 fc9

# of indices tested = 51,
# of LSTM inputs = 13,

# of nodes = 64,
dropout = 0.1,

learn_rate = 0.0001,
# of epochs = 250,
# of batches = 8,

differences taken = 1,
data scaled = False,
future horizon = 13

0.0372 0.7046 0.0269
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(a) HGL (Propane) in Residential Sector

(b) Petroleum Coke in Commercial Sector

Figure E.1: Historical Data, Best Models, and Future Forecasts for Product 3 and Products 8 & 16
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(a) Other Petroleum Products in Industrial Sector

(b) Motor Gasoline in Transportation Sector

Figure E.2: Historical Data, Best Models, and Future Forecasts for Products 18 & 24
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(a) Natural Gas in Residential Sector

(b) Natural Gas in Commercial Sector

Figure E.3: Historical Data, Best Models, and Future Forecasts for Products 46 & 47
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(a) Electricity in Residential Sector

(b) Coal in Industrial Sector

Figure E.4: Historical Data, Best Models, and Future Forecasts for Products 50 & 56
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APPENDIX F

COMMODITIES WITH SPOT PRICES

Table F.1: Commodities with Spot Prices from Bloomberg

Commodity Commodity with Available Spot Price Bloomberg Ticker

Motor

Gasoline

US NYH Gasoline 83.5 Octane
CBOB Prompt-Month Spot

MOINCB87
Comdty

US XBQ9 Commodity Spot XB1 Comdty
US NYH Gasoline 87 Conventional

Prompt-Month Spot
MOINY87P

Comdty
US Gulf Coast Gasoline 87 Octane

Conventional Prompt Spot
MOIGC87P

Comdty
Danaher Oil Mid-Continent 85 Octane CBOB
Gasoline Prompt Month Spot/Chicago Area

CHOR87PC
Index

US Los Angeles Gasoline 88.5 Sub-Octane
Premium Prompt-Month Spot

MOILPR92
Index

US San Francisco Gasoline 88.5
Sub-Oct Premium Prompt-Month Spot

MOISPR92
Index

US Portland Gasoline 90 Sub-Oct
Conventional Prompt-Month Spot

MOGHS92P
Comdty

US Portland Gasoline 84 Sub-Oct
Conventional Prompt-Month Spot

MOGHS87P
Comdty

Ethanol

US New York Harbor
Ethanol Prompt Spot

ETHNNYPR
Index

US Chicago Argo
Ethanol FOB Spot

ETHNCHIC
Comdty

Bloomberg Ethanol Prompt Month
fob Spot Price/U.S. Gulf Coast

ETHNUSGC
Index

Bloomberg Ethanol Prompt Month
fob Spot Price/U.S. West Coast

ETHNWCPR
Comdty

Bio-Diesel

Biodiesel B100 Soy Methyl
Esters Midwest Spot Price

BIDISMMW
Comdty

Biodiesel B100 Soy Methyl
Esters Gulf Coast Spot Price

BIDISMGC
Index

Biodiesel B100 Fatty Acid Methyl
Esters West Coast Spot Price

BIDIFAWC
Index

Electricity
PJM ISO Western Hub 5 Minute
Wtd Avg LMP ON PEAK AVG

PJE35MON
Index

PJM ISO Eastern Hub Day
Ahead LMP ON PEAK AVG

PJB6DAON
Index

Distillate
Fuel Oil

US New York Harbor No. 2
Heating Oil Prompt Spot

NO2INYPR
Index

Continued on next page
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Table F.1 – continued from previous page
Commodity Commodity with Available Spot Price Bloomberg Ticker

US Boston Heating Oil 2000 ppm
Sulfur FOB Prompt-Month Spot

NO2IBSTN
Index

US Gulf Coast No. 2
Heating Oil Prompt Spot

NO2IGCPR
Index

Kerosene

Danaher Oil Mid-Continent Jet Fuel
Prompt Month Outright Chicago

CHORJETP
Index

US New York Harbor Jet
Fuel 54 Prompt Spot

JETINYPR
Index

US Los Angeles Jet
Fuel Any-Month Spot

JETFLAPL
Index

US Gulf Coast Jet
Fuel 54 Prompt Spot

JETIGCPR
Index

US Mid-Continent Jet
Fuel Prompt-Month Spot

G3ORJETP
Index

US NYH Jet Kerosene
55 Prompt-Month Spot

JETINYP5
Index

Diesel

US Los Angeles CARB Ultra
Low Sulfur Diesel Prompt Spot

DIEILCAM
Index

US San Francisco EPA Ultra Low
Sulfur Diesel Prompt Month Spot

DIEISFAM
Index

US Portland EPA Ultra Low
Sulfur Diesel Prompt Month Spot

DIEISTPR
Index

HGL
(Propane,
Butane,

Isobutane)

North American Spot LPG
Propane Price/Hattiesburg

LPGTHAPP
Index

North American Spot LPG
Propane Price/Mont Belvieu LST

LPGSMBPP
Index

North American Spot LPG
Propane Price/Conway Kansas

LPGSCWPP
Index

North American Spot LPG Normal
Butane Price/Mont Belvieu LST

LPGSMBNB
Index

North American Spot LPG Normal
Butane Price/Conway Kansas

LPGSCWNB
Index

North American Spot LPG Iso-Butane
Price/Mont Belvieu Texas LST

LPGSMBIL
Index

North American Spot LPG
Isobutane Price/Conway Kansas

LPGSCWIB
Index

Natural Gas

Henry Hub Natural Gas Spot Price
NGUSHHUB

Index
Mid-Continent Natural Gas

Spot Price/Chicago City Gate
NAGANGPL

Index

Leidy Hub Natural Gas Spot Price
NGNELEID

Index

Cheyenne Hub Natural Gas Spot Price
NGRMCHEY

Index
Continued on next page
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Table F.1 – continued from previous page
Commodity Commodity with Available Spot Price Bloomberg Ticker

Rocky Mountain Natural Gas
Spot Price/Kern River Opal Wyoming

NGRMKERN
Index

Residual
Fuel Oil

US New York Harbor No. 6 1.0%
Sulfur Residual Fuel Oil Cargo Spot

N6NY1LC
Index

US Gulf Coast No 6 Fuel Oil
1.0% Sulfur FOB Barge Spot

N6GF1.0L
Index

Coal

Bloomberg 1% Sulfur Coal
Spot Price Fob/Utah Colorado

COALCO1S
Index

Bloomberg Powder River Basin 8800 Btu Coal
Spot Price Fob/Gillette Wyoming

COALPWDR
Index

Bloomberg Low Sulfur Compliance Coal
Spot Price/Big Sandy Barge Fob

COALBGSD
Index
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APPENDIX G

POLICY CASE STUDIES

Figure G.1: Summary Map of Regional, National and Sub-national Carbon Pricing Initiatives
Implemented, Scheduled for Implementation and under Consideration (ETS and Carbon Tax) [2]
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Figure G.2: Prices in Implemented Carbon Pricing Initiatives [2]
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Figure G.3: Impact on EPIC from an increase in the Federal Tax on Crude Oil (January 2003 to
June 2020)
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Figure G.4: Nuclear Power at different Target Weights & Tax Credits, 2020-2024

