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ABSTRACT

Technological advancements such as efficient jet engines and nuclear reactors rests on our

ability to design and discover new materials. Historically, discovery of new materials has relied

on Edisonian approach, but it is doubtful that this approach will efficiently meet our future needs.

Thus, the aim of this dissertation is to enable goal-oriented material design and discovery. A

goal-oriented closed-loop material design framework rests on our ability to correlate the design

space (input) and objective (output). Most design frameworks tend to utilize a single source of

data or information to exploit the input-output correlation even though often there are multiple

sources of information. Herein, a closed-loop multi-fidelity Bayesian optimization framework is

used to efficiently exploit a wide variety of information sources to design a dual-phase material

with a targeted property. While fundamentally materials science involves the study of process-

ing/chemistry - microstructure - property correlations, in practice, material design involves finding

optimum processing/chemistry that yields desired properties, and the microstructure information is

used to rationalize the observations. This raises a fundamental question, can the intermediate mi-

crostructural information aid in a material design campaign. To answer this, a novel microstructure

aware design approach is proposed and compared against the traditional microstructure agnostic

approach. The results show that the knowledge of material microstructure does not only rationalize

an observation but can also accelerate the design process. Furthermore, some of the most critical

material performance metrics depend on the detailed description of the length-scales associated

with the material microstructure e.g., crack growth resistance. Intuitively, crack growth resistance

of a material can be enhanced by microstructural design. However, microstructural design calls for

a computationally efficient method to assess material’s crack growth resistance within a closed-

loop iterative design framework. To this end, a novel computationally efficient method utilizing

evolving graphs and microstructural unit events is developed and validated against the results of

microstructure-based finite element calculations of ductile fracture. The fully validated method is

then used to design material microstructures with enhanced intergranular crack growth resistance.
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segment, 2 at ∆a2 is computed as lGB cos θ

(
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B.1 Comparisons of crack path predicted using evolving graph method and microstructure-
based finite element model for disconnected microstructural network constituting
of distribution of discrete inclusions with mean inclusion spacing, , lincl = 6δ
shown at three different time steps. (a) construction of a local graph at a inclusion
by building the edges (possible crack paths) that connect to this particular inclu-
sion and then the selection of a crack path with least crack growth resistance, ∆J .
Possible crack paths are highlighted as red dashed lines and the selected crack path
is shown in solid green line. The solid white line shows the propagation of crack
till this inclusion. (b) shows the path predicted using the finite element calculation
for the particular time step. (c) shows the another instance of construction of a
local graph at this inclusion and then selection of the path with minimum ∆J . (d)
shows the path predicted from finite element calculations for the particular time
step. Similarly (e) and (f) show path predicted from graph model and finite el-
ement calculations as the crack reaches the end of the microstructure. Here the
propagation of crack occurs through collection of predictions of paths from the
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Possible crack paths are highlighted as red dashed lines and the selected crack path
is shown in solid green line. The solid white line shows the propagation of crack
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shows the path predicted from finite element calculations for the particular time
step. Similarly (e) and (f) show path predicted from graph model and finite el-
ement calculations as the crack reaches the end of the microstructure. Here the
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B.4 Comparisons of crack growth resistance curves predicted using evolving graph
method and microstructure-based finite element model for disconnected microstruc-
tural network with a distribution of discrete inclusions with mean inclusion spac-
ing, lincl = 8δ shown in Figure B.3 . Comparison of curves of normalized J, (J −
J0)/(σ0δ), versus normalized crack extension (∆a−∆a0)/δ computed from finite
element calculations (solid line) and evolving graph method (dashed green line).
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Possible crack paths are highlighted as red dashed lines and the selected crack path
is shown in solid green line. The solid white line shows the propagation of crack
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B.7 Comparisons of crack path predicted using evolving graph method and microstructure-
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1. INTRODUCTION

The ever-growing need of materials with enhanced properties and performance calls for mate-

rials scientists to discover new methods to design and develop materials with desired properties in

a much faster and cost-effective manner compared to the traditional ways. Historically, design and

discovery of new materials has involved extensive trial and error experiments to optimize its prop-

erties for the desired application. Therefore, these early methods have been expensive and required

a long, laborious process before integrating the material into a commercial setup. To overcome this

challenge, materials scientists have advocated a goal-oriented exploration of the material design

space through experimental, computational, and/or data-driven methods to arrive at a material that

meets the needs.

Essentially, the focus of a goal-oriented material design process is to predict the right combi-

nations of material chemistry and processing route that yields a material with targeted properties,

Figure 1.1. The goal-oriented material design approach is enabled by understanding and exploit-

ing processing/chemistry - microstructure - property relationships. In this approach, the material

is treated as a complex hierarchical system ultimately described by linkages along the process-

ing/chemistry - microstructure - property (PSP) chain [1, 2, 3]. Next, the goal-oriented material

design approach is enabled by exploiting the PSP relationships through iterative optimization tech-

niques that search design space to find the optimum combinations of processing route and material

chemistry that result in desired properties. This has led to initiatives such as Integrated Computa-

tional Materials Engineering (ICME) [4, 5] and Materials Genome Initiative [6].

While the exploitation of full PSP relationships is postulated as an essential element of a goal-

oriented material design approach, establishing the quantitative PSP relationships requires explicit

integration of multiple tools across multiple scales which is technically challenging [7]. Primarily

due to the complex and highly coupled, multi-scale nature of linkages along the PSP chain. This

complexity makes it very difficult to computationally emulate such PSP chains. Recently, some of

these challenges have been addressed and there have been some successes in the establishment and

1



exploitation of fully integrated PSP relationships to carry out goal-oriented materials design [8,

9]. However, considerable cost associated with querying the PSP relationships along with the

high-dimensional nature of the materials design space poses a major challenge on the practical

implementation of goal-oriented materials design approaches.

Figure 1.1: Schematic of a goal-oriented Materials Design process: Through exploitation of
Processing/Chemistry-Microstructure-Property (PSP) relationships.

To overcome the limitations on resources and take the cost of exploring complex high di-

mensional materials design space into account, the concept of optimal experimental design using

closed-loop Bayesian optimization (BO) techniques has been proposed [10, 11, 12, 13]. BO-

based design frameworks are capable of efficiently balancing the exploration and exploitation of

the materials design spaces. This is achieved by using a utility function within the concept of

BO strategy. BO-based design approaches are carried out by constructing a surrogate model of

physics-based models that correlates the design space (input) to the objective (output) to carry out

queries. Most BO-based approaches in material design tend to use a single model or informa-

tion source to correlate the input-output space [10, 11, 12], which is an unwarranted limitation as

oftentimes there are multiple computational models with varying degrees of fidelity and cost, to
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model the material behavior and correlate the input-output space. Furthermore, the current ma-

terial design approaches are not capable of directly integrating experimental information into the

design/optimization loop, other than for calibration, validation or verification purposes. Potential

valuable experimental information could instead be directly incorporated into the material design

framework but this remains largely unexplored. In fact, even state-of-the-art BO-based materials

design [10, 11] tends to be limited to a single probe (experimental or computational) to query

specific linkages of the PSP chain, although other engineering fields have developed sophisticated

approaches for the integration of multiple information sources within optimization schemes [14].

In order to address the aforementioned challenges, in Chapter 2, a closed-loop multi-fidelity

BO framework is presented for the design of materials that is capable of accounting for multiple

information sources to correlate the input-output space. First, the demonstration of the material

design framework is done through the microstructure-based design of a model dual-phase material.

Specifically, the goal is to maximize the strength normalized strain-hardening rate of a dual-phase

ferritic/martensitic steel. The mechanical response of the dual-phase steel is modeled through a

wide variety of reduced-order mechanical models (‘information sources’) with varying degrees

of fidelity as well as cost, and finally through a high-fidelity microstructure-based finite element

model (‘ground truth’). The available information from all mechanical models is fused through

a reification approach and then a sequential experimental design is carried out. The experimental

design seeks not only to identify the most promising region in the materials design space relative

to the objective at hand, but also to identify the source of information that should be used to

query this point in the decision space. The selection criterion for the source used, accounts for the

discrepancy between the ‘information source’ and the ‘ground truth’ predictions as well as its cost.

It is shown that when there is a hard constraint on the budget available to carry out the optimization,

accounting for the cost of querying individual sources is essential.

As discussed earlier, fundamentally, materials science involves the study of PSP relationships,

Figure 1.1. However, the overarching goal of the material design process involves finding the

right combinations of processing route and material chemistry that yields desired properties. The
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intermediate microstructure information is only used to carry out sophisticated multiscale simu-

lations to establish the PSP relationships. Essentially, a goal-oriented material design process is

microstructure agnostic, i.e., it does not explicitly exploit the microstructure information but only

explores the direct processing/chemistry - property relationships. Even in several recent experi-

mental campaigns to carry out material design, the optimum properties of a material are achieved

through fine-tuning of its processing conditions and chemistry, and the microstructure informa-

tion is only used to rationalize the observations and not as a direct input in the materials design

process [15, 16, 17, 18]. Intuitively, these studies point to a fundamental question, can the interme-

diate microstructure information aid in searching for optimum processing parameters and material

chemistry that yield desired properties more efficiently than otherwise.

In Chapter 3, detailed investigations are carried to probe the importance (if any) of the mi-

crostructure information in the materials design process to answer the question posed in the pre-

ceding paragraph. Specifically, the material design problem here involves finding the optimum

combinations of material chemistry and processing parameters that maximize the strength nor-

malized strain hardening rate of a model dual phase material. To establish the quantitative PSP

relationships, a computational thermodynamic model is used to predict the microstructure, which

is then used to predict the mechanical properties using a variety of micromechanical models and

a microstructure-based finite element model. The material design problem is first solved by fol-

lowing the traditional microstructure agnostic approach where the material design space includes

the material chemistry and processing routes, and the microstructure information is only used to

carry out multiscale simulations to establish PSP relationships. Next, the same material design

problem is solved by following a novel microstructure aware approach where the material design

space includes not only the material chemistry and processing routes but also the intermediate mi-

crostructure information. Essentially, apart from the explicit incorporation of the microstructure

information in the materials design space in the microstructure aware design approach, the two

approaches are similar. Both the design approaches are solved using a closed-loop BO framework

demonstrated in Chapter 2. The investigations carried out show that explicit incorporation of the
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microstructure information in the materials design space significantly accelerates the materials de-

sign process. Thus, knowledge of the microstructure not only rationalizes the observed properties

but also assists in the decision-making process as one navigates the materials design space.

In the previous materials design approaches, the materials’ microstructures entered the design

space in a homogenized way i.e., the topological details of the material microstructure was smeared

out. However, the target property may or may not be insensitive to the topological details. For ex-

ample, it is seen that the flow response of dual-phase advanced high strength steel sheets under

uniaxial tension are similar along the rolling and transverse direction. However, the same dual-

phase advanced high strength steel exhibited dissimilar bendability for sheets samples with bend

axis parallel to rolling direction to the one from sheet samples with bend axis parallel to transverse

direction [19]. Thus, design problems in which the target property is sensitive to the topological

details of the microstructure require optimization of the topological features of the material’s mi-

crostructure to carry out goal-oriented material design. For example, the crack growth resistance

of a material depends on the detailed description of the length-scales associated with the material

microstructure. It has been shown that crack growth resistance of the material can be enhanced by

guiding the crack path through microstructure design [20], Figure 1.2. Here, the crack path was

engineered by controlling the distribution of second-phase particles in a ductile matrix to increase

the materials crack growth resistance. The controlled microstructure was characterized by various

sinusoidal distributions of particles with the fixed mean particle spacing. The results presented in

Ref. [20] indicate that the crack path can be engineered to increase the crack growth resistance by

appropriately adding or removing particles that guide the crack path. Similarly in Ref. [21], it was

shown that varying the grain morphology of material microstructure caused significant changes

in the crack growth resistance of the material. Here, material microstructures characterized with

different grain distributions but with similar average grain size resulted in significantly different

crack growth resistances. Intuitively these studies point that material design to increase the crack

growth resistance by microstructural design requires optimizing the topological features of the ma-

terial microstructure. Although microstructure-based finite element calculations have shown to be
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effective in assessing the crack growth resistance of a microstructure [20, 21, 22, 23], these calcu-

lations tend to be highly computationally expensive. Thus, the microstructural design here requires

developing a computationally efficient method to assess materials crack growth resistance which

can then be used within a closed-loop iterative design framework.

Figure 1.2: Schematic illustration of (a) the plastic zone and the growth of the crack (solid while
line) from an initial notch and (b) the crack path in a material microstructure with sinusoidal dis-
tribution of discrete second-phase particles/inclusions (black solid circles) under mode I loading.

In order to carry out the efficient design of microstructures to enhance the crack growth re-

sistance of a material, in Chapter 4, a novel computationally efficient method utilizing evolving

graphs and microstructural unit events is proposed to infer crack path and crack growth resistance

of material microstructure. The proposed approach outlines a method to search for optimum crack

path under the circumstances where the knowledge of the target and graph are unknown a priori.

For example, prediction of crack growth in heterogeneous material microstructure involves search

for crack path where the knowledge of target i.e., end of the crack and the graph i.e., connectiv-

ity between microstructural features is in general unknown. The prediction of crack path and its

crack growth resistance are carried out in two type of material microstructures. First, disconnected

microstructural network, which consists of distribution of discrete inclusions or second-phase par-

6



ticles. These inclusions act as nodes in a graph through which the crack propagates and the connec-

tions i.e., the edges between these nodes in not known a priori. The second type of microstructure

considered is a connected microstructural network and contains fully resolved grains and grain

boundaries along which the crack propagates. Here, the grain boundary junctions act as nodes and

grain boundaries act as edges connecting these nodes. Next, the crack path prediction in both of

these microstructural networks is carried out by searching for an optimal path starting from the

source i.e., the initial crack tip. Prediction of crack path is carried out by first building a local

graph at every time step and selecting the optimum local crack path by using the knowledge of

microstructural unit events. For a given microstructure, the final predicted crack path is then the

collection of all local crack paths obtained at every time step. Finally, crack growth resistance curve

is then calculated based on the predicted crack path and is compared with the results of full-field

finite element calculations of ductile fracture. The full field finite element calculations are carried

out for plane strain slice of materials with disconnected and connected microstructural networks

subjected to mode I small-scale yielding conditions. The finite element formulation accounts for

finite deformations, and the constitutive relation models the loss of stress carrying capacity due to

progressive void nucleation, growth, and coalescence.

Following this in Chapter 5, using microstructure-based finite element calculations and evolv-

ing graphs proposed in Chapter 4, the influence of grain size distribution on ductile intergranular

crack growth resistance is investigated. The crack path and crack growth resistance curves are

predicted by the same approach developed in Chapter 4 and compared with the results of finite

element calculations. The effect of unimodal and bimodal grain size distributions on intergranular

crack growth is considered. It is found that a significant increase in crack growth resistance is

obtained if the difference in grain sizes in the bimodal grain size distribution is sufficiently large.
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2. MATERIALS DESIGN USING MULTIPLE INFORMATION/DATA SOURCES *

2.1 Introduction

Integrated Computational Materials Engineering (ICME) [4, 5], as currently understood, con-

sists of the integration of multiple levels of computational tools, in combination with experi-

ments, along the materials design/optimization chain to (i) establish quantitative Process-Structure-

Property-Performance (PSPP) relationships; and (ii) exploit the so-established PSPP relationships

in the acceleration of the materials design/optimization process. A challenge associated with ICME

is the fact that the explicit integration of multiple computational materials tools remains an out-

standing task [24].

While there have been successes in terms of fully integrated ICME approaches to materials

design [25, 26, 27, 8], in most cases it is assumed that at each level/scale of simulation there is

only one model that serves as a linkage along the PSPP relationship. This paradigm is somewhat

restrictive as it is often the case that there are multiple models, with different levels of fidelity

and associated (computational) costs, that could potentially be used to carry the modeling chain

forward. Furthermore, existing frameworks do not explicitly account for the possibility of using

other types of information or data, such as experiments, alongside computational models, within

the same materials design/optimization framework.

It is further considered that ICME poses the establishment of linkages along the PSPP chain as a

necessary, but not sufficient, condition towards the acceleration of the materials design/optimization

process. ICME-based PSPP model chains tend to be computationally costly and a key outstand-

ing challenge is how to utilize these ICME tools to efficiently explore the Materials Design Space

(MDS). Currently, high-throughput (HT) experimental [28, 29, 30] and computational [31] explo-

ration of the materials space constitute the dominant paradigm. These approaches, however, tend

to be sub-optimal when there are constraints on available resources.

*Reprinted with permission from "Efficient use of multiple information sources in material design" by Ghoreishi,
S.F., Molkeri, A., Arróyave, R., Allaire, D. and Srivastava, A., 2019. Acta Materialia, 180, pp.260-271. Copyright
2019 by Elsevier
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To overcome the challenges associated with the open-loop exploration (computational or oth-

erwise) of MDS, notions of optimal experimental design—based on Bayesian Optimization (BO),

for example—have been put forward [12, 32] and have been shown to be quite effective in carrying

out the targeted search of optimal materials solutions by balancing the exploration and exploitation

of the MDS. However, most BO-based frameworks, similar to ICME-based works, rely on a single

source of information/data (i.e., model or experimental response surface) to query the MDS. In the

absence of sufficient data—as it is most often the case in materials design/optimization problems—

relying on a single model from the start is highly risky. Moreover, such an approach is limited as

it implicitly requires the use of the most accurate approximation to the ‘ground truth’ available to

query the design space at every step of the sequential materials design/optimization task. How-

ever, a high degree of fidelity to the ‘ground truth’ often comes at a considerable cost in terms of

resources and time.

In the works of [32, 10], the authors have recently sought to address this challenge by adap-

tively selecting competing (non-parametric) theories or models relating materials features to their

performance [32, 10]. The framework begins the exploration of the MDS by assuming that each

of the competing models has equal weight. The weight of individual models is then adjusted by

computing the Bayesian evidence relative to the acquired data. Bayesian Model Averaging (BMA)

is then used to find the best next point to query in the design space as determined by all the compet-

ing models with their relative contribution to the utility function being adjusted by their updated

weight. The framework, however, took a very conservative approach to information fusion and

treated each model as statistically independent, ignoring the correlations between the models that

could potentially be exploited in the materials design/optimization scheme. While this may not

be a major issue when using non-parametric models—i.e., models that have no internal structure

based on/constrained by physics—, this may be a significant limitation when the models available

are all connected by the common physical phenomena they intend to represent.

State-of-the-art of approaches to the computer/data-enabled discovery and/or design of mate-

rials has moved forward significantly but there remain important issues to address. Specifically,
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model-based ICME approaches focus on integration of tools along the PSPP relationship assuming

there is only one model/tool relevant to each level of the problem. On the other hand, data-centric

approaches tend to focus on the brute-force exploration of the MDS, without much emphasis on

being able to inform decisions on where to explore next based on the knowledge acquired. Further-

more, both types of frameworks tend to discount the need for allocating resources in an efficient

manner.

Here, a framework is presented that addresses the challenges outlined above. Specifically,

to tackle the challenge of optimizing the features of a dual-phase microstructure for a specific

(mechanical) property/performance metric. It is further assumed that there are availability of a set

of models of varying complexity (or computational cost) and fidelity. It is also considered that

there is access to a ‘ground truth’, in the form of an expensive microstructure-based finite element

model that can be queried at much more expense than the other sources of information and that,

therefore, should be queried as infrequently as possible, provided the design space represented by

such ‘ground truth’ is sampled efficiently.

The (inexpensive) sources used in this work are fused by accounting for their mutual correlation

as well as their correlation with the ‘ground truth’. The framework accounts for the value of

individual ‘information sources’ in relation to the property we wish to optimize. The queried

source is used to construct a fuse model that represents our best estimate for the response of the

‘ground truth’.The fused model is then incorporated within a Knowledge Gradient (KG) framework

in order to carry out, in a principled manner, two decisions: (i) which source to query the MDS;

and (ii) which location of the MDS to query; taking into account a fixed budget (cost) for queries

to carry out before assessing the ‘ground truth’.

While the framework is demonstrated in a computational context, the problem set up and its

resolution closely mimics a typical materials design/optimization campaign: (i) there are more

than one potential source of information (experimental and/or computational) about the system to

be investigated; (ii) each of the ‘information sources’ has different degree of fidelity with regards

to the ‘ground truth’; (iii) each source has different cost (monetary and/or otherwise); and (iv)
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there are hard constraints in time and resources available to complete the research campaign. The

last point is often overlooked but constitutes a very important limitation to the effectiveness of

any approach towards materials design/optimization. Indeed, towards the end of the work, ample

(computational) evidence for the fundamental importance for accounting not only for the utility

but for the cost of ‘information sources’ when there are (as always) hard resource constraints is

provided.

2.2 Methods

2.2.1 Mechanical Behavior of Dual-Phase Microstructures

In this work, the materials design/optimization framework is demonstrated by focusing on

the mechanical response of dual-phase advanced high strength steels. In these alloy systems, the

microstructure consists of a relatively soft, ductile ferrite phase that is strengthened by the hard

martensite phase [33]. The overall mechanical response of these dual-phase microstructures are

controlled by the (non-linear) properties of the constituent phases, the microstructural features such

as volume fraction, and the (non-linear) interaction among the constituent phases [34, 23, 22, 35].

In principle, the overall response of these dual-phase microstructures can be tuned and optimized.

Unfortunately, any approach to microstructure design/optimization that does not rely on predictive

models for the overall response of the microstructure will require extensive and expensive trial-

and-error experimentation.

