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ABSTRACT

Knowledge of the mechanical properties of the thoracic aorta and determining appropriate con-

stitutive relations are essential in developing computational methodologies for accurate prognosis

of vascular diseases like aortic aneurysm and dissection. We study tearing and uniaxial properties

of the porcine thoracic aorta, and investigate the influence of certain constitutive assumptions on

the local stress distribution around a circular hole in two-fiber reinforced materials.

We performed peeling experiments on the ascending and the descending segments of the

porcine thoracic aorta to evaluate its tearing characteristics. The stretch experienced by the peeled

halves, peel force per unit width and peeling energy per unit area reveal segment-specific differ-

ences in the tearing characteristics of the porcine thoracic aorta. Further, the influence of non-linear

mechanical response of the aorta on the estimation of the peeling energy per unit area is investi-

gated.

Using uniaxial extension tests, we examine the directional variation of the mechanical prop-

erties of the porcine thoracic aorta. Dumbbell-shaped samples are cut from the aortic wall at five

different orientations with respect to the circumferential direction of the aorta and are subjected to

cyclic uniaxial extension and extension until failure. Specimens in all the orientations considered

show a nonlinear constitutive response that is typical of collagenous soft tissues. Shear strain un-

der uniaxial extension demonstrates clearly discernible anisotropy of the mechanical response of

the porcine aorta. The samples oriented at 45◦ and 60◦ with respect to the circumferential direc-

tion show a peculiar crescent-shaped shear strain-nominal stretch response. Failure stress indicates

a decreasing tensile strength of the porcine aortic wall from the circumferential direction to the

longitudinal direction.

The forms of the stored energy function that are commonly used for modeling arteries are de-

pendent only on a subset of the full invariant set that is necessary to model two-fiber reinforced

materials. We study the influence of such assumptions on the deformation and the stress distribu-

tion around a small circular hole in a thin nonlinearly elastic large sheet reinforced by two families

ii



of fibers undergoing large deformations. Results indicate a strong influence of the constitutive

assumptions on the stress concentration factors. A significant difference in the stress concentra-

tion factor distribution around the hole is observed when using a constitutive relation based on

a partial set of invariants (I4, I6) versus an "extended" constitutive relation that incorporates the

full set of invariants appropriate for a body reinforced with fibers and reduces appropriately to the

orthotropic linearized elastic case. We show how two constitutive relations that exhibit a similar

biaxial behavior in the absence of discontinuities display noticeable differences in the presence of

discontinuities like a circular hole.
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1. INTRODUCTION

Thoracic aortic disease comprises of a range of degenerative, structural and traumatic disorders

and presentations. Deaths due to the diseases of the aorta and its branches account for 43,000 to

47,000 annually in the United States [5]. Although the number of deaths due to thoracic aortic

disease remains unclear, it is generally believed to cause twice the number of deaths as that of

abdominal aortic aneurysms. The two most common presentations of the thoracic aortic disease

are aortic aneurysm, which is an abnormal dilatation of the aorta, and aortic dissection, which is

a catastrophic separation of the layers of the aorta. Recent estimates indicate a rising incidence of

death caused by thoracic aortic aneurysms and dissections worldwide[6]. The incidence of thoracic

aortic aneurysms is estimated to be 10.4 per 100,000 people per year, while that of aortic dissection

is estimated at 3 to 6 per 100,000 people per year in the United States.

Current guidelines for the treatment of thoracic aortic aneurysms are based on the maximum

aortic diameter and its growth rate. Thoracic aortic aneurysms grow in size at an average rate of

0.10 cm to 0.29 cm annually. They remain mostly asymptomatic during this growth phase until a

catastrophic event like dissection or rupture occurs. Due to the absence of suggestive symptoms,

an estimated 95% of the thoracic aortic aneurysms (TAA) remain undiagnosed until they rupture

or dissect[7]. A surgical intervention is recommended when the diameter of the TAA is 5.5cm or

greater [5]. If comorbidities like bicuspid aortic valve and Marfan syndrome are present, an earlier

surgical intervention is recommended. For the ascending aortic aneurysms, a diameter beyond

6.0cm increases the probability of devastating complications by 25.2%. For the descending aortic

aneurysms, a diameter of 7.0cm is known to appreciably increase the risk of rupture [8]. However,

31% of the patients would have already suffered a dissection or rupture before an aneurysm reaches

a diameter of 6.0 cm in the ascending aorta, and 43% of the patients suffer dissection or rupture

before the diameter of the descending aorta reaches 7.0 cm.

A criterion for surgical intervention purely based on diameter and its growth rate is too sim-

plistic to be a reliable predictor of outcome in patients harboring an aneurysm ([9],[7]). Recent
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experimental studies on thoracic aortic aneurysms identified alterations in the mechanical behavior

and microstructural composition of the aneurysmatic tissue when compared to a non-aneurysmal

tissue ([10], [11], [12], [13], [14]). This knowledge led to the exploration of various biomechanical

criteria like wall stress, distensibility, equivalent diameter, etc., for providing a better estimation of

the patient specific risk of aneurysm rupture ([15], [16]). However, as mentioned in a recent review

by Martufi et al.[17], the threshold or cut-off values for the various biomechanical indices are yet to

be defined, and clinical studies evaluating these indices are lacking. Understanding the mechanical

properties of healthy and aneurysmatic aortic tissue in the presence of various comorbidities like

bicuspid aortic valve, atherosclerosis, connective tissue disorders, etc., is essential in developing

and evaluating such criteria.

Aortic dissection, unlike an aneurysm, cannot be detected before its occurrence[18]. An in-

timal tear is present in 90% of the cases of aortic dissection. It allows blood to enter the aortic

wall resulting in a false channel (also called false lumen) that obstructs the flow of blood to lower

organs[5]. Due to similarities in symptoms with other cardiac events, many aortic dissections(AD)

are routinely misdiagnosed as myocardial infarctions[19]. Stanford and Debakey classifications

are commonly used to stratify the types of aortic dissections[2] (see figure 1.1b). Stanford type-A

(Debakey type I and type II) dissection involving the ascending aorta occurs in two-thirds of the

aortic dissection cases and has an associated 40% immediate mortality. Stanford type-B (Debakey

type III) dissection involving the descending aorta occurs in one-thirds of the cases and is more

chronic in nature. Despite significant advances in the diagnosis and management of aortic dis-

section, in-hospital mortality rates of patients with an aortic dissection remain high[20]. Various

studies on the pathogenesis of aortic dissection suggest that aortic dissection is the end process

of several pathological and microstructural changes occurring in aortic wall[21]. These changes

occur due to normal ageing as well as pathological changes associated with several risk factors.

Aortic dissection is commonly associated with a number of risk factors of which the most impor-

tant are chronic hypertension, atherosclerosis, bicuspid aortic valve, presence of aortic aneurysm,

and connective tissue disorders like Marfan syndrome, Ehlers-Danlos syndrome, etc.[20]. The high
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mortality rates due to aortic dissection can only be reduced through the understating of diseased

aortic conditions that may lead to the initiation and the propagation of aortic dissection.

In the following section, we summarize the experimental and computational methods employed

to investigate the mechanics of thoracic aortic aneurysm and dissection.

1.1 Mechanical characterization of thoracic aortic aneurysm and dissection

The knowledge of the anatomic structure of the aortic wall helps us in understanding the ex-

perimental techniques employed to analyze its mechanical behavior and form a perspective on the

experimental observations reported in literature. The aorta is a conduit that originates from heart

and supplies oxygenated blood to the systemic vasculature. Arteries are generally classified based

on their mechanical function as elastic (storing energy during systole and releasing energy during

diastole) and muscular arteries. The aorta and other large arteries are regarded as elastic arter-

ies. Human aortic diameter and wall thickness decreases from the aortic root to the abdominal

aorta [22]. The aortic wall is anatomically divided three layers, each having distinct physiologi-

cal function and microstructural composition: tunica intima, tunica media and tunica adventitia.

Intima is the inner most layer of all blood vessels. It contains endothelial cells, a basal lamina

containing mainly type-IV collagen, and connective tissue. In aorta, a subendothelial layer is also

present which contains connective tissue, smooth muscle cells and some fibroblasts [1]. Media is

the thickest layer of the thoracic aorta containing alternating layers of elastic tissue and smooth

muscle cells. These layers are reinforced by collagen fibers. Thickness of these musculo-elastic

fascicles remains nearly constant across the wall thickness but their number decreases with increas-

ing distance from the heart. Adventitia is the outermost layer consisting of a network of collagen

fibers interspersed with elastin, nerves, fibroblasts. In the thoracic aorta, adventitia also contains

vasa vasorum, a network of small blood vessels supplying nutrients to outer media. The main func-

tion of the adventitia is thought to be the protection of aorta against overdistension. Nevertheless,

the contribution of adventitia to the mechanical behaviour of aorta cannot be neglected. Figure

1.1a shows a schematic of the aortic wall.

3



(a)
(b)

Figure 1.1: (a) Schematic of the aortic wall[1] (b) Classification of aortic dissection[2].

Previous studies investigated the tensile, tearing and rupture properties of the healthy and dis-

eased thoracic aortic tissue as well as the properties of the individual layers ([17], [16], [23]).

Compositional differences have also been identified between the healthy and the diseased tissues

[13]. Below, we provide a brief overview of the experimental work on the mechanical characteri-

zation of the thoracic aorta and its aneurysms and dissections.

1.1.1 Uniaxial and biaxial tests

Extensive studies on the mechanical characterization of the ascending thoracic aortic aneurys-

matic tissue were undertaken in the past two decades using uniaxial and biaxial experiments. Al-

most all these experiments were conducted on rectangular, square, or dumbbell shaped specimens

cut along the circumferential and the longitudinal directions of the aorta. Mohan and Melvin

([24], [25]) conducted uniaxial and biaxial tests on the non-diseased human thoracic aorta ob-

tained from cadavers to determine quasistatic and dynamic rupture properties. They observed that

the stretch at which failure occurs is similar under quasistatic and dynamic loading. The stress at

failure, however, was significantly higher in dynamic tests compared to quasistatic tests. Uniaxial

experiments by Vorp et al.[10] on ascending thoracic aortic aneurysm (ATAA) identified a signif-

icantly lower failure strength (Circ: ATAA = 1.18±0.12 MPa versus non-ATAA = 1.80 ± 0.24

MPa, Long: ATAA = 1.21±0.09 MPa versus non-ATAA = 1.71 ± 0.14 MPa) and a significantly

4



higher maximum tangent modulus (Circ: ATAA = 4.48±0.59 Mpa versus non-ATAA = 2.61 ±

0.26 MPa, Long: ATAA = 4.61±0.42 MPa versus non-ATAA = 3.25 ± 0.63 MPa) for the ATAA

tissue compared to a non-aneurysmal tissue. However, Iliopoulos et al. [26] later showed that,

when the specimens are age-matched, the uniaxial tensile strength remains similar between the

aneurysmatic and non-aneurysmatic tissue. Sokolis et al. [27] later confirmed this observation.

They further showed significant regional variations (along the circumference of the aorta) in the

tensile strength, wall thickness and maximum elastic modulus in ascending thoracic aneurysms.

Sokolis et al. [12] examined the directional (circumferential vs. longitudinal) and region-specific

(anterior, right lateral, posterior, left lateral) uniaxial failure properties of the intima, the media

and the adventitial layers of ATAAs. The medial and the adventitial layers exhibited higher failure

strength in the circumferential direction compared to the longitudinal direction, while the intimal

layer demonstrated statistically insignificant difference between the two directions. Garcia-Herrera

et al. [28] studied the uniaxial tensile properties of the non-aneurysmal and the aneurysmal aorta

from patients with and without a bicuspid aortic valve. They found a strong influence of age on

tensile properties. Compared to the effect due to age, the pathologies did not seem to have a dis-

cernible effect on the rupture strength. Aneurysmatic tissue operated in the stiffer portion of the

stress-strain curve while healthy tissues operated in the heel region of the stress-strain curve. Based

on their uniaxial tensile tests on ATAA, Khanafer et al.[29] suggested a strong positive correlation

between the failure stress and the maximum elastic modulus and an inverse correlation between

the failure stress and the local thickness of the tissue. A study by Pichamuthu et al.[30] revealed

the higher tensile strength of the aneurysmatic tissue in patients with bicuspid aortic valves (BAV)

compared to patients with tricuspid aortic valves. Intriguingly, patients with BAV are more prone

to the development and rupture of an aneurysm compared to TAV patients. Ferrara et al. [31] in a

large study on 403 ATAA specimens reported higher uniaxial tensile strength of the male aneurys-

matic aorta compared to the female aneurysmatic aorta. All these uniaxial studies reported higher

tensile strength in the circumferential direction compared to the longitudinal direction of the aorta.

In vivo loading on the aorta or an aortic aneurysm is far from being uniaxial. Internal pressure
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and axial stretch acting on the aorta induce a biaxial state of loading. Therefore, a biaxial test would

provide better insight into the response of the aorta under in vivo loads compared to a uniaxial

test. Okamata et al.[32] conducted planar biaxial tests on square specimens of the dilated human

ascending aorta. They observed a reduction in the strain at which tissue specimens start rapid

stiffening in older patients (> 50 years) compared to younger patients (< 50 years), confirming

the hypothesis based on uniaxial tests that the aneurysmatic tissue is much stiffer than the healthy

tissue. A later study by Pham et al.[33] provided more evidence to this hypothesis. They noticed

that the areal strain under biaxial extension at a given stress level was lower in an aneurysmatic

tissue with BAV compared to the one without BAV. Choudhary et al.[34] examined the equibiaxial

properties of the healthy and aneurysmatic tissues and reported a decrease in the elastin content

and an increase in the collagen content in ATAA. Giuseppe et al.[35] reported significant regional

differences between the biaxial mechanical responses of the tissue extracted from an aneurysm. In

particular, the tissue obtained from the major curvature of a BAV aneurysm wall was less stiffer

than that of a TAV aneurysm wall. This suggests a local weakening in patients with BAV.

While significant progress has been made in unravelling the uniaxial and the biaxial properties

of thoracic aortic aneurysms, very few studies have focused on the uniaxial or biaxial properties of

dissected aortic tissue. Manopoulos et al.[36] studied the tensile behavior of the individual layers

of the dissected and the non-dissected thoracic aortic aneurysms. They observed a significant

reduction in the tensile strength of the inner layers of the dissected aneurysms compared to non-

dissected aneurysms. This observation gives an insight into why certain aneurysms dissect while

others do not. So far, the only study reporting the mechanical behaviour of dissected ascending

aortic specimens under biaxial testing is by Babu et al.[37]. Specimens from non-dissected half of

the aortas from patients who suffered aortic dissection were tested under a load controlled biaxial

protocol. They then obtained the stiffness values in the low (before the toe) and high stress (after

the toe) portions of the stress-strain curves. Age did not have a significant effect on the dissected

tissue stiffness. However, they observed a significantly higher stiffness in the high stress regime

for dissected specimens compared to normal aortic stiffness reported in literature.
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Maclean et al. [38] evaluated the tensile properties of the thoracic aorta in the radial direc-

tion. Sommer et al.[39] conducted uniaxial tests on coin shaped specimens punched out of the

abdominal aortic wall with loading applied in the radial direction of the aorta. Tong et al.[40]

performed similar experiments on carotid artery specimens. Overall, these tests indicate a signif-

icantly lower uniaxial tensile strength of the aorta in the radial direction (100-150 kPa) compared

to the circumferential and the longitudinal directions (0.5-3 MPa).

1.1.2 Bulge inflation tests

Due to the anisotropic nature of the aorta and the loading experienced by it in vivo, the con-

stitutive response and the failure properties obtained from the uniaxial tests may not be sufficient

to characterize the tissue rupture in an aneurysm. Bulge-inflation tests, where a circular specimen

extracted from an aorta is pressurized from one side to expand like a bubble, were conducted on

ascending thoracic aortic aneurysms by Duprey, Arvil and colleagues to glean the rupture char-

acteristics of the aneurysmatic tissue under internal pressure. Following paragraph reports some

important observations from their investigation.

Kim et al.[41] studied the deformation undergone by ATAA specimens undergoing bulge infla-

tion tests, and examined the direction of tear propagation during rupture. The tear propagated in an

oblique manner closer to the circumferential direction, but not in the circumferential or the axial di-

rection. Additionally they suggested the importance of local stress concentrations on the initiation

of failure. Using bulge-inflation experiments, Romo et al.[42] showed that the rupture of the aorta

occurred not at the location of highest stress but at a location where there is a localization of strain

field and localized thinning of the vessel wall. Duprey et al.[14] compared the stress and stretch at

rupture obtained from bulge-inflation tests with the failure properties obtained from uniaxial tests.

The stress at rupture under inflation was closer to the uniaxial tensile strength along the axial direc-

tion. The stretch at rupture, however, was similar in all the tests. Davis et al.([43],[44]) studied the

local mechanical properties of thoracic aortic aneurysms using a bulge inflation test. They showed

the mechanically heterogeneous nature of the tissue at a length scale of 1mm and highlighted the

importance of considering inhomogeneities at millimeter scale to evaluate the potential rupture
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locations of aneurysms.

1.1.3 Strength of the aortic media determined through the infusion of fluid

During the chronic phase of Stanford type-B aortic dissection, tear propagation typically occurs

in the outer thirds of the medial layer, resulting in the delamination of the aortic wall into two

halves. Early research on the delamination strength of the aorta were conducted by examining the

infusion pressure required to inject fluid into the media of the thoracic aorta using a hypodermic

needle. Using this technique, Robertson and Smith[45] studied the dissection properties of the

aortas from human cadavers obtained after autopsy. They investigated the variation of injection

pressure (pressure required to inject fluid into the aortic wall) along the length of the aorta. They

found that the pressure required to inject water was immensely higher (>500 mm Hg) than the in-

vivo blood pressure and the injection pressure decreases as one moves away from the heart. Hirst

and Johns[46] observed a decrease in injection pressure with age in human autopsy aortas. Also,

longer exposure to high pressure increased the tendency of aorta to dissect. They observed that the

aortas dissected when exposed to 430 mm Hg pressure for an hour.

Roach and colleagues carried out several studies on human and porcine aortas using the pro-

tocol described above. They opened the aorta longitudinally and injected fluid from the intimal

side. They studied the pressure-volume relation of the bleb as the fluid was being injected into the

aortic media using a video camera. The projected area on the video plane was used to calculate

the energy required for dissection/injection. Carson and Roach[47] measured the mean pressure

required to initiate dissection in porcine thoracic aortas was 77.2±1.5 kPa(5̃79mmHg). Tiessen

and Roach [48] measured the injection pressure in human autopsy aortas. According to their study,

injection depth into the wall and age did not impact the medial strength. In calcified abdominal

aortas (due to atherosclerosis), the tear went around the plaque rather than cutting through it. No

clear conclusion was made on the effect of calcified plaques.

