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ABSTRACT

Turbulent flows are ubiquitous in natural and engineering applications. For example, stellar

formation rates are an order magnitude larger due to turbulence effects and quarter of all energy

expended in transport and commercial applications is used to move fluids or move objects through

fluids, which are largely turbulent in nature. Prediction and control of turbulent flows, especially

their extreme fluctuations, is an important challenge in diverse practical applications such super-

sonic and hypersonic flows, both in terms of flight performance and materials needed to build

these vehicles. Turbulent flows have thus far been studied in the limit of high-Reynolds numbers

(Rλ > 103), largely due to their prevalence in applications. In this regime, turbulence has a wide-

range of excited scales, with the largest scales often dictated by non-universal features such as

the geometry of the object generating turbulence. Small scales are known to exhibit non-trivial

statistics characterized by extreme fluctuations, a phenomenon collectively called intermittency.

Higher-order statistics of velocity fluctuations, those describing the extreme events, are however

exceedingly challenging to measure and compute. Computations have been carried out with over

163843 grid-points to measure them accurately. The observed scaling of extreme event statistics

is known to be anomalous i.e. it differs greatly from classical predictions. The prediction of this

anomalous behavior from first principles is still an open problem. Furthermore, the parameter

range where the scaling behavior must be observed is also not well defined by classical theories.

It is therefore important to understand and characterize the fundamental aspects of turbulent flows.

In particular how turbulent behavior emerges, what its characteristics are, and how they relate to

conditions found in realistic flows. This is the main thrust of this dissertation. This work provides

a novel approach to to address these open questions. We use highly resolved direct numerical sim-

ulations at low to moderate Rλ ∼ O(1− 100), which are easily realizable on current generation of

supercomputers, to measure high-order statistics and establish their scaling. The simulations in this

dissertation have the finest small-scale and temporal resolution in literature. Anomalous scaling

of high-order moments, assumed to be a high-Rλ feature, is shown to emerge at Rλ ∼ O(10) and
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we directly test its universality with respect to large scale production mechanisms. The observed

scaling exponents are compared to recently developed theory. In contrast to classical theories, we

also show that most extreme fluctuations develop turbulent character first. Therefore, high-Rλ fea-

tures can be reliably computed by studying highly resolved low-Rλ turbulent flows. The classical

concept of small-scale independence, a widely made assumption in modelling approaches, is also

studied using the energy spectrum of turbulent fluctuations. We also extend the new formalism

to compressible turbulence and show that the vortical modes behave similar to their incompress-

ible counterpart. Compressible modes are shown to scale differently. Based on our results and

a survey of the literature, we speculate that the asymptotic scaling at large parameter values in

spatio-temporal chaotic systems can be understood by careful study of transition to this scaling at

much lower parameter values. Within computing, this means that well-resolved simulations at low

parameter values, X (e.g. X = Rλ etc.), which are order magnitudes cheaper than high-X , can

reveal important and relevant physics at high-X .
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1. INTRODUCTION

Turbulence is ubiquitous in natural and engineering applications. It can suppress energy loss

in fusion reactors [4] and plays a crucial role in stellar formation [5]. Turbulence has first order

effects in processes critically important to society such as mixing of chemicals and pollutants in the

atmosphere and oceans [6] and high speed flight [7]. Understanding the structure and dynamics

of turbulence is thus of obvious fundamental and engineering importance. Yet, turbulence is a

notoriously difficult phenomenon to describe [8]. The problem of turbulence is much different

than other complex systems such as in biology and economics where the equations governing their

dynamics are unknown. For turbulence, the widely accepted governing equations of fluid motion

have been known since the 19th century [9, 10, 11]. These are based on fundamental concepts

in mechanics and thermodynamics– the conservation of mass, momentum and energy with the

general form

∂ρ

∂t
+
∂ρui
∂xi

= 0 (1.1)

∂ρui
∂t

+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+
∂σij
∂xj

+ ρfi (1.2)

∂(ρe)

∂t
+
∂(ρeuj)

∂xj
= −p∂ui

∂xi
+

∂

∂xi

(
κ
∂T

∂xi

)
+ σijSij − Λ (1.3)

where ρ is the density of the fluid, ui is the velocity in i direction, p is the pressure, T is temperature,

κ is thermal diffusivity, e is the internal energy per unit mass, fi is the force along ith direction and

Λ is an energy sink or source. σij is the viscous stress tensor and Sij is the strain tensor with the

form

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi

− 2

3
δij
∂uk
∂xk

)
(1.4)

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(1.5)
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where µ is the fluid viscosity. Viscosity is the physical mechanism for converting kinetic energy to

heat via dissipation ǫ = 2νSijSij , largely at the smallest scales. The thermodynamic equation of

state used to close the above set of equations, in this work, is the ideal gas law i.e. p = ρRT . The

complexity of turbulence is an emergent phenomenon of the above mentioned equations which

result from a strong coupling across different scales and between mechanics and thermodynamics

of the system. The highly non-linear, non-local and chaotic nature of these equations renders them

enormously difficult to analyze mathematically and simulate computationally [12].

Within incompressible (constant ρ) fluids with constant transport properties, turbulence is sim-

ply a problem in mechanics. This reduced set of incompressible Navier-Stokes equations is, in

general, a good approximation for fluids moving much slower than the speed of sound and has the

following form

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂x2i

+ fi (1.6)

where ρ = 1 without the loss of generality, f is a body force and the velocity field is subject to the

incompressible mass conservation condition ∂ui/∂xi = 0. The velocity field is decoupled from

the thermodynamic field. The thermodynamic state however is determined by the velocity field.

The mathematical complexity of even this reduced set warranted their inclusion in Clay Institute

Millennium problems [13]. The still unsolved problem seeks to establish basic properties such as

a proof (or lack thereof) of existence and uniqueness of a solution from a given initial conditions.

While these equations have allowed us to compute and analyze laminar flows across a wide range

of highly simplified problems, under simplifying assumptions, the emergence of turbulence and its

properties from these equations is still not well understood.

The transition to turbulence itself was first observed by Reynolds [14] in pipe flows and con-

tinues to be a focus of active research even today [15, 16]. The analysis of the turbulent regime

presents extreme challenges due to the non-integrability of governing equations and their extreme

sensitivity to initial conditions. The problem is further complicated by an increasing number of
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excited and non-linearly interacting spatio-temporal scales. Thus far, the stochastic or statistical

approach for describing and analyzing turbulent flows has been most successful. Other determin-

istic and structure based (e.g. coherent structures, wavelet etc.) approaches have found limited

success [17, 18]. The statistical approach for analyzing turbulent flows was first introduced by

Reynolds where the velocity is decomposed into a statistical mean and random fluctuations around

it. Kolmogorov [19] formalized this further by developing a theory of turbulence based on the

statistical features of velocity fluctuations.

1.1 Statistical description of turbulence

Kolmogorov first formalized the statistical approach towards a theory of incompressible tur-

bulence (K41), valid at asymptotically high (yet undetermined) Reynolds number (Re = ρuL/µ)

[19]. Re is the only non-dimensional parameter characterizing the incompressible Navier-Stokes

equations. The theory describes turbulent velocity field using statistics of its increments (δu(r) =

u(x + r)− u(x)) and is based on two features. First, an experimental observation that the kinetic

energy dissipation ε is independent of Re for a large enough Re i.e. a non-vanishing dissipation

in the limit of vanishing viscosity. This fact, termed dissipative anomaly, was established a decade

earlier by Taylor [20] (see also [21] for other references). Second, small scales are independent of

the large scales and are homogeneous and isotropic. Between the largest energy containing scales

(L) and smallest dissipative scales (η), exists a so-called inertial range of scales where the energy

cascades successively from larger to smaller scales without any dissipative losses. Conservation of

energy then prescribes the energy transfer rate across these scales to be equal to dissipation which

is the same as the energy input at the largest scales. These range of scales are self-similar and

therefore are characterized solely by the energy transfer rate (ε) and scale size r. This was an early

attempt of introducing scaling in physical systems, at least a decade before the establishment of

critical phenomena in statistical mechanics [22]. The pth order statistics of the velocity increments

then have the general form 〈(δu(r))p〉 = 〈u((x+ r)− u(x))p〉, where 〈 〉 represent an appropriate

statistical average. Navier-Stokes then imposes an important constraint on the probability distribu-

tion function (PDF) of velocity increments which must satisfy 〈δu(r)3〉 = −4/5(rε)1/3 [23]. This
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negative skewness is interpreted as the average direction of energy flux being from large to small

scales, a phenomenon called turbulent cascade [24]. Dimensional arguments can then be used

within these inertial scales for the second order moment having the form (〈δu(r)2〉) = C2(rε)
2/3.

This is important as the Fourier transform of 〈δu(r)2〉 is the energy spectrum of turbulent fluctu-

ations across scales. This was further generalized to speculate pth order moment of the velocity

increments then scales with the exponent p/3 over distance r with L > r > η i.e.

〈(δu(r))p〉 = Cp(rε)
p/3 (1.7)

where Cp may be dependent on large-scale flow features. Beyond the inertial range of scales are

the smallest dissipative scales characterized by the viscosity ν = µ/ρ and energy transfer rate.

Therefore, the smallest scales can be estimated to be η = (ν3/ε)4. One can then show that L/η ∝

Re3/4 and therefore a wider inertial range develops in high-Re flows. This initiated a decades long

research agenda to measure turbulence properties across various flows at ever increasing Re [21,

25, 26]. Although early experimental results appeared to support this power-law scaling, at least for

energy spectrum, careful analysis revealed departures from K41 prediction for all n except n = 3

[25]. These departures from predicted scaling were attributed to large deviations of the velocity

increments from the mean, which become larger with increasing Re. Even though the predictions

from K41 do not agree well with data, it laid the foundations for a statistical theory of turbulence.

The theory also did not address, how an initial flow transitions to this asymptotic statistical state.

Since the theory itself was only valid at an arbitrarily large value ofRλ, departures from predictions

were often attributed to finiteness of Re [27]. However, the persistence of departures across flows

and ever increasing range of Re has firmly established the existence of extreme events as a feature

of turbulent dynamics that must be accounted for by a successful theory [25, 26].

The high-Re required by K41 can be estimated from the behavior of dissipative anomaly. Dis-

sipative anomaly requires that the normalized dissipation β = εL/u3, where L and u are some

viscosity independent length and velocity scales respectively, approach a constant in the limit of
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high-Re [28, 29, 30]. A functional form for β = A(1 +
√
1 + B/Re) is proposed by Doering &

Foias [31] that satisfies rigirous bounds deduced from Navier-Stokes. A simple fit of the data from

our DNS database to the proposed form suggests A ≈ 0.16 and B ≈ 143. Similar values have

been estimated by others [29, 28, 32]. Therefore in the limit ofRe→ ∞, β → 0.32 and at low-Re,

β ∝ 1/
√
Re. The Re where dissipative anomaly is established can be estimated by extrapolating

the low-Re power-law region until it intersects the asymptotic value. Based on our fit, the intersec-

tion occurs at Re ∼ 36. Although, other estimates can been made based on different fits reported

in the literature, they are of the same order [29, 33, 28, 32]. Therefore, dissipative anomaly and the

underlying assumption in K41 is satisfied at very low-Re.

An implicit consequence of dissipative anomaly in K41 is the energy cascade across scales is

local. This means that energy is transfered between scales of similar size (on average from larger

to smaller scales), among the wide range of available scales in turbulent flows. This behavior has

been widely studied [34, 35, 36, 37, 38, 39, 40] and a broad conclusion is that the interactions can

be highly non-local but the integrated effect yields a cascade-like local energy transfer between

scales of similar size. However, the low Reynolds number in those studies, due to limitations of

computing power at that time, did not allow previous researchers to distinguish the inertial range

from the bottleneck region ([41, 42, 43, 44, 45]).

K41 also assumes a global scale invariance which has the consequence that the smallest scales

are Re independent when normalized by η. This has thus far been studyied using the energy

spectrum in the dissipation range and establishing that the spectra collapse when length scales are

normalized by η, i.e. the spectra in dissipation range exhibit complete self-similarity. Other the-

ories use different arguments to make similar predictions. A notable exception is the milti-fractal

formalism [46] which replaces the global scale invariance with local scale invariance (detailed in

section 4). The theory then predicts that the dissipation range should exhibitRe dependent scaling.

The validity of this prediction is yet to be established. Although, a wide range of studies claim (or

assume) that the dissipation range is completely self-similar, they do not include a large range of

Re, or do not measure scales too far into the dissipation range.
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An important feature of turbulent velocity fluctuations, ignored in K41, is the presence of

extremely large fluctuations compared to mean quantities. These fluctuations become stronger with

increasing Re and decreasing scale size (r) [46]. This phenomenon is referred to as intermittency

and subsequent work, from Kolmogorov and others, attempted to include its effect on scaling

exponents in the inertial range [47]. Many are cast in the framework of multifractal formalism, with

K41 being a degenerate case [48, 49, 46, 25]. The case of K41 is referred to as "trivial" scaling.

In fact, any fractional Brownian motion satisfies the K41 scaling exponent relation ζp = (p/2)ζ2

for even orders [25]. Intermittency is equivalent to a non-linear or anomalous variation of scaling

exponents and is attributed to a complex relationship between velocity increment PDFs and scale

size. The connection to Navier-Stokes for most models is, however, often missing or inadequate.

Therefore, they do not provide insights into the detailed physics of turbulence a priori. They

simply provide means of calculation, usually of the scaling exponents at asymptotically large-Rλ.

Some models fit the data better than others, but none of them are deemed definitive, based on

several physical considerations [50]. None of the theories, including K41, or models address the

emergence of this predicted scaling and often emphasize the role of very large Reynolds numbers.

Turbulence research, therefore, has sought an ever increasing growth in Re and the complexity of

the problem has been attributed, partially, to the difficulty of realizing high-Re flows in experiment

or computation [51].

Intermittency has also been observed in the dissipative scales and many models have been

developed to describe it [25]. The models largely link the statistics of velocity increments in

inertial range to those of velocity gradients at small scales, where the inertial and dissipative scales

match (e.g. δu(r → η)). Most models however, again, do not have a clear connection with Navier-

Stokes equations. Recent work by Yakhot provides new insights into the problem while keeping

its considerations close to the governing equations [52, 53, 54, 55, 56]. An important feature of

these models and others (e.g. [57, 2]) is to consider the dissipative scales (η) as a field rather than

a unique scale as in K41. A unique feature of Yakhot’s model is the presence of a finite critical-Re

beyond which turbulent features are present and this state is predictive of IR scaling exponents in

6



the Re→ ∞ limit. This will be discussed next.

1.1.1 An alternate perspective: Yakhot model and critical Reynolds number

Recent work has considered an alternate approach for incompressible turbulence [16, 53, 58,

52, 59, 60, 33] in an infinite domain stirred at the largest scales by a random force. These flows are

governed by Eq. (1.6). The force (fi) is white-in-time Gaussian defined by the correlation

〈fi(k, ω)fj(k’, ω′)〉 = (2π)d+1D0d(k)Pij(k)δ(ω + ω′)δ(k + k’) (1.8)

where D0 is the forcing amplitude, (k, ω) is the four vector and Pij(k = δijkikj/k
2) is the projec-

tion operator. The forcing amplitude distribution is described by d(k) which is non-zero in a small

interval |k| ≈ 2π/L0. This function represents the different mechanisms of energy injection across

various turbulent flows. Then, one can write the Fourier transform of Eq. (1.6) as

ul(k, ω) = G0fl(kω)−
i

2
G0Plmn

∫
um(qi,Ω)un(k-q, ω − Ω)dqdΩ (1.9)

where G0 = (−iω + νk2)−1, Plmn(k) = knPlm(k) + kmPln(k). Introducing the zeroth-order

solution u0 = G0f ∝
√
D0 such that u = G0f + v where the perturbation v is given by

vl(k̂) =− i

2
G0(k̂)Plmn(k)

∫
vm(q̂)vn(k̂ − q̂)dq̂

− i

2
G0(k̂)Plmn(k)

∫ (
vm(q̂)G

0(k̂ − q̂)fn(k̂ − q̂) +G0(q̂)fm(q̂)vn(k̂ − q̂)
)
dq̂

− i

2
G0(k̂)Plmn(k)

∫
G0(q̂)fm(q̂)G

0(k̂ − q̂)fn(k̂ − q̂)dq̂

(1.10)

For the case where Eq. (1.9) and Eq. (1.10) are driven by a regular force, the flow is considered

laminar at low Re with v = 0. The zeroth order solution becomes unstable as Re is increased

beyond a threshold Reinst and perturbations grow in time. For the case of Re/Reinst − 1 ≫ 1, the

coupling becomes stronger and leads to the state of fully developed turbulence. The growth of such

instabilities is often complicated and dependent on flow features, especially near Reinst. For the
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case of flow generated by a Gaussian force Yakhot & Sreenivasan [16] argue that the large scales

are Gaussian by virtue of Central Limit Theorem and the flow is in "thermodynamic equilibrium".

For smaller scales, far away from the forcing scales, the dynamics are out-of-equilibrium as they

are populated by non-linear interactions across scales. Yakhot & Donzis [60] argue that even at

very low-Re, when the flow is Gaussian, there exist rare events that lead to departure of the PDF

from gaussianity. These rare events are responsible for dissipation of large amounts of kinetic

energy. At higher-Re, the non-linear dynamics in Eq. (1.10) determines the dynamics entirely

leading to velocity fluctuations far from the forcing scale. Therefore, low and high-order moments

of the fluctuations may describe entirely different phenomena.