The overall mechanical response of composite dual-phase microstructures can be predicted

with a higher level of fidelity through the use of single [34, 23, 22, 35] or multi-scale [36, 37]

microstructure-based finite element calculations. Unfortunately, these models tend to be computa-

tionally costly which prevents their use to carry out direct optimization—of mechanical properties—

over the entire microstructure space. On the other extreme, simple reduced-order models that

make strong assumptions on how strain[38], stress [39] or work of deformation [40] partitions

between the constituent phases are computationally cheap, but they offer much lower fidelity

and predictability. At an intermediate level of complexity/fidelity, the response of dual-phase
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microstructures can be predicted using sophisticated micromechanical homogenization schemes

that consider the dual-phase microstructure as a matrix with inclusions of another phase homoge-

neously dispersed within it [41]. All these models, however, are only capable of predicting the

(non-linear) mechanical response of these microstructures with varying degrees of accuracy (rel-

ative to a microstructure-based finite element calculation). Moreover, the computational cost of

these reduced-order and micromechanical models also differ significantly—by orders of magni-

tude.

Recognizing the advantages and limitations of different potential cheap models used to predict

the response of dual-phase microstructures, in this work all of them—reduced-order models and

micromechanical homogenization schemes— are treated as sources of information with varying

value and cost, with regards to the optimization problem at hand. In other words, in order to tackle

the challenge of optimizing the dual-phase microstructures for enhanced mechanical performance,

it is assumed that are a set of models of varying complexity (or computational cost) and fidelity

available. In order to demonstrate this framework, the high-fidelity microstructure-based finite

element calculations are considered as ‘ground truth’. Furthermore, the cost to query the ‘ground

truth’ is taken to be much more expensive than the other sources of information.

Before all the ‘information sources’ and the finite element calculations are described, it is

noted that the problem posed here is a drastic simplification of the real problem—even within a

simulation-only setting—as the fact that microstructure that is ultimately controlled via material

chemistry and processing, is completely ignored. A more realistic problem setup would consist

of models incorporating the process/chemistry-microstructure connection as well as the effect of

both the chemistry and the processing conditions on the properties of the constituent phases. For

the sake of demonstration, in this work the process/chemistry-microstructure connection is ignored

and the design space is limited to simple microstructural descriptors.

2.2.1.1 Microstructure-based finite element modeling

The microstructure-based finite element modeling to predict the overall mechanical response

of dual-phase microstructures is carried out using 3D representative volume elements (RVEs) as
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described in [35, 13]. Fig. 2.1 shows two realizations of a 3D RVE of a dual-phase microstructure

with about 50% volume fraction of the martensite (hard) phase. The RVEs are constructed using

C3D8 brick elements of the ABAQUS/Standard element library [42], and have a dimension of

100µm × 100µm × 100µm. The RVEs are subjected to monotonically increasing uniaxial tensile

deformation under periodic boundary conditions.

Figure 2.1: Two realizations of the representative volume element (RVE) of a dual-phase mi-
crostructure with 54.22% (by volume) of a hard (martensite) phase. The two realizations refer to
different distributions of the hard phase particles in the RVE with a fixed phase volume fraction.

In the finite element calculations, it is assumed that both the ferrite and the martensite phase

follow an isotropic elastic-plastic constitutive relation, with identical Young’s modulus—E =

200GPa—and Poisson’s ratio—ν = 0.3, and a Ludwik type strain-hardening response,

τ p = τ po +Kp(ϵppl)
np

, (2.1)

where τ p is the flow stress, ϵppl is the plastic strain, τ po is the yield strength, Kp is the strengthening

coefficient, and np is the strain-hardening exponent of phase p. The values for these parameters

are given in Table 2.1. The models are qualitative in nature and the parameters used are chosen

in order to have a microstructure that represents a soft phase (ferrite) with a lower initial yield

strength and a higher strain-hardenability than the hard phase (martensite) [34, 23, 22, 35].
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Table 2.1: Parameterization of the Ludwik power law for the constituent phases of the dual-phase
microstructure.

Constituent Phase, p τ po [MPa] Kp [MPa] np

Soft (ferrite) 300 2200 0.5
Hard (martensite) 1500 450 0.06

2.2.1.2 Reduced-order models

The overall mechanical response of a dual-phase microstructure can also be predicted using

reduced-order models constructed under different assumptions regarding the partitioning of strain,

stress or work of deformation among the constituent phases. Three such reduced-order models con-

sidered here are: (i) the Voigt/Taylor model that assumes isostrain partitioning, (ii) the Reuss/Sachs

model that assumes equipartitioning of stress and (iii) the isowork model that assumes both phases

undergo identical works of deformation as the composite microstructure is deformed [43]. For all

three reduced-order models the constitutive relation, τ p = f(ϵppl), is assumed to follow Eq. (2.1),

with the values of the parameters given in Table 2.1.

2.2.1.3 Micromechanical models

In addition to the simple reduced-order models presented above, three more sophisticated mi-

cromechanical homogenization schemes as sources of information that provide estimates of the

overall mechanical response of dual-phase microstructures are also exploited. The first two ho-

mogenization schemes employed here are referred to as ‘secant method - 1’ and ‘secant method -

2’, whereas the third one is referred to as the ‘elastic constraint’ method. The secant method pro-

posed by Weng [41], predicts the mechanical response of a two-phase composite microstructure

based on Hill’s weakening constraint power in a plastically-deforming matrix. In a dual-phase mi-

crostructure, where both the phases are capable of undergoing plastic deformation, and the phase

constitution covers the entire range, i.e., zero-to-one (0% phase 1 & 100% phase 2) to one-to-zero

(100% phase 1 & 0% phase 2), it is difficult to decide which phase should be considered as an
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inclusion and which phase should be considered to be the matrix. Thus, the ‘secant method - 1’ is

the secant method proposed by Weng [41], where the ferrite phase is considered the matrix, while

the scenario when martensite is considered the matrix is referred to as ‘secant method - 2’. It is

expected that these two variants of the secant method will be valid in opposite regions in the mi-

crostructure design space. The third homogenization scheme, referred to as ‘elastic constraint’, is

based on Kröner’s treatment of the matrix-inclusion system under elastic constraints [41]. For this

method, the final prediction does not depend on which phase, ferrite or martensite, is assumed as

inclusion or the matrix. For all three homogenization schemes, ‘secant method - 1’, ‘secant method

- 2’ and ‘elastic constraint’, the inclusion-inclusion interaction at finite concentration are accounted

for by the Mori-Tanaka method. For all three homogenization schemes, the constitutive relation,

τ p = f(ϵppl), is assumed to follow Eq. (2.1), with the values of the parameters given in Table 2.1.

2.2.1.4 Comparison of the predictions of ‘information sources’ and the ‘ground truth’

In this work, all the reduced-order models, Section 2.2.1.2, and micromechanical homogeniza-

tion schemes, Section 2.2.1.3 are treated, as sources of information, while the microstructure-based

finite element calculations, Section 5.2, is treated as ‘ground truth’.

The predicted flow curve of a dual-phase microstructure with 25% volume fraction of the hard

(martensite) phase, using the reduced-order models and micromechanical homogenization schemes

are compared against the finite element results in Fig. 2.2. As can be seen from the figure, com-

pared to the finite element predictions, the isostress model significantly under-predicts the stress

values at nearly all plastic strain levels. The isostrain and isowork models, on the other hand,

over-predict the stress at low strain levels. However, at large strain levels their predictions are

comparable with the finite element predictions. In addition, none of the reduced-order models are

able to correctly predict the overall strain-hardening response of the dual-phase microstructure. Of

all the micromechanical homogenization schemes, predictions of the Weng [41] secant model with

soft phase as matrix (secant method - 1) are comparable with the finite element calculations at low

strain levels. The predictions of the Weng [41] secant model with hard phase as matrix (secant

method - 2) and the elastic constraint model are roughly the same, and at low strain levels both
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Figure 2.2: Comparison of the predicted stress-plastic strain curves by the three reduced-order
models and the three micromechanical homogenization schemes with the microstructure-based
finite element calculations (RVE) of a dual-phase microstructure with 25% volume fraction of the
hard phase.

over predict the stress values.

The flow strength and the strain-hardenability of a material are two very important mechanical

properties with practical implications for both its performance and manufacturability. These two

fundamental mechanical properties can be reduced to a single metric by introducing a strength nor-

malized strain-hardening rate, given as (1/τ)(dτ/dϵpl). This quantity provides an indication of the

ductility and formability of the material, with higher values corresponding to higher ductility and

formability. Fig. 2.3 shows how (1/τ)(dτ/dϵpl) varies with the volume fraction of the hard phase,

fhard, estimated at a plastic strain level of ϵpl = 0.9% from the microstructure-based finite element

calculations. The figure shows that (1/τ)(dτ/dϵpl) exhibits a maxima at a finite volume fraction of

the hard phase. The variation of (1/τ)(dτ/dϵpl) in the figure also exhibits small perturbations, indi-

cated as error bars, arising from seven different realizations of the RVE representation of the dual-

phase microstructure with identical phase constitutions. The response of (1/τ)(dτ/dϵpl) predicted
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Figure 2.3: Strength normalized strain-hardening rate (1/τ)(dτ/dϵpl) at ϵpl = 0.9% as a function
of the volume fraction of the hard phase, fhard. Predictions of the three reduced-order models and
three micromechanical homogenization schemes are compared to the microstructure-based finite
element calculations (RVE).

using the three reduced-order models and the three micromechanical homogenization schemes are

also shown in Fig. 2.3. As can be seen, none of the approximate models or ‘information sources’

are capable of reproducing the response predicted using the microstructure-based finite element

calculations over the entire phase constitution space. The ’Secant method-1’ approximation is ca-

pable of reproducing the response at small volume fractions of the hard phase but the discrepancy

with the ’ground truth’ becomes significant at volume fractions above 20%. Most models tend to

converge towards the finite element predictions when the majority of the microstructure consists

of the hard phase. In this regime, the microstructure exhibits no strain-hardenability.

The results presented in Fig. 2.3 clearly show that all the ‘information sources’—reduced-order

models and micromechanical homogenization schemes—are incapable of reproducing the ‘ground

truth’ with an acceptable level of fidelity. On the other hand, these ‘information sources’ are cheap

and their predictions differ from the ‘ground truth’ in a systematic manner. So it may be possi-
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Table 2.2: Computational cost of various ‘information sources’ used.

Information Source Cost (seconds) Normalized Cost
Reduced-order Models

iso-strain 2.3×10−4 1
iso-stress 1.0×10−3 4.4
iso-work 4.7×10−1 2.0×103

Micromechanical models
secant method 1 3.8×101 1.7×105

secant method 2 8.4×101 3.7×105

elastic constraint 3.6×101 1.6×105

Finite element (RVE) or ‘ground truth’
RVE 7.2×103 3.1×107

ble to learn this discrepancy and use this knowledge to arrive at a more robust estimation of the

‘ground truth’ at an extremely low cost. The computational cost of each ‘information source’ and

the ‘ground truth’ is calculated based on their run time on a PC equipped with an Intel® Xeon® E5-

2670 v2 (Ivy Bridge-EP) processor. The run time of a given ‘information source’ was determined

by tracking the wall-clock time using ‘tic’ and ‘toc’ functions in MATLAB. To avoid the effect of

external load due to memory constraints, each ‘information source’ was queried 1000 times and

the average run time of 1000 queries was considered as the run time or cost of each ‘information

source’. The final assigned computational cost to each ‘information source’ are given in Table 2.2.

While all the ‘information sources’ considered here are computational models and the costs for

each information-source is simply the computational time, this approach is generic enough to in-

corporate any other type of ‘information source’ or cost, as long as they can be represented in a

consistent fashion.

2.2.2 Design Framework

The overall framework seeks to optimize an objective function assuming that there are multi-

ple ‘information sources’ that can be used to query the input space. This problem is formulated

following the work described in [13], however, here the expense of executing a given ‘information
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source’ in the framework is explicitly incorporated:

x∗ =x∈χ f(x), (2.2)

where f is the objective function, and x is a set of design variables in the vector space χ. In real-

world applications, the objective function is often unknown and expensive to evaluate, and there

are oftentimes constraints placed on decision-making. Additionally, in most real-world applica-

tions, there are potentially multiple ways in which one can query the design space. One can use,

for example, a combination of numerical simulations, experiments and expert opinions, to approx-

imate the objective function with varying fidelity or accuracy, and with varying cost (monetary or

otherwise). Here, the an approach is presented that exploits all available ‘information sources’. In

each step of the approach, the choice of what ‘information source’ to sample and with what input

(or region in the design space), is based on a trade off between the cost and fidelity of a specific

‘information source’.

In this work it is assumed that are S ‘information sources’, fi(x), where i ∈ {1, 2, . . . , S},

available that can be used to approximate the objective function, f(x), at x. Next, the response of

each source through GP-based surrogates is modeled. These GPs are fit using data from previous

queries, {XNi
,yNi

}, where XNi
= (x1,i, . . . ,xNi,i) corresponds to the Ni input samples used to

query the response of source i and yNi
corresponds to the output—the domain of the ‘information

source’ correspond to the microstructural degrees of freedom (i.e., phase fractions) available. The

posterior GPs distributions of each fi, fGP,i(x), at any point x are

fGP,i(x) | XNi
,yNi

∼ N
(
µi(x), σ

2
GP,i(x)

)
, (2.3)

where

µi(x) = Ki(XNi
,x)T [Ki(XNi

,XNi
) + σ2

n,iI]
−1yNi

, (2.4)
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and

σ2
GP,i(x) = ki(x,x)−Ki(XNi

,x)T [Ki(XNi
,XNi

) + σ2
n,iI]

−1Ki(XNi
,x). (2.5)

Here, ki is a real-valued kernel function associated with ‘information source’ i over the input

space, Ki(XNi
,XNi

) is the Ni × Ni matrix whose m,n entry is ki(xm,i,xn,i), Ki(XNi
,x) is the

Ni × 1 vector whose mth entry is ki(xm,i,x) for ‘information source’ i, and the term σ2
n,i can

be used to model observation error of ‘information source’ i or to guard against numerical ill-

conditioning. A major ingredient of GPs is the prior information about the degree of correlation

between different points in the input space. This information is encoded in a kernel function. In

this work a relatively smooth response surface is assumed, based on the behavior of the ‘ground

truth’ shown in Fig. 2.3 and thus the squared exponential kernel is used,

ki(x,x
′) = σ2

s exp

(
−

d∑
h=1

(xh − x′
h)

2

2l2h

)
, (2.6)

where d is the dimension of the input space, σ2
s is the variance, and lh, where h = 1, 2, . . . , d,

is the characteristic length-scale that measures the degree of correlation in the input space. It is

assumed that each dimension of the input space, h, has its own stationary characteristic length-

scale—the formulation is general but in this case it is attempted to solve an optimization problem

with a one dimensional design/input space. The GP models for each ‘information source’ are fit

through maximum likelihood or Bayesian techniques [44].

The uncertainty of each ‘information source’ with respect to the ‘ground truth’ can be estimated

from the intrinsic variance of the GP as well as the discrepancy between the ‘information source’

and the ‘ground truth’:

σ2
i (x) = σ2

GP,i(x) + σ2
f,i(x), (2.7)

where σ2
f,i(x) is the variance of the discrepancy of ‘information source’ i. It is noted that this

variance can in principle vary over the input space.

While it is to be expected that low cost ‘information sources’ with missing physics will ex-
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hibit large discrepancies with respect to the ‘ground truth’, in this work the hypothesis is that

every source contains useful information about the ‘ground truth’ that is expensive/difficult to ob-

serve/query. In this specific case this is justified as all the reduced-order models and homogeniza-

tion schemes use the same inputs and produce the same outputs as the ‘ground truth’ microstructure-

based finite element calculations. More importantly, from an epistemic point of view, all the ‘infor-

mation sources’ seek to predict the response of a microstructure as a function of imposed loading

using different theoretical frameworks and/or physical assumptions. Regardless of the underlying

assumptions (e.g. how stress, strain or work are partitioned among the different phases), all sources

are ‘causally’ connected to the same underlying ‘ground truth’ and it is thus expected that they will

be correlated—to differing degrees—to it.

Since all ‘information sources’ potentially have information about the ‘ground truth’, they are

fused, using following standard approaches for the fusion of normally distributed data [45], as they

are all represented as GPs. According to this fusion method, the fused mean and variance at point

x can be computed as

µWink(x) =
eT Σ̃(x)−1µ(x)

eT Σ̃(x)−1e
, (2.8)

σ2
Wink(x) =

1

eT Σ̃(x)−1e
, (2.9)

where e = [1, . . . , 1]⊤, µ(x) = [µ1(x), . . . , µS(x)]
⊤ contains the mean values of S sources at point

x, and Σ̃(x) is the covariance matrix between sources,

Σ̃(x) =



σ2
1(x) · · · ρ1S(x)σ1(x)σS(x)

ρ12(x)σ1(x)σ2(x) · · · ρ2S(x)σ2(x)σS(x)

... . . . ...

ρ1S(x)σ1(x)σS(x) · · · σ2
S(x)


, (2.10)

where σ2
i (x) is the total variance of source, i, at a point x computed in Eq. (2.7) and ρij(x) is

the correlation between the deviations of ‘information sources’ i and j at point x. The reification

process described in [46, 47] is used, to estimate the correlation between the errors of sources i
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and j, computed as

ρij(x) =
σ2
j (x)

σ2
i (x) + σ2

j (x)
ρ̃ij(x) +

σ2
i (x)

σ2
i (x) + σ2

j (x)
ρ̃ji(x), (2.11)

which is the variance weighted average of the correlation coefficients computed by reifying sources

i and j respectively as

ρ̃ij(x) =
σi(x)√

(µi(x)− µj(x))
2 + σ2

i (x)
,

ρ̃ji(x) =
σj(x)√

(µj(x)− µi(x))
2 + σ2

j (x)
,

(2.12)

where µi(x) and µj(x) correspond to the means of sources i and j, and σ2
i (x) and σ2

j (x) are

the total variances of ‘information sources’ i and j at x. The correlations between the errors of

two models/sources is estimated using the procedure described in [46, 47]. The fused means and

variances in the input design space χ are used to construct a fused GP model. Letting µWink(x1:Nf
)

and Σ(x1:Nf
) = diag

(
σ2
Wink(x1), . . . , σ

2
Wink(xNf

)
)

be the vector of fused means with a diagonal

matrix of the fused variances at the sampling set x1:Nf
⊂ χ, the posterior predictive distribution of

the fused model is given by:

f̂ fused(X) ∼ N (µfused(X),Σfused(X)), (2.13)

where

µfused(X) = K(x1:Nf
,X)T [K(x1:Nf

,x1:Nf
) + Σ(x1:Nf

)]−1µWink(x1:Nf
),

Σfused(X) = K(X,X)−K(x1:Nf
,X)T [K(x1:Nf

,x1:Nf
) + Σ(x1:Nf

)]−1K(x1:Nf
,X).

(2.14)

By constructing the fused GP, in each iteration of the proposed methodology, the next design point

is determined—i.e., phase fraction to evaluate—and ‘information source’ to query—i.e., model

connecting microstructure and response—by balancing the cost of the query and the value of such

query relative to the objective function, Eq. (2.2). In order to select the next point to query, first
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a Latin Hypercube experimental design is generated, denotes as Xalt over the input space. Let

(x1:N , y1:N) be the design points and the corresponding objective values, and i1:N be the indices of

the queried ‘information sources’ up to time step N . In a Bayesian optimization framework, the

choice of utility function determines the next (unobserved) point in the design space to explore.

While there are a number of possible utility functions to choose from, here a two-step look ahead

utility is proposed, which considers the immediate improvement in one step as well as the expected

improvement in two steps.

This utility, which is obtained by querying the design point x ∈ Xalt from ‘information source’

i is defined as

Ux,i = E
[

max
x′∈Xalt

µfused(x′) + max
x′′∈Xalt

EIx,i(x
′′)

∣∣∣∣ x1:N , y1:N , i1:N ,xN+1 = x, iN+1 = i

]
, (2.15)

where EIx,i(x
′′) is the one-step look-ahead expected increase in the maximum of the fused GP

given xN+1 = x and iN+1 = i as

EIx,i(x
′′) = E

[
max

x′∈Xalt

µfused(x′) | xN+2 = x′′]− max
x′∈Xalt

µfused(x′). (2.16)

It is noted that to compute the expectation in Eq. (2.15), a Monte Carlo approach is used, draw-

ing Nq independent samples from the normal distribution of the GP of ‘information source’ i at a

design point x, f q
i (x) ∼ N

(
µi(x), σ

2
GP,i(x)

)
, q = 1, . . . , Nq. Then, by temporarily augmenting

(x , f q
i (x)), one at a time, using the available samples of ‘information source’ i, the mean of the

fused GP is temporarily updated, which is denoted as µfused,q
x,i , and the utility is approximated as

Ux,i ≈
1

Nq

Nq∑
q=1

(
max

x′∈Xalt

µfused,q
x,i (x′) + max

x′′∈Xalt

EIqx,i(x
′′)
)
, (2.17)

where EIqx,i(x
′′) is the one-step look-ahead expected increase in the maximum of the fused GP

upon augmentation of query (x , f q
i (x)) to ‘information source’ i. This expected increase is com-

puted using the Knowledge Gradient (KG) metric over the temporary fused GP as discussed in [48].
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Using the Latin Hypercube sampling over the input space, the utility function for each of

the ‘information sources’ is evaluated by removing the previously added sample and augmenting

the next sample in the proposed alternatives. The next point to query—among all the candidate

points—with the best ‘information source’ is determined using the following policy:

(iN+1,xN+1) =i∈[1,...,S],x∈Xalt

Ux,i

Cx,i

, (2.18)

where Cx,i is the cost of querying ‘information source’ i at a design point x.

Once the selected design point has been identified and a query has been made, the correspond-

ing fused GP is updated. This loop is continued until the objective of the optimization problem has

been met or the budget allocated to this optimization task has been exhausted:

x∗ =x∈χ µfused(x). (2.19)

A schematic of the framework just described is shown in Fig. 2.4.