The grid of results for nuclear energy at different target weights and tax credits from 2020 to 2024 is

shown in this figure. Due to the relatively higher levelized cost of nuclear energy, EPIC tends to increase at

low tax credit levels, whereas EPIC decreases substantially (about $0.4/MMBtu) at the highest target weight

(30%) and tax credit. At maximum weight (30%) and without tax credit, EPIC increases by 0.657% with no

budget required, whereas at maximum weight (30%) and maximum tax credit ($9/MMBtu), EPIC decreases

by 2.107% requiring around $38.0 billion annually from the government’s budget.
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Figure G.5: Hydroelectric Power at different Target Weights & Tax Credits, 2020-2024

The grid of results for hydroelectric power at different target weights and tax credits from 2020 to 2024

is shown in this figure. Due to the low levelized cost of hydroelectric power, EPIC tends to decrease even

without tax credit levels. At maximum weight (16%) and without tax credit, EPIC decreases by 0.198%

with no budget required, whereas at maximum weight (16%) and maximum tax credit ($9/MMBtu), EPIC

decreases by 1.672% requiring more than $20.0 billion annually from the government’s budget.
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Figure G.6: Biomass Power at different Target Weights & Tax Credits, 2020-2024

The grid of results for biomass energy at different target weights and tax credits from 2020 to 2024

is shown in this figure. The contribution of biomass into the electric power sector is rather low, even at

the maximum weight target (1.5%). Due to the relatively higher levelized cost of biomass energy, EPIC

decreases at higher tax credit. At maximum weight (1.5%) and without tax credit, EPIC increases by 0.054%

with no budget required, whereas at maximum weight (1.5%) and maximum tax credit ($9/MMBtu), EPIC

decreases by 0.084% requiring around $1.9 billion annually from the government’s budget.
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Figure G.7: Geothermal Power at different Target Weights & Tax Credits, 2020-2024

The grid of results for geothermal energy at different target weights and tax credits from 2020 to 2024

is shown in this figure. The contribution of geothermal into the electric power sector is limited, even at

the maximum weight target (0.7%). Despite the fact that the levelized cost of geothermal energy is quite

low, it has minimal effects on EPIC due to its limited availability as a source of energy in the power sector.

At maximum weight (0.7%) and without tax credit, EPIC decreases by 0.019% with no budget required,

whereas at maximum weight (0.7%) and maximum tax credit ($9/MMBtu), EPIC decreases by 0.083%

requiring $887 million annually from the government’s budget.
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Figure G.8: Solar Power at different Target Weights & Tax Credits, 2020-2024

The grid of results for solar power at different target weights and tax credits from 2020 to 2024 is shown

in this figure. The levelized cost of solar energy has decreased considerably over the years, resulting in

decreasing EPIC even at low tax credit values. At maximum weight (5%) and without tax credit, EPIC

decreases by 0.09% with no budget required, whereas at maximum weight (5%) and maximum tax credit

($9/MMBtu), EPIC decreases by 0.551% requiring more than $6.3 billion annually from the government’s

budget.
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Table G.1: Weights and Levelized Cost of Energy Feedstocks for the Electric Power Sector

Feedstock Average weight Minimum weight Maximum weight LCOE
(%) (%) (%) (2020$/MMBtu)

Coal 40.95 15.29 54.97 22.40
Natural Gas 25.21 11.72 43.12 15.34

Petroleum Liquids 1.26 0.42 4.45 67.78
Nuclear 20.45 17.27 22.93 21.95

Hydroelectric 7.03 4.28 10.68 15.47
Wind 3.51 0.19 11.24 11.71

Biomass 0.71 0.54 0.95 27.79
Solar 0.48 0.00083 3.32 9.71

Geothermal 0.40 0.31 0.50 10.38

The weights of the different energy feedstocks are taken from the EIA Monthly Energy Review [77] for

the period from January 2003 to June 2020. The levelized cost of the energy feedstocks is taken from the

Lazard’s Levelized Cost of Energy Analysis report for the period from 2008 to 2013 [169, 170, 171, 172,

173, 174] and the EIA Annual Energy Outlook for the period 2014 to 2020 [175, 176, 177, 178, 179, 180,

181] apart from the figures for the petroleum liquids which are also taken from the Lazard’s Levelized Cost

of Energy Analysis reports. The data from 2008 are used for the period from 2003 to 2007.
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APPENDIX H

CIRCULAR ECONOMY SYSTEMS ENGINEERING*

H.1 Introduction

The concept of CE has captured the interest of governmental and inter-governmental organizations, de-

cisions makers, academia and industry during the last years, however a recent review of over 114 definitions

for CE illustrates a vagueness with regards to the definition as well as with regards to the actual perception

of people working on this concept [252]. The same review highlights that only 40% of the CE definitions

use a systems perspective to conceptualize it while another review suggests that a non-holistic approach

could lead to ambiguous and contradicting conclusions [384]. Similar findings were made from another

review which considers CE as an evolving as well as an umbrella concept which needs to unify definitions,

principles, and boundaries [385] as well as metrics for monitoring framework [332]. This fact could explain

the lack of robust mathematical and engineering methodology, even though someone would expect that such

an approach is indispensable not only for the transformation of the corresponding processes and business

models but also for the effective evaluation towards CE implementation/fulfillment.

H.2 Origin and Definition of Circular Economy

The origins of the CE concept cannot be easily traced back to a single author or date, but due to its po-

tential applications to the modern economic and industrial world, the concept has gained momentum since

the 1970s [27]. According to the same report [27], CE is based on 3 principles: a) design out waste, b)

build resilience through diversity, c) rely on energy from renewable sources. However, and despite the fact

that it seems a rather straight forward and easy to conceive term, in reality, it creates confusion among the

involved parties including researchers, policymakers and practitioners. In particular, a review of 114 def-

initions for CE, revealed ambiguity on the framework and the principles which if not addressed promptly

could potentially crash the concept [252]. Similar findings were reported in a review of 327 articles, where

*Reprinted from "Circular Economy-A challenge and an opportunity for Process Systems Engineering" by S.
Avraamidou, S.G. Baratsas, Y. Tian, E.N. Pistikopoulos, Computers & Chemical Engineering, 2020, 133, p.106629,
with permission from Elsevier and Copyright Clearance Center. A summary of the work is given in Chapter 5, with
additional details provided here.
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a lack of consensus and convergence on the terminologies and definitions was pointed out [386]. In the

same review, an analysis of a sample of 35 definitions was presented and a "CE sample-based definition"

was proposed. In an attempt to unify these definitions, Saidani et al. (2018) [323] proposed the following

definition: "CE is an economic system that replaces the ’end-of-life’ concept with reducing, alternatively

reusing, recycling and recovering materials in production/distribution and consumption processes. It oper-

ates at the micro-level (products, companies, consumers), meso-level (eco-industrial parks) and macro-level

(city, region, nation and beyond), with the aim to accomplish sustainable development, thus simultaneously

creating environmental quality, economic prosperity and social equity, to the benefit of current and future

generations".