For a random Gaussian field, e.g. the velocity gradients, where the variance depends on Re

(〈(∂u/∂x)2〉 ∝ Reρ2), all the moments are described by 〈(∂u/∂x)2n〉 = (2n − 1)!!〈(∂u/∂x)2 ∝

Renρ2 . For high-Re however, we know the flow is non-gaussian and the anomalous exponent for a

moment 〈(∂u/∂x)2n〉 ∝ Reρ2n with ρ2n 6= nρ2. In the case of transitional flow (between Gaussian

and fully turbulent state), near the transition Reynolds number, the forcing scale is the same order

as the dissipative scale. One can then estimate the so-called Taylor Reynolds number

Rλ =

√
5

(3εν)
u2rms ≈

√
5L4

3νε
〈(∂xux)2〉 (1.11)

based on the velocity gradients. Since strong turbulence is described by velocity gradients which

cannot be estimated simply by the variance, an infinite number of Reynolds numbers must be

introduced

Rλn =

√
5L4

(3ε)ν
〈(∂xux)2n〉1/n (1.12)

Yakhot & Donzis [60] consider a low-Rλ flow, forced at the largest scales, where the statistics are

Gaussian. Increasing the Rλ eventually leads the flow towards the limit of Gaussianity at a critical

Reynolds number Rλ
tr. For a similar flow at very high-Rλ, strongly turbulent regime, the low-

order statistics are dominated by a huge turbulent viscosity νT ∝ ε1/3L4/3 where L is the integral
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scale. The effective Reynolds number then is R+
λ ∝

√
L4/(ενT )(∂xux)

2. For a smooth transition,

indicated by experiments and simulation data, one can write at the transition Rλ

Rλ
tr(2) =

√
5

3ενtr
u2rms =

√
5

3ενT
u2rms (1.13)

where the effective turbulent viscosity is given by [59] νT ≈ 0.084K2/ε and K = u2rms/2 is the

kinetic energy of the turbulent fluctuations. Then Rλ
tr(2) ≈ 9. Further, Eq. (1.11) and Eq. (1.12)

can be used to show

Rλ
tr(n) ∝ (Rtr

λ,n)
n/ρ2n (1.14)

Yakhot & Donzis forced the domain with white-in-time Gaussian force and showed that the veloc-

ity gradient statistics are Gaussian at the low-Rλ limit and transition to algebraic scaling beyond a

critical Rλ. The transition Rλ for each order moment was consistent with Eq. (1.14). By defini-

tion, the order dependent Reynolds will probe increasingly rare events with increase in order of the

moment. Each order will transition to algebraic scaling or the strong turbulence regime, when the

order dependent Reynolds number exceeds 9. In terms of the global-Rλ, this means higher order

moments will transition at a lower-Rλ than low-order moments will. This approach has distinct

advantages over K41 and other classical theories. The transition to turbulence occurs at a well

defined Reynolds number, which is low-enough to be realized in practice across a wide range of

turbulent flows. Further, the scaling exponents of different moments can be calculated by simply

matching the Gaussian state with that of algebraic scaling present in the strong turbulence regime

at the transition Reynolds number. This is explained in detail in Section 5. Yakhot & Donzis [33]

also show that the scaling exponents (ρ2n) derived using this approach and available in flows with

Rλ ∼ O(10) are predictive of the scaling exponents (ζp) of velocity increments in the inertial

range which only exists for Rλ > 200. This strong result shows that intermittency itself is not a

high-Reynolds number feature and that scaling within turbulent flows emerges much earlier than

the emergence of an inertial range. The general validity of this approach beyond Gaussian forcing
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is yet to be established. This is particularly important to establish the universality of scaling expo-

nents, both in dissipation and inertial range, which may depend on forcing statistics. The transition

proposed by Yakhot & Donzis has only been observed for longitudinal velocity gradients and does

not make predictions regarding more complex quantities such as transverse velocity gradients, en-

strophy etc. that are relevant to applications and have important consequences for mathematical

nature of Navier-Stokes equations [61].

1.2 Intermittency in compressible turbulence

Turbulence theory has largely been driven by exploration of the incompressible regime. How-

ever, a wide range of turbulent flows are compressible. For example, stellar formation is a result

of shock interactions with turbulent flows in the presence of magnetic and gravitational fields

[5, 62, 63, 64]. High-speed aerodynamics and inertial-confinement fusion plasma dynamics are

dominated by compressive motions in turbulent flows [65, 66, 4]. A large body of the literature

studies compressible turbulence in the context of corrections to incompressible turbulence theory

[67, 64]. The corrections are often made to different predictions of K41, which as discussed be-

fore, is not an adequate description of incompressible turbulence. Important features of K41 e.g.

dissipative anomaly, its relationship to cascade are not at all established in compressible turbu-

lence [68, 69]. Therefore, fundamental questions such as the existence of an inertial range and

description of intermittency are not well posed. The complexity of analyzing compressible flows

is further increased due to interactions between the velocity field and thermodynamic state. In

addition to intrinsic intermittency of turbulence, similar to the incompressible counterpart, com-

pressible flows are comprised of strong gradients due to small shock-like features, termed shocklets

[70, 62, 71, 72, 73, 74]. These interactions and their effects on intermittency (or scaling exponents)

have yet to be characterized and understood. Measurements of intermittent quantities are further

complicated by the increased difficulty of realizing highly compressive flows in simulation and ex-

periment in comparison to their incompressible counterparts [75], especially at high-Rλ. Yakhot’s

formalism however provides a novel pathway to study intermittency and emergence of scaling in

compressible turbulence at low to moderate-Re.
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1.3 Objectives of the present work

The general focus of this dissertation is to characterize and understand signatures of fully-

developed turbulence and their emergence as the Reynolds number increases. We will system-

atically assess the assumptions in K41 and contextualize the observed behavior with respect to

different theoretical formalisms describing turbulence dynamics. Particular emphasis will be on

the universality of small-scales and the scaling of intermittent quantities.

The specific objectives are to

• Build a massive database for incompressible and compressible turbulence simulations which

covers a wide range of energy injection mechanisms across a wide range of parameter space.

A combination of these mechanisms will allow us to establish universality across different

flows and address the effects of forcing on Navier-Stokes dynamics. The simulations pre-

sented in this work have the highest spatial and temporal resolution in literature.

• Analyze the dynamic relationship of energy transfer between scales and establish locality (or

lack thereof) of energy transfer in inertial, bottleneck and dissipation range. The behavior is

analyzed across a range of Reynolds numbers and its dependence on temporal variation in

the energy injection at large scales is addressed.

• Establish the behavior of dissipation range in the energy spectrum to enable discrimination

between theoretical formalisms based on global and local scale invariance of velocity fluc-

tuations.

• Generalize the Yakhot formalism for flows driven by non-gaussian forces and assess the uni-

versality of scaling across different forcing mechanisms and of different intermittent quan-

tities. In particular, establish the scaling of longitudinal and transverse velocity gradients,

and dissipation and enstrophy. This will help establish universality across different flows

which vary widely in large-scale turbulence production mechanism and other details such as

geometry etc.
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• Study the emergence of intermittency and scaling within compressible flows. Systematically

study the effect of varying levels of compressibility on intermittency and scaling of velocity

gradients. The vast majority of flows exhibit varying levels of compressibility. Therefore it is

important to study the effect of compressibility on turbulence signatures for incompressible

flows.

The remaining parts are organized as follows. In chapter 2, we briefly describe the numerical

methods for our direct numerical simulations and establish the resolution criteria for convergence.

In chapter 3, we begin our analysis of unsteady inter-scale interactions and their dynamics in spec-

tral space. In chapter 4, we analyze the averaged energy spectrum at small-scales, establish its form

in high-Rλ flows and when such a form first emerges. In chapter 5, we complement the spectral

perspective of small-scales with their dynamics in physical space. Particular focus again will be to

establish the scaling of intermittent quantities in high-Rλ turbulence, at what Rλ they emerge and

the universality of these results with different large-scale stirring mechanisms. In chapter 6, we

establish the scaling and universality of compressible flows. We separately analyze the solenoidal

and dilatational components. Statistics of solenoidal field are compared with incompressible turbu-

lence and those of dilatational field are compared with Burgers turbulence. Chapter 7 summarizes

the conclusions and explores future research directions.
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2. DIRECT NUMERICAL SIMULATIONS

In this dissertation, we employ direct numerical simulations (DNS) to study fluid turbulence.

DNS consists of solving the exact equation of motion, Eq. (1.3) and Eq. (1.6), across all scales

at each time instant. We use two separate codes to study incompressible and compressible turbu-

lence. The questions we seek to answer and mention in Section 1 require ensemble averaging in a

stationary turbulence. The ensemble statistics for relevant quantities are calculated using snapshots

of velocity saved at regular intervals that are sufficiently far apart (of the order of an eddy-turnover

time). This approximation is valid due to the ergodic nature of fluid turbulence. Since turbulent

flows are dissipative, a statistically stationary state is maintained by forcing at the largest scales.

2.1 Incompressible turbulence simulation: MPI2D

We use MPI2D [76] to simulate homogeneous isotropic incompressible turbulence in a triply

periodic domain with zero mean velocity. For this case, the incompressible Navier-Stokes, Eq. (1.6)

are solved numerically using Rogallo’s method [77]. The Navier-Stokes equation are transformed

to Fourier Space and have the form

∂û(k, t)

∂t
= −iklPim(k)

∫

k’

ûm(k’, t)ûl(k − k’, t)dk’ − νk2ûi(k, t) + f̂(k, t) (2.1)

kiûi(k, t) = 0 (2.2)

where ûi(k, t)is the velocity Fourier coefficient at time t for a wavenumber vector k, Pim(k) =

δim − kikm/k
2 (|k| = k) is the solenoidal projection tensor and f̂ is the Fourier coefficient of

an external force or forcing. The resulting set of coupled ordinary differential equations is then

integrated in time using an explicit second-order Runge-Kutta method. The Eq. (2.1) can be written

as

d ˆu(k, t)

dt
= ĝ(û(k, t)) (2.3)
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where ĝ is the acceleration given by Eq. (2.1). In order to advance from time tn to tn+1 a first-order

predictor approximation is computed as

û∗(k) = û(k, tn) + ∆tĝ(û(k, tn)) (2.4)

The approximation is improved using a corrector step as

û(k, tn+1) = û(k, tn) +
∆t

2
(ĝ(û(k, tn)) + ĝ(û∗(k))) (2.5)

The timestep ∆t is determined based on numerical stability requirements for explicit schemes and

expressed using Courant number (C). The Courant number is conservatively calculated based on

the maximum speed i.e.

C = ∆t max

{ |u1(x, t)|
∆x1

,
|u2(x, t)|
∆x2

,
|u3(x, t)|
∆x3

}
(2.6)

where the maximum is computed across the entire domain. Previous test had indicated that C <

1 guarantees stability and provides reasonable results. However, recent work has shown that a

much smaller value is needed for accurately capturing extreme events. Since we are interested in

measuring intermittency and high-order statistics, we have nominally usedC ≤ 0.3 in our database

[61]. This temporal resolution is accurately captures the maximum value of the most intermittent

quantities, when coupled with a high spatial resolution.

An important challenge for spectral codes is the calculation of convolution terms such as those

in Eq. (2.1). A fully spectral method for calculation such a convolution requires N6 operations

as each wavenumber requires an integration with respect to N3 wavenumbers. Such a cost is

computaitonally prohibitive even with the enormous computational power available today. This is

mitigated by calculating the non-linear terms in physical space and then transforming them back

to Fourier space [78, 79, 80]. This psuedo-spectral scheme reduces the computational cost but

introduces aliasing errors. The aliasing errors are controlled by a combination of truncation and
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phase shifting techniques based on Rogallos algorithm [77]. The highest wavenumber that can be

resolved in the scheme used in this code is kmax =
√
2N/3 where N is the number of grid points

in each direction. This wavenumber can be compared to turbulence scales by normalizing with

the smallest relevant scale, the kolmogorov length scale η where most dissipation occurs. Within

literature, a standard of kmaxη ≈ 1.5 is standard. In this dissertation, we have used a resolution at

least twice that and up to an order magnitude larger than this standard to capture scales far smaller

than η and accurately capture extreme fluctuations. Since we seek high-Rλ simulations with very

high resolutions, the code employs a massive parallel implementation using MPI in FORTRAN.

Details regarding the implementation can be found in [76].

2.1.1 Forcing mechanims

In order to maintain a statistically stationary state of turbulence at a given Rλ, we use a large

scale forcing mechanism. Since one of the objectives in this dissertation is to establish the univer-

sality of various results, we use a range of forcing mechanisms to compare statistics across them.

Different sections use a different combination of the below mentioned schemes

1. Gaussian: The velocity field is forced numerically at the large scales using a combination of

Ornstein-Uhlenbeck processes with Gaussian statistics and finite time correlation. The code

is able to force wavenumbers in a sphere i.e. k ≤ kf or within a band kf1 ≤ k ≤ kkf2. This

mechanism has been widely used in turbulence literature [81] to simulate high-Rλ isotropic

flows. It also allows us to force the field with Gaussian white noise when the correlation

time is set to zero.

2. Exponential: The velocity field is forced in a similar fashion as the Gaussian implemen-

tation. However, the random number generator is switched from Gaussian statistics to ex-

ponential statistics. This is achieved by generating a random number (ru) from a uniform

distribution between (0, 1) and using the transform re = log(1 − ru). The transformed

distribution with re is an exponential random distribution.

3. Deterministic: This scheme is based on Yeung & Donzis and maintains a constant energy
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within each wavenumber in the sphere k ≤ kf [82].

4. Linear: This scheme is also widely used in literature for simulation of high-Rλ turbulent

flows [83, 30, 84, 85, 86]. In this scheme f̂(k, t) = Aû(k, t) where A is a constant. Navier-

Stokes with a forcing term of this form is equivalent to a shear-flow with a constant mean

velocity gradient ofA. It has the desirable property that it sets the dissipation to a set constant

proportional to A and is computationally cheaper to implement as no new fields need to be

generated for the force term. This scheme can be implemented in a sphere k ≤ kf or a band

kf1 ≤ k ≤ kf2.

5. Linear Vorticity: In this scheme f̂(k, t) = Aω̂(k, t) where ω = ∇× u. Vorticity in general

is known to be more intermittent than the velocity field, so this scheme allows us to compare

the effects of large changes in forcing on Navier-Stokes dynamics. Its implemented in a

sphere or band, similar to linear velocity forcing.

2.1.2 Convergence and resolution effects

In this dissertation we study small scale statistics in great detail using very high resolution DNS.

Within literature a wide range of resolution criteria have been proposed and are used Our spatial

resolution is at least twice and up to 10 times better than those reported in the literature at a given

Rλ. We have therefore used computational capabilities to improve resolution instead of pushing

for higher-Rλ simulations, as is the norm. Recent work has also shown that the standard use of

Courant number between 0.6 and 1 is not adequate for accurately capturing extreme events [61]. A

more stringent criteria of C ≤ 0.3 is proposed for capturing extreme events in high-Rλ ∼ (≥ 400)

turbulence. Our simulations satisfy this stringent criteria, even though the Rλ under consideration

are smaller and the spatial resolutions are generally higher. In Fig. 2.1, we have plotted the time

averaged compensated energy spectrum ψ(k) = E(k)〈ǫ〉−2/3k5/3 for Rλ ≈ 50 at different spatial

and temporal resolutions as well as precision. We see that for the case ofN3 = 5123, the three cases

overlap up to kη ≈ 6, where the case of single precision departs due to contamination from round-

off errors. We have verified this by repeating the simulation in double precision which simply
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extends the spectrum to higher wavenumbers without being affected by round-off. Improving the

time resolution does not affect the spectrum either. Doubling the spatial resolutions extends the

spectrum up to kη ≈ 14, beyond which the round off errors dominate at this precision. Although
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Figure 2.1: Energy spectrum (a) and its log derivative (φ(k) = d log(E(k))/d log(k)) (b)for

Rλ ∼ 50.

it is clear from Fig. 2.1 that our resolutions are adequate for small-scales, it is important to verify

the convergence for higher-order quantities. We therefore plot the moments of transverse velocity

gradients (M⊥
2n = 〈(∂yux)2n〉/〈(∂yux)2〉)n at higher-orders for Rλ ≈ 90 in Fig. 2.2. Transverse

gradients are highly intermittent and are therefore highly sensitive to grid resolution, much more

than longitudinal velocity gradients [26, 61, 51, 87]. It is clear that resolutions of kmaxη & 3

are adequate for capturing moments up to 10th order. We will therefore use this as our minimum

resolution criteria.

The simulation details and parameters used for studying various features can be found in each

section.

2.2 Compressible turbulence simulation: cDNS

Compressible turbulence simulations are performed using cDNS [75] code. The fully com-

pressible Navier-Stokes equations, Eq. (1.3), are solved using 10th order compact schemes in space
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Figure 2.2: Moments of transverse velocity gradients at different grid resolutions.

and are veolved in time using a thrid order Runge-Kutta scheme. Details about the schemes and

their implementation can be found in [75, 88, 89]. A statistically stationary state is maintained

by forcing at the largest scales and uniformly removing internal energy to maintain constant mean

temperature. The code is able to force both the solenoidal and dilatational modes. To accom-

plish this, the Fourier modes of the forcing vector are projected along the wavenumber k (f̂||) and

perpendicular to it (f̂⊥). These Fourier coefficients follow independent OU processes with a fi-

nite time correlation and act only at low wavenumbers inside a shell of radius kf ≈ 3. In this

dissertation, the forcing is purely solenoidal.