Figure 2.4: Flow chart of the proposed efficient multi-‘information source’ optimization frame-
work.
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2.3 Results and Discussion

2.3.1 Designing Dual-Phase Microstructures for Enhanced Mechanical Performance

The framework, Fig. 2.4, is now demonstrated against the problem of identifying the phase con-

stitution –represented in this simplified instance as just the volume fraction of the constituents in

the dual-phase microstructure–that results in the maximum formability metric. The microstructure-

based finite element calculations are considered as ‘ground truth’ and the three reduced-order mod-

els and three micromechanical homogenization schemes as used as the cheap ‘information sources’

available to elicit the behavior of the composite dual-phase microstructure.

The optimization process starts by querying (once) the cheap and the ‘ground truth’ sources.

These data are then used to construct the initial GPs used to emulate each of the ‘information

sources’. The framework is then used to identify which ‘information source’ to use next, and

where in the input space to use it.

Here, after five queries to any of the cheap sources the framework makes the recommendation

for the next point to query using the expensive ‘ground truth’. Note that the framework allows

for the querying of any of the cheap sources multiple times (or not at all) as long as the five-query

budget has not been exhausted. Also note that while the cost is considered in the construction of the

utility function, the total expenditure (i.e. total computational resources used) is not accumulated.

Implicitly, this set up thus considers that there is no real hard budget constraining the optimization.

This problem setup will be contrasted with a case in which there is a hard budget constrain for the

total computational expenditures before a query to the ‘ground truth’ is made, as described later in

Section 2.3.2.

Fig. 2.5 shows the fused model obtained by the approach, with mean represented by the smooth

red line and 99.7% confidence interval represented by the red shaded area. These results are com-

pared to the ‘ground truth’, represented with the jagged green line and the green shaded area. As

it can be seen, the fused model obtained by this approach represents the ‘ground truth’ well in the

region of the optimal design.
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Figure 2.5: The mean and 99.7% CI of the fused model obtained by the proposed approach in
comparison with the ‘ground truth’ (RVE).

Table 2.3: Performance of the optimization framework. The true optimal solution as obtained by
the microstructure-based finite element calculation (RVE) is (x∗ , f ∗) = (21.6080 , 29.3123).

Experiment x∗
fused f ∗

fused ftrue(x
∗
fused)

2 36.1809 18.8470 25.4273
3 36.6834 20.7475 25.1903
4 32.1608 22.5232 27.1322
5 31.6583 28.9564 27.3177
6 26.1307 29.8824 28.8633
7 22.6181 29.7564 29.2840

Table 2.3 shows the progression of the optimization procedure as the framework identifies the

design point that corresponds to maximum formability. The table compares the predictions from

the fuse model evaluated at the best design point thus far, x∗
fused, with the value of the formability

parameter evaluated using the ‘ground truth’ at the same best design point. The table shows that

it takes seven queries of the ‘ground truth’ to produce a close-to-optimal solution. While it is not

reported here, but in the works of [13] its is shown how this multi-‘information source’ framework

is superior to the use of the ‘ground truth’ as the only query to sample.
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Figure 2.6: Number of queries as a function of the experimental sequence for all ‘information
sources’.

Fig. 2.6 shows the number of times that any of the ‘information sources’, including the ex-

pensive ‘ground truth’, are queried. Between each of these expensive queries, the different cheap

‘information sources’ are queried depending on their utility (including consideration of their cost).

The figure shows that all the cheap sources are being queried, albeit at different frequencies, in

order to identify the optimal design. As described above, the querying policy is controlled through

Eq. (2.18), which balances improvement in objective with cost. The figure shows, for example,

how in the early stages of the optimization the ‘isostress’ and ‘secant method-1’ sources tend to be

queried more extensively than the other four available sources. In later stages of the process it is

evident that many more sources are being queried and this serves as an indication of the ability of

the present framework to optimally select the most cost effective ‘information sources’. It is also

pointed out here that very cheap ‘information sources’, such as the isostress and isostrain models,

could potentially be queried exhaustively and still follow the policy determined by Eq. (2.18). In

this case, the cost of querying is so negligible that any potential for objective improvement would

lead to these sources being selected. This is an excellent feature of the policy, since in general,
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if there is access to a very inexpensive ‘information source’, it makes intuitive sense to quickly

gather all information that one can from it.
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Figure 2.7: Comparison between the ‘ground truth’, fused model, and individual ‘information
sources’.

Fig. 2.7 shows the GPs of the ‘information sources’. The black dots show the samples queried

from the ‘information sources’ and the black lines represent the mean function of these sources.

The solid shaded regions for each of the GPs correspond to the intrinsic uncertainty of the GPs

themselves and originates from the lack of information about the response of that particular source

in regions not explored yet. In addition to this uncertainty, a comparison with the response of

the ‘ground truth’ is used to compute the discrepancy of the ‘information sources’. The intrinsic

uncertainty of the GP and the discrepancy between the ‘information source’ and the ‘ground truth’

are added into the total uncertainty, shown as a lighter shaded region.

The figure shows that none of the ‘information sources’ performs well over the entire design

domain. Some sources overstimate their predictions relative to the ‘ground truth’ (black solid line)
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while some sources underestimate it. None of the sources provides even a qualitative indication

of where the optimal value of the ‘ground truth’ should be. The application of the reification-

based information fusion, however, results in a fused model that reproduces, with high fidelity, the

response of the ‘ground truth’.

Fig. 2.6 shows that different sources are queried at different stages of the optimization se-

quence. Moreover, Fig. 2.7 shows that while all sources have a significant discrepancy with the

‘ground truth’, some sources tend to be closer to it in some regions of the problem space. To

understand how different sources were correlated to the ‘ground truth’, the effective independent

‘information sources’ (EIS) index is presented in Fig. 2.8. This index was introduced first time in

the work of [13], and can be understood as a metric that indicates the number of effective number

of independent ‘information sources’ used to estimate the fused model at different regions of the

domain. If σ2
∗(x) is defined as the variance of the current best ‘information source’ at point x, the

number of effective independent ‘information sources’ with variance σ2
∗(x) at the point x is given

as

Ieff = σ2
∗(x)e

⊤Σ̃(x)−1e. (2.20)

The index shows the total number S of effective independent sources with the same variance at

a given design point. Any source that has a variance larger than the variance of the best source(s)

will not contribute to the reduction of the variance and its value, Ieff, will be less than S. The EIS

index is thus calculated relative to the best source available at any given point. In the case of highly

correlated ‘information sources’ Eq. (2.9) can result in a decrease in variance that is larger than in

the case of statistically uncorrelated ‘information sources’. The reification approach used in this

work takes this into account by detecting the correlation and discounting this effect appropriately.

It is noted that if these highly correlated sources were to be treated as statistically independent,

they would have undue evidence on the overall estimation of the fused model.

Fig. 2.8 includes the Ieff for all the cheap sources simultaneously and compares this index

against that of the isostress + secant method-1 pair and the combination of the isostrain + isowork

+ secant method-2 + elastic constraint. As can be seen in Fig. 2.8, Ieff is not large over the input
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Figure 2.8: Number of effective independent ‘information sources’ (EIS), Ieff as a function of fhard.

space. For this particular problem, it is often the case that only a few of the sources are reasonable

estimates of ‘ground truth’ at any given location in the domain. This renders the contribution of the

other more inaccurate sources to Ieff to be very small. In this figure, it is clear that initially, until

fhard ≈ 40%, the isostress + secant method-1 pair is driving the fused approximation, which is clear

from the fact that the six-source index and the isostress + secant method-1 index nearly overlap in

this region. This means that the isostress + secant method-1 are capable of explaining most of the

variance with regards to the ‘ground truth’. Examining Fig. 2.7 one can see that these two sources

are closer to the ‘ground truth’ than the other four sources within this region of the input space. At

the other end of the domain, the other four sources are contributing more to the prediction, which

can again be seen from the near overlap with the six-source index and the drop-off of the isostress

+ secant method-1 pair. While all ‘information sources’ do not contribute equally over the domain,

they are all necessary to construct the fused approximation shown in Fig. 2.5.

This result is significant as Ieff essentially indicates what ‘information source’ (or model) op-

erates in a specific region of the problem domain. Thus, it is possible to use Ieff to uncover the

relevant sources and, indirectly, the relevant physics governing the behavior of a system in differ-

ent regimes. In this case, for example, Ieff suggests that the assumption of equal partitioning of
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stress in the regime at low volume fraction of the hard particle seems to be operationally correct.

At higher volume fractions of the hard phase, other theories may be more in agreement with the

‘ground truth’.

2.3.2 The Impact of Cost on Optimal Decision Making under Budget Constraints

It is noted that the set up of the test problem presented in Section 2.3 was somewhat arbitrary

as the acquisition protocol (five queries to the cheap sources before querying the ‘ground truth’)

is defined ahead of carrying out the exploration/exploitation of the design space. In principle, the

cheap sources could have been chosen to query any number of times in between queries to the

‘ground truth’. More importantly, while cost was used to compute the utility metric of the design

space, there was no explicit consideration of budget available during the optimization exercise.

To resolve this issue, a more realistic situation that is more relevant to the process of optimal

experimental design for materials optimization is considered:

• There is a finite set of ‘information sources’ that can be queried at any given time in order to

learn more about the problem space.

• Each of the sources has different degree of fidelity with regards to the ‘ground truth’ and,

most importantly, different cost.

• There is a finite budget, expressed in terms of total cost (in this case in computational time)

available to explore and exploit the domain space before the ‘information source’ considered

as the ‘ground truth’ is queried.

In order to demonstrate the effect of cost in the decision-making process, the average results

obtained over 100 independent simulations in two conditions—labeled as ‘with cost consideration’

and ‘without cost consideration’—are compared in Fig. 2.9. In both conditions, a fixed budget

(computational cost) of 100 seconds to be spent among all the cheap ‘information sources’ before

querying the ‘ground truth’ is considered.

In the case identified as ‘with cost consideration’, the actual cost of ‘information sources’ in the

selection criterion in Eq. (2.18) is considered, however in the case of ‘without cost consideration’,
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Figure 2.9: Average maximum function value per cost for cases of decision-making with and
without cost consideration.

Figure 2.10: Average Number of samples queried from the ‘ground truth’ (RVE) model and the
‘information sources’ over average cost for the cases of decision-making with and without cost
consideration.

the cost of all ‘information sources’ are assumed to be the same during the selection process. After

the budget of 100 seconds is spent, then the ‘ground truth’ is queried in both cases.
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In the first case (with cost consideration), the cheap ‘information sources’ are queried exhaus-

tively allowing the policy to obtain all available information from the very inexpensive sources

with almost negligible cost. After this, the more expensive sources are queried according to the

balance between cost and utility, in a fully automated fashion. While in the second case (with-

out cost consideration), as cost accumulation does not play a role in the selection process, the

expensive ‘information sources’ are queried in the early iterations. Therefore, fewer queries are

performed, particularly on the cheaper ‘information sources’, in the limited budget of 100 seconds.

The result is that the total budget is exhausted before reaching the optimum. However, for the ‘with

cost consideration case’, the optimum is obtained.

Fig. 2.10 demonstrates the average number of queries to each ‘information source’ and the

‘ground truth’ over average cost for two conditions of with and without cost consideration. As can

be seen, in the case of ‘with cost consideration’, the cheaper ‘information sources’ are exhaustively

queried, which helps to find the optimum with much less average cost in comparison to the case

of ‘without cost consideration’ as seen in Fig. 2.9. Essentially, the policy in place has the ability

to quickly gather all information from the negligible expense sources prior to making a query to a

more expensive source. This provides for more informed queries to the more expensive sources,

and also matches with the intuitive concept of exhaustively evaluating the very inexpensive sources

immediately.

2.4 Summary

While there has been real progress in the development of ICME-based frameworks for materi-

als design, major issues still remain. The challenges are closely associated to the resource-intensive

nature of the computational and/or experimental approaches to exploring PSPP relationships as

well as to the fact that most ICME frameworks tend to assume that there is a single model or

experiment available at a given scale or PSPP linkage. A further limitation of traditional ICME

approaches is the fact that in most cases there is no prescribed way to correct for discrepancies

between models and ‘ground truth’.

In this work, a framework capable of utilizing multiple available sources of information to
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carry out a materials optimization task is presented. By exploiting statistical correlations among

the different ‘information sources’ as well as between the sources and the ‘ground truth’ it is

possible to develop a fused model that incorporates the available (useful) information originating

from all of the sources. The fused model is represented as a GP and is thus amenable to Bayesian

Optimization. Here the Knowledge Gradient (KG) metric is used to efficiently balance the need to

explore and exploit knowledge of the materials design space in order to find an optimal solution

in as efficient manner as possible. The framework, however, goes beyond optimal experimental

design and enables the selection of the most cost-effective ‘information source’ to use every time

that there is need to query the problem space, while accounting for a total available budget.

While the proposed framework has been demonstrated by using a combination of relatively

inexpensive computational models, it is important to note that each ‘information source’ (including

the ‘ground truth’) is represented as a stochastic model (i.e., a GP) and thus there is no fundamental

limitation to using experimental or any other type of information as an independent ‘information

source’. One could, for example, combine mechanistic models, machine learning derived non-

parametric models, experiments at different degrees of resolution, and even expert opinion as long

as each source is modeled as a GP or any other suitable stochastic representation. The framework

proposed thus provides a natural approach to seamlessly combining experiments and simulations,

and hopefully will inspire and instigate future works in this direction.
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3. IMPORTANCE OF MICROSTRUCTURE IN MATERIAL DESIGN

3.1 Introduction

The future of technologies such as efficient jet engines [49], hypersonic flights [50] and next-

generation nuclear reactors [51] rests on our ability to design and discover new materials with

desired properties. Although historically, discovery of new materials has relied on the Edisonian

approach, it is doubtful that this approach will serendipitously yield new materials to meet the cur-

rent and futuristic technological needs. Thus, to overcome this challenge, materials scientists have

advocated a goal-oriented exploration of the material design space through experimental, compu-

tational, and/or data-driven methods [1, 2, 3]. Essentially, the focus of a material design process

is to predict the combinations of material chemistry and processing route that yields a material

with targeted properties. The goal-oriented material design approach is enabled by understanding

and exploiting processing/chemistry - microstructure - property (PSP) relationships, whose exis-

tence represents the central paradigm in materials science (Fig. 3.1). In this approach, a material

is treated as a complex hierarchical system ultimately described by linkages along the PSP chain

[1, 2, 3, 4]. The established PSP chain is then exploited to tune the processing/chemistry space to

yield target properties [3, 52, 53, 54, 55, 56, 57, 9]. While the exploitation of full PSP relationships

is posited as an essential element of materials design and discovery, microstructure information is

only used to carry out sophisticated multiscale simulations to establish the PSP relationships. So

that, fundamentally, the material design process is microstructure agnostic i.e., does not explicitly

exploit the microstructure information but only explores the direct processing/chemistry - property

relationships (Fig. 3.1).

Indeed, even the state-of-the-art experimental materials design are carried out through direct

exploration of the materials processing/chemistry space to arrive at optimal properties without ex-

plicitly exploiting the knowledge of the microstructure state of the material [15, 16, 17, 18]. For

example, the authors in ref. [15], experimentally designed a refractory high-entropy alloy with
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Figure 3.1: Processing/Chemistry-Microstructure-Property (PSP) paradigm in materials science.
In the traditional, microstructure agnostic, approach the microstructure information is not directly
exploited for material design, as shown. While in the proposed microstructure aware approach the
microstructure information is directly exploited for material design, and it is shown that this mi-
crostructure aware approach helps us arrive at processing/chemistry conditions that yield optimum
properties more efficiently than the traditional microstructure agnostic approach.

enhanced ductility by optimizing the material’s chemistry. Here, microstructure characterization

was only used to gain understanding and rationalize the impact of processing/chemistry on the

mechanical properties of the alloy a posteriori but was not explicitly used to guide the step-by-

step exploration of the material design space i.e., processing/chemistry. Similarly, the authors

in ref. [16], experimentally designed a high-strength, low-cost nanostructured beta-titanium alloy

consisting of homogeneous distribution of micron- and nano-scale α-phase precipitates within the

β-phase matrix. Again, as in the previous case, analysis of the microstructure, after finding an

optimal property, was used to uncover the ultimate cause for the superior mechanical properties.

Another example of such efforts includes the work by authors in ref. [17], who were able to identify

alloys defeating the strength-ductility trade-off by forming a dual-phase microstructure by engi-

neering the phase metastability. In this case, the alloy design principle was based on a hypothesized

enhancing mechanism verified, a posteriori, via experimental characterization.

While the examples just described expanded our knowledge of the materials performance space
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by careful and ground-breaking analysis of the connections between processing/chemistry and re-

sulting properties mediated by the material microstructure, the latter was not used as a direct input

in the material design process. Rather, an analysis of the material microstructure state was carried

out to explain the attained properties. Thus, even though our aspiration as material scientists is

to unravel the principles that govern material properties and performance, from the practical en-

gineering standpoint, explicit knowledge of the microstructure does not appear to be a necessary

condition for a successful material design campaign. However, given the centrality of the PSP

relationships to materials science as a field, it is worth investigating whether microstructural infor-

mation can help us arrive at processing/chemistry conditions that yield optimum properties more

efficiently than otherwise. If the answer ends up being negative, then, from an admittedly prag-

matic point of view, the argument for building an explicit PSP relationship as a necessary condition

towards accelerated material design is moot. The microstructure state of the system, thus, can be

simply replaced by a ‘black box’ without affecting the outcome of the design process i.e., iden-

tification of the region in the material design space (processing/chemistry parameters) that yields

optimal properties. Knowledge of the microstructure then will only serve to rationalize observa-

tions rather than assist in the decision-making process as one navigates the material design space.

On the other hand, showing that microstructure information can be explicitly exploited to accel-

erate the material design process can have significant consequences in recent efforts to develop

closed-loop iterative frameworks for material design [57, 9].

Herein, a rigorous analysis is carried out to probe the importance (if any) of the microstructure

information in the material design process. The specific material design problem considered here

involves finding the right combinations of material chemistry and processing conditions that max-

imizes the targeted mechanical property of a model dual-phase steel. The material design problem

is first solved by following the traditional microstructure agnostic (Fig. 3.1) approach where the

material design space includes the material chemistry and processing routes, and the microstructure

information is only used to carry out multiscale simulations to establish PSP relationships. Next,

the same material design problem is set up by following a novel microstructure aware (Fig. 3.1)
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approach where the material design space not only includes the material chemistry and processing

routes, but also the microstructure information. Note that apart from the explicit incorporation of

the microstructure information in the materials design space in the latter, the two approaches are

essentially the same. Nevertheless, incorporating the microstructure information in the material

design space is not a trivial task. This is because, first, the microstructure information is a de-

pendent variable as it depends on the independent variables– material chemistry and processing

routes. Second, explicit incorporation of the microstructure information in the material design

space increases the dimensionality of the problem. Here not only for the first time it is shown how

to formulate and solve a microstructure aware material design problem but also the fundamental

question i.e, whether microstructure information is important in the material design process or not

is answered. The results clearly show that explicit incorporation of the microstructure information

in the material design space significantly accelerates the material design process. Thus, knowledge

of the microstructure not only rationalizes the observed properties but also assists in the decision-

making process as one navigates the material design space. This microstructure aware closed-loop

iterative material design framework can also be put into practice even for an entirely experimental

material design campaign by using ever-growing high-throughput material processing and charac-

terization techniques.

3.2 Methods

The importance of the microstructure information in the material design process is probed by

considering a model material design problem that involves finding the right combinations of the

parameters in the input (design) space, XI, that maximizes the output (objective), XO, Fig. 3.2.

The input space in this problem includes the processing condition (intercritical annealing temper-

ature, TIA) and the material chemistry (the amount of alloying elements, Carbon, XC , Silicon,

XSi, and Manganese, XMn); while the output is a targeted mechanical property (stress normalized

strain hardening rate, (1/τ) (dτ/dεpl), with τ and εpl being the flow stress and the plastic strain,

respectively) of a model (ferritic-martensitic) dual-phase steel. The targeted mechanical property,

normalized strain hardening rate, is a useful mechanical performance metric, and a higher value of
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Figure 3.2: Schematic representation of the microstructure agnostic and microstructure aware
closed-loop multi-information source fusion Bayesian Optimization approaches for the design of a
model dual-phase (ferrite-martensite) steel. Here, XI is the set of input variables with TIA being the
intercritical annealing temperature, XC , XSi and XMn being the Carbon, Silicon and Manganese
content, respectively, while the targeted output, XO, is the stress normalized strain hardening rate
((1/τ) (dτ/dεpl), with τ and εpl being the flow stress and the plastic strain, respectively). Also,
fmart is the volume fraction and Xmart

C is the Carbon content of the martensite phase; while Xferr
Si

and Xferr
Mn are the Silicon and Manganese content, respectively, of the ferrite phase.

this parameter indicates better ductility and formability of the material. The feasible input space in

the design problem is considered to be bounded i.e., we consider a material system that contains

Carbon within 0.05 to 1 wt%, Silicon within 0.1 to 2 wt% and Manganese within 0.15 to 3 wt%,

and is subjected to intercritical annealing heat-treatment at temperatures ranging from 650◦C to

850◦C.