H.3 The Key Features and Goals of Circular Economy

The goals and features of a CE can differ for different systems (e.g. organic vs non-organic cycles), but

similar principles can be applied. The key features of CE have been recently identified and are listed below

along with a description [182]:

1. Reduction of material losses/residuals: Waste and pollutants minimization through the recovery and

recycle of materials and products.

2. Reduction of input and use of natural resources: The reduction of the stresses posed on natural

resources through the efficient use of natural resources (e.g. water, land, and raw materials).

3. Increase in the share of renewable resources and energy: Replacement of non-renewable resources

with renewable ones, limiting the use of virgin materials.

4. Reduction of emission levels: The reduction in direct and indirect emissions/pollutants.

5. Increase the value durability of products: Extension of product lifetime through the redesign of

products and high-quality recycling.

Even though the economic and financial aspects do not appear as one of the main goals of the CE, the

transition to such an economic model is expected to be economically sustainable. The elimination of waste

could lead to significant cost savings in the production processes, create new sources of revenue from the

distribution of the waste to new markets, as well as reduction in the resource dependency.
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Moreover, the economic and financial objectives are not limited to the traditional approach of the cost

minimization or profit maximization but has a wider and holistic objective. As per Ellen MacArthur Founda-

tion, the transition to circularity has the potential to reveal an economic opportunity with a positive impact to

all involved parties i.e. economies, companies, consumers and customers [27]. In particular, the significant

net material and energy cost savings, the effective implementation of recycling that will reduce the volatility

between the supply and demand and the relevant risks, along with the resilient economic growth through the

minimization of the externalities will greatly benefit the economies.

Similarly, the companies will benefit from new profit pools in the reverse value cycles, the improved

logistic services that put high emphasis in the material recycling systems and refurbishment of products

as well as the new venues of financing and capital that will be required from the shift towards the tertiary

sector. The transition to the CE will force the improvement of service quality, durability and reliability

of the products which would eventually assist the appearance of new emerging trends of sharing, lending,

swapping etc. that will benefit the end users and consumers. At the same time, increasing competitiveness

among the companies will lead to greater variety of products and services, less hassles from obsolescence,

as well as an overall improved company - customer interaction and loyalty that will benefit both of them.

H.4 Literature Review Process Systems Engineering and Circular Economy

This section focuses on tools and methods developed or widely used in the PSE community, such as

modeling & optimization, life cycle assessment, and process integration and intensification and their po-

tential in assisting in the transition from linear to circular supply chains H.1. The goal of this section is to

highlight the relevant literature and identify research gaps and possible PSE research opportunities.

H.5 PSE Tools and Methods towards CE

H.5.1 Multi-Scale Modeling

CE supply chains are multi-spacial and multi-temporal (Section H.6.1), similar to other problems en-

countered by the PSE community. Process engineering could play a significant role in the growing CE, by

utilizing in a multi-scale approach its key principles i.e. basic laws of mass and energy, entropy, mathemat-

ics, and system science, towards an integrated environmental, economic and social sustainable plan [387].

To this respect, the positive impact from the usage of multi-scale systems engineering into energy and envi-

ronment has been already identified in the literature [73], without though referring to the CE term. A more
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Figure H.1: Indicative PSE Research Fields with Potential Use in Achieving Different CE Goals

recent study presents a multi-scale framework for the optimized production of bio-gas and fertilizer from

residues conducting a techno-economic as well as a supply chain network evaluation [197]. Moreover, the

concept of Circular Integration as a unified methodology towards the sustainable development of processes,

industries, and economies by applying a multi-dimensional, multi-scale approach for the minimization of

the resource and energy consumption has been also proposed [198]. However, the social aspect of the CE

should not be overlooked and must be integrated along with economic and ecological dimensions. Such an

attempt was conducted through a multi-scale integrated analysis of societal metabolism in China, revealing

a need for a more balanced development strategy and sector structure, combining the economic progress

with the social welfare of the people [388]. This result is of particular interest since China was one of the

pioneer’s in adopting and promoting the CE terminology.
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H.5.2 Life Cycle Assessment (LCA)

Any attempt towards analysis, modeling, implementation and/or assessment of the CE requires a holis-

tic and structured approach that has Life Cycle Assessment (LCA) as an inherent attribute. Being an in-

ternationally standardized method, LCA quantifies all relevant emissions and resources consumed and the

related environmental and health impacts and resource depletion issues that are associated with any goods

or services [389], and has recently emerged as the main tool to evaluate sustainable development. Different

researchers [390, 391] model processes and properly judge different options towards the implementation

of CE [392]. As illustrated in Table 5.1, the PSE community has been using LCA approaches extensively

and has been developing tools and methodologies around it. Extensions that would allow the consideration

of the value durability of products in an LCA assessment would make this tool extremely useful for CE

decision making and assessment.

H.5.3 Process Intensification

Process intensification (PI) have been gaining increasing momentum from the chemical engineering re-

search community and the chemical/energy industry during the past several decades [393, 394]. Although

there is also a significant lack of clarity on the scope and definitions of PI (see [395] and [396] for the

summary and evolution of PI definitions), insights on the synergy between CE and process integration and

intensification can still be gained through some representative definitions. One of the early definitions for PI

refers to PI as "a methodology for making remarkable reductions in equipment size, energy consumption, or

waste generation while achieving a given production goal" [397]. In another well-accepted definition, PI is

recognized as "the development of novel apparatuses and techniques that are expected to bring dramatic im-

provements in manufacturing and processing, substantially decreasing equipment-size/production-capacity

ratio, energy consumption, or waste production, and ultimately resulting in cheaper, sustainable technolo-

gies" [393]. From these definitions, it is obvious that process integration and intensification along with the

CE share commonalities in reducing energy consumption, minimizing waste production, improving sustain-

ability performance, reducing capital/operating costs, etc.

Moreover, PI aims to "substantially" improve chemical processes. For example, the Rapid Advance-

ment in Process Intensification Deployment (RAPID) Manufacturing Institute has set as one of the eval-

uation metrics for the intensified process modules the achievement of 10x reduction in capital cost, 20%
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improvement in energy efficiency, and 20% lower emissions/waste related to commercial state of the art. It

is also worth noting the unique nature of process integration and intensification for innovation (i.e., novel

process schemes and equipment), which renders PI an enriched design space to discover “out-of-the-box”

process solutions [398]. Specifically from PSE’s perspective, the development of systematic strategies and

advanced computer-aided tools to assist quantitative decision making in PI applications has been the topic of

many academic works, with considerations on energy savings [211], sustainability [216], waste minimiza-

tion [210], emission reduction [222], etc.

H.6 Scientific Needs and Challenges in Circular Economy Research

Several challenges and scientific needs for PSE to assist in the convergence towards a CE have been

identified. Major challenges arise in the modeling, optimization and decision making for supply chains

and their transition from a linear to a CE. These challenges include: i) interconnected supply chains, ii)

boundary selection, iii) multi-scale issues, iv) multiple stakeholders and objectives, v) uncertain and dynamic

conditions and vi) no widely accepted assessment criteria among others. This section is focused on the

discussion of some of those challenges.