Compressible turbulence is affected by the internal intermittency, similar to incompressible

turbulence, as well as shock-like flow structures [70, 74, 64], termed shocklets. These small scale

flow features can affect the flow statistics and alter different quantities differently. For example,

longitudinal gradients may be affected by a shock-like structure as flow moves perpendicular to

it while the transverse gradients will remain unaffected. Therefore, it is important to assess the

resolution criteria for both. Within literature, a resolution of η/∆x ranges from 0.5 to 1 depending

on numerical schemes used and the level of compressibility. We know from our experience with
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incompressible turbulence that the level of internal intermittency (simply due to mechanics) in-

creases with increase in Rλ. Within compressible flows, the intermittency due to shocklets grows

with increase in MT . Samtaney [70] showed that for moderate compressibility strength, the most

probable shocklet thickness is comparable to Kolmogorov length scale. Since we are interested
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Figure 2.3: Moments of a) longitudinal and b) transverse velocity gradients at Rλ ≈ 40 and

MT ≈ 0.7.

in velocity gradient moments of high-orders, we perform convergence tests at high Rλ and MT

(= urms/c, c is the speed of sound). In Fig. 2.3, we plot the moments of longitudinal (Fig. 2.3a)

and transverse (Fig. 2.3b). It is clear that the resolution criteria are different for longitudinal and

transverse. Longitudinal moments converge at a resolution of η/∆x ≈ 0.8 while as transverse gra-

dients converge at twice the resolution. This is in contrast with incompressible turbulence where

transverse gradients are known to be more intermittent than longitudinal gradients. We therefore

use a resolution of η/∆x ≈ 1.6. These resolutions are at least two times smaller than those used in

previous studies using compact differences and are comparable or better than the ones used along

with different numerical methods [88, 89, 68, 74, 73, 70]. The Courant number is kept constant at

0.3.
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3. FLUCTUATIONS IN ENERGY AND TRANSFER SPECTRA OF TURBULENCE †

3.1 Introduction

Classical phenomenology makes specific predictions for averaged energy and transfer spectra

in isotropic turbulence. Although these averaged quantities have been well studied [90, 21, 28,

91, 92, 93, 30, 44, 94] and approximately scale as predicted by [19] scaling, the instantaneous

spectra show significant deviation from the averaged ones. The average transfer in particular is

assumed to be unidirectional from large to small scales, or in Fourier space, from low to high

wavenumbers [95, 23]. The numerous studies addressing non-local interactions in the literature,

[34, 35, 36, 37, 38, 96, 39, 40]. have focused mostly on instantaneous or time-averaged snapshots

of the flow field at a particular Reynolds number (typically low). In addition, they have largely

studied the behavior of so-called individual triads (T (k|p, q), transfers to scale k from non-linear

interactions with scales p and q) in order to characterize interactions between similar and disparate

scales. A general conclusion that has emerged is that the interactions can be highly non-local but

the integrated effect yields a local energy transfer between similarly sized scales [97, 34, 38, 98,

36, 99].

While very useful, all the studies above provide necessarily information at discrete instants of

times. This precludes, for example, the study of some of the dynamical aspects of the energy trans-

fer. One can, instead, study the time behavior of spectral components and quantify its statistical

behavior through single-time statistics, or two-time statistics to assess correlation between modes.

For example, one can study, how high wavenumbers react given a change in a low wavenumber

mode. Concepts of cascades can also be investigated. A local cascade, for example, would cor-

respond to strong correlations of neighboring wavenumbers but at a certain time lag, while strong

† Figures, tables and portions of text in this chapter reproduced with permission from S. Khurshid, S., D.A.

Donzis, & K.R. Sreenivasan (2021). Slow spectral transfer and energy cascades in isotropic turbulence. Journal of

Fluid Mechanics, 908. Copyright 2021 by Khurshid, Donzis & Sreenivasan
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instantaneous correlations between distant wavenumbers could be indicative of short-circuits. A

lack of correlation between fluctuations in energy would provide a quantitative measure to assess

the independence of scales. Furthermore, this can also be utilized to assess the effect of low-

wavenumber forcing at different scales, which would allow one to determine how deep into the

inertial or even dissipative scales, specific details of the forcing are imprinted, a question that is

intrinsically related to classical justifications behind universal behavior. Thus, understanding the

time behavior of fluctuations is of obvious fundamental importance in the physics of energy trans-

fers in turbulence and is the main thrust of the present work. In particular, we are interested in

the nature of fluctuations in the three-dimensional energy spectrum and the spectral transfer func-

tion as a function of both scale and Reynolds number. The temporal behavior of these spectral

functions, thus provide a complementary view of the detailed work based on triadic interactions

referenced above.

In this study we use data from direct numerical simulation (DNS) using a pseudo-spectral

method with very high spatial resolutions and Taylor Reynolds number ranging from Rλ ∼ 3 to

about 400. The resolution is at least kmaxη ≈ 3 (kmax =
√
2N/3 is the highest wavenumber

resolvable by the numerical scheme on a N3 grid, and η = (ν3/〈ǫ〉)1/4 is the Kolmogorov scale

with ν being the viscosity and 〈ǫ〉 the average rate of energy dissipation) which is higher than that

commonly used in the literature to reach the highest Rλ. The best resolved cases were conducted

at kmaxη ≈ 35. Time stepping is done using a second-order Runge-Kutta method with a time-step

size determined by a constant Courant-Friedrichs-Lewy (CFL) number. The highest CFL across

the database is kept near 0.3 to accurately resolve extreme events [61]. The flow is forced in Fourier

space at non-zero wavenumbers with |k| ≤ 2 where k is the wavenumber vector. To assess the

effect of large-scale stirring on all scales we include results from simulations using two different

forcing schemes, one stochastic the other deterministic. The former (called SF for short) is based

on [100] and have been used extensively in previous studies [101, 102, 94]. The latter (called DF

for short) is that introduced in [93] which keeps the energy in the lowest wavenumbers constant.

This scheme therefore leads to no time variability in forced modes. In order to ensure convergence

21



Stochastic Forcing (SF) Deterministic Forcing (DF)

Rλ N kmaxη Ts/TE Rλ N kmaxη Ts/TE
3 128 30.1 15 3 64 15.7 13

7 128 17.4 23 7 128 17.6 19

10 256 27.8 21 10 256 28.3 10

20 512 34.6 21 15 256 20.5 25

50 1024 24.4 34 47 1024 24.1 18

90 2048 21.1 15

140 1024 5.6 33

230 1024 2.8 25

390 2048 2.8 15

Table 3.1: DNS database: the Taylor microscale Reynolds number is defined as Rλ ≡ urmsλ/ν,

where urms = (3/2)〈u2(x, t)〉 (brackets and an over-line correspond to space and temporal aver-

ages, respectively), and the Taylor microscale λ is defined using this velocity scale along with its

time- and space-average gradient ; N3 is the grid resolution; Ts is the duration of the stationary

state normalized by the eddy-turnover time TE ≡ L/urms (L being the longitudinal integral length

scale).

of various statistics presented in this section, we have run very long stationary states with at least 10

eddy turnover times. Time averages start when all quantities of interest have reached a stationary

state. From careful convergence studies, we found that this is conservatively achieved after eight

eddy turnover times from the initial conditions. Simulation details are summarized in Table 3.1.

3.2 Temporal fluctuations of spectral variables

The three-dimensional energy spectrum evolves according to:

∂E(k)

∂t
= T (k)− 2νk2E(k) + F (k) (3.1)

where the intercomponent and interscale energy transfer is represented by the transfer spectrum:

T (k) =
1

2
ℑ
{
[Pilm(k)û

∗
i (k) + Pilm(k)û

∗
i (k)]

∫
ûl(p)ûm(k − p)dp

}
(3.2)
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Figure 3.1: Time series of fluctuations in energy and energy transfer in the stationary state; (a-d)

Rλ ≈ 390. (a) Temporal change of the energy transfer at wavenumbers in the IR marked in the

legend. The time average of the energy transfer has been subtracted, so the quantity presented is

the deviation (or the fluctuation) from the average value, divided by the average. Note that the

fluctuations are an order of magnitude larger than the average for the transfer. (b) Time series of

energy at those same wavenumbers; the fluctuation is of the order of the average. The oscillatory

blue line in (c) is the energy transfer in BR, while the others approach NDR; (d) time series for the

energy. Figure (e) corresponds to Rλ ≈ 90 and the data are in FDR; (f) highlights the behaviour

close to the mean in (e). See text for more details.
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and f(k) represents the forcing applied to the lowest wavenumbers (|k| ≤ 2) as previously de-

scribed.

It is now convenient to decomposeE(k, t) and T (k, t) into a long-time average and fluctuations

around it (denoted with a prime). For brevity, we will remove the time argument to denote a time

average when no ambiguity is present. Then, we have

E(k, t) = E(k) + E ′(k, t), T (k, t) = T (k) + T ′(k, t) (3.3)

where E(k) = E(k, t) = (1/Ts)
∫ Ts

0
E(k, t)dt and Ts is the length of the simulation which is also

included in Table 3.1. A similar expression can be written for T (k). Since Eq. (3.1) is linear in

E(k, t) and T (k, t), and clearly E ′(k, t) = T ′(k, t) = 0, one can use Eq. (3.3) in Eq. (3.1) and

average to obtain

0 = T (k)− 2νk2E(k) + F (k) . (3.4)

At low wavenumbers the transfer and forcing terms (first and third term on the right-hand-side

of Eq. (3.4)) are expected to be important. For higher wavenumbers, we have F (k) = 0 since

there is no forcing applied at modes with wavenumbers satisfying k > kf . In the inertial range,

viscous effects are usually assumed to be negligible and transfer happens without any loss, and

thus T (k) = 0. The fluctuating components can be easily obtained from Eq. (3.1) with the help of

Eq. (3.4). The result is

∂E ′(k, t)

∂t
= T ′(k, t)− 2νk2E ′(k, t) + F ′(k, t). (3.5)

which shows that fluctuations in the forcing input would lead fluctuations in energy and thus trans-

fer. Note also that while Eq. (3.5) clearly shows that a change in T ′(k, t) will lead (with some

delay due to the integral relation between T ′(k, t) and E ′(k, t)) to a change in E ′(k, t), the for-

mer depends non-linearly on the latter. It is, thus, difficult to understand, a priori, the relation

between these fluctuations, the forcing, or even single-time statistics of each term in Eq. (3.5). In
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the following two sections, we shed light on these issues.

For convenience (as will be made more clear below), it is convenient to divide the wavenumber

space as in [94], that is, the inertial range (IR, kη . 0.3), near dissipation range (NDR, 0.3 .

kη . 3) and far dissipation range (FDR, kη & 3). Typical timeseries of fluctuations in energy and

transfer in these ranges are shown in Fig. 3.1. Varying degrees of unsteadiness at all scales are

clearly seen from which a few observations can be made. Typical time series in energy (E ′(k, t) ≡

E(k, t)−E(k)) and energy transfer (T ′(k, t) ≡ T (k, t)−T (k)) are shown in Fig. 3.1, normalized

by their respective averages. T ′ is an order magnitude larger than the average, leading us to the

first observation that the statistical mechanics of energy transfer is not unidirectional with minor

fluctuations in time, but that of a system that fluctuates wildly around a much smaller time average.

The energy itself varies considerably more mildly in IR and BR (an order of magnitude smaller

than the average); we will attempt to explain it towards the end of sec. 4. As one approaches

NDR, fluctuations in energy transfer are highly correlated at all wavenumbers (Fig. 3.1c). Energy

fluctuations in NDR (Fig. 3.1(d)) are small and slow.

Finally, in FDR (Fig. 3.1(e-f)), we see highly intermittent variations in T ′, much stronger (rel-

ative to their averages) than those at lower wavenumbers, as also reported by [94]. The variations

are similar in E ′. Since the energy content in the dissipation range decays rapidly with increasing

k, the energy and local transfer are very small and the signal is dominated by large intermittent

fluctuations observed in Fig. 3.1(e,f). This behavior was characterized in [94].

3.3 Single-time statistics

We now show in Fig. 3.2 the standard-deviation (σ(X) ≡
√
X ′(k, t)2 with X = E or T ) in

different wavenumber regions. In IR, the fluctuations in E (Fig. 3.2(a)) are substantially smaller

than those in T (Fig. 3.2(b)). All fluctuations become weaker as k increases, reaching a minimum

at kη ∼ 0.13 for E, and, much more unambiguously, at kη ∼ 0.3 for T , corresponding to the

respective bottleneck peaks in their spectra [41, 42, 44, 45, 85]. Fluctuations in T within IR decay

approximately as k−5/3 for Rλ & 90. We observe similar features for a given Rλ in the case of DF

forcing, as shown in Fig. 3.2c,d. We note that the fluctuations in energy within the forcing sphere
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for the case of DF forcing is exactly zero. In Fig. 3.2c,d we still observe fluctuations comparable

to the case of SF for wavenumebr outside the forcing sphere. The minimum in the variance of E

in BR is consistent with [85], who used a different forcing mechanism from those used here; this

suggests that this minimum occurs independent of forcing.

The fluctuations in E were recently studied in the context of non-equilibrium corrections to

the spectra by [103], who proposed that the ratio of non-equilibrium and equilibrium parts of the

energy spectra scales as k−2/3 in IR. This scaling was also proposed by [104]. Using slightly differ-

ent arguments [105] showed that this scaling is consistent with the transfer fluctuations decaying

as k−5/3 in IR. This scaling of transfer fluctuations is consistent with the DNS data in Fig. 3.2b.

Energy fluctuations, on the other hand, show a weaker decay (approximately k−1/3) than predicted

by the work referenced above. This apparent discrepancy will be discussed later in this section.

For wavenumbers beyond BR, the relative fluctuations grow almost exponentially with the

wavenumber in both the energy and transfer spectra. The presence of large and similar-level

fluctuations in T to either side of BR is consistent with our understanding of BR [41, 44]. It

is also consistent with conclusions from [106] and [107] where the presence of significant non-

local interactions between large and dissipative scales was observed; it is similarly consistent with

[34, 35, 38] where it was shown that non-local interactions in T exhibited strong cancellations

when averaged over all pertinent triads, weakening their overall effect in the IR.

We do not observe any statistically significant trends with respect to Rλ for fluctuations in the

dissipation range but a slight weakening occurs in IR.

A direct application of K41 ideas regarding the independence of small scales on the effect of

large scales would suggest that fluctuations at high wavenumbers must become independent of

those at low wavenumbers. Obviously, this is expected to be increasingly so as smaller and smaller

scales are considered. However, recent work [94] suggests very strong fluctuations in the FDR

which are in fact much stronger than those in the NDR. In addition, since classical phenomenology

is, in principle, applicable only in the high-Reynolds number limit, it is also important to address

trends with Rλ.
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In Fig. 3.2, we show the normalized standard deviation of energy and transfer fluctuations

for SF(a,b) and DF(c,d) forcings. It is clearly seen that in the IR, the fluctuations in energy

(Fig. 3.2(a,c)) are significantly smaller than fluctuations in transfer (Fig. 3.2(b,d)). In fact, the

latter are an order magnitude larger than the mean in the IR. These fluctuations become weaker

as kη increases reaching a minimum at kη ∼ 0.1 for the energy spectrum, and at kη ∼ 0.3 for

the transfer spectrum. These wavenumbers correspond approximately to the bottleneck peak in the

time-averaged compensated spectra of energy and tranfer respectively [44, 42, 45, 41, 85]. The

fluctuations in the transfer spectrum within the inertial range decay approximately as k−5/3 for

Rλ & 90. The minimum in the variance of E(k, t) around the bottleneck location is also consistent

with [85] which used a forcing mechanism different from the ones presented here and appears,

thus, as a feature independent of the particulars of forcing.

For wavenumbers beyond the bottleneck peak, fluctuations grow almost exponentially with

wavenumber for both energy and transfer spectra. The growth rate is different for near and far dis-

sipation ranges. The presence of large fluctuations in the dissipation range beyond the bottleneck of

similar order of magnitude as those in the IR for T ′(k, t) with a dip at intermediate wavenumbers,

may indicate some level of interaction between the two ranges. This is consistent with conclu-

sions from [106] and [107] where the presence of significant non-local interactions between the

largest scales and dissipative scales was observed. The results are also consistent with [34, 35, 38]

where they show that the strong non-local interactions observed in transfer spectra tend to exhibit

strong cancellations when avereged over all pertinent triads, weakening their overall effect in the

IR. Interestingly, they have also observed that the cancellations may be weaker for near dissipation

range which again seem to support the large fluctuations observed as one moves deeper into the

dissipative range.

We do not observe any statistically significant trends with respect to Rλ for fluctuations in the

dissipation range. However a slight weakening of fluctuations with increase in Rλ is observed in

the inertial range. Outside of the forcing sphere, we see that fluctuations in energy and transfer

spectra are similar at similar Rλ and independent of forcing mechanisms. This is significant as the
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Figure 3.2: Normalized standard deviations σE/E(k) (left) and σT/T (k) (right). Figs. (a,b) corre-

spond to SF forcing and (c,d) correspond to DF forcing. The vertical lines correspond to bottleneck

peak in energy (blue dotted), and transfer spectrum (red dashed-dotted). The far dissipation range

is defined as kη & 3 (black dashed line).
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unsteadiness in the forcing sphere for DF was to found to be significantly smaller than SF [93].

This strongly suggests that the temporal fluctuations, while triggered by the forcing mechanism,

are dominated by Navier-Stokes dynamics rather than the forcing term. Therefore any non-local in-

teractions, if present, may still lead to universality with respect to different forcings (or potentially

flow complexity) at different scales as Navier-Stokes dynamics dominate the forcing effects.

It is clear from Fig. 3.1 that slow fluctuations across scales (e.g. energy in inertial and dissipa-

tion range) share correlations with each other. Such correlation is not apparent for fast fluctuations.