Next, computational thermodynamics is employed using a commercial code Thermo-Calc™ as

in refs. [58, 9] to compute the microstructure (characterized by the volume fraction, fmart, of the

martensite phase) and chemical composition (characterized by the Carbon content of the marten-
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site phase, Xmart
C , and Silicon, Xferr

Si , and Manganese, Xferr
Mn , content of the ferrite phase) of the

resultant phases as a function of XI, Fig. 3.2. The details of the dual-phase microstructure are

then used to predict the mechanical properties using five low fidelity reduced-order micromechan-

ical models, Isostrain, Isostress, Isowork, Secant Method and Elastic Constraint, referred to as

‘information sources’ and a high fidelity three-dimensional microstructure-based finite element

model (µFE) referred to as the ‘ground truth’ (Fig. 3.2) [59, 9]. The first three low fidelity

reduced-order mechanical models, Isotrain [38], Isostress [39] and Isowork [40], are based on

different simplifying assumptions of how the strain, stress, or mechanical work, respectively, par-

tition among the constituent phases in the dual-phase microstructure. The other two low fidelity

models, the Secant Method and the Elastic Constraint models, are more sophisticated microme-

chanical models ref. [41]. The Secant Method is based on Hill’s weakening constraint power in

a plastically-deforming matrix; while the elastic constraint model is based on Kröner’s treatment

of the matrix-inclusion system under elastic constraints [41]. The ‘ground truth’ µFE model on

the other hand utilizes a full field finite element analysis of a three-dimensional representative

volume element (RVE) of the dual-phase microstructure [60, 13, 59, 9]. A typical finite element

mesh of the RVE of the dual-phase microstructure employs 27,000 C3D8 brick elements from the

ABAQUS/standard element library [42], and is subjected to a monotonically increasing uniaxial

tensile deformation under fully periodic boundary conditions. A more detailed description of the

µFE model can be found in refs. [60, 9].

The two constituent phases, ferrite and martensite, are discretely modeled in the the µFE

analyses as isotropic elastic-plastic material with Young’s modulus, E = 200GPa and Poisson’s

ratio, ν = 0.3, and constitutive relations (relating flow stress, τ , equivalent plastic strain, εpl, and

the chemical composition, XP
i , in weight fraction) as,

τ = τF0 + CSi(X
ferr
Si )1/2 + CMn(X

ferr
Mn )1/2 +KF (εpl)n

F

(3.1)

and
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τ = τM0 + Cc(X
mart
C )1/3 +KM(εpl)n

M

(3.2)

for the ferrite and martensite phases, respectively, with τF0 = 200MPa, CSi = 732MPa, CMn =

213MPa, KF = 2200MPa, nF = 0.5, τM0 = 400MPa, Cc = 105MPa, KM = 450MPa and nM =

0.06. The choice of the (representative) constitutive parameters in Eqs. (3.1) and (3.2) are based on

the prior observations that the strength of the martensite phase predominantly depends on its carbon

content and it does not exhibit significant strain-hardening; while the ferrite phase is softer than the

martensite phase, exhibits significant strain-hardening and its strength depends on its silicon and

manganese content [23, 61, 62]. All the five (low fidelity reduced-order) micromechanical models

referred to as ‘information sources’ also use the same constitutive relations given in Eqs. (3.1) and

(3.2) for the two constituent phases.

As shown schematically in Fig. 3.2, the established PSP relationship for the model dual-

phase material can now be exploited using the closed-loop multi-information source fusion (multi-

fidelity) Bayesian Optimization (BO) framework as demonstrated in chapter 2 to solve the goal-

oriented material design problem by either following the traditional microstructure agnostic or a

novel microstructure aware approach. Here, the closed-loop multi-fidelity BO framework is briefly

described with a focus on highlighting the differences between the proposed microstructure aware

approach and the traditional microstructure agnostic approach. A more complete description of

the closed-loop multi-fidelity BO framework can be found in chapter 2 and in ref. [9]. In the

microstructure agnostic approach, the decision-making process does not involve the knowledge of

the material’s microstructure and the optimization problem is simply posed as

x∗ = argmax
x∈XI

Xo (x) (3.3)

where x∗ is the optimal design vector in the feasible input space, XI = [TIA, XC , XSi, XMn].

In the proposed microstructure aware approach the material design space not only includes the

material chemistry and processing condition, but also the microstructure information; and the
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decision-making process explicitly involves the knowledge of the material microstructure and the

optimization problem is posed as

x∗ = argmax
x∈XI

Xo

(
x, fmart (x)

)
(3.4)

with fmart being dependent on the input vector, x.

The closed-loop multi-fidelity BO framework for both the approaches first involves construc-

tion of surrogate models for all the ‘information sources’ and ‘ground truth’ based on the current

knowledge of the connection between the design space and the predicted response. Herein, a Gaus-

sian process model with squared exponential kernel is used as surrogates for all the ‘information

sources’ and ‘ground truth.’ The Gaussian process model is chosen due to their useful mathemati-

cal properties such as their ability to predict the mean value as well as the variance of the quantity

of interest, and the straightforward manner in which the causal correlation between the points in

the design space and their response can be modeled [63]. The behavior of a Gaussian process

surrogate model is controlled by the hyperparameters of the kernel and it is necessary to tune their

values based on the current knowledge of the input-output connection. The optimum values of

the hyperparameters in this work are estimated by maximizing the log marginal likelihood. Note

that the Gaussian process surrogate model for the microstructure agnostic approach correlates the

input XI to output XO; while for the microstructure aware approach the input XI is augmented

with an extra dimension which is the volume fraction of the martensite phase, fmart, to explicitly

incorporate the microstructure information in the materials design process.

Since all the ‘information sources’ i.e., the low fidelity reduced-order micromechanical mod-

els attempt to describe the connection between the microstructural features and the mechanical

response of the material, it is expected that they would exhibit some degree of correlation among

themselves and also with the ‘ground truth’ i.e., the µFE model. Thus, by exploiting such statis-

tical correlations through the ‘reification’ process [45, 46, 47, 64] a fused Gaussian process model

is generated. This fused Gaussian process model is used to estimate the objective function that

encompasses our current knowledge of the correlation between the design space and the objective

42



value. In a multi-fidelity iterative design optimization problem, one needs to answer two questions

at every iteration: (i) where to sample next in the design/input space, and (ii) which ‘information

source’ to use to query the selected point in the design space. To determine this, potential sample

design points are generated using Latin hypercube sampling in the input design space and eval-

uated from each of the Gaussian process models of ‘information sources’ and then a temporary

fused Gaussian process model for each ‘information source’ is constructed. Next, among these po-

tential design points, it is sought to identify which design point and ‘information source’ to query

such that it will lead to the maximum improvement in the knowledge of the maximum objective

value. To quantify the expected change in the knowledge of the maximum objective value when

evaluating the potential design point from each ‘information source,’ an expected value utility ac-

quisition function based on the Knowledge Gradient [65] is used. Next, the Knowledge Gradient

for the set of potential design points on the temporary fused Gaussian process model of each ‘in-

formation source’ is computed. The best pair of ‘information source,’ ISi and design point, X∗
I

that maximizes this Knowledge Gradient is selected to query next. Following this, the response

of the selected ‘information source,’ ISi, by computing the input-output correlation at the selected

design point, X∗
I is evaluated. After this evaluation of the selected ‘information source,’ ISi, the

corresponding Gaussian process and fused Gaussian process models are updated. Now based on a

criteria, the ‘ground truth’ model (µFE model) may also be queried to update the knowledge of

the maximum objective value. The criteria to query the ‘ground truth’ model is set here to every ten

design iterations. Using this evaluation of the ‘ground truth’ model, the Gaussian process model

of the ‘ground truth’ as well as the fused Gaussian Process model are updated. This entire process

is repeated until the end of the optimization is reached which in this case is a preset number of

design iterations. Finally, at the end of the optimization, the best design point that maximizes the

objective function is reported.

3.3 Results

The material design problem of finding the right combinations of the parameters in the in-

put space, XI = [TIA, XC , XSi, XMn], that maximizes the output, XO = [1/τ (dτ/dεpl)], of a
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model dual-phase steel is solved using the closed-loop multi-fidelity BO framework following

both the traditional microstructure agnostic and the novel microstructure aware approaches, as

shown schematically in Fig. 3.2. The first step to set up the design framework requires construc-

tion of Gaussian process models using the initial knowledge of the XI-XO correlation. To this

end, XI-XO correlation at ninety sets of randomly selected parameters in the input space using

computational thermodynamics and each of the low fidelity micromechanical models referred to

as ‘information sources’ are evaluated. While the XI-XO correlation is evaluated at only five sets

of randomly selected parameters in the input space using computational thermodynamics and the

high fidelity µFE model referred to as ‘ground truth.’ To avoid any bias in the design process due

to the initial sets of randomly selected parameters in the input space, in particularly that of the five

sets evaluated using the ‘ground truth’ model, five realizations of the design process are carried

out. A realization here basically refers to different sets of initially known five ‘ground truth’ XI -

XO correlations.

The overall performance of the two material design approaches are compared in Fig. 3.3. The

plot in Fig. 3.3(a), compares the maximum objective value (i.e., the stress normalized strain hard-

ening rate) achieved as a function of the number of design iterations for five realizations of the

design process; while the plot in Fig. 3.3(b) compares the average number of design iterations

required to reach an average maximum objective value over five realizations of the design pro-

cess. In Fig. 3.3(a), the lines correspond to the average values and the shaded regions represent

the variance over the five realizations of the design process. As can be seen in Fig. 3.3(a), at any

design iteration the maximum objective value achieved using the microstructure aware approach

is greater than that using the microstructure agnostic approach. An alternate representation of the

same in Fig. 3.3(b) also shows that on average much fewer number of design iterations are needed

to obtain the same average objective value using the microstructure aware approach compared

to the microstructure agnostic approach. Furthermore, even though after large number (greater

than 150) of design iterations the predictions of the microstructure agnostic approach tends to

catch up with that of the microstructure aware approach, the maximum objective value achieved
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by the microstructure agnostic approach at the end of the optimization (i.e., after 300 design it-

erations) is less than the value achieved by the microstructure aware approach. Thus, the results

presented here clearly demonstrates that an explicit incorporation of the knowledge of the material

microstructure in the design framework not only accelerates the material design process but also

results in comparatively better design solutions.

Figure 3.3: A comparison of the performance of the traditional microstructure agnostic and the
novel microstructure aware material design approaches. (a) Comparing the maximum objective
value found as a function of the number of design iterations for five realizations of the design
process. (b) Comparing the average number of design iterations required to reach an average
maximum objective value over five realizations of the design process.

Since the mechanical properties of a material are inherently controlled by the microstructure,

analysis of how the two design approaches explore and converge in the material microstructure

space during the design process is now shown. A comparison of the average value of the mi-

crostructural parameter i.e., volume fraction of the martensite phase, fmart, that correspond to the

average maximum objective value at each design iteration over five realizations of the design pro-

cess as predicted by the microstructure agnostic and microstructure aware design approaches are
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shown in Fig. 3.4. As can be seen in the figure, even though both the design approaches start the

design process with the same knowledge of the XI-XO correlation, the value of fmart predicted by

the two approaches during early stages of the design process are very different. The microstructure

agnostic approach initially predicts a very small value of fmart which then evolves as the design

process/iteration continues and finally tends to saturate after a large number (greater than 150) of

design iterations. On the contrary, the microstructure aware approach predicts a value of fmart that

is close to the saturation value of fmart predicted by the microstructure agnostic approach since

the beginning of the design process. This early knowledge of the feasible material microstructure

space that corresponds to the maximum objective value enables the microstructure aware approach

to be more efficient than the traditional microstructure agnostic approach.

Figure 3.4: A comparison of the average value of the optimum microstructure parameter (char-
acterized by the volume fraction of the martensite phase, fmart) predicted by the traditional mi-
crostructure agnostic and the novel microstructure aware material design approaches at each de-
sign iteration over five realizations of the design process.

Next, the average values of the design (i.e., input) variables, intercritical annealing temper-

ature, and the amount of alloying elements, Carbon, Manganese and Silicon that correspond to

the average maximum objective value at each design iteration over five realizations of the design

process as identified by the microstructure agnostic and microstructure aware design approaches
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is compared in Fig. 3.5. In this particular problem, it is noted that irrespective of the design ap-

proach, the framework is expected to converge into a region rather than a unique point. This is

because a particular objective value i.e., normalized strain hardening rate can be achieved by more

than one combination of the processing condition and chemical composition [9]. As can be seen in

Fig. 3.5, although the two design approaches are trying to maximize the same objective, they fol-

low different routes and also on average converge to different set of parameters in the design space.

For example, both microstructure aware and microstructure agnostic approaches identify similar

intercritical annealing temperature in the early stages of the design process but the microstructure

aware approach explores more in this design space in search of the optimum solution and finally

converges to a lower value compared to the microstructure agnostic approach. On the contrary,

the two approaches identify very different amount of the Carbon content in the early stages of

the design process and the microstructure agnostic approach explores more in this design space in

search of the optimum solution but finally converges to a value close to what is identified by the

microstructure aware approach. Both the approaches, however, on average follow a similar route

and also finally converge to a rather similar value of the amount of Manganese. While both the

approaches identify similar amount of the Silicon content in the early stages of the design process,

the microstructure agnostic approach explores more in this design space and finally converges to a

lower value compared to the microstructure agnostic approach.

Our closed-loop multi-fidelity BO framework employs multiple ‘information sources’ to esti-

mate the objective as described in Fig. 3.2. Thus, we now analyze the impact of the microstructure

aware and microstructure agnostic design approaches on the selection of different ‘information

sources’ during the design process. Note that none of the five low fidelity reduced-order microme-

chanical models referred here as ‘information sources’ are capable of reproducing the response

predicted using the high fidelity µFE model referred here as ‘ground truth’ over the entire mi-

crostructure space [59]. Also recall that the criteria to query the ‘ground truth’ model is set here

to every ten design iterations for both the design approaches. The results presented in Fig. 3.6

show the progression of queries made to different ‘information sources’ as function of design it-
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Figure 3.5: A comparison of the optimum processing/chemistry parameters identified by the tra-
ditional microstructure agnostic and the novel microstructure aware material design approaches.
(a)-(d) Comparing the average optimal values of the processing parameter, intercritical annealing
temperature, and the amount of alloying elements, Carbon, Manganese and Silicon that correspond
to the average maximum objective value at each design iteration over five realizations of the design
process.

erations for one realization of the design process. As shown in Fig. 3.6(a), the microstructure

aware approach extensively queries the design space using more sophisticated Secant Method and

Elastic Constraint models while the microstructure agnostic approach favors querying the design

space using the simple Isostress model during the early stages of the design process. While at the

later stages of the design process, both the approaches begin querying the design space through all
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available ‘information sources.’

Figure 3.6: Exploitation of ‘information sources’ (Isostrain, Isostress, Isowork, Secant Method
and Elastic Constraint reduced-order models) and the ‘ground truth’ (µFE) model at each design
iteration by the (a) novel microstructure aware and the (b) traditional microstructure agnostic
material design approaches. The results are shown for one realization of the design process.

The results presented thus far clearly demonstrates that the two design approaches not only take

very different route in the design space but also utilize different ‘information sources’ to query the

design space in search of the same objective. The results also demonstrate that the microstructure

aware approach converges rapidly in the microstructure space and provides better design solution

compared to the microstructure agnostic approach. Now to understand what enables the superior

performance of the microstructure aware approach compared to the microstructure agnostic ap-

proach we compare the predictions of the initial (at the very first design iteration) fused Gaussian

Process models built using the two approaches with that of the predictions of exhaustively query-

ing the chain of computational thermodynamics and the ‘ground truth’ model in Fig. 3.7, for one

realization of the design process. As shown in Figs. 3.7(a) and (b), despite the fact that the same
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five sets of XI-XO correlations are used to built the initial fused Gaussian Process models for both

the approaches, the predictions of the initial fused Gaussian process model for the microstructure

aware approach correlates extremely well with the ‘ground truth’ compared to the predictions of

the initial fused Gaussian process model for the microstructure agnostic approach. The parity plots

in Figs. 3.7(c) and (d) also highlight the quantitatively better correlation between the predictions

of the initial fused Gaussian process model for the microstructure aware approach and the ‘ground

truth’ compared to that of the microstructure agnostic approach. In conclusion, an explicit incor-

poration of the knowledge of the material microstructure in the design framework significantly

enhances the initial knowledge of the microstructure - property correlations that in turn leads to

more efficient and effective design process.

3.4 Discussion

Although as material scientists and engineers we aspire to unravel the underlying PSP rela-

tionship of materials, in practice the material microstructure information is not used as a direct

input in a material design process, and only an analysis of the same is carried out a posteriori

to rationalize the attained properties. This raises a fundamental question, can the intermediate

microstructure information aid in the material design process. To answer this question, herein, a

rigorous analysis has been carried out to probe the importance of the microstructure information

in the material design process that involves finding the right combinations of material chemistry

and processing condition that maximizes a targeted mechanical property of a model dual-phase

steel using a closed-loop multi-fidelity BO framework. This material design problem is first solved

by following the traditional microstructure agnostic approach where the material design space in-

cludes the material chemistry and processing condition, and the microstructure information is only

used to carry out multiscale simulations to establish PSP relationships. Next, the same material

design problem is solved by following a novel microstructure aware approach where the mate-

rial design space not only includes the material chemistry and processing condition but also the

microstructure information.

The results clearly show that an explicit incorporation of the knowledge of material microstruc-

50



Figure 3.7: A comparison of the predicted variation of the objective value as a function of the ma-
terial microstructure characterized by the volume fraction of the martensite phase, fmart, obtained
by exhaustively querying the chain of computational thermodynamics and ‘ground truth’ (µFE)
model and by querying the initial (at the very first design iteration) fused Gaussian Process model
for the (a) microstructure aware and (b) microstructure agnostic approaches. Parity plots of the
objective value obtained by exhaustively querying the chain of computational thermodynamics and
‘ground truth’ and by querying the fused Gaussian Process model for the (c) microstructure aware
and (d) microstructure agnostic approaches. The results are shown for one realization of the design
process and the five initially known ‘ground truth’ information are marked with stars in (a) and (b).

ture in the decision-making process as one navigates the material design space not only accelerates

the material design process but also results in comparatively better design solutions. A detailed
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analyses of the material design process following the microstructure agnostic and microstructure

aware approaches show that the two design approaches not only take very different route in the de-

sign space but also utilize different set of ‘information sources’ to query the design space in search

of the same objective. The superior performance of the microstructure aware design approach

compared to the microstructure agnostic design approach is rooted in the fact that an explicit in-

corporation of the knowledge of the material microstructure in the design framework significantly

enhances our initial knowledge of the microstructure - property correlation that in turn leads to

more efficient and effective design process.

Since it is the difference in the initial knowledge of the microstructure - property correlation

that leads to the superior performance of the microstructure aware design approach compared to

the microstructure agnostic design approach, it is warranted to compare their performance for a

range of known initial design space (input) - objective (output) correlations used to initiate the

design process. To this end, the performance of the two design approaches by setting up the design

framework using only one, ten or twenty five randomly selected sets of initially known input -

output correlations is compared. Also, to avoid any bias in the design process due to the initial sets

of randomly selected input - output correlations, five realizations of the design process for each

sets of initially known input - output correlations are carried out. The results of this exercise are

given in the Appendix A, Figs. A1-A15. The results clearly show that irrespective of the number

of initially known input - output correlations used to initiate the design process, the performance of

the microstructure aware design approach is always better than the microstructure agnostic design

approach. Furthermore, the results also show that the relative performance of the microstructure

aware design approach is even better than the microstructure agnostic design approach when fewer

number of initially known input - output correlations are used to initiate the design process.

Note that incorporating the microstructure information in the material design space increases

the dimensionality of the problem, however, the results show a positive impact on the decision-

making process with increasing the dimensionality of the design space. The positive impact of

increasing the dimensionality of a given problem has been explored and exploited in a variety of
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scientific and engineering problems. For example, the so-called ‘kernel trick’ of machine learning

[66], which replaces inner products with kernel functions to enable nonlinear learning, effectively

raises the dimensionality of a machine learner from low dimension to high and even infinite dimen-

sions [67]. This is especially very common when using support vector machines for classification.

In model order reduction, recent methods for lifting maps [68, 69] introduce auxiliary variables to

a system model to provide more mathematical structure. For example, the introduction of auxiliary

variables through lifting maps can lead to polynomial systems of differential-algebraic equations

or in other cases, system dynamics with quadratic structure. The resulting well-behaved mathe-

matical structure of the problem caused by the increase in dimensionality leads to far more efficient

solution strategies enabling larger problems to be tackled computationally [70]. The identification

of new, relevant dimensions in a given problem can also have a profound impact on an entire fields

of study. For example, the celebrated Buckingham π theorem [71] from the study of dimensional

analysis [72] states on physical grounds that physics-based equations may be rewritten in terms

of dimensionless parameters providing there is some physical connection among the variables in

the equation. This identification of a latent governing parameter or set of parameters has had a

profound impact on the field of fluid mechanics, where parameters such as the Reynolds number,

the Mach number, and the Froude number have been discovered. These parameters are all derived

from the original variables of a given problem, and therefore, even though they increase the di-

mensionality of the problem, it leads to a dramatic increase in the physical understanding of the

phenomena at play.

While the proposed microstructure aware closed-loop multi-fidelity BO framework for mate-

rial design is demonstrated here to be extremely efficient and effective in realizing goal-oriented

material design using a combination of models and simulation techniques, this design framework

can also be put into practice even for an entirely experimental material design campaign by us-

ing ever-growing high-throughput material processing and characterization techniques. It is also

important to note that since each ‘information source’ is represented in the design framework as

a stochastic model (i.e., Gaussian Process) and thus there is no fundamental limitation on using a
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combination of experimental, modeling and/or simulation based ‘information sources.’ The pro-

posed material design framework can also be further enhanced by utilizing more sophisticated

thermodynamics/kinetics-based modeling schemes (e.g., phase-field simulations [?]) to not only

predict the phase volume fraction and composition but also size and morphology of the constituent

phases, and by incorporating them explicitly in the decision-making process. Another future direc-

tion to enhance the performance of the proposed material design framework will be to incorporate

adaptive active subspace method to efficiently handle the large dimensionality of the design space

[73, 74] by taking advantage of the fact that in materials design problems the objective function in

general is more sensitive to some design variables compared to others.

3.5 Summary

In this work, a microstructure aware closed-loop multi-information source fusion (multi-fidelity)

Bayesian Optimization (BO) framework for goal-oriented materials design has been presented.