H.6.1 Interconnected Supply Chains, Boundary Selection and Multi-Scale Issues

Product supply chains are highly interconnected making the selection of system boundary conditions

very challenging. Similarly to LCA studies, system boundary definition plays a critical role in the context

of the results from such an analysis. Circularity, in terms of CE, is a property of entire interconnected

supply chain that includes the micro (consumers, companies), the meso (eco-industrial parks) and macro

(city, nation) levels, therefore system boundaries should be greatly expanded beyond the traditional process

boundaries the PSE community is currently exploring.

The extension of the boundaries introduces multiple scales, both spacial and temporal, with each level

having the potential to impact the rest of the levels. For example, the operation of an industrial process

unit (e.g. reactor, separator, etc.) can impact the operation of the whole industrial plant, and sequentially

any other industry or consumer down the supply chain using the products of the first plant. The interac-

tion between the different special and temporal scales introduces high complexities in the modeling and

optimization of CE supply chains. Modeling and optimization of some of the individual scales have been

widely explored by the PSE community (e.g. process units and industrial plants), although the consideration
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of individual levels neglects the connectivity between them and can lead to sub-optimal or even infeasible

solutions.

Although multi-scale approaches have been developed in the PSE community (Section H.5.1), they were

mainly applied to industrial case studies, that did not involve all scales relevant to CE, such as consumers at

the household level or diplomatic relations at the global scale. Gaining knowledge for the modeling of such

scales that have not yet being explored by the PSE community is a vital step for multi-scale modeling and

optimization of CE supply chains.

Furthermore, highly interconnected CE supply chains, with expanded boundaries and multiple scales

would consist of large-scale mixed-integer problems that are challenging to solve. Even though many tools

and algorithms have been proposed for the solution of this class of problems [399, 400, 401] more efficient

approaches must be explored.

H.6.2 Multiple Players and Objectives

Product supply chains are often managed by different companies, governments, and consumers. Fig-

ure H.2 shows that different stakeholders in a CE supply chain have competing interest and objectives.

Furthermore, each entity can affect the actions and outcomes of the other entities; for example, a gov-

ernmental policy can change the behavior of societies, such as their energy consumption patterns or diet

preferences, affecting the demand of these utilities and products, and subsequently affecting the industries

and businesses supplying those. In turn, the industries can lobby against these new policies and affect the

governmental decision-making process. These multiple interconnected stakeholders and their differing or

conflicting objectives introduce major challenges in modeling and decision making, requiring game theo-

retic approaches, such as multi-agent hierarchical optimization that require a Stackelberg equilibrium for

their solution [402, 403, 404].

Even though the economic objectives of companies have been widely studied by the PSE community,

the consideration of the interest of the wider range of the stakeholders involved in a CE supply chain, such

as consumers, regulators and local authorities has not being explored by the PSE community yet, making

the modeling of such supply chains even more challenging.

H.6.3 Dynamic and Uncertain Conditions

In the existing unstable environment, with constantly changing market conditions and customer needs

and expectations along with climate change, it is of high importance to consider the effect of uncertainties
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Figure H.2: CE Stakeholders, their Interconnections and Conflicting Objectives

when modeling a CE supply chain. Sources of uncertainty in a CE supply chain may include variations in

processing rates, canceled or rushed orders, equipment failure, raw material, final product or utility price

fluctuations, demand variations and climate changes [405]. Failure to consider these uncertainties can lead

to unsatisfied costumer’s demands and loss of market share by the industries and businesses involved along

with environmental costs. Therefore, considering these uncertainties and their effect appropriately in the

modeling of CE supply chains is critical but can result in new technical challenges as the size and complexity

of the models is increased.

A number of publications have been devoted to studying supply chain planning under demand uncer-

tainty or price fluctuations in the PSE community [406, 405, 407, 378], although not the same attention

has been given to other sources of uncertainties, such as population growth or raw material depletion. Cli-

mate change has also received a lot of attention as many researchers focus on the development of inherently

safer processes and network designs that can withstand extreme weather events, thus reducing the human,

economic, and environmental costs [408, 409].

Key methodologies behind the approaches listed above are robust and stochastic programming [410,
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411]. These fields have been widely explored by PSE and other communities with the development of ap-

proaches for the solution of different classes of optimization problems under uncertainty such as adjustable

robust optimization [381, 412, 413], and multi-stage stochastic optimization [414, 415].

H.6.4 Assessment Criteria

A method for evaluating and comparing different CE pathways and scenarios is vital for effective deci-

sion making. In the literature, a selection of metrics relevant to CE has been collected and evaluated [332].

These metrics were developed for measuring different aspects of CE but not CE holistically, i.e. a CE metric

limited to the flow of materials [416]. Tools have also been developed that can be used to track the transition

of nations towards a CE and circularity of materials [417, 334, 335, 28, 418, 348]. Despite the availability

of metrics, CE has only been measured at national or material levels with the main focus on material flows,

while no metric is currently applicable at the product supply chain level or company level, therefore efforts

for the development of a CE metric that can be effectively used in decision making should be made.

H.7 Motivating Case Study - The Supply Chain of Coffee

Figure H.3: Alternative Product Pathways from Organic Coffee Waste [3, 4]
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H.7.1 Challenges and Opportunities for PSE

The transition of the coffee supply chain from a linear to a CE consists of many challenges but at

the same time many opportunities for PSE. This section summarizes some of these challenges and the

corresponding research opportunities for PSE.

Assessment of Multiple Pathways. As discussed in section 5.4.1.1, there are a lot of different pathways

developed for the utilization of organic waste created along the supply chain of coffee (Figure H.3). The

huge amount of waste generated annually in the production of coffee along with the large number of alter-

native pathways available for waste utilization requires sophisticated waste management plans for optimal

operation. Furthermore, many of the illustrated pathways have been reviewed and demonstrated mainly at

a lab scale [3, 4, 297], making them not reliable on a larger meaningful scale. Modeling and optimization

can be used to predict the technical and economic feasibility of these pathways at a larger scale. A techno-

economic analysis of the different pathways will require collaborative work between PSE and experimental

scientist working on the different utilization pathways, in conjunction with industry to identify which of

these processes are technically and economically viable and can add value to both the industries and the

environment.

Similarly to waste management, there are different pathways for coffee harvesting, processing, and

packaging. Process integration and intensification may be able to develop further integrated and intensi-

fied processes for the processing of coffee that are more energy and resource efficient. A methodology to

holistically evaluate these different pathways is of great importance. CE assessment metrics along with su-

perstructure representations and optimization of the alternative coffee supply pathways would be necessary

tools for preliminary screening of the different technologies. Using these as the first step, more detailed

models can be built for further and more reliable assessment of the most promising coffee supply chain

pathways.