He and Roach[49] conducted infusion experiments on porcine descending thoracic aortas pres-

surized internally at 130 mmHg. They observed the difference in pressure between the lumen and

the bleb to be 52±10 mmHg for the propagation to occur. Tam et al.[50] examined the influence
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of tear depth on the peak pressure required for the infusion of fluid in porcine aortas. As noted by

them, an increase in the depth of the tear decreased the peak pressure required for dissection.

1.1.4 Peeling experiments

While direct tension tests were used to quantify the radial failure strength of the aortic media,

peeling experiments were used to measure the energy required for the propagation of a tear. Som-

mer et al. [39] used peel tests to study healthy human abdominal aortic media. Peeling energy

per unit reference area(T ) was calculated as 5.1±0.6 mJ/cm2 for the circumferential specimens

and 7.6±2.7 mJ/cm2 for the axial specimens. Histological studies revealed a rougher dissection

surface for axial specimens with several torn elastic fibers. The cut spread over 6-7 elastic laminae

sometimes propagating towards the intimal side and sometimes towards the adventitial side. In

contrast to axial specimens, circumferential specimens produced a smooth surface with dissection

propagating between the same elastic lamina where the cut was made.

Tong et al.[40] conducted peeling experiments on human carotid bifurcations. Intima-media

interface displayed lower peeling energy per unit area compared to adventitia-media interface.

Also, they observed a significant difference in T for the specimens from common carotid artery

near the bifurcations, and the carotid artery branches. Tong et al.[51] investigated T in thrombus

covered wall specimens of abdominal aortic aneurysms. Two different displacement rates of the

tongues, 1.0mm/min and 1.0 mm/sec, were used for peeling experiments. Higher displacement rate

produced an average increase in the force values by 28%. As the thrombus ages, they observed

a reduction in the amount of elastin and collagen in the wall. Additionally, the ratio of elastin to

collagen significantly decreased with thrombus age. T also reduced with thrombus age for intima-

media composite and anisotropic dissection properties disappeared.

Majority of the aortic dissections (67%) occur in the ascending aorta. Pasta et al.[52] investi-

gated the variation of peeling energy in non-aneurysmal and aneurysmal human ascending thoracic

aortas. They observed a significant reduction in peeling energy in diseased specimens compared to

non aneurysmal specimens. Also, aneurysmal specimens with bicuspid aortic valve morphology

showed lower peeling energy than those with tricuspid aortic valve(normal) morphology. Angouras
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et al.[53] reported regional differences in the peel force per unit width in ascending thoracic aortic

aneurysms. Also, peel force per unit width decreased with patient’s age indicating an increased

risk of dissection in older patients. Noble et al.[54] studied peeling energies of collagenase, elas-

tase and gluteraldehyde treated porcine thoracic aortic specimens. Collagenase digests collagen,

elastase digests elastin, and gluteraldehyde is known to create stable crosslinks within elastin and

collagen. Collagenase treated specimens showed lower peeling energy than control specimens

whereas elastase treatment showed little effect. Gluteraldehyde treatment not only increased the

dissection energy but also reduced the difference between the axial and the circumferential dissec-

tion energies. These experiments suggest the role of collagen in the propagation of a tear during

an aortic dissection.

Although dissections rarely occur in coronary arteries, Wang et al.[55] studied peeling ener-

gies in human coronary arteries from explanted hearts during cardiac transplantation. They also

observed that the tear propagation in intima required higher average peeling energy than in media.

Also, the distribution of peeling energies, as were commonly assumed, was not a normal distribu-

tion. Since dissection is a spatially varying process, they propose a need to change the commonly

employed peeling protocol, which only gives the average peeling energy.

1.1.5 Theoretical and empirical models for evaluating thoracic aneurysm rupture risk and

dissection propagation

Development of empirical or computational models to predict the rupture risk of an aneurysm

or the occurrence of aortic dissection is essential to provide patient-specific prognosis of the tho-

racic aortic disease. Knowledge obtained from invasive in vitro mechanical characterization of

aneurysmatic and dissected tissue aids the development of such models. Various biomechanical

criteria have been proposed to evaluate the patient specific rupture risk in case of abdominal aortic

aneurysms ([9], [17], [16]). Some attempts have been made recently to propose such criteria for

thoracic aortic aneurysms, though clinical studies confirming their usability are lacking. Duprey

et al.[14] suggested a normalized rupture criteria for aneurysm rupture based on the local colla-

gen fiber angle and failure stress/stretch derived from bulge-inflation experiments. Luo et al.[56],
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He et al. ([57], [58]) proposed machine-learning based correlations to evaluate the rupture risk

of ATAAs. Liu et al.[59] proposed a novel probabilistic and anisotropic rupture risk criterion for

ATAAs. This criterion is based on a generalization of the Tsai-Hill criterion, which has been ap-

plied in the past to simulate damage in anisotropic fiber reinforced composites. They applied this

criterion to evaluate the rupture risk of 41 patient specific aneurysm geometries.

Parameters like stress, strain, etc., used in these criteria can be evaluated in patient-specific

geometries only with the specification of an appropriate constitutive relation to model the mechan-

ical behavior of the aorta. Different constitutive relations have been used to model the behavior

of the aortic wall. Earlier studies on thoracic aortic aneurysms utilized the exponential Fung-type

constitutive relations ([32], [60], [11], [26], [12]) to model the mechanical response under uniaxial

and biaxial extension. Due to the lack of a clear physical association with any microstructural

constituents of the extracellular matrix of the aorta for Fung-type exponential models, most of the

recent studies employ fiber-based or microstructure-based constitutive relations that take into ac-

count the composition of the extracellular matrix (percentage of elastin, collagen, smooth muscle

cells) and the distribution in the orientation of collagen fibers. Gasser and Holzapfel[61] presented

a XFEM based approach to model tear propagation in an arterial wall. They used the two-fiber

model proposed by Gasser et al.[62] to model the mechanical response of the artery. Ferrara and

Pandolfi[63] combined a cohesive traction-separation law with the two fiber model to simulate tear

propagation in an artery. A similar work based on cohesive zone formulation for cylindrical arterial

geometries was presented by Wang et al.([64], [65]). Rausch et al[66] used a particle-continuum

approach to model tear propagation in an aorta. A four-fiber family model proposed by Baek et

al.[67] was utilized in their study. More recently, Gültekin and colleagues([68], [69]) developed a

phase field approach to model crack propagation in an aorta. Korenczuk et al.[70] developed a mul-

tiscale model to evaluate the rupture risk of ascending thoracic aneurysms. Davis et al.([44], [43])

used a modified form of the two-fiber model to fit local deformations undergone by an aneurysm

tissue under a bulge-inflation test. However, none of these models have been applied to predict the

rupture risk of aneurysms or to model the propagation of dissection in vivo.
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1.2 Outline of the current work

Earlier studies have indicated that the tearing properties of the aorta are dependent on the cir-

cumferential location from which the specimens are obtained. Also, there is a significantly higher

incidence of aortic dissection and aneurysm in the ascending aorta compared to the descending

aorta. Further, in several cases of aortic dissection the false lumen extends through the entire length

of the aorta. Computational models for predicting the propagation of aortic dissection require the

knowledge of the segment-specific (ascending, arch, descending, abdominal) tearing properties of

the aorta in healthy and diseased states. The first objective of this dissertation is to evaluate

the segment-specific variation in the tearing properties of the porcine thoracic aorta. We use

porcine aorta for our experiments due to its similarities in mechanical response and microstructure

with healthy young humans. As a part of this study, we also investigate the influence of the non-

linear mechanical response of the aorta on the estimation of peeling energy per unit area. Chapter

2 presents the details of this work.

Human and animal aortas are anisotropic, and various anisotropic constitutive relations have

been used to model their mechanical response[71]. Most of these constitutive relations assume

the aorta to have an orthotropic material symmetry with respect to the circumferential-radial,

longitudinal-radial and circumferential-longitudinal planes. Material parameters for these con-

stitutive relations are often determined by fitting the constitutive response data obtained from uni-

axial and biaxial tests conducted on circumferentially and longitudinally oriented specimens to

the theoretically predicted response. It is well-known that uniaxial and biaxial tests with loading

applied along the directions of symmetry are insufficient to characterize the constitutive response

of anisotropic materials (particularly the shear response). Yet, very few studies focus on the me-

chanical response and rupture characteristics of the aorta in the directions that do not coincide with

the circumferential, longitudinal and radial directions. The second objective of the current work

is to determine the anisotropic constitutive response of the porcine thoracic aorta. Uniaxial

experiments were conducted on dumbbell shaped specimens oriented at five different angles with

respect to the circumferential direction. Further, we evaluate the efficacy of the constitutive param-
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eters determined from biaxial tests in predicting the anisotropic uniaxial response of the porcine

thoracic aorta. We present the details of this work in chapter 3

The final objective of this dissertation is to investigate the deformation and the stress dis-

tribution around a small circular hole in a thin non-linearly elastic large sheet reinforced by

two families of fibers. Local stress distribution and stress concentration factor around inhomo-

geneities become important in determining the location of rupture in an aortic aneurysm([41],[43],

[44], [14]). Any inaccuracies in the local stress distribution predicted due to the use of simpli-

fied constitutive relations may lead to incorrect prognosis of the rupture risk of an aneurysm. The

first constitutive relation we consider, called the standard-fiber reinforcing model, is derived from

a stored energy function that is dependent on a partial set of invariants needed to model two-

fiber reinforced materials. Such constitutive relations have been extensively used to model the

response of biological tissues. Two-fiber models for arteries and myocardium due to Holzapfel

and colleagues([72], [62], [73]), a four-fiber model for arteries due to Baek et al.[67] and models

for the myocardium due to Humphrey and Yin ([74], [75]) are some examples of constitutive rela-

tions that are based on partial set of invariants. Muprhy, Horgan and colleagues ([76], [77], [78],

[79], [80]) have showed the limitations of such models in modeling the shear and even the uni-

axial mechanical behavior of anisotropic materials. Therefore, we consider a second constitutive

relation that is an extension of the first relation to include all the invariants such that it reduces ap-

propriately to the orthotropic linearized elastic constitutive relation. Chapter 4 provides description

of the boundary value problems and the results of this study.

Finally, chapter 5 summarizes the important conclusions of this dissertation.
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2. SEGMENTAL VARIATIONS IN THE PEEL CHARACTERISTICS OF THE PORCINE

THORACIC AORTA

2.1 Introduction

Aortic dissection occurs predominantly in the thoracic aorta and the mechanisms for the ini-

tiation and the propagation of a tear in aortic dissection are not well understood. In this chapter,

we study the tearing characteristics of the porcine thoracic aorta using a peeling test, and we esti-

mate the peeling energy per unit area in the ascending and the descending segments. The stretch

and the peel force per unit width undergone by the peeled halves of the rectangular specimens are

measured. The influence of the nonlinear constitutive response of the porcine thoracic aorta on the

estimation of peeling energy is investigated. A comparison between the peeling characteristics of

different segments of the porcine thoracic aorta is presented.

Altered hemodynamics (typically hypertension) with a concomitant weakening of the aortic

media due to aging and disease are the factors commonly associated with aortic dissection[81].

Canine and porcine models were previously used to examine the hemodynamic and structural

factors influencing the tear propagation in aortic dissection ([23], [82]) due to the similarities with

humans in terms of aortic diameter and microstructure. Knowledge of the mechanical properties

of the thoracic aorta in good health and disease, particularly the rupture properties, is essential for

understanding the predisposition for the initiation and propagation of a tear in aortic dissection.

Peeling test, trouser test, in-plane shear test are some of the techniques that have been used

to analyze the tearing properties of the aorta [23]. Of interest here is the peeling test, in which, a

tear created near the center of the thickness of a rectangular specimen is propagated through the

full length of the specimen. Rivlin and Thomas[83] developed a framework to calculate the energy

Reprinted by permission from [Springer Nature Customer Service Centre GmbH]: [Springer Nature] [Annals
of Biomedical Engineering] [Segmental Variations in the Peel Characteristics of the Porcine Thoracic Aorta, Manoj
Myneni et al.,] Copyright [2020] Biomedical Engineering Society.
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required in creating a tear in polymeric materials undergoing large deformations. Sommer et al.

[39] used peel tests to characterize the peel force per unit width and the energy required for the

propagation of tear (peeling energy) in healthy human abdominal aortic media. The difference

between the external work done and the internal stored energy was used for calculating the peeling

energy. The energy stored in the peel specimen at the end of the test was calculated using a

linear relationship between the first Piola-Kirchhoff stress in the peeled arms and the corresponding

stretch. Small values of the first Piola-Kirchhoff stress was reported to be the reason for this

assumption. This experimental protocol was applied to measure the peeling energy in healthy and

diseased arteries.

Since the peel force/width required is much higher in the thoracic aorta (126 ± 6.6 N/m in

circ, 149 ± in 7.6 N/m long[52]), where aortic dissection typically occurs[20], compared to the

abdominal aorta (22.9 ± 2.9 N/m in circ, 34.8 ± 15.5 N/m in long[39]), it may not be appropriate

to assume a linear relation between the first Piola-Kirchhoff stress and stretch for the estimation

of internal energy in the thoracic aorta. A significant amount of the external work done during

peeling could be stored in the peel specimen as internal energy. Assuming a linear relationship

between stress and stretch may over or under predict the tearing energy depending on the stretches

undergone by the peel specimen during the test. The difference in the peel force/width also indi-

cates a segmental variation in the peel characteristics along the length of the aorta. The objectives

of this study are two fold: 1) Measure the local stretch experienced in the peeled halves of a rectan-

gular sample during the peel experiment and investigate the influence of the non-linear behaviour

of the aorta in the estimation of peeling energy and 2) study the segmental variation in the peel

characteristics of the porcine thoracic aorta.

2.2 Materials and Methods

Eleven porcine aortas were collected from the Rosenthal meat center on Texas A&M Univer-

sity campus and transported in ice. The aortas were obtained from 8 month old castrated male hogs

of various breeds weighing about 250-300 lbs. The aorta was separated into the ascending (Asc)

and the descending segments. The descending aorta was further divided into the upper descending
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(Udes) or proximal and the lower descending (Ldes) or distal segments at the third branching arter-

ies. After the removal of the loose connective tissue, the samples were stored at -20◦C in centrifuge

tubes containing 0.01M Phosphate Buffer Saline (PBS) solution. The day before the experiments,

samples were taken out and were allowed to slowly thaw overnight in a refrigerator at 4◦C. Two

circumferential and two longitudinal rectangular specimens were dissected from each segment of

the thoracic aorta. Figure 2.1 illustrates the location of the samples within each segment. One set

of circumferentrial and longitudinal specimens from each segment were used for peel tests. The

remaining set was used for uniaxial tests. Testing was performed within 2-3 months after obtaining

the aortas. No animals were killed for the purpose of this study.

(a) (b)

(c) (d)

Figure 2.1: Schematic of the location of peel and uniaxial samples in individual segments (a)
Aorta separated into ascending, upper descending and lower descending segments (b) Ascending
aorta (c) Upper descending aorta (d) Lower descending aorta. The top of each picture represents a
location closest to heart in each segment.
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2.2.1 Peel Tests

Sample Preparation:

A small incision (∼ 1-2mm) was created in the rectangular samples parallel to the intimal

layer using a scalpel. This incision was extended length-wise to create a tear by manually applying

force using a forceps until a desired tear length was obtained (approx. 8-12mm). This resulted in

two halves of nearly equal thickness, one containing the intima and the inner-media and the other

containing the outer media and the adventitia. Images of the sample were taken from the top and

the side with the intimal layer facing down. These images were used for measuring the dimensions

of the specimen. Width and thickness data for the peel specimens are given in table 2.1. Accuracy

of the measurement is about ±0.15mm. The length of the specimens varied between the segments

and for different aortas due to the size of the available tissue.

Table 2.1: Width and thickness of the circumferential(circ) and longitudinal(long) peel specimens

Dimension (mm) Asc-circ Asc-long Udes-circ Udes-long Ldes-circ Ldes-long
Width 7.9 ± 1.2 9.4 ± 1.6 10.1 ± 1.6 9.4 ± 1.6 8.7 ± 0.3 9.3 ± 1.2

Thickness 3.1 ± 0.3 3.2 ± 0.4 2.7 ± 0.5 2.5 ± 0.3 2.0 ± 0.3 2.3 ± 0.5

2.2.1.1 Experimental Protocol:

Equal number of black glass microspheres (American Crafts- POP! microbeads-27352) of di-

ameter ∼500µm were attached at regular intervals close to the edge of the specimen along its

length on the intimal and the adventitial sides using cyanoacrylate super glue (5-8 on each side).

The specimen was then mounted onto a biaxial machine. The clamps were displaced away from

each other at a rate of 10mm/min to extend the tear. One of the previous studies reported negligi-

ble differences in the peeling characteristics when the test was conducted at a displacement rate of

1-10mm/min[84]. Therefore, a displacement rate of 10mm/min was chosen in order to minimize

the time the tissue remains unhydrated. Force and displacement data were recorded every 0.1s.
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A mirror oriented at 45◦ with the vertical axis was placed on the side. Reflected images of the

specimen were captured during the experiment using a camera mounted above the mirror. Images

were acquired at 0.6s interval. There is negligible distortion in the images due to reflection. These

images were used for the measurement of stretch in the peeled specimen during the test.

The average thickness of the thicker peeled half was measured after the experiment using imag-

ing and the thickness of the other half was calculated by subtracting this value from the average

thickness of the whole specimen.

2.2.1.2 Stretch measurement:

Centroids of the markers are extracted from the images using MATLAB image processing

toolbox. For details regarding the marker tracking and the MATLAB program associated with it,

refer to [85]. A brief description of the steps involved in locating the centroids of the markers are

given in table 2.2.
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Table 2.2: Algorithm for the image processing program and the MATLAB functions used

1. Read the image acquired during the experiment

2. Convert the image to binary scale, crop the region of interest and specify the thresh-

old value between 0-1 to detect the markers: imbinarize()

3. Use area filter to remove extraneous objects: bwareafilt()

4. Erode and dilate the image to fill the small holes in the image of the markers:

imerode() and imdilate()

5. Locate the centroids of the markers: regionprops()

6. Measure the Euclidean distance between the adjacent markers and divide by the

corresponding distance in first image to compute the stretch value: pdist()

Figure 2.2a shows an image of a specimen taken during the test and figure 2.2b shows the same

image after the image filters are applied and the centroids of the markers superimposed onto the

image. A pair of markers next to each other is called a marker set. The initial distance between two

markers in each marker set was measured from the image taken at the start of the test. Similarly,

distance between the markers in each marker set was calculated in each image taken during the test.

Since the tissue between the markers is nearly straight in the initial and the peeled configurations,

the stretch is measured as the ratio of the distance between the markers in a marker set in the

current image and the initial image.