The specific material design problem considered here involved finding the right combinations of

material chemistry and processing condition that maximizes a targeted mechanical property of a

model dual-phase steel. This material design problem is first solved by using both the traditional

microstructure agnostic approach where the microstructure information is only used to establish

PSP relationships and the proposed microstructure aware approach where the microstructure in-

formation is also used in decision-making as we navigate through the material design space. The

analysis clearly show that these two design approaches not only take very different route in the

design space but also utilize different ‘information sources’ to query the design space in search of

the same objective. Furthermore, it is shown that explicit incorporation of the knowledge of the

material microstructure information in the microstructure aware approach significantly enhances

the initial knowledge of the microstructure - property correlation that in turn leads to more efficient

and effective design process compared to the microstructure agnostic approach.

Although explicitly incorporating the microstructure information in the material design frame-

work increases the dimensionality of the problem, the results show exceptional positive impact of

this increase in dimensionality on the design process. The positive impact of increasing the dimen-
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sionality of a given problem has been explored and exploited in a variety of scientific and engi-

neering problems. These additional parameters (for instance, microstructural information in this

particular case) are derived from original parameters of the problem, and therefore, even though

they increase the dimensionality of the problem, they lead to a dramatic increase in the physical

understanding of the phenomena at play.

While the efficiency and effectiveness of the proposed microstructure aware closed-loop multi-

fidelity BO framework for materials design using a combination of models and simulation tech-

niques is demonstrated, this design framework can also be put into practice even for an entirely ex-

perimental material design campaign by using ever-growing high-throughput material processing

and characterization techniques. Also, since each ‘information source’ is represented as a stochas-

tic model in the design framework, there is no fundamental limitation on using a combination of

experimental, modeling and/or simulation results as independent ‘information sources.’
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4. DUCTILE FRACTURE PREDICTION USING EVOLVING GRAPHS

4.1 Introduction

Solving a variety of physical problems involves finding the optimal path. One such example

is finding the optimum driving directions using a navigation application. This is essentially an

optimization problem of finding the shortest path or weighted (e.g., based on traffic conditions or

speed limits) shortest path between a source and a target in a well-defined network of paths or

simply a graph constituting nodes and edges. However, for several physical problems, either the

graph or the target, or both are unknown a priori. An example of a problem where the source and

the target are known, but the graph is not known is, a path search in a complex evolving social

networking site such as Facebook, LinkedIn, or Twitter. For example, if a person is trying to

connect with a friend, Facebook tries to find the shortest path to reach that friend in a network

where the connections between the source person and target person are not unknown a priori.

Similarly, a scenario of a problem involving optimal path search where the source and the graph

are known, but the target is not known, is intergranular crack growth in a material microstructure

with known distribution consisting of grain boundary connections. In such problems, the source,

i.e., the initial location of the crack and graph i.e., the microstructural network is known, but the

target i.e., the end of the crack is not known a priori. An example of a more complex physical

problem that involves path search where only the knowledge of source is known but both the target

and graph are not known is, optimal path-planning of mobile robots in rescue missions which

entails searching a path from the source to a hidden target in an unknown network.

For simple problems where the knowledge of the source, target, and the graph are all known a

priori, the optimal path between the source and target can be easily found using classical pathfind-

ing algorithms such as Dijkstra’s algorithm [75], shortest path algorithm [76], and breadth-first

search algorithm [77]. For example, the problem of search for a stable chemical reaction path-

way starting from a precursor to a target to accelerate the synthesis of solid-state materials [78].
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Here, the search for the stable reaction path i.e., the lowest-cost path in the known network of all

possible reactions is enabled by using breadth-first search algorithm [77]. However, these classical

pathfinding algorithms are insufficient to solve pathfinding problems in which the source and target

are known, but the graph is not known. As outlined above in the preceding paragraph, the prob-

lem of optimal path search in a social networking site where the connections between all nodes in

the graph are not known a priori is not possible using the classical pathfinding algorithms as they

require the knowledge of graphs in which the search for an optimal path is carried out. Kleinberg

et al. proposed methodologies to solve such problems by finding the optimal path from a source to

a target through establishing local connections, starting from the source node and then progress-

ing through all the nodes until the complete network is established [79, 80]. Similarly, Kim et al.

and Jeong et al. proposed pathfinding strategies to search for an optimal path where the global

information of the networks is not accessible, and only the local information on the connectivity is

known [81, 82].

The algorithms [79, 80, 81, 82] described in the preceding paragraph merely provide a guide-

line to establish a network, i.e., all possible connections between a source and a target but fail

when the target is unknown. For example, the problem of crack growth in a microstructure that

can be represented as a graph involves finding an optimal crack path from a source to an unknown

target with the knowledge of the graph. In a previous work [83], authors focused on a scenario

involving ductile intergranular crack growth where the problem of the shortest path prediction was

to predict the path of a growing crack in a microstructure of grain boundary network with each

grain boundary junction represented as nodes of a graph and each grain boundary represented as

edges of a graph. The weight of each grain boundary segment corresponded to that of energy

required for the crack to propagate through the respective grain boundary and the authors hypoth-

esized that for a given grain boundary segment with a known position, orientation, and length,

the crack growth resistance could be calculated using a series of unit event microstructure-based

finite element calculations. Here, the search for the optimal path i.e., the crack path of least crack

growth resistance was then found using the collection of each local least energy possible path ob-
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tained at each grain boundary junction from the initial crack tip until the end of the microstructure.

Similarly, in Ref. [84] the authors developed an approach based on graph theory to model brittle

fracture and predict the crack path in a polycrystalline material. Here, the approach involves first

representing the finite element mesh of a material microstructure as a graph. The crack path is

then predicted based on an energy minimization principle with the cracks total energy as the cost.

Similarly, several other physical problems entail an optimal search of an unknown target in a vastly

complex network, such as searching for an unknown target in a DNA network by proteins promot-

ers [85]. In Ref. [85], a random walk search strategy based on an algorithm of search of a hidden

target on dendritic tree-type networks developed in Ref. [86] is employed to find an optimal path

for DNA-binding proteins to specific DNA sites.

This work focuses on one of the most complex physical problem of path search i.e., optimal

path search from a source to an unknown target without a priori knowledge of the graph. More

specifically, the problem of path selection to predict the crack growth in heterogeneous materials

where in general, only the source i.e., the initial position of the crack is known but the target i.e.,

end of the crack and the graph i.e., connections between microstructural features is not known. A

novel model based on evolving graphs is proposed to predict the crack path and its crack growth

resistance in a material microstructure. To illustrate the approach, two physical problems are

considered: (i) growth of a ductile crack in two-phase microstructure with a matrix phase having

second phase particles or inclusions distributed in it (a disconnected type of microstructure). (ii)

Growth of an intergranular ductile crack in a two-phase microstructure consisting of grains and

grain boundaries (a connected type of microstructure). The efficacy of the proposed approach

is demonstrated by comparing its predictions with full-field microstructure-based finite element

calculations.
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4.2 Methods

4.2.1 Microstructure-based finite element boundary value problem formulation

The growth of a ductile crack in both Disconnected and Connected types of microstructural

networks is first modeled through the finite element analysis of transient three-dimensional bound-

ary value problem. The finite element formulation is based on the dynamic principle of virtual

work written as ∫
V

τ : δD dV =

∫
S

T · u dS −
∫
V

ρ
∂2u

∂t2
dV (4.1)

where u is the displacement vector, t is time, V is the volume of the region analyzed in the refer-

ence configuration, S is its surface in the reference configuration, ρ is the density in the reference

configuration, τ is the Kirchhoff stress tensor, and T = τ · n with n being normal to S.

Similar to works in Refs. [83, 87, 88, 89], a mode I small-scale yielding boundary value prob-

lem is analyzed for a slice of a material with an initial crack as shown in Figure 4.1. Initial and

boundary displacements and velocities corresponding to the isotropic linear elastic mode I plane

strain singular field are applied in such a way to minimize dynamic effects. Remote displacement

boundary conditions corresponding to the quasi-static linear isotropic elastic mode I crack tip stress

intensity factor KI are prescribed. The stress intensity factor KI is considered to increase mono-

tonically with time and the values of K̇I used are 4× 106 MPa
√
ms−1 and 1.2× 107 MPa

√
ms−1

for disconnected and connected microstructural networks. The constitutive framework used is a

rate-dependent modified Gurson constitutive relation [90] for a progressively cavitating solid with

the flow potential given by

Φ =
σ2
e

σ̄2
+ 2q1f

∗ cosh

(
3q2σh

2σ̄

)
− 1− (q1f

∗)2 = 0 (4.2)

where, σe is the Mises effective stress, σh is the hydrostatic stress, σ̄ is the material flow strength

and q1 = 1.25, q2 = 1.0 are the parameters introduced in Refs. [91, 92]. In Equation 4.2, f ∗ is the

effective void volume fraction given by
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f ∗ =

 f, f < fc

fc + (1/q1 − fc)(f − fc)/(ff − fc), f ≥ fc

(4.3)

where, f is the void volume fraction, fc is the critical void volume fraction to void coalescence

and ff is the void volume fraction at failure. The value of fc and ff for disconnected microstructure

modeling are taken as 0.1 and 0.2 respectively as in Ref. [88] and value of fc and ff for connected

microstructure modeling are taken as 0.12 and 0.25, respectively.

The rate of deformation tensor is given by

d = L−1 : σ̂ + dp (4.4)

where, L is the isotropic elastic moduli tensor, σ̂ is the Jaumann rate of Cauchy stress tensor

and dp is the viscoplastic part of the deformation tensor and is given by

dp =

[
(1− f)σ̄ ˙̄ϵ

σ : ∂Φ
∂σ

]
∂Φ

∂σ
(4.5)

here, ˙̄ϵ is the plastic strain rate of the matrix and is given by

˙̄ϵ = ϵ̇0

[
σ̄

g(ϵ̄)

]1/m
g(ϵ̄) = σ0 [1 + ϵ̄/ϵ0]

N (4.6)

where, ϵ̄ =
∫
˙̄ϵdt, ϵ̇0 = 103s−1 is the reference strain rate, m = 0.01 is the strain rate sensitivity

exponent, σ0 is the reference flow strength, ϵ0 = σ0/E is the reference strain and N = 0.1 is the

strain hardening exponent.

The evolution of void volume fraction, ḟ , accounting for both void growth and void nucleation

is given by

ḟ = (1− f)dp : I+ ḟnucl (4.7)
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4.2.2 Disconnected Microstructural Network modeling

For the disconnected type of microstructural network (i.e. a two phase microstructure with a

matrix phase having second phase particles or inclusions distributed in it), the elastic and plastic

properties of the matrix phase and the inclusions are taken to be same, with values of Youngs

Modulus, E = 70 GPa, Poissons ratio, ν = 0.3 and initial flow strength, σ0 = 300 MPa. Next,

the material microstructure is characterized by two populations of void nucleating particles: (i)

uniformly distributed small particles that are modeled as plastic strain controlled void nucleation

sites; and (ii) large particles or inclusions that are modeled as stress controlled void nucleation

sites. The plastic strain and stress controlled nucleation are given as

ḟ strain
nucl =

f strain
N

sstrainN

√
2π

exp

[
−1

2

(
ϵ̄−ϵN
sstrainN

)2]
˙̄ϵ (4.8)

ḟ stress
nucl =

f stress
N

sstressN

√
2π

exp

[
−1

2

(
σ̄+σh−σN

sstressN

)2]
( ˙̄σ + σ̇h) (4.9)

Here, f strain
N = 0.04, sstrainN = 0.1, ϵN = 0.3, f stress

N = 0.04, sstressN = 0.2σ0, σN = 1.5σ0 are

the constitutive parameters used for both the strain and stress based nucleation criteria in Equa-

tions 4.8 and 4.9 respectively.

Based on the deformation and hydrostatic stress history of the inclusions or large particles,

voids nucleate when value of σ̄+σh is greater than a critical value. Similarly a critical strain value

controls the nucleation of voids at the homogeneously distributed small particles.

The finite element mesh used here consists a single element through the thickness. A uniform

in-plane (x1 − x2) plane mesh with in-plane element dimension 100µm × 100µm is used in a

region, Aincl = 0.02m × 0.006m immediately in front of the initial crack tip. The finite element

mesh consists of a total number of 68928 twenty-node brick elements. To create these disconnected

microstructural network, predetermined number of inclusion, Nincl with centers (x1, x2) are first

randomly generated in this uniform mesh region, Aincl such that the center to center distance of

two neighboring inclusions is at least twice the radius, r0 of inclusions, with r0 = 150µm. Finally,
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the mean inclusion spacing, lincl is estimated as lincl =
√

A/Nincl.

4.2.3 Connected Microstructural Network modeling

For the connected type of microstructural network, (i.e. a two phase microstructure consisting

of hard grains and soft grain boundaries), the elastic constants of the grains and the grain bound-

aries are taken to be same, with E = 116 GPa, ν = 0.3 and initial flow strength of grains is taken

as, σ0 = 1200 MPa and the flow strength of softer grain boundary layers is taken as σl
0 = 800 MPa.

Next, the soft grain boundaries are modeled as both plastic strain and stress controlled nucleation

sites, following Equations 4.8 and 4.9. The hard grains are modeled as plastic-strain controlled

nucleation sites using Equation 4.8. Here the values of constitutive parameters used for both the

strain and stress based nucleation criteria in Equations 4.8 and 4.9 are, f strain
N = 0.04, sstrainN = 0.2,

ϵN = 0.2, f stress
N = 0.06, sstressN = 0.3σl

0, σN = 1.5σl
0.

Similar to finite element mesh of disconnected microstructural network model, the finite el-

ement mesh of the entire connected microstructural networks model consists a single element

through the thickness. Next, the connected microstructural network is modeled in a region, AGB =

0.01m× 0.006m ahead of the initial crack tip with uniform in-plane (x1 − x2) plane mesh having

element dimension 10µm× 10µm. Total number of elements used in the finite element mesh here

consists 760,000 twenty-node node brick elements. To create a connected microstructural network

with a uniform grain size distribution, the microstructure is generated using Dirichlet tessellation

Ng random points chosen in the fine mesh region, AGB in front of the initial crack tip. Next, this

fine mesh region, AGB is partitioned with the Ng random points to form Ng Voronoi cells with one

generator inside each cell. Each Voronoi cell corresponds to a grain. The grain boundary layers are

generated along each grain with a thickness of 20µm. The finite element Gauss integration points

in the fine mesh region are assigned to the material properties associated with a grain or a grain

boundary layer depending on where they are located, Voronoi cell or grain boundary layer. This

method generates Ng grains having an average grain size, lGB =
√

A/Ng.
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4.3 Results

Here, a methodology is proposed to find an optimal path in physical problems where both the

knowledge of the graph and the target are unknown a priori. More specifically, the problem of

finding the path of a growing crack in a material microstructure with an initial notch (Figure 4.1) is

considered. Here, the knowledge of the target i.e., end of the growing crack is not known a priori.

Furthermore, there are several material microstructures which cannot be represented as graphs as

the connections between the microstructural features is not known a priori. For example, a discon-

nected microstructural network i.e., a material microstructure with a discrete distribution of second

phase particles or inclusions in matrix of material. It is well established that ductile fracture in such

microstructures occurs by nucleation of voids at these second phase particles followed by growth

and coalescence of voids ultimately leading to fracture. However, there is no way of knowing how

these inclusions are connected for the crack to grow a priori. Here, it is hypothesized that the

growth of the crack occurs locally from its initial location i.e., initial notch and then progress in

a similar fashion until it reaches the end of the material microstructure. To demonstrate the pro-

posed approach (Figure 4.1) for finding the path of a growing crack in a material microstructure

with an initial notch which involves optimal path search where only the source is known and both

target and graph are unknown, two types of microstructural network are considered in which the

path of the crack growth is predicted. Disconnected microstructural network, which consists of

distribution of discrete inclusions or second-phase particles. These inclusions act as nodes in a

graph through which the crack propagates and the connections i.e., the edges between these nodes

in not known a priori. The second type of network is a disconnected microstructural network and

contains fully resolved grains and grain boundaries within which the crack propagates. Here, the

grain boundary junctions act as nodes and grain boundary as edges connecting these nodes. The

crack path prediction in both microstructural network involves search for an optimal path starting

from the source, the initial crack tip as depicted in Figure 4.1.

The first step in the proposed approach involves building connections between the source i.e.,

the initial crack tip and the inclusions ahead of the initial crack tip. In a given disconnected mi-
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Figure 4.1: Schematic representation of the evolving graph framework to predict crack path in
material under mode-I loading with two model microstructures, Disconnected and connected type
of microstructural network. For a disconnected microstructural network with a random inclusion
distribution, the procedure of finding a path of least crack growth resistance involves, (i) building
a local graph at an inclusion or node and (ii) selection of a path or edge using the graph model
(shown as solid green line) among the possible paths or edges (shown as red dashed lines) and
then (iii) the progression of crack (shown as solid white lines) occurs through accumulation of the
predictions from these individual events of local graphs. For a connected type of microstructure,
for the prediction of crack path, a local graph is built from the existing network of grain boundaries
at each grain boundary junction and then a path or grain boundary is selected (shown as solid green
line) among the possible grain boundaries or edges (shown in red dashed line). The propagation of
crack occurs through prediction of paths in these individual local graphs built at the grain boundary
junctions.

crostructural network consisting of Nincl inclusions with their center located at points Pi (where

i = 1, . . . , Nincl), at a time step t, a local directed graph is built starting from the current crack tip

location, P t
c ∈ Pi (Note: at time t = 0, the crack tip location is simply the initial crack tip). To

this end, a search is carried out for all inclusions with center located at points, Pj , that meet the

following condition,

lj
(
Pj, P

t
c

)
< 2lincl and x1 (Pj) > x1

(
P t
c

)
(4.10)

where, lj (Pj, P
t
c ) is the distance between the inclusion center, Pj , and the current crack tip

location, P t
c , and lincl is the mean inclusion spacing. Next, edge vectors, E⃗j are defined as line
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vectors connecting P t
c to all Pj .

Similarly, for any given connected microstructural network, at given time step t, a local directed

graph is built starting from the current crack tip location, P t
c (which is always assumed to start at a

grain boundary triple junction. Recall, that fracture process in connected microstructural network

is that of intergranular fracture.). At a given current crack tip location, P t
c , the grain boundary

segments branching out to the very next grain boundary triple junctions Pj are defined as edge

vectors, E⃗j .

Finally, in both the microstructural networks, in the time step t + 1, the path chosen for the

crack to grow is along one of the edge, E⃗t+1
c ∈ E⃗j , determined as follows,

E⃗t+1
c = argmin

j
g
(
E⃗j

)
; g

(
E⃗j

)
= ∆J (lj, θj) (4.11)

where, lj = |E⃗j| and θj = cos−1
(
E⃗j · x1/

(
|E⃗j||x1|

))
and g

(
E⃗j

)
= ∆J (lj, θj) is the

energetic cost (or the crack growth resistance) required to propagate the crack along the edge

vector E⃗j or between the two nodes, P t
c and Pj . Note, x1 is the direction of the projected crack

growth.

To estimate the energetic cost, g
(
E⃗j

)
= ∆J (lj, θj) required to propagate the crack along

the edge vector E⃗j or between the two nodes, P t
c and Pj , crack growth is modeled as a series

of microstructural unit events of disconnected and connected microstructural networks. As illus-

trated in Figure 4.2, disconnected microstructural networks are generated by varying the inclusion

spacing, lincl and the angle θ with respect to the crack tip. Similarly, connected microstructural net-

work series of unit events are generated for various angles, θ and grain boundary segment length,

lGB. To this end, small scale yielding finite element calculations are carried out for these series of

disconnected and connected microstructural network unit events. Remote displacement boundary

conditions corresponding to the quasi-static linear isotropic elastic mode I crack tip stress intensity

factor KI are prescribed. In the disconnected microstructural network unit evets, the growth of the

crack is along inclusions 0, 1 and 2. To calculate the crack growth resistance (J-R) curves, i.e. plot

of J versus ∆a, the value of J is calculated from the applied stress intensity factor KI using the
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relation given by [93],

J = K2
I

(
1− ν2

E

)
(4.12)

Figure 4.2: Schematic representation of microstructural unit events to calculate energetic cost re-
quired to propagate the crack along the edge. Microstructural unit event models for Disconnected
(left) and Connected Microstructural network (center) and a representation of crack growth resis-
tance (right) for these unit event microstructures are shown. Unit event results for the disconnected
microstructural network are generated by varying the inclusion spacing, lincl and the angle θ with
respect to the crack tip. For connected microstructural network, series of unit events are gener-
ated for various angles, θ and grain boundary segment lengths, lGB. Estimation of crack growth
resistance, ∆J required by the crack to propagate from inclusion 1 at ∆a1 to inclusion 2 at ∆a2 is
computed as J2 − J1. The ∆J required by the crack to propagate from grain boundary junction 1
at ∆a1 to end of the grain boundary segment, 2 at ∆a2 is computed as lGB cos θ

(
dJ

d(∆a)

)
[1,2]

Using, Equation 4.12, the crack growth resistance (J − R) curves for the growth of crack

along inclusions 0, 1 and 2 is estimated and showed schematically in Figure 4.2(right). Similarly,

in connected microstructural network unit events, the growth of crack is along a grain boundary

connected to the current crack tip, marked as 0-1, following the grain boundary placed symmet-

rically at angle , marked as 1-2 in the Figure 4.2 (center). Next, estimation of energetic cost of

propagating crack between inclusion 1 at ∆a1 and inclusion 2 at ∆a2, ∆J(lincl, θ) is computed as

J2 − J1. Similarly, the energetic cost required to propagate the crack between the grain boundary

junction 1 at ∆a1 to end of the grain boundary segment, 2 at ∆a2, ∆J(lGB, θ) is computed as
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lGB cos θ
(

dJ
d(∆a)

)
[1,2]

.

Figure 4.3: Energetic cost to propagate the crack between two nodes of a edge vector.
(a)Normalized energetic cost, ∆J/ (σ0δ) to propagate crack between two inclusions along edge
vector E⃗j with |E⃗j| = lj and angle θ with respect respect to the plane of crack propagation. (b)

Normalized energetic cost, E
σ2
0

(
dJ

d(∆a)

)
to propagate crack along a grain boundary oriented at angle

θ with respect to the plane of crack propagation.

