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ABSTRACT

Many physical systems have underlying safety or capacity considerations that require that the

control policy employed ensures the satisfaction of a set of constraints. For instance, in a data

network, in addition to maximizing the utility of the users, the controller has to maintain necessary

link capacities constraints. Such systems can often be modeled as a constrained Markov Decision

Process (CMDP), but the model itself might have unknown or rapidly changing system parameters,

which calls for a learning-based solution approach.

Our goal in this thesis is to develop Reinforcement Learning (RL) algorithms to learn a generic

CMDP problem, and explore applicatiosn to communication networks. Here, our goal is to char-

acterize the relationship between constraints and the number of samples needed to ensure a desired

level of accuracy. We explore two classes of algorithms, (i) algorithms based on Linear Program-

ming (LP), (ii) algorithms based on a Lagrangian approach. Each of these classes is divided into

two sub-classes according to sample collection process. On the one hand, we may collect samples

uniformly across state-action pairs, and then develop a control policy based on these samples—

called the generative model based approach. On the other hand, we may collect samples in an

online manner by applying a policy on the system, and then continually refining the policy as

more samples become available—called the online learning approach. We characterize the sample

complexity of the algorithms following both these approaches to obtain near-optimal policies.

We then consider the question of CMDPs in the context of data networks. We desire to solve

the problem of serving real-time flows over a multi-hop wireless network. Each flow is composed

of packets that have strict deadlines, and the goal is to maximize the weighted timely throughput

of the system. Consistent with recent developments using mm-wave communications, we assume

that the links are directional, but are lossy, and have unknown probabilities of successful packet

transmission. An average link utilization budget constrains the system. The problem thus takes the

form of a CMDP with an unknown transition kernel, and we develop new algorithms well suited

for data network problems using the insights of RL algorithms for generic CMDPs.
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1. INTRODUCTION

Many physical systems have underlying safety considerations that require that the control pol-

icy employed ensures the satisfaction of a set of constraints. These constraints might take range

from per-packet deadline guarantees in a communication system, to the need to ensure that cars do

not hit each other in an autonomous platoon. Often, the system of interest can be modeled as a con-

strained Markov Decision Process (CMDP), but the model itself might have unknown or rapidly

changing system parameters. Thus, conventional control approaches are not attractive and rein-

forcement learning (RL) is called for. In other cases, the model might be well defined, but many

interacting systems, such as autonomous vehicles might render the system complex. Our focus in

this thesis is to develop control algorithms for networked systems that require the satisfaction of

constraints for their safe and efficient operation.

In chapters 2, 3 and 4, we focus on the case where the CMDP is unknown, and RL algorithms

obtain samples to discover the model and compute an optimal constrained policy. Our goal is

to characterize the relationship between safety constraints and the number of samples needed to

ensure a desired level of accuracy—both objective maximization and constraint satisfaction—in

a PAC sense. We explore two classes of RL algorithms, namely, (i) a generative model based

approach, wherein samples are taken initially to estimate a model, and (ii) an online approach,

wherein the model is updated as samples are obtained. In chapter 2 and 3 we solely focus on

reducing the sample complexity for infinite-horizon and finite-horizon CMDPs respectively. How-

ever, in chapter 4 we concentrate on computationally efficient algorithms with cost of sample

complexity. Our main finding in these chapters is that compared to the best known bounds of the

unconstrained regime, the sample complexity of constrained RL algorithms are increased by a fac-

tor that is logarithmic in the number of constraints, which suggests that the approach may be easily

utilized in real systems.

We next take up the problem of constrained decision making in data networks. In chapter 5,

we study the problem of broadcasting real-time flows in multi-hop wireless networks. We consider
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that each packet has a stringent deadline, and each node in the network obtains some utility based

on the number of packets delivered to it on time for each flow. We propose a distributed protocol,

the delegated-set routing (DSR) protocol, that incurs virtually no overhead of coordination among

nodes. We also develop distributed algorithms that aim to maximize the total system utility under

DSR. The utility of our DSR protocol and distributed algorithms are demonstrated by both theoret-

ical analysis and simulation results, where we show that our algorithms achieve better performance

even when compared against centralized throughput optimal policies.

Finally, in chapter 6, we bring together the constrained network optimization and constrained

RL approaches in the context of serving real-time flows over a multi-hop wireless network. Each

flow is composed of packets that have strict deadlines, and the goal is to maximize the weighted

timely throughput of the system. Consistent with recent developments using mm-wave communi-

cations, we assume that the links are directional, but are lossy, and have unknown probabilities of

successful packet transmission. An average link utilization budget (similar to a power constraint)

constrains the system. We pose the problem in the form of a CMDP with an unknown transition

kernel. We use a duality approach to decompose the problem into an inner unconstrained MDP

with link usage costs, and an outer link-cost update step. For the inner MDP, we develop model-

based reinforcement learning algorithms that sample links by sending packets to learn the link

statistics. While the first algorithm type samples links at will at the beginning and constructs the

model, the second type is an online approach that can only use packets from flows to sample links

that they traverse. The approach to the outer problem follows gradient descent. We characterize

the sample complexity (number of packets transmitted) to obtain near-optimal policies, to show

that a basic online approach has a poorer sample complexity bound, it can be modified to obtain

an online algorithm that has excellent empirical performance.
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2. LEARNING WITH SAFETY CONSTRAINTS: SAMPLE COMPLEXITY OF

REINFORCEMENT LEARNING FOR CONSTRAINED MDPs∗

2.1 Introduction

Markov Decision Processes (MDPs) are used to model a variety of systems for which stationary

control policies are appropriate. In many cyber-physical systems (algorithmically controlled phys-

ical systems) restrictions may be placed on functions of the probability with which states may be

visited. For example, in power systems, the frequency must be kept within tolerable limits, and al-

lowing it to go outside these tolerances often might be unsafe. Similarly, in communication systems

the number of transmissions that may be made in a time interval is limited by an average radiated

power constraint due to interference and human safety considerations. The number of constraints

can be large, since they can represent physical limitations (e.g., communication or transmission

link capacities), performance requirements (per-flow packet delays, tolerable frequencies) and so

on. The Constrained-MDP (CMDP) framework is used to model such circumstances [4].

In this chapter, our objective is to design simple algorithms to solve CMDP problems under

an unknown model. Whereas the goal of a typical model-based RL approach would take as few

samples as possible to quickly determine the optimal policy, minimizing the number of samples

taken is even more important in the CMDP setting. This because constraints are violated during

the learning process, and it might be critical to keep the number of such violations as low as

possible due to safety considerations mentioned earlier, and yet ensure that the system objectives

are maximized. Hence, determining how the joint metrics of objective maximization and safety

violation evolve over time as the model becomes more and more accurate is crucial to understand

the efficacy of a proposed RL algorithm for CMDPs.

Main Contributions: Our goal is to analyze the sample complexity of solving CMDPs to a

desired accuracy with a high probability in both objective and constraints in the context of finite

horizon (episodic) problems. We focus on two figures of merit pertaining to objective maximiza-

∗Reprinted with permission from [1].
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tion and constraint satisfaction in a probably-approximately-correct (PAC) sense.

Our main contributions are as follows:

(i) We develop two model-based algorithms, namely, (i) a generative approach that obtains samples

initially then creates a model, and (ii) an online approach in which the model is updated as time

proceeds. In both cases, the estimated model might have no solution, and we utilize a confidence-

ball around the estimate to ensure that a solution may be found with high probability (assuming

that the real model has a solution).

(ii) The algorithms follow the general pattern of model construction or update, followed by a so-

lution using linear programming (LP) of the CMDP generated in this manner, with the addendum

that the LP is extended to account for the fact that a search is made over the entire ball of models

given the current samples. This procedure not only contributes to optimism as [5], but also guar-

antees feasibility of the solution.

(iii) We develop PAC-type sample complexity bounds for both algorithms, accounting for both ob-

jective maximization and constraint satisfaction. The general intuition is that the model accuracy

should be higher than in the unconstrained case and, our main finding agrees with this intuition.

Furthermore, comparing our main results with lower bounds on sample complexity of MDPs [6, 7],

we discover that the increase in the sample complexity is by a logarithmic factor in the number of

constraints and a size of state space. However, there are no lower bound results for CMDPs to the

best of our knowledge.

As mentioned above, the number of constraints in cyber-physical systems can be large. Our

result indicating logarithmic scaling with the number of constraints indicates that the number of

constraints is not a major concern in solving unknown CMDPs via RL, hence indicating that the

practicality of applying the constrained RL approach to cyber-physical systems applications.

Related Work: Much work in the space of CMDP has been driven by problems of control,

and many of the algorithmic approaches and applications have taken a control-theoretic view [4,

8, 9, 10, 11, 12]. The approach taken is to study the problem under a known model, and showing

asymptotic convergence of the solution method proposed. There are also studies on constrained
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partially observable MDPs such as [13, 14]. Both of these works propose algorithms based on

value iteration requiring solving linear program or constrained quadratic program.

Extending CMDP approaches to the context on an unknown model has also mostly focused on

asymptotic convergence [15, 16, 17, 18] under Lagrangian methods to show zero eventual duality

gap. [19] also proposes an algorithm based on Lagrangian method, but proves that this algorithm

achieves a small eventual gap. On the other hand empirical works built on Lagrangian method has

also been proposed [20].

A parallel theme has been related to the constrained bandit case, wherein the the underlying

problem, while not directly being an MDP, bears a strong relation to it. Work such as [21, 22, 23]

consider such constraints, either in a knapsack sense, or on the type of controls that may be applied

in a linear bandit context.

Closest to our theme are parallel works on CMDPs. For instance, [24] and [25] present re-

sults in the context of unknown reward functions, with either a known stochastic or deterministic

transition kernel. Other work [26] focuses on asymptotic convergence, and so does not provide

an estimate on the learning rate. Finally, [5] explores algorithms and themes similar to ours, but

focuses on characterizing objective and constrained regret under different flavors of online algo-

rithms, which can be seen as complementary to or work. Since there is no direct relation between

regret and sample complexity [27], applying their regret approach to our setting gives relatively

weak sample complexity bounds. Our discovery of a general principle of logarithmic increase in

sample complexity with the number of constraints also distinguishes our work.

2.2 Notation and Problem Formulation

Notation and Setup: We consider a general finite-horizon CMDP formulation. There are

a set of states S and set of actions A. The reward matrix is denoted by r, under which r(s, a)

is the reward for any state-action pair (s, a). We assume that there are N constraints. We use c

to denote the cost matrix, where c(i, s, a) is the immediate cost incurred by the ith constraint in

(s, a) where i ∈ {1, . . . , N}. Also, the vector C̄ is used to denote the value of the constraints

(i.e., the bound that must be satisfied). The probability of reaching another state s′ while being at
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state s and taking action a is determined by transition kernel P (s′|s, a). At the beginning of each

horizon, we begin from a fixed initial state s0. As the CMDP has a finite horizon, the length of

each horizon, or episode, is considered to be a fixed value H. Hence, the CMDP is defined by the

tuple M = 〈S,A, P, r, c, C̄, s0, H〉.

Assumption 1. We assume S and A are finite sets with cardinalities |S| and |A|. Further, we

assume that the immediate reward r(s, a) is taken from the interval [0, 1] and immediate cost

lies in [0, 1]. We also make an assumption that there are N constraints which for each i ∈

{1, . . . , N}, C̄i ∈ [0, C̄max].

Next, to choose an action from A at time-step h, we define a policy π as a mapping from state-

action space S×A to set of probability vectors defined over action space, i.e. π : S×A→ [0, 1]|A|.

So π(s, ·, h) is a probability vector over A at time-step h. Also, a ∼ π(s, ·, h) means that action a

is chosen according to policy π while being at state s at time-step h.

When policy π is fixed, the underlying Markov Decision Process turns into a Markov chain.

The transition kernel of this Markov chain is Pπ, which can be viewed as an operator. The operator

Pπf(s) = E[f(sh+1)|sh = s] =
∑

s′∈S Pπ(s′|s)f(s′) takes any function f : S → R and returns

the expected value of f in the next time step. For convenience, we define the multi-step version

P h
π f(s) = PπPπ . . . Pπf, which is repeated h times. Further, we define P−1

π and P 0
π as the identity

operator.

We consider cumulative finite horizon criteria for both the objective function and the constraint

functions with identical horizon H. We define the value function of state s at time-step t under

policy π as

V π
t (s) = E[

H−1∑
h=t

r(sh, ah); ah ∼ π(sh, ·, h), st = s], (2.1)

where action ah is chosen according to policy π and expectation E[.] is taken w.r.t transition kernel

P. Then, the local variance of the value function at time step h under policy π is

σπ
2

h (s) = E[(V π
h+1(sh+1)− PπV π

h+1(s))2]. (2.2)
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Similar to the definition of the value function (3.1), the ith constraint function at time t under

policy π is formulated as

Cπ
i,t(s) = E[

H−1∑
h=t

c(i, sh, ah); at ∼ π(sh, ·, h), st = s]. (2.3)

Again, the local variance of ith constraint function at time-step h under policy π, i.e. σπ2

i,h is defined

similar to local variance of value function (4.2).

Finally, the general finite-horizon CMDP problem is

max
π

V π
0 (s0) s.t. Cπ

i,0(s0) ≤ C̄i, ∀i ∈ {1, . . . , N}. (2.4)

Assumption 2. We assume that there exists some policy π that satisfies the constraints in (3.4).

Hence, this CMDP problem is feasible with optimal policy π∗ and optimal solution V ∗0 (s0) =

V π∗
0 (s0).

Note that we only consider learning feasible CMDPs, since otherwise no algorithm would be

able to discover an optimal policy satisfying constraints.

Constrained-RL Problem: The Constrained RL problem formulation is identical to the CMDP

optimization problem of (3.4), but without being aware of values of transition kernel P.† Our goal

is to provide model-based algorithms and determine the sample complexity results in a PAC sense,

which is defined as follows:

Definition 1. For an algorithm A, sample complexity is the number of samples that A requires to

achieve

P
(
V A0 (s0) ≥ V π∗

0 (s0)− ε and

CAi,0(s0) ≤ C̄i + ε ∀i ∈ {1, . . . , N}
)
≥ 1− δ

†We only assume that transition kernel is unknown and the extension to unknown reward and cost matrices is
straightforward, and does not require additional methodology.
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for a given ε and δ.

Note that this definition includes both objective maximization and constraint violations, as

opposed to a traditional definition that only considers the objective [28].

2.3 Sample Complexity Result of Generative Model Based Learning

In this section, we introduce a generative model based CMDP learning algorithm called Opti-

mistic Generative Model Based Learning, or Optimistic-GMBL. According to Optimistic-GMBL,

we sample each state-action pair n number of times uniformly across all state-action pairs, count

the number of times each transition occurs n(s′, s, a) for each next state s′, and construct an empir-

ical model of transition kernel denoted by P̂ (s′|s, a) = n(s′,s,a)
n
∀(s′, s, a). Then Optimistic-GMBL

creates a class of CMDPs using the empirical model. This class is denoted byMδP and contains

CMDPs with identical reward, cost matrices, C̄, initial state s0 and horizon of the true CMDP, but

with transition kernels close to true model. This class of CMDPs is defined as

MδP := {M ′ : r′(s, a) = r(s, a), (2.5)

c′(i, s, a) = c(i, s, a), H ′ = H, s′0 = s0

|P ′(s′|s, a)− P̂ (s′|s, a)| ≤ (2.6)

min
(√2P̂ (s′|s, a)(1− P̂ (s′|s, a))

n
log

4

δP
+

2

3n
log

4

δP
,√

log 4/δP
2n

)
∀s, a, s′, i},

where δP is defined in Algorithm 1. For any M ′ ∈ M, objective function V ′π0 (s0) and cost func-

tions C ′πi,0(s0) are computed w.r.t. the corresponding transition kernel P ′ according to equations

(3.1) and (3.3) respectively.

Finally, Optimistic-GMBL maximizes the objective function among all possible transition ker-

nels, while satisfying constraints (if feasible). More specifically, it solves the optimistic planning
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problem below

max
π,M ′∈MδP

V
′π

0 (s0) s.t. C
′π
i,0(s0) ≤ C̄i ∀i. (2.7)

Optimistic-GMBL uses Extended Linear Programming, or ELP, to solve the problem of (6.33).

This method inputsMδP and outputs π̃ for the optimal solution. The description of ELP is provided

in supplementary materials. Algorithm 1 describes Optimistic-GMBL.

Algorithm 1 Optimistic-GMBL
1: Input: accuracy ε and failure tolerance δ.
2: Set δP = δ

12(N+2)|S|2|A|H .

3: Set n(s′, s, a) = 0 ∀(s, a, s′).
4: for each (s, a) ∈ S × A do
5: Sample (s, a), n = 256

ε2
|S|H3 log 12(N+2)|S||A|H

δ
and update n(s′, s, a).

6: P̂ (s′|s, a) = n(s′,s,a)
n
∀s′.

7: ConstructMδP according to (4.21).
8: Output π̃ = ELP(MδP ).

2.3.1 PAC Analysis of Optimistic-GMBL

Here, we present the sample complexity result of Optimistic-GMBL. Time complexity result

and analysis will be provided in Supplementary materials.

Theorem 1. Consider any finite-horizon CMDP M = 〈S,A, P, r, c, C̄, s0, H〉 satisfying assump-

tions 3 and 4, and CMDP problem formulation of (3.4). Then, for any ε ∈ (0, 2
9

√
H
|S|) and

δ ∈ (0, 1), algorithm 1 creates a model CMDP M̃ = 〈S,A, P̃ , r, c, C̄, s0, H〉 and outputs pol-

icy π̃ such that

P(V π̃
0 (s0) ≥ V π∗

0 (s0)− ε and

C π̃
i,0(s0) ≤ C̄i + ε ∀i ∈ {1, 2, . . . , N}) ≥ 1− δ,
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with at least total sampling budget of

256

ε2
|S|2|A|H3 log

12(N + 2)|S||A|H
δ

.

The proof of Theorem 12 differs from the traditional analysis framework of unconstrained

RL [6] in the following manner. First, is the role played by optimism in model construction.

The notion of optimism is not required for learning unconstrained MDPs with generative models,

because any estimated model is always feasible [29]. However, there is no such guarantee for any

general CMDP problem formulation [4]. Specifically, simply substituting the true kernel P by

the estimated one P̂ is not appropriate, since there is no assurance of feasibility of that problem.

Hence, Optimistic-GMBL converts the CMDP problem under the estimated transition kernel to an

optimistic planning problem (6.33) and an ELP-based solution.

Second, the core of the analysis of every unconstrained MDP is based on being able to charac-

terize the optimal policy via the Bellman operator. This technique enables one to obtain a sample

complexity that scales with the size of the state space as O(|S|). However, we cannot use this ap-

proach to characterize the optimal policy in a CMDP [4]. We require a uniform PAC result over

set of all policies and set of value and constraint functions, which in turn leads to O(|S|2 log |S|)

sample complexity in the size of state space.

Corollary 1. In case of N = 0, the problem would become regular unconstrained MDP. And, the

sample complexity result with N = 0 would also hold for unconstrained case.

Now, we present some of the lemmas that are essential to prove Theorem 12. Then we sketch

the proof of this theorem. The detailed proofs are provided in supplementary materials.

First, we show that true CMDP lies inside theMδP with high probability, w.h.p. So, the prob-

lem (6.33) would be feasible w.h.p., since the original CMDP problem is assumed to be feasible

according to Assumption 4.
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Lemma 1.

P(M ∈MδP ) ≥ 1− |S|2|A|δP .

Proof Sketch: Fix a state-action pair (s, a) and next state s′. Then, according to combination

of Hoefding’s inequality [30] and empirical Bernstein’s inequality [31], we get that each P (s′|s, a)

is inside the confidence set defined by (6.32) with probability at least 1 − δP . Applying the union

bound yields the result. �

Now, we present the core lemma required for proving Theorem 12 and its proof sketch. Using

this lemma, we bound the mismatch in objective and constraint functions when we have n number

of samples from each (s, a). This bound applies uniformly over the set of policies and set of value

and constraint functions. The result also enables us to bound the objective and constraint functions

individually. Then we apply union bound on all objective and constraint functions. This process is

the reason why the number of constraints appear logarithmically in the sample complexity result.

Lemma 2. Let δP ∈ (0, 1). Then, if n ≥ 2592|S|2H2 log 4/δP , under any policy π

‖V π
0 − Ṽ π

0 ‖∞ ≤
√

128|S|H3 log 4/δP
n

w.p. at least 1− 3|S|2|A|HδP , and for any i ∈ {1, . . . , N},

‖Cπ
i,0 − C̃π

i,0‖∞ ≤
√

128|S|H3 log 4/δP
n

w.p. at least 1− 3|S|2|A|HδP .

Proof Sketch: We first show that |P̃ (s′|s, a)− P (s′|s, a)| ≤ O(
√

P (s′|s,a)(1−P (s′|s,a))
n

) for each

s′, s, a. Then, we show that at each time-step h, (Pπ − P̃π)V π
h (s) ≤ O(

√
|S|
n
σπh(s)). Applying this

bound to |Ṽ π
0 (s0) − V π

0 (s0)| and from the fact that σπh(s) is close to σ̃πh(s) by
√
|S|H2

n1/4 , we obtain

the result. This procedure is also applicable to each constraint function i. �
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Proof Sketch of Theorem 12: From Lemma 6, we know that the optimistic planning problem

(6.33) is feasible w.h.p. Hence, we can obtain an optimistic policy π̃. The rest of this proof consists

of two major parts.

First, we prove ε−optimality of objective function w.h.p. Considering policy π∗ we obtain

|V π∗
0 (s0)− Ṽ π∗

0 (s0)| ≤ O(
√
|S|H3

n
) w.h.p. by means of Lemma 28. Similarly, |V π̃

0 (s0)− Ṽ π̃
0 (s0)| ≤

O(
√
|S|H3

n
) w.h.p. Next, we use the fact that Ṽ π∗

0 (s0) ≤ Ṽ π̃
0 (s0) and obtain

V π̃
0 (s0) ≥ V π∗

0 (s0)−O(

√
|S|H3

n
).

Next, we show that each constraint is violated at most by ε w.h.p. Here, we use the second part

of Lemma 28 to bound constraint violation. Thus, for each i ∈ {1, . . . , N} we have |C π̃
i,0(s0) −

C̃ π̃
i,0(s0)| ≤ O(

√
|S|H3

n
) w.h.p. Also, we know that C̃ π̃

i,0(s0) ≤ C̄i, since π̃ is solution of the ELP.

Hence, we obtain

C π̃
i,0(s0) ≤ C̄i +O(

√
|S|H3

n
)

w.h.p. Finally, we obtain the end result by applying the union bound, and obtaining n by solving

ε = O(
√
|S|H3

n
). �

2.4 Sample Complexity Result of Online Learning

The Optimistic-GMBL approach requires that every state-action pair in the system be sampled

a certain number of times before a policy is computed. However, many applications may not be

able to utilize this approach since it may not be possible to reach those states without the application

of some policy, or they might be unsafe and so should not be sampled often. Hence, we need an

approach that can collect samples from the environment by means of an online algorithm.

Online Constrained-RL, or Online-CRL described in Algorithm 8, is an online method pro-

ceeding in episodes with length H. At the beginning of each episode k, Online-CRL constructs

an empirical model P̂ according to state-action visitation frequencies, i.e., P̂ (s′|s, a) = n(s′,s,a)
n(s,a)

,
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where n(s′, s, a) and n(s, a) are visitation frequencies. This empirical model P̂ induces a set of

finite-horizon CMDPsMk which any CMDP M ′ ∈Mk has identical horizon and reward and cost

matrices. However, for any (s, a) ∈ S × A and s′ ∈ S, P ′(s′|s, a) lies inside a confidence interval

induced by P̂ . To construct a confidence interval for any element of P ′(s′|s, a), we use identical

concentration inequalities to Optimistic GMBL as defined by (6.32). The only difference is the use

of n(s, a) instead of n. Thus the class of CMPDs is defined as below at each episode k :

Mk := {M ′ : r′(s, a) = r(s, a),

c′(i, s, a) = c(i, s, a), H ′ = H, s′0 = s0

|P ′(s′|s, a)− P̂ (s′|s, a)| ≤

min
(√2P̂ (s′|s, a)(1− P̂ (s′|s, a))

n(s, a)
log

4

δ1

+
2

3n(s, a)
log

4

δ1

,

√
log 4/δ1

2n(s, a)

)
∀s, s′, a, i},

(2.8)

where δ1 is defined in Algorithm 8.

Next, we use ELP to obtain an optimistic policy π̃k, which is the solution of optimistic CMDP

problem below:

max
π,M ′∈Mk

V
′π

0 (s0) s.t. C
′π
i,0(s0) ≤ C̄i ∀ i.

This problem is exactly the same as problem of (6.33), except for substitutingMδP withMk.

Here, for any M ′ ∈ Mk, V
′π

0 (s0) and C ′πi,0(s0) are computed according to (3.1) and (3.3) w.r.t.

underlying transition kernel P ′, respectively.

This algorithm draws inspiration from the infinite-horizon algorithm UCRL−γ [32] and its

finite-horizon counterpart UCFH [7] with several differences. Unlike UCRL-γ and UCFH, Al-

gorithm 8 updates the model at the beginning of each episode, which allows for faster model

construction. Also, since we desire a policy that pertains to a CMDP using an linear programming

approach [4], we must ensure that all constraints are linear. Hence, unlike UCFH, Algorithm 8
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Algorithm 2 Online-CRL
1: Input: accuracy ε and failure tolerance δ.
2: Set k = 1, wmin = ε

4H|S| , Umax = |S|2|A|m, δ1 = δ
4(N+1)|S|Umax

.
3: Set m according to (6.35) and (6.36).
4: Set n(s, a) = n(s′, s, a) = 0 ∀s, s′ ∈ S, a ∈ A.
5: while there is (s, a) with n(s, a) < |S|mH do
6: P̂ (s′|s, a) = n(s′,s,a)

n(s,a)
∀(s, a) with n(s, a) > 0 and s′ ∈ S.