Figure 2.2c depicts the typical variation of the ratio of the current distance to the initial distance

between two markers in a marker set during a peel test. The ratio is initially 1 and as the markers

take a 90◦ turn near the tear tip, the distance between them decreases and hence the ratio decreases.
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As the markers move away from the tear tip, the ratio of the current distance to the initial distance

reaches a near constant value. Small oscillations in the ratio of the current distance to the initial

distance is due to the slight movement of the peel specimen towards and away from the mirror

during the experiment. The region between the markers reaches a near uniaxial state of stress

at a certain distance beyond the tear tip. Based on this observation, a rectangular region spread

symmetrically about the tear tip (approximately 2.5mm on each side from the tear tip) is defined

such that the torn tissue is under uniaxial state of stress beyond this region. We call this the tear

propagation zone and stretch experienced by the peeled tissue between two markers in a marker

set is reported only when the marker set under consideration crosses this tear propagation zone.
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Figure 2.2: (a) Image acquired during the experiment (b) Image processed using the MATLAB
program (Centroids of the markers are superposed on the markers themselves) (c) Ratio of the
current distance to the initial distance between a marker set during the experiment.

Figure 2.3 shows a sequence of images with the image number and the ratio of current distance

to initial distance between markers 2 and 3 on the left peeled half. Ratio remains near 1 when the

markers are away from the tear. As the tear propagates and marker 2 approaches the tear tip (figure

2.3b), the ratio starts decreasing and reaches a minimum value (0.47 in this case, figure 2.3c) when
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the tear tip is nearly half way between markers 2 and 3. As the tear propagates further and marker 3

reaches the tear tip, the ratio reaches 1 (figure 2.3d). the ratio of current distance to initial distance

starts increasing from this point until it reaches a near constant value (∼ 1.36). Figure 2.3e shows

an image when the portion of the tissue between marker 2 and 3 becomes horizontal and straight.

This is when the marker set is considered to have crossed the tear propagation zone.
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(a) Image Number: 1, Ratio: 1.00 (b) Image Number: 116, Ratio: 0.91

(c) Image Number: 176, Ratio: 0.47 (d) Image Number: 233, Ratio: 1.00

(e) Image Number: 284, Ratio: 1.25 (f) Image Number: 460, Ratio: 1.35

(g) Image Number: 530, Ratio: 1.36 (h) Image Number: 700, Ratio: 1.37

Figure 2.3: Sequence of images with image number and the ratio of current distance to initial
distance between markers 2 and 3 (i.e. marker set 2) on the left peeled half(intimal half) during the
experiment. Marker 1 refers to marker closest to the tear tip in image 1.
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Tear length measurement: Tear length was computed at the end of the test based on the

mean stretches of the intimal and the adventitial halves and the distance moved by the clamps

during the experiment. If S0 and S1 are the distances between the clamps when the first marker

and last marker on the intimal or the adventitial halves cross the tear tip respectively, and λi and λa

are the mean stretches of the intimal and the adventitial halves respectively when the last marker

crosses the tear tip, tear length is computed using eq. 2.1

C =
S1 − S0

λi + λa
(2.1)

This procedure is illustrated in figures 2.4a & 2.4b.
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(a)

(b)

Figure 2.4: (a) shows the schematic of the peel sample when the first marker on the adventitial or
intimal side is at the tear tip (b) shows the schematic of the peel sample when the last marker on
the adventitial or intimal side is at the tear tip. Mean stretches are computed in the final image and
tear length is calculated using equation 2.1

2.2.2 Uniaxial tests

Width and thickness data of the uniaxial specimens is given in table 2.3.
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Table 2.3: Width and thickness of the uniaxial specimens

Dimension (mm) Asc-circ Asc-long Udes-circ Udes-long Ldes-circ Ldes-long

Width 8.3 ± 0.9 8.6 ± 0.9 9.7 ± 1.2 9.5 ± 1.0 9.0 ± 0.5 9.1 ± 0.9

Thickness 3.0 ± 0.2 3.0 ± 0.4 2.6 ± 0.4 2.7 ± 0.4 2.0 ± 0.4 2.2 ± 0.4

Glass markers were attached to the specimen using cyanoacrylate creating a 4x4 grid and 9

quadrilateral "cells" on the specimen. An image of a specimen during the uniaxial test is shown

in figure 2.5. The specimen was then clamped onto the biaxial machine. A preload of ≈0.05N

was applied to straighten the specimen. Clamps were displaced at a relative speed of 5mm/min

to mimic the displacement rate undergone by each half of the peel specimen during the peel test.

Preconditioning was not performed on the samples, inline with the protocol used for the peel tests.

Specimens were elongated until complete rupture is achieved. Since the specimens are rectangular,

failure often occurred near the clamps. Force and displacement data were recorded for every 0.1s.

The force and displacement data after the start of the failure were discarded. Images were acquired

from the top of the specimen at 1s interval. Load corresponding to each image was calculated to

be the mean of the load values at the current time and the load values at ±0.1s from current time.

This was done to eliminate the possibility of error associated with the any time lag between image

and load data. Thus, stress-stretch data is available at every 1s interval.
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Figure 2.5: Image of a uniaxial sample taken during the test. A cell used for calculating the
deformation gradient is shown in red color

Data analysis: Centroids of the glass markers are extracted from the images using a MATLAB

program similar to the one used for peel tests. Since each cell may not be a perfect rectangle, the

following transformation is used for the position coordinates to ensure displacement continuity

between the cells

x = x1
(1− ξ)(1− η)

4
+ x2

(1 + ξ)(1− η)

4
+ x3

(1 + ξ)(1 + η)

4
+ x4

(1− ξ)(1 + η)

4
(2.2a)
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y = y1
(1− ξ)(1− η)

4
+ y2

(1 + ξ)(1− η)

4
+ y3

(1 + ξ)(1 + η)

4
+ y4

(1− ξ)(1 + η)

4
(2.2b)

where (x, y) is the coordinate of a point within the cell in the current image and (xi, yi), i = 1, .., 4

are the position coordinates of the markers at the vertices of the cell in the current image. Jacobian

of the transformation is defined to be

J =

∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

 (2.3)

The deformation gradient is then calculated using equations 2.4 & 2.5

∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η


︸ ︷︷ ︸

J

=

 ∂x
∂X

∂x
∂Y

∂y
∂X

∂y
∂Y


︸ ︷︷ ︸

F

∂X
∂ξ

∂X
∂η

∂Y
∂ξ

∂Y
∂η


︸ ︷︷ ︸

J0

(2.4)

F = JJ−1
0 (2.5)

The deformation gradient for the uniaxial test is taken as the average deformation gradient of the

three adjacent cells at the center of the grid. The first Piola-Kirchhoff stress is computed using the

load, and the undeformed cross-sectional area calculated from the width and thickness measured

from the images taken before the experiment . Eq. 2.6 is used for fitting the first Piola-Kirchhoff

stress-stretch data , where α and β are the fitting parameters

P =
α

β

(
eβ(λ−1) − 1

)
(2.6)

Curve fitting of the data was performed using MATLAB’s fit function using Trust-Region algo-

rithm, and goodness of the fit was determined using the r2 values. The first Piola-Kirchhoff stress-
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stretch data acquired at 1s interval until 10 sec before the start of visible failure was used for curve

fitting. Failure of the specimen often occurred between 3-6 minutes after the start of the test due

to the differences in the stretch values between the specimens at which the failure occurred near

the clamps. Therefore, 180-350 points were used for curve fitting depending on the specimen.

Note that α and β are not the material constants associated with the aorta; they are only the fitting

parameters associated with the uniaxial stress-stretch data for a particular test. Figure 2.6 shows

representative plots for the data from the uniaxial tests on aorta 5 and the fits achieved using eq.

2.6. Full data set used for curve fitting are shown in figure 2.6.
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Figure 2.6: Representative plots (aorta 5) of the experimental data for (a) Ascending aorta-
Circumferential (b) Ascending aorta- Longitudinal (c) Upper descending aorta-Circumferential
(d) Upper descending aorta- Longitudinal (e) Lower descending aorta-Circumferential (f) Lower
descending aorta- Longitudinal. The fit achieved using eq. 2.6 is shown as a continuous line
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Table 2.4: r2 values for the fits obtained using equation 2.6 for uniaxial specimens

Sample No. Ascending Upper Descending Lower Descending

circ long circ long circ long

1 0.998 0.999 0.999 0.997 0.997 0.998

2 0.998 0.997 0.996 0.992 0.998 0.996

3 0.999 0.996 0.999 0.998 0.998 0.988

4 0.994 0.998 0.997 0.995 0.995 0.997

5 0.991 0.998 0.998 0.999 0.994 0.998

6 0.998 0.996 0.996 0.998 0.992 0.992

7 0.999 0.991 0.995 0.997 0.987 0.998

8 0.998 0.998 0.998 0.993 0.996 0.999

9 0.998 0.998 0.996 0.998 0.994 0.990

10 0.994 0.999 0.996 0.998 0.993 0.994

11 0.991 0.991 0.999 0.996 0.995 0.992

Arteries are known to be viscoelastic and compressible, however, they are generally treated

to be nearly elastic and incompressible[22]. Following this assumption and using the values of α

and β obtained from the stress-stretch fit, the stored energy per unit volume (ψ) is computed as a

function of stretch using eq. 2.7

ψ =

∫ λ

1

Pdλ =
α

β

(
(eβ(λ−1) − 1)/β − (λ− 1)

)
(2.7)

2.2.3 Peeling Energy Calculation

Peeling energy is defined as the energy dissipated in the creation of a tear. Based on the assump-

tion that arteries are nearly elastic, we assume that the energy dissipation due to the viscoelastic

nature of the aorta is negligible compared to the stored energy and the energy lost in tearing during
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the peel test. The work done by the external force during the peel experiment is thus partially

stored as internal energy in the peel specimen and is partially dissipated in the creation of the new

tear surfaces. Eq. 2.8 represents the energy balance used for the calculation of the peeling energy

∫ S1

S0

Fds︸ ︷︷ ︸
External work done(Wext)

=

∫
V

ψdV︸ ︷︷ ︸
Stored energy(Wint)

+

∫
A

TdA︸ ︷︷ ︸
Energy lost in peeling

(2.8)

where F is the force required for extending the tear or the peel force, S1 − S0 is the clamp dis-

placement during the test, ψ is the stored energy per unit volume in the peeled tissue, V is the

undeformed volume of the peeled tissue, T is the peeling energy per unit area, and A is the unde-

formed area of the surface exposed by the newly created tear (Symbol T is used because peeling

is a process of tearing). Peeled halves are nearly under a state of uniaxial tension at the end of the

test. Since peeled samples are rectangular with a constant width, Eq. 2.8 can be modified as

∫ S1

S0

Fds = w

(∫ C

0

ψ(λ)tdc+

∫ C

0

Tdc

)
(2.9)

where C is the tear length(refer to figure 2.1) and w is the width of the specimen. The external

work done in tearing, stored energy and peeling energy are calculated for the portion of the tissue

between the first and the last markers. Two methods are used for the estimation of the mean peeling

energy per unit area. The first method is similar to the one adopted by Sommer et al.[39], where the

internal stored energy is calculated using a linear relation between the first Piola-Kirchhoff stress

and the stretch. Using this method, mean peeling energy per unit area is calculated using eq. 2.10

TL
avg =

(
Favg

w
(S1 − S0)−

1

2

Favg

w
(S1 − S0 − 2C)

)
/C (2.10)

During the tear propagation, the force required for extending the tear reaches a plateau region

where it shows an oscillatory behavior with peaks and valleys. Favg is the average force in the

plateau region.
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In the second method, the mean peeling energy per unit area is calculated using eq. 2.11

TNL
avg =

(
Favg

w
(S1 − S0)− C(tiψ(λi) + taψ(λa))

)
/C (2.11)

where ti and ta are the mean thicknesses of the intimal and the adventitial halves respectively, C

is the tear length, λi and λa are the mean stretches experienced by the intimal and the adventitial

halves when the last marker crosses the tear tip. ψ is estimated using the fitting parameters ob-

tained from the uniaxial test on the specimen oriented in the same direction as the peel specimen

(i.e. if the peel specimen is a circumferentially oriented specimen, data from the uniaxial test on

the circumferentially oriented specimen are used for the calculation of the stored energy per unit

volume) and the stretch values measured during the peeling experiment.

2.3 Results

2.3.1 Uniaxial tests

Figure 2.7 depicts the variation of the first Piola-Kirchhoff stress with respect to stretch for

the aortic specimens subjected to uniaxial state of stress. Pronounced anisotropy can be observed

in all the segments with the circumferential direction being generally stiffer than the longitudinal

direction for stretches larger than 1.2. Circumferential specimens from the descending aorta are

stiffer compared to that of the ascending aorta for stretches greater than 1.2. However, no signif-

icant difference can be observed between the samples from the upper descending and the lower

descending segments of the aorta. All the three segments demonstrate non-linear behavior with an

initially softer and an increasingly stiffer response. The non-linearity is milder (lower rate of stiff-

ness increase) in the specimens from the ascending segment compared to the descending segment.

Tables 2.5 and 2.6 show the fitting parameters α and β for the circumferential and the longitudinal

specimens from different segments of the aorta (r2 > 0.98).
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Figure 2.7: First Piola-Kirchhoff stress vs. stretch for different segments of the aorta
(a) Ascending aorta-Circumferential (b) Ascending aorta- Longitudinal (c) Upper descending
aorta-Circumferential (d) Upper descending aorta- Longitudinal (e) Lower descending aorta-
Circumferential (f) Lower descending aorta- Longitudinal
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Table 2.5: Fitting parameters α(kPa) and β for the uniaxial tests on circumferential
specimens(r2>0.98)

Sample No. Ascending Upper Descending Lower Descending

α (kPa) β α (kPa) β α (kPa) β

1 107.68 3.26 110.09 4.51 72.91 4.68

2 98.21 3.86 103.28 5.43 73.03 5.01

3 72.60 3.89 39.50 8.30 42.71 8.82

4 83.17 7.47 95.11 6.92 127.70 7.80

5 91.63 5.11 62.93 7.42 64.09 7.29

6 50.78 4.21 89.48 5.50 41.66 9.10

7 65.99 3.60 65.60 6.58 46.78 7.10

8 60.47 3.50 124.06 5.07 89.69 6.37

9 91.88 4.03 115.39 5.85 67.90 7.78

10 56.55 4.21 34.53 8.72 16.45 8.76

11 33.80 5.51 106.92 5.53 94.45 7.91

35



Table 2.6: Fitting parameters α(kPa) and β for the uniaxial tests on longitudinal
specimens(r2>0.98)

Sample No. Ascending Upper Descending Lower Descending

α (kPa) β α (kPa) β α (kPa) β

1 61.03 1.94 30.25 7.69 65.61 4.02

2 59.64 5.84 26.26 6.99 49.50 12.29

3 54.88 3.82 19.00 7.73 31.44 7.17

4 109.02 3.53 31.47 11.03 115.36 5.13

5 58.99 3.02 63.83 7.00 32.65 6.98

6 34.62 3.12 36.99 5.80 89.28 3.26

7 47.45 3.65 36.62 7.26 107.44 1.89

8 28.68 3.28 - - 52.80 4.44

9 61.41 1.86 122.70 4.95 176.54 2.67

10 48.03 2.19 85.52 4.75 44.80 6.61

11 45.32 3.57 213.59 1.81 106.61 3.96

2.3.2 Peel tests

The stretch response of the peel specimens varies from one specimen to another. Figure 2.8

portrays the typical stretch response (majority of the specimens) observed in the peeled halves of

a peel specimen during the experiment (shown here is that of aorta 11). The stretch in the peeled

tissue between different marker sets is plotted against the image number. Vertical lines in the figure

represent the image number at which the marker set crossed the tear propagation zone. The intimal

and the adventitial halves undergo similar stretches during the peel experiment.
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Figure 2.8: Stretch vs. image number for the (a) Intimal half and the (b) Adventitial half of the
peeled specimen oriented in the circumferential direction taken from the lower descending segment
of aorta sample 11.

There are some specimens that exhibit different response characteristics from the one described

previously. Figures 2.9a, 2.9b shows the stretch behaviour of a sample (aorta 7) where the intimal

half experiences a significantly different stretch compared to the adventitial half. Figures 2.9c, 2.9d

displays the stretch behaviour in a longitudinal sample where the stretch values between adjacent

marker sets differ significantly from each other in the adventitial half. In this sample, as the tear

propagated, a small portion of the tissue along the tear surface remains attached to both the intimal

and the adventitial halves. In order for the tear to propagate further, this portion of the tissue must

be severed. Severing of the attached tissue created large increases in the peeling force which can

be seen in the peel force per unit width behaviour of the longitudinal specimens depicted in figure

2.10. Figure 2.9e shows the severed tissue loosely hanging during the peel test.
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Figure 2.9: (a), (b) show stretch vs. image number for the intimal half and the adventitial half
of the peeled specimen oriented in the circumferential direction taken from the upper descending
segment of aorta sample 7. (c), (d) show stretch vs. image number for the intimal half and the
adventitial half of the peeled specimen oriented in the longitudinal direction taken from the upper
descending segment of aorta sample 10. (e) shows the tissue detachment occurred during the peel
test.
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Tables 2.7 and 2.8 provide the maximum and the average stretch, and the corresponding stan-

dard deviations(SD) in the peeled halves for the circumferential and the longitudinal specimens

from different segments of the aorta at the end of the peel test. The maximum and average stretches

are calculated from the stretch values of the marker sets that have crossed the tear propagation zone.

The average of the mean intimal stretch and the mean adventitial stretch is calculated for each of the

peel specimens, and a paired student t-test is conducted to evaluate the segmental and directional

variation in the stretch behavior. Longitudinal peel specimens experience higher stretches than

the circumferential peel specimens (p<0.01). While the stretch in the ascending aortic specimens

is higher compared to that of the descending aortic specimens (p<0.01), no significant difference

has been found between the upper descending and the lower descending segments of the aorta in

circumferential and longitudinal directions (p>0.05). The stretch experienced by the longitudinal

peel specimens has a larger standard deviation compared to the circumferential peel specimens in

the ascending and the descending segments.
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Table 2.7: Maximum and average stretches in the circumferential peel specimens

Sample

No.