Next, using the energetic cost information of propagating crack between two nodes from mi-

crostructural unit events of both disconnected and connected microstructural networks, as shown

in Figure 4.3, the optimization problem as posed in Equation 4.11 is solved.

The final path traversed by the growing crack at any time t > 0 is the combination of all edges,

E⃗c as shown schematically in Figure 4.1 and is given by,

∆at =
∑
t

E⃗t
c · x1 (4.13)

Finally, for the crack path ∆at the crack growth resistance, J is given by,

J t =
∑
t

g
(
E⃗t

c

)
(4.14)
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Results of crack path prediction using evolving graph coupled with microstructural discrete

unit and path predicted by full-field microstructure-based finite element calculations for a dis-

connected microstructural network consisting of a discrete distribution of inclusions with mean

inclusion spacing, lincl = 6δ (The parameter δ = 200µm is used a normalization length in all the

results presented further) are shown in Figure 4.4. Specifically, the procedure of path prediction by

the proposed approach is shown by highlighting the progression of crack growth at three progress-

ing time steps at crack path locations, ∆a/δ ≈ 22.5, 40 and 60 in the disconnected microstructural

network. Here, as the crack starts to grow from an initial notch shown in Figure 4.4(a), using the

proposed approach as described earlier, a local graph is constructed at this initial notch and a crack

path (or edge) and the next inclusion (or node) is selected from all the possible paths. The possible

crack paths (edges) of the local graph are represented by dashed red lines and the selected crack

path i.e., the edge with least crack growth resistance, ∆J among these edges is represented by the

solid green line. The decision-making process to choose the path with least crack growth resis-

tance follows the procedure described in the above. Figure 4.4(b) shows the crack path prediction

from finite element analysis at the same location, ∆a/δ ≈ 22.5 as in Figure 4.4(a). As the crack

propagates through building of local graph and then selection of crack path with minimum ∆J ,

Figure 4.4(c), shows the selected crack path among all possible paths in the local graph built at

∆a/δ ≈ 40 and Figure 4.4(d) shows crack path prediction obtained from finite element analysis.

Finally, as the crack propagates towards the end of the microstructure, at ∆a/δ ≈ 60, Figure 4.4(e)

shows the path with minimum ∆J selected among all the possible paths in the local graph built at

this inclusion. Figure 4.4(f) shows that the path prediction from finite element analysis follows the

same path selected using the proposed approach.

Figure 4.5 compares the normalized crack growth resistance (J − J0)/(σ0δ), versus normal-

ized crack extension (∆a − ∆a0)/δ for the disconnected microstructure in Figure 4.4 with mean

inclusion spacing, lincl = 6δ computed from finite element calculations and crack growth resis-

tance curves obtained from the proposed approach calculated based on the selected path, following

Equation 4.14. In Figure 4.5, the focus is on the effect of microstructure on crack growth following

68



Figure 4.4: Comparisons of crack path predicted using evolving graph method and microstructure-
based finite element model for disconnected microstructural network with mean inclusion spacing,
, lincl = 6δ shown at three different time steps. (a) construction of a local graph at a inclusion
by building the edges (possible crack paths) that connect to this particular inclusion and then the
selection of a crack path with least crack growth resistance, ∆J . Possible crack paths are high-
lighted as red dashed lines and the selected crack path is shown in solid green line. The solid
white line shows the propagation of crack till this inclusion. (b) shows the path predicted using
the finite element calculation till ∆a/δ ≈ 22.5. (c) shows the another instance of construction of
a local graph at this inclusion and then selection of the path with minimum ∆J . (d) shows the
path predicted from finite element calculations till ∆a/δ ≈ 40. Similarly (e) and (f) show path
predicted from graph model and finite element calculations as the crack reaches ∆a/δ ≈ 60. Here
the propagation of crack occurs through collection of predictions of paths from the local graphs
built at the inclusions.

crack initiation so that the value of crack growth resistance J0 corresponding to growth of crack

from initial crack tip to the first inclusion chosen in the predicted crack path at location ∆a0 are

subtracted from the values of J and ∆a respectively. The dotted lines labeled (b) and (d) in Fig-

ure 4.5 indicate the location of the microstructures shown in Figure 4.4(b) and Figure 4.4(d). The
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crack growth resistance curves from finite element analysis and from evolving graph method are

nearly identical to each other except near the end of the microstructure, (∆a−∆a0)/δ ≥ 35.

Figure 4.5: Comparisons of crack growth resistance curves predicted using evolving graph method
and microstructure-based finite element model for disconnected microstructural network with a
discrete distribution of inclusions with mean inclusion spacing, lincl = 6δ. Comparison of curves
of normalized J, (J−J0)/(σ0δ), versus normalized crack extension (∆a−∆a0)/δ computed from
finite element calculations (solid line) and evolving graph method (dashed green line). The dotted
grey lines, marked as b and d correspond to the locations of propagation of crack in Figure 4.4(b)
and Figure 4.4(d). From the collection of paths selected at every local graph built, the crack growth
resistance for the graph model is computed as the cumulative sum of crack growth resistances for
these individual selected paths, as given in Equation 4.14.

Next, the focus is on connected type of microstructures, where a network is already known. In

these types of microstructures, the grain boundaries act as the network. However, a priori knowl-

edge of target i.e., the end of the crack is unknown. Results of intergranular crack path predictions

from the proposed approach are compared against the finite element calculations for a connected

type of microstructure with average grain size, Dg = 5δ as shown in Figure 4.6. Similar to the

results for disconnected microstructural network, the procedure of path prediction using the evolv-

ing graph method is presented by highlighting the progression of crack growth at three locations,

∆a/δ ≈ 12.5, 25 and 30. As the crack propagates through the first grain boundary located the
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Figure 4.6: Comparisons of crack path predicted using evolving graph method and microstructure-
based finite element model for connected microstructural network with average grain size, dg = 5δ
shown at three different time steps. (a) construction of a local graph at the grain boundary junction
from the network of grain boundaries at this particular junction and then the selection of a crack
path with least crack growth resistance, ∆J . The edges or the possible paths are highlighted as
red dashed lines and the selected crack path is shown in solid green line. The solid white line
shows the propagation of crack till this grain boundary junction where the local graph is built.
(b) shows the path predicted using the finite element calculation till ∆a/δ ≈ 12.5. (c) shows the
another instance of construction of a local graph at this inclusion and then selection of the path
with minimum ∆J . (d) shows the path predicted from finite element calculations till ∆a/δ ≈ 25.
Similarly (e) and (f) show path predicted from graph model and finite element calculations as the
crack reaches ∆a/δ ≈ 30. Here the propagation of crack occurs through collection of predictions
of paths from the local graphs built at these grain boundary junctions.

initial notch indicated in Figure 4.6, a local graph is built at the first grain boundary triple junc-

tion and then a next crack path (grain boundary or edge) to propagate is selected among the two

possible crack paths of the local graph built, using the procedure described above. Figure 4.6(a)

shows an instance where a local graph is built at a particular grain boundary junction and a crack

path selected, shown in solid green line among the other possible edge of the local graph, shown in

dashed red line, at ∆a/δ ≈12.5. The solid white line represents the crack path prediction from the

proposed approach till this grain boundary junction where the local graph is built. Figure 4.6(b)
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shows the prediction from the finite element calculations at ∆a/δ ≈12.5 and it is observed that, the

path predictions from the proposed approach is identical to that of the finite element calculations.

Similarly, as the crack propagates, another instance of the process of the selection of crack path at

the local graph built is shown in Figure 4.6(c). Figure 4.6(d) shows the finite element prediction

of the crack path at ∆a/δ ≈25. Finally, the progression of the crack path selection as the crack

reaches near the end of the microstructure region at ∆a/δ ≈30, from the proposed approach is

shown in Figure 4.6(e) and from finite element calculations is shown in Figure 4.6(f).

Figure 4.7 compares the normalized crack growth resistance J, (J − J0)/(σ0δ), versus nor-

malized crack extension ∆a/δ for the connected microstructural network with average grain size,

dg = 5δ as shown in Figure 4.6, from finite element calculations computed from Equation 4.12 and

crack growth resistance curves obtained from graph model calculated based on the selected path,

following Equation 4.14. The dotted lines labeled marked as (b) and (d) in the Figure 4.7 indicate

the location of the microstructures shown in Figure 4.6(b) and Figure 4.6(d). The crack growth

resistance curves from finite element analysis and from graph model are nearly coincide with each

other.

4.4 Discussion

Many physical problems involve search for an optimal path from a source to unknown tar-

get without the knowledge of the graph i.e., the connections between the physical environment

in which the search is carried out. In such scenarios, classical pathfinding algorithms fail to pro-

vide a solution and thus new methodologies are required to tackle such physical problems. To

solve a problem of optimal path search from a source to an unknown target without the knowl-

edge of the graph, herein, a methodology is proposed involving finding the path of a growing a

crack in a material microstructure where the only the knowledge of the source i.e., the start of the

crack is known. More specifically, finding the path of a crack in two types of microstructures, a

disconnected microstructural network and a connected microstructural network is considered. A

disconnected microstructural network constituted of a discrete distribution of inclusions in matrix

of material where the connections between the inclusions are not known a priori. The second one, a
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Figure 4.7: Comparisons of crack growth resistance curves predicted using evolving graph method
and microstructure-based finite element model for connected microstructural network with average
grain size, dg = 5δ. Comparison of curves of normalized J, (J − J0)/(σ0δ), versus normalized
crack extension ∆a/δ computed from finite element calculations (solid line) and graph model
(dashed green line) for the connected microstructural network in Figure 4.6. The dotted grey lines,
b and d correspond to the locations of propagation of crack in Figure 4.6(b) and Figure 4.6(d).
From the collection of paths selected at every local graph built, the crack growth resistance for the
graph model is computed as the cumulative sum of crack growth resistances for these individual
selected paths, as given in Equation 4.14.

connected microstructural network which constituted of fully resolved grains and grain boundaries

within which the crack propagates. Herein a novel approach to find the crack path and the energy

required to propagate the crack is proposed. It is hypothesized that the growth of a occurs locally

i.e., the total crack path is a collection of local crack paths. The search for local crack path is done

by building local graphs and the optimal path is then estimated using the knowledge of energetic

cost to propagate the crack between two nodes which estimated using microstructural unit event

finite element calculations. This process is repeated until the end of the microstructure is reached,

and the final crack path is nothing, but the collection of the local crack paths predicted. Next,

using the knowledge of the energetic cost of each local crack path, to this end, the total energy

required to propagate the crack is estimated as the algebraic sum of energetic cost of each local

crack paths. Finally, the crack path and its crack growth resistance in two types of microstructures

using microstructure-based finite element calculations is estimated.
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The results clearly show that the path predicted by the proposed approach correlates extremely

well with that of the predictions from microstructure-based finite element calculations. Not only

that, also the energy required to propagate that crack along the predicted crack path i.e., the crack

growth resistance curves match extremely well with that of the crack growth resistance curves ob-

tained by microstructure-based finite element calculations. To show the efficacy of the proposed

approach, to this end the crack path and its crack growth resistance is predicted for disconnected

microstructures with three different distributions of inclusions with mean inclusion spacing, lincl =

4δ, 6δ and 8δ. For each mean inclusion spacing, two realizations of disconnected microstructures

with random inclusions distributions were generated. The results of this exercise are given in Ap-

pendix B, Figs. B1-B10. Similar exercise is carried out to predict the crack path and its crack

growth resistance for connected microstructures with three different grain size distributions with

average grain size, dg = 2.5δ, 5δ and 7.5δ. For each grain size, two realizations of connected

microstructure with random grain distributions were generated. The results of these predictions

are given in Appendix B, Figs. B11-B20. The results clearly show that the proposed novel ap-

proach based on evolving graph and microstructural unit events can predict the crack path and

crack growth resistance in different type of microstructures and the predictions correlate extremely

well with that of microstructure-based finite element calculations.

4.5 Summary

Finding optimal path under the circumstances where the knowledge of the target and/or well-

connected graph/network is unknown a priori has remained a challenge. In this work, an attempt

is made to tackle such a challenge in the context of predicting crack path and crack growth resis-

tance of material microstructures in which fracture is dominated either by a distribution of discrete

second-phase particles or grain-boundary networks. Specifically, a novel path search method based

on evolving graphs and microstructural unit events has been formulated to predict crack path and

crack growth resistance of these microstructures. The predictions of the path search method are

thoroughly validated against the results of full-field microstructure-based finite element calcula-

tions of fracture. This novel path search method is also extremely computationally expensive
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and is well suited for any iterative, non-gradient topological optimization scheme to design frac-

ture resistant material microstructures. Furthermore, this inexpensive path search method can also

be used to predict the overall crack growth resistance of materials with a known distribution of

second-phase particles or grain boundaries.
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5. INFLUENCE OF GRAIN SIZE DISTRIBUTION ON DUCTILE INTERGRANULAR

CRACK GROWTH RESISTANCE *

5.1 Introduction

Several physical processes can be viewed as a problem of path selection, for example, flow

of a river stream [94] or crack growth in a complex heterogeneous material microstructure [21,

95, 96]. Although the problems of path selection for flow of a river stream and of crack growth

in a heterogeneous material involve very different length-scales, their solutions share common

features. For example, path selection criteria based on fracture mechanics can be used to predict

growth of streams in a diffusion field [94], while a directed graph constructed using microstructure

specific discrete unit events can be used to predict crack growth in heterogeneous materials [96].

Intuitively, one expects that the path of a physical process involving path selection can be controlled

by engineering the discrete unit events.

It has been shown that it is possible to engineer crack paths by controlling the distribution

of second phase particles in a ductile matrix to increase the material’s crack growth resistance

[95]. In [95], the controlled microstructure was characterized by various sinusoidal distributions

of particles with fixed mean particle spacing. The results presented in [95] indicate that the crack

path can be engineered to increase the crack growth resistance by appropriately adding or removing

particles that guide the crack path.

Although near room temperature ductile fracture in polycrystalline metals and alloys is typ-

ically transgranular, several materials of technological interest that have a high specific strength

(strength to weight ratio), such as, Al-Li alloys [97] and metastable β Ti alloys [98] undergo inter-

granular ductile fracture near room temperature. Furthermore, several technologically important

multiphase materials, such as multiphase advanced high strength steels undergo ductile fracture

along the interface between the hard and the soft phase [99, 100].

*Reprinted with permission from "Influence of grain size distribution on ductile intergranular crack growth resis-
tance" by Molkeri, A., Srivastava, A., Osovski, S. and Needleman, A., 2020. Journal of Applied Mechanics, 87(3),
p.031008. Copyright 2020 by ASME
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Here, the focus is on a scenario involving ductile intergranular (or interfacial) crack growth. In

particular, the possibility of engineering the crack path is explored to increase the material’s crack

growth resistance by controlling the grain size distribution. Experiments have shown that the grain

size distribution of a variety of materials can be controlled by advanced processing routes [98, 101,

102, 103, 104, 105]. Experiments have also shown that a controlled grain size distribution, such

as a bimodal grain size distribution, can enhance the crack growth resistance of brittle ceramics

[106], the fatigue properties of titanium alloys [107] and the corrosion resistance of steels [108].

Following such experimental observations, analyses of ductile intergranular crack growth in

material microstructures with unimodal and bimodal grain size distributions are carried out. The

bimodal grain size distributions are characterized by varying grain sizes in layers. Ductile inter-

granular crack growth is analyzed using both microstructure-based finite element crack growth

calculations based on a constitutive framework for a progressively cavitating ductile solid with

an isotropic and isotropically hardening matrix material as in [21], and a simple model based on

discrete unit events and graph search developed in [96]. In [96], the key unit event associated with

intergranular crack propagation was found to be the interaction of a grain boundary crack with a

grain boundary segment located at an angle with the initial crack plane. Finite element calcula-

tions are also carried out for various orientations of a single grain boundary segment with the initial

crack plane to characterize the unit events.

The calculations show that increasing the overall grain size in microstructures with unimodal

and bimodal grain size distributions can result in an increase in the crack growth resistance. How-

ever, decreasing the grain size in one layer and increasing the grain size in another layer, such that

the overall grain size is fixed, can give an even greater increase in the crack growth resistance. Fur-

thermore, the predictions of the simple model based on discrete unit events and graph search are

found to be in general agreement with the results of full field microstructure-based finite element

crack growth calculations. This suggests that the computationally efficient unit event based graph

search model can provide a tool for designing material microstructures with improved intergranular

crack growth resistance.
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5.2 Methods

5.2.1 Microstructure-based finite element boundary value problem formulation

The material model and the numerical implementation are the same as described in Sec-

tion 4.2.1. The finite element formulation is based on the finite deformation dynamic principle

of virtual work. As in Chapter 4, a mode I small scale yielding boundary value problem is an-

alyzed for a slice of material with an initial crack at x = 0 and y = 0, as shown in Fig. 5.1.

Figure 5.1: Sketch of the initially cracked slice of material analyzed, showing the grain boundary
distribution in the region in front of the initial crack tip.

5.2.2 Microstructure generation

For a uniform grain size distribution, the microstructure is generated using Dirichlet tessellation

[109] with Ng random points chosen in the fine mesh region in front of the initial crack tip. The fine

mesh region of dimensions A = 1000e×600e is partitioned with the Ng random points to form Ng

Voronoi cells with one generator inside each cell. Each Voronoi cell corresponds to a grain. The
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grain boundary layers are generated along each grain with a thickness of 4e. The finite element

Gauss integration points in the fine mesh region are assigned the material properties associated

with a grain or a grain boundary layer depending on where they are located, Vornoi cell or grain

boundary layer. This method generates Ng grains having an average grain size, Dg =
√
A/Ng.

For microstructures with a bimodal grain size distribution, the fine mesh region is divided into

five regions of equal area. In terms of e, the area of each subdivided region is As = 200e× 600e.

Along the x−axis these regions lie in (K − 1)200e ≤ x ≤ K200e, where K = 1, 3, 5, for regions

I and K = 2, 4 for regions II. The regions I and II are partitioned with N I
g and N II

g random

points, respectively, and the microstructure is generated following the procedure used to generate

uniform grain size distribution. This results in average grain size Dg =
√

As/N I
g in regions I

and Dg =
√
As/NII in regions II. This forms a layered microstructure with regions I having one

average grain size and regions II having a different average grain size. Subsequently, these are

referred as type I regions and type II regions, respectively.

5.2.3 Unit event modeling

As in Chapter 4, crack growth is modeled as a series of unit events comprising growth of a

crack along a grain boundary connected to the current crack tip placed symmetrically at angle θ to

the current crack, as illustrated in the inset of Fig.5.2.

Small scale yielding calculations are carried out for various angles θ. There is an initial increase

in J without any increase in crack length, as sketched in the inset in going from A to B. The value

of ∆J on the right side axis of Fig.5.2 is defined as (JB − JA). Eventually, crack growth occurs

along the grain boundary so that the direction of crack growth changes by θ and the crack grows

to point 2.

The tearing modulus, TR, [110] defined as

TR =

(
E

σ2
0

)
dJ

d(∆a)
(5.1)

is calculated by identifying dJ with (J2 − J1) and identifying ∆a with (∆a2 −∆a1) where points
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1 and 2 are shown in the inset of Fig. 5.2. The length of the unit event grain boundary facet is taken

to be such that ∆a2 −∆a1 = 100e/ tan θ.

Figure 5.2: The tearing modulus, TR (circles) of a crack propagating along a grain boundary
oriented at angle θ with respect to the plane of crack propagation and the increment in J/ (σ0e),
∆J (squares) arising from the crack reaching triple junction, as shown in the inset.

5.2.4 Intergranular fracture prediction as graph search

The aim is to calculate the crack path and crack growth resistance in a microstructure for which

the position, orientation and segment length of each grain boundary is known. To this end, the

graph search procedure used here is described in more detail in [21, 96]. With each grain boundary

junction taken to be a node on a graph, all crack growth trajectories through the microstructure

are obtained using a breadth-first search algorithm [111]. The crack growth resistance curve for

a given crack path through the grain boundary network is obtained from a similar graph built in

J−resistance space using the unit event crack growth resistance data in Fig. 5.2. Once constructed,

the graph contains information regarding the crack growth resistance for every possible crack path

in a given microstructure. The path of least resistance for a specified amount of crack growth can
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then be found using Dijkstra’s algorithm [112]. Dijkstra’s algorithm is a graph search algorithm

that produces the minimal distance between two nodes. The distances in this case are the incre-

ments in J for a crack traversing between two nodes. The current unit event based graph search

model does not account for the crack branching that can sometimes occur.

5.3 Results

Here, results for the crack path and the crack growth resistance predicted using both the

microstructure-based finite element calculations and the unit event based graph search model are

presented. For the model based on discrete unit events and graph search the crack growth resis-

tances are shown for three crack paths: (i) a path termed ‘Local minimum - TR’ where at each grain

boundary junction the path with the smallest value of TR for one of the junction grain boundaries

is chosen; (ii) a path termed ‘Local minimum - ∆J’ where at each grain boundary junction the

path with the smallest value of ∆J for crack growth over two grain boundary junctions (calcula-

tions were also carried out using the ‘Local minimum - ∆J’ criterion for growth over one grain

boundary but the resulting crack paths differed little from those obtained using the ‘Local mini-

mum - TR’ criterion so only the results for growth over two grain boundaries are shown); and (iii)

a path termed ‘Global minimum’ which is the path with the global minimum crack growth resis-

tance using the ‘Local minimum-∆J’ criterion for all possible crack paths from the initial crack

tip location to the end of the fine mesh region. Once the crack path is chosen, the unit event based

normalized value of ∆J/σ0e is computed for each increment of normalized crack growth, ∆a/e,

where ∆a is the change in crack length projected onto the x−axis.