7: ConstructMk according to (6.31).
8: π̃k = ELP(Mk).
9: for t = 1, . . . , H do

10: at ∼ π̃k(st), st+1 ∼ P (·|st, at), n(st, at) + +, n(st+1, st, at) + +.
11: k + +

utilizes a combination of the empirical Bernstein’s and Hoeffding’s inequalities, which allows us

to ensure linearity of constraints (i.e., we can indeed use an extended linear program to solve for

the constrained optimistic policy). However, the constraints of UCFH are non-linear and require

the use of extended value iteration coupled with a complex sub-routine, which cannot be utilized in

the constrained RL case. Thus, we are able to obtain strong bounds on sample complexity similar

to UCFH, but yet ensure that the solution approach only uses a linear program.

2.4.1 PAC Analysis of Online-CRL

We now present the PAC bound of Algorithm 8.

Theorem 2. Consider CMDP M = 〈S,A, r, c, C̄, s0, H〉 satisfying assumptions 3 and 4. For any

0 < ε, δ < 1, under Online-CRL we have:

P(V π̃k
0 (s0) ≥ V π∗

0 (s0)− ε and

C π̃k
i,0(s0) ≤ C̄i + ε ∀i ∈ {1, 2, . . . , N}) ≥ 1− δ,

for all but at most

Õ(
|S|2|A|H2

ε2
log

N + 1

δ
)
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episodes.

To prove Theorem 13, we follow an approach motivated by [32] and its finite-horizon version

[7]. However, there are several differences in our technique. As mentioned above, one of the

differences is with regard to restricting ourselves to only linear concentration inequalities. We will

show that excluding non-linear concentration inequalities pertaining to variance does not increase

the sample complexity, and utilizing the fact that the number of successor states is less that |S|

leads to matching sample complexity in terms of |S| with the UCFH algorithm. Furthermore, we

are able to show that, unlike existing approaches, we can update the model at each episode, again

without increasing the sample complexity. Thus, we are able to obtain PAC bounds that match the

unconstrained case, and only increase by logarithmic factor with the number of constraints.

There are also recent results on characterizing the regret of constrained-RL [5] while using an

algorithm reminiscent of Algorithm 8, and the question arises as to whether one can immediately

translate these regret results into sample complexity bounds? However, regret and sample com-

plexity results do not directly follow from one another [27], and following the [5] approach gives

a PAC result Õ( |S|
2|A|H4

ε2
), which is looser than our result by a factor of H2. Thus, this alternative

option does not provide the strong bounds that we are able to obtain to match existing PAC results

of the unconstrained case.

Now, we introduce the notions of knownness and importance for state-action pairs and base our

proof on these notions. Then we present the key lemmas required to prove Theorem 13. Finally,

we sketch the proof of Theorem 13. The detailed analysis is provided in supplementary materials.

Let the weight of (s, a)−pair in an episode k under policy π̃k be its expected frequency in that

episode

wk(s, a) :=
H−1∑
h=0

P(sh = s, a ∼ π̃k(sh, ·, h))

=
H−1∑
h=0

P h−1
π̃k

I{s = ·, a ∼ π̃k(s, ·, h)}(s0).

15



Then, the importance ιk of (s, a) at episode k is defined as its relative weight compared to

wmin := ε
4H|S| on a log-scale

ιk(s, a) := min{zj : zj ≥
wk(s, a)

wmin

}

where z1 = 0 and zj = 2j−2 ∀j = 2, 3, . . . .

Note that ιk(s, a) ∈ {0, 1, 2, 4, 8, 16, . . . } is an integer indicating the influence of the state-

action pair on the value function of π̃k. Similarly, we define knownness as

κk(s, a) := max{zi : zi ≤
nk(s, a)

mwk(s, a)
} ∈ {0, 1, 2, 4, . . . },

which indicates how often (s, a) has been observed relative to its importance. Value ofm is defined

in Algorithm 8. Now, we can categorize (s, a)−pairs into subsets

Xk,κ,ι := {(s, a) ∈ Xk : κk(s, a) = κ, ιk(s, a) = ι}

and X̄k = S × A \Xk,

where Xk = {(s, a) : ιk(s, a) > 0} is the active set and X̄k is the set of (s, a)−pairs that are very

unlikely under policy π̃k. We will show that if |Xk,κ,ι| ≤ κ is satisfied, then the model of Online-

CRL would achieve near-optimality while violating constraints at most by ε w.h.p. This condition

indicates that important state-action pairs under policy π̃k are visited a sufficiently large number of

times. Hence, the model of Online-CRL will be accurate enough to obtain PAC bounds.

Now, first we show that true model belongs toMk for every episode k w.h.p.

Lemma 3. M ∈Mk for all episodes k with probability at least 1− δ
2(N+1)

.

Proof Sketch: Fix a (s, a), next state s′ and an episode k. Then, P (s′|s, a) lies inside the

confidence set constructed by the combined Bernstein’s and Hoeffding’s inequalities. Taking the

union bound over maximum number of model updates, Umax, and next states would yield the result.
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Next, we bound the number of episodes that the condition |Xk,κ,ι| ≤ κ is violated w.h.p.

Lemma 4. Suppose E is the number of episodes k for which there are κ and ι with |Xk,κ,ι| > κ,

i.e. E =
∑∞

k=1 I{∃(κ, ι) : |Xk,κ,ι| > κ} and let

m ≥ 6H2

ε
log

2(N + 1)Emax

δ
, (2.9)

where Emax = log2
H

wmin
log2 |S|. Then, P(E ≤ 6|S||A|mEmax) ≥ 1− δ

2(N+1)
.

Proof sketch: The proof of this lemma is divided into two stages. First, we provide a bound

on the total number of times a fixed (s, a) could be observed in a particular Xk,κ,ι in all episodes.

Then, we present a high probability bound on the number of episodes that |Xk,κ,ι| > κ for a fixed

(κ, ι). Finally, we obtain the result by means of martingale concentration and union bound. �

Finally, the next lemma provides a bound on the mismatch between objective and constraint

functions of the optimistic model and true model. The role of this lemma is similar to Lemma 28 for

Optimistic-GMBL. It provides a PAC result, which is uniform over value and constraint functions.

Hence, it is possible to have individual PAC results for any objective and constraint functions. As

discussed in the context of Optimistic-GMBL, this process is responsible for a logN increase in

the sample complexity result.

Lemma 5. Assume M ∈Mk. If |Xk,κ,ι| ≤ κ for all (κ, ι) and 0 < ε ≤ 1 and

m = 1280
|S|H2

ε2
(log2 log2H)2 log2

2

(8|S|2H2

ε

)
log

4

δ1

, (2.10)

then |Ṽ π̃k
0 (s0)− V π̃k

0 (s0)| ≤ ε and for any i, |C̃ π̃k
i,0(s0)− C π̃k

i,0(s0)| ≤ ε.

Proof Sketch: We first use algebraic operations to obtain |P̃ (s′|s, a)− P (s′|s, a)| ≤

O(
√

P (s′|s,a)(1−P (s′|s,a))
n

) for each s′, s, a. Then we show that at each time-step h, (Pπ−P̃π)V π
h (s) ≤

O(
√
|S|
n
σπh(s)). Then we divide the state-action based on knownness, i.e., whether they belong to

17



Xk or not. By applying all bounds and using the fact that σπh(s) is close to σ̃πh(s) by
√
|S|H2

n1/4 , we

obtain a bound on |Ṽ π
0 (s0)− V π

0 (s0)|. Eventually, we use the definition of weights to get the final

result. This procedure is also applicable to each constraint function i. �

Proof Sketch of Theorem 13: First, we apply Lemma 30 and show that M ∈ Mk for every

k w.p. at least 1 − δ
2(N+1)

. Therefore, the optimistic planning problem would be feasible and an

optimistic policy π̃k exists w.h.p. Furthermore, we bound the number of episodes where |Xk,κ,ι| >

κ w.h.p. by means of Lemma 33. Thus, for other episodes where |Xk,κ,ι| ≤ κ, we show that

objective function is ε−optimal and all constraint functions are violated by ε by applying Lemma

35. Eventually, taking union bound yields the result. �

2.5 Experimental Results

We conduct experiments on CMDPs akin to a grid world MDP, wherein each square indicates

the location of the agent. The goal of the is to start at the fixed start state and reach the final state

in H steps. The agent obtains a reward of 1 when reaching the goal. Transitions are stochastic, and

given any action, there is probability of self and other transitions, as well as transitioning to other

state as intended by the action. We consider two classes of CMDPs under this setting, namely,

(i) state occupancy constraints, and (ii) action frequency constraints, which represent the types of

constraints that might appear in real systems.

For the first scenario class, we augment the unconstrained MDP by an action budget constraint.

We restrict the number of moves to the right, while ensuring that a feasible path to the goal exists.

Here, we consider a 3× 3 and 5× 5 grid as examples, with 9 state states and 25 states respectively,

and with 4 actions. The 3× 3 and 5× 5 examples are labeled as scenario 1a and scenario 1b.

In the second scenario class, we consider a 3 × 3 grid world with a particular state is “bad”

for the CMDP, so the agent must avoid entering it frequently or at all. The bad state has higher

probability of transitioning out of itself compared to the rest of the states. But, if the agent enters

this state, a cost is levied. Thus, the constraint is to limit the probability of entering the bad state,

and to set the constraint threshold to 0. This means that the optimal policy for CMDP is to avoid
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Figure 2.1: Value Difference for Scenario
1a. Reprinted with permission from [1]
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Figure 2.2: Constraint Violation for Sce-
nario 1a. Reprinted with permission from
[1]

the bad state altogether. This process is equivalent to incurring an immediate cost of 1 when the

agent finds itself in the bad state.

We simulate Optimistic-GMBL and Online-CRL for these scenarios. Here, we consider two

performance metrics. One, difference in value function calculated by

V π∗

0 (s0)− V π′

0 (s0).

where π′ is whether Optimistic-GMBL or Online-CRL. The second performance metric is con-

straint violation which is calculated by

max(Cπ′

0 (s0)− C̄, 0).

since we have one constraint in each scenario. Further, we average each data point on every figure

over 25 runs.

As seen in the Figures 2.1, 2.3 and 2.5, both Optimistic-GMBL and Online-CRL reach the

optimal values in both scenarios. We observe that the Online-CRL algorithm, despite having fewer

number of samples, does consistently better than the Optimistic-GMBL algorithm in both the sce-

narios. Similar behavior appears in Figures 2.2, 2.4, and 2.6, which illustrates constraint violation.
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Figure 2.3: Value Difference for Scenario
1b. Reprinted with permission from [1]
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Figure 2.4: Constraint Violation for Sce-
nario 1b. Reprinted with permission from
[1]
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Figure 2.5: Value Difference for Scenario 2.
Reprinted with permission from [1]
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Figure 2.6: Constraint Violation for Sce-
nario 2. Reprinted with permission from [1]

Intuitively, Online-CRL outperforms Optimistic-GMBL empirically because it samples the impor-

tant state-action pairs often, and hence resolves uncertainty quickly.

2.6 Conclusion

In this chapter, we studied the problem of learning stationary policies for finite-horizon CMDPs

using Linear programming. We developed two types of algorithms and analyzed their sample com-

plexity results—Optimistic-GMBL and online-CRL. Our most prominent result states a logarith-
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mic increase in sample complexity compared to unconstrained regime. In the next chapter, we will

study the case of infinite horizon CMDPs.
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3. MODEL-BASED REINFORCEMENT LEARNING FOR INFINITE-HORIZON

DISCOUNTED CONSTRAINED MARKOV DECISION PROCESSES∗

3.1 Introduction

The previous chapter focuses on learning finite horizon (episodic) Constrained Markov De-

cision Processes (CMDPs). However, there are many physical systems that are consistent with a

discounted infinite horizon reward. Therefore, in this chapter, we aim to develop simple algorithms

to learn near-optimal policies for an infinite horizon CMDP without knowing the system parame-

ters. Although, a regular model-based RL algorithm attempts to collect as few samples as possible

to quickly solve for the optimal policy, minimizing the number of samples taken is even more es-

sential in the CMDP setting. This requirement is due to the existence of constraints in the CMDP

setting, and it might be important to violate them as few times as possible while maximizing the

objective of the system. Therefore, the behavior of a system with respect to (w.r.t) both objective

maximization and safety violation over time is a crucial performance metric for a proposed RL

algorithm for CMDPs.

Main Contributions: Our goal is to upper bound the number of samples required to learn a

near-optimal policy while nearly satisfying the constraints with high probability (w.h.p.) in the

context of the discounted infinite-horizon setting.

Our contributions are mainly threefold:

(i) We design and analyze two model-based RL algorithms for CMDPs. One of them pursues a

generative model based approach that obtains samples initially and creates a model. The other

one is based on an online approach in which the model is updated over time-steps. With both

algorithms, the estimated model might lead to infeasible situation. Thus, we utilize the idea of

a confidence-ball around the estimated model such that the true model would belong to that ball

w.h.p. This ensures that a solution may be found w.h.p. under the assumption that the real model

∗Reprinted with permission from [2]
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has a solution.

(ii) Both algorithms follow a two-stage pattern of model construction and a CMDP solution. The

algorithms use linear programming (LP) to solve the CMDP problem with additional linear con-

straints to incorporate the confidence-ball.

(iii) We characterize PAC-type sample complexity bounds for both algorithms, accounting for

both objective maximization and constraint satisfaction.

Intuitively, the model constructed by these algorithms must be more accurate than models

created by unconstrained counterparts, which conjecture our main results are consistent with. Fur-

thermore, a comparison of our main findings with lower bounds on sample complexity of MDPs

[6, 7] shows an increase in our results by a logarithmic factor in the number of constraints and the

size of the state space. However, there is no earlier work on lower bound of sample complexity of

learning CMDPs to our best knowledge.

As mentioned above, cyber-physical systems might have a large number of constraints. How-

ever, our results indicate that the number of constraints should not be a major concern in imple-

mentation, since our bounds scale logarithmically with number of constraints. Hence, the results

suggest that the constrained RL approach is likely applicable in a straightforward manner to cyber-

physical systems.

Related Work: There are many articles studying the problem of controlling CMDPs with an

algorithmic approach and control-theoretic view [4, 8, 9, 10, 11, 12]. The results take the form

of proving asymptotic convergence of their proposed methods under the assumption of the known

model. There are also extensions of this approach to the context of an unknown model, where

the focus is still on asymptotic behavior [15, 16, 17, 18]. These studies use Lagrangian method

to show zero duality gap asymptotically. Further, [19] also develops an algorithm based on the

Lagrangian method, but with small eventual duality gap. Finally, empirical studies based on the

Lagrangian method have also been presented [20].

There are also studies on the constrained bandit case. Although bandits are not MDPs per se,
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they are strongly related to them. Articles such as [21, 22, 23] consider such constraints, either in

a knapsack sense, or on the type of controls that may be applied in a linear bandit context.

More related to our work theme are parallel studies on CMDPs. For example, [24] and [25]

provide results with the assumption of unknown reward functions, with either a known or deter-

ministic transition kernel. There are other works [26] focusing on proving asymptotic convergence

without providing a bound on learning rate. Finally, closest related work to this article is [5] which

explores algorithms similar to ours in finite-horizon setting, but concentrating on characterizing ob-

jective and constrained regret bounds. Now, regret and sample complexity bounds are not directly

translatable [27], and converting their regret bounds to our setting gives relatively weak sample

complexity bounds. Specifically, our main results with logarithmic increase in sample complexity

with the number of constraints differentiates our work.

3.2 Notation and Problem Formulation

Notation and Setup: Our focus is on an infinite-horizon CMDP defined by a tuple M =

〈S,A, P, r, c, C̄, s0, γ〉. S and A represent the sets of states and actions respectively. Additionally,

P (s′|s, a) is used to indicate the probability of reaching state s′ by taking action a while being at

state s. We define r(s, a) as the reward for each state-action pair (s, a). We assume that there are

N constraints. We use c to denote the cost matrix, where c(i, s, a) is the immediate cost incurred

by the ith constraint in (s, a) where i ∈ {1, . . . , N}. Further, the value of the constraints (i.e. the

bound that must be satisfied) are determined by the vector C̄. Also, initial state is specified by s0.

Finally, we use γ for discount factor. In this study, the discount factor is unique for both objective

function and constraint functions where they shall be defined later.

Assumption 3. State and action sets S and A are assumed to be finite with cardinalities |S| and

|A|. In addition, the immediate cost and immediate reward r(s, a) are assumed to be taken from the

interval [0, 1]. Number of constraints is also assumed to beN which for each i ∈ {1, . . . , N}, C̄i ∈

[0, C̄max].

Now, we define a stationary policy π : S × A→ [0, 1]|A| as a mapping from state-action space
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S × A to set of probability vectors defined over action space in order to choose an action at any

time-step t.Henceforth, π(s, a) represents the probability of choosing the action awhen the system

is at state s. Also, a ∼ π(s, ·) means that action a is chosen according to stationary policy π while

being at state s.

Fixing a policy π transforms the underlying MDP to a Markov chain. The transition ker-

nel of this Markov chain is Pπ, which can be viewed as an operator. The operator Pπf(s) =

E[f(st+1)|st = s] =
∑

s′∈S Pπ(s′|s)f(s′) takes any function f : S → R and returns the expected

value of f in the next time-step. For convenience, we define the multi-step version P t
πf(s) =

PπPπ . . . Pπf, which is repeated t times. Further, we define P 0
π as the identity operator.

For the objective and constraint functions, we consider discounted infinite-horizon criteria with

identical discount factor γ. We define the value function of state s under policy π as

V π(s) = E[
∞∑
t=0

γtr(st, at); at ∼ π(st, ·), st=0 = s0], (3.1)

where expectation E[·] is taken w.r.t transition kernel P. Next, the local variance of the value

function at time step t under policy π is

σ2
Vπ(s) = γ2E[(V π(st+1)− PπV π(s))2] (3.2)

= γ2Pπ[(V π − PπV π)2](s).

Analogous to the definition of the value function (3.1), the ith constraint function under policy

π is defined as

Cπ
i (s) = E[

∞∑
t=0

γtc(i, st, at); at ∼ π(st, ·), st=0 = s0]. (3.3)

Again, the local variance of ith constraint function under policy π, i.e. σ2
Cπi

is defined similar to

local variance of value function (4.2).
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Eventually, the general infinite-horizon CMDP problem is

max
π

V π(s0) s.t. Cπ
i (s0) ≤ C̄i, ∀i ∈ {1, . . . , N}. (3.4)

Assumption 4. We assume that the CMDP problem of (3.4) is feasible with optimal policy π∗ and

optimal solution V ∗(s0) = V π∗(s0).

Note that we only consider learning feasible CMDPs by this assumption.

Constrained-RL Problem: The Constrained RL problem formulation is identical to the CMDP

optimization problem of (3.4) with one difference. Here, we are not aware of the values of the

transition kernel P.† We desire to provide model-based algorithms and determine the sample com-

plexity results in a PAC sense, which is defined as follows:

Definition 2. For an algorithm A, sample complexity is the number of samples that A requires to

achieve

P
(
V A(s0) ≥ V π∗(s0)− ε and

CAi (s0) ≤ C̄i + ε ∀i ∈ {1, . . . , N}
)
≥ 1− δ

for a given ε and δ.

Note that with this definition, we include both objective maximization and constraint violations

as opposed to the traditional definition that only considers the objective [28].

3.3 Sample Complexity Result of Generative Model Based Learning

Generative model based learning is a well known approach to learn an optimal policy for an

MDP. However, naive application of this approach to CMDPs may not end with a feasible solu-

tion. Hence, we explore the generative model based approach for CMDPs, and propose a genera-

tive model based CMDP learning algorithm called Generative Model-Constrained RL (GM-CRL).

†We only assume that transition kernel is unknown and the extension to unknown reward and cost matrices is
straightforward, and does not require additional methodology.
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According to GM-CRL, each state-action pair is sampled n number of times uniformly across all

state-action pairs, the number of times each transition occurs n(s′, s, a) for each next state s′ is

counted, and an empirical model of transition kernel denoted by P̂ (s′|s, a) = n(s′,s,a)
n
∀(s′, s, a) is

constructed.

Unlike MDP problem formulation, there is no guarantee such that CMDP problem formulation

w.r.t. P̂ is feasible. In order to resolve the feasibility concern, we expand the space of transition

kernels to include the true transition kernel P, noting that the CMDP problem w.r.t. P is feasible

from Assumption 4. The algorithmic layout of this approach is as follows. GM-CRL creates a

class of CMDPs using the empirical model. This class is denoted byMδP and contains CMDPs

with identical reward, cost matrices, C̄, initial state s0 and discount factor of the true CMDP, but

with transition kernels close to true model. This class of CMDPs is defined as

MδP := {M ′ : r′(s, a) = r(s, a), c′(i, s, a) = c(i, s, a), γ′ = γ, (3.5)

|P ′(s′|s, a)− P̂ (s′|s, a)| ≤

min
(√2P̂ (s′|s, a)(1− P̂ (s′|s, a))

n
log

4

δP
+

2

3n
log

4

δP
,

√
log 4/δP

2n

)
∀s, a, s′, i}, (3.6)

where δP is defined in Algorithm 3. Note that for any M ′ ∈ M, objective function V ′π(s0) and

cost functions C ′πi (s0) are computed w.r.t. the corresponding transition kernel P ′ according to

equations (3.1) and (3.3) respectively.

At the end, GM-CRL maximizes the objective function among all possible transition kernels,

while satisfying constraints (if feasible). More specifically, it solves the optimistic planning prob-

lem below

max
π,M ′∈MδP

V
′π(s0) s.t. C

′π
i (s0) ≤ C̄i ∀i. (3.7)

To solve the problem of (6.33), GM-CRL uses Extended Linear Programming, or ELP. This

method takesMδP as input and gives π̃ for the optimal solution. The description of ELP is pro-
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vided in supplementary materials. Algorithm 3 describes GM-CRL.

Algorithm 3 GM-CRL
1: Input: accuracy ε and failure tolerance δ.
2: Set δP = δ

5(N+2)|S|3|A| .

3: Set n(s′, s, a) = 0 ∀(s, a, s′).
4: for each (s, a) ∈ S × A do
5: Sample (s, a), n = 1152(log 2)2γ2

ε2(1−γ)3
|S|2|A| log 4

δP
and update n(s′, s, a).

6: P̂ (s′|s, a) = n(s′,s,a)
n
∀s′.

7: ConstructMδP according to (3.5).
8: Output π̃ = ELP(MδP ).

3.3.1 PAC Analysis of GM-CRL

Here, we present the sample complexity result of GM-CRL.

Theorem 3. Consider any infinite-horizon CMDP M = 〈S,A, P, r, c, C̄, s0, γ〉 satisfying assump-

tions 3 and 4, and CMDP problem formulation of (3.4). Then, for any ε ∈ (0, 0.22γ√
|S|(1−γ)

) and

δ ∈ (0, 1), algorithm 3 creates a model CMDP M̃ = 〈S,A, P̃ , r, c, C̄, s0, γ〉 and outputs policy π̃

such that

P(V π̃(s0) ≥ V π∗(s0)− ε and

C π̃
i (s0) ≤ C̄i + ε ∀i ∈ {1, 2, . . . , N}) ≥ 1− δ,

with at least total sampling budget of

1152(log 2)2γ2

ε2(1− γ)3
|S|2|A| log

20(N + 2)|S|3|A|
δ

.

The proof of Theorem 12 is different from the traditional analysis framework of unconstrained

RL [6] in the following manner. First, consider the role played by optimism in model construc-

tion. The notion of optimism is not required for learning unconstrained MDPs with generative
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models, because any estimated model is always feasible [29]. However, there is no such guarantee

for a general CMDP problem formulation [4]. Specifically, simply substituting the true kernel P

by the estimated one P̂ is not appropriate, since there is no assurance of feasibility of that prob-

lem. Hence, GM-CRL converts the CMDP problem under the estimated transition kernel to an

optimistic planning problem (6.33) and an ELP-based solution.

Second, the core of the analysis of every unconstrained MDP is based on being able to charac-

terize the optimal policy via the Bellman operator. This technique enables one to obtain a sample

complexity that scales with the size of the state space as O(|S|). However, we cannot use this ap-

proach to characterize the optimal policy in a CMDP [4]. We require a uniform PAC result over

set of all policies and set of value and constraint functions, which in turn leads to quadratic sample

complexity in the size of state space; i.e., a scaling of O(|S|2).

Corollary 2. In case of N = 0, the problem would become regular unconstrained MDP. And, the

sample complexity result with N = 0 would also hold for unconstrained case.

Now, we present some of the lemmas that are essential to prove Theorem 12. Then we sketch

the proof of this theorem. The detailed proofs are provided in supplementary materials.

First, we show that true CMDP lies inside theMδP with high probability, w.h.p. Hence, the

problem (6.33) is feasible w.h.p., since the original CMDP problem is assumed to be feasible

according to Assumption 4.

Lemma 6.

P(M ∈MδP ) ≥ 1− |S|2|A|δP .

Proof Sketch: Fix a state-action pair (s, a) and next state s′. Then, according to combination of

Hoefding’s inequality [30] and empirical Bernstein’s inequality [31], we obtain that each P (s′|s, a)

is inside the confidence set defined by (6.32) with probability at least 1 − δP . Applying the union

bound yields the result. �
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Now, we present the core lemma required for proving Theorem 12 and its proof sketch. Using

this lemma, we bound the mismatch in objective and constraint functions when we have n number

of samples from each (s, a). This bound applies uniformly over the set of policies and set of value

and constraint functions. The result also enables us to bound the objective and constraint functions

individually. Then we apply the union bound on all objective and constraint functions. This process

is the reason why the number of constraints appear logarithmically in the sample complexity result.