Furthermore, the slow temporal variations in energy and transfer spectra, also exhibit a degree of

correlation with the temporal evolution of the spatially averaged dissipation 〈ǫ(t)〉. It is therefore

convenient to separate the slow and fast frequencies within these signals and study in which way

slow frequencies are in fact correlated with each other, even for transfer in inertial range, which

shows large fluctuations at high frequencies We therefore separate both energy and transfer fluctu-

ations at a cut-off frequency ωc as follows

E ′(k, t)

E(k)
= E<(t) + E>(t),

T ′(k, t)

T (k)
= T<(t) + T>(t) (3.6)

where E<(t) corresponds to component of singal with ω < ωc and E>(t) corresponds to com-

ponents with ω > ωc. Transfer signals follow the same convention. We choose ωc such that the

we recover the slow large scale behavior observed in mean dissipation which appears to share this

slow frequency. ωc is chosen such that the correaltion between fluctuations in mean dissipation

and its filtered counterpart (〈ǫ<(t)〉) is more than 99%. In Fig. 3.3a we plot the low-pass filtered

fluctuations in transfer for Rλ ∼ 389 with SFforcing. A comparison with Fig. 3.1 reveals that the

slow fluctuations are an order magnitude smaller in the inertial range while the dissipation range

is largely unaffected. This is clearly shown in Fig. 3.3b, where the standard deviation of the full

signal (dashed lines) is much larger than the one observed for the the low-frequency part (dashed)

in inertial range. No significant changes are observed in the energy fluctuations strength after fil-

tering as they do not have a significant high frequency content in the inertial and near dissipation
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Figure 3.3: (a) Time series of slow component of transfer signals for Rλ ≈ 390. The amplitude

of the slow component is much smaller than those observed for the full signal in Fig. 3.1. (b)

Normalized standard deviation of slow components (solid line) compared with full transfer signal

(dashed line). Slow fluctuations in the inertial range are weaker in comparison to the full signal,

while the two are comparable in the dissipation range. (c) The standard deviation of fast fluctua-

tions of energy normalized by the mean energy in the respective wavenumbers. The dashed line

corresponds to k−2/3. Vertical lines are the same as in Fig. 3.2.

range. This is clearly observed in Fig. 3.1b.

A more complete description of the statistical behavior of E ′(k, t) and T ′(k, t) is contained

in higher order statistics. We therefore compute the skewness of fluctuations in both energy and

transfer spectra (SE = E ′3/σ
3/2
E and ST = T ′3/σ

3/2
T , respectively, shown in Fig. 3.4. The skew-

ness is close to zero i.e. fluctuations, both in energy and transfer, are symmetric about the mean for

wavenumbers in the inertial and near dissipation range. The skewness and therefore asymmetry of

the fluctuations increases rapidly in the far dissipation range. A large positive skewness for both T ′

and E ′ in the far dissipation range suggests that it is largely sustained by very large (relative) trans-

fers of energy from elsewhere. Such large transfers can only be the result of non-local interactions

with energetic wavenumbers.

A large positive skewness for both transfer and energy fluctuations in far dissipation range

suggests that these scales are largely sustained by very large transfers of energy to these scales. As

these scales have small energy content, the large transfers are then a result of non-local interactions

with low-wavenumbers. The skewness (for energy and transfer fluctuations) in the near dissipation

range is comparable to that of inertial range.
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Figure 3.4: Skewness of energy (SE) and transfer (ST ) fluctuations as a function of kη for different

Rλ with SF (a-b) and DF (c-d) forcing.
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As the behavior discussed in this section is independent of forcing, we will discuss results from

SFforcing in the remaining section in order to avoid repetition. We have however verified that all

results presented show the same behavior for both forcings.

3.4 Time-delay statistics

We study the relationships between fluctuations in two wavenumber ranges using a time delay

between them. The time-delay correlations for energy will be denoted by ρ(E ′(k1, t), E
′(k2, t +

τ)) and those for transfer fluctuations by ρ(T ′(k1, t), T
′(k2, t + τ)). Obviously, if a peak in the

correlation (ρ(X(t)′, Y (t + τ)′)) occurs at some τ < 0, it implies that the changes in X(t) are

correlated with changes in Y (t) after that time lag τ . Each of the quantities is normalized by its

standard deviation so that the correlation coefficient ρ ranges between -1 and 1.

Contours of the correlation coefficient for energy and transfer fluctuations between a selected

wavenumber (k1η ≈ 0.02) in the inertial range and another wavenumber (k2) with varying time

lags (τ) are shown in Fig. 3.5(a-d), for the highest Rλ. Consistent with observations in Fig. 3.1,

fluctuations in energy of k1 for the full signal are well correlated with those at all wavenumbers in

Fig. 3.5(a), and are so with no discernible time lag; this strong correlation is present even in BR

and NDR. This feature suggests that the energy across wavenumbers is synchronized. We do not

observe in Fig. 3.5(a) any significant improvement in correlations with increasing time lag in IR.

One possible explanation for the observed synchronicity is the following. The fluctuations of

the kinetic energy around their mean value are related to higher order spectra, associated with

4-th order correlations, etc. Such quantities have been investigated multiple times in the past

[108, 109, 110]. The relevant observation for us is that, Euu(k), the spectrum of fluctuations of the

kinetic energy around their mean value also scales as Euu(k) ∼ u2rmsE(k). This corresponds to a

sweeping-dominated scaling [111]. Such sweeping implies that the typical temporal behavior of

the spectrum will follow the fluctuations of the velocity, a point we will explore in the last section.

This result is contrary to the expectation based on the traditional cascade scenario in which

the best correlation would occur with a finite time lag that increases with the wavenumber. On the

other hand, the contours shown in Fig. 3.5(c) suggest that slower wavenumbers are better correlated
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Figure 3.5: Contours of correlations at different time lags τ forE and T at a typical low wavenum-

ber (k1η ≈ 0.02) with fluctuations at other wavenumbers k2 for Rλ ∼ 390. Correlations for the

full signals are shown in top panels and those for their slow components in the bottom panels. The

horizontal lines are same as vertical lines in Fig. 3.2, the vertical solid line marks zero lag. The

contour levels range from -0.6 to 1 with a constant difference of 0.04.
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with increasing time separation, τ . The maximum correlation is indicated using white dots. Slow

fluctuations in E at one value of k in IR are best correlated with slow fluctuations in another value

of k in E when the lag time τ increases; this suggests, for slow fluctuations, a picture that is

consistent with the Kolmogorov-Richardson cascade with finite speed.

This synchronous feature is even stronger for energy transfer, shown in Fig. 3.5(b,d), with

an interesting behaviour of the peak correlation as one moves to smaller scales. In IR, the peak

correlation of transfer fluctuations with those at large scales is significantly enhanced compared

to the full signal. Further, the peak correlation is observed at later times for higher k2. In BR,

the peak correlation is weaker but the increase in lag is more dramatic than in the inertial range,

up to k2η ≈ 0.3 beyond which the peak occurs at a constant lag time of about 1.5 eddy-turnover

time. This suggests that the slow modes adhere most to a cascade scenario in the IR followed

by a seemingly synchronized response of the dissipative ranges. One may speculate that fast

fluctuations may well be the result of incomplete cancellation of averages over individual triads

in wavenumber shells and correspond to instantaneous transfer. This may be important in models

that attempt to capture temporal dynamics assuming only a local scale by scale transfer. In the near

dissipation range, the peak correlation is independent of the scale.

To address the Rλ trend of the features observed above, we plot the maximum correlation

(ρmax) for the full signals and the slow frequency components of T in Fig. 3.6(a,b) for three Rλ

and a fixed k1η. The left panel contains correlations from full signals and the right from slow

fluctuations only. We show the correlations between fluctuations at all k2 ≥ k1 for two different

k1, one in IR (dashed lines) and another in BR (solid lines). In these figures, a high correlation

between disparate wavenumbers does not necessarily mean a non-local interaction as the peak

correlation may occur with a lag.

It is immediately evident that stronger correlations occur at higher Rλ for a given pair of k1

and k2, but the figures reveal other features worth discussing. For the full signal, Fig. 3.6(a) shows

that the fluctuations in T at all k2 are largely uncorrelated with fluctuations when k1 is in IR. In

fact, the correlation drops steeply from a ρmax of 1 when k1 6= k2. For k1 in the bottleneck region,
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Figure 3.6: These figures show the maximum correlation coefficient (ρmax) between (a) full and

(b) slow modes of energy transfer functions. Dashed lines correspond to k1η ≈ 0.06 and solid lines

for k1η ≈ 0.2. (c) Time lag corresponding to ρmax in panel (b). (d) ρmax for k1η ≈ 2. Vertical

lines same as Fig. 3.2.
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stronger correlations are observed at all k2. For k2η > 0.3, the peak correlation is independent

of the wavenumber. Together with earlier observations, the fact that the peak correlation time in

this range is also independent of k2 shows that fluctuations in these scales are synchronized across

wavenumbers.

The corresponding correlations for slow transfer fluctuations are shown in Fig. 3.6(b). These

correspond to white dots in Fig. 3.5 and they confirm theRλ trend seen in Fig. 3.6(a). A comparison

of figures 5(a) and 5(b) shows that slow fluctuations are correlated much more strongly than the

full signals. The effect of fast fluctuations is thus to reduce the correlation between signals. This

reduction effect is stronger at lower Rλ.

For k1 in IR, the reduction in correlation with k2 (k2 6= k1) is weaker for the slow part than for

the full signal. The correlation decays up to k2η ≈ 0.3, beyond which it remains constant. The

constant value is significantly larger than that for the full signal correlations. This feature again

highlights that correlations between slow fluctuations are stronger for slow signals, particularly in

the transfer. Wavenumbers in BR are almost perfectly correlated in slow modes.

A similar analysis for fluctuations in E confirms that fluctuations are highly correlated across

all wavenumbers with no significant Rλ trends. We have therefore not shown those data here.

Returning to Fig. 3.5, especially panel (d) for slow fluctuations, we saw that changes in E and

T at large scales are highly correlated with changes at smaller scales, up to NDR, with a time lag.

This time lag increases with the distance between the scales being considered. As noted earlier,

this is qualitatively consistent with classical cascade concepts. Note that the slope of the white

markers in Fig. 3.5(c),(d) can be interpreted as the “speed" of the transfer across scales. This

information can be used to further our comparison to the classical cascade more quantitatively.

The time scale associated with a scale 1/k can be estimated by knowing that its energy content

is E(k)k. Dimensional analysis would then yield Tc ∝ 1/
√
E(k)k3 where Tc is the local time

scale associated with 1/k. In classical phenomenology, this is also the time associated with the

transfer of energy to neighboring smaller scales. In the inertial range, if E(k) = Ck〈ǫ〉2/3k−5/3,

we obtain Tc ≈ C
−1/2
k 〈ǫ〉−1/3k−2/3 where Ck ≈ 1.6 − 1.7 [21, 44]. Finally, the total time taken
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by a perturbation in k1 to reach k2 would be the sum of all time intervals to cross the wavenumber

interval. If wavenumbers are binned in octaves, for example, the total time is a sum of Tc across

different bins [112, 113]. If one considers a continuum spectrum instead, one obtains

τk1→k2 =

∫ k2

k1

|dTc/dk|dk = C
−1/2
k 〈ǫ〉−1/3k

−2/3
1

(
1− (k1/k2)

2/3
)

(3.7)

This can be normalized by the local cascade time scale Tc(k1) ≈ C1TE where C1 is a proportion-

ality constant of order unity relating TE and Tc when k1 is near the large scales. Then

τk1→k2

TE
= C1

(
1− (k1/k2)

2/3
)

(3.8)

This expression (also derived by [114]) is compared against τmax in Fig. 3.6(c), where the transfer

fluctuations peak at later times with increase in k2 within IR. The measured lag times agree rea-

sonably well with the expression Eq. (3.8) for C1 = 1.7, shown as a dashed black line. Such a

behavior is in contrast to the full signal for which there is no readily identifiable time lag, as dis-

cussed earlier. This observation further supports the conclusion that the classical cascade occurs

only for the slow signals. As noted earlier, for k2η > 0.3—that is, beyond BR—in the energy

transfer spectrum, we have a different behavior in which the peak correlation is independent of

wavenumber. These results are consistent with the results reported in [115] and [116] where the

authors studied the correlation between the subgrid-scale stress tensor for velocity fields filtered at

different spatial subgrid scales.

The peak correlations for FDR with a wavenumber in NDR, shown in Fig. 3.6(d), lose the cor-

relation rapidly in both energy and transfer fluctuations. The concept of cascade is not expected to

be valid here as the scales are dominated by dissipation. These scales also show large fluctuations

that oscillate rapidly. In addition, they are fully correlated with each other as confirmed in Fig. 3.1

by the constant correlation in Fig. 3.5 and Fig. 3.6d forRλ > 10 and k2η ≥ 6. We note that the loss

of correlation with increase in k2 for all wavenumbers is only observed for Rλ < 10. This again

emphasizes that the loss of correlation may be a low-Rλ feature. At higher Rλ, the correlation
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Figure 3.7: Contours of correlation at different time lags for slow modes of transfer and energy at

the same scale (k1 = k2 = k) for Rλ ≈ 390. Horizontal lines are the same as the vertical lines in

Fig. 3.2. Solid black line is zero lag.

becomes approximately independent of k2 in FDR.

Finally, we comment on the relation between transfer and energy fluctuations at the same

wavenumber. Because of the differential relation between E and T (Eq. (3.1)), temporal changes

in T (k, t) will lead to temporal changes in E(k, t) only after some delay. As a complement to the

analysis above, one can look at the peak correlation between T (k1, t) and E(k1, t+ τ), now at the

same wavenumber k1 = k2 = k. When k is the dissipative region, Fig. 3.7 shows that the peak

occurs with zero delay but the delay increases in magnitude across IR (marked by white dots). In

other words, when the slow component of energy is transferred to a wavenumber in IR, it takes

longer and longer for that change to be observed in the energy at that same wavenumber. Over that

period other energy exchanges to/from that wavenumber can take place, which may explain why

signatures of a classical cascade are much clearer for T than for E. These to-and-fro exchanges

may also explain why the oscillations around the average value are significantly damped out in the

energy signals. Needless to say, no such behavior is observed in IR for the full signal.
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3.5 Discussion and conclusions

When we force a flow at low wave numbers, whether steadily or randomly, the resulting turbu-

lent fluctuations develop significant temporal fluctuations. It is important to understand how these

fluctuations are transmitted across the wavenumber space. Here, we studied single-time and time-

delay statistics of energy and energy transfer spectra using well-resolved isotropic DNS for a range

of Reynolds numbers, with two different forcing mechanisms (although results were presented for

only the SF forcing). We found that the fluctuations in energy transfer in the inertial range and the

far-dissipation range are much larger than their time average. In the inertial range, the amplitude of

the fluctuations at a given wavenumber decreases with increasingRλ while in FDR the fluctuations

are in the form of (skewed) large intermittent bursts.

One main lesson is that the local cascade scenario is observed only for slow modes of energy

transfer. Large-amplitude fast time variations are present across the inertial range and tend to

mask the inter-scale correlations observed for slow fluctuations. Rapid fluctuations cannot be

transmitted through the large and inertial ranges, since the reaction time of these scales is too long.

Indeed, there is some non-equilibrium basis for understanding the statistics of fast fluctuations in

the inertial range [103, 104].

The second main lesson is that the energy transfer in the inertial range for the full signal is

more like a slight imbalance between two opposing fluxes, oscillating up and down in time at any

given k. We speculate that the fast modes, which are instantaneously felt across all wavenumbers,

are signatures of significant non-local interactions in energy transfer at a given scale in the inertial

range. The effect of the rapidly oscillating part is similar to decreasing Rλ, where a clear sepa-

ration between largest and smallest scales is absent. Fluctuations in the far-dissipation range are

uncorrelated with the inertial range and become increasingly so at high Rλ. For Rλ > 10, we

found that the fluctuations at all wavenumbers in the far-dissipation range synchronize with each

other (still uncorrelated from large scales). Similar synchronization was observed for fluctuations

in both energy and energy transfer at wavenumbers kη > 0.3 which include bottleneck region and

the near dissipation range.
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4. ENERGY SPECTRUM IN THE DISSIPATION RANGE†

In the previous section we established that a cascade type scenario is only valid for slow

fluctuations. An important consequence of the local cascade in turbulence phenomenology is the

complete self-similarity (independent of Rλ) of dissipation scales in energy spectra. We however

observed that the total transfer across scales is dominated by non-local interactions which are

transmitted across all the wavenumbers instantaneously. The far dissipation range was dominated

by large fluctuations in energy which indicate non-local energy transfers from scales much larger

in size. We now asses the behavior of energy spectrum in turbulent flows, for which different forms

are predicted based on local and non-local energy transfer mechanisms.