The modeling aims to isolate the influence of variations in grain size distribution on the crack

growth resistance. Crystallographic anisotropy or changes are not accounted for in material re-

sponse that may change with grain size, for example, a layer may have a crystallographic texture

and a Hall-Petch effect may lead to different grain sizes having different flow strengths. In the

calculations, the grains are isotropic and the flow strength is independent of grain size.

For both the full field finite element calculations and the unit event based graph search model,

predicted crack path and crack growth resistance curves are shown for ∆a ≤ 800e in order to
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avoid effects arising from the change in element size at the end of the fine mesh region which

occurs at ∆a = 1000e. In addition, for the calculations here, the main crack path is confined

within −300e ≤ y ≤ 300e which defines the fine mesh region in the y−direction.

5.3.1 Effect of grain size

Full field finite element calculations are carried out for three microstructures with unimodal

grain size distributions and with values of the average grain size Dg = 37.5e, Dg = 40e and

Dg = 43e. Fig. 5.3 shows the computed crack growth resistance curves, J computed from Eq. (??),

versus ∆a/e. The value of J/ (σ0e) increases with increasing grain size, varying at ∆a/e = 800

from 44 for Dg = 37.5e to 54 for Dg = 43e, an increase of about 23%.

Figure 5.3: Comparison of normalized J , J/ (σ0e), versus normalized crack extension, ∆a/e,
curves from full field finite element calculations for three unimodal grain size distributions with
average grain sizes, Dg = 37.5e, Dg = 40e and Dg = 43e.

Fig. 5.4 compares the full field finite element predictions for crack growth resistance and crack

path with those of the simple model based on unit events and graph search. Fig. 5.4(a) shows the
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comparisons for Dg = 37.5e while Fig. 5.4(b) shows the comparisons for Dg = 43e. The black

line shows the predictions of the full field finite element analysis. The model predictions of the

normalized value of J , J/ (σ0e), are shown along with three crack paths: (i) the green line is the

crack path predicted by the “global minimum” criterion, (ii) the red line is the crack path predicted

by the local minimum TR criterion and (iii) the blue line is the crack path predicted by the local

minimum ∆J criterion.

With Dg = 37.5e, Fig. 5.4(a), the full field finite element results and the global minimum based

unit event model predictions nearly coincide. This is because the full field finite element crack

path and that obtained from the global minimum based unit event model nearly coincide except

near the end of the region shown, ∆a/e ≥ 650, where the full field finite element results show

crack branching. However, this only leads to a small difference in the crack growth resistance.

At ∆a/e = 800, J/ (σ0e) is 43 for the full field finite element calculation and 40 for the global

minimum based unit event model crack path. The crack path obtained using the local minimum TR

criterion and the crack path obtained using the local minimum ∆J criterion give increased values

of J/ (σ0e). For example, at ∆a/e = 800, the local minimum ∆J criterion predicts J/ (σ0e) = 47

and that using the local minimum TR criterion gives J/ (σ0e) = 50.

Fig. 5.4(b) shows corresponding results for Dg = 43e. In this case, the full field finite ele-

ment crack path and that obtained from the global minimum based unit event model coincide until

∆a/e ≈ 300 and differ significantly thereafter. The predicted values for the crack growth resis-

tance, J/ (σ0e), at ∆a/e = 800 are 54 for the finite element calculation, 55 for the crack path

obtained using the local minimum TR criterion and 48 for the crack path obtained using the local

minimum ∆J criterion.

Fig. 5.4 shows that which unit event based graph search model gives the best fit to a particular

finite element calculation can vary with grain size. Nevertheless, the full field finite element cal-

culations and the unit event based graph search model predictions agree that a change in average

grain size from Dg = 37.5e to Dg = 43e gives an increase in crack growth resistance. How-

ever, it is important to note that the results here are obtained for a single realization of a statistical
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Figure 5.4: Comparison of curves of normalized J , J/ (σ0e), versus normalized crack extension,
∆a/e for unimodal grain siize distributions. Unit event based graph search model results are
shown for the global minimum path; the local minimum path using the TR criterion; and the local
minimum path using the ∆J criterion. Also, the crack path obtained from full field finite element
calculations (black) is compared with the crack path obtained using the local minimum-TR criterion
(red), the local minimum-J criterion (blue) and the global crack path (green). Portions of these
crack paths overlap. (a) Dg = 37.5e and (b) Dg = 43e.

distribution with a specified mean grain size.

5.3.2 Bimodal grain size distribution - increasing average grain size

Fig. 5.5 shows full field finite element calculation results for crack growth resistance curves for

three bimodal grain size distributions. The grain size in the type I regions have an average grain
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size of 37.5e. The bimodal grain size distributions have average grain sizes of 41.4e, 48.9e and

58.5e in the type II regions. For comparison purposes, the results for a uniform grain size of 37.5e

are also shown. The crack growth resistance increases with increasing heterogeneity. The value

of J/ (σ0e) at ∆a = 800e increases from 44 for the uniform distribution to 58 for the case where

the average grain size in the type II regions is 58.5e, about a 31% increase. By way of contrast,

the values J/ (σ0e) at ∆a = 800e show only a relatively small increase for the cases with average

grain sizes of 41.4e and 48.9e in the type II regions being J/ (σ0e) = 48 and J/ (σ0e) = 49,

respectively.

Figure 5.5: Comparison of normalized J , J/ (σ0e), versus normalized crack extension, ∆a/e,
curves computed from full field finite element calculations for four bimodal grain size distributions
with a fixed average grain size in region I and an increased grain size distribution in region II, as
shown in Fig.5.6.

The crack growth resistance curves and the crack paths for the cases with an average grain size

of 37.5e in the type I regions and average grain sizes of 41.4e and 58.5e in the type II regions

are shown in Fig. 5.6. In Fig. 5.6(a), where average grain size in the type II regions is 41.4e, the
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Figure 5.6: Comparison of curves of normalized J , J/ (σ0e), versus normalized crack extension,
∆a/e for bimodal grain size distributions with a fixed average grain size in region I and an in-
creased grain size distribution in region II. Unit event based graph search model results are shown
for the global minimum path; the local minimum path using the TR criterion; and the local mini-
mum path using the ∆J criterion. Also, the crack path obtained from full field finite element cal-
culations (black) is compared with the crack path obtained using the local minimum-TR criterion
(red), the local minimum-J criterion (blue) and the global minimum criterion (green). Portions of
these crack paths overlap. (a) Dg = 37.5e in region I and Dg = 41.4e in region II. (b) Dg = 37.5e
in region I and Dg = 58.5e in region II.

full field finite element predictions and all three predictions obtained from the unit event based

graph search models are in close agreement until ∆a/e ≈ 600, the beginning of the second type II

region. The predicted crack growth resistance curves then begin to differ considerably. In this case
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the finite element predictions most closely agree with the simple model results obtained using local

minimum TR criterion. At ∆a/e = 800, the value of J/ (σ0e) obtained using the global minimum

criterion is about 38 while the local minimum ∆J criterion is 54. The full field finite element

calculations give J/ (σ0e) = 47 while the simple model based on local minimum TR criterion

predicts 46.

In Fig. 5.6(a), the predicted crack path using all the unit event based graph search model are in

good agreement with the full field finite element results until ∆a/e ≈ 550 at which point the simple

model prediction using local minimum TR criterion predicts a rather abrupt increase in J/ (σ0e).

The associated predicted crack path (red curve) obtained using the local minimum TR criterion

follows a small grain boundary segment that results in a very small change in ∆a whereas the full

field finite element calculation leads to short micro-cracks along that path while the main crack

follows another path. The value of J/ (σ0e) predicted using the local minimum ∆J criterion gives

a smaller increase at this point. This difference is probably associated with the ‘Local minimum -

TR’ crack path being based on one grain boundary segment whereas the ‘Local minimum - ∆J’ is

based on two grain boundary segments.

Fig. 5.6(b) shows the results for a case where the average grain size in the type I regions is

37.5e, same as in Fig. 5.6(a), but the average grain size in type II regions is 58.5e. The J/ (σ0e)

versus ∆a curve obtained from the full field finite element calculation shows increases in J/ (σ0e)

associated with crack branching. The simple model prediction using local minimum TR criterion

also shows fairly abrupt increase in J/ (σ0e) correlated with the boundaries of the first type II

region which are not seen in the full field finite element result. In the finite element results, having

a larger grain size in the type II regions leads to more extended branched cracks which increases

the crack growth resistance.

In Fig. 5.6(a) the unit event based graph search model using the local minimum ∆J criterion

significantly over predicts the crack growth resistance. On the other hand, in Fig. 5.6(b) the simple

model using local minimum TR criterion significantly over predicts the crack growth resistance,

whereas the unit event model using the local minimum ∆J criterion under predicts the crack

87



growth resistance and is close to the prediction of the global minimum criterion. Also, for certain

type I region/type II region interfaces a local minimum criterion predicts a more abrupt increase in

J/ (σ0e) than obtained in the full field finite element calculation.

5.3.3 Bimodal grain size distribution - fixed average grain size

Results of three full field finite element calculations for bimodal grain size distributions where

the average grain size is fixed at 37.5e are shown in Fig. 5.7. In the type I regions, the values of

average grain size are Dg = 34.6e, Dg = 31.6e and Dg = 29.8e. The corresponding grain sizes

in the type II regions are Dg = 41.4e, Dg = 48.9e and Dg = 58.5e, respectively. For comparison

purposes, the crack growth resistance curve for a uniform grain size distribution with Dg = 37.5e

is also shown.

Figure 5.7: Comparison of curves of normalized J , J/ (σ0e), versus normalized crack extension,
∆a/e, computed from full field finite element calculations for four bimodal grain size distributions
with a decreased grain size in region I and an increased grain size distribution in region II, as shown
in Fig.5.8.
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Increasing the difference in grain size between the regions can significantly increase the crack

growth resistance. With the bimodal distribution [Dg = 34.6e]I , [Dg = 41.4e]II the value of

J/ (σ0e) at ∆a/e = 800 is 47. The corresponding value of J/ (σ0e) with [Dg = 31.6e]I , [Dg =

48.9e]II is 51 and with [Dg = 29.8e]I , [Dg = 58.5e]II is 79. For comparison, with a uniform grain

size Dg = 37.5e, J/ (σ0e) = 44 at ∆a/e = 800.

The value of J/ (σ0e) = 79 at ∆a/e = 800 with [Dg = 29.8e]I , [Dg = 58.5e]II may be a

numerical artifact since (as seen in Fig. 5.8) the path of one of the crack branches at ∆a/e ≈ 600

reaches the upper, y = 300e, boundary of the fine mesh region. Nevertheless, even discounting this

large jump, the crack growth resistance curve for [Dg = 29.8e]I , [Dg = 58.5e]II shows that a large

grain size difference in a bimodal grain size distribution can significantly increase the crack growth

resistance. For example, at ∆a/e = 500, J/ (σ0e) = 24 for a uniform grain size of Dg = 37.5e,

while J/ (σ0e) = 38 for the bimodal distribution with [Dg = 29.8e]I , [Dg = 58.5e]II , which is

about a 58% increase.

Fig. 5.8 shows comparisons between full field finite element calculations and unit event based

graph search model predictions for [Dg = 34.6e]I , [Dg = 41.4e]II , Fig. 5.8(a), and for [Dg =

29.8e]I , [Dg = 58.5e]II , Fig. 5.8(b). In Fig. 5.8(a), the full field finite element crack path and

the simple model based on global minimum criterion crack path nearly coincide as do the crack

growth resistance curves. On the other hand in Fig. 5.8(b) the full field finite element crack path

exhibits branching and associated with each branch is a jump in J/ (σ0e). As a consequence, none

of the crack path predicted using the unit event based graph search model coincide with the finite

element predictions. As noted previously, one of the branches impinges on the fine mesh region

boundary y = 300e at ∆a/e ≈ 650 which probably accounts for the very large jump in J/ (σ0e)

at this value of ∆a/e.

The full field finite element results for a bimodal layered microstructure in Figs. 5.5 and 5.7

show that if the difference in grain size is sufficiently large, a significant increase in crack growth

resistance for materials that fail by grain boundary crack growth can be achieved. Furthermore,

the crack paths in Figs. 5.6 and 5.8 show that a bimodal layered grain size distribution enhances
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Figure 5.8: Comparison of curves of normalized J , J/ (σ0e), versus normalized crack extension,
∆a/e, for bimodal grain size distributions with a decreased grain size in region I and an increased
grain size distribution in region II. Unit event based graph search model results are shown for the
global minimum path; the local minimum path using the TR criterion; and the local minimum path
using the ∆J criterion. Also, the crack path obtained from full field finite element calculations
(black) is compared with the crack path obtained using the local minimum-TR criterion (red), the
local minimum-J criterion (blue) and the global minimum criterion (green). Portions of these
crack paths overlap. (a) Dg = 34.6e in region I and Dg = 41.4e in region II. (b) Dg = 29.8e in
region I and Dg = 58.5e in region II.

the crack growth resistance by altering the crack path near the interfaces and by crack branching.

These results indicate that by arranging the grains with different average grain sizes in layers is

advantageous for materials that undergo grain boundary fracture, as seen experimentally for other
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materials and other fracture mechanisms, e.g. [106, 107, 108].

5.4 Summary

Analyses of ductile intergranular crack growth are carried out with the aim of isolating the

influence of variations in grain size distribution on crack growth resistance. Analyses were carried

out for three grain size distributions; (i) a unimodal distribution; (ii) a bimodal layered distribution

consisting of alternate layers with the grain size in one layer type held fixed and with an increased

grain size in the other layer type; and (iii) a bimodal layered distribution consisting of alternate

layers with a decreased grain size in one layer type and an increased grain size in the other layer

type. In (ii) the overall average grain size increases while in (iii) the overall average grain size is

fixed.

The results show that for both unimodal and bimodal grain size distributions, the crack growth

resistance increases with increasing overall average grain size. For the bimodal distribution where

the overall average grain size is fixed, the crack growth resistance increases with an increasing

difference between the average grain size in the two layer types. Hence, a combination of layered

smaller grain size regions that have a lower crack growth resistance together with larger grain size

regions that have greater crack growth resistance can lead to a material with greater crack growth

resistant than a uniform microstructure with large grains. It is worth noting that a wide variety

of natural materials rely on a structure consisting of alternating regions of reduced and enhanced

crack growth resistance to attain superior overall crack growth resistance [113, 114, 115, 116].

In [96], for unimodal grain size distributions, in the absence of crack branching, the unit event

based graph search model with a local minimum ∆J crack path selection criterion gave good

quantitative agreement with the full field finite element predictions. In the calculations here, for

the unit event based graph search model, all criteria considered are in qualitative agreement with

the full field finite element calculations but none of the criteria used with the unit event based

graph search model gave a good quantitative agreement with the full field finite element results for

all grain microstructures analyzed. One possible reason for this is that the thickness of the grain

boundaries here is greater than that in [96], so that finite deformation effects may play a greater
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role in the full field finite element calculations, leading, for example, to plastic deformations at

some crack tips along the path extending over more grains in some distributions than in others.

Nevertheless, the global minimum criterion does provide a lower estimate of the crack growth

resistance in all cases analyzed.

A grain size distribution that maximizes the dissipation during crack growth can be realized, at

least in principle, by some sort of iterative optimization method. One way to calculate the crack

growth resistance through a grain size distribution is to carry out microstructure-based full field

finite element calculations. However, such calculations, especially for three dimensional grain

distributions, are extremely time consuming. For an iterative optimization scheme what is needed

is a computationally efficient procedure that can correctly rank the crack growth resistance of

possible grain size distributions. The computationally efficient simple model based on discrete

unit events and graph search developed in [96], and used here, holds promise for this purpose. A

more generally predictive crack path selection criterion would enhance the utility of the discrete

unit event and graph search model for microstructure optimization purposes.

The results in [96] and here indicate that the unit event based graph search model can at least

provide a qualitative prediction of the crack growth resistance when crack branching does not oc-

cur. However, the full field finite element results show that crack branching can play a significant

role in the increased crack growth resistance of the layered grain size microstructures. Incorporat-

ing crack branching into the model will increase its predictive capability so that it can become an

engineering tool for optimizing material microstructures to enhance crack growth resistance.
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6. CONCLUDING REMARKS AND FUTURE WORK

6.1 Concluding Remarks

In this work, an attempt was made to develop and demonstrate novel material design ap-

proaches to enable accelerated goal-oriented materials design. The focus of a goal-oriented ma-

terial design process is to predict the combinations of material chemistry and processing route

that yields a material with targeted properties which is enabled by understanding and exploiting

processing/chemistry - microstructure - property (PSP) relationships. The state-of-the art design

frameworks to carry out goal-oriented material design tend to use a single source of informa-

tion/data to exploit the PSP relationship. However, often there are multiple information sources

(experiments, computational models, empirical models) with varying degrees of fidelity and cost

that can be used to potentially exploit the PSP linkages to carry out a goal-oriented material design.

Following this, in Chapter 2, the applicability of a closed-loop multi-fidelity Bayesian Optimiza-

tion framework capable of exploiting multiple information/data sources with varying fidelity and

cost to efficiently carry out goal-oriented material design is demonstrated. The material design

framework utilized the Knowledge Gradient metric to efficiently balance the need to explore and

exploit knowledge of the materials design space in order to find an optimal solution in as efficient

manner as possible. The framework also enabled the selection of the most cost-effective informa-

tion source to query the material design space under budget constraint.

While fundamentally materials science involves the study of processing/chemistry - microstruc-

ture - property correlations, in practice, material design involves finding optimum processing/chemistry

that yields desired properties, and the microstructure information is either only used to establish the

PSP linkage for simulations or rationalize the final observations or both. This raises a fundamental

question, can the intermediate microstructural information aid in searching for optimum process-

ing/chemistry that yield desired properties more efficiently than otherwise. To answer this ques-

tion, in Chapter 3, a novel microstructure aware closed-loop multi-fidelity Bayesian Optimization

93



framework is formulated to probe the importance of microstructure information on a goal-oriented

design process. The results show that explicitly including the microstructure information in the

decision-making process can significantly accelerate the material design process.

Furthermore, there are several material design problems in which the target property is sensi-

tive to the topological details of the material microstructure. For example, crack growth resistance

of a material microstructure. Materials design problems involving optimization of the crack growth

resistance through microstructure design requires systematic optimization of the topological fea-

tures of the material’s microstructure. While existing methodologies such as microstructure-based

finite element calculations to correlate relevant features of a material’s microstructure and its resis-

tance to crack growth are reasonably accurate, they tend to be computationally expensive. Thus,

closed-loop design of material microstructures targeting crack growth resistance using such expen-

sive microstructure-based finite element calculations is impractical and requires computationally

efficient methods to predict the crack path and its crack growth resistance in a given material mi-

crostructure. To address this need, in Chapter 4, a novel computationally efficient method utilizing

evolving graphs and microstructural unit events is proposed to predict crack path and crack growth

resistance. The predictions from the method based on evolving graphs and microstructural unit

events are compared with the results of full-field microstructure-based finite element calculations

of ductile fracture. Finally, this approach is used to design material microstructures with enhanced

intergranular crack growth resistance in Chapter 5.

6.2 Future Work

The work presented in this dissertation provides a motivation for several directions to be inves-

tigated in the future.

• In most materials design problems, the objective function is more sensitive to some input

variables compared to others. Exploiting such information can lead to even faster and more

efficient materials design process. For example, in Chapter 3, not all dimensions of the ma-

terial design space are equally influential in optimization of the target property. This points
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to a possible strategy to make this framework even faster and more efficient: find and follow

directions (i.e. subspaces) in the design space along which the gradient of objective function

is highest. This approach, known as the active subspace method [73, 74], decomposes the

design space in such a way that at any time only the most influential or active subspaces

are considered when trying to find the optimum in a multi-dimensional space. Effectively,

this approach would reduce the dimension of the problem, accelerating the rate at which the

solution is approached. Active subspace approach in conjunction with microstructure aware

approach could be used to accelerate the design process even further.

• Engineering design problems more often than not require optimization of more than one

material properties for desired application. Thus, the material design design framework

developed in Chapter 3 could be extended to handle multiple objectives.

• The novel approach based on evolving graphs and microstructural unit events proposed in

Chapter 4 could be used in a closed-loop optimization framework to accelerate the process

of designing fracture resistant materials.