Lemma 7. Let δP ∈ (0, 1). Then, if n ≥ 11819 |S|
2 log 4/δP
(1−γ)2

, under any policy π

‖V π − Ṽ π‖∞ ≤ 3γ log 2

√
32|S| log 4/δP

(1− γ)3n

w.p. at least 1− 5|S|3|A|δP , and for any i ∈ {1, . . . , N},

‖Cπ
i − C̃π

i ‖∞ ≤ 3γ log 2

√
32|S| log 4/δP

(1− γ)3n

w.p. at least 1− 5|S|3|A|δP .

Proof Sketch: We first show that |P̃ (s′|s, a)− P (s′|s, a)| ≤ O(
√

P (s′|s,a)(1−P (s′|s,a))
n

) for each

s′, s, a. Then, we show that (Pπ− P̃π)V π(s) ≤ O(
√
|S|
n
σV π(s)). Applying this bound to |Ṽ π(s0)−

V π(s0)| and from the fact that σV π(s) is close to σ̃V π(s) by O(

√
|S|

(1−γ)n1/4 ), we obtain the result. This

procedure is also applicable to each constraint function i. �

Proof Sketch of Theorem 12: From Lemma 6, we know that the optimistic planning problem

(6.33) is feasible w.h.p. Hence, we can obtain an optimistic policy π̃. The rest of this proof consists

of two major parts.

First, we prove ε−optimality of objective function w.h.p. Considering policy π∗ we obtain

|V π∗(s0) − Ṽ π∗(s0)| ≤ O(
√

|S|
(1−γ)3n

) w.h.p. by means of Lemma 28. Similarly, |V π̃(s0) −
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Ṽ π̃(s0)| ≤ O(
√

|S|
(1−γ)3n

) w.h.p. Next, we use the fact that Ṽ π∗(s0) ≤ Ṽ π̃(s0) and obtain

V π̃(s0) ≥ V π∗(s0)−O(

√
|S|

(1− γ)3n
).

Next, we show that each constraint is violated at most by ε w.h.p. Here, we use the second part

of Lemma 28 to bound constraint violation. Thus, for each i ∈ {1, . . . , N} we have |C π̃
i (s0) −

C̃ π̃
i (s0)| ≤ O(

√
|S|

(1−γ)3n
) w.h.p. Also, we know that C̃ π̃

i (s0) ≤ C̄i, since π̃ is solution of the ELP.

Hence, we obtain

C π̃
i (s0) ≤ C̄i +O(

√
|S|

(1− γ)3n
)

w.h.p. Finally, we obtain the end result by applying the union bound, and obtaining n by solving

ε = O(
√

|S|
(1−γ)3n

). �

3.4 Sample Complexity Result of Online Learning

The GM-CRL approach operates in a way that every state-action pair in the system is sampled

a certain number of times before a policy is computed. However, there are applications that are

not capable of utilizing this approach, since it may not be possible to reach those states without the

employment of some policy, or they might be unsafe, and so should not be sampled often. Hence,

we have to find an approach that can collect samples from the environment by means of an online

algorithm.

Upper Confidence Constrained-RL, or UC-CRL described in Algorithm 4, is an online method

proceeding over time-steps. At each time-step t, UC-CRL constructs an empirical model P̂ using

state-action visitation frequencies, i.e., P̂ (s′|s, a) = n(s′,s,a)
n(s,a)

, where n(s′, s, a) and n(s, a) are visi-

tation frequencies. Then, we use P̂ to create a confidence interval around each element P̂ (s′|s, a)

using same concentration inequalities of GM-CRL defined by (6.32). Next, UC-CRL constructs

set of infinite-horizon CMDPsMt which any CMDP M ′ ∈ Mt has identical discount factor and

reward and cost matrices to the true CMDP M, but different transition kernels from the concentra-
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tion inequalities. Mt is identical toMδP except for the use of n(s, a) instead of n. Thus the class

of CMPDs is defined as below at each time-step t :

Mt := {M ′ : r′(s, a) = r(s, a), c′(i, s, a) = c(i, s, a), γ′ = γ,

|P ′(s′|s, a)− P̂ (s′|s, a)| ≤

min
(√2P̂ (s′|s, a)(1− P̂ (s′|s, a))

n(s, a)
log

4

δ1

+
2

3n(s, a)
log

4

δ1

,

√
log 4/δ1

2n(s, a)

)
∀s, s′, a, i},

(3.8)

where δ1 is defined in Algorithm 4.

Subsequently, UC-CRL uses ELP to solve the optimistic CMDP problem below and get the

optimistic policy π̃t :

max
π,M ′∈Mt

V
′π(s0) s.t. C

′π
i (s0) ≤ C̄i ∀ i.

This problem is identical to the problem of (6.33), except for substitutingMδP withMt. Here,

for any M ′ ∈Mt, V
′π(s0) and C ′πi (s0) are computed according to (3.1) and (3.3) w.r.t. underlying

transition kernel P ′, respectively.

Algorithm 4 UC-CRL
1: Input: accuracy ε and failure tolerance δ.
2: Set m according to (6.35) and (6.36).
3: Set t = 1, wmin = ε(1−γ)

4|S| , Umax = |S|2|A|m, δ1 = δ
4(N+1)|S|Umax

.

4: Set n(s, a) = n(s′, s, a) = 0 ∀s, s′ ∈ S, a ∈ A.
5: while there is (s, a) with n(s, a) < |S|m

1−γ do
6: P̂ (s′|s, a) = n(s′,s,a)

n(s,a)
∀(s, a) with n(s, a) > 0 and s′ ∈ S.

7: ConstructMt according to (3.8).
8: π̃t = ELP(Mt).
9: at ∼ π̃t(st), st+1 ∼ P (·|st, at)

10: if n(st, at) <
|S|m
1−γ then

11: n(st, at) + +, n(st+1, st, at) + +.
12: t+ +
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UC-CRL is inspired by the infinite-horizon algorithm UCRL−γ [32] and its finite-horizon

equivalent UCFH [7] with differences. Similar to UCRL−γ, Algorithm 4 uses a combination of

the empirical Bernstein’s and Hoeffding’s inequalities. These concentration inequalities allow us

to ensure linearity of constraints (i.e., we can indeed use an extended linear program to solve for

the constrained optimistic policy). However, the constraints of UCFH contain non-linear expres-

sions preventing us from employing ELP. Furthermore, unlike UCRL−γ and UCFH, Algorithm 4

updates the model at each time-step rather than at the beginning of long phases. This procedure

allows for faster model construction. Finally, since we are solving a CMDP, this algorithm utilizes

ELP instead of Extended Value Iteration which is used by UCRL−γ.

3.4.1 PAC Analysis of UC-CRL

We now present the PAC bound of Algorithm 4.

Theorem 4. Consider CMDP M = 〈S,A, P, r, c, C̄, s0, γ〉 satisfying assumptions 3 and 4. For

any 0 < ε, δ < 1, under UC-CRL we have:

P(V π̃t(s0) ≥ V π∗(s0)− ε and

C π̃t
i (s0) ≤ C̄i + ε ∀i ∈ {1, 2, . . . , N}) ≥ 1− δ,

for all but at most

Õ(
|S|2|A|

ε2(1− γ)3
log

(N + 1)

δ
)

time-steps.

We follow an approach motivated by [32] and its finite-horizon version [7] to prove Theorem 4.

However, there are several differences in our technique, and we need to accommodate the frequent

model update in our proof. We will show that, unlike existing approaches, we can update the

model at each time-step, without increasing the sample complexity. Thus, we are able to obtain

PAC bounds that match the unconstrained case, and only increase by logarithmic factor with the
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number of constraints.

There are also recent works on characterizing the regret of constrained-RL in a finite-horizon

setting [5] with an algorithm similar to Algorithm 4. An important emerging question is whether

one can immediately convert these regret results into sample complexity bounds? A naive trans-

lation of the regret bounds of [5] would give us a PAC result Õ( |S|
2|A|H4

ε2
). For comparing finite-

horizon setting with infinite-horizon one, we can replace H with 1
1−γ to obtain a PAC result for the

equivalent infinite-horizon algorithm. Considering this, the approach followed by [5] gives a PAC

bound which is looser than our result by a factor of 1
(1−γ)2

. Therefore, this alternative option does

not lead to the strong bounds that we are able to obtain, and matches existing PAC results of the

unconstrained case.

Now, we present the notions of knownness and importance for state-action pairs and base our

proof on these notions. Then we present the key lemmas needed for proving Theorem 4. Finally,

we provide a proof sketch for Theorem 4. The detailed analysis is provided in supplementary

materials.

Let the weight of (s, a)−pair under any policy π be its discounted expected frequency

wπ(s, a|s′)

:= I{(s′, π(s′)) = (s, a)}+ γ
∑
s′′

Pπ(s′′|s′)wπ(s, a|s′′).

Using this general definition, we define the weight of (s, a) under policy π̃t as

wt(s, a) = wπ̃t(s, a|st).

Then, the importance ιt of (s, a) at time-step t is defined as its relative weight compared to wmin :=
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ε(1−γ)
4|S| on a log-scale

ιt(s, a) := min{zj : zj ≥
wt(s, a)

wmin

}

where z1 = 0 and zj = 2j−2 ∀j = 2, 3, . . . .

Note that ιt(s, a) ∈ {0, 1, 2, 4, 8, 16, . . . } is an integer indicating the influence of the state-

action pair on the value function of π̃t. Similarly, we define knownness as

κt(s, a) := max{zi : zi ≤
nt(s, a)

mwt(s, a)
} ∈ {0, 1, 2, 4, . . . },

which indicates how often (s, a) has been observed relative to its importance. Value ofm is defined

in Algorithm 4. Now, we can categorize (s, a)−pairs into subsets

Xt,κ,ι := {(s, a) ∈ Xt : κt(s, a) = κ, ιt(s, a) = ι}

and X̄t = S × A \Xt,

where Xt = {(s, a) : ιt(s, a) > 0} is the active set and X̄t is the set of (s, a)−pairs that are very

unlikely under policy π̃t.We will show that if the criteria |Xt,κ,ι| ≤ κ is met, then the model of UC-

CRL would achieve near-optimal policies where these policies would violate constraints at most

by ε w.h.p. This condition specifies that important state-action pairs under policy π̃t are visited a

sufficiently large number of times. Thus, the model of UC-CRL will be accurate enough to obtain

PAC bounds.

Now, we first show that the true model lies inMt for every time-step t w.h.p.

Lemma 8. M ∈Mt for all time-steps t with probability at least 1− δ
2(N+1)

.

Proof Sketch: Let consider a fixed (s, a), next state s′ and a time-step t. Then, P (s′|s, a) be-

longs to the confidence set constructed by the combined Bernstein’s and Hoeffding’s inequalities.

By taking the union bound over maximum number of model updates, Umax, and next states we
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obtain the result. �

Next, we bound the number of time-steps in which the condition |Xt,κ,ι| ≤ κ is violated w.h.p.

Lemma 9. Suppose E is the number of time-steps t for which there are κ and ι with |Xt,κ,ι| > κ,

i.e. E =
∑∞

t=1 I{∃(κ, ι) : |Xt,κ,ι| > κ} and let

m ≥ 4

ε(1− γ)3
log

2(N + 1)Emax

δ
, (3.9)

where Emax = log2
1

wmin(1−γ)
log2 |S|. Then, P(E ≤ 6|S||A|mEmax) ≥ 1− δ

2(N+1)
.

Proof sketch: This lemma is proven in two stages. First, we bound the total number of times

a fixed (s, a) could be observed in a particular Xt,κ,ι over all time-steps. Then, we provide a high

probability bound on the number of time-steps that |Xt,κ,ι| > κ for a fixed (κ, ι). Finally, we get

the result using of martingale concentration and union bound. �

Finally, the next lemma bounds the mismatch between objective and constraint functions of

the optimistic model and true model. This lemma functions similarly to Lemma 28 for GM-CRL.

It provides a uniform PAC result over value and constraint functions. Hence, it enables us to

have individual PAC results for any objective and constraint functions. As discussed in GM-CRL

section, this process is responsible for a logN increase in the PAC result.

Lemma 10. Assume M ∈Mt. If |Xt,κ,ι| ≤ κ for all (κ, ι) and 0 < ε ≤ 1 and

m ≥1280
|S|

ε2(1− γ)2
(log2 log2(

1

1− γ
))2 log2

2

( 8|S|2

ε(1− γ)2

)
× log

4

δ1

, (3.10)

then |Ṽ π̃t(s0)− V π̃t(s0)| ≤ ε and for any i, |C̃ π̃t
i (s0)− C π̃t

i (s0)| ≤ ε.

Proof Sketch: First, we show |P̃ (s′|s, a) − P (s′|s, a)| ≤ O(
√

P (s′|s,a)(1−P (s′|s,a))
n

) for each

s′, s, a. Then we prove that at each time-step t, (Pπ − P̃π)V π(s) ≤ O(
√
|S|
n
σV π(s)). Next we

partition the state-action based on knownness, i.e., whether they belong to Xt or not. By using all
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Figure 3.1: Value Difference. Reprinted
with permission from [2]
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Figure 3.2: Constraint Violation. Reprinted
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bounds and sequence of CMDPs, we obtain a bound on |Ṽ π(s0) − V π(s0)|. Eventually, we use

the definition of weights to get the final result. This procedure is also applicable to each constraint

function i. �

Proof Sketch of Theorem 4: We first use Lemma 30 and show that true CMDP is admissible

,i.e. M ∈Mt for every time-step, w.p. at least 1− δ
2(N+1)

. Hence, the optimistic planning problem

becomes feasible and an optimistic policy π̃t exists w.h.p. Further, we use Lemma 33 to bound

the number of time-steps where |Xt,κ,ι| > κ w.h.p. Thus, for other time-steps where |Xt,κ,ι| ≤ κ,

we apply Lemma 35 we show that objective function is ε−optimal and all constraint functions are

violated by ε. Eventually, we obtain the result by means of union bound. �

3.5 Experimental Results

We conduct experiments on CMDPs similar to a grid world MDP, wherein each square is the

location of the agent. Here, we consider a 5 × 5 with 25 states and 4 actions. The goal of the

agent is to reach a final state starting from a fixed initial state in least number of steps possible.

When the agent arrives at the final state, it receives a reward of 1. It is then transitioned to initial

state at the next time-step. Transitions are stochastic, and given any action, there is probability of

self and other transitions, as well as transitioning to other state as intended by the action. In this

experiment, we consider restricting the number of moves to the right.
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We simulate GM-CRL and UC-CRL. In order to compare them, we consider two performance

metrics. The first is the difference in value function calculated by

V π∗(s0)− V π′(s0).

where π′ is whether GM-CRL or UC-CRL. The second performance metric is of constraint viola-

tion, which is calculated by

max(Cπ′(s0)− C̄, 0).

since we have one constraint in each scenario. Further, we average each data point on every figure

over 10 runs.

As seen in the Figure 3.1 both GM-CRL and UC-CRL reach the optimal value simultaneously,

although UC-CRL incurs higher error with smaller number of samples. We discover that both

algorithms performance is almost indistinguishable w.r.t. value difference metric. Similar behavior

appears in Figure 3.2, which illustrates constraint violation. These results match our theoretical

findings where the PAC results of both algorithms are much the same.

3.6 Conclusion

This chapter covers the learning problem of infinite horizon CMDPs. Similar to previous chap-

ter, we designed two algorithms based on LP approach to learn an infinite horizon CMDP. Further,

we showed that there is also a logarithmic increase in sample complexity result compared to un-

constrained MDPs.

However, the RL algorithms presented in previous and current chapters are computationally

expensive due to the need for solving an LP at each policy update. In the next chapter, we focus

on developing more efficient RL algorithms for CMDPs in terms of computational complexity.
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4. MODEL-BASED COMPUTATIONALLY EFFICIENT REINFORCEMENT LEARNING

FOR FINITE-HORIZON CONSTRAINED MARKOV DECISION PROCESSES

4.1 Introduction

Prior to this chapter, we concentrated on analyzing the sample complexity of learning algo-

rithms for CMDPs using LP approach. However, solving an LP requires high amount of computa-

tion power. Hence in this chapter, our objective is to design computationally efficient algorithms

to solve CMDP problems where the dynamics are not known. RL algorithms with provable sam-

ple complexity results have been proposed to solve this class of problems in prior work [33].

However, those algorithms are based on a Linear programming (LP) approach, which is computa-

tionally expensive, particularly in the CMDP scenario. Here, we design different algorithms based

on Lagrangian approach [4] that much reduces the cost of computation. Further, we analyze the

sample complexity of the proposed algorithms in a probably-approximately-correct (PAC) sense.

Main Contributions: Our main contributions are as follows:

(i) We present two model-based RL algorithms with two different settings, (i) a generative setting

where we initially collect samples from the environment and create a model, and (ii) an online

setting where the samples are collected by interacting with the environment.

(ii) Both of the algorithms follow the Lagrangian approach which transforms the CMDP problem

to a min-max problem. This process contributes to reduction in computational complexity of the

algorithms compared to their LP-based counterparts [33]. Here, we guarantee the transformation

of the CMDP problem to min-max problem yields an identical solution.

(iii) We provide PAC-type sample complexity results for both algorithms accounting for the dif-

ferences in the corresponding Lagrangian functions. Comparing the presented sample complex-

ity result with the LP-based algorithms [33] shows that Lagrangian-based algorithms suffer from

higher sample complexity, while being computationally efficient. This is because the Lagrangian

approach introduces new variables, causing enlargement of the reward space.
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Related Work: There is extensive work in the space of CMDP focusing on problems of

control, and many of the algorithmic approaches and applications have taken a control-theoretic

view [4, 8, 9, 10, 11, 12]. These articles assume that the dynamics of the environment is known,

and show the asymptotic convergence of their proposed solutions

Asymptotic convergence of algorithms for solving CMDPs under unknown model is also stud-

ied by [15, 16, 17, 18] under Lagrangian methods to show zero eventual duality gap. Another work

[19] also proposes an algorithm based on Lagrangian method with small eventual duality-gap.

Closest to our approach are parallel works on CMDPs. For example, [24] and [25] present

results for CMDP problems with unknown reward functions. Other work [5] presents similar

methods to ours but with a focus on bounding the regret, instead of sample complexity that is our

focus of our work. Because the nature of the metric [5] considers for regret and our metric for

sample complexity are different, we cannot directly translate their regret bound to a sample com-

plexity bound that we desire. Further, [27] shows that there is only a loose relation between regret

and sample complexity, which means that a separate analysis on sample complexity is needed.

Finally, [33] designs and analyzes similar algorithms to learn CMDP problems. However, their ap-

proach is basically different since they are using LP-based algorithms that have high computational

complexity.

4.2 Problem Formulation and Notation

Notation and Setup: We consider a general finite-horizon CMDP formulation. There are a

set of states S and set of actions A. The reward matrix is denoted by r, under which r(s, a) is the

reward for any state-action pair (s, a). We assume that there are N constraints. We use c to denote

the cost matrix, where c(i, s, a) is the immediate cost incurred by the ith constraint in (s, a) where

i ∈ {1, . . . , N}. Also, the vector C̄ is used to denote the value of the constraints (i.e., the bound

that must be satisfied). The probability of reaching another state s′ while being at state s and taking

action a is determined by transition kernel P (s′|s, a). As the CMDP has a finite horizon, the length

of each horizon, or episode, is considered to be a fixed value H. Hence, the CMDP is defined by

the tuple M = 〈S,A, P, r, c, s0, C̄, H〉.
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Assumption 5. We assume S and A are finite sets with cardinalities |S| and |A|. Further, we

assume that the immediate reward r(s, a) is taken from the interval [0, 1] and immediate cost

lies in [0, 1]. We also make an assumption that there are N constraints which for each i ∈

{1, . . . , N}, C̄i ∈ [C̄min, C̄max].

Next, to choose an action from A at time-step h, we define a policy π as a mapping from state-

action space S×A to set of probability vectors defined over action space, i.e. π : S×A→ [0, 1]|A|.

So π(s, ·, h) is a probability vector over A at time-step h. Also, a ∼ π(s, ·, h) means that action a

is chosen according to stationary∗ policy π while being at state s at time-step h.

When policy π is fixed, the underlying Markov Decision Process turns into a Markov chain.

The transition kernel of this Markov chain is Pπ, which can be viewed as an operator. The operator

Pπf(s) = E[f(sh+1)|sh = s] =
∑

s′∈S Pπ(s′|s)f(s′) takes any function f : S → R and returns

the expected value of f in the next time step. For convenience, we define the multi-step version

P h
π f(s) = PπPπ . . . Pπf, which is repeated h times. Further, we define P−1

π and P 0
π as the identity

operator.

We consider cumulative finite horizon criteria for both the objective function and the constraint

functions with identical horizon H. We define the value function of state s at time-step t under

policy π as

V π
t (s) = E[

H−1∑
h=t

r(sh, ah); ah ∼ π(sh, ·, h), st = s], (4.1)

where action ah is chosen according to policy π and expectation E[.] is taken w.r.t transition kernel

P. Then, the local variance of the value function at time step h under policy π is

σπ
2

h (s) = E[(V π
h+1(sh+1)− PπV π

h+1(s))2]. (4.2)

Similar to the definition of the value function (4.1), the ith constraint function at time t under
∗Here, stationary means that the policy does not change over episodes. However, it can be a function of the

time-step within the episode.
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policy π is formulated as

Cπ
i,t(s) = E[

H−1∑
h=0

c(i, sh, ah); at ∼ π(sh, ·, h), st = s]. (4.3)

Again, the local variance of ith constraint function at time-step h under policy π, i.e. σπ2

i,h is defined

similar to local variance of value function (4.2).

Finally, the general finite-horizon CMDP problem is

max
π

V π
0 (s0) s.t. Cπ

i,0(s0) ≤ C̄i, ∀i ∈ {1, . . . , N}. (4.4)

Assumption 6. We assume that there exists some policy π that satisfies the constraints in (4.4).

Hence, this CMDP problem is feasible with optimal policy π∗ and optimal solution V ∗0 (s0) =

V π∗
0 (s0).

Note that we only consider learning feasible CMDPs, since otherwise no algorithm would be

able to discover an optimal policy satisfying constraints. We also make the following assumption.

Assumption 7. Let assume there exists a policy π0 incurring zero return and cost, i.e.

V π0
0 (s0) = 0 and Cπ0

i,0(s0) = 0 ∀i

for every transition kernel.

One of the ways to solve the optimization problem (4.4) is via Dual Decomposition technique

as stated in [4]. Thus, we introduce an N−dimensional Lagrange multiplier vector λ where the

ith element λi corresponds to the ith constraint and it is non-negative, λi ≥ 0. So, the Lagrangian

function is

L(π, λ) = V π
0 (s0)−

N∑
i=1

λi(C
π
i,0(s0)− C̄i). (4.5)
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Rearranging the above equation yields

L(π, λ) = V
π(λ)

0 (λ) +
N∑
i=1

λiC̄i, (4.6)

where V π(λ)
0 (λ) is the value function defined as

V π
0 (λ) = V π

0 (s0)−
N∑
i=1

λiC
π
i,0(s0) = E[

H−1∑
h=0

(r(sh, ah)−
N∑
i=1

λic(i, sh, ah)); ah ∼ π(sh, ·, h)].

(4.7)

So, we can create a new reward matrix rc(λ, s, a) as

rc(λ, s, a) = r(s, a)−
N∑
i=1

λic(i, s, a). (4.8)

Then, the dual function is

D(λ) = max
π

L(π, λ), (4.9)

and dual problem would be

min
λ≥0

D(λ), (4.10)

where λ ≥ 0 means every element being non-negative.

We denote the optimal solution of (4.10) by λ∗.Here, we consider CMDP problems where there

is no duality-gap i.e. D(λ∗) = V π∗
0 (s0). Assumption 6 guarantees that we obtain 0 duality-gap

according to Slater’s condition [4].

To solve the dual problem of (4.10), [4] applies gradient descent method. In this method, the

vector λ is initialized by an arbitrary value. The CMDP problem would turn to an MDP problem

when the λ is fixed. Hence, a policy w.r.t fixed λ, π∗(λ), is computed. Next, the gradient w.r.t.

π∗(λ) is calculated. Finally, the new λ is calculated and this procedure is carried on until D(λ)

converges to D(λ∗).
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Constrained-RL Problem: The Constrained RL problem formulation is identical to the CMDP

optimization problem of (4.4), but without being aware of values of transition kernel P.† Our goal

is to provide model-based algorithms and determine the sample complexity results in a PAC sense,

which is defined as follows:

Definition 3. For an algorithm A, sample complexity is the number of samples that A requires to

achieve

P
(
L(π(A), λ(A)) ≤ L(π∗, λ∗) + ε

)
≥ 1− δ

for a given ε and δ where π(A) and λ(A) are outcomes of the algorithm.

4.3 GMBL-Dual

In this section, we introduce a generative model based CMDP learning algorithm called Gen-

erative Model Based Learning-Dual, or GMBL-Dual. According to GMBL-Dual, we sample each

state-action pair n number of times uniformly across all state-action pairs, count the number of

times each transition occurs n(s′, s, a) for each next state s′, and construct an empirical model of

transition kernel denoted by P̂ (s′|s, a) = n(s′,s,a)
n
∀(s′, s, a).

We now consider a different constrained MDP that is identical to the CMDP defined in Section

4.2 except that its transition kernel is P̂ instead of P . The expectation w.r.t. P̂ is denoted by

Ê[·]. We define the quantities V̂ π
0 (s0, λ) and Ĉπ

i,0(s0) in the same way as in (4.7) and (4.3) but by

replacing E by Ê. The quantities L̂(π, λ), D̂(λ) can also now be defined in a similar way as in

(4.6) and (4.9) by replacing V π
0 (s0, λ) with V̂ π

0 (s0, λ). The optimal dual variable λ̂∗ is defined as

λ̂∗ = arg minλ D̂(λ). We also define

π̂(λ) = arg max
π

V̂ π
0 (λ), V̂ ∗0 (λ) = V̂

π̂(λ)
0 (λ). (4.11)

Note that π̂(λ) and V̂ ∗0 (λ) can be computed by standard finite horizon dynamic programming [34],
†We only assume that transition kernel is unknown and the extension to unknown reward and cost matrices is

straightforward, and does not require additional methodology.
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and we omit the details.