Ascending Upper Descending Lower Descending

Intima Adventitia Intima Adventitia Intima Adventitia

Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg

1 1.41 1.37 1.77 1.50 - - - - 1.36 1.32 1.26 1.20

2 1.51 1.41 1.48 1.36 1.32 1.30 1.27 1.24 1.26 1.23 1.14 1.09

3 1.58 1.30 1.25 1.24 1.29 1.15 1.28 1.23 1.31 1.27 1.33 1.17

4 1.39 1.35 1.37 1.24 1.26 1.15 1.21 1.17 1.29 1.25 1.21 1.17

5 1.45 1.39 1.29 1.26 1.36 1.33 1.43 1.29 1.37 1.26 1.13 1.10

6 1.56 1.51 1.39 1.32 1.26 1.25 1.44 1.35 1.40 1.32 1.39 1.30

7 - - - - 1.40 1.36 1.21 1.15 1.38 1.33 1.37 1.31

8 1.38 1.35 1.51 1.35 1.36 1.28 1.22 1.16 1.34 1.30 1.25 1.18

9 1.37 1.31 1.47 1.37 1.32 1.23 1.13 1.10 1.26 1.24 1.20 1.24

10 1.48 1.41 1.30 1.29 1.20 1.19 1.22 1.14 1.31 1.27 1.39 1.30

11 1.38 1.32 1.36 1.32 1.42 1.40 1.23 1.22 1.38 1.32 1.37 1.33

Mean 1.45 1.37 1.42 1.33 1.32 1.26 1.26 1.21 1.33 1.28 1.28 1.22

SD 0.08 0.06 0.15 0.08 0.07 0.09 0.10 0.08 0.05 0.04 0.10 0.08
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Table 2.8: Maximum and average stretches in the longitudinal peel specimens

Sample

No.

Ascending Upper Descending Lower Descending

Intima Adventitia Intima Adventitia Intima Adventitia

Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg

1 1.77 1.77 1.47 1.47 1.48 1.43 1.48 1.43 1.49 1.45 1.36 1.30

2 1.63 1.61 1.90 1.82 1.45 1.41 1.34 1.27 1.45 1.41 1.33 1.25

3 1.61 1.56 1.84 1.81 1.46 1.38 1.45 1.36 1.69 1.56 1.50 1.39

4 1.63 1.56 1.49 1.47 1.39 1.36 1.27 1.23 1.38 1.30 1.27 1.21

5 1.69 1.37 2.11 1.73 1.40 1.38 1.26 1.17 - - - -

6 1.42 1.42 2.05 1.83 1.48 1.43 1.28 1.25 1.72 1.66 1.69 1.62

7 1.63 1.60 1.84 1.78 1.48 1.45 2.01 1.61 1.69 1.63 1.61 1.50

8 1.40 1.37 1.76 1.63 1.41 1.38 1.53 1.44 1.48 1.46 1.81 1.70

9 1.46 1.35 2.26 1.83 1.44 1.39 1.30 1.17 1.52 1.46 1.64 1.42

10 1.53 1.49 1.46 1.40 1.44 1.41 1.38 1.28 - - - -

11 1.33 1.30 1.71 1.70 1.52 1.51 1.38 1.21 1.58 1.52 1.31 1.23

Mean 1.55 1.49 1.81 1.68 1.51 1.41 1.43 1.31 1.56 1.49 1.50 1.40

SD 0.14 0.14 0.27 0.16 0.04 0.04 0.21 0.14 0.12 0.11 0.19 0.18

The maximum and the mean stretch undergone by the circumferential peel specimens typically

fall in the transition region from the low stiffness and the high stiffness portion of the uniaxial

stress-stretch curve in the ascending as well as the descending segments of the aorta. For example,

consider the stretch undergone by the intimal half of the circumferential specimen taken from the

lower descending segment of the aorta sample 11. Maximum and mean stretch on the intimal half

are 1.38 and 1.32 which fall in the transition region of the first Piola-Kirchhoff stress-stretch curve

(red dashed line in figure 2.7e). In case of longitudinal specimens, the maximum stretches fall in
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the stiffer region while the mean stretches fall in the transition region. This behaviour in longitu-

dinal specimens may be attributed mainly to the severing of the tissue during tear propagation.

Figure 2.10 portrays the peel force per unit width during the experiment for all the specimens

from different segments of the aorta. Similar to the stretches in the peel samples, higher standard

deviation can be observed in the peel force per unit width in the longitudinal direction compared to

the circumferential direction. Table 2.9 shows the mean peel force per unit width for the circum-

ferential samples from different segments of the aorta and the corresponding standard deviations.

The average and the standard deviation for each specimen are calculated from the plateau region

of the force-displacement data (data shown in figure 2.10 are used for calculating the mean and

standard deviation). Mean and standard deviation shown at the bottom of the table are calculated

using the mean values across the aortas. Table 2.10 shows the peel per unit width data for the lon-

gitudinal specimens. Ascending circumferential specimens have a higher peel force per unit width

compared to the descending aortic specimens (p<0.01). While no significant difference (p>0.05)

has been found between the longitudinal specimens from different segments of the aorta, mean

peel force per unit width in the ascending segment is higher compared to that for the descending

segment. There is no significant difference in the peel force per unit width between upper de-

scending and lower descending segments of the aorta (p>0.05) in the circumferential as well as the

longitudinal directions.
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Figure 2.10: Peel force per unit width of the specimens from different segments (a)
Ascending aorta-Circumferential (b) Ascending aorta-longitudinal (c) Upper descending
aorta-Circumferential (d) Upper descending aorta-longitudinal(e) Lower descending aorta-
Circumferential (f) Lower descending aorta-longitudinal
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Table 2.9: Peel force per unit width(N/m) in the circumferential specimens

Sample No. Ascending Upper Descending Lower Descending

1 84.5 ± 12.3 - 49.5 ± 6.1

2 84.6 ± 14.0 56.2 ± 7.9 25.2 ± 4.1

3 71.6 ± 9.9 60.2 ± 7.0 53.6 ± 6.8

4 100.9 ± 9.0 62.7 ± 9.7 44.4 ± 8.4

5 71.6 ± 6.3 83.1 ± 9.3 58.2 ± 13.4

6 86.9 ± 13.8 37.1 ± 6.2 57.6 ± 3.5

7 - 64.0 ± 9.4 48.6 ± 6.1

8 96.5 ± 11.0 46.1 ± 3.8 47.9 ± 3.2

9 101.6 ± 11.6 33.4 ± 3.1 24.2 ± 5.2

10 79.9 ± 7.8 61.1 ± 8.7 49.9 ± 3.6

11 82.4 ± 4.7 71.2 ± 10.3 73.3 ± 6.2

Mean ± SD 86.0 ± 10.8 57.5 ± 15.1 48.4 ± 14.1
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Table 2.10: Peel force per unit width(N/m) in the longitudinal specimens

Sample No. Ascending Upper Descending Lower Descending

1 75.8 ± 6.7 51.0 ± 9.2 62.7 ± 16.0

2 109.9 ± 26.5 82.8 ± 13.4 32.9 ± 4.2

3 138.8 ± 19.2 74.4 ± 17.4 105.5 ± 12.0

4 150.6 ± 33.7 73.6 ± 27.2 41.4 ± 6.2

5 144.2 ± 15.5 49.1 ± 10.4 -

6 66.0 ± 6.8 46.7 ± 8.7 137.8 ± 18.3

7 142.5 ± 15.3 90.3 ± 16.1 96.9 ± 12.9

8 88.0 ± 23.2 77.3 ± 9.6 64.3 ± 9.2

9 90.7 ± 11.3 48.8 ± 6.2 56.7 ± 7.7

10 95.2 ± 10.3 76.9 ± 14.6 -

11 75.7 ± 11.4 96.5 ± 12.7 80.5 ± 19.2

Mean ± SD 107.0 ± 31.6 69.8 ± 17.9 75.4 ± 33.3

Tables 2.11 and 2.12 provide the peeling energy per unit area for the circumferential and the

longitudinal specimens from different segments of the aorta calculated using a linear relation(L)

between first Piola-Kirchhoff stress and stretch, and the non-linear relation(NL) obtained from the

uniaxial experiments. The difference in T is not significant between the two methods. Therefore,

using a linear relation between the first Piola-Kirchhoff stress and stretch for the calculation of

internal energy during a peel experiment on the porcine aorta gives reasonably accurate values

of peeling energy per unit area. Comparing the peeling energy per unit area, calculated using

the linear assumption, between different segments of the aorta, ascending aortic circumferential

specimens exhibit higher T compared to the descending segments (p<0.01). There is no significant

difference between the specimens from the upper descending and the lower descending segments

(p>0.05). The peeling energy per unit area of the longitudinal specimens from the three segments
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of the aorta did not show a significant difference (p>0.05).

Table 2.11: Peeling energy per unit area(T) in J/m2 for the circumferential samples

Sample No. Ascending Upper Descending Lower Descending

L NL L NL L NL

1 200.1 195.8 - - 111.4 117.4

2 198.9 195.7 126.0 125.8 54.1 55.9

3 150.1 166.7 130.8 137.3 118.1 124.5

4 228.8 233.8 134.4 139.9 97.4 97.8

5 164.7 169.2 190.5 197.2 126.6 133.3

6 207.0 218.9 84.1 82.1 132.0 137.5

7 - - 142.3 147.5 110.4 116.9

8 222.6 238.3 100.9 98.9 106.3 108.0

9 231.1 240.8 71.5 72.4 51.8 53.4

10 182.2 193.4 129.1 134.9 112.4 122.5

11 187.2 202.7 162.1 159.6 166.6 173.1

Mean 197.3 205.5 127.2 129.6 107.9 112.7

SD 26.9 26.8 35.2 37.2 32.7 34.6
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Table 2.12: Peeling energy per unit area(T) in J/m2 for the longitudinal samples

Sample No. Ascending Upper Descending Lower Descending

L NL L NL L NL

1 191.2 193.3 121.7 119.7 147.9 150.0

2 289.7 123.0 191.8 209.5 75.8 59.9

3 373.3 312.6 173.5 189.7 257.3 270.7

4 374.2 381.6 166.5 176.7 92.1 94.2

5 343.8 375.3 111.3 113.6 - -

6 173.0 141.6 107.6 112.6 357.1 356.6

7 367.3 387.6 226.3 212.2 245.5 251.5

8 216.6 231.9 182.8 - 161.4 130.0

9 226.6 240.6 110.2 104.3 138.3 119.8

10 225.4 246.3 179.3 184.7 - -

11 182.3 187.0 224.7 219.1 187.8 192.0

Mean 269.4 256.4 163.2 164.2 184.8 180.5

SD 81.78 95.36 44.33 46.39 88.88 95.83

2.4 Discussion

To the authors knowledge, none of the previous studies reported the stretch in the peel spec-

imens during a peel test on human or animal aortas. However, some inferences can be drawn

from some of the previous studies. Noble et al.[54] conducted peel tests on porcine thoracic aorta.

Taking the mean displacement of the clamps at the end of the test (refer to the mean curve in

"controls axial" and "controls circ" in figure 8 of [54]), mean stretch in the axial direction can

be calculated as 1.36 and mean stretch in the circumferential direction is 1.24. However, No-

ble et al. have not reported if the tests were done on ascending or descending porcine aorta.

These stretch values are similar to the stretches in the descending segment in our study. Som-
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mer et al.[39] reported mean dissection energy during peeling experiments on human abdominal

aorta media. Calculating the mean length(in m) of the specimens at the end of the test using

le = Wext/(2(F/w)) and the initial length of the specimen using li = le −Wint/(F/w), we get

mean stretch in the circumferential direction as le/li = 0.037/0.030 = 1.23 and in the longitudinal

direction as le/li = 0.029/0.025 = 1.16. The mean stretch in the circumferential direction of the

human abdominal aorta is similar to the stretches in the circumferential direction of the descending

porcine aorta, while the stretch in the longitudinal direction is lower than the porcine thoracic aorta.

However, note that the displacements at the end of the peel test for the longitudinal specimens in

the study by Sommer et al. have a larger standard deviation compared to the circumferential speci-

mens. Tong et al.[40] reported peeling experiments on human carotid arteries. Their stretch values

(∼1.10) seem to be lower than that for the porcine thoracic aorta and the human abdominal aorta.

Our study as well as these previous studies clearly indicate a segmental variation in the stretches

experienced by the peel specimens.

The peel force per unit width is found to be higher in the ascending aorta compared to the

descending aorta. Mean peel force per unit width in the longitudinal direction is typically higher

than the mean peel force per unit width in the the circumferential direction. This behaviour was

previously observed in human and porcine aortas, and human carotid bifurcations ([39], [86], [52],

[54], [87]). Resistance caused by the circumferentially oriented smooth muscle cells[39] and a

higher number density of the "radially-running" fibers (interlamellar) in the longitudinal direction

compared to the circumferential direction[88] of the aorta are reported to be the possible reasons

for higher peel force per unit width in the longitudinal direction in the human aortas. Even though

we haven’t performed any histological analysis on the peeled tissue, the similarities in the lamellar

organization of the aorta in porcine and humans[89] and significant local tearing of the tissue in

the longitudinal peel specimens reflects the presence a tear propagation mechanism in the porcine

aortas analogous to humans. Peel force per unit width in the porcine ascending aorta is lower than

the reported values for aged, healthy human aortas[52] but is higher compared to the dissected

ascending aortas[90] and the non-dissected ascending thoracic aortic aneurysms[53] from humans.
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Significant tearing and severing of the internal tissue was observed during the peeling exper-

iment on the longitudinal specimens (refer to figure 2.9e). As noted in the previous studies by

Sommer et al.[39] and Tong et al.[40], tear propagation in the longitudinal specimens crosses the

elastic laminae creating a "rougher" dissection surface. In this process some of the internal tissue

tears and hangs loose from the peeled halves. Therefore, the peel force per width alone may not be

a reasonable parameter for comparison of the directional properties. The thickness of the peeled

halves is different from one another (i.e adventitial half versus intimal half) at the end of the ex-

periment.Nevertheless, mean peel stress in the peeled halves can be calculated using the equation

σpeel =
2Favg

wt
, where w and t are width and thickness of the specimen. In the circumferential direc-

tion, mean peel stresses are 54.8 ± 6.1 kPa, 43.1 ± 11.9 kPa and 49.5 ± 16.4 kPa respectively for

the ascending, the upper descending and the lower descending segments of the aorta. Mean peel

stresses in the longitudinal direction are 68.8 ± 26.8 kPa, 57.7 ± 16.8 kPa and 69.5 ± 26.9 kPa

respectively for the the ascending, the upper descending and the lower descending segments of the

aorta. In the longitudinal direction, mean peel stresses are highly correlated (p>0.2) in the three

segments of the aorta. In fact, mean peel stress in the lower descending aorta is slightly higher than

the ascending and the upper descending aorta which is not the case with peel force per unit width.

Even in the circumferential direction, mean peel stresses have higher p-values showing a better

correlation compared to the peel force per unit width. Using the same methodology for the data

reported on human abdominal aortic media by Sommer et al.[39], we obtain mean peel stresses in

the circumferential and longitudinal direction to be ∼40.8 kPa and ∼40.7 kPa respectively which

are nearly the same as opposed to peel force per unit width. Mean peel stress appears to be a

parameter that is better correlated between different segments and directions of the aorta.

The influence of non-linearity is found to be minor in the estimation of peeling energy per unit

area. This can be attributed to two factors: 1) Mean stretch experienced by the peel specimens

is in the transition region of the stress-stretch curve where non-linearity is mild, 2) Even though

there is a considerable difference in the stored energy per unit volume (ψ) calculated using linear

and the non-linear assumptions, total internal energy (ψwtC) stored in the specimen at the end of
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the peel test is small (∼10%) compared to the external work done which diminishes the effect of

nonlinearity in the estimation of peeling energy per unit area. Peeling energy obtained in this study

for the descending aorta (∼129.6 J/m2 in circ and ∼164.2 J/m2) are lower than the peeling energy

values for control specimens reported by Noble et al.[54] (∼151.8 J/m2 in circ and ∼183.3 J/m2).

Tong et al.[51] reported a 28% increase in the peel force per unit width when the displacement

rate is changed from 1mm/min (rate used in [39]) to 1mm/sec (rate used in [54]). The higher

peel force per unit width and the peeling energy reported by Noble et al.[54] is most likely due

to the different displacement rate used in their study. However, the values of peeling energy of

the porcine thoracic aorta are much higher compared to the peeling energy in human thoracic

aorta [91], abdominal aorta[39], carotid artery [40], abdominal aneurysmal wall[51] and coronary

arteries [55].

The effect of freezing on the peel properties has not been addressed here. A study by O’Leary

et al.[92] found negligible differences in the biaxial mechanical properties of the fresh and the

frozen porcine specimens up to a year from the harvest when stored at -20◦C in isotonic saline

solution. Therefore, we do not expect a significant difference in the peel properties between the

fresh and the frozen porcine specimens.

Some limitations of the current study must be acknowledged. In certain cases of aortic dis-

section, the tear propagates into the abdominal aorta[93]. Peel properties of the abdominal aorta

are not examined here as the main focus of this study has been the thoracic aorta, where aortic

dissection typically initiates. Hydration and temperature may have discernible influence on the

mechanical properties of the aorta ([94], [95]). The values of the peel properties presented in this

study may differ when the specimens are tested in a tissue bath maintained at 37◦C. In addition,

the peel properties seem to differ with the circumferential region from which the specimens are

obtained[53]. We did not distinguish between the regions within each segment when obtaining

the specimens. Further, we haven’t noticed any significant raise/drop in the peel force per unit

width when testing individual circumferential specimens from the ascending aorta. It remains to

be seen if porcine aortas also exhibit regional variation as the human aortas. Peel tests conducted
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in this study represent mode-I type of tear propagation in either the circumferential directions or

the longitudinal directions but not both. Additional tests that account for the in vivo loading condi-

tions and residual stresses are needed to examine the factors influencing tear propagation in human

aortas.

Finally, porcine aortas differ in terms of the concentration of the various wall constituents

(elastin, collagen, cells etc.) from human aortas. Previous studies have also reported differences

in the mechanical behavior of the porcine aortas compared to aged human aortas[96]. Porcine

thoracic aorta is very similar to the aorta of young healthy humans (refer to [97], [98], [13]) who

often do not experience aortic dissection. Despite these differences between human and porcine

aortas, segmental variations in the peel properties observed in the porcine thoracic aorta may be

very similar to that of human aortas, even though individual values might differ. We found in our

study that the peel force per unit width in the ascending porcine aorta is less than the peel force

per unit width in the aged but healthy human aortas. Due to the much stiffer response of the aged

human aortas compared to the porcine aortas[96], the stretch values during the peel experiments on

human aortas may still be in the transition region thus rendering the linear assumption a reasonable

approximation for the estimation of internal energy.
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3. EXPERIMENTAL DETERMINATION OF THE ANISOTROPIC MECHANICAL

RESPONSE OF THE PORCINE THORACIC AORTA

3.1 Introduction

Understanding the mechanical behavior of the aortic wall in good health and disease may

provide fundamental insights into the pathology of diseases affecting the aortic wall, such as

aneurysms, dissection, etc. In this chapter, we are interested in understanding the directional de-

pendence of the mechanical properties of the porcine thoracic aorta using uniaxial tensile tests.