4.1 Introduction

The energy spectrum of turbulent fluctuations has been the subject of considerable attention

since Kolmogorov’s seminal work (K41) [19] on the structure of homogeneous, isotropic turbu-

lence. A large body of literature has been devoted to understand, characterize and predict the actual

form of the spectrum, distinguish between universal and non-universal aspects, and use the infor-

mation to understand energy distributions, energy transfers, locality, among others (see [30] for an

exhaustive list). K41 predicted, at asymptotically large Reynolds numbers (Rλ), a universal three-

dimensional energy spectrum, determined solely by the mean dissipation rate (〈ǫ〉) and viscosity

(ν):

E(k) = Ck〈ǫ〉2/3k−5/3F (kη) (4.1)

where k is the wavenumber and η = (ν3/ǫ)1/4 is the Kolmogorov length scale. In the so-called

inertial range (1/L ≪ k ≪ 1/η, where L is the integral length scale) the dynamics become inde-

pendent of dissipative mechanisms and thus of ν and F (kη) → 1. This form has been the subject

of sustained numerical and experimental investigations since. Significant departures from Eq. (4.1)

†Figures, tables and portions of text in this chapter reproduced with permission from S. Khurshid, D.A. Donzis &

K.R. Sreenivasan. "Energy spectrum in the dissipation range." Physical Review Fluids 3.8 (2018): 082601. Copyright

2018 American Physical Society
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have been observed [85, 117, 45, 1] and a general conclusion is that the spectrum exhibits a Rλ

dependent behavior in inertial range and the bottleneck region. The form of F (kη) has now been

well established, both numerically and experimentally, for the so-called inertial range but remains a

topic of investigation for far dissipation range (kη ≫ 1). Most experiments are limited to a range of

kη ≤ 1. Smaller scales are prohibitively difficult to measure due to interference from experimental

noise which is of a similar scale in terms of energy content, especially at large Rλ. Well resolved

direct numerical simulations (DNS), augmented by massive increase in computational power over

the last two decades, have allowed the investigation of these small scales at increasingly large Rλ

[30, 1, 85]. The increase in Rλ in DNS, however, is in direct competition with increased resolution

for a given amount of computational time. Highly resolved simulations, for kη ≫ 1, are therefore

limited to small Rλ ∼ O(102) [118, 119].

The nature of dissipation range of the energy spectrum is of particular interest in theory of tur-

bulence as well as engineering problems that exploit small scale dynamics. K41 assumes this range

to be universal as mentioned before. The observed collapse of the normalized energy spectrum

(E(kη) ≡ E(k)/(u2ηη)) in the dissipative range using Kolmogorov variables, has been reported in

multiple experiments and numerical simulations [2, 120, 1] providing evidence for universality of

scales within this range. The dissipative range has also received considerable theoretical attention.

Several researchers have proposed analytical forms for this range with the widely accepted general

form being

E(kη) ∼ (kη)αe−β(kη)γ (4.2)

though the numerical values of the coefficients are still inconsistent throughout the literature. The

power law in Eq. (4.2) has been derived in some cases [121, 122] and justified in others to agree

with empirical evidence [123]. Kraichnan [121], under the assumptions of his direct approximation

interaction (DIA), argued that the spectrum must have a faster-than-algebraic roll and derived an

exponential form for the spectrum with γ = 1 and α = 2. Foias et al. [124] also derived an

exponential roll-off using Stokes eigenfunctions but without the preceding power law. Sirovich et

al. [122] derived a form for the dissipation range using the third order structure function which
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depends on skewness of velocity gradients, assumed to be independent of Rλ [25]. Their function

has two modified Bessel functions which, in the high-k range, can be expanded into an exponential

preceded by the sum of two power laws. She and Jackson [123] proposed a similar empirical

form. Several values have also been proposed for α, β, and γ experimentally. Smith and Reynolds

[125] used the constraint ǫ = 2ν
∫∞

0
k2E(k)dk and Eq. (4.2) to show that γ = 2 provides a better

agreement with skewness of velocity gradients. Manley [126] changed the upper limit on that

integral to 1/η to show that γ = 1 is a better fit. A survey of other values for γ including 4/3

and 2 is given in [124]. Sreenivasan [127] suggested that different exponentials fit different ranges

of the near dissipation region. Numerical simulations have supplemented these investigations by

providing well resolved near and far dissipation ranges. A major assumption in these studies

(described below) is that γ = 1 which leaves only two coefficients to be fit. Under this assumption,

Chen et al. [128] found that α ∼ 3.3 and β ∼ 7.1 for Rλ ∼ 15 within the range 5 < kη < 10.

Martinez et al. [3] improved on their work by studying a range of Rλ. They locally fit the log-

derivative of Eq. (4.2), which has the form

d log(E(kη))

d log(kη)
= α− β γ (kη)γ (4.3)

with γ = 1. They used their highest resolved simulation to suggest that the observed values of

α and β point to two scaling ranges below and above kη ∼ 4. They further noted that a simple

exponential may not be an appropriate guess for the near dissipation range. Ishihara et al. [129]

fit the near dissipation region for Eq. (4.2), again with fixed γ = 1, but for Rλ higher than those of

[3]. Both show a Rλ dependence for α and β. Schumacher [119] performed a similar analysis as

[3] using higher resolution data and reported that no systematic trend can be observed for either α

or β with respect to the wavenumber. They did note, however, a saturation in the values of these

coefficients around Rλ ∼ 100.

The goal of this section is two fold. First, we investigate the degree of collapse for the energy

spectrum in the dissipation range using Kolmogorov variables and how this presumed universality
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Table 4.1: Summary of DNS runs. N is the number of grid points in each direction. ∆TE is

number of eddy turnover times in stationary state. The upper limit on far dissipation range is

determined by the smaller number between kmaxη and kη near round-off limit.

Rλ N kmaxη ∆TE NDR FDR

1 128 53.7 9.06 2.5-6 6-14

3 128 30.5 13.6 2-6 6-12.5

7 128 17.8 15.9 2-6 6-11

9 256 28.1 11.8 1.5-4.5 8-11.5

10 512 55.6 10.2 2-4 8-11.5

14 256 20.7 7.38 2-4 8-12

19 512 34.7 9.93 2-4 8-11

25 256 12.3 19.6 2-4 8-11.1

47 1024 24.8 19.2 2-4 8-12.5

55 1024 19.9 18.4 1.5-3 8-11.7

68 1024 14.9 19.3 1.5-3 8-12.9

89 2048 21.2 24.2 1.5-3 8-13.7

emerges with Rλ. Second, we investigate whether the proposed functional form Eq. (4.2) is indeed

appropriate for the dissipation range. The work here addresses and explains the inconsistencies

between the different results reported in the literature.

4.2 DNS details

We perform DNS with very fine resolution, as detailed in Table 4.1, for Rλ ranging from 1

to about 100. The code is pseudo-spectral and uses RK2 for time integration. The time step is

3 − 80 times smaller than the Kolmogorov timescale in the stationary state (CFL range: 0.1 −

0.7). The flow is forced in Fourier space with integrated Ornstein-Uhlenbeck processes [81] (EP)

with finite-time correlation at the largest scales within the sphere k < 2.01. Reynolds number

is changed by changing the viscosity. In all cases, the highest resolvable wavenumber kmax =
√
2N/3 (N being the number of grid point in each direction) is at least an order of magnitude larger

than Kolmogorov scale. The stationary state averaging is started at least 6 eddy turnover times

from initial conditions. We have tested for potential numerical artifacts caused by finite-arithmetic

precision or truncation (Section 2), aliasing errors and numerical differentiation schemes, and have

shown that these effects do not influence the results.
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4.3 Reynolds dependence of energy spectrum

In Fig. 4.1(a) we collect spectra for a range of Reynolds numbers. From a quick look, the data

show approximate collapse at all Reynolds numbers, as expected from classical phenomenology;

interestingly, this rough collapse seems to cover even very low Reynolds numbers of ∼ O(1). A

more careful inspection of the spectra, however, reveals two important departures from the self-

similarity implied in K41. First, spectral collapse is not strictly achieved at the low end of the

dissipation range, say, kη ∼ 0.1− 1, as seen better on the linear scale of the inset (Fig. 4.1(a)). As

pointed out in [1], there is a clear systematic decrease of this so-called bottleneck effect (the spec-

tral bump that precedes the dissipative region at kη = 0.13) with the Reynolds number; this can

also be observed in the data of Ref. [120]. Second, and this is the focus of the present work, one can

also see persistent systematic trends with the Reynolds number even at higher wavenumbers; see

Fig. 4.1(b). Several previous simulations did not observe or emphasize this aspect. The observed

behavior cannot be fitted by an exponential over the entire range and, indeed, the non-monotonic

shape of the data precludes the applicability of spectral formulas such as Eq. (4.2).

Nevertheless, it appears useful to consider the spectral shape to consist of two exponentials

with an extended crossover, the near-dissipation range (NDR), kη . 3, and the far-dissipation

range (FDR), kη & 6, for each of which one may be able to fit Eq. (4.2), but with different set

of constants. This approach is in contrast to virtually all theoretical models which predict, for

kη ≫ 1, the general form Eq. (4.2), sometimes with a sum of more than one power-law in the

prefactor [130, 131]. Although no rigorous argument has been put forth for multiple exponentials,

there have been some efforts to use Eq. (4.2) with different coefficients in different ranges—for

example, [3] though their simulations did not resolve far enough into the FDR to reliably obtain

the coefficients and their fits used γ = 1, which does not apply. There has also been some recent

theoretical work on chaotic system which may justify the appearance of multiple exponentials

[132].

To compute the coefficients we first plot the log derivative of the normalized energy spectrum,
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Figure 4.1: (a) Energy spectrum for all Rλ in the database. Inset: detail of (kη)5/3E(kη) for

Rλ & 50. Data for Rλ > 89 are taken from [1]. (b) The log-derivative φ(kη) for very well

resolved simulations shows two ranges. Selected Rλ are shown to reduce clutter and illustrate the

trend.

compensated with γ(kη)γ , such that Eq. (4.3) yields

φ(kη)

γ (kη)γ
=

α

γ (kη)γ
− β. (4.4)

If α = 0, for instance, even for a limited range of kη, a constant β would result and γ can

be determined by searching for the value that results in the widest plateau of the left-hand-side of

Eq. (4.4).

For Rλ up to about 10 (perhaps even 25), Fig. 4.1(b) shows that γ = 1 approximates the data

well which in this figure would be seen as a straight line; we then obtain β = 6.7, similar to

[3, 118]. A few remarks are in order for determining the constants for larger Rλ. First, past efforts

have generally used a fixed value of γ and used a finite non-zero value of α. But fixing γ at a

predetermined value can only lead to incorrect values for the coefficients, as seen clearly in Fig. 1b.

Second, the optimization procedure that can be used to find the best fit coefficients by minimizing

the error between DNS and Eq. (4.2) leads to a number of challenges to find the global minimum in

the error, because of the strongly nonlinear nature of the procedure. Standard techniques typically
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Figure 4.2: The compensated log derivative for (a) NDR and (b) FDR of the energy spectrum.

find local minima strongly dependent on the initial seeds. In any case, such efforts in NDR and

FDR generally give values of α that are relatively small, fluctuating inconsistently around zero,

from which one can justify setting α ≈ 0 without any loss of accuracy of fits. This conclusion

is reinforced from typical compensated log-derivatives shown separately in Fig. 4.2 for NDR and

FDR, whose extent (by visual inspection) is summarized in Table 4.1: One can see clear plateaus

in Fig. 4.2, rather than an asymptotic approach to plateaus at high kη as would be the case if

α/[γ(kη)γ ] is not negligible. This plateau effect can be due either because α ≈ 0 or because kη

is high enough to make that term negligible. In both cases, the conclusion is that the value of

α is largely inconsequential in both the NDR and FDR (see also appendix). This is consistent

with the extreme sensitivity in determining α from fits including only kη & O(1) using standard

minimization tools.

A phenomenological argument for including the power-law term with non-zero α is essentially

that the exponential roll-off in the dissipation range must transition smoothly to a power law in

the inertial range with an exponent of −5/3 [19]. However, it is now well-established that the

dissipation and inertial ranges are separated by a spectral bump due to the bottleneck effect [41, 1].

This realization has led to the use of varying power laws as prefactors [130, 133]. However, as

argued above, a simple sensitivity analysis of the fitting parameters reveals that changes in α do

not significantly affect β. We thus put α = 0 in NDR and FDR but accept two different γ values
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Figure 4.3: (a) Values of γ as a function of Rλ found from the compensated log-derivative form

as described in the text. NDR values are represented by O and FDR by ×. (b) The constant β after

fitting Eq. (3) for appropriate γ as a function of Rλ. Symbols O and × are from NDR and FDR

fits respectively. Black symbols correspond to fits with α = 0 and green for fits with α as a fit

parameter. The 2-norm of relative error between DNS data and the fit (not shown) is less than 4%

and decreases with increasing Rλ. No significant improvements in relative error are observed with

inclusion of α in the fit.

in each of the regions.

Still, if one insists on using a finite, non-zero α, the present data indicate that the effect is rela-

tively small because the clear plateau observed in the compensated log-derivative seen in Fig. 4.2,

which implies that the first term in Eq. (4.4) is indeed small. The observed plateaus can be used to

estimate bounds on α. Requiring that the second term be much larger (needed for a plateau), say,

an order of magnitude larger than the first requires (using the fact that βγ ≈ 6.4, see the paragraph

immediately below) that α ≪ 0.1βγ(kη)γ ≈ 0.64 in the NDR and α ≪ 2.4 in the FDR; the

observed plateaus actually suggest that α is much smaller.

Once γ is known, it is straightforward to determine α and β (or only β) using standard mini-

mization tools. The values of γ found using the compensation method detailed above which led to

the plateaus observed in Fig. 4.2 are collected in Fig. 4.3(a). At low Rλ, γ is slightly smaller than

1 for both NDR and FDR, but it is hard to assign any deep significance to the observed difference

from unity. At higher Reynolds number, however, we see the emergence of the two ranges. In the

NDR, γ decreases with increasing Rλ and remains below 1. With these values of γ we performed

least squares fits to determine β. The results are shown in Fig. 4.3(b). Here too, we observe dif-
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Figure 4.4: Log-derivative of the energy spectrum according to the (a) multifractal formalism (see

[2]) and (b) K41 scaling. The range 0 < ln(kη)/ ln(Rλ) < 0.4 corresponds to the so-called

intermediate dissipative range [2]. Data for Rλ > 89 (dashed lines), taken from [1], correspond to

simulations with limited resolution to assess FDR scaling as well-known aliasing errors (seen as a

strong uptick in the present normalization) are apparent in the figure.

ferent behaviors for for the two ranges of the spectrum when Rλ ≥ 10. The parameter β increases

with increasing Rλ for the NDR but decreases for FDR. An interesting result in the NDR is that

βγ is fairly constant around 6.4 for all Rλ studied here.

In contrast to K41, multiple dissipation ranges are predicted by the multifractal formalism [2],

which assumes a local scale invariance rather than the global scale invariance of K41. This mani-

fests as a scaling of velocity increments with a Hölder exponent h within an interval (hmin, hmax);

for each h, a fractal set with dimension D(h) can be determined [2]. Scaling exponents are turned

off successively as viscosity becomes increasingly important at higher k. In doing so, a new sim-

ilarity parameter θ = ln(kη)/ ln(Rλ) is derived such that ln(E(kη))/ ln(Rλ) ≡ f(θ). In Fig. 4.4,

we show the log derivative of energy spectrum in the new variables which has a more compelling

case of collapse than K41. The collapse of the spectrum is robust for the data presented here

(Rλ > 50) in the range 0 < ln(kη)/ ln(Rλ) < 0.4 (loosely covering NDR) but it is also clear that

the multifractal description has limited success in the FDR, broadly speaking.

In an attempt to physically understand how the pure exponential of low Rλ assumes a multi-

exponential form at higher Rλ, we note that the pure exponential simply represents the case when
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Figure 4.5: (a) Time series of energy spectrum E(kη, t) normalized by the median value of the

time series Ẽ(kη) for a subset of wavenumbers at Rλ ≈ 90. Inset shows the same data on an

expanded scale. (b) Log-derivative of the filtered time average for energy spectrum, φf (kη) for

different values of the threshold cut-off w. Data with w = 7 was found to correspond to the

unfiltered time series.

the energy dissipation is proportional to the energy at each of the wavenumbers. As the Reynolds

number increases, however, there is an intermittent transfer of energy to small scales, potentially

from larger scales. This effect becomes increasingly important at increasing wavenumbers (though

at some truly large wavenumber, the effects will presumably vanish). This is seen in Fig. 4.5(a)

which shows a time series of the energy spectrum E(kη, t), normalized by the median value of the

time series Ẽ(kη). Large bursts in energy are observed intermittently for high wavenumbers. It is

thus natural to assess the effect of these intermittent events on the time-averaged energy spectrum.

To do so, we remove large bursts by filtering out spectra at time instants where E(k, t) exceeds

a chosen threshold; that is, we retain 10−w < E(k, t)/Ẽ(k) < 10w in the average. With this

so obtained filtered time-averaged spectrum (Ef (kη)) one can compute the filtered log-derivative

φf (kη), shown in Fig. 4.5(b) for different values of w. The data show that as we remove more of

the intermittent events, we essentially recover the low-Rλ exponential, and the difference between

NDR and FDR vanishes. This is a clear demonstration that the deviation from the exponential

form occurs essentially from busts of energy transfers. Based on the elementary argument given

by Kraichnan [134], it can be argued that extreme fluctuations at high wavenumbers are due to

large-scale activity. Regardless of their specific origin (a topic by itself warranting further re-
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search), extreme energy fluctuations at high wavenumbers and high Rλ, appear to alter the single

exponential representation in the entire dissipative range kη & 1.