Multiple Stakeholders. The coffee supply chain involves different stakeholders, small and bigger cof-

fee farmers, coffee bean processing industries, exporters and importers, coffee roasting industries, coffee

waste management companies, coffee shops, beverage companies, and other vendors along with consumers

at different demand centers, different governments, and nations (Figure H.4). Farmers and industries are fo-

cusing on increasing their profits, while regulators and policymakers can have multiple objectives including

270



the minimization of environmental impact in their nation, the cost of coffee for their societies and the maxi-

mization of profit for their farmers and industries (Figure H.2). Consumers, on the other hand, are focusing

on enjoying the best cup of coffee at the most ’reasonable’ price, although the brand loyalty should not be

overlooked. Studies in different industries have shown that loyal customers are less price sensitive, they are

frequent buyers of current products and willing to try new products and services, while at the same time

they bring in new customers [419]. Another study [420], revealed that loyal customers can boost company’s

revenues since a 5% increase in customers’ retention leads to a surge of 25-75% in profit. Moreover, the cost

to attract a new customer is 5 times higher than to maintain an existing one [421]. In the coffee industry, the

brand loyalty has emerged as a crucial factor for the sustainability and growth of the coffee organizations

in today’s extremely competitive, international business environment. In particular, brand satisfaction was

indicated as the most important contributor to building brand loyalty, while cognitive and affective factors

such as brand awareness, brand image, pleasure and arousal, along with relationship commitment are the

rest of the key drivers towards building brand’s loyalty.

Figure H.4: Example of the Chain of Stakeholders in a Coffee Supply Chain

Besides that, there is a hierarchy in the decisions taken by the different stakeholders. For instance,

policymakers can come up with a new policy on the type of fertilizers allowed for coffee farming. Then, the

farmers can increase the price of the coffee beans if the new fertilizers are more expensive, and eventually

this change in coffee bean price will gradually climb up the ladder, potentially reaching the consumers. On
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the other hand, importers might choose to import more coffee from another nation that has cheaper coffee

beans. Coffee brands might not be willing to switch to different coffee beans unless it becomes absolutely

mandatory since this is going to affect their final product and potential harm their brand loyalty. Consumers

might potentially not like the new coffee or do not want to pay more for the coffee they were used to having,

and as a result the fluctuating demand for the different types of coffee will affect all stakeholders involved.

Consequently, a global shift from the current linear, throwaway model to a circular, restorative/recycle

model is necessary and shall be viewed from all parties involved as a pioneering and rewarding opportunity

in the 21st century. The scarcity of resources and the environmental standards have become a reality and will

continue to be on the top of the agenda. At the same time, a shift in the consumers’ behavior in the direction

of a greener and more environmentally friendly ecosystem of products and services has taken place.

Both public and private sectors though should closely collaborate making this a smooth transition. Gov-

ernments and policy makers shall adjust the rules, advance the taxation and regulatory environment, setting

the direction to a circular and international model and at the same time provide incentives that promote

innovation and entrepreneurship. Furthermore, the private firms shall take advantage of the quickly altering

business environment, and advance their recycling technologies, redesign their business models, optimize

their supply chain networks, minimize their dependence in depleted resources, re-brand their products and

services so as to attract new customers and eventually re-position themselves in the global market [27]. In

a recent report, the U.S. Chamber of Commerce Foundation Corporate Citizenship Center along with the

Ellen MacArthur Foundation illustrated an extensive list of companies that utilize the principles of CE in a

profitable and rewarding way [422]. Apparently, the adoption and incorporation of the CE could generate

an estimated of over 1 trillion US dollar annually by 2025, create 100,000 new jobs and prevent 100 million

tonnes of materials waste within five years [324].

Therefore, hierarchical and multi-objective optimization will be needed to model this highly intercon-

nected supply chain. Such formulations would make both modeling and solving the coffee supply chain

problem very challenging. Multi-objective strategies developed and used in the PSE community can be

directly applied to this problem. PSE community has focused on the solution of two or three level hierarchi-

cal optimization systems [423, 383, 424, 382], thus a focus on extending the methodologies developed for

problems with more hierarchical levels and decision players is of great importance.

Multi-scale modeling. The coffee supply chain is spanning different countries as most of the coffee in
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the market is produced in a different country than the one that it is consumed (Figure H.4). Based on the UN

Comtrade Database, in 2017 more than 30% of the total production of coffee was produced in Brazil and it

was exported and consumed in 108 different countries.

The multi-spacial and multi-temporal nature of the coffee supply chain introduces challenges in model-

ing and optimization. Multi-scale modeling approaches that would allow multi-spacial and multi-temporal

considerations in supply chain modeling need to be further developed. Effective decomposition methods for

the large scale models that will be created will also be vital for the solution of the optimization problems.
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APPENDIX I

CIRCULAR ECONOMY FOOD SUPPLY CHAIN FRAMEWORK

Figure I.1: Simplified Linear Supply Chain of Coffee

Figure I.2: Simplified Circular Supply Chain of Coffee. Dashed lines refer to the energy and
resource flows that return to the supply chain.
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Figure I.3: Optimal Solution of Single Objective Problem 1: Min Waste Generation (CWG) of the
supply chain under Scenario 1.
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Figure I.4: Optimal Solution of Single Objective Problem 2: Min Coffee Cherries Consumption
(CCC) of the supply chain under Scenario 1.
[5, 6, 7, 10, 13, 14, 16, 17, 19]
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Figure I.5: Optimal Solution of Single Objective Problem 3: Min Water Consumption (CWC) of
the supply chain under Scenario 1.
[5, 6, 7, 10, 13, 14, 16, 17, 19]

Figure I.6: Optimal Solution of Single Objective Problem 4: Max Energy Output (CEO) of the
supply chain under Scenario 1.
[5, 6, 7, 20, 8, 9, 10, 11, 21, 12, 13, 14, 15, 16, 17, 18, 19]
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Figure I.7: Optimal Solution of Single Objective Problem 5: Min CO2 Emissions (CEM) of the
supply chain under Scenario 1.
[5, 6, 7, 10, 13, 14, 16, 17, 19]
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Figure I.8 reveals the results of a trade-off analysis for the multi-objective problem 2 (Eq. (9)) (Chap-

ter 6) of minimizing the coffee cherries consumption while minimizing the waste generation (minCCC &

minCWG), subject to the constraints of the coffee supply which are described by Eqs. (1) - (2).

Figure I.8: Pareto Analysis for Problem 2: Min Coffee Cherries Consumption (CCC) & Min Waste
Generation (CWG) & Energy Output
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Figure I.9 reveals the results of a trade-off analysis for the multi-objective problem 3 (Eq. (10)) (Chapter

6) of minimizing the waste generation while maximizing the total energy output (min CWG & max CEO),

subject to the constraints of the coffee supply which are described by Eqs. (1) - (2).

Figure I.9: Pareto Analysis for Problem 3: Min Waste Generation (CWG) & Max Energy Output
(CEO) & CO2 Emissions
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Figure I.10 reveals the results of a trade-off analysis for the multi-objective problem 5 (Eq. (12)) (Chap-

ter 6) of minimizing the emitted CO2 emissions while maximizing the total energy output (min CEM &

max CEO), subject to the constraints of the coffee supply which are described by Eqs. (1) - (2).