The data presented in this chapter can inform the development of new constitutive relations for

arterial walls and can be used to evaluate the ability of existing constitutive relations in capturing

the uniaxial behavior of the porcine thoracic aorta.

Inflation-extension behavior of various arterial segments have been studied extensively, and

well documented ([99], [100], [101], [102], [103]). Two early studies that investigated the anisotropy

of the arterial wall using such experiments and laid the basis for the choice of the orthotropic con-

stitutive relations1 for the arterial wall are due to [109] who examined the material symmetry of the

canine thoracic aorta and noted that the blood vessel may be treated as a cylindrically orthotropic

tube, and [110] who studied the anisotropy of rat carotid arteries and concluded that the arterial

wall of large elastic arteries may be regarded as an incrementally isotropic material for the de-

formations occurring in-vivo. However, there are two caveats with regard to these studies. First,

material symmetry is defined at a point and not on gross arterial segments. Second, material sym-

metry is defined with respect to a particular reference configuration, and it changes with choice of

the reference configuration. Therefore, material symmetry of the aorta with respect to the tubular

configuration may differ from that of a configuration obtained by flattening the arterial segment

1It is well known that the arterial wall is a mixture of cells, extracellular matrix constituents, water, and nutrients.
It is inhomogeneous, inelastic, anisotropic, and its constituents are continuously replenished and replaced. In fact,
arterial elastin, which is generally regarded as a nearly elastic material, was shown to exhibit viscoelastic behavior
([104], [105], [106]). The walls of large arteries like the aorta also contain smaller blood vessels called vasa vasorum
([107]). Modelling such a complex mixture as a homogeneous elastic material is an oversimplification though it might
offer some clues about some aspects of its mechanical behavior, it may be insufficient for in vivo arterial modeling
(see [108] concerning the inadequacies and complexities of modeling the walls of blood vessels)
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after making a longitudinal cut2. Despite the limitations of these studies, it has now become com-

mon to assume large arteries like the aorta, carotid artery, etc. to have orthotropic symmetry with

respect to the radial, the axial, and the circumferential planes in the flattened configuration ([111],

[112]).

Uniaxial and biaxial tests on flattened arterial specimens are unavoidable as arterial tissue is

not always available in the tubular form. These tests are particularly useful in case of an aneurysm

where the tissue is no longer in an axially symmetric shape. Therefore, one has to understand the

mechanical properties and the material symmetry of healthy and diseased arteries in the flattened

configuration to develop appropriate constitutive relations with this configuration as the reference

configuration. In the case of anisotropic materials, uniaxial and biaxial tests along the planes of

symmetry do not fully characterize the mechanical response of the material, as they do not inves-

tigate the mechanical response under shear deformation. Most of the studies in the literature con-

duct uniaxial and biaxial experiments with loading along the circumferential and the longitudinal

directions ([111] , [112], [11], [4], [113]). Additionally, most of these studies assume orthotropic

symmetry in the flattened configuration, and use the uniaxial and the biaxial constitutive response

data to determine the material parameters of the constitutive relations. In fact, there are very few

studies that concern tests on specimens oriented along the directions that do not coincide with the

circumferential and the axial directions. Recent studies by [114] and [59] investigated the uniaxial

failure properties of the dogbone shaped samples from the porcine abdominal and thoracic aortas

cut at different orientations with respect to the circumferential direction. Another study by [115]

evaluated the uniaxial viscoelastic properties of the porcine thoracic aorta on specimens oriented in

different directions. However, these papers do not measure the shear strain during the uniaxial test

on specimens that are not oriented along the circumferential and the axial directions, which is likely

to be non-zero when the loading direction does not coincide with the directions of symmetry. We

present the nominal stress and the Green-St. Venant strain data under uniaxial extension of porcine

thoracic aortic specimens oriented at 0◦, 30◦, 45◦, 60◦ and 90◦ with respect to the circumferential

2Arterial specimens typically remain curved even after introducing a longitudinal cut and it is common to flatten
them before a uniaxial/biaxial test
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direction.

3.2 Materials and methods

3.2.1 Materials

Fresh aortas (n=10) were collected from male hogs from a slaughterhouse on the Texas A&M

university campus during meat harvest and transported in ice. The hogs were not killed for the

purpose of this study. The hogs from which aortas were obtained weighed about 250-300lbs,

and were 6-8 months old at the time of harvest. They originated from various breeds that are

typically used for meat in the United States. Loose connective tissue was carefully removed,

and the section of the aorta from the end of the aortic arch to the third branching artery (upper

descending aorta) was dissected and placed in a centrifuge tube containing 0.01M Phosphate Buffer

Saline(PBS) solution. The centrifuge tube was stored in a freezer at -20oC until the day before the

experiments3. The day before testing, aortas were taken out and thawed overnight at 4oC in a

refrigerator. The aortas were cut open longitudinally, and five dumbbell shaped specimens (Total

length ∼30mm, gauge length ∼10mm, gauge width ∼3mm, width of the wider portion of the

specimen ∼6mm) were punched out as shown in figure 3.1b using a custom machined punch.

These five specimens were oriented at 0◦, 30◦, 45◦, 60◦ and 90◦ with respect to the circumferential

direction. A template printed on paper as shown in figure 3.1a was placed on the intimal side and

used for cutting the specimens. We shall refer to the X-coordinate direction in figures 3.1a and

3.1b the circumferential direction as this is the orientation corresponding to the circumference of

the cross-section when in the flattened shape. The specimens oriented at 30◦, 45◦ and 60◦ will

be referred to as off-axis specimens. Any loose connective tissue left was cleared off of these

specimens and the specimens were placed in PBS at room temperature. Images of the specimens

were taken before the experiments for measuring their dimensions. Table 3.1 presents the mean

and the standard deviation of the dimensions of the specimens.

3[92] found negligible change in the biaxial mechanical response of porcine aorta , when stored at -20◦C in isotonic
saline solution and tested within one year of the harvest.
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Figure 3.1: (a) Template used for cutting the samples (b) Porcine aorta with dumbbell-shaped
samples cut in different directions. We shall refer to the X-coordinate direction in figures 3.1a and
3.1b the circumferential direction as this is the orientation corresponding to the circumference of
the cross-section when in the flattened shape(c) A uniaxial sample during the test with the speckle
pattern, (d) Typical load vs. displacement for the preconditioning cycles and the failure test. We
shall refer to the X-coordinate direction in figures (a) and (b) the circumferential direction.
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Table 3.1: Mean and standard deviation of length between the clamps, width and thickness of the
specimens in mm

0◦ (circ) 30◦ 45◦ 60◦ 90◦ (long)

Length between clamps 22.63 ± 0.32 22.77 ± 0.64 22.42 ± 0.46 22.71 ± 0.40 23.07 ± 0.93

Width 2.93 ± 0.17 2.95 ± 0.13 3.07 ± 0.18 3.06 ±0.09 3.01 ± 0.17

Thickness 2.31 ± 0.28 2.14 ± 0.25 2.27 ± 0.17 1.95 ±0.23 2.15 ± 0.18

3.2.2 Methods

The specimens were taken out of the PBS solution before the experiments and fixed to the

clamps. Black Rust-Oleum® paint and primer with flat finish was sprayed onto the intimal surface

of the specimen to create a random speckle pattern. The speckle pattern for one of the samples

is shown in figure 3.1c. The specimen was then transferred to a biaxial machine for testing. For

details regarding the biaxial machine, please refer to [116].

3.2.2.1 Experimental protocol

The specimens usually remained curved after placing them in the testing machine. A preload

of approximately 0.05 N was applied to straighten the specimens. The length of the specimen

between the clamps was measured using a vernier calipers. Preconditioning was carried out by

moving one of the clamps to produce a nominal stretch rate of 2%/s up to a nominal stretch of 1.5

(ratio of current length of the specimen between the clamps to the initial length at 0.05N preload)

and returning to the initial length at the same stretch rate. Seven preconditioning cycles were

performed. The load-displacement data started repeating after 5-6 cycles. The load-displacement

data and the images of the specimen were captured every 0.5s. The load-displacement data from

one of the experiments is shown in figure 3.1d. After completing 8 cycles, the specimen was

immediately stretched until failure at a stretch rate of 2%/s.
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3.2.2.2 Data analysis

The load data from the loading part of the 8th cycle and from the failure test was divided by the

cross-sectional area of the specimen measured from the images taken before the experiment for

calculating the nominal stress. The images were used for extracting the Green-St. Venant strain

using Digital Image Correlation (DIC). The DIC analysis was performed using Ncorr ([117]),

which is a 2D digital image correlation MATLAB program. The Green-St. Venant strain (E) is

averaged over the central region of the specimen (∼1.5mm×1.5mm). The X-direction represents

the direction along which the clamps were displaced.

3.2.3 Constitutive models and Finite element simulations

To understand the implications of the experimental data obtained in this study, we examined

the ability of the constitutive parameters reported in literature to represent the off-axis uniaxial

data. We investigated the following two constitutive relations that are commonly used to model the

mechanical response of the aortic wall4. We reiterate that the constitutive relations discussed refer

to purely elastic bodies and as we mentioned earlier, walls of blood vessels are very complex mix-

tures (see [107]), and thus the constitutive relations considered are very crude approximations for

the body under consideration (see [108]). The first constitutive relation considered is a hyperelastic

constitutive relation proposed by Baek et al.[67] whose stored energy function is given by

W =
c

2
(I1 − 3) +

4∑
i=1

ki1
4ki2

(
ek

i
2(Ii4−1)

2

− 1
)
, (3.1)

where c is a material parameter, ki1 and ki2 are the material parameters associated with the ith

fiber family. Invariants I i4 are given by I i4 = Mi.CMi, where Mi is the unit vector along the

ith fiber, C = FTF is the right Cauchy-Green tensor with F as the deformation gradient. Four

fibers are considered in this model with M1 along the circumferential direction of the aorta, M2

4Most of the constitutive relations used for describing the mechanical response of arteries, including the ones listed
here, assume a form of the stored energy that is dependent on a partial set of fiber invariants. While such models
demonstrated good ability to capture the biaxial constitutive response of the arteries, they may be ill-equipped to
capture the shear behavior of the orthotropic materials ([78]), and may display a behavior that is not typical of fiber
reinforced materials under certain deformations ([79], [80]).
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along the longitudinal direction, M3 and M4 symmetrically oriented at angles ±ϕ with respect

to the circumferential direction. The fiber families along M3 and M4 are generally regarded as

mechanically equivalent, and the material constants associated with these directions are taken to

be k31 = k41 and k32 = k42 . Thus, there are 8 parameters associated with this constitutive relation.

The first Piola-Kirchhoff stress for this constitutive relation is given by

P = −pF-T + cF +
4∑

i=1

ki1
(
I i4 − 1

) (
ek

i
2(Ii4−1)

2)
FMi ⊗ Mi, (3.2)

and the Cauchy stress associated with this constitutive relation is given by

T = −pI + cB +
4∑

i=1

ki1
(
I i4 − 1

) (
ek

i
2(Ii4−1)

2)
FMi ⊗ FMi, (3.3)

where B = FFT is the left Cauchy-Green tensor. This constitutive relation is reported to have a

good capability in modeling the uniaxial and the biaxial mechanical response of the arterial wall

when compared to other popular constitutive relations and in particular, the mechanical response of

the porcine thoracic aorta ([118], [3]) and the human abdominal aorta [119]. Material parameters

associated with this constitutive relation for the porcine thoracic aorta are taken from the study by

Schroeder et al. [3] (Table A.1). They obtained these parameters by fitting the constitutive rela-

tion to the biaxial stress-deformation data on specimens oriented in circumferential-longitudinal

direction.

The second constitutive relation is a hyperelastic constitutive relation proposed by Holzapfel

et al.[112]. Stored energy function for this constitutive relation is given by

W =
c

2
(I1 − 3) +

2∑
i=1

k1
2k2

(
e
k2

[
ρ(Ii4−1)

2
+(1−ρ)(I1−3)2

]
− 1

)
, (3.4)

where c is a material parameter, k1 and k2 are the material parameters associated with two mechan-

ically equivalent fibers oriented symmetrically at ±ϕ with respect to the circumferential direction,

and the invariants I i4 are given by I i4 = Mi.CMi. The anisotropic term due to the ith-fiber con-
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tributes to the stored energy only when the invariant I i4 > 1. The first Piola-Kirchhoff stress (P)

and the Cauchy stress (T) associated with this constitutive relation are given by

P = −pF-T +

(
c+ 2(1− ρ)

2∑
i=1

k1

(
e
k2

[
ρ(Ii4−1)

2
+(1−ρ)(I1−3)2

])
(I1 − 3)

)
F+

2ρ
2∑

i=1

k1
(
I i4 − 1

)(
e
k2

[
ρ(Ii4−1)

2
+(1−ρ)(I1−3)2

])
FMi ⊗ Mi, (3.5)

T = −pI +

(
c+ 2(1− ρ)

2∑
i=1

k1

(
e
k2

[
ρ(Ii4−1)

2
+(1−ρ)(I1−3)2

])
(I1 − 3)

)
B+

2ρ
2∑

i=1

k1
(
I i4 − 1

)(
e
k2

[
ρ(Ii4−1)

2
+(1−ρ)(I1−3)2

])
FMi ⊗ FMi. (3.6)

Contribution of the anisotropic term corresponding to the ith-fiber direction is neglected when

I i4 < 1 by replacing all I i4−1 and (I i4−1)2 terms with H (I i4 − 1) (I i4 − 1) and H (I i4 − 1) (I i4 − 1)
2

respectively, in equations 3.5 and 3.6, where H(x) is a step function defined by

H(x) =


0, x < 0

1, x > 0

(3.7)

with a smooth variation from 0 to 1 between x = −0.0005 and x = 0.0005. Material parameters

associated with this constitutive relation for the porcine thoracic aorta are taken from Peña et al.[4]

(Table 2 in [4]).

3.2.3.1 Finite element simulations

A dumbbell shaped geometry shown in figure 3.8a was used for simulations (all dimensions in

millimeters). Plane stress conditions were assumed, and a deformation gradient of the form given
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by

F =


1 + ∂u

∂X
∂u
∂Y 0

∂v
∂X 1 + ∂v

∂Y 0

0 0 1

(1+ ∂u
∂X)(1+

∂v
∂Y)−

∂u
∂Y

∂v
∂X

 , (3.8)

was assumed, where u = u(X,Y) and v = v(X,Y) are the displacements along X-axis and Y-

axis respectively. {X,Y} are the coordinates of a particle in the undeformed configuration, which

was assumed to be the stress-free. Incompressibility of the material is assumed in calculating the

deformation gradient. To simulate the clamping of the specimen at the left and the right ends, the

following boundary conditions were applied: 1) The left edge of the specimen was held fixed by

specifying the boundary condition, u = 0 and v = 0, 2) The right edge was allowed to move only

in the X-direction by applying a displacement u0 in the X-direction (u = u0) and holding v = 0.

A traction free boundary condition was applied to the remaining edges through PN = 0, where N

is the unit normal to the edge in the reference configuration. The deformation gradient given by

equation 3.8 is substituted in equations 3.2, 3.5 to obtain the first Piola-Kirchhoff stress, and the

Lagrange multiplier p is eliminated from the equations using the plane stress condition, T33 = 0.

The governing equations are given by

∂PXX

∂X
+
∂PXY

∂Y
= 0 (3.9)

∂PYX

∂X
+
∂PYY

∂Y
= 0 (3.10)

The displacement u0 is varied from 0mm to 11mm such that the nominal stretch varies from 1 to

1.5. The governing equations were solved in COMSOL Multiphysics (Mathematics module) using

quadratic triangular elements. The relative tolerance was set to 10−6 for the simulations. The mean

value of each component of the Green-St. Venant strain (E) is computed over a square region at
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the center of the specimen, highlighted in figure 3.8a using the equation

Emean
ij =

∫
A

EijdA∫
A
dA

=
1
2

∫
A
(Cij − δij) dA∫

A
dA

(3.11)

where δij is the Kronecker delta.

3.3 Results

The legend in all figures indicate the aorta from which the specimen was obtained. Figure 3.2

shows the mean curves for the variation of the nominal stress, EXX, EYY, and EXY with nominal

stretch for the loading part of the 8th-cycle for all specimens. Data for individual specimens is

given in Appendix A. Figure 3.3 shows the variation of the nominal stress with nominal stretch,

and figures 3.4, 3.5 and 3.6 show the dependence of EXX, EYY and EXY, respectively on nominal

stretch for the failure test. Response characteristics during the last cycle are very similar to that

of the failure test. Anisotropy of the aorta is evident even at stretches close to 1.1, where the

mean response curves from different orientations shown in figure 3.2 do not overlap one another.

For the specimens from all orientations, the nominal stress and EXX increases with stretch, while

EYY decreases with nominal stretch due to Poisson effect. As shown in figure 3.3, specimens

from all orientations display a nonlinear nominal stress-nominal stretch response with toe, heel

and stiff (often called the "linear" region in the literature) regions that is characteristic of the soft

tissues, with an appreciable change in the slope occurring in the stretch range of 1.35-1.45. This

stiffening response is generally attributed to the increased fraction of collagen fibers straightening

with stretch, and resisting the deformation ([120]). Within the same stretch range, a corresponding

change in the slope can be noticed in the EXX-nominal stretch and the EYY-nominal stretch curves.

The slope of the EXX-nominal stretch curve decreases slightly (see figure 3.4) after a stretch of

1.35-1.45 due to faster stiffening of the narrower gauge region of the specimen, which is subjected

to a higher nominal stress at a given value of nominal stretch, compared to the wider region of the

specimen. Further, the rate at which the specimen contracts (−d(EYY)/d(Nominal stretch)) due

to Poisson effect, in the direction perpendicular to the loading also increases beyond the nominal
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stretch of 1.35 for all the specimens (see figure 3.4) due to increased stiffness of the specimen in

the loading direction owing to the straightening and reorientation of the collagen fibers.