The GMBL-Dual algorithm is summarized in Algorithm

Algorithm 5 GMBL-Dual
1: Input: accuracy ε and failure tolerance δ.
2: Set δP = δ

18|S|2|A|H .

3: Initialize λi(0) = λ̂i = 0∀i ∈ [1, N ].
4: Set n(s′, s, a) = 0 ∀(s, a, s′), Kandα according to (4.13)
5: for each (s, a) ∈ S × A do
6: Sample (s, a), n = 128

ε2
|S|H3(1 +NBλ)

2 log 72|S|2|A|H
δ

and update n(s′, s, a).

7: P̂ (s′|s, a) = n(s′,s,a)
n
∀s′.

8: for k = 0, 1, . . . , K do
9: π̂k = BackwardInduction(M(λ)).

10: λi(k + 1) = ΠΛ(λi(k)− α(C̄i − Ĉ π̂k
i,0(s0))) ‡

11: λ̂+ = λ(k)

12: λ̂/ = K

13: Output π̂ = BackwardInduction(M(λ̂))

We next present the sample complexity of GMBL-Dual.

Theorem 5. For any δ ∈ (0, 1) and ε ∈ (0, 2
9
(1 +NBλ)

√
H
|S|), GMBL-Dual algorithm with

n(ε, δ) ≥ 128|S|H3(1 +NBλ)
2 log (72|S|2|A|H/δ)
ε2

(4.12)

and parameters

K =
(3
√
NH(H + C̄max)

εC̄min

)2

, α =
ε

3N(H + C̄max)
, (4.13)

achieves a λ̂ and π̂ such that

P
(
|L(π̂, λ̂)− L(π∗, λ∗)| ≤ ε

)
≥ 1− δ.
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The proof requires the use of multiple smaller results that we first present below, followed by

their integration to yield the proof of the main theorem.

Proposition 1. Let λmax = maxi λ
∗
i . Then under Assumption 7, λmax < Bλ = H

C̄min
.

Proof. The proof is provided in Appendix C.

Lemma 11. With the parameters K and α given by (4.13), we obtain |D̂(λ̂)− D̂(λ̂∗)| ≤ ε/3

This follows from the standard rate of convergence analysis of projected subgradient descent

algorithm for convex functions and proposition 1. For completeness we first reproduce that result.

We use the following result.

Theorem 6. [35] Let g : X → Rd be a convex function with ‖∇g‖ ≤ B1 where ∇g is the

subgradient of g. Also, assume that the domain of g(·) is bounded, i.e. ‖x‖ ≤ B2,∀x ∈ X .

Consider the projected gradient descent algorithm xk+1 = ΠX [xk − α∇g(xk)] where ΠX is the

projection operator. Then, with α = B2/(B1

√
K),

g(
1

K

K∑
k=1

xk)− g(x∗) ≤ B1B2√
K

.

Proof of Lemma 11: We first show that the subgradient of D̂(·) at λ, denoted by ∇D̂(λ) is

given by

∇D̂(λ) = [C̄i − Ĉ π̂(λ)
i,0 (s0)]i.

Indeed, for any given λ′, λ,

D̂(λ′) = max
π

L̂(π, λ′) ≥ L̂(π̂(λ), λ′) = V̂
π̂(s0,λ)

0 +
∑
i

λ′i(C̄i − Ĉ
π̂(λ)
i,0 (s0))

= V̂
π̂(s0,λ)

0 +
∑
i

λi(C̄i − Ĉ π̂(λ)
i,0 (s0)) +

∑
i

(λ′i − λi)(C̄i − Ĉ
π̂(λ)
i,0 (s0))

= D̂(λ) +
∑
i

(λ′i − λi)(C̄i − Ĉ
π̂(λ)
i,0 (s0))
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and hence the claim follows by the definition of subgradient.

In order to bound ‖∇D̂(λ)‖, first note that Ĉ π̂f (λ)
i,0 (s0) ≤ H. Also, C̄i ≤ C̄max. Hence,

‖∇D̂(λ)‖ =
√
N(H + C̄max).

Now, considering Proposition 1, we project λ(k) to set [0, Bλ]. Using Theorem 15, we get the

desired result. �

Lemma 12. Let δP ∈ (0, 1). Then, if n ≥ 2592|S|2H2 log 4/δP , for a given λ ∈ [0, Bλ] under any

policy π

‖V π
0 (λ)− V̂ π

0 (λ)‖∞ ≤
√

128|S|H3(1 +NBλ)2 log 4/δP
n

w.p. at least 1− 3|S|2|A|HδP .

Proof. The proof procedure is identical to proof of Lemma 2 of [33] with adjustment of ‖V π
0 (λ)−

V̂ π
0 (λ)‖∞ ≤ H(1 +NBλ).

Lemma 13. Let δP ∈ (0, 1). Then, if n ≥ 2592|S|2H2 log 4/δP , for a given λ ∈ [0, Bλ]

|D̂(λ)−D(λ)| ≤
√

128|S|H3(1 +NBλ)2 log 4/δP
n

w.p. at least 1− 6|S|2|A|HδP .

Proof. For a given λ, consider two policies π(λ) and π̂(λ). Then, according to Lemma 38 we have

V
π(λ)

0 (s0, λ) ≤ V̂
π(λ)

0 (s0, λ) + ε′ ≤ V̂
π̂(λ)

0 (s0, λ) + ε′ (4.14)

w.p. at least 1− 3|S|2|A|HδP where ε′ =
√

128|S|H3(1+NBλ)2 log 4/δP
n

. Please notice that the second

inequality is due to the fact π̂(λ) = arg maxπ V̂
π

0 (λ). Next, we have

V̂
π̂(λ)

0 (s0, λ) ≤ V
π̂(λ)

0 (s0, λ) + ε′ ≤ V
π(λ)

0 (s0, λ) + ε′ (4.15)
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w.p. at least 1− 3|S|2|A|HδP . Now, combining the two inequalities (6.49) and (6.50), we get

|V̂ π̂(λ)
0 (s0, λ)− V π(λ)

0 (s0, λ)| ≤ ε′

w.p. at least 1− 6|S|2|A|HδP . Using the above inequality, we get

|D̂(λ)−D(λ)| = |V̂ π̂(λ)
0 (s0, λ)− V π(λ)

0 (s0, λ))| ≤ ε′

w.p. at least 1− 6|S|2|A|HδP . Hence the proof is complete.

Lemma 14. Let δP ∈ (0, 1). Then, if n ≥ 2592|S|2H2 log 4/δP , for a given λ ∈ [0, Bλ]

|D̂(λ̂∗)−D(λ∗)| ≤
√

128|S|H3(1 +NBλ)2 log 4/δP
n

w.p. at least 1− 12|S|2|A|HδP .

Proof. Since λ̂∗ = arg minλ D̂(λ), then D̂(λ̂∗) ≤ D̂(λ∗). Next, we have

D̂(λ∗) ≤ D(λ∗) + ε′ (4.16)

w.p. at least 1 − 6|S|2|A|HδP where ε′ =
√

128|S|H3(1+NBλ)2 log 4/δP
n

according to Lemma 39.

Therefore, we have

D̂(λ̂∗) ≤ D(λ∗) + ε′ (4.17)

w.p. at least 1− 6|S|2|A|HδP . Taking identical steps, we get

D(λ∗) ≤ D̂(λ̂∗) + ε′ (4.18)

w.p. at least 1 − 6|S|2|A|HδP . Finally, combining the inequalities (6.52) and (6.53) yields the

result.
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Now, we are ready to prove Theorem 14.

Proof of Theorem 14: We expand the result of theorem 14

|L(π̂, λ̂)− L(π∗, λ∗)| = |
∑
i

λ̂iC̄i + V π̂
0 (s0, λ̂)−D(λ∗)|

= |
∑
i

λ̂iC̄i + V̂ π̂
0 (s0, λ̂)−D(λ∗) + V π̂

0 (s0, λ̂)− V̂ π̂
0 (s0, λ̂)|

≤ |D̂(λ̂)−D(λ∗)|+ |V π̂
0 (s0, λ̂)− V̂ π̂

0 (s0, λ̂)|.

First, we bound |D̂(λ̂)−D(λ∗)| by and expanding it further

|D̂(λ̂)−D(λ∗)| = |D̂(λ̂)− D̂(λ̂∗) + D̂(λ̂∗)−D(λ∗)|

≤ |D̂(λ̂)− D̂(λ̂∗)|+ |D̂(λ̂∗)−D(λ∗)| ≤ ε

3
+ ε′ (4.19)

w.p. at least 1− 12|S|2|A|HδP where ε′ =
√

128|S|H3(1+NBλ)2 log 4/δP
n

according to Lemmas 11 and

40.

Next,

|V π̂
0 (s0, λ̂)− V̂ π̂

0 (s0, λ̂)| ≤ ε′ (4.20)

w.p. at least 1− 6|S|2|A|HδP according to Lemma 38.

Eventually, we combine two inequalities (6.54) and (6.55) and get

|L(π̂, λ̂)− L(π∗, λ∗)|

≤ ε

3
+ 2

√
128|S|H3(1 +NBλ)2 log 4/δP

n

w.p. at least 1−18|S|2|A|HδP .Hence, putting ε = 3
√

128|S|H3(1+NBλ)2 log 4/δP
n

and δ = 18|S|2|A|HδP

completes the proof. �
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4.4 Online-CRL-Dual

Online Constrained-RL Dual, or Online-CRL-Dual described in Algorithm 6, is an online

method proceeding in episodes with length H. At the beginning of each episode k, Online-CRL-

Dual constructs an empirical model P̂ according to state-action visitation frequencies, i.e., P̂ (s′|s, a) =

n(s′,s,a)
n(s,a)

, where n(s′, s, a) and n(s, a) are visitation frequencies. Furthermore, the reward matrix rc

is created by equation (4.8) using updated Lagrange multipliers.

For any λ, the empirical model P̂ and reward matrix rc induce a set of finite-horizon MDPs

Mλ which any MDP M ′ ∈ Mλ has identical horizon and reward matrix. However, for any

(s, a) ∈ S×A and s′ ∈ S, P ′(s′|s, a) lies inside a confidence interval induced by P̂ . Mλ is defined

as:

Mλ := {M ′ : r′c(λ, s, a) = rc(λ, s, a), H ′ = H, (4.21)

|P ′(s′|s, a)− P̂ (s′|s, a)| ≤ min
(√2P̂ (s′|s, a)(1− P̂ (s′|s, a))

n(s, a)
log

4

δP
+

2

3n(s, a)
log

4

δP
,

√
log 4/δP
2n(s, a)

)
(4.22)

∀s, a, s′},

where δP is defined in Algorithm 6. For any M ′ ∈ Mλ, objective function V ′π0 (s0) and cost func-

tions C ′πi,0(s0) are computed w.r.t. the corresponding transition kernel P ′ according to equations

(4.1) and (4.3) respectively. Accordingly, L′(π, λ) and D′(λ) are computed via equations (4.6) and

(4.9). The optimistic model among all models inMλ is denoted using ∼ such as Ṽ π̃(λ)
0 (s0). Here,

π̃(λ) = arg max
π,M ′∈Mλ

V ′π0 (s0, λ).

Next, at the end of the episode k Lagrange multipliers are updated according to Stochastic
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Subgradient Descent method as follows:

λ
(k+1)
i = Πλ(λ

(k)
i + α(C̃ π̃k

i,0(s0)− C̄i)) (4.23)

where Πλ(·) is projection to [0, Bλ]. Bλ is the upper bound on each λ∗i .

Next, Online-CRL-Dual computes λ̃(k) =
∑k
j=0 λ

(j)

k
and constructs Mλ̃(k) . Finally, it output π̃k

as solution to Mλ̃(k) . Algorithm 6 briefs Online-CRL-Dual.

Algorithm 6 Online-CRL-Dual
1: Input: accuracy ε and failure tolerance δ.
2: Set m by means of (6.35) and (6.36)
3: Set wmin = ε

20HNBλ|S|
, Umax = |S|2|A|m, δP = δ

8|S|Umax

4: Set K and α as in (4.24)
5: λ̃i = λ̃

(0)
i = λ

(0)
i = 0 ∀i.

6: Set n(s, a) = n(s, a, s′) = 0 ∀s, a, s′
7: while there is (s, a) with n(s, a) < |S|mH and k < K do
8: P̂ (s′|s, a) = n(s′,s,a)

max{n(s,a),1,} ∀(s, a) with n(s, a) > 0 and s′ ∈ S.
9: Construct Mλ̃(k) using (4.21)

10: Solve Mλ̃(k) by EVI and get π̃k(λ̃(k))
11: for t = 1, . . . , H do
12: at ∼ π̃k(λ̃

(k), st), st+1 ∼ P (·|st, at)
13: if n(st, at) < |S|mH : then
14: n(st, at) + +, n(st, at, st+1) + +
15: Construct Mλ(k) using (4.21)
16: Solve Mλ(k) by EVI and get π̃k(λ(k))

17: Evaluate C̃ π̃k(λ(k))
i,0 (s0) ∀i.

18: Update λ(k+1) using (4.23)
19: λ̃ = + λ(k+1)

20: k + +
21: λ̃(k) = λ̃

k

This algorithm draws inspiration from the infinite-horizon algorithm UCRL−γ [32] and its

finite-horizon counterpart UCFH [7] with several differences. Unlike UCRL-γ and UCFH, Al-

gorithm 6 updates the model at the beginning of each episode, which allows for faster model

construction.
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To provide PAC result for sample complexity of Algorithm 6, we make the following assump-

tion as well.

4.4.1 PAC Analysis of Online-CRL-Dual

Here, we present the PAC result of Algorithm 6

Theorem 7. Consider CMDP M = 〈S,A, P, r, c, C̄,H〉 satisfying assumptions 5, 6 and 7. For

any 0 < ε, δ < 1 under Algorithm 6 we have

L(π̃k(λ̃
(k)), λ̃(k)) ≤ L(π∗, λ∗) + ε

w.p. at least 1− δ after

max{K,O(
|S|2|A|N2B2

λH
2

ε2
log

1

δ
)}

number of episodes with K and α determined as

K =
(5
√
NH(C̄max +H)

εC̄min

)2

, α =
ε

5N(C̄max +H)2
. (4.24)

The proof pf Theorem 7 consists of two stages. First, we prove that V π̃k(λ̃(k))
0 (s0, λ̃

(k)) and

V
π∗(λ̃(k))

0 (s0, λ̃
(k)) are close to each other w.h.p. for all but except some number of episodes. The

proof of this section is carried out by means of unconstrained MDP analysis techniques, mainly

from [7]. Next, we prove that D̃k(λ̃
(k)) is also close to D(λ∗) w.h.p. Here, we focus on em-

ploying stochastic subgradient method. Before explaining each stage, we present the following

proposition which is useful for both stages.

4.4.2 First Stage: Unconstrained MDP Analysis

To prove this stage, we follow an approach motivated by [32] and its finite-horizon version

[7]. However, there are several differences in our technique. As mentioned above, one of the

differences is with regard to restricting ourselves to only linear concentration inequalities. We will
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show that excluding non-linear concentration inequalities pertaining to variance does not increase

the sample complexity, and utilizing the fact that the number of successor states is less that |S|

leads to matching sample complexity in terms of |S| with the UCFH algorithm. Furthermore, we

are able to show that, unlike existing approaches, we can update the model at each episode, again

without increasing the sample complexity. Thus, we are able to obtain PAC bounds that match the

unconstrained case, and only increase by logarithmic factor with the number of constraints.

Now, we introduce the notions of knownness and importance for state-action pairs and base

our proof on these notions. Then we present the key lemmas required to prove Theorem 7. Finally,

we sketch the proof of Theorem 7. The detailed analysis is provided in supplementary materials.

Let the weight of (s, a)−pair in an episode k under policy π̃k be its expected frequency in that

episode

wk(s, a) :=
H−1∑
h=0

P(sh = s, a ∼ π̃k(sh, ·, h)) =
H−1∑
h=0

P h−1
π̃k

I{s = ·, a ∼ π̃k(s, ·, h)}(s0).

Then, the importance ιk of (s, a) at episode k is defined as its relative weight compared to

wmin := ε
20H|S| on a log-scale

ιk(s, a) := min{zj : zj ≥
wk(s, a)

wmin

}

where z1 = 0 and zj = 2j−2 ∀j = 2, 3, . . . .

Note that ιk(s, a) ∈ {0, 1, 2, 4, 8, 16, . . . } is an integer indicating the influence of the state-

action pair on the value function of π̃k. Similarly, we define knownness as

κk(s, a) := max{zi : zi ≤
nk(s, a)

mwk(s, a)
} ∈ {0, 1, 2, 4, . . . },

which indicates how often (s, a) has been observed relative to its importance. Value ofm is defined
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in Algorithm 6. Now, we can categorize (s, a)−pairs into subsets

Xk,κ,ι := {(s, a) ∈ Xk : κk(s, a) = κ, ιk(s, a) = ι}

and X̄k = S × A \Xk,

where Xk = {(s, a) : ιk(s, a) > 0} is the active set and X̄k is the set of (s, a)−pairs that are very

unlikely under policy π̃k. We will show that if |Xk,κ,ι| ≤ κ is satisfied, then the model of Online-

CRL would achieve sub-optimality while violating constraints at most by ε w.h.p. This condition

indicates that important state-action pairs under policy π̃k are visited a sufficiently large number of

times. Hence, the model of Online-CRL will be accurate enough to obtain PAC bounds.

Now, first we show that true model belongs toMk for every episode k w.h.p.

Lemma 15. [7] M ∈Mk for all episodes k with probability at least 1− δ
8
.

Next, we bound the number of episodes that the condition |Xk,κ,ι| ≤ κ is violated w.h.p.

Lemma 16. [7] Suppose E is the number of episodes k for which there are κ and ι with |Xk,κ,ι| >

κ, i.e. E =
∑∞

k=1 I{∃(κ, ι) : |Xk,κ,ι| > κ} and let

m ≥ 30H2

ε
log

8Emax

δ
, (4.25)

where Emax = log2
H

wmin
log2 |S|. Then, P(E ≤ 6|S||A|mEmax) ≥ 1− δ

8
.

Finally, the next lemma provides a bound on the mismatch between objective function of the

optimistic model and true model. It provides a PAC result for objective functions with any reward

matrix rc(λ) for any λ ∈ [0, Bλ].

Lemma 17. Assume M ∈Mk. If |Xk,κ,ι| ≤ κ for all (κ, ι) and 0 < ε ≤ 1 and

m ≥ 12800
|S|N2B2

λH
2

ε2
(log2 log2H)2 log2

2

(40|S|2H2

ε

)
log

6

δP
, (4.26)

then |Ṽ π̃k(λ̄(k))
0 (s0, λ̄

(k))− V π̃k(λ̄(k))
0 (s0, λ̄

(k))| ≤ ε
5
.
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Proof. The proof is provided in Appendix C.

Lemma 18. For any 0 < ε, δ ≤ 1, we have

P(|Ṽ π̃k(λ̄(k))
0 (s0, λ̄

(k))− V π̃k(λ̄(k))
0 (s0, λ̄

(k))| ≤ ε

5
) ≥ 1− δ

4
, P(D̃k(λ̄

(k)) ≤ D(λ̄(k)) +
ε

5
) ≥ 1− δ

4

(4.27)

for all episodes except at most

Õ
( |S|2|A|N2B2

λH
2

ε2
log

1

δ

)
,

and eventually for any λ ∈ [0, Bλ]

P(D̃(λ) ≤ D(λ) +
ε

5
) ≥ 1− δ

4
. (4.28)

Proof. The proof is provided in Appendix C.

4.4.3 Second Stage: Stochastic Subgradient Descent

First, we define good events. For the given accuracy ε ∈ (0, 1), Algorithm 6 would collect

samples (st, at)t where eventually each state-action pair (s, a) would be visited equal number of

times i.e. |S|mH. Please note that value of m depends on ε. Each time the algorithm runs, it

pursues different trajectory. Among all the trajectories with equal number of samples from each

(s, a), we collect the ones in a set denoted by Fε/5 that satisfy the following

‖Ṽ π̃(λ)
0 (λ)− V π∗(λ)

0 (λ)‖∞ ≤
ε

5
and |D̃(λ)−D(λ)| ≤ ε

5
∀λ ∈ [0, Bλ] (4.29)

and call it set of “good events". Later in Lemma 19, we will show that

P(Fε/5) ≥ 1− δ

4
.
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Now, suppose we are given a partial trajectory denoted by τε/5,T which consists of observations

up to T time-steps of a complete trajectory belonging to Fε/5. Thus for a fixed episode k, we get

D̃k(λ) = E[D̃(λ)|Fε/5].

Lemma 19. For any given λ ∈ [0, Bλ] under algorithm 6 finally we obtain

P(Fε/5) ≥ 1− δ

4
.

Proof. The proof is provided in Appendix C.

Lemma 20. Let g : X → Rd be a convex function with bounded domain, i.e. ‖x‖ ≤ B1,∀x ∈ X .

Also assume that there is g̃ where E[g̃] ∈ ∂g and it is bounded, i.e. ‖g̃‖ ≤ B2. Consider the

projected stochastic subgradient descent algorithm xk+1 = ΠX (xk − αg̃(xk)) where ΠX is the

projection operator, for K steps. Then after K iterations with α = B1

B2

√
K

we have

E[g(
1

K

K∑
k=1

xk)]− g(x∗) ≤ B1B2√
K

,

Proof. The proof is provided in Appendix C.

Proposition 2. With parameters K and α determined by (4.24), after k ≥ max{K,

Õ
(
|S|2|A|N2B2

λH
2

ε2
log 1

δ

)
} we get

P(D̃k(λ̃
(k)) ≤ D̃(λ̃∗) +

3ε

5
) ≥ 1− δ

2
,

where λ̃∗ := arg minλ D̃(λ).

Proof. The proof is provided in Appendix C.

Lemma 21. For any 0 < ε, δ < 1, under Algorithm 6 we get

P(D̃k(λ̃
(k)) ≤ D(λ∗) +

4ε

5
) ≥ 1− 3δ

4
.
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Proof. The proof is provided in Appendix C.

4.4.4 Proof of Theorem 7

Consider the following

L(π̃k(λ̃
(k)), λ̃(k))−D(λ∗) = V

π̃k(λ̃k)
0 (s0, λ̃

(k)) +
∑
i

λ̃
(k)
i C̄i −D(λ∗)

= V
π̃k(λ̃k)

0 (s0, λ̃
(k))− Ṽ π̃k(λ̃k)

0 (s0, λ̃
(k)) + Ṽ

π̃k(λ̃k)
0 (s0, λ̃

(k)) +
∑
i

λ̃
(k)
i C̄i −D(λ∗)

= V
π̃k(λ̄k)

0 (s0, λ̃
(k))− Ṽ π̃k(λ̃k)

0 (s0, λ̃) + D̃k(λ̃
(k))−D(λ∗)

Now, we consider the two following sections:

• Section 1: We prove |V π̃k(λ̃(k))
0 (s0, λ̃

(k)) − Ṽ
π̃k(λ̃(k))

0 (s0, λ̃
(k))| is small w.h.p. after certain

number of episodes.

• Section 2: We prove |D̃k(λ̃
(k))−D(λ∗)| is small w.h.p. after certain number of episodes.

Section 1: To prove this part, we apply Lemma 18 and get

P(Ṽ
π̃k(λ̃(k))

0 (s0, λ̃
(k))− V π̃k(λ̃(k))

0 (s0, λ̃
(k)) ≤ ε

5
) ≥ 1− δ

4
. (4.30)

Section 2: Now, we prove the second part. By applying Lemma 21, we get

P(D̃k(λ̃
(k))−D(λ∗) ≤ 4ε

5
) ≥ 1− 3δ

4
(4.31)

with parameters K and α specified by (4.24). Therefore, both inequalities (4.30) and (4.31) are

satisfied after max{K, 6Emax|S||A|m} which is

61440
|S|2|A|N2B2

λH
2(C̄max +H)2

C̄2
minε

2
(log2 log2H)2 log2

2

(4|S|H2

ε

)
log2

2

(8H2|S|2

ε

)
× log

(2048|S|4|A|H2

ε2δ
(log2 log2H)2 log2

2

(8H2|S|2

ε

))
.
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Finally, combining inequalities (4.30) and (4.31) and applying union bound would yield the result.

�

4.5 Conclusion

In this chapter, we developed two algorithms based on Lagrangian approach in order to achieve

computationally efficient learning algorithms. We showed, however, that this efficiency yields in

an increase in sample complexity due to expansion of space of reward matrices.

Our next goal is to tailor the algorithms for specific application scenarios. Specifically, we

desire to study routing and scheduling in multihop wireless networks. First, we study the problem

of routing and scheduling for broadcasting with known parameters in the next chapter. Then, we

present learning algorithms for data networks in the final chapter.
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5. BROADCASTING REAL-TIME FLOWS IN INTEGRATED ACCESS AND BACKHAUL

5G NETWORKS∗

5.1 Introduction

Mutli-hop broadcasting in wireless networks, which entails disseminating information to every

device in the system via retransmissions at multiple nodes, is an important mechanism to coordi-

nate devices in networked systems. Furthermore, many applications of broadcast communications

are safety-critical, and timely deliveries of information is crucial to maintain the robustness and

safety of the system. For example, multi-hop broadcasting is needed to disseminate timely safety

information among connected vehicles in vehicular ad hoc networks (VANETs), to announce con-

trol decisions in networked control systems and Internet of Things (IoT), and to exchange locations

and flight paths among unmanned aerial vehicles (UAVs) for Unmanned Aircraft System Traffic

Management (UTM).