Figure I.10: Pareto Analysis for Problem 5: Min CO2 Emissions (CEM) & Max Energy Output
(CEO) & Normalized Coffee Cherries Consumption
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Figure I.11 expands the results of a trade-off analysis for the multi-objective problem 1 by incorporating

three different values (low, average, high) for the parameters of the drying process [19, 306]. As the values

of parameters in the drying process increase, the optimal solutions require more energy to meet the demand

scenarios. For the scenarios 1 and 2 where demand for all three final products must be met, the higher values

of parameters in the drying process result into just one optimal point since the consumption of more cherries

will deteriorate the energy balance.

Figure I.11: Pareto Analysis for Problem 1 with Uncertain Parameters for the Drying Process: Min
Coffee Cherries Consumption (CCC) & Max Energy Output (CEO) & Normalized CO2 Emissions
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Figure I.12 expands the results of a trade-off analysis for the multi-objective problem 3 by incorporating

three different values (low, average, high) for the parameters of the drying process [19, 306]. Similar find-

ings with the previous analysis hold true. Thus, as the values of drying parameters increase, more energy is

needed to meet the demand scenarios. Since the objectives refer to the minimization of waste and maximiza-

tion of energy output, the higher values of drying parameters result in single optimal points for scenarios 1,

2 and 4 because the consumption of more coffee cherries will only increase the waste generation and reduce

the energy output.

Figure I.12: Pareto Analysis for Problem 3 with Uncertain Parameters for the Drying Process: Min
Waste Generation (CWG) & Max Energy Output (CEO) & CO2 Emissions
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Table I.1: Coffee Cherries Supply and Final Coffee Products Demand Scenarios

Units Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Coffee Cherries ton ≤ 100,000 ≤ 100,000 ≤ 100,000 ≤ 100,000 ≤ 100,000

Whole Beans ton ≥ 2,000 ≥ 1,000 0.00 0.00 > 0.00

Coffee Beverages ton ≥ 2,000 ≥ 1,000 > 0.00 0.00 0.00

Instant Coffee ton ≥ 2,000 ≥ 1,000 0.00 ≥ 6,000 0.00

Note: For the multi-objective optimization problems 2 and 3, the demand of coffee beverages in scenario

3 is higher or equal to 6,000 ton, while the demand of whole beans in scenario 5 is higher or equal to 6,000

ton.
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APPENDIX J

CIRCULAR ECONOMY ASSESSMENT FRAMEWORK

Figure J.1: NextEra Category-based Circularity Sub-Indices for 2016-2019

Figure J.2: PG&E Category-based Circularity Sub-Indices for 2014-2019
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Figure J.3: Uniper Category-based Circularity Sub-Indices for 2016-2019

Figure J.4: Energy & Utilities Category-based Circularity Sub-Indices for 2019
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Figure J.5: Nestle Category-based Circularity Sub-Indices for 2010-2019

Figure J.6: General Mills Category-based Circularity Sub-Indices for 2010-2019
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Figure J.7: Tyson Category-based Circularity Sub-Indices for 2015-2019

Figure J.8: Ferrero Category-based Circularity Sub-Indices for 2016-2019
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Figure J.9: Manufacturing Category-based Circularity Sub-Indices for 2019

Figure J.10: Daimler Category-based Circularity Sub-Indices for 2012-2019
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Figure J.11: Ferrari Category-based Circularity Sub-Indices for 2016-2019

Figure J.12: Audi Category-based Circularity Sub-Indices for 2014-2019
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Figure J.13: BMW Category-based Circularity Sub-Indices for 2015-2019

Figure J.14: Automotive Category-based Circularity Sub-Indices for 2019
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Table J.1: CE Indicators for the Energy and Utilities Sector

Principal
Categories Indicators GRI Standards

Correspondence

Organization Revenues [million $] GRI-201-1
Total social investment for environmental sustainability

and circular economy [million $] GRI-203-1

Waste
Waste generated - Hazardous [weight] GRI-306-3

Waste generated - Non Hazardous [weight] GRI-306-3
Diverted waste from disposal (reused, recycled, recovered) [weight] GRI-306-4

Water

Water withdrawal [volume] GRI-303-3
Fresh water discharge (<= 1,000mg/L TDS) [volume] GRI-303-4
Other water discharge (>= 1,000mg/L TDS) [volume] GRI-303-4

Water recycled or reused [volume] GRI-303-3 (2016)

Energy Total energy generated [joules or multiples] GRI-302-1
Total non fossil fuel energy generated [joules or multiples] GRI-302-1

GHG
Emissions

Direct GHG emissions (Scope 1) [tCO2e] GRI-305-1
Energy indirect GHG emissions (Scope 2) [tCO2e] GRI-305-2

Total use of products (Scope 3) [metric tons CO2 equivalent (tCO2e)] GRI-305-3
Emissions neutralized by carbon offset projects [tCO2e] GRI-305-5

Emissions of ozone-depleting substances (ODS)
[metric tons of CFC-11 equivalent] GRI-305-6

Nitrogen oxides [NOx], sulfur oxides [SOx] and
other significant air emissions [kg or multiples] GRI-305-7

Spillages
and

Discharges

Environmental fines [$] GRI-307-1
Volume of flared hydrocarbon [tCO2e] GRI-306-3
Volume of vented hydrocarbon [tCO2e] GRI-306-3
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Table J.2: CE Indicators for the Manufacturing Sector

Principal
Categories Indicators GRI Standards

Correspondence

Organization
Revenues [million $] GRI-201-1

Total social investment for environmental sustainability
and circular economy [million $] GRI-203-1

Products sold [weight or volume] GRI-301-3

Waste
Waste generated - Hazardous [weight] GRI-306-3

Waste generated - Non Hazardous [weight] GRI-306-3
Diverted waste from disposal (reused, recycled, recovered) [weight] GRI-306-4

Water

Water withdrawal [volume] GRI-303-3
Fresh water discharge (<= 1,000mg/L TDS) [volume] GRI-303-4
Other water discharge (>= 1,000mg/L TDS) [volume] GRI-303-4

Water recycled or reused [volume] GRI-303-3 (2016)
Procurement:

Production
and

Packaging

Non-renewable packaging material used [volume or weight] GRI-301-1
Renewable packaging material used [volume or weight] GRI-301-1
Recycled packaging material used [volume or weight] GRI-301-2

Reusable, compostable or recyclable packaging material [%] GRI-301-3

Energy Total energy consumed [joules or multiples] GRI-302-1
Renewable energy consumed [joules or multiples] GRI-302-1

GHG
Emissions

Direct GHG emissions (Scope 1) [tCO2e] GRI-305-1
Energy indirect GHG emissions (Scope 2) [tCO2e] GRI-305-2

Total use of products (Scope 3) [metric tons CO2 equivalent (tCO2e)] GRI-305-3
Emissions neutralized by carbon offset projects [tCO2e] GRI-305-5