4.4 Conclusions

In summary, we have used highly resolved DNS data of isotropic turbulence to investigate the

dissipative wavenumber part of the energy spectrum for a range of Rλ. We have shown that the

collapse of the Kolmogorov-scaled spectrum reported in the literature (between 0.13 . kη . 1)

is an artifact of limited resolution and Reynolds number range. The results presented here (see

also [129, 85, 1]) demonstrate a systematic Rλ dependence (up to Rλ ∼ 2300) of all resolved

scales in the energy spectrum. While we have observed an exponential roll-off for the spectrum

of the form Eq. (4.2) at low Rλ, a systematic analysis of the coefficients involved shows two

distinct scaling ranges. A general expression that captures these two regimes can be written as

E(kη) ∼ eβ1(kη)γ1 + Aeβ2(kη)γ2 where γ2 ∼ 1, A ≪ 1. This form is not found in traditional

formalisms. The second exponential (γ2 ∼ 1) has been predicted using different approaches but,

as we have shown, it is realized at much higher wavenumbers than previously considered. The

multifractal scaling seems to provide a better representation in the intermediate dissipation range

(around NDR), but not at very high wavenumbers in the FDR. We have made a connection between

the second exponential and intermittent energy transfer. By removing these intense fluctuations

(argued to be due to activity in the larger scales by Kraichnan), the spectrum reverts to the single

low-Rλ exponential. It is also interesting to note that the two-exponential behavior is observed for

Rλ & 20. This Reynolds number is not far from the critical value recently put forth by Yakhot &

Donzis [60, 33] beyond which moments of velocity gradients and dissipation transition from the

Gaussian state to fully anomalous state characterized by intermittency. Finally, this work suggests

two more conclusions. First, fitting a single exponential to high-Rλ data may lead to conflicting

results as the numerical values of the parameters depend strongly on the range over which the fit

is performed as it may cover NDR, FDR or both. Second, the very large bursts of energy that are

observed in FDR present difficulties in time averaging as strong and localized events can be missed

or skew the mean. Thus, very long records with very high time resolution (both perhaps beyond
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current practices) are needed for converged averages especially in the FDR.
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4.5 Appendix: Determination of fitting parameters
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Figure 4.6: Compensated curves with over and underpredicted value for γ. Blue lines are for a

pure exponential and red line is for an exponential prefixed with a power law (α0 = −5/3). Both

have β = 4 (dashed black line) and γ0 = 0.85.

Here we show further tests for the compensation method used to determine the coefficients.

As explained in the text, the method is based on obtaining γ as the value that results in the

widest plateau for φ(x)/(γxγ). To test the accuracy of the method, we use a known function

(kη)α0 exp(β0(kη)
γ0) with given α0, β0, and γ0 and use our technique based on Eq. (4.4) to com-

pare the obtained coefficients. In Fig. 4.6 we show typical results for (α0, β0, γ0) = (0, 4, 0.85)

(blue lines) and (α0, β0, γ0) = (−5/3, 4, 0.85) (red line). It is clear from Eq. (4.4) that a wide

plateau, with the correct β is, in theory, only observed for the case with no power law (α0 = 0).

We look at that case first. In the figure we plot results for γ which is deliberately selected to be

3% below and above the exact value (γ0). In both cases no plateau is observed and no β could thus

be identified. This example shows how the compensation method is found to be able to visually

account for a few percentage points errors in the determination of γ. For the case with a power law

(α0 6= 0), the approach to the right value of β is seen to occur only asymptotically at very large

kη when the correct γ is used (red line): no plateau is observed in this case. Thus, the plateau
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observed in DNS data (Fig. 4.2) is indicative of both an appropriate value of γ and a negligible α,

as argued in the text.
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Figure 4.7: a) Value of β when fit locally for Rλ ∼ 90. b) Relative error between DNS data and

Eq. (4.2) using parameters obtained with the present method (red) and that of [3] (blue).

We also compare our local fitting procedure with that of [3, 119]. Both studies assumed γ = 1

and fit locally both α and β. Schumacher [119] concluded that no visible asymptotic behavior was

observed for his data and that α appears to change sign. Martinez et al. [3] used their highest

resolved simulation to show that β approaches a constant. However, they could only resolve up to

kη ≈ 11. In Fig. 4.7(a) (blue line) we show a case in our DNS database using their method. What

we observe is that β does not approach a constant but instead a local maximum around kη ≈ 10

which may be mistakenly taken as an asymptote if no data at higher wavenumbers are available.

If instead we use the present method on the same data we find clear asymptotic behavior in both

NDR and FDR (red line). A constant value of β is now observed as the proper value of γ is used

and α is not a fitting parameter. We also see that our method results in smoother curves especially

at high kη. The relative error between DNS and Eq. (4.2) with parameters obtained by these two

methods is shown in Fig. 4.7(b). An important observation in the figure is that the procedure in

[3] leads to errors with non-random structure: negative error at low and high k and positive error
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at intermediate k. This is indicative of an inappropriate fitting function, or, in this case, γ values.

The method proposed here, instead, leads to a randomly distributed error and with overall smaller

error.
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5. SCALING IN INCOMPRESSIBLE TURBULENCE

Thus far we have addressed the spectral properties of turbulence including the energy spec-

trum, which is a second order statistical measurement. We found that the smallest scales have a

prominent Rλ dependence, even at the energy spectrum level (a second order statistic). We also

established that global scale invariance is not valid for the energy spectrum in the dissipation range.

In this section, we complement the spectral perspective by studying higher order statistics of ve-

locity fluctuations in physical space. Increasing the order of statistics is equivalent to exploring

more extreme fluctuations or at smaller scales.

5.1 Introduction

Turbulence is characterized by a wide range of fluctuating spatial and temporal scales. These

range from the energy containing large scales (L) to the energy dissipating small scales (η). Within

turbulence phenomenology, it is largely expected that large scales depend on the generation mech-

anism while as the small scales are increasingly universal as the separation between the two grows

[19, 23, 135, 136, 46]. A sense of the scale separation in turbulent flows is given by the Reynolds’

number Rλ =
√
5/(3εν)u2rms where ε is the ensamble averaged kinetic energy dissipation, u is

the fluctuating velocity field and ν is the fluid viscosity. The universality of small scales, at high

Rλ in some quantitative sense, is an enduring notion in turbulence theory and forms the bedrock

of most modelling approaches [19, 23, 137, 25]. This view was formalized in Kolomogorov’s

seminal work (K41) which predicted a statistical behavior for fluctuations at different scales, in

particular a Rλ independent asymptotic state in the so called inertial range (L ≥ r > η) and dis-

sipative range (r ≤ η) [19, 136]. A universal behavior, according to K41,for small scales is then

expected for very large Rλ flows and this has been the motivation for studying turbulence at ever

increasing Rλ, largely seeking the asymptotic state described by K41 [30, 85]. The theory itself

does not provide and there is no empirical consensus on a quantitative measure of high enough

Rλ. An important feature of K41 is the presence of a Rλ independent self-similar scaling in the
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so-called inertial range scales. This is observed for Rλ ∼ O(102) [25, 138, 139, 140, 26, 117, 30].

Recently, however, it was shown that moments of a key fluctuating quantity, kinetic energy dis-

sipation ǫ = 2νsijsij , a small-scale quantity, obeys algebraic scaling with Rλ across different

flows at much lower-Rλ than expected from K41 [141]. Here sij is the rate of strain given by

(∂iuj + ∂jui)/2 using Einstein summation. Dissipation is the mechanism that converts kinetic

energy to heat through molecular viscosity, at the smallest (∼ O(ν3/4ǫ−1/4)) scales of motion. For

the case of initially Gaussian fluctuations stirred by Gaussian white noise at large scales, it was

also shown that this algebraic scaling emerges from a phase transition from a Gaussian state at at

very low Reynolds number (Rλ) [60, 33]. Yakhot & Donzis [60] showed that even order moments

of longitudinal velocity gradients

M
||
2n = 〈(∂αuα)2n〉/〈(∂αuα)2〉

n
(5.1)

exhibit asymptotic behavior below a critical Rλ,tr(n). Beyond the transition Rλ for a given order

moment, algebraic scaling is observed i.e. M
||
2n ∝ R2dn

λ . This is sketched in Fig. 5.1. The low-Rλ

asymptote is shown to have Gaussian statistics for a flow forced with Gaussian random force at the

large scales and an order dependent transition Reynolds number (R̂λ,tr(n) ≡ L〈(∂αuα)n〉
1

n/ν) is

derived to be approximately 8.91. The global transition-Rλ for each order moment then decreases

with increase in order of the moment (Rλ,tr(n) ∝ R̂
2ndn
2dn+3

λ,tr ) [33]. This means higher-order moments

(extreme events) transition to turbulent scaling at a lower-Rλ than low-order moments. This is

sketched in Fig. 5.1. If one assumes the low-Rλ statistics are known (denoted by P2n) and the

transition-Rλ is known, then the algebraic scaling can simply be derived by matching the power-

law with the asymptotic value at the transition Reynolds number. Then dn has the form

dn = −2n log(R̂λ,tr)− 3n log(C) + 2 log(P2n)

4 log(C)
+

√
(2n log(R̂λ,tr) + 3n log(C)− 2 log(P2n))2 + 24n log(C) log(P2n)

4 log(C)

(5.2)
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a)
b)

Figure 5.1: Sketch depicting the transition from low-Rλ asymptote to algebraic scaling for mo-

ments of two different orders (n2 > n1) with respect to a) global Reynolds number b) order-

dependent Reynolds number

The scaling predicted at these low and moderate Rλ allow for calculating the universal properties

of inertial range range turbulence which is observed at much higher Rλ than the ones considered

[33]. This means that high-Rλ properties are already present even at very modest Rλ.

Given the ubiquity of turbulent flows in natural and engineering applications, it is extremely

important to establish the general validity of this new formalism and its extension to more complex

flows. Therefore, in this section, we test the universality of the transition of velocity gradients and

their scaling under different large scale stirring mechanisms. A universal transition and scaling

(or lack thereof) can also provide important evidence for establishing the universality class for

transition to turbulence and its anomalous scaling exponents. In addition to longitudinal gradients,

we also consider transverse velocity gradients (∂uα/∂xβ) and more complex quantities dependent

on velocity gradients. One such quantity is instantaneous enstrophy (Ω = ωiωi) which is a measure

of vorticity (~ω = ∇ × ~u). Enstrophy has a complicated relationship with dissipation in general

but the mean dissipation is equal to entrophy times viscosity. The scaling of enstrophy is also

important for understanding the finite time blow-up and uniqueness problem in Navier-Stokes

equations [142, 8]. The scaling of enstrophy moments has not been studied yet and therefore we
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present those and refer readers to other sources for dissipation [143, 52, 141, 144].

5.2 Direct Numerical Simulations

In particular we study forced homogeneous, isotropic turbulence in a triply periodic domain

governed by the Navier-Stokes equations,

∂ui
∂xi

= 0 (5.3)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2i

+ fi (5.4)

where ui is the velocity component in xi direction, p is the pressure and ν is the viscosity. The forc-

ing term fi adds energy into the system to balance dissipation and achieve a statistically stationary

state. The details of different forcing mechanisms are summarized in Table 5.1. We use stochastic

forcing where the velocity increments are derived from white in time gaussian and exponential

random distributions These are applied at large scales or low wavenumbers. These forcings have

been widely used in literature [81, 129, 60, 145]. The random number generator is changed, from

Gaussian to exponential, to study the effect of forcing statistics on the universality of the low-Rλ

Gaussian asymptote and the subsequent transition to anomalous scaling. In order to generalize the

results for more complex flow types, we also use a linear forcing where the velocity field is forced

by itself. Such a forcing is equivalent to generating turbulence through shear. This type of forcing

has been applied at low wavenumbers, as has been done previously for studying high-Rλ turbu-

lence. The forcing has also been shown to exhibit more complex dynamical states which are similar

to those observed in shear flows [146, 29, 147, 148]. We also implemented a modification of this

linear forcing where we force the velocity field with vorticity to study the effect of statistics of

forcing term on universality of low-Rλ features and transition. Vorticity in general has been shown

to have more extreme fluctuations than velocity. All the simulations are initialized with the same

initial velocity field. We use a standard psuedospectral method to solve the equations with small

scale resolution kmaxη & 3. The time step is evolved using a Runge-Kutta 2 algorithm with a con-

stant time step such that the Courant-Friedrichs-Lewy condition (CFL = |umax|∆t/∆x) remains
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Table 5.1: Forcing details. Gauss and Exponential are stochastic forcings where the forcing term

(ri) is derived from white in time gaussian and exponential random distributions. A is a constant.

The last column lists the maximum and minimum small scale resolution across simulations for

each forcing.

Type Forcing band fi Resolution

Gauss 0 < k ≤ 2 (r1,r2,r3) 60,3

Exponential 0 < k ≤ 2 (r1,r2,r3) 60,3

u(k) 5 ≤ k ≤ 6 (Au1,Au2,Au3) 60,3

ω(k) 5 ≤ k ≤ 6 (Aω1,Aω2,Aω3) 60,3

below 0.3. These high resolutions allow us to reliably measure higher order moments of velocity

gradients [61, 149]. In order to guarantee convergence, we record at least 50 large scale eddy

turnover times in the stationary state. The moments are computed using at least 100 snapshots sep-

arated by about half an eddy turnover time. We have verified that the skewness in the scaling range

is -0.5, the ratio of longitudinal and transverse integral length scales is 2 and the kinematic con-

straint on isotropic fields g(r) = (f(r) + 0.5rf ′(r))/g(r), where f(r) = uα(xα)uα(xα + r)/u2α,

g(r) = uβ(xα)uβ(xα + r)/u2β , is satisfied [135].

5.3 Asymptotic States and scaling

We are interested in the moments of a quantity q in the formM q
n = 〈qn〉/〈q̃〉n where 〈q〉 denotes

volume averages, q denotes time averages, q̃ is a non-zero moment of q and n is the order of the

moment. The ensemble averaged moments of longitudinal (||) and transverse (⊥) velocity gradi-

ents from simulations with different forcing mechanisms are shown in Fig. 5.2a. It is clear that the

moments of velocity gradients are independent of forcing, with small differences near the transition

region. Such a universal behavior is expected at much higher Rλ than the ones reported here. The

moments of the longitudinal and transverse velocity gradients exhibit Gaussian statistics (dashed

horizontal lines) and transition to an algebraic scaling beyond a transition-Rλ, independent of the

forcing statistics. The transition Reynolds numbers is qualitatively lower for transverse gradient

statistics as the moments transition to algebraic scaling seemingly at a lower-re in comparison

to their longitudinal counterparts. The algebraic scaling for longitudinal gradients is the same as
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Figure 5.2: Moments of a) longitudinal and b) transverse velocity gradients for 2n = 4 (blue),6
(red), 8 (black), 10 (magenta). The horizontal dashed lines are Gaussian moments and power-laws

correspond to R2dn
λ where dn is given by Eq.Eq. (5.2) with R̂λ,tr = 9.89.

derived analytically (dashed power-laws) assuming the low-Rλ moments are Gaussian (Eq. (5.2)).

In Fig. 5.2b, we have plotted the moments of transverse velocity gradients (symbols) along with

the scaling predicted for longitudinal gradients (dashed power-laws). Comparing Fig. 5.2 a and

b, it is clear that the moments of transverse gradients grow faster than longitudinal gradient mo-

ments and increasingly so with increasing order of the moment. Therefore transverse gradients

exhibit a larger degree of intermittency than longitudinal gradients. This was recently shown us-

ing velocity differences at very large-Rλ [26] . In the past this result has been questioned based

on symmetry arguments [150, 151, 139] . Longitudinal gradients are constrained by the incom-

pressibility condition while as transverse gradients have no such constraint. Therefore in general

transverse velocity gradients are expected to be more intermittent. This means the scaling predicted

in Eq. (5.2) is different for different quantities, albeit universal for a given quantity across different

forcings. The theory allows for this possibility if different quantities transition at a different Rλ.

Then Eq. (5.2) needs to be modified to dqn = f(R̂q
λ,tr, C, 2n) rather than dqn = f(R̂λ,tr, C, 2n) for

different q = ||,⊥ etc.

We quantitatively compare the transition and scaling of different quantities using a fitting pro-

cedure. A simple power-law fit only within the scaling range is highly sensitive to bounds of the
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fitting range. Instead, we attempt to fit the entire data-series with a single expression that captures

the low-Rλ asymptotic behavior as well as the algebraic scaling range. Such a procedure has been

shown to be more reliable in measuring the scaling parameters within inertial range [152]. In order

to construct such a function, we note that for a 2n order moment of quantity q and Rλ/Rλ,tr ≪ 1,

the statistics are constant (M q
2n = Cq

2n). For Rλ/Rλ,tr ≫ 1, M q
2n ∝ R

βq
2n

λ . The power-law must

be Gaussian at the transition-Re [33]. Since the details are transition are not well understood, we

empirically propose the below function form that fits the data and satisfies previously mentioned

properties.

M q
2n = Cq

2n + αq
2nC

q
2n

(
Rλ

Rλ,tr(2n)

)βq
2n

(5.5)

where αq
2n < 1 and we have four fitting parameters. However, we are only able to measure

αq
2n/(Rλ,tr)

βq
2n accurately as the two cannot be fit independently. Further, the fit is highly non-

linear and susceptible to intital seeds. We therefore perform a fit with an equivalent function

M q
2n = C2n

q

(
1 +

(
Rλ

b2nq

)βq
2n

)
(5.6)

where bq2n = Rλ,tr(2n)/(α
q
2n)

1/βq
2n for a given quantity q and order 2n. Although other functions

with the same properties are possible, this form is favorable as the fit parameters are independent of

initial seeds and fitting range. We have checked the convergence of the fit by varying the largest-Rλ

considered and conclude (convervatively) that a Rλ ∼ 90 is needed for converged fit parameters.