The qualitative features of the EXY-nominal stretch response strongly depend on the orientation

of the specimen (figures 3.2d and 3.6). For specimens oriented at 30◦ with the circumferential

direction, EXY monotonically decreases with nominal stretch. Interestingly, specimens oriented at

45◦ and 60◦ exhibit a non-monotonic crescent-shaped relation between EXY and nominal stretch,

with a minimum in EXY occurring between nominal stretches of 1.35 and 1.45. The slope of the

EXY-nominal stretch curve is negative at smaller stretch and becomes positive at larger nominal

stretch. This leads to the specimens undergoing a negative shear strain at smaller values of the

nominal stretch. At larger nominal stretches, shear strain becomes positive as seen in figures 3.6c

and 3.6d.
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Figure 3.2: Variation of the mean values of (a) nominal stress, (b) EXX, (c) EYY , (d) EXY with
nominal stretch for the loading part of the 8th-cycle.
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Figure 3.3: Variation of nominal stress with nominal stretch for the samples oriented at (a)0o (circ),
(b) 30o, (c) 45o, (d) 60o, (e) 90o (long) with the circumferential direction for the failure test. The
legend in the figure indicates the aorta from which the specimen is obtained.
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Figure 3.4: Variation of EXX with nominal stretch for samples oriented at (a)0o (circ), (b) 30o, (c)
45o, (d) 60o, (e) 90o (long) with the circumferential direction for the failure test. The legend in the
figures indicates the aorta from which the specimen is obtained.
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Figure 3.5: Variation of EYY with nominal stretch for samples oriented at (a)0o (circ), (b) 30o, (c)
45o, (d) 60o, (e) 90o (long) with the circumferential direction for the failure test. The legend in the
figures indicates the aorta from which the specimen is obtained.
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Figure 3.6: Variation of EXY with nominal stretch for samples oriented at (a)0o (circ), (b) 30o, (c)
45o, (d) 60o, (e) 90o (long) with the circumferential direction for the failure test. The legend in the
figure indicates the aorta from which the specimen is obtained.
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Table 3.2 presents the mean and the standard deviation of the nominal stress at failure (com-

plete rupture) for specimens from different orientations. The failure stress decreases with the

increased orientation angle of the specimen with the circumferential direction. However, no sig-

nificant difference (p>0.3 in a paired t-test) in the failure stress was found between the 60◦ and the

longitudinal specimens.

Table 3.2: Mean and standard deviation of the failure stress in MPa.

0◦ (circ) (n=10) 30◦ (n=9) 45◦ (n=9) 60◦ (n=9) 90◦ (long) (n=9)

2.35 ± 0.40 1.54 ± 0.22 1.03 ± 0.16 0.86 ± 0.17 0.76 ± 0.12

Important features of the failure of the specimens from different orientations are shown in

figure 3.7. Except for four specimens, rupture always occurred in the narrow (gauge) region. How-

ever, the location where the cleavage occurs varies along the thickness direction of the specimen.

As shown in figures 3.7a-3.7d, the location of cleavage differs between the intimal side (the surface

with the speckle pattern) and the adventitial side resulting in a shearing type delamination, which

can be seen in figures 3.7a and 3.7b. All the longitudinal samples had cleavage initiation from the

intimal side. For the circumferential specimens, the cleavage was either abrupt or initiated from

the intimal side. However, there was no consistent pattern for the off-axis specimens. Cleavage

initiation was almost equally likely from both the intimal and the adventitial sides, and many 30◦

specimens failed abruptly. A large delamination region can be observed in circumferential spec-

imens (an example is shown in figures 3.7a and 3.7b). Specimens from other orientations also

display this delamination phenomenon with a smaller delamination region (see smaller delamina-

tion regions for 45◦ and 60◦ specimens in figures 3.7d and 3.7f, respectively). It can be further

observed in figures 3.7d and 3.7f that the rupture plane is not always orthogonal to the direction of

uniaxial extension. This is especially true for the rupture in off-axis specimens, where the rupture
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plane is almost always angled with respect to the direction of uniaxial extension.

(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Figures (a), (b) show failure in the circumferential specimen cut from aorta 8, Figures
(c), (d) show failure in the 45◦ specimen cut from aorta 3, Figures (e), (f) show failure in the 60◦

specimen cut from aorta 6. In figures (a), (c) and (e), the intimal surface is facing the top of the
image and the adventitial surface is facing the bottom of the image. Images in figures (b), (d) and
(f) were taken with the camera facing the intimal surface.
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3.4 Discussion

In this chapter, we have presented the data on the uniaxial mechanical response of the porcine

thoracic aorta using dumbbell specimens oriented along 0◦, 30◦ , 45◦, 60◦, and 90◦ with the cir-

cumferential direction. Very few studies in literature examine the mechanical properties of the

aorta along non-circumferential and non-longitudinal directions ([115], [114], [59]). The studies

by [114] and [59] presented the constitutive response of the specimens under the assumption that

the grips prevented the off-axis samples from shearing. The assumption that the grips prevent the

off-axis samples from shearing, as shown in our study, does not seem to be appropriate as the

off-axis specimens undergo significant shearing. Therefore, it is important to account for the shear

strain in the off-axis tests. It must be noted that the circumferential and the longitudinal specimens

also undergo a small amount of shear (EXY), which may be attributed to a small error associ-

ated with the specimen orientation when punching out. Even though it is very difficult to cut the

specimens to align with circumferential and longitudinal directions perfectly, and one commonly

expects them to undergo a small amount of shear during uniaxial extension, the shear strain data for

the circumferential and the longitudinal specimens are often not reported in the literature. In fact,

many studies do not even report EYY or λY, and use only the nominal stress- nominal stretch data

for finding the material parameters of the constitutive relations. Measuring full-field deformation

may enable better estimation of material parameters that appear in the constitutive relations used

to describe blood vessel walls using techniques like inverse numerical analysis.

The simulation results for the four-fiber family constitutive relation are shown in figure 3.8, and

the results for the two-fiber constitutive relation are shown in figure 3.9. While material parameters

for both the constitutive relations obtained from biaxial tests are able to qualitatively represent the

nominal stress-nominal stretch response of the specimens from different orientations to an extent

(compare these results with figure 3.2a), they are unable to capture the variation of EYY and EXY

with nominal stretch. Such discrepancy further points to the important and useful information

provided by the tests along non-circumferential and non-longitudinal directions.
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Figure 3.8: (a) Dumbbell geometry used for simulations. All dimensions are shown in mm. The
square region used for calculating the mean values of the Green- St. Venant strain is shown using
the red line. Figures (b), (c), (d) are numerical results obtained using material parameters c = 3.82,
k11 = 77.84, k12 = 0.55, k21 = 98.42, k22 = 0.99, k31 = k31 = 68.78, k32 = k42 = 0.89, ϕ = 37.82
reported by [3]. c, ki1 are expressed in kPa, ϕ is expressed in degrees, and ki2 are dimensionless.
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Figure 3.9: Figures (a), (b), (c) are numerical results obtained using material parameters c = 20.0,
k1 = 40.0, k2 = 2.4, ρ = 0.112, ϕ = 35.5 reported by [4]. c, k1 are expressed in kPa, ϕ is
expressed in degrees, and k2 and ρ are dimensionless.

As pointed out in the results section, the porcine aorta exhibits anisotropic response even at

small stretches where the mechanical behavior is thought to be elastin dominant. Previous stud-

ies by [121], and [122] showed the arterial elastin to be anisotropic, and the data presented here

indicate the same. In addition to elastin, the aorta is a mixture of several extracellular matrix

constituents (collagen, glycosaminoglycans, water, etc.), smooth muscle cells and fibroblasts. Dif-

ferent constituents of the arterial wall may have different natural configurations and may have been
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deposited in the aortic wall at a different pre-stress/pre-stretch ([123]) . The concept of multiple

natural configurations was used to model phenomena like plasticity, viscoelasticity, phase transi-

tion ([124], [125]), and to describe the growth and remodeling in biological tissues ([126]). The

slope change that occurs in nominal stress-nominal stretch, E-nominal stretch curves at a nominal

stretch between 1.35-1.45 is a possible indication of a need for using more than one natural con-

figuration for modeling the mechanical response of the aorta even in the absence of growth and

remodeling. Further, it is beyond the stretch of 1.3, where collagen contributes to the mechani-

cal response, the differences between aortas from different animals, and specimens from different

orientations become prominent. Using multiple natural configurations to model the mechanical

response of the arterial wall may assist in better quantification of the contribution of individual

constituents to the overall arterial behavior.

Damage and failure in thoracic and abdominal aorta have been studied extensively in the past

([14], [11], [114], [59], [24], [25], [127], [60], [12], [128], [10]). [114] and [59] reported a de-

creasing tensile strength of the aorta from the circumferential direction to the longitudinal direction

in the porcine thoracic and abdominal aortas, and the human ascending thoracic aortic aneurysms.

Although actual values of the failure strength are different in our study, we observed a similar trend

in the failure strength. However, stress at failure is clearly insufficient to characterize rupture in

the porcine aorta as evident from differences in the cleavage initiation and the location of rupture

between the layers of the aorta. Further, it indicates the tensile strength of the individual layers of

the aorta to be different. Previous studies by [14], [128] reported a similar phenomenon, where

failure initiation occurs in one of the wall layers. Constitutive relations for describing the failure

of the arterial wall must therefore account for layer-specific differences in the mechanical and the

failure properties. Examining the directional dependence of the layer-specific mechanical proper-

ties will provide additional data for evaluating the constitutive relations that are used to model the

layer-specific mechanical response, and the data provided here can be used to assess the ability of

such constitutive relations to simulate the response of the whole aortic wall.

Some limitations to our experiments must be pointed out. We conducted our experiments at
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room temperature without a tissue bath. Temperature and hydration of the tissue may produce

certain differences in the mechanical properties ([94], [95]) compared to the data reported here.

We do not, however, expect this to have a significant effect on the overall qualitative features of

the mechanical response of the aorta. For the aorta inside the human body, there is a continuous

supply of blood to the outer third of the media through vasa vasorum, which is absent in ex-vivo

experiments. It is unknown how this might affect the mechanical properties of the aorta. We chose

a specimen size that ensured rupture to occur in the gauge region of the dumbbell, and the strain

data to be nearly uniform in the central region of the specimen. We conducted some preliminary

tests on longer and wider rectangular specimens from different orientations, where we observed

similar mechanical response. Further investigation is needed to evaluate the influence of sample

size on the mechanical properties, as there is no standard shape or size suggested for testing the

aorta ([129]).

In conclusion, the mechanical response data presented here pointed to the need for off-axis tests

on arterial walls and indicated the importance of measuring the full 2D deformation undergone by

the specimen during a uniaxial test.
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4. STRESS CONCENTRATION FACTORS AROUND A CIRCULAR HOLE IN TWO FIBER

REINFORCED MATERIALS UNDER LARGE DEFORMATIONS

In this chapter, we study the deformation and the stress concentration factor due to a small

circular hole in a thin nonlinearly elastic large sheet reinforced by two families of fibers under a

state of plane stress undergoing large deformations. We restrict our attention to the class of mate-

rials wherein the fibers are mechanically equivalent, rendering the body orthotropically symmetric

with respect to the planes whose normals are along the angular bisectors of the angles between the

fibers. Such a body is assumed to be relevant to biological tissues, though, as we explain below, it

is a rather crude first approximation for tissues. Furthermore, we limit ourselves to the problems

of equibiaxial, uniaxial and pure shear deformations of the body whose fibers are symmetrically

oriented with respect to the Cartesian coordinate axes. We compare the stress concentration factor

distribution around a circular hole when using a constitutive relation based on a partial set of in-

variants (I4, I6) versus an extended constitutive relation that incorporates the full set of invariants

(I4, ...., I8) and reduces appropriately to the orthotropic linearized elastic case.

4.1 Introduction

Most fiber reinforced composites and, in particular, human and animal tissues are not elastic,

isotropic, or homogeneous ([108]). In fact, they are not merely solids but a mixture of a solid and

a fluid (each cell has nearly 70% fluid content). However, modeling tissues as mixtures presents

formidable difficulties as we have to consider the various constituents comprising the tissue and

specifying boundary and initial conditions associated with each constituent. Hence as a first step,

one often models tissues as hyperelastic bodies ([130]), wherein one starts with the assumption of

the existence of a stored energy function. Finding the form of the stored energy function (or the

response functions, which are the derivatives of the stored energy with respect to the invariants)

for the material under consideration is not an easy task. The paucity of experimental data in the

case of tissues prompts one to guess/choose a form for the stored energy rather than determine
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the response functions based on experimental data. Various forms for the stored energy function

have been used for different tissues1 ([71]). Some of these constitutive relations have become

extremely popular to the extent that they are now available in commercial finite element softwares

like Abaqus, COMSOL, etc.

Most of these constitutive relations are based on a form for the stored energy function that is

dependent only on a partial set of fiber invariants. For example, one of the popular constitutive

relations for the arterial walls proposed by [72] assumes the isochoric part of their stored energy

function to be dependent only on two fiber invariants rather than the full set containing five fiber

invariants. While such assumptions reduce the number of response functions in a constitutive

relation, as pointed out by Murphy ([76], [77]), the constitutive relations that are based on a partial

set of fiber invariants do not reduce to the constitutive expression corresponding to the linearized

theory of elasticity of a body reinforced by one or several families of fibers. [79]. [80] further

showed that bodies described by using a partial set of fiber invariants exhibit a response that is

not typically observed in uniaxial experiments on fiber reinforced materials. In this paper, we

consider two constitutive relations: the first one often referred to in the literature as the "standard

fiber-reinforcing" model ([131]), which does not reduce to the constitutive equation for a linearized

elastic body composed of two families of fibers ([77]), and the second constitutive relation that is

compatible upon linearization with the linearized theory for a body composed of two families of

fibers.

While analytical solutions are available for stress distribution around circular and elliptic holes

in anisotropic linearized elastic bodies under plane stress and plane strain ([132]), there is very

limited literature on the stress distribution around holes in infinite plates/sheets of anisotropic ma-

terials undergoing large deformations. To the authors’ knowledge, the study of stress distribution

around holes in transversely isotropic and orthotropic elastic materials is limited to the problem of

a hole in a plate/sheet of material under radial deformation ([133]).

The organization of this chapter is as follows: In section 4.2, we introduce the kinematics

1We reiterate that modeling tissues as elastic solids is a drastic simplification, but it can provide useful information
in a gross sense concerning the deformation of the tissues.
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associated with the deformation of a body, the balance laws, and the constitutive equations. We

then describe the boundary values problems studied in this chapter. In section 4.3, we discuss the

results, and in section 4.4, we present the conclusions of our study.

4.2 Preliminaries

4.2.1 Kinematics and constitutive equations

Let κR(B) be the reference configuration associated with the body B. We shall assume that the

body is undeformed and stress-free in the reference configuration. Let X ∈ κR(B) be the position

of a particle in the reference configuration. A one-to-one mapping χ referred to as the motion of

the body, relates the position of a particle in the deformed configuration, x to its position in the

reference configuration, X through

x = χ(X). (4.1)

The displacement is defined by

u = x − X, (4.2)

and the deformation gradient associated with the motion is defined as

F =
∂x
∂X

= I +
∂u
∂X

. (4.3)

The left and the right Cauchy-Green tensors are defined through

B = FFT, (4.4)

C = FTF, (4.5)

and the Green-St. Venant strain is defined as

E =
1

2
(C − I) . (4.6)
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If max∀X|| ∂u
∂X || = O(δ), δ << 1, the linearized strain ϵ ≈ E is defined as

ϵ =
1

2

(
∂u
∂x

+

(
∂u
∂x

)T
)
. (4.7)

Let the body be comprised of an elastic material reinforced by two families of fibers whose

directions in the reference configuration are given by the unit vectors M1 and M2. Let 2ϕ denote

the angle between the two families of fibers in the reference configuration. For such a material,

stored energy function W can be defined as a function of the following form ([134])

W = W (I1, I2, I3, I4, I5, I6, I7, I8, cos
2(2ϕ)), (4.8)

where I1 = tr(C),I2 = 1
2
(I21 − tr(C2)), I3 = det(C), I4 = M1.CM1, I5 = M1.C2M1, I6 =

M2.CM2, I7 = M2.C2M2 and I8 = (M1.M2)M1.CM2. A.H represents the inner product between

A and H. If the fibers are mechanically equivalent, the material will exhibit orthotropic symmetry

with respect to the planes whose normals are the angular bisectors of the angles between M1 and

M2, and the stored energy function must be symmetric with respect to the invariant pairs I4 and I6,

and I5 and I7. We shall consider a material that is orthotropic and incompressible2 (det(F) = 1),

and drop the dependence of the stored energy on I3. The Cauchy stress is now given by

T = −pI + 2F
∂W

∂C
FT, (4.9)

where p is the Lagrange multiplier introduced to account for the incompressibility of the material.

The first Piola-Kirchhoff stress is defined as

P = det(F)TF−T = TF−T. (4.10)

In order to reduce the complexity of the form of the stored energy function, a simplified form given

2Most polymeric materials and biological tissues are often assumed to be incompressible, but there is evidence that
implies that these materials are compressible ([135], [136], [137]).
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by the following equation is often assumed ([138], [131])

W = W (I1, I4, I6). (4.11)

A further simplification is made by splitting the stored energy function into isotropic and anisotropic

parts such that

W = Wiso(I1) +Wani(I4, I6). (4.12)

The first constitutive relation we consider for analysis in this paper is based on a stored energy

function of the form given by

W = c1 (I1 − 3) + c2
(
(I4 − 1)2 + (I6 − 1)2

)
. (4.13)

This constitutive relation which is based on a partial set of invariants is often referred to as the

"standard fiber-reinforcing" model ([131]). In this paper, we shall refer to this constitutive relation

as the "abridged" orthotropic (AO) constitutive relation. [77] showed that the linearization of this

constitutive relation leads to a constitutive expression that does not correspond to the linearized

theory of elasticity for a body reinforced by two families of fibers. The popular constitutive rela-

tion due to [72] suffers from the same shortcoming and, thus, is not really suitable for modeling

the nonlinear response of orthotropic elastic bodies. Of course, a proper constitutive relation to

describe the response of orthotropic linearized elastic bodies requires knowledge of nine material

moduli. One has to navigate the delicate choice of picking a sufficiently simple constitutive relation

that can yet capture the response characteristics exhibited by the body being modeled. [79] fur-

ther showed that such a simplification leads to constitutive relations that display a counter-intuitive

stiffer response in the out-of-plane direction compared to directions in the plane of the fibers. Fig-

ure 4.1a shows the Young’s moduli for the linearized version of the abridged constitutive relation

along the directions that are normal to the planes of symmetry, where XY-plane is the plane con-

79



taining the fibers. We can observe the out-of-plane Young’s modulus (Ez) to be higher than at least

one of the in-plane moduli for most of the fiber angles. In addition, it was shown by [77] that the

inclusion of all fiber related invariants is necessary to represent an orthotropic material. Therefore,

we consider a modification of the abridged orthotropic constitutive relation that is compatible with

the linear theory (see [80]), whose stored energy function is given by

W =c1 (I1 − 3) + c2
(
(I4 − 1)2 + (I6 − 1)2

)
+ c3

(
I8 − I08

)2
+ c4 (I4 + I6 − 2)

(
I8 − I08

)
+ c5 (I4I6 − I4 − I6 + 1)

+ c6 (I5 + I7 − 2I4 − 2I6 + 2) , (4.14)

where I08 = (M1.M2)
2. We refer to this relation as the "Extended"3 orthotropic (EO) constitutive

relation4. Figure 4.1b shows the Young’s moduli for this constitutive relation along the normals to

the planes of symmetry.