• The proposed novel approach in Chapter 4 based on evolving graphs and microstructural

unit events focused on assessing the crack growth resistance of two-dimensional material

microstructures. Hence, am immediate next step will be to generalize this method to account

for three-dimensional material microstructures.
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APPENDIX A

SUPPLEMENTARY MATERIALS FOR:

IMPORTANCE OF MICROSTRUCTURE IN MATERIAL DESIGN

This appendix includes:

Supplementary Figures A.1 to A.15.
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Figure A.1: A comparison of the performance of the traditional microstructure agnostic and the
novel microstructure aware material design approaches when at the beginning of the design process
the ‘ground truth’ information of the input (XI) - output (XO) correlation is known at only one set
of parameters in the input space. (a) Comparing the maximum objective value found as a function
of the number of design iterations for five realizations of the design process. (b) Comparing the
average number of design iterations required to reach an average maximum objective value over
five realizations of the design process. A realization here refers to different sets of known ‘ground
truth’ XI - XO correlation at the beginning of the design process.
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Figure A.2: A comparison of the performance of the traditional microstructure agnostic and the
novel microstructure aware material design approaches when at the beginning of the design process
the ‘ground truth’ information of the input (XI) - output (XO) correlation is known at only ten sets
of parameters in the input space. (a) Comparing the maximum objective value found as a function
of the number of design iterations for five realizations of the design process. (b) Comparing the
average number of design iterations required to reach an average maximum objective value over
five realizations of the design process. A realization here refers to different sets of known ‘ground
truth’ XI - XO correlation at the beginning of the design process.
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Figure A.3: A comparison of the performance of the traditional microstructure agnostic and the
novel microstructure aware material design approaches when at the beginning of the design pro-
cess the ‘ground truth’ information of the input (XI) - output (XO) correlation is known at only
twenty five sets of parameters in the input space. (a) Comparing the maximum objective value
found as a function of the number of design iterations for five realizations of the design process.
(b) Comparing the average number of design iterations required to reach an average maximum
objective value over five realizations of the design process. A realization here refers to different
sets of known ‘ground truth’ XI - XO correlation at the beginning of the design process.
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Figure A.4: A comparison of the average value of the optimum microstructure parameter (char-
acterized by the volume fraction of the martensite phase, fmart) identified by the traditional mi-
crostructure agnostic and the novel microstructure aware material design approaches at each de-
sign iteration over five realizations of the design process, when at the beginning of the design
process the ‘ground truth’ information of the input (XI) - output (XO) correlation is known at
only one set of parameters in the input space. A realization here refers to different sets of known
‘ground truth’ XI - XO correlation at the beginning of the design process.
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Figure A.5: A comparison of the average value of the optimum microstructure parameter (char-
acterized by the volume fraction of the martensite phase, fmart) identified by the traditional mi-
crostructure agnostic and the novel microstructure aware material design approaches at each de-
sign iteration over five realizations of the design process, when at the beginning of the design
process the ‘ground truth’ information of the input (XI) - output (XO) correlation is known at
only ten sets of parameters in the input space. A realization here refers to different sets of known
‘ground truth’ XI - XO correlation at the beginning of the design process.
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Figure A.6: A comparison of the average value of the optimum microstructure parameter (char-
acterized by the volume fraction of the martensite phase, fmart) identified by the traditional mi-
crostructure agnostic and the novel microstructure aware material design approaches at each de-
sign iteration over five realizations of the design process, when at the beginning of the design
process the ‘ground truth’ information of the input (XI) - output (XO) correlation is known at
only twenty five sets of parameters in the input space. A realization here refers to different sets of
known ‘ground truth’ XI - XO correlation at the beginning of the design process.
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Figure A.7: Exploitation of information sources (Isostrain, Isostress, Isowork, Secant Method and
Elastic Constraint reduced-order models) and the ‘ground truth’ (µFE) model at each design iter-
ation by the (a) novel microstructure aware and the (b) traditional microstructure agnostic material
design approaches when at the beginning of the design process the ‘ground truth’ information of
the input (XI) - output (XO) correlation is known at only one set of parameters in the input space.
The results are shown for one realization of the design process.
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Figure A.8: Exploitation of information sources (Isostrain, Isostress, Isowork, Secant Method and
Elastic Constraint reduced-order models) and the ‘ground truth’ (µFE) model at each design iter-
ation by the (a) novel microstructure aware and the (b) traditional microstructure agnostic material
design approaches when at the beginning of the design process the ‘ground truth’ information of
the input (XI) - output (XO) correlation is known at only ten sets of parameters in the input space.
The results are shown for one realization of the design process.
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Figure A.9: Exploitation of information sources (Isostrain, Isostress, Isowork, Secant Method and
Elastic Constraint reduced-order models) and the ‘ground truth’ (µFE) model at each design iter-
ation by the (a) novel microstructure aware and the (b) traditional microstructure agnostic material
design approaches when at the beginning of the design process the ‘ground truth’ information of
the input (XI) - output (XO) correlation is known at only twenty five sets of parameters in the
input space. The results are shown for one realization of the design process.
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Figure A.10: A comparison of the optimum processing/chemistry parameters identified by the tra-
ditional microstructure agnostic and the novel microstructure aware material design approaches
when at the beginning of the design process the ‘ground truth’ information of the input (XI) - out-
put (XO) correlation is known at only one set of parameters in the input space. (a)-(d) Comparing
the average optimal values of the processing parameter, intercritical annealing temperature, and
the amount of alloying elements, Carbon, Manganese and Silicon that correspond to the average
maximum objective value at each design iteration over five realizations of the design process. A re-
alization here refers to different sets of known ‘ground truth’ XI - XO correlation at the beginning
of the design process.
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Figure A.11: A comparison of the optimum processing/chemistry parameters identified by the tra-
ditional microstructure agnostic and the novel microstructure aware material design approaches
when at the beginning of the design process the ‘ground truth’ information of the input (XI) - out-
put (XO) correlation is known at only ten sets of parameters in the input space. (a)-(d) Comparing
the average optimal values of the processing parameter, intercritical annealing temperature, and
the amount of alloying elements, Carbon, Manganese and Silicon that correspond to the average
maximum objective value at each design iteration over five realizations of the design process. A re-
alization here refers to different sets of known ‘ground truth’ XI - XO correlation at the beginning
of the design process.
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Figure A.12: A comparison of the optimum processing/chemistry parameters identified by the
traditional microstructure agnostic and the novel microstructure aware material design approaches
when at the beginning of the design process the ‘ground truth’ information of the input (XI)
- output (XO) correlation is known at only twenty five sets of parameters in the input space.
(a)-(d) Comparing the average optimal values of the processing parameter, intercritical annealing
temperature, and the amount of alloying elements, Carbon, Manganese and Silicon that correspond
to the average maximum objective value at each design iteration over five realizations of the design
process. A realization here refers to different sets of known ‘ground truth’ XI - XO correlation at
the beginning of the design process.
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Figure A.13: A comparison of the predicted variation of the objective value as a function of the ma-
terial microstructure characterized by the volume fraction of the martensite phase, fmart, obtained
from exhaustively querying the ‘ground truth’ information source (µFE) and the initial (at the
very first design iteration) fused Gaussian Process model built using only one initial ‘ground truth’
information (marked as star) following the (a) microstructure aware and (b) microstructure agnos-
tic approaches. Parity plots of the objective value obtained from exhaustively querying the ‘ground
truth’ information source and the fused Gaussian Process model following the (c) microstructure
aware and (d) microstructure agnostic approaches. The results are shown for one realization of the
design process.
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Figure A.14: A comparison of the predicted variation of the objective value as a function of the ma-
terial microstructure characterized by the volume fraction of the martensite phase, fmart, obtained
from exhaustively querying the ‘ground truth’ information source (µFE) and the initial (at the
very first design iteration) fused Gaussian Process model built using only ten initial ‘ground truth’
information (marked as star) following the (a) microstructure aware and (b) microstructure agnos-
tic approaches. Parity plots of the objective value obtained from exhaustively querying the ‘ground
truth’ information source and the fused Gaussian Process model following the (c) microstructure
aware and (d) microstructure agnostic approaches. The results are shown for one realization of the
design process.
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Figure A.15: A comparison of the predicted variation of the objective value as a function of the
material microstructure characterized by the volume fraction of the martensite phase, fmart, ob-
tained from exhaustively querying the ‘ground truth’ information source (µFE) and the initial (at
the very first design iteration) fused Gaussian Process model built using only twenty five initial
‘ground truth’ information (marked as star) following the (a) microstructure aware and (b) mi-
crostructure agnostic approaches. Parity plots of the objective value obtained from exhaustively
querying the ‘ground truth’ information source and the fused Gaussian Process model following
the (c) microstructure aware and (d) microstructure agnostic approaches. The results are shown
for one realization of the design process.
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APPENDIX B

SUPPLEMENTARY MATERIALS FOR:

DUCTILE FRACTURE PREDICTION USING EVOLVING GRAPHS

This appendix includes:

Supplementary Figures B.1 to B.20.
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Figure B.1: Comparisons of crack path predicted using evolving graph method and microstructure-
based finite element model for disconnected microstructural network constituting of distribution
of discrete inclusions with mean inclusion spacing, , lincl = 6δ shown at three different time steps.
(a) construction of a local graph at a inclusion by building the edges (possible crack paths) that
connect to this particular inclusion and then the selection of a crack path with least crack growth
resistance, ∆J . Possible crack paths are highlighted as red dashed lines and the selected crack path
is shown in solid green line. The solid white line shows the propagation of crack till this inclusion.
(b) shows the path predicted using the finite element calculation for the particular time step. (c)
shows the another instance of construction of a local graph at this inclusion and then selection of
the path with minimum ∆J . (d) shows the path predicted from finite element calculations for the
particular time step. Similarly (e) and (f) show path predicted from graph model and finite element
calculations as the crack reaches the end of the microstructure. Here the propagation of crack
occurs through collection of predictions of paths from the local graphs built at the inclusions.
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Figure B.2: Comparisons of crack growth resistance curves predicted using evolving graph method
and microstructure-based finite element model for disconnected microstructural network with a
distribution of discrete inclusions with mean inclusion spacing, lincl = 6δ shown in Figure B.1 .
Comparison of curves of normalized J, (J − J0)/(σ0δ), versus normalized crack extension (∆a−
∆a0)/δ computed from finite element calculations (solid line) and evolving graph method (dashed
green line). The dotted grey lines, b and d correspond to the locations of propagation of crack in
Figure B.1(b) and Figure B.1(d).
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Figure B.3: Comparisons of crack path predicted using evolving graph method and microstructure-
based finite element model for disconnected microstructural network constituting of distribution
of discrete inclusions with mean inclusion spacing, , lincl = 8δ shown at three different time steps.
(a) construction of a local graph at a inclusion by building the edges (possible crack paths) that
connect to this particular inclusion and then the selection of a crack path with least crack growth
resistance, ∆J . Possible crack paths are highlighted as red dashed lines and the selected crack path
is shown in solid green line. The solid white line shows the propagation of crack till this inclusion.
(b) shows the path predicted using the finite element calculation for the particular time step. (c)
shows the another instance of construction of a local graph at this inclusion and then selection of
the path with minimum ∆J . (d) shows the path predicted from finite element calculations for the
particular time step. Similarly (e) and (f) show path predicted from graph model and finite element
calculations as the crack reaches the end of the microstructure. Here the propagation of crack
occurs through collection of predictions of paths from the local graphs built at the inclusions.
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Figure B.4: Comparisons of crack growth resistance curves predicted using evolving graph method
and microstructure-based finite element model for disconnected microstructural network with a
distribution of discrete inclusions with mean inclusion spacing, lincl = 8δ shown in Figure B.3 .
Comparison of curves of normalized J, (J − J0)/(σ0δ), versus normalized crack extension (∆a−
∆a0)/δ computed from finite element calculations (solid line) and evolving graph method (dashed
green line). The dotted grey lines, b and d correspond to the locations of propagation of crack in
Figure B.3(b) and Figure B.3(d).
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Figure B.5: Comparisons of crack path predicted using evolving graph method and microstructure-
based finite element model for disconnected microstructural network constituting of distribution
of discrete inclusions with mean inclusion spacing, , lincl = 8δ shown at three different time steps.
(a) construction of a local graph at a inclusion by building the edges (possible crack paths) that
connect to this particular inclusion and then the selection of a crack path with least crack growth
resistance, ∆J . Possible crack paths are highlighted as red dashed lines and the selected crack path
is shown in solid green line. The solid white line shows the propagation of crack till this inclusion.
(b) shows the path predicted using the finite element calculation for the particular time step. (c)
shows the another instance of construction of a local graph at this inclusion and then selection of
the path with minimum ∆J . (d) shows the path predicted from finite element calculations for the
particular time step. Similarly (e) and (f) show path predicted from graph model and finite element
calculations as the crack reaches the end of the microstructure. Here the propagation of crack
occurs through collection of predictions of paths from the local graphs built at the inclusions.
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Figure B.6: Comparisons of crack growth resistance curves predicted using evolving graph method
and microstructure-based finite element model for disconnected microstructural network with a
distribution of discrete inclusions with mean inclusion spacing, lincl = 8δ shown in Figure B.5 .
Comparison of curves of normalized J, (J − J0)/(σ0δ), versus normalized crack extension (∆a−
∆a0)/δ computed from finite element calculations (solid line) and evolving graph method (dashed
green line). The dotted grey lines, b and d correspond to the locations of propagation of crack in
Figure B.5(b) and Figure B.5(d).
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Figure B.7: Comparisons of crack path predicted using evolving graph method and microstructure-
based finite element model for disconnected microstructural network constituting of distribution
of discrete inclusions with mean inclusion spacing, , lincl = 4δ shown at three different time steps.
(a) construction of a local graph at a inclusion by building the edges (possible crack paths) that
connect to this particular inclusion and then the selection of a crack path with least crack growth
resistance, ∆J . Possible crack paths are highlighted as red dashed lines and the selected crack path
is shown in solid green line. The solid white line shows the propagation of crack till this inclusion.
(b) shows the path predicted using the finite element calculation for the particular time step. (c)
shows the another instance of construction of a local graph at this inclusion and then selection of
the path with minimum ∆J . (d) shows the path predicted from finite element calculations for the
particular time step. Similarly (e) and (f) show path predicted from graph model and finite element
calculations as the crack reaches the end of the microstructure. Here the propagation of crack
occurs through collection of predictions of paths from the local graphs built at the inclusions.
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Figure B.8: Comparisons of crack growth resistance curves predicted using evolving graph method
and microstructure-based finite element model for disconnected microstructural network with a
distribution of discrete inclusions with mean inclusion spacing, lincl = 4δ shown in Figure B.7 .
Comparison of curves of normalized J, (J − J0)/(σ0δ), versus normalized crack extension (∆a−
∆a0)/δ computed from finite element calculations (solid line) and evolving graph method (dashed
green line). The dotted grey lines, b and d correspond to the locations of propagation of crack in
Figure B.7(b) and Figure B.7(d).
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Figure B.9: Comparisons of crack path predicted using evolving graph method and microstructure-
based finite element model for disconnected microstructural network constituting of distribution
of discrete inclusions with mean inclusion spacing, , lincl = 4δ shown at three different time steps.
(a) construction of a local graph at a inclusion by building the edges (possible crack paths) that
connect to this particular inclusion and then the selection of a crack path with least crack growth
resistance, ∆J . Possible crack paths are highlighted as red dashed lines and the selected crack path
is shown in solid green line. The solid white line shows the propagation of crack till this inclusion.
(b) shows the path predicted using the finite element calculation for the particular time step. (c)
shows the another instance of construction of a local graph at this inclusion and then selection of
the path with minimum ∆J . (d) shows the path predicted from finite element calculations for the
particular time step. Similarly (e) and (f) show path predicted from graph model and finite element
calculations as the crack reaches the end of the microstructure. Here the propagation of crack
occurs through collection of predictions of paths from the local graphs built at the inclusions.
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Figure B.10: Comparisons of crack growth resistance curves predicted using evolving graph
method and microstructure-based finite element model for disconnected microstructural network
with a distribution of discrete inclusions with mean inclusion spacing, lincl = 4δ shown in Fig-
ure B.9 . Comparison of curves of normalized J, (J−J0)/(σ0δ), versus normalized crack extension
(∆a −∆a0)/δ computed from finite element calculations (solid line) and evolving graph method
(dashed green line). The dotted grey lines, b and d correspond to the locations of propagation of
crack in Figure B.9(b) and Figure B.9(d).
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Figure B.11: Comparisons of crack path predicted using evolving graph method and
microstructure-based finite element model for connected microstructural network with average
grain size, dg = 5δ shown at three different time steps. (a) construction of a local graph at the
grain boundary junction from the network of grain boundaries at this particular junction and then
the selection of a crack path with least crack growth resistance, ∆J . Possible crack paths are high-
lighted as red dashed lines and the selected crack path is shown in solid green line. The solid white
line shows the propagation of crack till this grain boundary junction where the local graph is built.
(b) shows the path predicted using the finite element calculation for the particular time step in (a).
(c) shows the another instance of construction of a local graph at this inclusion and then selection
of the path with minimum ∆J . (d) shows the path predicted from finite element calculations for
the particular time step in (c). Similarly (e) and (f) show path predicted from graph model and
finite element calculations as the crack reaches the end of the microstructure. Here the propagation
of crack occurs through collection of predictions of paths from the local graphs built at these grain
boundary junctions.
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Figure B.12: Comparisons of crack growth resistance curves predicted using evolving graph
method and microstructure-based finite element model for connected microstructural network with
average grain size, dg = 5δ as shown in Figure B.11. Comparison of curves of normalized
J, (J − J0)/(σ0δ), versus normalized crack extension ∆a/δ computed from finite element calcu-
lations (solid line) and graph model (dashed green line). The dotted grey lines, b and d correspond
to the locations of propagation of crack in Figure B.11(b) and Figure B.11(d).
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Figure B.13: Comparisons of crack path predicted using evolving graph method and
microstructure-based finite element model for connected microstructural network with average
grain size, dg = 7.5δ shown at three different time steps. (a) construction of a local graph at the
grain boundary junction from the network of grain boundaries at this particular junction and then
the selection of a crack path with least crack growth resistance, ∆J . Possible crack paths are high-
lighted as red dashed lines and the selected crack path is shown in solid green line. The solid white
line shows the propagation of crack till this grain boundary junction where the local graph is built.
(b) shows the path predicted using the finite element calculation for the particular time step in (a).
(c) shows the another instance of construction of a local graph at this inclusion and then selection
of the path with minimum ∆J . (d) shows the path predicted from finite element calculations for
the particular time step in (c). Similarly (e) and (f) show path predicted from graph model and
finite element calculations as the crack reaches the end of the microstructure. Here the propagation
of crack occurs through collection of predictions of paths from the local graphs built at these grain
boundary junctions.
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Figure B.14: Comparisons of crack growth resistance curves predicted using evolving graph
method and microstructure-based finite element model for connected microstructural network with
average grain size, dg = 7.5δ as shown in Figure B.13. Comparison of curves of normalized
J, (J − J0)/(σ0δ), versus normalized crack extension ∆a/δ computed from finite element calcu-
lations (solid line) and graph model (dashed green line). The dotted grey lines, b and d correspond
to the locations of propagation of crack in Figure B.13(b) and Figure B.13(d).
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Figure B.15: Comparisons of crack path predicted using evolving graph method and
microstructure-based finite element model for connected microstructural network with average
grain size, dg = 7.5δ shown at three different time steps. (a) construction of a local graph at the
grain boundary junction from the network of grain boundaries at this particular junction and then
the selection of a crack path with least crack growth resistance, ∆J . Possible crack paths are high-
lighted as red dashed lines and the selected crack path is shown in solid green line. The solid white
line shows the propagation of crack till this grain boundary junction where the local graph is built.
(b) shows the path predicted using the finite element calculation for the particular time step in (a).
(c) shows the another instance of construction of a local graph at this inclusion and then selection
of the path with minimum ∆J . (d) shows the path predicted from finite element calculations for
the particular time step in (c). Similarly (e) and (f) show path predicted from graph model and
finite element calculations as the crack reaches the end of the microstructure. Here the propagation
of crack occurs through collection of predictions of paths from the local graphs built at these grain
boundary junctions.
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Figure B.16: Comparisons of crack growth resistance curves predicted using evolving graph
method and microstructure-based finite element model for connected microstructural network with
average grain size, dg = 7.5δ as shown in Figure B.15. Comparison of curves of normalized
J, (J − J0)/(σ0δ), versus normalized crack extension ∆a/δ computed from finite element calcu-
lations (solid line) and graph model (dashed green line). The dotted grey lines, b and d correspond
to the locations of propagation of crack in Figure B.15(b) and Figure B.15(d).
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Figure B.17: Comparisons of crack path predicted using evolving graph method and
microstructure-based finite element model for connected microstructural network with average
grain size, dg = 2.5δ shown at three different time steps. (a) construction of a local graph at the
grain boundary junction from the network of grain boundaries at this particular junction and then
the selection of a crack path with least crack growth resistance, ∆J . Possible crack paths are high-
lighted as red dashed lines and the selected crack path is shown in solid green line. The solid white
line shows the propagation of crack till this grain boundary junction where the local graph is built.
(b) shows the path predicted using the finite element calculation for the particular time step in (a).
(c) shows the another instance of construction of a local graph at this inclusion and then selection
of the path with minimum ∆J . (d) shows the path predicted from finite element calculations for
the particular time step in (c). Similarly (e) and (f) show path predicted from graph model and
finite element calculations as the crack reaches the end of the microstructure. Here the propagation
of crack occurs through collection of predictions of paths from the local graphs built at these grain
boundary junctions.
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Figure B.18: Comparisons of crack growth resistance curves predicted using evolving graph
method and microstructure-based finite element model for connected microstructural network with
average grain size, dg = 2.5δ as shown in Figure B.17. Comparison of curves of normalized
J, (J − J0)/(σ0δ), versus normalized crack extension ∆a/δ computed from finite element calcu-
lations (solid line) and graph model (dashed green line). The dotted grey lines, b and d correspond
to the locations of propagation of crack in Figure B.17(b) and Figure B.17(d).
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Figure B.19: Comparisons of crack path predicted using evolving graph method and
microstructure-based finite element model for connected microstructural network with average
grain size, dg = 2.5δ shown at three different time steps. (a) construction of a local graph at the
grain boundary junction from the network of grain boundaries at this particular junction and then
the selection of a crack path with least crack growth resistance, ∆J . Possible crack paths are high-
lighted as red dashed lines and the selected crack path is shown in solid green line. The solid white
line shows the propagation of crack till this grain boundary junction where the local graph is built.
(b) shows the path predicted using the finite element calculation for the particular time step in (a).
(c) shows the another instance of construction of a local graph at this inclusion and then selection
of the path with minimum ∆J . (d) shows the path predicted from finite element calculations for
the particular time step in (c). Similarly (e) and (f) show path predicted from graph model and
finite element calculations as the crack reaches the end of the microstructure. Here the propagation
of crack occurs through collection of predictions of paths from the local graphs built at these grain
boundary junctions.
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Figure B.20: Comparisons of crack growth resistance curves predicted using evolving graph
method and microstructure-based finite element model for connected microstructural network with
average grain size, dg = 2.5δ as shown in Figure B.19. Comparison of curves of normalized
J, (J − J0)/(σ0δ), versus normalized crack extension ∆a/δ computed from finite element calcu-
lations (solid line) and graph model (dashed green line). The dotted grey lines, b and d correspond
to the locations of propagation of crack in Figure B.19(b) and Figure B.19(d).
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