This is satisfied by data from Gaussian, Exponential and Linear forcing simulations only. In order

to provide statistical bounds of fit parameters for a given order 2n, we generate synthetic data from

a normal distribution with the same mean and standard deviation as the 2n moment at a given Rλ

from DNS data. This is repeated 50 times for each datapoint in Fig. 5.2 which provides us 50

independent datasets for fitting with Eq. (5.6). This allows us to generate a distribution for each

fit parameter and determine their respective confidence intervals. The fit parameters and their 95%

confidence intervals are shown in Figs. 5.3, 5.4, 5.5 for three different forcings.
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The asymptotic value at low-Rλ (C2n) is plotted in Fig. 5.3 along with the moments for a

Gaussian distribution (dashed line). It is clear that the low-Rλ asymptotic value is Gaussian for

longitudinal and transverse moments of velocity gradients across all forcings, consitent with obser-

vation in Fig. 5.2. The parameter bq2n which is proportional to transition Rλ is shown to decrease

with increase in order of the moment as expected from theory. We note that the large values

of bq2n are not representative of large transition-Rλ. For example, for b
||
4 = 100 and α

||
4 = 0.5,

Rλ,tr(4) ≈ 13, close to the expected value of O(10). We also observe that for a given forcing,

the transition-Rλ is lower for transverse gradients (blue symbols) in comparison with longitudinal

gradients (red symbols). Although small differences are observed for bq at a given n for differ-

ent forcing, these are within our statistical bounds on fit parameters. In Fig. 5.4d, we plot the

average of bq2n across the three forcings. A difference in bq is clear for transverse and longitudi-

nal gradients, indicating that the scaling of the two is different. The algebraic scaling exponent,

βq
2n = 2dqn is plotted in Fig. 5.5f for the 3 different forcings. We again observe that the scaling ex-

ponents are larger for transverse gradients, consistent with earlier observations. Scaling exponents

for the longitudinal gradients are consistent with earlier measurements made in HIT, channel and

Rayleigh-Bernard convection [153, 154, 141, 144]. The dashed lines are Eq. (5.2) with R̂λ,tr = 11

(red) and R̂λ,tr = 2 (blue), which indicate that longitudinal velocity gradients transition at a higher

value of R̂λ,tr and are more intermittent in comparison to transverse velocity gradients. Based on

Eq. (5.2), the scaling exponents of transverse structure functions in the inertial range will then be

different (smaller) from longitudinal structure functions. This has recently been reported in [26]

using data from Rλ & 650, much larger than the ones reported here. Although Yakhot & Donzis

[33] allows for different exponents, the physical reasoning for this difference is not clear. Recent

work from Sreenivasan & Yakhot [16, 26] allows us to speculate on this. Sreenivasan & Yakhot

argue that high-order moments of longitudinal differences are less susceptible to pressure effects

and therefore can form strong departures from mean. The reduced pressure effect with increase

in order of the moment leads to strong fluctuations and transition to turbulence at a lower-Rλ for

high-order moments, consistent with our observation. We speculate that similar effects lead to
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differences in transition of longitudinal and transverse gradient to algebraic scaling. Transverse

gradients are not constrained by the incompressible condition and therefore are far less affected by

pressure. Therefore, reduced pressure effects lead to a lower transition-Rλ for transverse gradients.

It is also important to study the moments of other small scale quantities which are comprised

of multiple velocity gradients. Of particular interest in turbulence theory are dissipation and en-

strophy (Ωi = |ω|2) moments. In previous work, the moments of dissipation were shown to follow

algebraic scaling given by d
||
n, at moderateRλ. In Fig. 5.6, we plot the moments of enstrophy (sym-

bols) at different Rλ and forcings. For Rλ . 10, the asymptotic values correspond to moments of

χ2 distribution with 3 degrees of freedom. This is expected as enstrophy is composed of sum of

squares of 3 trasnsverse gradients each of which are Gaussian in this range. Similarly dissipation

will exhibit statistics of χ2 distribution with 5 degrees of freedom as the incomrpessibility condi-

tion imposes that only 5 gradients are independent. We do observe this in our data as well, although

have not shown it here. The moments transition to an algebraic scaling regime which is the same

for all forcings. We compare the moments (symbols) with the predicted scaling for dissipation

moments (dashed power-laws). It is clear that enstrophy moments grow faster than dissipation and

increasingly so at higher orders. This is more evidence supporting that the most extreme events in

enstrophy are more probable than the most extreme events in dissipation. This question has been

studied previously with data at much larger Rλ [61, 87, 150, 155].

5.4 Conclusions

In this section, we have shown that scaling is established for velocity gradients and enstrophy

at Rλ ∼ O(10), much lower than expected before. For a given quantity, universal scaling is

observed across different forcings reinforcing the idea of universality in turbulent flows. However,

the notion of universality is modified as different quantities exhibit different scaling exponents,

within the same data. We have shown this by comparing the scaling exponents of longitudinal and

transverse velocity gradient moments as well as those of dissipation and enstrophy. We have shown

that the scaling exponents are larger for transverse gradients which are representative of higher

level of intermittency. The scaling exponents can be predicted by Yakhot & Donzis theory after a
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Figure 5.3: Fitting parameter C2n in Eq. (5.6) for different forcings. All the constants are indepen-

dent of forcing and agree well with the expected Gaussian value (dashed line) for each moment.

Red and blue symbols represent fit parameters from longitudinal and transverse gradients respec-
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Figure 5.4: The constant b ∝ Rtr
λ (n) in Eq. (5.6) for a) Gauss b) Exponential c) u(k) forcings.

d) The mean bq2n across three forcings. f) Scaling exponents for different forcings. Red and blue

symbolds are for longitudinal and transverse gradients respectively.
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Figure 5.6: Moments of enstrophy for n = 2 (blue), 3 (red), 4 (black). Horizontal lines corre-

spond to moments of χ2 distribution with 3 degrees of freedom. The power-laws corresponds to

〈ǫn〉/〈ǫ〉n ∝ Rdn
λ .

65



quantity specific transition Rλ is accounted for. The more intermittent traverse gradient transition

at a lower-Rλ (∼ 2) compared to longitudinal gradient moments which transition aroundRλ ∼ 11.

The scaling is studied for at 1 . Rλ . 100, much before an inertial range is established. The

scaling exponents are predictive of scaling in the inertial range. Therefore high Reynolds features

can be studied using data from well resolved DNS at low to moderate Rλ, instead of chasing the

goal of ever increasing values. We note that this procedure of predicting features of non-linear

systems at asymptotic parameter values (Rλ in this case) using information about a transition from

a low-order state may be a general feature of non-linear spatio-temporal chaotic systems. We

have found early evidence to support this in passive scalar advection [156], scaling exponents in

compressible turbulence (Chapter 6) and Burgers equation [157]. These results will be reported

elsewhere in future communications.
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6. SCALING IN COMPRESSIBLE TURBULENCE

6.1 Introduction

In previous sections, we have explored different aspects of incompressible turbulence. A wide

range of flows in natural and engineering applications have significant changes in density and (or)

are high-enthalpy flows where incompressibility assumptions breakdown. Fundamental under-

standing of the structure of compressible turbulence and characterization of its statistics is there-

fore important in a wide range of fields e.g. design of hypersonic aircraft, combustion applications,

stellar formation and inertial fusion problems. Compared to incompressible turbulence, fewer stud-

ies have explored fundamental aspects of compressible turbulence and most work has been recent

[74, 69, 68, 71, 73, 71, 70, 63]. This is in part due to added complexity in compressible turbulence

due to the strongly non-linear coupling between velocity field and thermodynamics. For computa-

tional approaches, the computing cost is much higher in compressible flows in comparison to their

incompressible counterparts due to an increase in the degrees of freedom [75].

In this section, we will systematically explore intermittency, its scaling and its emergence in

compressible turbulence using gradients of velocity. Our focus will be to extend the Yakhot formal-

ism to compressible turbulence and study the emergence of scaling at low to moderate parameter

values. In the literature, similar to incompressible turbulence, the focus thus far has been on ex-

ploring the high Reynolds number (Rλ) and high turbulent Mach number Mt = urms/〈c〉, where

c is the speed of sound. Further, all the studies thus far have studied intermittency within the

inertial range using structure functions [62, 63, 64, 71, 72]. Benzi et al. [62] studied scaling in

the inertial range for inviscid weakly compressible flows and showed that the scaling for longitu-

dinal and transverse structure functions of velocity is similar to incompressible flows. They did

however note the presence of front like structures in the density field which led to saturation of

scaling exponents for density at high orders. Transverse structure functions of velocity were also

studied by [63, 64] in inviscid isothermal highly compressible turbulence. They noted significant
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departures of scaling exponents compared to incompressible turbulence and a dependence on large

scale forcing mechanism. However, a reformulation of the structure functions in terms of density-

weighted velocity (ρ1/3u) showed scaling that was independent of forcing and consistent with

Burgers scaling. Recent work from Wang et al. [72] studied the compressible and solenoidal ve-

locity fields separately in a simulation at Rλ ≈ 250 and Mt ≈ 1. The velocity field is decomposed

into solenoidal (us) and compressible (ud) components based on Helmholtz decomposition where

∇ · us = 0 and ∇× ud = 0. They show that the scaling of longitudinal structure functions of the

solenoidal component is the same as incompressible turbulence. The longitudinal structure func-

tions of compressible velocity component however saturated at high orders consistent with Burgers

turbulence scaling. The saturation of scaling exponents in Burgers turbulence is a consequence of

high dissipation events dominated by shocks connected by smooth ramps.

6.2 DNS details

We perform direct numerical simulations of compressible turbulent flows in a triply periodic

domain as described in Section 2. A 2π domain is discretized into N = 128, 256, 512 grid points

in each direction where the resolution (η/∆x)across simulations varies between 0.96 and 10. The

Courant number is kept constant at 0.3. The highest-Rλ in the database is approximately 60 with

an Mt ≈ 0.7. We note that the highest-Rλ considered in this study is comparable to the lowest-Rλ

studied in the literature with the higher-end being an order magnitude larger.

6.3 Scaling of total velocity field

We are again interested in moments of velocity gradients of the form

M q
2n =

〈(∂αuβ)2n〉
〈(∂αuβ)2〉

n (6.1)

where α = β corresponds to longitudinal gradients and α 6= β corresponds to transverse gradients.

In this case, q can be full velocity field, solenoidal (s) component or the compressible component

(d). In Fig. 6.1, we plot the transverse gradients of the full velocity field for our entire database. It

is clear from Fig. 6.1, that the transverse gradients of the full velocity field are independent of Mt
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or compressibility levels. At very low-Rλ, we observe Gaussian statistics for the gradients, similar

to incompressible counterpart. The gradients transition at a Rλ ∼ O(10) to algebraic scaling. The

power-laws plotted are scaling laws for transverse gradients in incompressible flows as discussed

in the previous chapter. We again observe that high-order moments transition earlier than low-

order moments do and that scaling emerges at very low-Rλ. This is consistent with results of

Benzi et al. [62], although the Mt in their paper is 0.3 and the flow is inviscid. This means that

transverse gradients are unaffected by level of compressibility or by the randomly scattered shock

structures in the flow field. In Fig. 6.2a, we plot the longitudinal velocity gradients for simulations

with Mt up to 0.35. We again observe Gaussian statistics at low-Rλ and a transition to algebraic

scaling at Rλ ∼ O(10). We have plotted two power-laws for each moment order. The black

ones represent the scaling for longitudinal gradients in incompressible turbulence as reported in

the previous chapter. In this case, the transition region is much wider and a power-law scaling

consistent with this case is only observed for Rλ > 30, in comparison to incompressible flows.

The colored power-laws correspond to incompressible scaling as predicted by Eq. (5.2) with the

transition Rλ = 20. Although, this case fits the data better, it is not clear why transition-Rλ should

change for the case of full velocity. Literature on transition to turbulence does however support

the view that compressibility delays transition. Within this range of Mt, however compressibility

effects are considered to be weak and the solenoidal component dictates scaling of the full velocity

field [88, 89, 69, 73]. For Mt > 0.35, we observe that the longitudinal gradients scaling exponents

are much larger than at lower-Mt. The scaling exponents are comparable to those of Burgers

turbulence (power-laws in Fig. 6.2b) [157]for Rλ > 30. The dissipation in this case is dominated

by shock structures that are randomly scattered in the domain and vary in strength. Samtaney [70]

have shown that shocklet strength does increase with increase inMt. A burgers scaling in this case,

if verified, will be consistent

6.4 Scaling of solenoidal velocity field

Compressible turbulent velocity fields can be decomposed into vortical or solenoidal (us) and

compressible or dilatational (ud) components using the Helmholtz decomposition. This decom-
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Figure 6.1: Moments of transverse velocity gradient for the full velocity field. Moment orders are

2p = 4(blue), 2p = 6(red), 2p = 8 (black) and 2p = 10 (magenta). The power-laws correspond

transverse velocity gradient scaling for incompressible flows in Section 5.
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Figure 6.2: Moments of longitudinal velocity gradients for the full velocity field. Moment orders

are 2p = 4(blue), 2p = 6(red), 2p = 8 (black) and 2p = 10 (magenta). a) The colored power-laws

correspond Eq. (5.2) with R̂tr
λ = 20 and the black power-laws correspond to scaling of longitudinal

gradients in incompressible turbulence in Section 5. b) Longitudinal velocity gradient moments at

Mt ≈ 0.7. There are no predictions for scaling in this regime that are consistent with data. The

approximate power-laws are M4 ∝ R2
λ, M6 ∝ R4

λ,M8 ∝ R8.4
λ , M10 ∝ R12

λ for a fit between Rλ ≈
10 and 60.
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Figure 6.3: Moments of solenoidal velocity gradients. a) Longitudinal gradients for 2p =4 (blue),

6 (red),8 (black), 10 (magenta). b) Transverse gradients for same orders as a. The power-laws

correspond to respective velocity gradient scaling in incompressible turbulence.

position has been widely used in the literature in order to compare the solenoidal components to

incompressible turbulence [89, 88, 69, 68, 69, 71, 72]. In Fig. 6.3, we plot the moments of longitu-

dinal and transverse velocity gradients for the solenoidal velocity only. The solenoidal field is com-

parable to incompressible turbulence at all orders for both longitudinal and transverse gradients for

all Mt. This is consistent with high-Mt results of [71]. Similar to incompressible turbulence, the

low-Rλ statistics are Gaussian and transition to scaling beyond Rλ ∼ 10. The scaling exponents

are the same as those in incompressible turbulence reported in Section 5. Transverse gradients are

again more intermittent than longitudinal gradients. Since the solenoidal field behaves similar to

incompressible turbulence, this means it is insensitive to presence of shocks, consistent with recent

results [69, 158]. Comparing the point at which the power-laws intersect the Gaussian values, it is

also clear that higher order moments transition to scaling at a lower-Rλ than higher order moments

do.

6.5 Scaling of dilatational field at high Mt

In the previous sections, we observed that compressibility does not affect the total velocity

field for cases with Mt ≤ 0.35. We’ve also seen that the solenoidal modes are unaffected by shock
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structures at all compressibility levels. Therefore, in our dataset, cases with Mt ≈ 0.7 have signifi-

cant dilatational components and they clearly affect the scaling of the total velocity. Therefore, we

plot the moments of velocity gradients for the compressible component in Fig. 6.4. Moments for

dilatational component are much higher than the solenoidal component. Therefore, intermittency

levels are clearly higher for the dilatational field. In the algebraic scaling regime, both longitudinal

and transverse moments appear to scale as predicted for Burgers turbulence using the multifractal

formalism [157]. The scaling is more robust for Rλ > 20. In contrast to incompressible turbu-

lence or the solenoidal component in compressible turbulence, both the longitudinal and transverse

moments appear to scale similarly. This suggests that scaling is prescribed entirely by shock struc-

tures. We also do not observe clear transition from Gaussian state to algebraic scaling in this

component. Due to lack of any theoretical guidance, it is not clear whether the low-Rλ asymptote

truly is non-Gaussian, as suggested by data in Fig. 6.4, or whether the transition occurs at much

lower-Rλ. Within purely Burgers turbulence, a low-Rλ Gaussian asymptote is reported in [157]

which is followed by a transition to algebraic scaling. The transition however occurs at Rλ ap-

proximately 0.3, much lower than the ones reported here. They also show that the transition range

extends up to about Rλ ≈ 3, beyond which algebraic scaling is observed. We are however unable

to determine this conclusively in our simulations.

6.6 Conclusions

In this section we have shown that scaling emerges within compressible turbulence at Rλ ∼

O(10), similar to incompressible flows. We have also shown that the statistics of velocity gradients

are largely unaffected by compressibility up to Mt ≈ 0.35. The scaling of the moments of velocity

gradients is comparable to incompressible turbulence. Beyond Mt ≈ 0.35, a change in scaling of

velocity gradients in observed for longitudinal gradients of the total velocity. We decomposed the

velocity field into solenoidal and compressible components using Helmholtz decomposition. We

showed that the solenoidal field behaves as the incompressible counterpart and is largely unaffected

by shock structures, consistent with other studies in literature. We showed that the solenoidal field

undergoes a transition from Gaussian statistics at low-Rλ to algebraic scaling beyond Rλ ≈ 10.
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Figure 6.4: Moments of compressible velocity gradients. a) Longitudinal gradients for 2p =4

(blue), 6 (red),8 (black). b) Transverse gradients for same orders as a. The power-laws correspond

scaling for Burgers turbulence as predicted by multifractal formalism.