3This constitutive relation reduces to the constitutive equation corresponding to the linearized elastic orthotropic
material ([80]). In no way do we mean this to be the only possible constitutive relation that agrees with linearized
elasticity.

4The invariant I2 is not included in the stored energy function in this paper as its inclusion is not necessary to
produce a constitutive relation that agrees with linearized elasticity. Secondly, we wanted to keep the number of
material constants to a minimum. However, inclusion of I2 may be important to represent the experimentally observed
stress-strain response of a material ([139]).
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Figure 4.1: Young’s modulus vs. fiber angle under small deformations for the (a) AO constitutive
relation with c2 = 1, (b) EO constitutive relation with (c2, c3, c4, c5, c6) = (0.1, 0.1, 0.1, 0.1, 0.7)
when the angular bisectors of the fibers are along the X and the Y axes. We notice that Ey (or Ex)
is qualitatively different in that it is non-monotone for the AO constitutive relation and monotone
for the EO constitutive relation.

In order to compare the results for orthotropic materials with that of isotropic materials, we

shall consider the incompressible neoHookean (neo) form given by

W = c1(I1 − 3). (4.15)
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To recapitulate, the Cauchy stress associated with the above constitutive relations is given by

TAO = −pI + 2c1B + 4c2(I4 − 1)FM1 ⊗ FM1 + 4c2(I6 − 1)FM2 ⊗ FM2, (4.16)

TEO = −pI + 2c1B +
(
4c2(I4 − 1) + 2c4

(
I8 − I08

)
+ 2c5 (I6 − 1)− 4c6

)
FM1 ⊗ FM1

+
(
4c2(I6 − 1) + 2c4

(
I8 − I08

)
+ 2c5 (I4 − 1)− 4c6

)
FM2 ⊗ FM2

+2c6 (BFM1 ⊗ FM1 + FM1 ⊗ BFM1 + BFM2 ⊗ FM2 + FM2 ⊗ BFM2) ,

+cos(2ϕ)
(
c4 (I4 + I6 − 2) + 2c3

(
I8 − I08

))
(FM1 ⊗ FM2 + FM2 ⊗ FM1) (4.17)

Tneo = −pI + 2c1B. (4.18)

4.2.2 Boundary value problems studied

Consider a thin square sheet of side 2L under a state of plane stress in the XY-plane with a

small circular hole of radius r at its center. In this paper, we confine our attention to a problem

where the bisectors of the fibers are aligned with the X and the Y axes. Under this restriction, the

material has reflectional symmetry with respect to XY , Y Z and XZ planes. Let u = u(X,Y )

and v = v(X,Y ) be the components of the displacement field along the X-axis and the Y-axis,

respectively. The following form of the deformation gradient is considered

F =


1 + ∂u

∂X
∂u
∂Y

0

∂v
∂X

1 + ∂v
∂Y

0

0 0 1

(1+ ∂u
∂X )(1+

∂v
∂Y )−

∂u
∂Y

∂v
∂X

 , (4.19)

which accounts for the incompressibility (det(F) = 1) of the material. The Cauchy stress is

obtained by substituting equation 4.19 in equations 4.16, 4.17 and 4.18. The Lagrange multiplier

p is eliminated from the Cauchy stress using the condition that Tzz = 0. The first Piola-Kirchhoff

stress is calculated using equation 4.10.

82



4.2.2.1 Boundary conditions

Three problems are considered for analysis in this paper. In the first problem, an equibiaxial

displacement is applied to the square sheet with a hole. The boundary conditions are given by

{u(L, Y ) = u0 = −u(−L, Y )} and PY X(±L, Y ) = 0, (4.20)

{v(X,L) = u0 = −v(X,−L)} and PXY (X,±L) = 0, (4.21)

where the center of the sheet coincides with the origin of the coordinate system. In the second

problem, a uniaxial displacement/traction along the X-axis is applied at the right and the left edge

of the square sheet. This is given by

{u(L, Y ) = u0 or PXX(L, Y ) = P0} and PY X(L, Y ) = 0, (4.22)

{u(−L, Y ) = −u0 or PXX(−L, Y ) = −P0} and PY X(−L, Y ) = 0, (4.23)

The top and the bottom surfaces of the sheet whose normals are in the Y-direction are assumed to

be traction free for the uniaxial problem. This boundary condition is given by

PN = 0 at Y = ±L, ∀X, (4.24)

where N is the undeformed unit normal to the surface. In the third problem, the sheet is fixed at

the top and the bottom surfaces given by

v(X,±L) = 0 and PXY (X,±L) = 0, (4.25)

and the left and the right edge are displaced according to the boundary conditions in equations 4.22,

4.23. This is a pure shear deformation problem. In all the three problems, a traction free boundary

condition is assumed at the boundary of the hole. The geometry, the boundary conditions and
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the material orientations described above allows one to consider only a quarter of the sheet for

analysis. The following boundary conditions are applied for the quarter sheet considered

{u(0, Y ) = 0 and PY X(0, Y ) = 0} and {v(X, 0) = 0 and PXY (X, 0) = 0}. (4.26)

(a) (b)

(c)

Figure 4.2: Schematic showing the three boundary value problems studied (a) equibiaxial exten-
sion, (b) uniaxial extension (c) pure shear deformation. ϕ represents the angle between the fiber
(diagonal line) and the X-axis in the reference configuration.
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4.2.2.2 Non-dimensionalization and governing equations

The equations are non-dimensionalized using the following definitions

X =
X

L
, Y =

Y

L
, u =

u

L
, v =

v

L
, T =

T
c1
. (4.27)

The non-dimensionalized form of the governing equations are now given by

Div(P) = 0. (4.28)

which in the component form is

∂PXX

∂X
+
∂PXY

∂Y
= 0, (4.29)

∂P Y X

∂X
+
∂P Y Y

∂Y
= 0. (4.30)

We will drop the bar in the previous equations for convenience. The governing equations are

solved using the finite element method in COMSOL Multiphysics (Mathematics module). The

relative tolerance is set to 10−6 for the simulations. Quadratic triangular elements are used with

a very high refinement of the mesh close to the hole. The stress concentration factor (SCF) at the

hole is defined as the ratio of the hoop stress along the hole to the nominal5 Txx. The hoop stress

is calculated as follows: The unit vector along the tangent to the deformed edge of the hole is

computed using the following equation

td =
Ftu√
tu.Ctu

, (4.31)

where tu is the unit vector along the tangent to the edge of the hole in the reference configuration

and is given by

tu = − Y√
(X2 + Y 2)

EX +
X√

(X2 + Y 2)
EY , (4.32)

5By "nominal", we refer to the values at a point far from the hole.
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where EX and EY are the unit vectors along the X and Y axes respectively. The hoop stress is

computed using the equation below

Ttt = td.Ttd. (4.33)

Finally, we define an angle Θ along the hole to be Θ = tan−1 (Y/X). To verify the accuracy of

the numerical results, we compared the numerical solution for the abridged constitutive relation

with the analytical solution for its linearized form with a central circular hole in an infinite sheet

loaded uniaxially. This is shown in Figure 4.3. The analytical solution under uniaxial tension

for an anisotropic sheet with a circular hole is given by [140]. For the numerical simulation, a

non-dimensionalized hole radius of 0.002 is used. We can see that the stress concentration factor

at X = 0, Y = 0.002 (we call this point ’A’. we use ’B’ for representing a point far away from

the hole) can be higher or lower than the stress concentration factor in an isotropic linear elastic

material (which is 3). Unlike the case of an isotropic material, the maximum stress, which depends

on the fiber angle, does not always occur at point A. We will show later that such a phenomenon

occurs under large deformations as well.
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Figure 4.3: Figure (a) shows the ratio of the components of T at the hole to nominal Txx for
ϕ = 30o for λ = 1 + 10−6. Figure (b) shows the comparison of the ratio of Txx at hole to Txx at B
for different fiber angles for λ = 1+10−6. Solid line represents the numerical solution and asterisk
represents the analytical solution. Parameter used for the AO constitutive relation is c2 = 10. λ is
the nominal stretch.
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Figure 4.4 shows the stress concentration factor for different material parameters for the lin-

earized version of the abridged constitutive relation. As the value of c2 increases, the stress concen-

tration factor differs from the isotropic linearized elastic case. Additionally, we can observe that

the peak stress concentration factor does not always occur at point A as c2 increases. This effect

is more pronounced at larger values of c2 for certain fiber angles (see Figure 4.4b, Figure 4.4c). It

can be seen in Figure 4.4d that for the fiber angles between 30o and 80o, the stress concentration

factor at point A decreases with an increase in parameter c2.
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Figure 4.4: SCF at hole for (a) c2 = 0.1, (b) c2 = 1, (c) c2 = 10. Figure (d) shows SCF at A for
different fiber angles and c2 = 0.1, 1, 10 for the abridged orthotropic constitutive relation.
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Mesh size for the simulations is chosen after preforming a mesh convergence study. The small-

est element size is of the order of 10−8 while the largest element size is 0.1. Figure 4.5 shows a

mesh convergence plot for the stress concentration factor at point A and along the hole for different

number of elements for the abridged constitutive relation with a fiber angle of 0o and c2 = 1 under

uniaxial extension. It can be seen that as the nominal stretch along the X-direction increases a

larger number of elements are needed for a converged solution. This is due to an increase in the

gradient of the stress near the hole.
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Figure 4.5: Mesh convergence plot for uniaxial extension, (a) Stress concentration factor at point
A and (b) SCF at hole for different number of elements. Parameters used for the AO constitutive
relation are c2 = 1 and ϕ = 0o.

Finally in Figure 4.6 we show the stress concentration factor for the neoHookean model at

point A and along the hole at various nominal stretches (λ) for equibiaxial, uniaxial and pure shear

problems. The maximum of the stress concentration factor occurs at point A under uniaxial and

pure shear deformations. The stress concentration factor is a constant along the boundary of the

hole under equibiaxial extension for the neoHookean model, which is the expected behavior of an

isotropic constitutive relation.
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Figure 4.6: Figure (a) shows the variation of the stress concentration factor at A with stretch,
Figures (b) and (c) show the SCF along the hole at λ = 1+10−6 and λ = 1.25 for the neoHookean
model under equibiaxial, uniaxial and pure shear deformations.

4.3 Results and discussion

For a given value of the parameter c2 (= cAO
2 ) of the abridged orthotropic constitutive relation,

the material parameters of the extended orthotropic constitutive relation are chosen as follows:

c2, c3, c4, c5 = 0.1cAO
2 and c6 = 0.7cAO

2 . The two constitutive relations produce a similar biax-

ial stress-stretch response when the material parameters are varied in the above manner. In sec-

tions 3.1-3.3, we discuss the results for the abridged orthotropic constitutive relation with c2 = 1
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and the extended orthotropic constitutive relation with (c2, c3, c4, c5, c6) = (0.1, 0.1, 0.1, 0.1, 0.7),

(0.2, 0.2, 0.2, 0.2, 0.8). As shown in Figure 4.7, the two constitutive relations have a comparable

biaxial stress-deformation response in the absence of a hole.
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Figure 4.7: Biaxial extension behavior of the AO and the EO constitutive relations without a
hole. Cauchy stress vs stretch for (a) equibiaxial extension, ϕ = 20o, (b) biaxial extension with
the ratio of boundary displacements u:v = 2:1, ϕ = 20o (c) biaxial extension with the ratio of
boundary displacement u:v = 1:2, ϕ = 20o (d) equibiaxial extension, ϕ = 40o, (e) biaxial ex-
tension with the ratio of boundary displacements u:v = 2:1, ϕ = 40o (f) biaxial extension with
the ratio of boundary displacements u:v = 1:2, ϕ = 40o. Black lines show the response of the
abridged orthotropic constitutive relation with c2 = 1. Red and blue lines show the response of
the extended orthotropic constitutive relation with (c2, c3, c4, c5, c6) = (0.2, 0.2, 0.2, 0.2, 0.8) and
(c2, c3, c4, c5, c6) = (0.1, 0.1, 0.1, 0.1, 0.7), respectively.
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4.3.1 Influence of hole size on stress concentration

The influence of the radius of the hole on the stress concentration factor under uniaxial exten-

sion for the abridged orthotropic constitutive relation is shown in Figure 4.8. As shown in Figure

4.8a, the stress concentration factor at the point A remains constant for sufficiently small holes with

the radius of the hole below 0.006 for a nominal stretch up to 1.5. As the hole radius increases,

the stress concentration factor decreases with the effect of the hole radius being more prominent

at larger nominal stretches. In case of the neoHookean material, the stress concentration factor is

unaffected until a hole radius of 0.2 for the nominal stretch up to 1.5. Addition of anisotropic terms

results in larger stresses and stress gradients near the hole causing a more pronounced effect of the

discontinuities, which in this case is a circular hole. This effect is more noticeable at fiber angles

where the stress concentration factor is high near the hole as shown in Figure 4.8c compared to the

fiber angles at which the SCF is lower. Similar results were obtained for the extended orthotropic

constitutive relation as shown in Figure 4.8b and Figure 4.8d. Following this analysis, we consider

a hole of radius 0.002 for the rest of the paper.
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Figure 4.8: (a) SCF vs. hole radius at different nominal stretches for the AO constitutive rela-
tion, (b) SCF vs. hole radius at different nominal stretches for the EO constitutive relation with
(c2, c3, c4, c5, c6) = (0.1, 0.1, 0.1, 0.1, 0.7), (c) SCF vs. hole radius for different fiber angles at
λ = 1.5 for the AO constitutive relation, (d) SCF vs. hole radius for different fiber angles at
λ = 1.5 for the EO constitutive relation.

4.3.2 Stress distribution at the hole for the abridged and the extended orthotropic constitu-

tive relations

Figure 4.9 shows the variation of the SCF at point A with stretch for two different fiber angles

under equibiaxial extension. For both the fiber angles and the constitutive relations, the stress con-

centration factor increases with increasing nominal stretch. Small strain SCF differs between the
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two constitutive relations with the extended orthotropic constitutive relation showing higher stress

concentration factors at both the fiber angles while the abridged orthotropic constitutive relation

showing higher and lower SCFs at fiber angles 20o and 40o, respectively when compared to the

SCF of the neoHookean model. We can observe from Figure 4.7 that under equibiaxial extension

without a hole, the stress-stretch curve of the abridged constitutive relation is enveloped by that of

the extended orthotropic constitutive relation with two different sets of material parameters stud-

ied here. Stress concentration factors, however, differ significantly between the two constitutive

relations and the difference being dependent on the fiber angle.
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Figure 4.9: Variation of the stress concentration factor at point A with stretch under equibiaxial
extension for (a) ϕ = 20o, (b) ϕ = 40o. Black lines show the response of the abridged consti-
tutive relation with c2 = 1. Red and blue lines show the response of the extended orthotropic
constitutive relation with (c2, c3, c4, c5, c6) = (0.2, 0.2, 0.2, 0.2, 0.8) and (c2, c3, c4, c5, c6) =
(0.1, 0.1, 0.1, 0.1, 0.7), respectively.

A more noticeable difference between the two constitutive relations can be observed when con-

sidering the distribution of SCFs along the hole as shown in Figure 4.10. At 20o fiber angle, both

the constitutive relations show a peak stress concentration factor occurring at point A. In stark con-

trast, the abridged constitutive relation shows remarkably larger stress at a point other than point A
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at fiber angle of 40o. Such a difference becomes acutely important when one wants to study the ini-

tiation of the failure and, in particular, the location of possible failure initiation depending greatly

on the choice of the constitutive relation. Uniaxial extension problem further demonstrates the

differences between the abridged orthotropic and the extended orthotropic constitutive relations.
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Figure 4.10: Stress concentration factor versus Θ at the hole for different constitutive relations.
Figures (a), (b) show results for ϕ = 20o and λ = 1+10−6 and 1.25, respectively. Figures (c),
(d) show results for ϕ = 40o and λ = 1+10−6 and 1.25, respectively. Black lines show the re-
sponse of the abridged constitutive relation with c2 = 1. Red and blue lines show the response of
the extended orthotropic constitutive relation with (c2, c3, c4, c5, c6) = (0.2, 0.2, 0.2, 0.2, 0.8) and
(c2, c3, c4, c5, c6) = (0.1, 0.1, 0.1, 0.1, 0.7), respectively.
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(a) (b)

(c) (d)

Figure 4.11: Ratio of hoop stress to nominal Txx for (a) AO constitutive relation with c2 = 1,
ϕ = 20o, (b) EO constitutive relation with (c2, c3, c4, c5, c6) = (0.1, 0.1, 0.1, 0.1, 0.7), ϕ = 20o, (c)
AO constitutive relation with c2 = 1, ϕ = 40o, (d) EO constitutive relation with (c2, c3, c4, c5, c6) =
(0.1, 0.1, 0.1, 0.1, 0.7), ϕ = 40o at λ = 1.25 under equibiaxial extension.

Figure 4.12 shows the stress concentration factor at point A for the material with fiber angles

20o and 70o. We chose these two angles, one above 45o and one below to show the differences

between the constitutive relations under uniaxial extension. Both the constitutive relations show

an increasing stress concentration factor with increasing nominal stretch for 20o fiber angle. Unlike

equibiaxial extension where both the constitutive relations show an increasing stress concentration

factor at point A, the SCF decreases with nominal stretch for the abridged orthotropic constitutive
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relation at a fiber angle of 70o. The extended orthotropic constitutive relation on the other hand,

shows an increasing SCF with increasing nominal stretch. One possible reason for this difference

between the two constitutive relations is the marked difference in the stiffening behaviour of the

two constitutive relations at different fiber angles. The extended orthotropic constitutive relation

provides a much larger increase in the nominal stress with increasing nominal stretch for almost

all fiber angles as shown in Figure 4.14 compared to the abridged orthotropic constitutive relation.