The cellular infrastructure that will enable these time-critical broadcast wireless applications

will be 5G networks that are currently being designed to support ultra-low latency, ultra-high

throughput communications. These networks will utilize the highly directional and high bandwidth

mm-wave band, which suffers from high attenuation and sensitively to fading. This requires the

relatively dense deployment of small base stations at spacings of about 250 m. However, providing

fiber backhaul to all of these base stations is prohibitively expensive. An important development

in this context is Integrated Access and Backhaul (IAB) [36, 37], under which there are a few base

stations with fiber backhaul that act as gateways to many others that are connected via a mm-wave

wireless mesh backhaul. This mm-wave backhaul creates a directional wireless network between

the nodes, but routing across these is highly dynamic and subject to the vagaries of the wireless

channel. The same mm-wave spectrum also is used to provide access to end-users, i.e., both access

and backhaul are integrated over mm-wave.

Motivated by the above features of emerging networks, this chapter studies the problem of

∗Reprinted with permission from [3]
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designing algorithms for broadcasting real-time flows with strict per-packet end-to-end deadlines

in directional wireless mesh networks. Here, real-time flow imposes a strict deadline for each of

its packets, and packets that cannot be delivered before their respective deadlines are dropped from

the system. From the IAB perspective, our goal is to ensure that each broadcast packet is delivered

to an appropriate IAB base station before its deadline, at which point it is immediately transmitted

to its respective end user. Each IAB node in the network then obtains some utility based on the

time-average number of on-time packets that it receive from each flow. The goal of this chapter is

to maximize the total timely-utility of the whole network.

There are several important challenges that need to be addressed for broadcasting real-time

flows in such multi-hop mmWave networks. First, since it is difficult to coordinate a large network

in real-time, centralized algorithms that require the instant knowledge of the state of each node and

packet are usually infeasible to implement. Hence, we need distributed algorithms, where each

node makes decisions using its local information. Second, as mentioned above, transmissions in

the mmWave band can be unreliable. Finally, broadcasting algorithms need to explicitly address

the deadline requirement of each flow.

Main Results and Organization

In this chapter, we propose a new protocol for broadcasting in multi-hop mmWave networks,

namely, the delegated-set routing (DSR) protocol. DSR has two important features: First, it is

a distributed protocol where all the required coordination among nodes can be conveyed in the

headers of packets once the topology of the network is known. Hence, there is virtually no overhead

of coordination after topology creation process. Second, DSR allows each node to dynamically

change its transmission strategies based on the deadlines of its packets and random events, such as

transmission failures, it experiences.

Relaxing the link utilization constraint (number of transmissions allowed per time slot) to an

average one, and using dual decomposition techniques, we also propose a distributed algorithm

that aims to maximize the total system-wide utility under DSR. This algorithm only requires min-

imal and infrequent information exchange among nodes. We analytically prove that our algorithm
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achieves the optimal total utility under an average link capacity constraint. The key novelty lies in

a natural decomposition into packet-by-packet and link-by-link updates that need minimal coordi-

nation. These lead to a steepest-ascent-type control associated with each packet, and a sub-gradient

type of update at links. This algorithm also gives rise to a simple index policy when link utilization

constraints of all links need to be satisfied at every instant.

We evaluate our algorithms through simulations on representative network graphs. We com-

pare our algorithms against recent studies on throughput optimal algorithms, including one that

is designed specifically for broadcast, and one that is universal in terms of being able to support

unicast, multicast and broadcast. We show that despite some of these algorithms being centralized

and complex, our algorithm, which is designed specifically for simplicity and delay optimality,

achieves better performance.

The chapter is organized as follows. Section 5.2 reviews existing studies on broadcasting and

multi-hop networks. Section 5.3 describes our system model for multi-hop networks with real-time

broadcast flows. Section 5.4 describes the additional structure imposed by the DSR protocol, as

well as an epoch-wise approach to policy selection. Section 5.5 applies dual-decomposition, which

turns out to be the basis of our distributed algorithm. Section 5.6 proposes distributed algorithms

that optimize DSR, as well as the index policy that can ensure hard capacity constraints are met.

Section 5.7 presents our simulation results.

5.2 Related Work

Broadcasting/multicasting is a fundamental functionality of networks, and has been studied in

a substantial body of literature. One of the earliest policies for broadcasting/multicasting in ad

hoc networks is via flooding [38, 39]. However, such policies can lead to severe packet collision

frequency, and excessive redundant retransmissions, as shown by Ni et al. [40]. Gandhi et al.

[41] and Huang et al. [42] have shown that the problem of minimizing delay in wireless ad hoc

networks is NP-hard, and have proposed approximation algorithms aiming to reduce delay. These

studies rely on centralized algorithms.

There has been much interest in throughput optimal broadcasting/multicasting. For instance,
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Sarkar and Tassiulas [43] proposed a scheduling and routing policy that relies on pre-computed

spanning trees, which might be difficult to maintain and compute in scalable sized networks. Ho

and Viswanathan [44] and Yuan et al. [45] propose network coding based policies in the con-

text, which, however, leads to additional computation complexity. Zhang et al. [46] and Sinha et

al. [47] consider multi-hop broadcasting problems in Directed Acyclic Graphs (DAG), which are

not applicable to networks with arbitrary topology. Sinha et al. [48] also propose a centralized

throughput optimal broadcasting policy for networks with arbitrary topology, which might be dif-

ficult to deploy in a large scale system. Furthermore, the throughput maximization focus of all the

above does not directly allow for meeting stringent deadline guarantees.

Given the rising application of wireless networks to safety-critical and realtime applications,

there has been much recent interest in deadline constrained multi-hop communication. Xiong et

al. [49] proposed a delay-aware throughput optimal policy for multi-hop networks. Their policy,

however, can not provide stringent delay guarantees. Mao et al. [50] propose a hard deadline

guaranteed policy, under the assumption that all routes in the network are fixed. Li and Eryil-

maz [51] consider serving flows with stringent deadlines in a multi-hop system, and their pro-

posed framework can be extended to incorporate routing decisions. However, their policies are

heuristic, and optimality cannot be shown. Singh and Kumar [52] relax the deadline constrained

optimization problem in the manner of the Whittle’s relaxation for multi-armed bandits, and pro-

posed decentralized optimal solutions. However, both it and the above body of work on deadline

constrained communication only considers unicast traffic, and it is not clear how it applies to

broadcasting/multicasting networks.

5.3 System Model

We consider a multi-hop network that consists of N wireless nodes operating in the mmWave

band motivated by the IAB system. Here, the nodes correspond to fixed IAB base stations, and

the network topology is known to all nodes. The available spectrum is divided into multiple half-

duplex channels, and nodes can use these channels to send and receive packets from multiple

nodes simultaneously. Furthermore, these channels are directional in that transmissions on dif-
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ferent links do not interfere with each other, consistent with empirical observations in IAB test

deployments [37]. These links can have different constraints on the supportable number of trans-

missions in each time slot, as well as their reliabilities.

Time is slotted and numbered as t = 1, 2, . . . . We assume that link l can transmit Tl packets

in each time slot, and that each transmission will be successfully received by the receiver with

probability Pl. At the end of each time slot, the receiver sends an aggregated ACK indicating

which packets it has successfully received in the time slot to the transmitter. Where we need to

indicate the transmitter and the receiver of a link, we use l = n → m to indicate that link l has

transmitter n and receiver m.

We consider F real-time broadcast flows, using sf to indicate the source node of flow f . At

the beginning of each time slot t, af (t) packets of flow f arrive at node sf . We assume that

[af (1), af (2), . . . ] is a sequence of i.i.d. random variables with mean Af . Moreover, each flow f

specifies a per-packet end-to-end deadline of Df time slots. Packets from flow f are only useful

forDf time slots from their respective arrival times at their source nodes, and are dropped from the

network when they expire. Due to communication constraints, it is likely that some nodes cannot

receive all packets from each flow. We therefore measure the performance of node n on flow f

by its timely-throughput, defined as the long-term average number of packets from flow f that are

successfully delivered to node n within the deadline.

Let Ω be a set of stationary packet scheduling policies. Hence, given the state of the system

consisting of the locations and expiry times of all existing packets, a policy ω ∈ Ω is a rule that

decides which packet to transmit on what link, subject to communication constraints. For each

stationary policy ω ∈ Ω, let xωn,f (t) be the number of packets from f that are delivered to n at time

t under ω, i.e., these are the packets that survived the deadline constraint. Also, let εωl,f (t) be the

number of packets from flow f transmitted over link l at time t under ω. Since ω is a stationary

policy, and all packets that expire are immediately dropped, we can define

µωn,f := lim inf
T→∞

∑T
t=1 x

ω
n,f (t)

T
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as the timely-throughput of node n on flow f under ω, and

ε̄ωl,f := lim sup
T→∞

∑T
t=1 ε

ω
l,f (t)

T

as the average number of transmissions for flow f over link l under ω.

Now, finding the optimal total utility with respect to timely-throughputs over all the N nodes

under DSR is equivalent to finding the stationary policy that maximizes the total timely-utility

under link utilization constraints, which can be written as

Relaxed Timely-Utility Maximization (R-TUM)

Max
N∑
n=1

F∑
f=1

Un,f (µ
ω
n,f ) (5.1)

s.t. ω ∈ Ω, (5.2)
F∑
f=1

ε̄ωl,f ≤ Tl,∀l. (5.3)

Notice that whereas the R-TUM problem above requires each delivered packet to satisfy its

deadline constraint, it only requires that the long-term average number of transmissions over link

l,
∑F

f=1 ε̄
ω
l,f be no larger than Tl. This link utilization constraint relaxation is in the same manner

as [52]. In a practical system, such a relaxation might be akin to imposing an average transmit

power constraint rather than a hard one. We will first design policies that pertain to this relaxed

link-utilization constraint. Using the insights gained, we will also develop a policy that enforces a

hard link-utilization constraint, i.e.,

F∑
f=1

εωl,f (t) ≤ Tl,∀l, t. (5.4)

Solving the R-TUM problem could be posed as a Markov Decision Process (MDP), where

the state of the system at any given point of time consists of the locations and expiry times of

all existing packets. However, such a solution is infeasible to implement in practice. First, it is
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straightforward to show that the number of different system states is at least doubly exponential

in N , and hence standard algorithms for finding the optimal MDP-based solution will result in

prohibitive complexity. Second, even after one finds the optimal MDP-based solution, it may be

impossible to implement it in a distributed fashion, since the complete state needs to be known

at each node. In what follows, we impose additional structure on the policy space to render it

tractable.

5.4 A Structured Approach to Real-Time Broadcasting

We now introduce two elements of structure to the policy space to enable its solution as a

distributed convex optimization problem.

5.4.1 Delegated-Set Routing (DSR)

Ensuring a per-packet deadline guarantee requires that we retain flexibility in routing to dy-

namically choose the next hop node for a packet based on current state. Thus, source routing on

a per-packet basis is not satisfactory. However, for distributed implementation, we also need to

ensure that there is no ambiguity as to which neighboring node is responsible for transmitting a

packet to a given node. We resolve these seemingly opposite requirements via a protocol that we

term delegated-set routing (DSR).

For each node n that possesses a packet i at time t, we define the delegated-set of node n

as the subset of nodes that n is responsible for forwarding packets, possibly through multi-hop

transmissions. First, to ensure routing flexibility, whenever a node n decides to forward a packet to

another node m, node n delegates a subset of its own delegated-set to m, and specifies this subset

in the packet header. If the transmission is successful, this subset is removed from the delegated-set

of n, since it is now the responsibility of m to forward the packet to this subset. Second, in order

to avoid duplicate transmissions (ambiguity on which node should transmit a given packet), the

DSR protocol requires that the delegated-sets of different nodes for the same packet are chosen to

be disjoint.

To illustrate how DSR works, consider the network as shown in Fig. 5.1. When a packet
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Figure 5.1: An example illustrating DSR. Reprinted with permission from [3]

arrives at the source node sf , the delegated set of sf is every node in the network, since it is

the responsibility of sf to broadcast the packet to the entire network. Suppose in the first time

slot, sf transmits the packet to A, and delegates the subset {A,C,D} to A. If the transmission is

successful, the delegated-set of sf becomes {sf , B,E}, while the delegated-set of A is {A,C,D}.

In the next time slot, when sf transmits the packet to B, it needs to delegate the subset {B,E} to

B. In particular, sf cannot include node D in the delegated-set for B, since D is already in the

delegated-set of A.

We note that the ability to dynamically adjust routing decisions is an important feature that

distinguishes DSR from many existing studies on multi-hop broadcasting, such as [48] and [43].

These studies adopt source-routing, where the source node determines the routing decision of each

packet, and intermediate nodes cannot change the decision. As sf cannot foresee whether the

transmissions from A to C will be successful, it cannot take an optimal routing decision.

5.4.2 Epoch-wise Stationary Policies

Our second aspect of adding structure to the policy space is to expand it from Ω, the set of

all stationary policies, to the set of all epoch-wise stationary policies. In an epoch-wise stationary

policy, time is divided into epochs of equal length. The epoch-wise stationary policy adopts a

stationary policy ω+[i] in each epoch i. The duration of an epoch is chosen to be large enough

so that the average performance of ω+[i] in epoch i is not influenced by the system state at the

beginning of the epoch. Specifically, an epoch-wise stationary policy is defined as follows:

Definition 4. An epoch-wise stationary policy is a sequence of stationary policies ω+ = (ω[i])∞i=1, ω[i] ∈
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Ω}, where ω[i] is used in epoch i. The length of an epoch is chosen so that, under ω+,

µω
+

n,f := lim inf
T→∞

∑T
t=1 x

ω+

n,f (t)

T
= lim inf

I→∞

∑I
i µ

ω[i]
n,f

I
,

and

ε̄ω
+

l,f := lim sup
T→∞

∑T
t=1 ε

ω+

l,f (t)

T
= lim sup

I→∞

∑I
i ε̄

ω[i]
l,f

I
.

We can now define Ω+ as the set of all epoch-wise stationary policies. For each epoch-wise

stationary policy ω+, let γω+
:= [[µω

+

n,f , 1 ≤ n ≤ N, 1 ≤ f ≤ F ], [ε̄ω
+

l,f , 1 ≤ l ≤ L, 1 ≤ f ≤ F ]] be

the vector of timely-throughputs and average link uses under ω+. Also, let Γ := {γω+|ω+ ∈ Ω+}

be the set of attainable vectors of timely-throughputs and average link uses under all epoch-wise

stationary policies. An important advantage of considering the policy space Ω+ is that Γ is a convex

set.

Lemma 22. Γ is convex.

Proof. Consider two epoch-wise stationary policies ω+
1 , ω+

2 , and a number 0 < a < 1, we will

show that there exists an epoch-wise stationary policy ω+
a such that γω

+
a = aγω

+
1 + (1− a)γω

+
2 .

We construct ω+
a as follows: In epoch i, if baic > ba(i − 1)c, then ω+

a uses ω1[baic] in epoch

i. Otherwise, ω+
a uses ω2[i− baic] in epoch i.

It is straightforward to check that, in the first I epochs, ω+
a consists of the first baIc stationary

policies from ω+
1 and the first d(1 − a)Ie stationary policies from ω+

2 . Therefore, γω
+
a = aγω

+
1 +

(1− a)γω
+
2 .

Since Γ is a convex set, it is straightforward to verify that the optimization problem (5.1)–(5.3)

subject the policy space Γ is a convex optimization problem.

5.5 Solution Overview

Although the problem R-TUM, (5.1) – (5.3), is convex, solving it directly remains challenging

because there is no simple characterization of Γ. In this section, we present a general framework
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of solving R-TUM through dual decomposition. The exact distributed algorithm will be presented

in the next section.

5.5.1 Dual Problem Formulation

Let λl be the Lagrange multiplier with respect to the constraint
∑F

f=1 ε̄
ω+

l,f ≤ Tl in (5.3), and λ

be the vector of all λl, l = 1, 2, . . . , L. The Lagrangian of R-TUM is then

L(γω
+

, λ) =
N∑
n=1

F∑
f=1

Un,f (µ
ω+

n,f )−
L∑
l=1

λl

(
F∑
f=1

ε̄ω
+

l,f − Tl

)
, (5.5)

and the dual objective function is

D(λ) = max
γ∈Γ
L(γ, λ). (5.6)

The dual problem of R-TUM is to find a non-negative vector λ that minimizes D(λ).

We first show that strong duality holds for R-TUM.

Theorem 8. Let P∗ be the optimal solution to R-TUM, and D∗ := minλ:λl≥0,∀lD(λ), then P∗ =

D∗.

Proof. Since Relaxed Utility is convex, we only need to check the Slater’s condition:

1. Γ 6= ∅.

2. Constraint (5.3) is a linear inequality.

3. Consider the policy that never transmits any packets. Under this policy, the number of trans-

missions over link l is 0, which is strictly less than Tl, for all l.

Therefore, Slater’s condition holds, and the proof is complete.

Hence, solving R-TUM is equivalent to solving the dual problem, which consists of two steps:

First, given a vector λ, we need to find the dual objective function D(λ). Second, we need to find

the vector λ that minimizes D(λ).
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5.5.2 Packet-By-Packet Decomposition for the Dual Objective

We first present an iterative algorithm that finds D(λ) = maxγ∈Γ L(γ, λ) for a given λ using

the steepest ascent algorithm. For each stationary policy ω, let γω be defined to be the vector

of timely-throughputs and link usages under ω. Then the steepest ascent algorithm constructs a

sequence of epoch-wise stationary policies that ultimately converges to the optimal epoch-wise

stationary policy. The algorithm proceeds as follows:

1. Set k ← 1

2. Let ω+
k be the round-robin epoch-wise stationary policy that follows the sequence {ω1, ω2, . . . , ωk, ω1, ω2, . . . , ωk, . . . }.

3. Let ωk+1 be the stationary policy that maximizes the directional derivative, ∇L(γω
+
k , λ) ·

γωk+1 .

4. Set k ← k + 1 and repeat step 2.

Based on our construction of ω+
k , we have γω

+
k =

∑k
j=1 γ

ωj

k
. Therefore γω

+
k+1 − γω

+
k =

γωk+1−γω
+
k

k+1
. Effectively, for each k, our steepest ascent algorithm finds ω+

k+1 that maximizes the

directional derivative ∇L(γω
+
k , λ) · (γω

+
k+1 − γω+

k ) among all epoch-wise stationary policies with

step size 1
k+1

. Following the analysis presented in Boyd et al. [53] Section 9.4.3, it is straightfor-

ward to show the following:

Theorem 9. Under our steepest ascent algorithm, L(γω
+
k , λ) converges to D(λ), as k →∞.

Notice that the critical step in our steepest ascent policy is to find ωk+1 that maximizes∇L(γω
+
k , λ)·

γωk+1 . We have

∇L(γω
+
k , λ) · γωk+1

=
∑
n,f

∂

∂µn,f
L(γω

+
k , λ)µ

ωk+1

n,f +
∑
l,f

∂

∂ε̄l,f
L(γω

+
k , λ)ε̄

ωk+1

l,f

=
F∑
f=1

{
N∑
n=1

U ′n,f (µ
ω+
k
n,f )µ

ωk+1

n,f −
L∑
l=1

λlε̄
ωk+1

l,f

}
.
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This naturally gives us a flow-by-flow decomposition in the sense that ∇L(γω
+
k , λ) · γωk+1 can

be maximized by maximizing

N∑
n=1

U ′n,f (µ
ω+
k
n,f )µ

ωk+1

n,f −
L∑
l=1

λlε̄
ωk+1

l,f (5.7)

for each flow f individually. Moreover, note that, after normalizing with the average packet arrival

rate of flow f , µωk+1

n,f is the average delivery per-packet from flow f to node n, and ε̄ωk+1

l,f is the

average number of transmissions per packet over link l for flow f .

For each packet i from flow f, let yn,f,i be a random variable representing the event that packet

i is successfully delivered to node n within its deadline of df . Also, let zl,f,i be the random variable

indicating the number times that link l transmits i. Then E[yn,f,i] is the success probability that

packet i is delivered to node n, while E[zl,f,i] is the expected number of times that link l transmits

i. Therefore, from (5.7), maximizing∇L(γω
+
k , λ) · γωk+1 can be achieved by maximizing

N∑
n=1

U ′n,f (µ
ω+
k
n,f )E[yn,f,i]−

L∑
l=1

λl E[zl,f,i] (5.8)

for each packet i.

We note that such packet-by-packet decomposition allows distributed algorithms for finding

the optimal solution since, instead of considering the system state as a whole, each packet only

needs to maximize (5.8) on its own, without considering the states of other packets.

5.5.3 Link-by-Link Update for the Dual Problem

After findingD(λ), we now proceed to find the solution to the dual problem, minλ:λl≥0,∀lD(λ).

Our solution is based on the subgradient method. We first find the subgradient of D(λ).

Theorem 10. Let γ(λ) = [[µn,f (λ)], [ε̄l,f (λ)]] := arg maxγ∈Γ L(γ, λ), then the L-dimensional

vector [Tl −
∑F

f=1 ε̄l,f (λ)] is a subgradient for D(λ).
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Proof. For any arbitrary λ′:

D(λ′) = max
γ
L(γ, λ′) ≥ L(γ(λ), λ′)

=
N∑
n=1

F∑
f=1

Un,f (µn,f (λ))−
L∑
l=1

λ′l(
F∑
f=1

ε̄l,f (λ)− Tl)

=
N∑
n=1

F∑
f=1

Un,f (µn,f (λ))−
L∑
l=1

λl(
F∑
f=1

ε̄l,f (λ)− Tl)

+
L∑
l=1

(λl − λ′l)(
F∑
f=1

ε̄l,f (λ)− Tl)

=D(λ) + (λ′ − λ) · [Tl −
F∑
f=1

ε̄l,f (λ)].

Thus, [Tl −
∑F

f=1 ε̄l,f (λ)] is a subgradient of D(λ).

The subgradient method finds the optimal λ that minimizes D(λ) iteratively. Starting with an

arbitrary vector λ(1), the subgradient method finds λ(k + 1) = [λl(k + 1)] by setting

λl(k + 1) =

[
λl(k)− βk

(
Tl −

F∑
f=1

ε̄l,f (λ(k))

)]+

, (5.9)

where x+ := max{0, x}.

Theorem 11. If the sequence βk is chosen so that βk ≥ 0,∀k,
∑∞

k=1 βk =∞, and limk→∞ βk = 0,

then D(λ(k))→ minλ:λl≥0,∀lD(λ), as k →∞.

Proof. This is the direct result of Theorem 8.9.2 in [54].

Recall that
∑F

f=1 ε̄l,f (λ(k))) is the average number of transmissions that link l makes. There-

fore, for link l to update λl by (5.9), link l only needs to know its own link constraint and the

number of transmissions it makes. Hence, this subgradient method allows for a distributed update

of λl.
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5.6 Optimization of DSR

Under DSR, the transmission strategy for a node having a packet i consists of two parts: deter-

mining which node to transmit the packet i to, and determining what delegated-set to assign to the

receiver. In this section, we discuss the optimal transmission strategy that maximizes (5.8) under

the design of DSR.

Fix a packet i from flow f. For each subset of nodes π, let Lπ be the set of links whose

transmitter and receiver are both in π. Also, for each node n, subset of nodes π, and integer

τ ∈ [0, df ], define

Wf (n, π, τ) =

max

(∑
k∈π

U ′k,f (µ
ω+
k
k,f )E[yk,f,i]−

∑
l∈Lπ

λl E[zl,f,i]

)
(5.10)

if node n receives the packet i and delegated-set π, and the packet i has τ time slots before meeting

its deadline.

By the definition ofWf (n, π, τ), finding the optimal transmission strategy that maximizes (5.8)

is equivalent to finding the value of Wf (sf , {1, 2, . . . , N}, df ), as well as the transmission strategy

that achieves it.

We use dynamic programming to find Wf (n, π, τ). Suppose node n receives the packet i and

delegated-set π, and packet i has τ time slots before meeting its deadline. Also suppose that node

n decides to transmit the packet to m and designates the delegated-set πm to m. If the transmission

is successful, then, in the next time slot, node n has a delegated-set of π − πm, node m has a

delegated-set of πm, and packet i has τ − 1 time slots before its deadline. By the definition of

Wf (·), we have, given that the transmission is successful,

max

(∑
k∈π

U ′k,f (µ
ω+
k
k,f )E[yk,f,i]−

∑
l∈Lπ

λl E[zl,f,i]

)

= Wf (n, π − πm, τ − 1) +Wf (m,π
m, τ − 1)− λn→m. (5.11)
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On the other hand, if the transmission fails, then, in the next time slot, node n still has the

delegated-set π and packet i has τ − 1 time slots before its deadline. Given that the transmission

fails, we have

max

(∑
k∈π

U ′k,f (µ
ω+
k
k,f )E[yk,f,i]−

∑
l∈Lπ

λl E[zl,f,i]

)

= Wf (n, π, τ − 1)− λn→m. (5.12)

Since each transmission from n to m succeeds with probability Pn→m, we have, given that n

transmits packet i and assigns delegated-set πm to m,

max

(∑
k∈π

U ′k,f (µ
ω+
k
k,f )E[yk,f,i]−

∑
l∈Lπ

λl E[zl,f,i]

)

= Pn→m × (5.11) + (1− Pn→m)× (5.12). (5.13)

Based on the above analysis, we can write down the following iterative equation:

Wf (n, π, τ) = max{Wf (n, π, τ − 1),

max
m,πm:m∈πm,πm⊂π

[Pn→m(Wf (n, π − πm, τ − 1)

+Wf (m,π
m, τ − 1)) + (1− Pn→m)Wf (n, π, τ − 1)

− λn→m]}, (5.14)

with boundary condition

Wf (n, π, 0) = ri,n = U ′n,f (µn,f ), (5.15)

where the term Wf (n, π, τ − 1) in (5.14) represents the case when n does not transmit the packet

at all. Eq. (5.14) and (5.15) allows a dynamic programming algorithm to find Wf (n, π, τ) for

all f, n, π, and τ . As we will show in Section 5.7, our algorithm can be easily carried out in
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medium-sized networks.