Emissions of ozone-depleting substances (ODS)
[metric tons of CFC-11 equivalent] GRI-305-6

Nitrogen oxides [NOx], sulfur oxides [SOx] and
other significant air emissions [kg or multiples] GRI-305-7

Spillages & Discharges Environmental fines [$] GRI-307-1
Durability Packaging Material to be reclaimed/recovered [# of products or %] GRI-306-2
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Table J.3: CE Indicators for the Automotive Sector

Principal
Categories Indicators GRI Standards

Correspondence

Organization

Revenues [million $] GRI-201-1
Total social investment for environmental sustainability

and circular economy [million $] GRI-203-1

Number of products sold [# of products] GRI-301-3
Full time employees (FTE) [# of people] GRI-401-1

Waste
Waste generated - Hazardous [weight] GRI-306-3

Waste generated - Non Hazardous [weight] GRI-306-3
Diverted waste from disposal (reused, recycled, recovered) [weight] GRI-306-4

Water

Water withdrawal [volume] GRI-303-3
Fresh water discharge (<= 1,000mg/L TDS) [volume] GRI-303-4
Other water discharge (>= 1,000mg/L TDS) [volume] GRI-303-4

Water recycled or reused [volume] GRI-303-3 (2016)
Procurement:

Production
and

Packaging

Non-renewable material used [volume or weight] GRI-301-1
Renewable material used [volume or weight] GRI-301-1

Recycled input material used [volume or weight] GRI-301-2
Reusable, compostable or recyclable material [%] GRI-301-3

Energy Total energy consumed [joules or multiples] GRI-302-1
Renewable energy consumed [joules or multiples] GRI-302-1

GHG
Emissions

Direct GHG emissions (Scope 1) [tCO2e] GRI-305-1
Energy indirect GHG emissions (Scope 2) [tCO2e] GRI-305-2

Total use of products (Scope 3) [metric tons CO2 equivalent (tCO2e)] GRI-305-3
Average specific CO2 emissions [gCO2/km] GRI-305-4

Emissions neutralized by carbon offset projects [tCO2e] GRI-305-5
Emissions of ozone-depleting substances (ODS)

[metric tons of CFC-11 equivalent] GRI-305-6

Nitrogen oxides [NOx], sulfur oxides [SOx] and
other significant air emissions[kg or multiples] GRI-305-7

Spillages & Discharges Environmental fines [$] GRI-307-1

Durability Material to be reclaimed/recovered [%] GRI-306-2
Average lifespan of product or Warranty provided [years] GRI-306-2
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Table J.4: CE Indicators for the Service Sector

Principal
Categories Indicators GRI Standards

Correspondence

Organization

Revenues [million $] GRI-201-1
Total social investment for environmental sustainability

and circular economy [million $] GRI-203-1

Full time employees (FTE) [# of people] GRI-401-1
Operational building/facilities space GRI-302-3

Waste
Waste generated - Hazardous [weight] GRI-306-3

Waste generated - Non Hazardous [weight] GRI-306-3
Diverted waste from disposal (reused, recycled, recovered) [weight] GRI-306-4

Water

Water withdrawal [volume] GRI-303-3
Fresh water discharge (<= 1,000mg/L TDS) [volume] GRI-303-4
Other water discharge (>= 1,000mg/L TDS) [volume] GRI-303-4

Water recycled or reused [volume] GRI-303-3 (2016)

Procurement:
Production

&
Packaging

Non-renewable material used [volume or weight] GRI-301-1
Renewable material used [volume or weight] GRI-301-1

Recycled input material used [volume or weight] GRI-301-2
Paper consumption [weight] GRI-301-1

Single-use plastics consumption [weight] GRI-301-1

Energy
Total energy consumed [joules or multiples] GRI-302-1

Renewable energy consumed [joules or multiples] GRI-302-1
Certified buildings and facilities i.e LEED [%] GRI-302-3

GHG
Emissions

Direct GHG emissions (Scope 1) [tCO2e] GRI-305-1
Energy indirect GHG emissions (Scope 2) [tCO2e] GRI-305-2

Total use of products (Scope 3) [metric tons CO2 equivalent (tCO2e)] GRI-305-3
Emissions neutralized by carbon offset projects [tCO2e] GRI-305-5

Emissions of ozone-depleting substances (ODS)
[metric tons of CFC-11 equivalent] GRI-305-6

Nitrogen oxides [NOx], sulfur oxides [SOx] &
other significant air emissions [kg or multiples] GRI-305-7

Spillages & Discharges Environmental fines [$] GRI-307-1
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Table J.5: CE Metrics for the Energy and Utilities Sector

Principal
Categories Metrics Upper

Bound
Formula

Used
Waste 1a % of Hazardous waste over Total waste generated 100% 100%-1a

1b % of Diverted waste over Total waste generated 100% 1b

Water
2a % of Recycled/reused water over Total water withdrawal 100% 2a
2b % of Other water discharge over Total water discharge 100% 100%-2b
2c % of Water consumed over Total water withdrawal 100% 100%-2c

Energy 3aa % of Non fossil fuel energy generated over Total energy generated 100% 3aa

GHG
Emissions

4aa Net total emissions over Total energy delivered
[tCO2e over joules or multiples] 600 1-norm[4aa]

4ba Emissions of ODS over Total energy delivered
[metric tons of CFC-11 eq. over joules or multiples] 0.1 1-norm[4ba]

4ca NOx, SOx, and other significant air emissions over Total energy delivered
[metric tons over joules or multiples] 1.0 1-norm[4ca]

Spillages and
Discharges 4da Environmental fines over Total energy delivered

[$ over joules or multiples] 1.0 1-norm[4da]

Table J.6: CE Metrics for the Manufacturing Sector

Principal
Categories Metrics Upper

Bound
Formula

Used

Waste
1a % of Hazardous waste over Total waste generated 100% 100%-1a
1b % of Diverted waste over Total waste generated 100% 1b
1ca Waste generated over Products sold [kg waste over tons of product] 200 1-norm[1ca]

Water
2a % of Recycled/reused water over Total water withdrawal 100% 2a
2b % of Other water discharge over Total water discharge 100% 100%-2b
2c % of Water consumed over Total water withdrawal 100% 100%-2c

2da Water withdrawal over Products sold
[m3 water over tons of product] 10 1-norm[2da]

Procurement:
Production

and Packaging

2pab % of Recycled packaging material used 100% 2pab
2pbb % of Renewable packaging material used 100% 2pbb
2pcb % of Reusable, compostable or recyclable packaging material used 100% 2pcb

Energy 3ab % of Renewable energy consumed over Total energy consumed 100% 3ab

3ba Total energy consumed over Products sold
[joules or multiples over tons of product] 10 1-norm[3ba]

GHG

Emissions

4ab Net total emissions over Products sold
[tCO2e over tons of product] 500 1-norm[4ab]

4bb Emissions of ODS over Products sold
[metric tons of CFC-11 eq. over tons of product] 0.1 1-norm[4bb]