These two constitutive relations that demonstrate a similar stress-stretch behavior under biaxial

extension (refer to Figure 4.7) show notably different behavior under uniaxial extension. Such

differences are only magnified when studying stress concentrations around discontinuities like

holes. Finally, unlike the equibiaxial extension problem, the SCF distribution around the hole is

somewhat similar for both the constitutive relations under uniaxial extension.
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Figure 4.12: Figures (a), (b) show the variation of the stress concentration factor at point A with
stretch under uniaxial extension for ϕ = 20o and ϕ = 70o, respectively. Figures (c), (d) show the
variation of SCF along the hole at λ = 1+10−6 for ϕ = 20o and ϕ = 70o, respectively. Figures (e),
(f) show the same at λ = 1.25. Black lines show the response of the abridged constitutive relation
with c2 = 1. Red and blue lines show the response of the extended orthotropic constitutive relation
with (c2, c3, c4, c5, c6) = (0.2, 0.2, 0.2, 0.2, 0.8) and (c2, c3, c4, c5, c6) = (0.1, 0.1, 0.1, 0.1, 0.7),
respectively. 98



(a) (b)

(c) (d)

Figure 4.13: Ratio of hoop stress to nominal Txx for (a) AO constitutive relation with c2 = 1,
ϕ = 20o, (b) EO constitutive relation with (c2, c3, c4, c5, c6) = (0.1, 0.1, 0.1, 0.1, 0.7), ϕ = 20o, (c)
AO constitutive relation with c2 = 1, ϕ = 70o, (d) EO constitutive relation with (c2, c3, c4, c5, c6) =
(0.1, 0.1, 0.1, 0.1, 0.7), ϕ = 70o at λ = 1.25 under uniaxial extension.
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Figure 4.14: Uniaxial extension behavior of the AO and the EO constitutive relations without
a hole. Cauchy stress vs stretch under uniaxial extension for (a) ϕ = 20o, (b) ϕ = 40o, (c)
ϕ = 50o, (d) ϕ = 70o. Txx and λy are shown using continuous and dashed lines, respectively .
Black lines show the response of the abridged constitutive relation with c2 = 1. Red and blue
lines show the response of the extended orthotropic constitutive relation with (c2, c3, c4, c5, c6) =
(0.2, 0.2, 0.2, 0.2, 0.8) and (c2, c3, c4, c5, c6) = (0.1, 0.1, 0.1, 0.1, 0.7), respectively.

Under pure shear deformation, the SCF variation with nominal stretch is similar to that of

the uniaxial extension problem (SCF increasing with stretch for 20o fiber angle and decreasing

with stretch for 70o fiber angle for the abridged orthotropic constitutive relation), and a stress

distribution around the hole that is similar to equibiaxial extension (peak SCF not occurring at point

A for the abridged orthotropic constitutive relation). This is expected as the boundary conditions

in the pure shear problem partially resemble both the equibiaxial and uniaxial extension problems.
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Results for the pure shear problem are presented in Figure 4.15 for the fiber angles 20o and 70o.
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Figure 4.15: Figures (a), (b) show the variation of the stress concentration factor at point A with
stretch under pure shear deformation for ϕ = 20o and ϕ = 70o, respectively. Figures (c), (d) show
the variation of SCF along the hole at λ = 1+10−6 for ϕ = 20o and ϕ = 70o, respectively. Figures (e),
(f) show the same at λ = 1.25. Black lines show the response of the abridged constitutive relation
with c2 = 1. Red and blue lines show the response of the extended orthotropic constitutive relation
with (c2, c3, c4, c5, c6) = (0.2, 0.2, 0.2, 0.2, 0.8) and (c2, c3, c4, c5, c6) = (0.1, 0.1, 0.1, 0.1, 0.7),
respectively. 102



(a) (b)

(c) (d)

Figure 4.16: Ratio of hoop stress to nominal Txx for (a) AO constitutive relation with c2 = 1,
ϕ = 20o, (b) EO constitutive relation with (c2, c3, c4, c5, c6) = (0.1, 0.1, 0.1, 0.1, 0.7), ϕ = 20o, (c)
AO constitutive relation with c2 = 1, ϕ = 70o, (d) EO constitutive relation with (c2, c3, c4, c5, c6) =
(0.1, 0.1, 0.1, 0.1, 0.7), ϕ = 70o at λ = 1.25 under pure shear deformation.

We highlighted the major differences observed in the stress concentration factor distribution

between the two constitutive relations. These differences remain valid when the material parameter

cAO
2 is varied from 0.1 (mildly anisotropic) to 10 (strongly anisotropic) and the material parameters

for the EO model are varied according to the ratios discussed earlier. Surface plots of the ratio of

hoop stress to nominal Txx at λ = 1.25 near the hole boundary are given in figures 4.11, 4.13 and

4.16 for the fiber angles discussed above.
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4.3.3 Influence of fiber angle on the stress concentration

We shall now turn our attention to the influence of fiber direction on the stress concentration

factor. Fiber direction plays an important role in the mechanical and failure properties of the fiber

reinforced materials. Figure 4.17 shows the dependence of the stress concentration factor at points

A and C (X = 0.002, Y = 0) on the fiber angle with increasing nominal stretch under equibiaxial

deformation. The stress concentration factor at point C under equibiaxial extension is defined to

be (Ttt at C)/(Tyy at B). For all the fiber angles, both the constitutive relations show an increas-

ing stress concentration factor at point A with stretch and the SCF at a particular nominal stretch

decreases with increasing fiber angle. Also, both the constitutive relations display a stress con-

centration factor that plateaus with increasing stretch. The abridged constitutive relation, however,

shows a stress concentration factor that increases almost linearly with stretch for fiber angle of 0o.

Such an anomaly can be observed under uniaxial and pure shear deformations as well. Further dif-

ferences in the behavior of constitutive relations can be seen when the stress concentration factor

at point C is considered, particularly for fiber angles below 10o as shown in Figure 4.17b, Figure

4.17d.
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Figure 4.17: Variation of the stress concentration factor with stretch under equibiaxial extension
for different fiber angles (a) at point A and (b) at point C for the abridged constitutive relation with
c2 = 1. (c) at point A and (d) at point C for the extended orthotropic constitutive relation with
(c2, c3, c4, c5, c6) = (0.1, 0.1, 0.1, 0.1, 0.7) respectively.

A behavior similar to that of equibiaxial extension can be observed under uniaxial extension

for fiber angles below 45o, where the stress concentration factor at point A increases and plateaus

with nominal stretch (except for fiber angle 0o), as shown in Figure 4.18a and Figure 4.18c .

The differences between the predictions of the two constitutive relations can be clearly seen in

Figure 4.18b and Figure 4.18d for fiber angles greater than 45o. Particularly, for the fiber angle

of 90o, while the abridged constitutive relation displays an increasing stress concentration factor
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with stretch, the extended orthotropic constitutive relation shows a decreasing stress concentration

factor with stretch.
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Figure 4.18: Variation of the stress concentration factor at point A with stretch under uniaxial
extension for different fiber angles. Figures (a), (b) show results for the abridged constitutive
relation with c2 = 1. Figures (c), (d) show results for the extended orthotropic constitutive relation
with (c2, c3, c4, c5, c6) = (0.1, 0.1, 0.1, 0.1, 0.7), respectively.

As discussed earlier, the variation of the stress concentration factor with stretch under pure

shear is similar to uniaxial extension for all the fiber angles (refer to Figure 4.18 and Figure 4.19).

Under pure shear, the stress concentration factor at point A is lower than the stress concentration
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factor under uniaxial extension for both the constitutive relations.
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Figure 4.19: Variation of the stress concentration factor at point A with stretch under pure shear
deformation for different fiber angles. Figures (a), (b) show results for the abridged constitutive
relation with c2 = 1. Figures (c), (d) show results for the extended orthotropic constitutive relation
with (c2, c3, c4, c5, c6) = (0.1, 0.1, 0.1, 0.1, 0.7), respectively.

4.3.4 Influence of material parameters on stress concentration

In this section, we compare the influence of material parameters on the stress concentration fac-

tor at a constant applied load (constant first Piola-Kirchhoff stress). We use constant load instead

of a constant nominal stretch because stresses become dramatically different with an increase in
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the value of the anisotropic parameters (c2 for the abridged constitutive relation, and c2 to c6 for the

extended orthotropic constitutive relation). Secondly, in design, one is often interested in making a

component carry a certain load. Figure 4.20 shows the variation of the stress concentration factor

with the material parameter c2 for different values of the first Piola-Kirchhoff stress at fiber angles

20o and 70o under uniaxial extension. The parameter c2 is varied from 0.1-10 for the abridged

constitutive relation. For the extended orthotropic constitutive relation, c2 is varied from 0.01-1

with the remaining parameters defined as follows: c3, c4, c5 = c2 and c6 = 7c2. As stated earlier,

these values are chosen so that the biaxial behaviour of the extended orthotropic constitutive rela-

tion with this ratio of material parameters is similar to that of the biaxial behavior of the abridged

constitutive relation. An increase in the value of c2 for the abridged constitutive relation and c2

to c6 for the extended orthotropic constitutive relation represents an increase in the reinforcement

provided by the fibers. Pmax is the value of the first Piola-Kirchhoff stress at a nominal stretch of 1.5

for the abridged constitutive relation with c2 = 0.1 and for the extended orthotropic constitutive

relation with c2 = 0.01. Some similarities between the two constitutive relations can be observed

here. At 20o fiber angle, both the constitutive relations show an increasing SCF with c2 at smaller

first Piola-Kirchhoff stress. At larger values of the first Piola-Kirchhoff stress, the dependence of

SCF on c2 becomes non-monotonic as shown in Figure 4.20a and Figure 4.20b. At 70o fiber angle,

both the constitutive relations show a decreasing stress concentration factor with increasing c2 at a

constant first Piola-Kirchhoff stress.
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Figure 4.20: Variation of the stress concentration factor at point A with material parameters for
a varying load. (a) abridged constitutive relation with fiber angle 20o, (b) extended orthotropic
constitutive relation with fiber angle 20o, (c) abridged constitutive relation with fiber angle 70o, (d)
extended orthotropic constitutive relation with fiber angle 70o.

4.3.4.1 A peculiar feature of the abridged orthotropic constitutive relation

The stress concentration factor at the hole for the abridged orthotropic constitutive relation

shows a distinct peak for higher values of the parameter c2 for fiber angles below 45o under uniaxial

extension. This is shown in Figure 4.21a for the material with 20o fiber angle. Such a peak is

absent in case of the extended orthotropic constitutive relation even at very large values of c2. For

the abridged constitutive relation, the maximum stress concentration factor occurs at an angle close

109



to 90o − ϕ with the X-axis for a material with fiber angle ϕ < 45o. This maximum occurs not only

at large nominal stretches but also at small strains when the parameter c2 is very high (see Figure

4.21b). Figure 4.21c and Figure 4.21d shows the local SCF variation for the abridged and the

extended orthotropic constitutive relations. It can be seen that the spike in the stress concentration

factor for the abridged constitutive relation is localized to a narrow region close to the edge of the

hole (enclosed in the circle in Figure 4.21c). The spike in SCF is so high for large values of c2,

that one invariably expects the failure to occur close to 90o − ϕ under uniaxial extension, provided

the material can be described by the abridged constitutive relation. This could possibly serve as an

indication as to whether the choice of the abridged orthotropic constitutive relation is suitable for

the description of a material having orthotropic symmetry when studying the initiation of failure.
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Figure 4.21: (a) SCF along the hole for the AO constitutive relation with c2 = 10 and the EO
constitutive relation with (c2, c3, c4, c5, c6) = (1, 1, 1, 1, 7) at λ = 1.3, (b) Theoretical SCF along
the hole at small strain for the linearized version of the AO constitutive relation with c2 = 10 and
c2 = 5000, (c) Ratio of hoop stress to nominal Txx for the AO constitutive relation with c2 = 10,
(d) Ratio of hoop stress to nominal Txx for the EO constitutive relation with (c2, c3, c4, c5, c6) =
(1, 1, 1, 1, 7). These results are for the uniaxial extension problem for a material with ϕ = 20o.

4.4 Conclusions

We have studied the stress concentration factor around a circular hole in a square sheet rein-

forced by two families of fibers using two constitutive relations, one that upon linearization agrees

with orthotropic linearized elasticity and another that is commonly used but does not reduce to the

orthotropic linearized elastic constitutive relation. Biaxial tests with loads applied along the planes
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of symmetry are often used to estimate the material parameters of the constitutive relations in-

tended to describe the mechanical response of orthotropic materials. The material parameters con-

sidered in our study render the two constitutive relations displaying a similar stress-deformation

behavior under biaxial extension in the absence of a hole. However, the two constitutive relations

show significant differences in the stress concentration factor distribution under equibiaxial, uniax-

ial and pure shear deformations in the presence of a circular hole. One can expect such differences

to be amplified in the presence of elliptic holes and cracks. Further, the abridged orthotropic con-

stitutive relation based on a partial set of fiber invariants displays a spike in the stress concentration

factor at an angle 90 − ϕ under uniaxial extension (where ϕ is the fiber angle). In contrast, such

a spike in SCF is absent in the extended orthotropic constitutive relation that agrees with linear

elastic orthotropic constitutive relation. Unlike the case of isotropic materials, the location of the

maximum stress concentration factor along the hole boundary depends on the nominal stretch, the

fiber angle and the choice of the constitutive relation. Interestingly, certain fiber angles even show

a decreasing stress concentration factor with nominal stretch.

Due to the number of invariants involved in describing the orthotropic material, choosing a

form of the stored energy function becomes exceedingly complicated. Even with reasonably sim-

ple constitutive equations like the ones discussed here, multiple sets of constitutive parameters

may produce the same nominal biaxial or uniaxial response. It must be recognized that, while

demonstrating a comparable biaxial stress-deformation response in the absence of discontinuities

or inhomogeneities, significant differences may exist in the local stress distributions predicted by

the constitutive models that do and do not agree with anisotropic linear elasticity in the presence

of discontinuities or inhomogeneities. Therefore, a prudent choice of the constitutive relation is

important when one is interested in studying stress distribution near discontinuities like a hole or a

crack.
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5. SUMMARY

A patient harboring a thoracic aortic aneurysm or sustained an aortic dissection is typically old

with one or more concomitant risk factors like hypertension, atherosclerosis, bicuspid aortic valve,

smoking, history of familial aortic aneurysm/dissection, etc ([19], [20] ). In younger patients,

dilatation of the aorta or aortic dissection is invariably associated with connective tissue disorders

like Marfan syndrome, Loeys-Dietz syndrome, Turner’s syndrome, etc ([141], [20]). Accurate

prognosis of the thoracic aortic disease requires

• Identifying the alterations in the mechanical properties of the thoracic aorta due to various

pathologies and comorbidities as opposed to non-pathological aging.

• Development of computational models that can account for such changes has been proposed

as a methodology to assess the risk of an impending catastrophic event like aneurysm rupture

or dissection.

Ex-vivo experimental characterization of the mechanical response of the aortic tissue in good

health and disease, and the theoretical development of appropriate constitutive equations are pre-

cursors to applying this methodology. This dissertation addresses some of these and the conclu-

sions for the current work are listed below.

5.1 Conclusions from peeling experiments on porcine thoracic aorta

Higher peel force per unit width and peeling energy per unit area were required to advance a

tear in the ascending aorta compared to the descending aorta. Mean peel force per unit width in

the circumferential direction was lower than in the longitudinal direction for all the thoracic aortic

segments. The mean stretch experienced by the peeled halves during the peel test falls in the linear

to non-linear transition region of the uniaxial stress-strain curve for the entire thoracic aorta. Thus,

the influence of the nonlinear mechanical behavior of the aorta was found to be minimal in the

estimation of the peeling energy per unit area. This confirms the validity of assuming a linear
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relationship between the first Piola-Kirchhoff stress and stretch in the peeled halves during peeling

experiments on the thoracic aorta.

5.2 Conclusions from uniaxial experiments on the porcine thoracic aorta

To determine the constitutive response of the aorta, uniaxial experiments on the porcine tho-

racic aorta showed the need for conducting off-axis tests and measuring full 2d deformation during

the test. The EXY versus nominal stretch showed a strong dependence on the orientation highlight-

ing the anisotropic response of the porcine thoracic aorta. The nominal stress at failure decreased

from the circumferential direction of the aorta to the longitudinal direction. Constitutive param-

eters reported in literature based on biaxial test data along the planes of symmetry are unable to

qualitatively represent the deformation undergone by off-axis specimens during a uniaxial test.

5.3 Conclusions from the study of stress distribution at a circular hole in two-fiber rein-

forced materials

Our analysis indicates a strong dependence of the local stress distribution around a circular

hole on the constitutive equation chosen to model the two-fiber reinforced material. It was shown

how two constitutive relations having a similar biaxial response along the directions of symmetry

exhibit substantially different distribution of the stress concentration factor. The variation of the

stress concentration factor with the nominal stretch is also strongly dependent on the constitutive

equation. The abridged constitutive relation, which is dependent on a subset of the full invariant set

necessary for modeling two fiber reinforced materials, displays a spike in the stress concentration

factor at an angle 90 − ϕ under uniaxial extension (where ϕ is the fiber angle). The spike in SCF

is so high for the abridged relation that one invariably expects failure to occur at 90 − ϕ. Such a

spike in the stress concentration factor is absent when using an extended model that appropriately

reduces to the linearized elastic orthotropic case. Further, it indicates how the location of failure

predicted by two constitutive relations can be extremely different. Additionally, abridged model

shows an out-of-plane uniaxial response (i.e. in the direction orthogonal to the plane of the fibers)

that is not typically observed in experiments on fiber reinforced materials. We suggest that a
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careful choice of the constitutive relation becomes crucial when one is interested in studying stress

distribution near discontinuities and inhomogeneities.

5.4 Recommendations for future work

Studying the biaxial response of the thoracic aorta by obtaining specimens at different orien-

tations is an immediate requirement for the development of appropriate constitutive equations to

model its behavior. Constitutive equations based on classical invariants have high covariance be-

tween the response functions, thus rendering them unfriendly for an experimentalist in interpreting

the data[142]. There are new approaches that may address certain problems of using classical

invariants to describe the constitutive behavior of anisotropic materials (see [143], [144], [145],

[146], [147], [148]). Investigating these approaches to modeling biological tissues where lack of

enough experimental data is pervasive is worth considering.
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APPENDIX A

Appendix A

Figure A.1 shows the variation of the nominal stress with nominal stretch, and figures A.2, A.3

and A.4 show the dependence of EXX, EYY and EXY, respectively on nominal stretch for the loading

part of the 8th cycle.
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Figure A.1: Variation of the nominal stress with nominal stretch for samples oriented at (a)0o

(circ), (b) 30o, (c) 45o, (d) 60o, (e) 90o (long) with the circumferential direction for the loading part
of 8th cycle. The legend in the figure indicates the aorta from which the specimen is obtained.
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Figure A.2: Variation of EXX with nominal stretch for samples oriented at (a)0o (circ), (b) 30o, (c)
45o, (d) 60o, (e) 90o (long) with the circumferential direction for the loading part of 8th cycle. The
legend in the figure indicates the aorta from which the specimen is obtained.
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Figure A.3: Variation of EYY with nominal stretch for samples oriented at (a)0o (circ), (b) 30o, (c)
45o, (d) 60o, (e) 90o (long) with the circumferential direction for the loading part of 8th cycle. The
legend in the figure indicates the aorta from which the specimen is obtained.
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Figure A.4: Variation of EXY with nominal stretch for samples oriented at (a)0o (circ), (b) 30o, (c)
45o, (d) 60o, (e) 90o (long) with the circumferential direction for the loading part of 8th cycle. The
legend in the figure indicates the aorta from which the specimen is obtained.
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