5.6.1 Index-DSR for Per-Time-Slot Link Constraint

The Dynamic Program in (5.14) can be directly combined with the dual decomposition in Sec-

tion 5.5 to achieve the optimal solution of R-TUM problem under DSR. In this section, we further

propose an index policy that satisfies the per-time-slot link utilization constraint
∑

i,v εi,v,l(t) ≤ Tl,

for all t, of the original TUM problem. The index-DSR policy would be to transmit the maxi-

mum number of packets among all possible packets to be transmitted so that the per-time-slot link

constraint is not violated.

We make several changes to the dynamic program and the dual decomposition technique. First,

we change the iterative equation (5.14) to

Wf (n, π, τ) =

max
m,πm:m∈πm,πm⊂π

[Pn→m(Wf (n, π − πm, τ − 1)

+Wf (m,π
m, τ − 1)) + (1− Pn→m)Wf (n, π, τ − 1)

− λn→m]}, (5.16)

as long as there is a link from n to another node in π, and

Wf (n, π, τ) = Wf (n, π, τ − 1), (5.17)

otherwise. In other words, we force each node n to find a link to transmit each packet. We also

define m∗(n, π, τ) and πm∗(n, π, τ) as the optimal m and πm that achieves Wf (n, π, τ). We note

that, since we now force each node n to find a link to transmit each packet, it is possible that

Wf (n, π, τ) is negative for some (n, π, τ).

Second, in each time slot t and for each link n → m, we find all packets possessed by n

with delegated-set π, τ slots until their respective deadlines, and m∗(n, π, τ) = m. We sort these

packets in descending order of Wf (n, π, τ), and let ε′n→m(t) be the number of these packets with
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Wf (n, π, τ) > 0. In other words, ε′n→m(t) is the number of packets whose optimal strategy yields

a positive return by transmitting over the link n→ m. After sorting these packets, link n→ m

simply transmit the first Tn→m packets. Finally, the price of each link is updated by (5.9).

5.7 Simulation Results

In this section, we present simulation results that compare the performance of our policy against

a policy proposed in [55] called Universal Max-Weight (UMW), and a policy proposed by Sinha,

Paschos, and Modiano in [48] that we call SPM. We first provide a brief description of these two

policies, and then present our simulation settings and results.

5.7.1 Overview of UMW and SPM

The UMW policy solves the problem of throughput-optimal packet dissemination in a network

with arbitrary topology with different types of traffic, e.g., unicast, multicast and broadcast. In both

the centralized and distributed versions of UMW, the route of each packet is decided at the origin.

This route is a weighted tree that is constructed using the edge weights at time of decision at the

origin. Hence, if the route of the packet turns to be inappropriate during packet dissemination, it

cannot be modified. Although this policy also has a heuristic version that can be implemented in a

distributed fashion, we consider our comparison against the centralized version, which has better

performance than the distributed one.

The SPM policy is designed specifically for throughput optimal broadcast. SPM is a virtual-

queue based algorithm, where virtual-queues are defined for subsets of nodes. These virtual queues

keep track of a kind of backpressure, while accounting for the fact that packets are duplicated in

the broadcast regime. A feature of this work is that each slot is sub-divided into L minislots, where

L is the number of links in the network, and a random link is activated in each mini-slot. Here,

a packet may be retransmitted multiple times over the mini-slots comprising a slot (i.e., it could

potentially reach all nodes in just one slot). To ensure consistency with the slot model, we modify

this algorithm to only allow packet state updates at each slot, rather than at each mini-slot.
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Figure 5.2: Scenario 1:
11−node network. Reprinted
with permission from [3]
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Figure 5.3: Scenario 1: Lin-
ear Utility Function. Reprinted
with permission from [3]
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Figure 5.4: Scenario 1: Log-
arithmic Utility Function.
Reprinted with permission
from [3]

Figure 5.5: Scenario 2:
18−node network. Reprinted
with permission from [3]
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Figure 5.6: Scenario 2: Lin-
ear Utility Function. Reprinted
with permission from [3]
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Figure 5.7: Scenario 2: Log-
arithmic Utility Function.
Reprinted with permission
from [3]

76



5.7.2 Simulation Settings and Results

In this study, we consider two different simulation scenarios motivated by designs for IAB

network deployments [36, 37]. Here, we have two kinds of nodes, namely, (i) gateway nodes with

fiber drops (shown in red), and (ii) wireless-only nodes with mm-wave backhaul (shown as blue

nodes). We assume that gateways communicate reliably between each other with zero latency,

since they are connected to the same backend switch (consistent with IAB architecture). The

two scenarios represent different levels of gateway availability. The first scenario is a an 11−node

network with 2 fiber drops as in figure (5.2), while the second scenario is an 18− node IAB network

with 9 fiber drops as shown in figure (5.5). Hence, Scenario 1 is illustrative performance in a

network with multiple wireless hops, whereas Scenario 2 illustrates performance in a more densely

connected network.

In both scenarios, there are two broadcast flows. One of the flows originates at a fiber-connected

gateway node, and the other one from a wireless-only node. For each link l, Pl is randomly chosen

from [0.5, 1.0], and Tl is randomly chosen from [1, 5]. Each flow generates packets according to

a Poisson random process, where source node of flow 1 has a mean arrival rate of 1.5 packets

per time slot, and source node of second flow has a mean arrival rate of 2 packets per time slot.

Since UWM and SPM only aim to maximize throughput, we first consider a linear utility function

Un,f (µn,f ) = µn,f to make a fair comparison. In this case, the total utility of the system is the same

as the total timely-throughputs. In a second case, we also consider a logarithmic utility function

Un,f (µn,f ) = log(µn,f + 1), which models the idea that the utility of the end user might be a

non-negative, concave and increasing function of timely throughput. We assume that the two flows

have the same deadline of D time slots, and vary D from 4 to 10. We test four the optimal DSR

protocol (for the relaxed problem), the Index-DSR protocol, the UWM policy, and the SPM policy.

The simulation results for the linear utility function and the logarithmic utility function for

scenario in figure (5.2) are shown in figures (5.3) and (5.4), respectively. The performance of

DSR is an upper bound, since it is the optimal solution under a relaxed constraint. The Index-

DSR protocol outperforms UWM, possibly because of more dynamic routing of each packet under
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Index-DSR. This also shows that UMW might be providing bursty service to nodes, since deadlines

are often violated and packets are dropped, leading to poor throughput. The Index-DSR policy

outperforms SPM in all cases despite the assumption taht SPM can compute the reachable subgraph

for each packet instantly.

The results for second IAB scenario, depicted in (5.5) shows similar results in terms perfor-

mance of DSR-based algorithms for much the same reasons specified above. However, results

of figures (5.6) and (5.7) shows that UMW has better performance than SPM, unlike the results

obtained in (5.3) and (5.7). This result appears to be due to the density of the network. The

UMW policy manages to deliver more unexpired packets to the destination since it has to traverse

fewer hops. SPM is also handicapped by the fact that we force it to obey a slot-by-slot state update

model like all the other protocols (although we do allow it to utilize its minislot-based transmission

model). Ultimately, these results demonstrate the efficiency and flexibility of the DSR protocol.

5.8 Conclusion

In this chapter, We studied the problem of broadcasting real-time flows with hard per-packet

deadlines in a multi-hop wireless network. We considered the IAB node deployment and proposed

an optimal algorithm–DSR and near-optimal algorithm–index-DSR. These algorithms assume that

the link reliabilities are known. In the next chapter, we disregard this assumption and present

learning algorithms.
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6. REINFORCEMENT LEARNING FOR SCHEDULING AND ROUTING REAL-TIME

FLOWS IN INTEGRATED ACCESS AND BACKHAUL 5G NETWORKS

6.1 Introduction

The previous chapter studied the problem of routing and scheduling when the system param-

eters (link reliabilities) are known. In this chapter, we do not consider this assumption moving

into learning direction. The problem of maximizing timely throughput can be posed in the man-

ner of reinforcement learning (RL) over a Constrained Markov Decision Process (CMDP). Here,

the state of the system is the tuple of location and remaining lifetime of each packet, and a unit

reward is obtained each time that an unexpired packet is delivered successfully to end-user. The

available actions are the choices of links that can be used for forwarding the packet at each node,

and the randomness of the MDP kernel stems from the randomness of the links. The constraints of

this problem are on the number of transmissions permissible per link at each time, while the fact

that the probabilities of success or failure at each link is unknown implies the need for a learning

approach.

Multiple challenges must be addressed to successfully solve the CMDP problem of deadline

constrained flows. First, reinforcement learning must be employed to estimate the link reliabilities

using as few packets as possible. Second, we must ensure that per-packet deadline guarantees are

met. Finally, it is untenable to solve a global MDP that requires state information about every

packet and node in the system, and a simple distributed implementation of the policy is desired.

From RL point of view, our objective is to design simple algorithms to solve CMDP problems

under an unknown model. Whereas the goal of a typical model-based RL approach would take

as few samples as possible to quickly determine the optimal policy, minimizing the number of

samples taken is even more important in the CMDP setting. This because constraints are violated

during the learning process, and it might be critical to keep the number of such violations as low

as possible, and yet ensure that the weighted timely throughput is maximized. Hence, determining
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how the joint metrics of timely throughput maximization and capacity constraint violation evolve

over time as the model becomes more and more accurate is crucial to understand the efficacy of a

proposed RL algorithms for CMDPs.

Main Results

Our main results are based on two general frameworks presented in [4]. First, we formulate an

LP according to CMDP problem [4] and analyze the sample complexity of solving that to a desired

accuracy with a high probability in both objective and constraints in the context of finite horizon

(episodic) problems. We focus on two figures of merit pertaining to objective maximization and

constraint satisfaction in a probably-approximately-correct (PAC) sense. Our main contributions

with the LP framework are as follows:

(i) We develop two model-based algorithms, namely, (i) a generative approach that obtains

samples initially then creates a model, and (ii) an online approach in which the model is updated

as time proceeds.

(ii) The algorithms follow the general pattern of model construction or update, followed by a

solution using linear programming (LP) of the CMDP generated in this manner.

(iii) We develop PAC-type sample complexity bounds for both algorithms, accounting for both

objective maximization and constraint satisfaction.

Next, we build on a framework of a general solution methodology for CMDPs using a dual de-

composition approach of Altman [4]. Here, the CMDP problem is solved via a two step procedure

of (i) maximizing the objective (solving an MDP) under fixed Lagrange multipliers corresponding

to the constraints, and (ii) a gradient descent step over the Lagrange multipliers. This algorithm

follows a procedure under which each link is sampled a given number of times to determine its

statistics to a desired level of accuracy, and the resulting (noisy) model of the system is used as an

input to the CMDP framework of Altman [4].

Our work is perhaps the first to consider a learning approach towards solving CMDPs in the

context of optimal wireless scheduling design. The main contribution of our work is to design al-

gorithms that explicitly account for the overhead of learning link reliabilities while computing the
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optimal packet and link scheduling policy. We follow the general theme of model-based reinforce-

ment learning, under which the intent is to efficiently determine the transition kernel of the MDP

under study, and explicitly solve it to obtain the optimal policy. This approach is particularly suited

to our problem, as it has a well defined structure under which the unknown sources of randomness

in the system are parametrized by the success probabilities of the links. Our performance analysis

goal is to characterize the so-called sample complexity of our algorithms, i.e., we wish to deter-

mine the number of packet transmissions needed to ensure that the value of the packet transmission

policy differs from that of the optimal policy at most by a parameter ε with a high probability.

Our numerical evaluation is over topologies similar to those proposed for IAB trails [37]. We

compare our RL-based algorithms with the optimal solution value assuming that the model (link

success probabilities) are known to show how the accuracy improves with increasing sample com-

plexity.

6.2 Related Work

There has been much work in the past several years on provably throughput optimal scheduling

policies, starting with seminal work of Tassiulas et al. [56], and follow up works [57, 58] leading

to the so-called backpressure type scheduling policies. Recent work in this space has focused on

throughput optimal broadcast under networks with different topologies [59, 55]. With the rise of

real-time streaming applications that require hard delay guarantees, a different approach is needed

as backpressure cannot provide delay optimality. Work in this space focuses on scheduling such

real-time flows, wherein an MDP formulation is avoided due to the emphasis on a single (typically

downlink) wireless hop [60, 61].

The design of scheduling algorithms that can support hard deadline constrains in the multi-

hop context has been the topic of recent study. For instance, Xiong et al. [49] introduce delay-

awareness into the protocol, without, however, enabling hard deadline guarantees. Other work,

such as that by Mao et al. [50] provide such guarantees under fixed routing, while that by Li et al.

[51] is only able to do so in a heuristic manner without optimality guarantees. The fundamental

issue here is the need to solve a global MDP for taking scheduling/routing decisions, and the work
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of Singh et al. [62] is the first to use an average link utilization constraint to enable a simple

and distributed solution. The approach has been further generalized to the broadcast setting by

HasanzadeZonuzy et al. [63].

The use of AI methods in communication networks has recently been the subject of much in-

terest, with most work focusing on bandit-style approaches to learning the sources of randomness

in the system. For example, Krishnasamy et al. [64] use posterior sampling with some additional

learning effort in order to small queuing regret in a system with a single queue and many wireless

channel. Combes et al. [65] and Gupta et al. [66] both use a marginal posterior sampling approach

in the context of power allocation in the context of a system in which channel statistics are un-

known. Talebi et al. [67] also consider a bandit approach to routing over links whose statistics are

unknown.

Unlike the above body of work on learning in wireless networks, our problem of delay con-

strained unicast flows does not admit a bandit-type of solution due to the hard delay constraint that

implies that the state of each packet in the system consists of both a location and a time to live.

Hence, while the source of randomness in our problem lies in unreliable links (like earlier work),

our formulation is very different and takes the form of a constrained MDP that explicitly accounts

for state, rather than the bandit formulation considered earlier.

In addition, much work in the space of CMDP has been driven by problems of control, and

many of the algorithmic approaches and applications have taken a control-theoretic view [4, 8, 9,

10, 11, 12] for solving a general CMDP problem. The approach taken is to study the problem

under a known model, and showing asymptotic convergence of the solution method proposed.

There are also studies on constrained partially observable MDPs such as [13, 14]. Both of these

works propose algorithms based on value iteration requiring solving linear program or constrained

quadratic program.

Extending CMDP approaches to the context on an unknown model has also mostly focused on

asymptotic convergence [15, 16, 17, 18] under Lagrangian methods to show zero eventual duality

gap. [19] also proposes an algorithm based on Lagrangian method, but proves that this algorithm

82



achieves a small eventual gap. On the other hand empirical works built on Lagrangian method has

also been proposed [20].

A parallel theme has been related to the constrained bandit case, wherein the the underlying

problem, while not directly being an MDP, bears a strong relation to it. Work such as [21, 22, 23]

consider such constraints, either in a knapsack sense, or on the type of controls that may be applied

in a linear bandit context.

Closest to our theme are parallel works on CMDPs. For instance, [24] and [25] present re-

sults in the context of unknown reward functions, with either a known stochastic or deterministic

transition kernel. Other work [26] focuses on asymptotic convergence, and so does not provide

an estimate on the learning rate. Finally, [5] explores algorithms and themes similar to ours, but

focuses on characterizing objective and constrained regret under different flavors of online algo-

rithms, which can be seen as complementary to or work. Since there is no direct relation between

regret and sample complexity [27], applying their regret approach to our setting gives relatively

weak sample complexity bounds. Our discovery of a general principle of logarithmic increase in

sample complexity with the number of constraints also distinguishes our work.

6.3 Problem Formulation

In this section, we formally describe our model and the constrained MDP (CMDP) formula-

tion for maximizing the weighted timely throughput of the system. The setup of both approaches

are similar to Singh et al. [62], and employs the relaxed transmission constraint and Lagrangian

decomposition technique proposed in that work to obtain simple per-packet MDPs that are con-

ducive to attain decentralized optimal policy. To achieve this goal, we explain briefly two different

approaches to solve a CMDP problem presented in [4] in detail. Finally, we state the problem

formally.

6.3.1 System Model

We consider a communication network described by a directed graph G = (S,L), where S is

the set of nodes and L is the set of links. The cardinality of S,L are denoted by S, |L| respectively.
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Let Lj be set of the outgoing links from node j ∈ S. A directed link l = (j, k) indicates that node

j can transmit data packet to node k. We use self loops to indicate the decision not to transmit at

a node, i.e., (j, j) ∈ Lj for all j ∈ S. We model unreliability of network links by assuming that a

transmission over link l is successful with a probability pl. We also assume that the time is slotted,

and one time slot is the time needed to transmit one packet over any link in the network.

We consider a set of finite number of flows F with size |F | indexed by f ∈ {1, . . . , |F |}. sf and

df indicate the source node and destination node of flow f ∈ F, respectively. Let Af (t) denotes

the set of packets arriving at node sf at time t that are in flow f. The average arrival rate of flow f

is then defined as ρf = limT→∞
∑T

t=1 |Af (t)|/T. We denote ρtot =
∑

f ρf . Each packet of flow f

has a maximum end-to-end delay τf associated with it. A packet of flow f that has arrived at sf at

time t needs to be delivered to df before time t + τf , or else it will be discarded. We assume that

maxfτf = τmax <∞.

The timely throughput for flow f under a scheduling policy π,Rπ
f , is the expected value of the

number of packets delivered prior to deadline expiry per unit time,

Rπ
f = lim inf

T→∞

1

T
E

T∑
t=1

xπf (t), (6.1)

where xπf (t) is the number of packets of flow f successfully delivered to df under policy π at time

t.

The average link utilization for link l under policy π, denoted by Cπ
l is defined as

Cπ
l := lim sup

T→∞

1

T
E
∑
f∈F

T∑
t=1

cπl,f (t), (6.2)

where cπl,f (t) is the number of packet transmissions for flow f on link l under policy π at time

t. This is the relaxation proposed in [62]. In practice, such a relaxation might correspond to an

average transmit power constraint. It is pointed out in [62] that the gap between this approach and

the hard constraint becomes small in the heavy traffic regime. We will also consider such a hard

constraint in the numerical simulations.
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The optimal scheduling problem is to find a policy π∗ that solves the following optimization

problem

[OSP] max
π

∑
f∈F

βfR
π
f , s.t Cπ

l ≤ Cl,∀l ∈ L (6.3)

6.3.2 Constrained MDP Formulation

We now formulate OSP using the framework of constrained Markov Decision Processes (CMDP).

We first define the per-packet finite-horizon MDP corresponding to each flow as if there is no link

capacity by specifying the states, actions, rewards and transition kernel. Next, we show how the

per-packet MDPs weld together by imposing link capacity constraints. Then, we formulate the

network CMDP using the per-packet MDP definitions, cost matrices and constraints.

State. Let si,f (t) denote the state of the packet i from flow f at time t, defined as the node at

which that packet from flow f is located at time t. If the packet has been delivered to its destination,

or if it has been discarded from the network by time t, then si,f (t) is defined as the terminal state

sterm. The state of the network at time t, s(t), is then defined as s(t) = (si,f (t), i ∈ ∪
τf
τ=0Af (t −

τ), f ∈ F ).

Action. The scheduling action ai,f (t) for packet i in flow f at time t is defined the link on

which that packet is transmitted at time t. Hence, ai,f (t) ∈ Lsi,f (t). The scheduling action for the

network at time t, a(t), is then defined as a(t) = (ai,f (t), i ∈ ∪
τf
τ=0Af (t−τ), f ∈ F).A scheduling

policy π maps the state of the system s(t) to the scheduling action a(t), i.e., a(t) = π(s(t)).

Transition Kernel. We denote the transition kernel of the MDP as P (k|j, l), which is the

probability that the si,f (t+ 1) = k given that si,f (t) = j and ai,f (t) = l. Clearly,

P (k|j, l) =


pl if l = (j, k)

1− pl if j = k

0 O.W.

(6.4)

We assume that pl = 1 for l = (j, j) for all j ∈ S. Note that the transition kernel is the same for
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all packets in all the flows.

Furthermore, transition kernel under policy π is

Pπ(k|j) =
∑
l

P (k|j, l)π(l|j).

Reward. Let rf (j) denote the reward for a packet in flow f for being in state j. We define

rf (j) =

 βf if j = df

0 O.W.
(6.5)

Per-Packet MDP. For each flow f,we can denote the per-packet finite-horizon MDP by a tuple

Mf = 〈S,L, P, rf , τf〉.Here, the horizon is τf . Like any other finite-horizon MDP, we define value

function of state j at time t ∈ [0, τf ) under any policy π as below:

V π
f,t(j) = E[

τf∑
h=t

rf (s(h))|a(h) ∼ π(s(h)), s(t) = j]. (6.6)

Now, we need to specify the cost matrices and constraint vector to formulate the CMDP. These

definitions are independent from the per-packet MDPs.

Cost Matrices and Constraint Vector. A capacity constraint on each link l implies a cost

matrix and a constraint to be satisfied. The cost matrix is defined as

cl(j, l) =

 1 if l ∈ Lj

0 O.W.
(6.7)

and the constraint is denoted by Cl.[Cl]l is used to denote the constraint vector.

Then, for each flow f the cost function of state j under policy π at time-step t ∈ [0, τf ) is

determined as below

Cπ
l,f,t(j) = E[

τf∑
h=t

cl(s(h), a(h))|a(h) ∼ π(s(h)), s(t) = j]. (6.8)
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Now, we rewrite term βfR
π
f using definition (6.1)

βfR
π
f = βf lim inf

T→∞

1

T

∞∑
t=1

xπf (t) = lim inf
T→∞

1

T

∞∑
t=1

βfx
π
f (t)

= lim inf
T→∞

1

T

∞∑
t=1

|Af (t)|V π
f,0(sf )

= V π
f,0(sf ) lim inf

T→∞

∑∞
t=1 |Af (t)|
T

= ρfV
π
f,0(sf ).

Analogously, we use definition (6.2) and get

Cπ
l =

∑
f

ρfC
π
l,f,0(sf ).

Now, we use tuple 〈S,L, P, {ρf}f , {sf}f{rf}f , {cl}l, [Cl]l, {τf}f〉 to denote the Network-

CMDP and formulate the OSP equivalently as,

[Network-CMDP] (6.9)

max
π

∑
f

ρfV
π
f,0(sf )

s.t
∑
f

ρfC
π
l,f,0(sf ) ≤ Cl ∀l ∈ L.

The network-CMDP problem of (6.9) is quite different from generic CMDP formulations pre-

sented in [4]. Unlike generic CMDPs, network-CMDP consists of multiple decision processes.

One solution could be approaching network-CMDP as one generic CMDP and apply existing meth-

ods. This approach would lead to a solution but in expense of high computation power. Besides,

these decision processes do not have identical horizon length in general which does not align with

existing methods for CMDPs.

Further, network-CMDPs integrate multiple costs caused by different decision processes and

impose them as a constraint. This integration prohibits us from decomposing these decision pro-

cesses. However, we show how we tackle these issues by using existing methods for CMDPs in a
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different way.

Network-CMDP problem formulated by (6.9) could be solved in two ways. First solution

approach is converting the problem to Linear Programming (LP) using occupancy measures. The

other way is solving via Lagrange multipliers. Both of the solution techniques are extensively

discussed in [4]. In this chapter, we utilize both approaches to design and analyze Reinforcement

Learning algorithms.

6.3.3 LP Representation of CMDP

LP is one technique to solve CMDP problem (6.9) [4]. To convert CMDP problem to a linear

programming problem, we introduce occupation measures. The finite-horizon state-action occu-

pation measure at time-step τ under policy π is defined as

µ(j, l, π, τ, f) := P(jf,τ = j, lf,τ = l), (6.10)

where the probability is calculated w.r.t. underlying transition kernel under policy π;Pπ. It is

shown that both objective function and cost functions could be restated as functions of occupation

measures. Then, the problem would become to find the optimal occupation measures. This pro-

cedure may be accomplished by creating a Linear Program that is equivalent to network-CMDP

problem [4]. Here, we present the equivalent LP formulation of network-CMDP problem (6.9) by
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[5]. Let µ be any generic occupation measure. Then, the equivalent LP would be

max
µ

∑
j,f,τ

µ(j, l, τ, f)ρfrf (j)

s.t.∑
l,τ

∑
f

ρfµ(j, l, τ, f)cl(j, l) ≤ Cl,

∑
l

µ(j, l, τ, f) =
∑
j′,l′

P (j|j′, l′)µ(j′, l′, τ − 1, f),

∑
l

µ(sf , l, 0, f) = 1,
∑
l

µ(sf , l, 0, f) = 0 ∀f,

µ(j, j, τ, f) ≥ 0.

(6.11)

We can prove that LP (B.3) is equivalent to network-CMDP problem (6.9) by means of tradi-

tional CMDP methods in [4]. However, [68] shows it directly. Finally, the optimal policy π∗ would

be

π∗(j, l, τ, f) =
µ(j, l, τ, f)∑
l′ µ(j, l′, τ, f)

.

6.3.4 Packet-by-Packet Decomposition

We next describe the decomposition approach that reduces the complexity of the problem by

turning it into a per-packet MDP, rather than having to consider a global problem that accounts for

the states of all packets in the system at each transmission decision.