4cb NOx, SOx, and other significant air emissions over Products sold
[metric tons over tons of product] 1 1-norm[4cb]

Spillages
and

Discharges
4db Environmental fines over Products sold

[$ over tons of product] 10 1-norm[4db]

Durability 5a % of Packaging material to be reclaimed/recovered 100% 5a
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Table J.7: CE Metrics for the Automotive Sector

Principal
Categories Metrics Upper

Bound
Formula

Used

Waste
1a % of Hazardous waste over Total waste generated 100% 100%-1a
1b % of Diverted waste over Total waste generated 100% 1b

1cb Waste generated over Number of products sold
[kg waste over # of products] 1500 1-norm[1cb]

Water
2a % of Recycled/reused water over Total water withdrawal 100% 2a
2b % of Other water discharge over Total water discharge 100% 100%-2b
2c % of Water consumed over Total water withdrawal 100% 100%-2c

2db Water consumption over Number of products sold
[m3 water over # of products] 30 1-norm[2db]

Procurement:
Production

and Packaging

2paa % of Recycled input material used 100% 2paa
2pba % of Renewable material used 100% 2pba
2pca % of Reusable, compostable or recyclable material used 100% 2pca

Energy 3ab % of Renewable energy consumed over Total energy consumed 100% 3ab

3bb Total energy consumed over Number of products sold
[joules or multiples over # of products] 15 1-norm[3bb]

GHG

Emissions

4ac Net total emissions over Number of products sold
[tCO2e over # of products] 2,000 1-norm[4ac]

4bc Emissions of ODS over Number of products sold
[metric tons of CFC-11 eq. over # of products] 0.1 1-norm[4bc]

4cc NOx, SOx, and other significant air emissions over
Number of products sold [metric tons over # of products] 10 1-norm[4cc]

4d Average specific CO2 emissions [gCO2/km] 200 1-norm[4d]
Spillages

and
Discharges

4dc Environmental fines over Number of products sold
[$ over # of products] 10 1-norm[4dc]

Durability 5b % of Material to be reclaimed/recovered 100% 5b
5c Average lifespan of product or Warranty provided [years] 20 norm[5c]
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Table J.8: CE Metrics for the Service Sector

Principal
Categories Metric Upper

Bound
Formula

Used

Waste
1a % of Hazardous waste over Total waste generated 100% 100%-1a
1b % of Diverted waste over Total waste generated 100% 1b
1cc Waste generated over Full Time Employees [kg waste over # of FTE] 1000 1-norm[1cc]

Water
2a % of Recycled/reused water over Total water withdrawal 100% 2a
2b % of Other water discharge over Total water discharge 100% 100%-2b
2c % of Water consumed over Total water withdrawal 100% 100%-2c

2dc Water consumption over Full Time Employees [m3 water over # of FTE] 100 1-norm[2dc]
Procurement:

Production
&

Packaging

2paa % of Recycled input material used 100% 2paa
2pd Paper consumption over Full Time Employees [kg over # of FTE] 365 1-norm[2pd]

2pe Single-use plastics consumption over Full Time Employees
[kg plastic over # of FTE] 50 1-norm[2pe]

Energy
3ab % of Renewable energy consumed over Total energy consumed 100% 3ab

3bc Total energy consumed over Operational space
[joules or multiples over surface area] 1 1-norm[3bc]

3bd % of Certified buildings and facilities i.e LEED 100% 3bd

GHG Emissions
4ad Net total emissions over Operational space [tCO2e over surface area] 300 1-norm[4ad]

4bd Emissions of ODS over Operational space
[metric tons of CFC-11 eq. over surface area] 1 1-norm[4bd]

4cd NOx, SOx, and other significant air emissions over Operational space
[metric tons over surface area] 0.05 1-norm[4cd]

Spillages & Discharges 4dd Environmental fines over Operational space [$ over surface area] 0.5 1-norm[4dd]
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At the time of writing, the journal publications, the conference proceedings, and the presentations pro-
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2021.
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assessment framework at the micro level," Computers & Chemical Engineering, 2021. In Review.
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methodologies for transitions in multi-scale energy systems," Renewable & Sustainable Energy Re-
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• R.C. Allen, S.G. Baratsas, R. Kokodkar, S. Avraamidou, C.D. Demirhan, C.F. Heuberger, M. Klokken-

burg, E.N. Pistikopoulos, "A Mode Based Formulation for Solving Multi-Period Integrated Planning

and Scheduling Problems," Optimal Control Applications and Methods, 2021. In Review.

• S.G. Baratsas, R.C. Allen, E.N. Pistikopoulos, "A hybrid forecasting framework with statistical and

machine learning methods for the energy sector," Computers & Chemical Engineering, 2021. In

Review.

K.2 Conference Proceedings

• S.G. Baratsas, E.N. Pistikopoulos, S. Avraamidou, "Circular economy systems engineering: A case

study on the coffee supply chain," Computer Aided Chemical Engineering, vol. 50, p. 1541-1546,

2021.
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gineering, vol. 50, p. 1547-1552, 2021.

• R. C. Allen, S.G. Baratsas, R. Kokodkar, S. Avraamidou, J.B. Powell, C.F. Heuberger, C.D. Demirhan,

E.N. Pistikopoulos, "An optimization framework for solving integrated planning and scheduling prob-

lems for dense energy carriers," IFAC-PapersOnLine, vol. 54, no. 3, p. 621-626, 2021.

K.3 Conference Presentations

• Towards a novel energy financial security: The Texas A&M Energy Spot Price Index

- TAMU Energy Conference 2019, AIChE Meeting 2019.

• Towards a novel energy price predictive framework: The Texas A&M Energy Price Index

- TAMU Energy Conference 2019, AIChE Meeting 2019.

• A novel energy price predictive framework, and its energy and monetary applications

- TAMU ChESGA Symposium 2020

• A novel energy financial security: The Texas A&M Energy Spot Price Index (ESPIC)

- TAMU ChESGA Symposium 2020
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• Circular Economy systems engineering for food supply chains: A case study on the coffee supply

chain

- International Conference on Sustainable Development (ICSD) Conference 2020

• Forecasting prices of energy feedstocks & commodities using advanced statistical & machine learning

methods

- AIChE Meeting 2020

• Designing and optimizing energy policies through a novel energy price predictive framework

- AIChE Meeting 2020

• Circular economy systems engineering: A case study on the coffee supply chain

- AIChE Meeting 2020, ESCAPE-31 2021

• Towards a Circular Economy Calculator for measuring the “Circularity” of Companies

- ESCAPE-31 2021

• An optimization framework for solving integrated planning and scheduling problems for Dense En-

ergy Carriers

- 11th IFAC International Symposium - ADCHEM 2021

• A quantitative framework for the optimization of food supply chains under Circular Economy con-

siderations

- III Sustainable Supply Chains Conference 2021

K.4 Commercial Presentations

• A Novel Energy Financial Security: The Energy Spot Price Index (ESPIC)

- Texas A&M New Ventures Competition 2021 - (TNVC2021), TEES Advisory Board Meeting

September 2021
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