Higher order moments transition at a lower-Rλ than low order moments do. This is comparable

to the situation in incompressible turbulence. For the dilatational field, we showed that the scaling

is largely prescribed by shock structures at high compressibility levels, which are consistent with

scaling predicted for Burgers turbulence. Our results show that scaling emerges in compressible

turbulence at much lower-Rλ than previously assumed. The scaling is however only evinced in

small-scale quantities such as moments of velocity gradients, dissipation or enstrophy. The scaling

behavior shown here is consistent with other studies in literature that were achieved at much higher-

Rλ and computational effort. The highest-Rλ achieved in our study is comparable to the lowest

one reported in literature which attempt to show scaling using structure functions in the inertial

range. Our approach has clear advantages. The increase in scaling range is directly proportional

to an increase in Rλ and therefore scaling exponents can be measured with improved accuracy

at higher-Rλ. This is in clear contrast to the approach of studying scaling in structure functions,

where the scaling range is small and increases very slowly with increase in Rλ.
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7. CONCLUSIONS AND FUTURE WORK

In this dissertation we studied the statistics of small-scales and extreme events in incompress-

ible and compressible turbulent flows using direct numerical simulations (DNS). Particular focus

was on identifying signatures of fully developed turbulence i.e. the features that persist with in-

creasing Reynolds number (Rλ) and the parameter range where they first emerge. The incom-

pressible simulations were performed at box sizes of up to 40963 with Taylor Reynolds (Rλ) up to

400. Different large-scale forcing mechanisms were used to establish a statistically stationary state

and analyze the effect of forcing statistics on various measurements. The small-scale resolution

in the simulations ranges from kmaxη ≈ 3 (at high-Rλ) up to 60 (at low-Rλ). Simulations with

Gaussian forcing had small-scale resolutions an order magnitude larger than the state-of-the art in

literature. Compressible turbulence simulations were performed at box sizes of up to 5123 span-

ning Rλ between 1 and 60 and turbulent Mach number Mt between 0.1 and 0.75. The resolution in

the compressible dataset is at least twice that in the literature, η/∆x > 0.8. The high-resolutions

employed in this dissertation provide details about extreme events and small-scales that were not

available before. These allowed us to assess the validity of various assumptions and predictions of

classical theories and recent theoretical advances.

7.1 Principal Findings

In terms of computational advances for turbulence simulations, we established, for the first

time, the resolution criteria for measuring statistics of order up to 10 in compressible turbulence

simulations using compact finite differences. We showed that longitudinal gradients require at least

twice the resolution (η/∆x ≈ 1.6) than is required for transverse gradients (η/∆x ≈ 0.8) of the

velocity field. Higher resolution is required for longitudinal velocity gradients as they are highly

affected by non-linear interactions with shock structures in the domain, in addition to intermittency

of the velocity field, which is also observed in incompressible turbulent flows. The resolution

criteria η/∆x ≈ 0.5, used widely in previous studies, can only be used to compute statistical
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moments of fluctuating quantities up to order 4. The temporal resolution in our simulations was

bound by a Courant number of 0.3. We found this to be an important requirement for improving

convergence at a given spatial resolution. However, the high resolution requirement prescribed

here may be relaxed by using other schemes such as WENO where shock structures and extreme

dissipation events are handled differently. This may however affect the nature and statistics of

small scales and must be verified.

In section 3, we analyzed the temporal behavior of spectral transfer and energy in incompress-

ible homogeneous isotropic turbulence that result from low-wavenumber forcing for Rλ ≈ 1 to

400. We found that fluctuations in the spectral quantities were qualitatively independent of fluctua-

tions in energy input at large-scales Single time statistics showed that fluctuations in energy spectra

are an order magnitude smaller in the inertial range but grow rapidly for small scales (kη > 0.3).

The fluctuations in the transfer spectra were found to be an order magnitude larger than the mean

in inertial range and become smaller with increase in wavenumber. We also showed that the en-

ergy transfer in inertial range is an imbalance between oscillating fluxes that vary in time at a

given wavenumber. The fast modes, that are instantaneously felt across all wavenumbers, are sig-

natures of significant non-local interactions in the energy transfer at a given scale in the inertial

range. Their effect is similar to reducing the Rλ, where a separation between scales is absent.

They appear to completely hide the local transfers which are only revealed in the slow modes at

Rλ ≥ 90. The scaling of fast fluctuations was shown to be consistent with recently proposed non-

equilibrium corrections to spectral quantities in turbulent flows. Fluctuations in the far dissipation

range (kη > 3) were independent of the inertial range and become increasingly so with increase in

Rλ. We found that the fast fluctuations emerged for Rλ > 10 and were completely synchronized

in time across all wavenumbers in far dissipation range, albeit still uncorrelated with large scales.

These results are important in modelling the dynamic interactions across scales, which are often

assumed to be highly local, in low-fidelity simulation and modelling approaches. For example,

equilbrium Smagorinsky models in large eddy simulations (LES) are unable to capture the non-

equilbrium fluctuations discussed in this section and often no time-lag is assumed for energy input
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at large-scales and dissipation at small scales which may lead to grossly incorrect prediction of

small-scale behavior such as subgrid scale stresses.

In section 4, we studied the time-averaged spectra of energy across scales up to Rλ ≈ 1000.

In the earlier section we showed that disparate scales can dynamically interact in incompressible

turbulence and therefore affect small scales. An important consequence of the widely assumed

cascade scenario is the complete similarity (meaning Rλ independent) of dissipation scales in the

energy spectrum. In this section we showed this conclusion is an artifact of limited resolution and

Reynolds number range. We demonstrate a systematic Rλ dependence of all resolved scales in the

energy spectrum up to Rλ ∼ 100. This has since been verified in experiments and simulations at

much higher-Rλ [159]. We showed that the predicted exponential roll-off in the dissipation range

of the spectrum is not unique across all wavenumbers. Near dissipation range (0.13 ≤ kη ≤ 3) had

different coefficients than far dissipation range (η > 6). The proposed form is not predicted by any

classical theories. The second exponential has been proposed but we showed that it was realized at

much higher wavenumbers than assumed. The multifractal scaling, which relaxes global invariance

in favor of local invariance, accounted for a better collapse in the near dissipation range. However,

it too does not collapse the spectra in far dissipation range. We note that the complicated spectrum

shape emerges for Rλ > 20 and persists at all Rλ measured in this dissertation and studies from

other groups withRλ up to an order magnitude larger than the ones considered here. Therefore, the

bi-exponential behavior is a feature of high-Rλ turbulence and it is first observed at Rλ ∼ O(10).

In section 5, we complement the spectral view of turbulence with measurements in physical

space. This allowed us to properly quantify the statistics of extreme fluctuations in fluid turbu-

lence. We did so by systematically studying the moments of velocity gradients up to order 10 with

different large scale forcing mechanisms. We showed that for a given quantity, e.g. moments of

longitudinal velocity gradients, the scaling exponents are independent of large scale forcing. We

also showed that scaling is established at Rλ ∼ O(10), in contrast with classical theories which

require the establishment of a wide inertial-range. The Rλ considered in this study are not large

enough to have any indication of the existence of an inertial range. We also showed that at low-Rλ,
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the statistics are Gaussian regardless of the forcing statistics. This allowed us to verify the general

applicability of the recently proposed theory by Yakhot & Donzis [60, 33] which predicts a phase

transition from Gaussian statistics to algebraic scaling, like the one observed here. We also showed

that the scaling exponents are different for different quantities e.g. longitudinal and transverse gra-

dients scale differently. We proposed that the transition-Rλ predicted by Yakhot & Donzis be

different for different quantities and in-fact verified that this modification is able to predict scaling

of transverse gradients as well. We also verified an important feature of the theory that high-order

moments of velocity gradients transition to algebraic scaling observed in fully developed turbu-

lence at a lower-Rλ than low-order statistics do. This means that turbulence is fully developed in

the most extreme fluctuations first, a result with important implications for developing low-order

turbulence models. An important consequence of these results is that high-Rλ features can be

studied using data from well resolved low to moderate Rλ which are computationally several order

magnitudes cheaper.

In section 6, we studied the transition from Gaussian to algebraic scaling as proposed by Yakhot

& Donzis within homogeneous and isotropic compressible turbulence. We showed that the statis-

tics of velocity gradients up to order 10 transition from a universal Gaussian state at low-Rλ to an

algebraic scaling beyondRλ ≈ 10. We showed that the scaling of longitudinal velocity gradients is

affected by shock-like structures distributed in the domain and therefore the scaling exponents are

dependent onMt for flows withMt > 0.35. This is consistent with previous literature which estab-

lished that compressibility effects become much stronger beyondMt ≈ 0.3−0.4. Below this limit,

the compressible flow component is largely determined by solenoidal motions. We also showed

that the scaling of transverse velocity gradients is independent of compressibility level and also

exhibit a transition to this scaling from a low-Rλ Gaussian state. We also studied the scaling of the

solenoidal and compressible components of the velocity field separately using Helmholtz decom-

position. We showed that the solenoidal field transitions and exhibits scaling which is consistent

with incompressible turbulence regardless of Mt. The solenoidal field is therefore insensitive to

the presence of shocks. The dilatational motions at highMt were shown to scale similar to Burgers
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turbulence therefore the scaling of velocity increments of compressible component of velocity in

the inertial range should exhibit saturation of scaling exponents. This has been observed in recent

work from other groups [71, 72]. We have however shown that similar to incompressible turbu-

lence, scaling emerges at very low-Rλ in compressible turbulence as well. In fact, the highest-Rλ

considered in this study is comparable to the lowest-Rλ in previous studies and is an order magni-

tude smaller than the highest-Rλ considered in other studies.

7.2 Summary

In summary, we have used highly resolved direct numerical simulations to recognize features

of high-Rλ fully developed turbulence and characterize the Rλ at which they emerge. We showed

that the classical Richardson-Kolmogorov cascade scenario is only exhibited by slow fluctuations

in energy transfer across scales. An important consequence of the classical cascade picture is that

energy transfers are local in scale. We, however, observed that the total transfer is dominated by fast

components which are instantaneously felt across all scales. We speculated that these modes are

signatures of non-local interactions. The fast modes emerge for flows with Rλ ≥ 10 and are fully

synchronized with each other in the dissipation range. An important consequence of a local cascade

is the complete self-similarity of small scales characterized using a global scale invariance. In the

past, this had been supported by the collapse of energy spectrum of turbulent velocity fluctuations

in dissipation range when the wavenumbers are normalized by the Kolmogorov scale η. We have

however shown that this conclusion is not valid. The energy spectrum in the dissipation range

exhibits a Rλ dependent behavior which is predicted by multifractal formalism by replacing the

global scale invariance with a local scale invariance. Therefore, a multiscale behavior was observed

even at the level of energy spectrum, a second order statistical moment of turbulent fluctuations.

Non-local interactions have also been proposed as an explanation for so-called anomalous scaling

of high-order statistics in fluid turbulence [160, 161]. Laval et al. demonstrated that the presence

of non-local interactions enhances the spectrum at small scales, in comparison to purely local

interactions, and lead to increased probability of extreme fluctuations in the system. Our results,

for energy spectrum and higher-order statistics, are qualitatively consistent with their results.
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In order to characterize extreme events and high-order statistics of velocity field in fluid turbu-

lence, we studied statistical moments of turbulent velocity fluctuations in physical space. Previous

evidence of anomalous scaling in incompressible turbulence was found in scaling of structure func-

tions in the inertial range, a feature of high-Rλ turbulence. Intermittency was therefore attributed

to high-Rλ only. Here we have shown that this view is misplaced and is a consequence of the use

of structure functions. In this work, we demonstrated that small scale intermittency emerges at

Rλ ∼ O(10) in velocity gradients. The scaling of velocity gradients at these low-Rλ has also been

shown to predict the scaling exponents in the inertial range, which exists only at much higher-Rλ

[33, 16]. Therefore we have shown that intermittency emerges atRλ more than an order magnitude

smaller than those required to observe an inertial range.

The accuracy of the measurements of scaling exponents critically depend on the width of the

scaling regime. Therefore, it is advisable to use statistics of velocity gradients (or dissipation, en-

strophy) to measure them as the scaling width increases linearly with increase inRλ. This is unlike

measurements made using structure functions where the scaling range is small and the increase in

width of scaling regime is extremely slow with increase in Rλ [26]. We have also shown that at

Rλ ≪ 10, the velocity gradients exhibit Gaussian statistics independent of large-scale forcing in

periodic domains. There is some early evidence from Rayleigh-Bernard turbulence that the low-Rλ

Gaussian asymptote may not fully generalize to flows with boundaries [144]. However, the scaling

exponents measured in Rayleigh-Bernard turbulence beyond the transition-Rλ are consistent with

those measured in period domains. More complex quantities dependent on velocity gradients, e.g.

dissipation and enstrophy, exhibit statistics dependent on the Gaussian state in the low-Rλ regime.

We also showed that similar conclusions are valid in compressible turbulence. Intermittency in the

gradients of solenoidal velocity field, up to order 10, of compressible turbulence is fully described

by incompressible turbulence. At high-Mt, statistics of the gradients of dilatational velocity field

exhibit scaling consistent with Burgers turbulence, which is dominated by randomly distributed

shock structures. Others have also shown that similar transitions from a low parameter Gaussian

state to algebraic scaling is exhibited by Burgers turbulence [157] and passive scalar mixing [156].
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We conclude by noting that when all the results in this thesis are taken together and in perspec-

tive, a new path towards understanding and modelling complex systems emerges. We speculate

that the transition to algebraic scaling from a Gaussian regime may be a general feature of spatio-

temporal chaotic systems that exhibit intermittent statistics at very high parameter values X with

X = Rλ, P e etc. dependent on the dissipative mechanism in the system. This has important impli-

cations for modelling extreme events in low-order models of turbulence. Thus far, most low-order

models would seek accurate scaling in low-order statistics only. Our results show that it must be

possible to develop models for very high-order statistics and their proper rescaling should provide

accurate results at low-orders. This of course is a novel direction in turbulence modelling and is

yet to be explored.

7.3 Future Directions

The scaling of intermittency is an active field of research in turbulence. Our work and that of

others has helped establish transition to scaling, scaling exponents of various quantities and their

agreement with different theories. However, multiple theories often make similar predictions up

to a given order. For example, scaling exponents of moments of velocity gradients predicted by

Yakhot & Donzis are measurably the same as that predicted by multifractal formalism up to order

14. Simply increasing the resolution of simulations is not enough to reliably measure exponents

at these high-orders. New statisitcal measurement methods that appreciate the large variance in

high-order moments need to be developed. These will allow us to to discriminate and assess the

accuracy of different theories. This is especially important now as the physics and underlying

dynamics of turbulence are vastly different in Yakhot’s theory and that of multifractal formalism.

Yakhot & Donzis predict that the transition-Rλ and scaling exponents are universal. We have

verified this but with important caveats. First, the transition-Rλ was measured with an unknown

multiplicative factor, which may depend on order of the moment and forcing, although the scaling

exponents across forcings are within statistical bounds. A direct measurement of the transition-

Rλ will alleviate this ambiguity and provide more confidence in the theory. Second, the universal

scaling and transition-Rλ are specific to a quantity. If different quantities scale differently and a
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clear relationship between the two is not available, one needs to address the notion of universality

itself and perhaps introduce the concept of universality classes in turbulence. We have empirically

identified the transition-Rλ for transverse gradients and shown that its use allows the calculation of

accurate scaling exponents as well. It is however not clear why a difference between longitudinal

and transverse fields must exist, although we have proposed a possible explanation based on pres-

sure effects. This has of course been discussed before, but needs to be reassessed in view of the

new theory. The theory also assumes stirring at the large scales. Energy input in real world flows

is however not limited to the largest scales. The effect of broadband forcing and forcing at small

scales on intermittency, scaling and universality must be addressed in the future. This is important

for guiding the development of low-order models for realistic flows and enabling the application

of this theory to flows with multi-physics effects such as chemical reactions at small-scales, multi-

scale heat release and atmospheric turbulence.

This dissertation and recent work has largely focussed on questions of scaling and their mea-

surement in turbulent flows. The new direction explored in this dissertation and proposed by

Yakhot & Donzis opens new questions about the transition to turbulence, beyond the traditional

method of analyzing the growth of specific flow instabilities. The details and the physics of the

transition from Gaussian to algebraic scaling were not analyzed in this work and remain unknown

at this stage. This phase of the flow needs to studied in further detail. It can potentially answer

important questions about the origins of intermittency. A parallel line of research has actively

been studying the transition to turbulence in pipe flows and places the transition within directed

percolation class [147, 15] in non-equilibrium statistical mechanics. Although qualitatively, and

in lay language, the transition in Yakhot & Donzis and this class of flows is similar and perhaps

describing the same physics. A connection, or lack thereof, between the two lines of research is an

important problem to pursue. If a connection exists, it may reveal the physics of transition within

velocity gradients.

Within compressible flows, we have only explored the emergence of scaling in solenoidally

forced turbulent flows. Real world flows can however have significant dilatational components
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in turbulent production. It is therefore important to characterize the effects of mixed solenoidal-

dilatational forcing on the universality and emergence of scaling in compressible turbulence. Ex-

treme events in turbulent flows can have significant effects on multi-physics processes such as

bubble breakup, clustering of particles, rates of chemical reactions etc. Quantifying the effects of

intermittency on these processes is an interesting and important topic for future research.

This dissertation and a significant amount of literature on intermittency and extreme events has

focussed on its statistical nature. Applications however also need important information about how

the dynamics evolve from state to state. The temporal dynamics of extreme events in turbulence is

therefore an important problem that remains unexplored. DNS will be of particular help with this

direction.

We conclude this work with a positive note regarding immediate and long-term prospects in

computational approaches and their utility in understanding turbulence physics. Significant ad-

vances have occurred in computing within the past few decades and we are less than a year away

from exascale computing. Therefore, a dearth of computational power is available. The new

direction of low-parameter simulations in this work provides an excellent opportunity to study

asymptotic regimes in turbulence and complex systems. The current generation of computing itself

provides enough resources to improve resolution for flows such as the ones described here and also

those with complicated geometry and physics (such as internal flows, combustion, magnetic fields

etc.). These simulations may be enough to characterize the physics and allow us to understand

the physics at realistic conditions. Recent advances in data-driven computing and its application

to parameterization of extreme events in complex systems may allow us to use the high-resolution

simulations to further reduce and (or) characterize uncertainty in simulation outputs furthering

their wide-spread adoption.
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