The Lagrange Dual is a usual approach towards the solution of a CMDP [4]. The Lagrangian

can be written as,
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L(π, λ) =
∑
l∈L

λlCl + lim
T→∞

1

T
E

T∑
t=1

∑
f∈F

∑
i∈Af (t)

τf∑
τ=0

(rf (s
π
i,f (t+ τ))−

∑
l

λlI{aπi,f (t+ τ) = l}), (6.12)

considering equivalent formulation of OSP, presented by (6.9). Noting that the rewards and tran-

sition probabilities are the same for each packet i in a given flow f, we define

V π
f,0(sf , λ) = E[

τf∑
τ=0

(rf (s
π
i,f (t+ τ))−

∑
l

λlI{aπi,f (t+ τ) = l})

|i, f, sπi,f (t) = sf ], (6.13)

where E is the expectation w.r.t. to the underlying transition kernel under the policy π. Then the

Lagrangian (6.12) can be written as

L(π, λ) =
∑
l∈L

λlCl +
∑
f∈F

lim
T→∞

1

T

T∑
t=1

∑
i∈Af (t)

V π
f,0(sf , λ)

=
∑
l∈L

λlCl +
∑
f∈F

lim
T→∞

1

T

T∑
t=1

|Af (t)|V π
f,0(sf , λ)

=
∑
l∈L

λlCl +
∑
f∈F

ρfV
π
f,0(sf , λ). (6.14)

The dual function D(λ) and ‘dual policy’ π(λ), and the optimal dual variable are defined as

D(λ) = max
π

L(π, λ), π(λ) = arg max
π

L(π, λ), (6.15)

λ∗ = arg min
λ≥0

D(λ).

Since there is no duality gap [4], the optimal policy π∗ for the [CMDP] is the same as π(λ∗).

Note that given a λ, V π
f,0(sf , λ) for a given flow f does not depend on other flows. Hence, rather

than finding an optimal joint policy π(λ) for all flows, we can instead find an optimal policy πf (λ)
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for each flow separately. More precisely,

D(λ) = max
π

L(π, λ) =
∑
l∈L

λlCl + max
π

∑
f∈F

ρfV
π
f,0(sf , λ)

=
∑
l∈L

λlCl +
∑
f∈F

ρf max
πf

V
πf
f,0 (sf , λ)

=
∑
l∈L

λlCl +
∑
f∈F

ρfV
∗
f,0(sf , λ),

where,

V ∗f,0(λ) = max
πf

V
πf
f,0 (λ), and, πf (λ) = arg max

πf
V
πf
f,0 (λ) (6.16)

Now, πf (λ) and V ∗f,0(λ) can be computed by standard finite horizon dynamic programming if we

know the transition kernel P (equivalently, the link probabilities pl).

However, as discussed in the Introduction, pls are unknown a priori. We thus propose a rein-

forcement learning approach for learning pls and at the same time solving for the optimal policy.

6.3.5 Constrained RL Formulation

The Constrained RL problem formulation is identical to the CMDP optimization problem of

(6.9), but without being aware of values of transition kernel P.∗ Our goal is to provide model-based

algorithms and determine the sample complexity results in a PAC sense. As we have two solution

approaches for solving a CMDP, we present two definitions of sample complexity that extends

the notion of sample complexity for unconstrained regime [28] to Constrained-RL. The way these

definitions include the objective maximization and constraint violations differentiates them.

∗We only assume that transition kernel is unknown and the extension to unknown reward matrix is straightforward,
and does not require additional methodology.
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6.3.5.1 Sample Complexity of Algorithms based on LP

Definition 5. Let A be an algorithm and π(A) be the output of this algorithm. Then, sample

complexity for A is the number of packets that A requires to achieve

P
(∑

f

ρfV
π(A)
f,0 (sf ) ≥

∑
f

ρfV
π∗

f,0 (sf )− ε

and
∑
f

ρfC
π(A)
l,f,0 ≤ Cl + ε ∀l

)
≥ 1− δ

for a given ε and δ.

Definition 5 includes satisfaction of both objective maximization and constraint violations in-

dividually. This definition mostly suits the algorithms outputting a policy which have analytical

bounds on sub-optimality and constraint violations. Such algorihtms are usually based on LP ap-

proach.

6.3.5.2 Sample Complexity of Algorithms based on per-packet Decomposition

Definition 6. LetA be an algorithm based on per-packet decomposition and π(A) and λ(A) be the

output of this algorithm. Then, sample complexity for A is the number of packets that A requires

to achieve

P
(
L(π(A), λ(A)) ≤ L(π∗, λ∗) + ε

)
≥ 1− δ

for a given ε and δ.

Definition 6 regards the notion of sample complexity for Constrained-RL in a different manner.

This definition integrates the objective maximization and constraint violation whereas Definition

5 which considers these individually. This integration is made by including Lagrange multipliers.

Therefore, Definition 6 is appropriate for algorithms based on dual decomposition. Please notice

that although we are not able to characterize the objective sub-optimality and constraint violations

individually by Definition 6, but we obtain the luxury of less computational complexity.
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6.4 Reinforcement Learning Solutions

This section consists of two categories of (RL) algorithms. Algorithms based on (i) LP ap-

proach , and (ii) dual decomposition. In each category, we propose two identical subcategories of

model-based RL algorithms for solving the CMDP corresponding to timely throughput maximiza-

tion. In the following we elaborate on each category.

6.4.1 Algorithms based on LP

In this section, we present two algorithms based on LP. These two algorithms employ LP as an

alternate and more precise tool compared to Dual Decomposition. First, we propose and analyze a

generative model-based algorithm. Then, we conclude this section by an online algorithm.

6.4.1.1 GMBL-LP

Here, we introduce a generative model based network learning algorithm called Generative

Model Based Learning-LP, or GMBL-LP. According to GMBL-LP, we sample each link n number

of times uniformly across all links, count the number of times each transition occurs n(k, j, l) for

each next node k, and construct an empirical model of transition kernel denoted by P̂ (k|j, l) =

n(k,j,l)
n
∀(k, j, l). Then GMBL-LP substitutes the empirical model with true model and solves the

following optimization problem by means LP

max
π

∑
f

ρf V̂
π
f,0(sf ) s.t

∑
f

ρf Ĉ
π
l,f,0(sf ) ≤ Cl ∀l ∈ L (6.17)

where the value functions V̂ π
f,0(sf ) and cost functions Ĉπ

f,l,0(sf ) are calculated w.r.t. to transition

kernel P̂ using equations (6.6) and (6.8) respectively.

Algorithm 7 describes GMBL-LP.

Now, we present the sample complexity result of GMBL-LP.

Theorem 12. GMBL-LP algorithm with

n(ε, δ) ≥ 72Sρ2
totτ

3
maxβ

2
max log 4/δP
ε2
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Algorithm 7 GMBL-LP
1: Input: accuracy ε and failure tolerance δ.
2: Set δP = δ

3(|L|+2)S2|F ||L|τmax

3: Set n(k, j, l) = 0 ∀(j, l, k).
4: for each j ∈ S do
5: Sample l ∈ Lj, n = 72Sρtotτ3maxβ

2
max log 4/δP
ε2

and update n(k, j, l).

6: P̂ (k|j, l) = n(k,j,l)
n
∀k.

7: Output π̂ = LP(M̂).

for ε < βmaxρtot
18 log 4/δP

√
2τmax

S
achieves a π̂ such that

P
(∑

f

ρfV
π̂f
f,0 ≥

∑
f

ρfV
π∗f
f,0 − ε and

∑
f

ρfC
π̂
l,f,0 ≤ Cl + ε

)
≥ 1− δ

where δP is defined in Algorithm 7.

The proof of Theorem 12 resembles both traditional analysis frameworks of unconstrained

RL [6] and constrained RL [33]. First, unlike [33], we are not required to apply the notion of

optimism. Because, we are equipped with “do-not-transmit” action at every state (location). This

makes the network-CMDP problem feasible under any transition kernel (6.9). Thus, the problem

of (6.17) is feasible, which allows us to avoid applying optimism. Another benefit is that we are

able design an algorithm for data network purposes with less computational complexity compared

to its counterpart algorithm for general CMDPs [33].

Second, the core of the analysis of every unconstrained MDP is based on being able to charac-

terize the optimal policy via the Bellman operator. This technique enables one to obtain a sample

complexity that scales with the size of the state space as O(S). However, we cannot use this ap-

proach to characterize the optimal policy in a CMDP [4]. We require a uniform PAC result over set

of all policies and set of value and constraint functions, which in turn leads to O(S2 logS) sample

complexity in the size of state space.
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Now, we present some of the propositions that are essential to prove Theorem 12. Then we

sketch the proof of this theorem.

Now, we present the lemmas required for proving Theorem 12 and its proof. Using these

propositions, we bound the mismatch in objective and constraint functions when we have n number

of samples from each (s, a). This bound applies uniformly over the set of policies and set of value

and constraint functions. The result also enables us to bound the objective and constraint functions

individually. Then we apply union bound on all objective and constraint functions. This process is

the reason why the number of constraints appear logarithmically in the sample complexity result.

Lemma 23. Suppose there is a network-CMDPsM = 〈S,L, P, {rf}f , {cl}l, [Cl]l, {sf}f , {τf}f〉.Then,

for any flow f, under any policy π

V π
f,0 − V̂ π

f,0 =

τf−2∑
h=0

P̂ h−1
π (Pπ − P̂π)V π

f,h+1 and

V π
f,0 − V̂ π

f,0 =

τf−2∑
h=0

P h−1
π (Pπ − P̂π)V̂ π

f,h+1,

and for any l,

Cπ
f,l,0 − Ĉπ

f,l,0 =

τf−2∑
h=0

P̂ h−1
π (Pπ − P̂π)Cπ

f,l,h+1 and

Cπ
f,l,0 − Ĉπ

f,l,0 =

τf−2∑
h=0

P h−1
π (Pπ − P̂π)Ĉπ

f,l,h+1.

Proof. We only prove the first statement of value function since the proof procedure for cost is
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identical. For a fixed h and j

V π
f,h(j)− V̂ π

f,h(j) = rf (j) +
∑
k

Pπ(k|j)V π
f,h+1(k)

− (rf (j) +
∑
k

P̂π(k|j)V̂ π
f,h+1(k))

=
∑
k

Pπ(k|j)V π
f,h+1(k)−

∑
k

P̂π(k|j)V π
f,h+1(k)

+
∑
k

P̂π(k|j)V π
f,h+1(k)−

∑
k

P̂π(k|j)V̂ π
f,h+1(k)

=
∑
k

(Pπ(k|j)− P̂π(k|j))V π
f,h+1(k)

+
∑
k

P̂π(k|j)(V π
f,h+1(k)− V̂ π

f,h+1(k)).

Because V π
f,τf−1(j) = V̂ π

f,τf−1(j) = rf (j), if we expand the second term until h = τf − 1, we get

the result.

Lemma 24. Let δP ∈ (0, 1) and

|pl − p̂l| ≤ c1 + c2

√
p̂l(1− p̂l)

w.p. at least 1− δP for each l ∈ L. Then, for any flow f under any policy π

|
∑
k

(Pπ(k|j)− P̂π(k|j))V̂ π
f,h+1(k)|

≤ 2c1‖V̂ π
f,h+1‖∞ + c2

√
2σ̂πf,h(j)

for any (j, l) ∈ S × L and h ∈ [0, τf − 2] w.p. at least 1− 2δP , and

|
∑
k

(Pπ(k|j)− P̂π(k|j))Ĉπ
f,l,h+1(k)|

≤ 2c1‖Ĉπ
f,l,h+1‖∞ + c2

√
2σ̂πf,l,h(j)
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for any (j, l) ∈ S × L, l ∈ L and h ∈ [0, τf − 2] w.p. at least 1− 2δP .

Proof. We only prove the statement of value function since the proof procedure for cost is identical.

Fix state j and define for this fixed state j the constant function V̄ π
f (k) =

∑
k′ P̂π(k′|j)V̂ π

f,h+1(k′)

as the expected value function of the successor states of j. Note that V̄ π
f (k) is a constant function

and so V̄ π
f (k) =

∑
k′ P̂π(k′|j)V̄ π

f (k′) =
∑

k′ Pπ(k′|j)V̄ π
f (k′).

|
∑
k

(Pπ(k|j)− P̂π(k|j))V̂ π
f,h+1(k)|

= |
∑
k

(Pπ(k|j)− P̂π(k|j))V̂ π
f,h+1(k) + V̄ π

f (j)− V̄ π
j (j)|

= |
∑
k

(Pπ(k|j)− P̂π(k|j))(V̂ π
f,h+1(k)− V̄ π

f (k))| (6.18)

≤
∑
k

|Pπ(k|j)− P̂π(k|j)||V̂ π
f,h+1(k)− V̄ π

f (k)| (6.19)

≤
∑
k

(c1 + c2

√
P̂π(k|j)− (1− P̂π(k|j)))|V̂ π

f,h+1(k)− V̄ π
f (k)|

≤ Sc1‖V̂ π
f,h+1‖∞

+ c2

∑
k

√
P̂π(k|j)(1− P̂π(k|j))(V̂ π

f,h+1(k)− V̄ π
f (k))2

≤ Sc1‖V̂ π
f,h+1‖∞

+ c2

√
S
∑
k

P̂π(k|j)(1− P̂π(k|j))(V̂ π
f,h+1(k)− V̄ π

f (k))2 (6.20)

≤ Sc1‖V̂ π
f,h+1‖∞ + c2

√
S
∑
k

P̂π(k|j)(V̂ π
f,h+1(k)− V̄ π

f (k))2

= Sc1‖V̂ π
f,h+1‖∞ + c2

√
Sσ̂πf,h(j).

Inequality (B.7) holds w.p. at least 1−SδP , since we used the assumption and applied the triangle

inequality and union bound. Please note that the it is straightforward to show that assumption leads

to the form of inequality (6.18). We then applied the assumed bound on |V̂ π
f,h+1(k) − V̄ π

f (k)| and

bounded it by ‖V̂ π
f,h+1‖∞ as all value functions are non-negative. In inequality (B.8), we applied

the Cauchy-Schwarz inequality and subsequently used the fact that each term is the sum is non-
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negative and that (1− P̂π(k|j)) ≤ 1. The final equality follows from the definition of σ̂πf,h(j).

Lemma 25. Let δP ∈ (0, 1) and

|pl − p̂l| ≤
c3√
n

for all l ∈ L w.p. at least 1− δP . Then, for any flow f under any policy π

‖V π
f,τf−1 − V̂ π

f,τf−1‖∞ ≤ · · · ≤ ‖V π
f,0 − V̂ π

f,0‖∞ ≤
c3τfβf√

n
,

w.p. at least 1− 2S|L|τfδP , and for any l

‖Cπ
f,l,τf−1 − Ĉπ

f,l,τf−1‖∞ ≤ . . .

· · · ≤ ‖Cπ
f,l,0 − Ĉπ

f,l,0‖∞ ≤
c3τfβf√

n

w.p. at least 1− 2S|L|τfδP .

Proof. We prove the statement of value function since the proof procedure for cost is identical. Let
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∆h = maxj |V π
f,h(j)− V̂ π

f,h(j)|. Then

∆h = |V π
f,h(j)− V̂ π

f,h(j)| = |rf (j) +
∑
k

Pπ(k|j)V π
f,h+1(k)

− (rf (j) +
∑
k

P̂π(k|j)V̂ π
f,h+1(k))|

= |
∑
k

Pπ(k|j)V π
f,h+1(k)−

∑
k

P̂π(k|j)V π
f,h+1(k)

+
∑
k

P̂π(k|j)V π
f,h+1(k)−

∑
k

P̂π(k|s)V̂ π
f,h+1(k)|

= |
∑
l∈Lj

π(j, f, h, l)(plV
π
f,h+1(j′) + (1− pl)V π

f,h+1(j)

− p̂lV̂ π
f,h+1(j′)− (1− p̂l)V̂ π

f,h+1(j)± p̂lV π
f,h+1(j′)

± (1− p̂l)V π
f,h+1(j))|

= |
∑
l∈Lj

π(j, f, h, l)((pl − p̂l)V π
f,h+1(j′) + (p̂l − pl)V π

f,h+1(j)

+ p̂l(V
π
f,h+1(j′)− V̂ π

f,h+1(j′))

+ (1− p̂l)(V π
f,h+1(j)− V̂ π

f,h+1(j)))|

≤
∑
l∈Lj

π(j, f, h, l)(|pl − p̂l|βf + ∆h+1)

≤ c3βf√
n

+ ∆h+1

Here, l = (j, j′). Thus,

∆h ≤
c3βf√
n

+ ∆h+1

w.p. at least 1− 2|L|δP by applying union bound over all current state, action and next state. If we

expand this recursively, we get

∆τf−1 = 0 ≤ · · · ≤ ∆0 ≤
c3τfβf√

n
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since ∆τf−1 = maxj |rf (j)− rf (j)| = 0. By taking union bound over time-steps, we get the result

holds w.p. at least 1− 2S|L|τfδP . Hence the proof is complete.

Lemma 26. Let δP ∈ (0, 1) and

|pl − p̂l| ≤
c3√
n

w.p. at least 1− δP for all l ∈ L. Then if n ≥ c23
36S2 , for any flow f, at any time-step h ∈ [0, τf − 1]

and under any policy π

‖σπf,h − σ̂πf,h‖∞ ≤
2
√

6c3Sτfβf
n1/4

,

w.p. at least 1− 2S2LτfδP , and similarly for any l ∈ L

‖σπf,l,h − σ̂πf,l,h‖∞ ≤
2
√

6c3Sτfβf
n1/4

w.p. at least 1− 2S2|L|τfδP .

Proof. We prove the statement of value function since the proof procedure for cost is identical. Fix

a state j. Then,

σπ
2

f,h(j) = σπ
2

f,h(j)− Ê[(V π
f,h+1(jh+1)− P̂πV π

f,h+1(j))2]

+ Ê[(V π
f,h+1(jh+1)− P̂πV π

f,h+1(j))2]

≤
∑
k

(Pπ(k|j)− P̂π(k|j))V π2

f,h+1(k)

− [(
∑
k

Pπ(k|j)V π
f,h+1(k))2 − (

∑
k

P̂π(k|j)V π
f,h+1(k))2]

+
√
Ê[(V π

f,h+1(jh+1)− V̂ π
1 (j1)− P̂π(V π

f,h+1 − V̂ π
f,h+1)(j))2]

+
√
Ê[(V̂ π

f,h+1(jh+1)− P̂π(V̂ π
f,h+1)(j))2]2,

where we applied triangular inequality in the last line. And, please note that Ê means expectation
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w.r.t. transition kernel P̂π. It is straightforward to show that V ark∼P̂π(·|j)(V
π
f,h(k) − V̂ π

f,h(k)) ≤

‖V π
f,h − V̂ π

f,h‖2
∞ implying

σπ
2

f,h(j) ≤
∑
k

(Pπ(k|j)− P̂π(k|j))V π2

f,h+1(k)

− [
∑
k

(Pπ(k|j)− P̂π(k|j))V π
f,h+1(k)]

× [
∑
k

(Pπ(k|j) + P̂π(k|j))V π
f,h+1(k)]

+ (‖V π
f,h − V̂ π

f,h‖∞ + σ̂πf,h(j))
2.

Now, if we use Lemma 53, we get

σπ
2

f,h(j) ≤ [σ̂πf,h(j) +
c3τfβf√

n
]2 +

6c3Sβ
2
f√

n

≤ [σ̂πf,h(j) +
c3τfβf√

n
]2 +

6c3Sτ
2
f β

2
f√

n

≤ [σ̂πf,h(j) +
c3τfβf√

n
+

√
6c3Sτfβf
n1/4

]2

≤ [σ̂πf,h(j) +
2
√

6c3Sτfβf
n1/4

]2

w.p. at least 1 − 2S2|L|τfδP .† Next, we multiplied the
6c3Sβ2

f√
n

by τ 2
f since τf ≥ 1. Then, we used

the fact that for any x, y > 0 we have x2 + y2 ≤ (x + y)2. And, the assumption on n, dominates

the term with 1
n1/4 over

√
n. Eventually, the result follows by taking square root from both sides

and union bound on both directions, i.e. σ̂πf,h(j) ≤ σπf,h(j) +
2
√

6c3Sτfβf
n1/4 .

Lemma 27. [7] For any flow f, the variance of the value function defined as Σπ
f,t(j) = E[(

∑τf−1

h=t rf (jh)−

V π
f,0(j))2] satisfies a Bellman equation Σπ

f,t(j) = σπ
2

f,t(j) +
∑

k Pπ(k|j)V π
f,t+1(k) which gives

Σπ
f,t(j) =

∑τf
h=t(P

h−1
π σπ

2

f,h)(j). Since 0 ≤ Σπ
f,0(j) ≤ (τfβf )

2, it follows that 0 ≤
∑τf−1

h=0 (P h−1
π σπ

2

f,h)(j) ≤

(τfβf )
2 for all j ∈ S.

†Please note that when the assumption on transition kernel holds, then
∑
k(Pπ(k|j) − P̂π(k|j))V π

2

f,h+1(k) and
‖V πf,h − V̂ πf,h‖∞ are dependent. And, we can consider the one with lower probability.
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Corollary 3. The result of Lemma 63 also holds for variance of cost functions.

Lemma 28. Let δP ∈ (0, 1). Then, if n ≥ 11664S2τ 2
f log 4/δP

3, for any flow f under any policy π

‖V π
f,0 − V̂ π

f,0‖∞ ≤

√
18
Sτ 3

f β
2
f log 4/δP

n

w.p. at least ..., and for any l ∈ L,

‖Cπ
f,l,0 − C̃π

f,l,0‖∞ ≤

√
18
Sτ 3

f β
2
f log 4/δP

n
.

w.p. at least 1− 3S2|L|τfδP .

Proof. We only prove the statement of value function since the proof procedure for cost is identical.

First, let

c1 =
2

3n
log

4

δP
and c2 =

√
2 log 4/δP

n
(6.21)
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Now, let fix state j :

|V π
f,0(j)− V̂ π

f,0(j)| = |
τf−2∑
h=0

P̂ h−1
π (Pπ − P̂π)V π

f,h+1|(j) (6.22)

≤
τf−2∑
h=0

P̂ h−1
π |(Pπ − P̂π)V π

f,h+1|(j)

≤
τf−2∑
h=0

P̂ h−1
π (Sc1‖V π

f,h+1‖∞ + c2

√
Sσπf,h)(j) (6.23)

≤ Sτ 2
f βfc1 + c2

√
S

τf−1∑
h=0

(P̂ h−1
π σπf,h)(j) (6.24)

≤ Sτ 2
f βfc1

+ c2

√
S

τf−1∑
h=0

(P̂ h−1(σ̂πf,h +
2
√

6(log 4/δP )0.25S0.5τfβf
n1/4

)(j) (6.25)

≤ Sτ 2
f βfc1 + c2

√
Sτf

√√√√τf−1∑
h=0

(P̂ h−1σ̂π
2

f,h)(j) (6.26)

+ c2τf
√
S

2
√

6(log 4/δP )0.25S0.5τfβf
n1/4

(6.27)

=
2Sτ 2

f βf

3n
(6.28)

+

√
2Sτ 3

f β
2
f log 4/δP

n
+

4× 30.5Sτ 2
f βf log 4/δP

0.75

n0.75
(6.29)

≤

√
18
Sτ 3

f β
2
f log 4/δP

n
. (6.30)

In equation (B.16), we used Lemma 51. Then, we applied Lemma 52 to obtain inequality (B.17).

Next, we bound ‖V π
f,h+1‖∞ by τfβf in inequality (B.18). To get inequality (B.19), we use Lemma

54, since we can bound pl − p̂l by c2. And, we applied Cauchy-Scharwz inequality to get in-

equality (B.20). To get inequality (B.21) and (6.28), we applied Lemma 63 and substituting

c1 and c2 according to equations (B.15). Finally, inequality (A.12) follows from the fact that

n ≥ 11664S2τ 2
f log 4/δP

3. Since the result is true for every j ∈ S, hence the proof is complete.

Now, we are ready to prove the Theorem 12
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Proof of Theorem 12:Let δP ∈ (0, 1). First, we know that optimization problem (6.17) is

feasible. Now, for each flow f, we have

V π∗

f,0 (sf )−

√
18
Sτ 3

f β
2
f log 4/δP

n
≤ V̂ π∗

f,0 (sf )

≤ V π∗

f,0 (sf ) +

√
18
Sτ 3

f β
2
f log 4/δP

n

w.p. at least 1− 3S2|L|τfδP and

V π̂
f,0(sf )−

√
18
Sτ 3

f β
2
f log 4/δP

n
≤ V̂ π̂

f,0(sf )

≤ V π̂
f,0(sf ) +

√
18
Sτ 3

f β
2
f log 4/δP

n

w.p. at least 1− 3S2|L|τfδP according to Lemma 28. On the other hand, we know that V̂ π∗

f,0 (sf ) ≤

V̂ π̂
f,0(sf ). Thus, by combining these results we get

V π∗

f,0 (sf )−

√
18
Sτ 3

f β
2
f log 4/δP

n
≤ V̂ π∗

f,0 (sf )

≤ V̂ π̂
f,0(sf ) ≤ V π̂

f,0(sf ) +

√
18
Sτ 3

f β
2
f log 4/δP

n
.

It yields that V π̂
f,0(sf ) ≥ V π∗

f,0 (sf )−2

√
18

Sτ3f β
2
f log 4/δP

n
w.p. at least 1−6S2|L|τfδP by union bound.

Therefore,

∑
f

ρfV
π̂
f,0(sf ) ≥

∑
f

V π∗

f,0 (sf )− 2ρtot

√
18
Sτ 3

maxβ
2
max log 4/δP
n

w.p. at least 1− 6S2|F ||L|τmaxδP .
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Now, for any flow f and any l ∈ L we have

C π̂
f,l,0(sf ) ≤ Ĉ π̂

f,l,0(sf ) +

√
18
Sτ 3

f β
2
f log 4/δP

n

w.p. at least 1− 3S2|L|τfδP according to Lemma 28. Finally,

∑
f

ρfC
π̂
f,l,0(sf )

≤
∑
f

ρf Ĉ
π̂
f,l,0(sf ) + ρtot

√
18
Sτ 3

maxβ
2
max log 4/δP
n

≤ Cl + ρtot

√
18
Sτ 3

maxβ
2
max log 4/δP
n

w.p. at least 1− 3S2|F ||L|τmaxδP .

By taking union bound, we get that all statements for value and cost functions hold w.p. at

least 1−3(|L|+2)S2|F ||L|τmaxδP . Hence, putting ε = 2ρtot

√
18Sτ

3
maxβ

2
max log 4/δP
n

and δ = 3(|L|+

2)S2|F ||L|τmaxδP concludes the proof. Please note that ε < βmaxρtot
18 log 4/δP

√
2τmax

S
would satisfy the

assumption in Lemma 28. �

6.4.1.2 Online-CRL-LP

Online Constrained-RL-LP, or Online-CRL-LP described in Algorithm 8, is an online method

proceeding in episodes with length of τmax. At the beginning of each episode e, Online-CRL-LP

constructs an empirical model P̂ according to link visitation frequencies, i.e., P̂ (k|j, l) = n(k,j,l)
n(j,l)

,

where n(k, j, l) and n(j, l) are visitation frequencies. This empirical model P̂ induces a set of

finite-horizon MDPs for each flow. Considering the constraints on link capacities, we get a set

of network-CMDPsMe which any network-CMDP M ′ ∈ Me has identical horizon and reward

and cost matrices. However, for any (j, l) ∈ S × L and k ∈ S, P ′(k|j, l) lies inside a confidence

interval induced by P̂ . To construct a confidence interval for any element of P ′(k|j, l), we use

concentration inequalities as defined by (6.32). Thus the class of network-CMDPs is defined as
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below at each episode e :

Me := {M ′ : {r′f (j)}f = {rf (j)}f , {ρ′f}f = {ρf}f (6.31)

c′l(j, l) = cl(j, l), C
′
l = Cl, {τ ′f}f = {τf}f ,

|P ′(k|j, l)− P̂ (k|j, l)| ≤ (6.32)

min
(√2P̂ (k|j, l)(1− P̂ (k|j, l))

n(j, l)
log

4

δ1

+
2

3n(j, l)
log

4

δ1

,√
log 4/δP
2n(j, l)

)
∀j, l, k, f},

where δ1 is defined in Algorithm 8. Here, for any M ′ ∈ Me, and flow f, V ′πf,0(sf ) and C ′πf,l,0(sf )

are computed according to (6.6) and (6.8) w.r.t. underlying transition kernel P ′, respectively.

Finally, Online-CRL-LP maximizes the objective functions among all possible transition ker-

nels, while satisfying constraints (if feasible). More specifically, it solves the optimistic planning

problem below

max
π,M ′∈Me

∑
f

ρfV
′π
f,0(sf ) s.t.

∑
f

ρfC
′π
f,l,0(sf ) ≤ Cl ∀ l. (6.33)

Online-CRL-LP uses Extended Linear Programming, or ELP, to solve the problem of (6.33).

This method inputsMδP and outputs π̃ for the optimal solution. The description of ELP is provided

in supplementary materials.

Algorithm 8 describes Online-CRL-LP.

This algorithm draws inspiration from the constrained-RL algorithm Online-CRL [33] with

several differences. The formulation of network-CMDP differs from generic CMDP definition

in two ways. First, the objective of generic CMDP is defined for one decision process with one

horizon, while the network-CMDP contains multiple decision processes with different horizon

lengths. Second, the constraints imposed on a network-CMDP are integration of multiple decision

processes. This situation does not happen to general CMDPs. In spite of these differences, we
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Algorithm 8 Online-CRL-LP
1: Input: accuracy ε and failure tolerance δ.
2: Set e = 1, wmin = |F |ε

4τmaxSρtotβmax
, Umax = S|L|m, δ1 = δ

4|F |SUmax
.

3: Set m according to (6.35) and (6.36).
4: Set n(j, l) = n(k, j, l) = 0 ∀j, dl ∈ S, l ∈ L.
5: while there is (j, l) with n(j, l) < Smτmax do
6: P̂ (k|j, l) = n(k,j,l)

n(j,l)
∀(j, l) with n(j, l) > 0 and dl ∈ S.

7: ConstructMe according to (6.31).
8: π̃e = ELP(Me).
9: for Each flow f do

10: for t = 1, . . . , τf do
11: l ∼ π̃e(j, f, l, h), jt+1 ∼ P (·|jt, lt), n(jt, lt) + +, n(jt+1, jt, lt) + +.
12: e+ +

show that we are able to use existing RL tools for problems defined as network-CMDPs.

We now present the PAC bound of Algorithm 8.

Theorem 13. For any 0 < ε, δ < 1, under Online-CRL-LP we have:

P(
∑
f

ρfV
π̃e
f,0(sf ) ≥

∑
f

ρfV
π∗

f,0 (sf )− ε and

∑
f

ρfC
π̃e
f,l,0(sf ) ≤ Cl + ε ∀l ∈ L) ≥ 1− δ,

for all but at most

Õ(
S|L|ρ2

totτ
2
maxβ

2
max

ε2
)

episodes.

To prove Theorem 13, we follow an approach motivated by [33]. However, there are several

differences in our technique. As mentioned above, one of the differences is with regard to multiple

decision processes and integration of these processes within constraints. We will show how to

approach this problem and obtain matching sample complexity results.

There are also recent results on characterizing the regret of constrained-RL [5] while using an
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algorithm reminiscent of Algorithm 8, and the question arises as to whether one can immediately

translate these regret results into sample complexity bounds? However, regret and sample com-

plexity results do not directly follow from one another [27], and following the [5] approach gives

a PAC result Õ( |S|
2|A|H4

ε2
), ‡ which is looser than our result by a factor of H2. Thus, this alternative

option does not provide the strong bounds that we are able to obtain to match existing PAC results

of the unconstrained case.

Now, we introduce the notions of knownness and importance for links and base our proof on

these notions. Then we present the key lemmas required to prove Theorem 13. Finally, we sketch

the proof of Theorem 13. The detailed analysis is provided in supplementary materials.

Let the weight of (j, l)−pair in an episode e for flow f under policy π̃e be its expected frequency

in that episode

wf,e(j, l) :=

τf−1∑
h=0

P(jh = j, l ∼ π̃e(jh, f, ·, h))

=

τf−1∑
h=0

P h−1
π̃e

I{j = ·, l ∼ π̃e(j, f, ·, h)}(sf ).

Further, we define the weight of (j, l)−pair in an episode e under policy π̃e be the cumulative

weights of all flows:

we(j, l) =
∑
f

wf,e(j, l).

Then, the importance ιe,f of (j, l) at episode e is defined as its relative weight compared to

wmin := ε
4τmaxS

on a log-scale

ιe(j, l) := min{zi : zi ≥
we(j, l)

wmin

}

where z1 = 0 and zi = 2i−2 ∀i = 2, 3, . . . .

‡Here, |S| and |A| are number state and action spaces respectively and H represents length of horizon.
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Note that ιe(j, l) ∈ {0, 1, 2, 4, 8, 16, . . . } is an integer indicating the influence of the link on the

value function of π̃e. Similarly, we define knownness as

κe(j, l) := max{zi : zi ≤
ne(j, l)

mwe(j, l)
} ∈ {0, 1, 2, 4, . . . },

which indicates how often (j, l) has been observed relative to its importance. Value of m is defined

in Algorithm 8. Now, we can categorize (j, l)−pairs into subsets

Xe,κ,ι := {(j, l) ∈ Xe : κe(j, l) = κ, ιe(j, l) = ι}

and X̄e = S ×A \Xe,

where Xe = {(j, l) : ιe(j, l) > 0} is the active set and X̄e is the set of (j, l)−pairs that are

very unlikely under policy π̃e. We will show that if |Xe,κ,ι| ≤ κ is satisfied, then the model of

Online-CRL-LP would achieve near-optimality while violating constraints at most by εw.h.p. This

condition indicates that important state-action pairs under policy π̃e are visited a sufficiently large

number of times. Hence, the model of Online-CRL-LP will be accurate enough to obtain PAC

bounds.

Here, we present the lemmas required for proving the Theorem 13

Lemma 29. The total number of updates under algorithm 8 is bounded by Umax = S|L|m.

Proof. Let fix a link l. Note that n(j, l) is not decreasing and also it increases up to Smτmax. And,

since update of model happens at the beginning of each episode, then maximum number of updates

due to a single l happens at most Sm number of times. Thus, maximum number of updates due to

all l is no larger than S|L|m.

Now, we show that true model belongs toMe for every episode e w.h.p.

Lemma 30. M ∈Me for all episodes e with probability at least 1− δ
2|F |(|L|+1)

.
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Proof. At each episode with model update e and for each l, by Hoeffding’s inequality [30] we have

|P (k|j, l)− P̂ (k|j, l)| ≤

√
log (4/δ1)

2n(j, l)

holds w.p. at least 1− δ1/2.

By empirical Brenstein’s inequality [31] we have

|P (k|j, l)− P̂ (k|j, l)| ≤

√
2P̂ (k|j, l)(1− P̂ (k|j, l))

n(j, l)
log

4

δ1

+
2

3n(j, l)
log

4

δ1

w.p. at least 1− δ1/2.

Combining above two inequalities and applying union bound, we get

P(|P (k|j, l)− P̂ (k|j, l)|

≤ min{

√
2P̂ (k|j, l)(1− P̂ (k|j, l))

n(j, l)
log

4

δ1

+
2

3n(j, l)
log

4

δ1

,√
log 4/δ1

2n(j, l)
}) ≥ 1− δ1.

Finally, we get the result by applying union bound over all model updates and next states.

Lemma 31. Total number of observations of (j, l) ∈ Xe,κ,ι with κ ∈ [1, S − 1] and ι > 0 over all

episodes e is at most 3|L|mwικ. wι = min{we(j, l) : ιe,f (j, l) = ι}.

Proof. Note that wι+1 = 2wι for ι > 0. Consider an episode e and a fixed (j, l) ∈ Xe,κ,ι. Since we

assumed ιe(j, l) = ι, then wι ≤ we(j, l) ≤ 2wι. Similarly, from κe(j, l) = κ we have nk(j,l)
2mwk(j,l)

≤

κ ≤ nk(j,l)
mwe(j,l)

which implies

mwικ ≤ mwe(j, l)κ ≤ ne(j, l) ≤ 2mwe(j, l)κ ≤ 4mwικ. (6.34)
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Therefore, each (j, l) in {(j, l) ∈ Xe,κ,ι : e ∈ N} can only be observed 3mwικ. Then, the total

observations is at most 3|L|mwικ.

Lemma 32. Number of episodes Eκ,ι in episodes with |Xe,κ,ι| > κ is bounded for α ≥ 3 w.h.p.

P(Eκ,ι > αN) ≤ exp (−ηwι(κ+ 1)N

|F |τmax

),

where N = |L|m and η = α(3/α−1)2

7/3−1/α
.

Proof. Let νe :=
∑τmax−1

h=0 I{(jh, lh) ∈ Xe,κ,ι} be number of observations of (j, l) with |Xe,κ,ι| > κ.

We have e ∈ {1, ..., Eκ,ι}.

In these episodes |Xe,κ,ι| ≥ κ+ 1 and all (j, l) in partition (κ, ι) have we(j, l) ≥ wι, then

E[νe|ν1, . . . , νe−1] ≥ (κ+ 1)wι.

Also V[νe|ν1, ..., νe−1] ≤ E[νe|ν1, ..., νe−1]τmax since νe ∈ [0, |F |τmax].

Now, we define the continuation:

ν+
e :=


νe e ≤ Eκ,ι

wι(κ+ 1) O.W.

and centralized auxiliary sequence

ν̄e :=
ν+
e wι(κ+ 1)

E[ν+
e |ν+

1 , . . . , ν
+
e−1]

.

By construction

E[ν̄e|ν̄1, ..., ν̄e−1] = wι(κ+ 1).
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According to lemma 57, we have Eκ,ι > αN if

αN∑
e=1

ν̄e ≤ 3Nwικ ≤ 3Nwι(κ+ 1).

Now, we define martingale below

Be := E

[
αN∑
i=1

ν̄i|ν̄1, . . . , ν̄e

]
=

e∑
i=1

ν̄i +
αN∑

i=e+1

E[ν̄i|ν̄1, . . . , ν̄i],

which gives B0 = αNwι(κ+ 1) and BαN =
∑αN

e=1 ν̄e. Now, since ν+
e ∈ [0, |F |τmax]

|Be+1 −Be| = |ν̄e − E[ν̄e|ν̄1, . . . , ν̄e−1]|

=

∣∣∣∣wι(κ+ 1)(ν+
e − E[ν+

e |ν̄1, . . . , ν̄e−1])

E[ν+
e |ν+

1 , . . . , ν
+
e−1]

∣∣∣∣
≤ |ν+

e − E[ν+
e |ν̄1, . . . , ν̄e−1]| ≤ |F |τmax.

Using

σ2 :=
αN∑
e=1

V[Be −Be−1|B1 −B0, . . . , Be−1 −Be−2]

=
αN∑
e=1

V[ν̄e|ν̄1, . . . , ν̄e−1] ≤ αN |F |τmaxwι(κ+ 1)

= B0|F |τmax

We can apply Theorem 22 of [69] and obtain

P(Eκ,ι > αN) ≤ P

(
αN∑
e=1

ν̄e ≤ 3Nwι(κ+ 1)

)

= P(BαN −B0 ≤ 3B0/α−B0)

≤ exp (− (3/α− 1)2B2
0

2σ2 + |F |τmax(1/3− 1/α)B0

)
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for α ≥ 3. By simplifying it we get

P(Eκ,ι > αN) ≤ exp− α(3/α)2

7/3− 1/α

Nwι(κ+ 1)

|F |τmax

.

Lemma 33. Suppose E is the number of episodes e for which there are κ and ι with |Xe,κ,ι| > κ,

i.e. E =
∑∞

e=1 I{∃(κ, ι) : |Xe,κ,ι| > κ} and let

m ≥ 6τ 2
max

ε
log

2|F |(|L|+ 1)Emax

δ
, (6.35)

where Emax = log2
τmax

wmin
log2 S. Then, P(E ≤ 6|L|mEmax) ≥ 1− δ

2|F |(|L|+1)
.

Proof. Since we(j, l) ≤ |F |τmax, we have that we(j,l)
wmin

< |F |τmax

wmin
and so ιe(j, l) ≤ |F |τmax/wmin =

4τ 2
maxS/ε. In addition, |Xe,κ,ι| ≤ |L| for all e, κ, ι and so |Xe,κ,ι| > κ can only be true for κ ≤ S.

Hence, only Emax = log2
|F |τmax

wmin
log2 S possible values for (κ, ι) exists that can have |Xe,κ,ι| > κ.

By union bound over all (κ, ι) and lemma 58, we get

P(E ≤ αNEmax) ≥ P(max
(κ,ι)

Eκ,ι ≤ αN)

≥ 1− Emax exp (−ηwι(κ+ 1)N

|F |τmax

)

≥ 1− Emax exp (−ηwminN
|F |τmax

)

= 1− Emax exp (−ηwminm|L|
|F |τmax

)

= 1− Emax exp (−ηεm|L|
4τ 2

maxS
).

Bounding the right hand-side by 1− δ
2|F |(|L|+1)

and solving for m gives

1− Emax exp (− ηεm|L|
4τ 2

max|S|
) ≥ 1− δ/2

⇔ m ≥ 4τ 2
maxS

|L|ηε
ln

2Emax

δ
.
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Hence, the condition

m ≥ 4τ 2
max

ηε
ln

2Emax

δ

is sufficient for desired result to hold. Plugging in α = 6 and η = α(3/α−1)2

7/3−1/α
would obtain the

statement to show.

Lemma 34. Let δ1 ∈ (0, 1). Assume p, p̂, p̃ ∈ [0, 1] satisfy P(p ∈ Pδ1) ≥ 1− δ1 and p̃ ∈ Pδ1 where

Pδ1 := {p′ ∈ [0, 1] : |p′ − p̂| ≤ min
(√2p̂(1− p̂)

n
log 4/δ1

+
2

3n
log 4/δ1,

√
log 4/δP

2n

)
}.

Then,

|p− p̃| ≤
√

8p̃(1− p̃)
n

log 4/δ1 + 2
√

2
( log 4/δ1

n

) 3
4

+ 3
√

2
log 4/δ1

n

w.p. at least 1− δ1.

Proof.

|p− p̃| ≤ |p− p̂|+ |p̂− p̃| ≤ 2

√
2p̂(1− p̂)

n
log 4/δ1 +

4

3n
log 4/δ1

≤ 2

√
2 log 4/δ1

n
(p̃+

√
log 4/δ1

2n
)(1− p̃+

√
log 4/δ1

2n
) +

4

3n
log 4/δ1

= 2

√
2 log 4/δ1

n

(
p̃(1− p̃) +

√
log 4/δ1

2n
+

log 4/δ1

2n

)
+

4

3n
log 4/δ1

≤
√

8p̃(1− p̃)
n

log 4/δ1 + 2
√

2
( log 4/δ1

n

) 3
4

+ 3
√

2
log 4/δ1

n
.

The first term in the first line is true w.p. at least 1− δ1, hence the proof is complete.

Corollary 4. If we substitute the δP with δ1 in Lemma 52, the result will pertain.
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Lemma 35. Assume M ∈Me. If |Xe,κ,ι| ≤ κ for all (κ, ι) and 0 < ε ≤ 1 and

m = 1280
Sτ 2

maxρ
2
totβ

2
max

ε2
(log2 log2 τmax)2 (6.36)

log2
2

(8S2ρ2
totβ

2
maxτ

2
max

ε

)
log

4

δ1

,

then for any flow f, |Ṽ π̃e
f,0(sf )− V π̃e

f,0(sf )| ≤ ε
ρtot

and for any l, |C̃ π̃e
f,l,0(sf )− C π̃e

f,l,0(sf )| ≤ ε
ρtot
.

Proof. We only prove the statement of value function since the proof procedure for cost is identical.

Consider an individual flow f. Before proceeding, in this lemma we reason about a sequence of

CMDPs Mf,d which have the same transition probabilities but different reward matrix r(d)
f and cost

matrices c(d)
l . Here, we only present the definition of r(d)

f , as definition of c(d)
l is identical to r(d)

f .

For d = 0, the reward matrix is the original reward function rf of Mf (r(0)
f = rf .) The following

reward matrices are then defined recursively as r(2d+2)
f = maxh σ

(d),2
f,h:τf−1, where σ(d),2

f,h:τf−1 is local

variance of the value function w.r.t. the rewards r(d)
f . Note that for every d and h = 0, . . . , τf − 1

and j ∈ S, we have r(d)
f (j) ∈ [0, βdfτ

d
f ].

In addition, we will drop the notations k, f and policy π̃e in the following lemmas, since the

statements are for a fixed episode k and flow f and all value functions, reward matrices and tran-

sition kernels are defined under policy π̃e. Please note that s0 is the source node of that particular

flow.

115



Now,

∆d := |V (d)
0 (s0)− Ṽ (d)

0 (s0)| = |
τ−2∑
h=0

P h−1(P − P̃ )Ṽ
(d)
h+1(s0)|

≤
τ−1∑
h=0

P h−1|P − P̃ Ṽ (d)
h+1|(s0)

=
τ−1∑
h=0

P h−1

 ∑
j∈S,l∈Lj

I{j = ·, l ∼ π̃(j, ·, h)}|(P − P̃ )Ṽ
(d)
h+1|

 (s0)

=
∑

j∈S,l∈Lj

τ−1∑
h=0

P h−1

(
I{j = ·, l = π̃(j, ·, h)}|(P − P̃ )Ṽ

(d)
h+1|

)
(s0)

=
∑

j∈S,l∈Lj

τ−1∑
h=0

P h−1

(
I{j = ·, l = π̃(j, ·, h)}|(P − P̃ )Ṽ

(d)
h+1(j)|

)
(s0)

The first equality follows from Lemma 51, the second step from the fact that Vh+1 ≥ 0 and

P h−1 being non-expansive. In the third, we introduce an indicator function which does not change

the value as we sum over all (j, l) pairs. The fourth step relies on the linearity of P operators.

In the fifth step, we realize that I{j = ·, l ∼ π̃(j, ·, h)}|(P − P̃ )Ṽ
(d)
h+1(·)| is a function that takes

nonzero values for input j.We can therefore replace the argument of the second term with j without
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changing the value. The term becomes constant and by linearity of P, we can write

|V (d)
0 (s0)− Ṽ (d)

0 (s0)| = ∆d ≤
∑

j∈S,l∈Lj

τ−1∑
h=0

P h−1
(
I{j = ·, l ∼ π̃(j, ·, h)}|(P − P̃ )Ṽ

(d)
h+1(s)|

)
(s0)

≤
∑
j,l 6∈X

τ−1∑
h=0

‖Ṽ (d)
h+1‖∞(P h−1I{j = ·, l ∼ π̃(j, ·, h)})(s0)

+
∑
j,l∈X

τ−1∑
h=0

|(P − P̃ )Ṽ
(d)
h+1(j)| × (P h−1I{j = ·, l ∼ π̃(j, ·, h)})(s0)

≤
∑
j,l 6∈X

τ−1∑
h=0

βd+1τ d+1(P h−1I{j = ·, l ∼ π̃(j, ·, h)})(s0)

+
∑
j,l∈X

τ−1∑
h=0

|(P − P̃ )Ṽ
(d)
h+1(j)| × (P h−1I{j = ·, l ∼ π̃(j, ·, h)})(s0)

≤
∑
j,l 6∈X

τ−1∑
h=0

βd+1τ d+1(P h−1I{j = ·, l ∼ π̃(j, ·, h)})(s0)

+
∑
j,l∈X

τ−1∑
h=0

|Sc1(j, l)βd+1τ d+1 + c2(j, l)
√
Sσ̃

(d)
h (j, l)| × (P h−1I{j = ·, l ∼ π̃(j, ·, h)})(s0)

≤
∑
j,l 6∈X

τ∑
h=0

βd+1τ d+1(P h−1I{j = ·, l ∼ π̃(j, ·, h)})(s0)

+
∑
j,l∈X

τ∑
h=0

|Sc1(j, l)βd+1τ d+1|(P h−1I{j = ·, l ∼ π̃(j, ·, h)})(s0)

+
∑
j,l∈X

τ−1∑
h=0

|
√
Sc2(j, l)σ̃

(d)
h (j, l)| × (P h−1I{j = ·, l ∼ π̃(j, ·, h)})(s0)

≤
∑
j,l 6∈X

βd+1τ d+1w(j, l) +
∑
j,l∈X

Sc1(j, l)τ d+1w(j, l)

+
∑
j,l∈X

√
Sc2(j, l)×

τ−1∑
h=0

σ̃
(d)
h (j, l)(P h−1I{j = ·, l ∼ π̃(j, ·, h)})(s0)

≤ wminSβ
d+1τ d+1 +

∑
j,l∈X

Sc1(j, l)βd+1τ d+1w(j, l)

+
∑
j,l∈X

√
Sc2(j, l)×

τ−1∑
h=0

σ̃
(d)
h (j, l)(P h−1I{j = ·, l ∼ π̃(j, ·, h)})(s0)
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In the second inequality, we split the sum over all (j, l) pairs and used the fact that P and

P̃ are non-expansive. The next step follows from ‖V (d)
h+1‖∞ ≤ ‖V

(d)
0 ‖∞ ≤ βd+1τ d+1. We then

apply Lemma 52 and subsequently use that all terms are nonnegative and the definition of w(j, l).

Therefore,

∆d ≤

|F |βdτ dε
4ρtot

+
∑
j,l∈X

Sc1(j, l)βd+1τ d+1w(j, l) +
∑
j,l∈X

√
Sc2(j, l)

×
τ−1∑
h=0

σ̃
(d)
h (j, l)(P h−1I{j = ·, l ∼ π̃(j, ·, h)})(s0)

Eventually, this step comes from the fact that w(j, l) ≤ wmin for all (j, l) not in the active set.

Besides, please note that we are analyzing under the given policy π̃, which implies that there are

only S nonzero w in non-active set.

Using the assumption that M ∈M and M̃ ∈M from the fact that ELP chooses the optimistic

CMDP inM, we can apply Lemma 60 and get that

c1(j, l) = 2
√

2
( log 4/δ1

n(j, l)

)3/4

+ 3
√

2
log 4/δ1

n(j, l)

and c2(j, l) =

√
8

n(j, l)
log 4/δ1.

Plugging definitions above we have

∆d ≤
|F |βdτ dε

4ρtot
+ 2
√

2Sβd+1τ d+1 log 4/δ1
3/4
∑
j,l∈X

w(j, l)

n(j, l)3/4

+ 3
√

2Sβd+1τ d+1 log 4/δ1

∑
j,l∈X

w(j, l)

n(j, l)

+
√

8S log 4/δ1

∑
j,l∈X

1√
n(j, l)

τ−1∑
h=0

σ̃
(d)
h (j, l)

× (P h−1I{j = ·, l ∼ π̃(j, ·, h)})(s0)
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Hence, we bound

∆d ≤
|F |βdτ dε

4ρtot
+ Ud(s0) + Yd(s0) + Zd(s0)

as a sum of three terms which we will consider individually in the following. The first term is

Ud(s0) = 2
√

2Sβd+1τ d+1 log 4/δ1
3/4
∑
j,l∈X

w(j, l)

n(j, l)3/4

≤ 2
√

2Sβd+5/4τ d+5/4 log 4/δ1
3/4

∑
κ,ι∈K×I

∑
j,l∈Xκ,ι

(w(j, l)

n(j, l)

)3/4

≤ 2
√

2Sβd+5/4τ d+5/4 log 4/δ1
3/4

∑
κ,ι∈K×I

( |Xκ,ι|
mκ

)3/4

≤ 2
√

2Sβd+5/4τ d+5/4 log 4/δ1
3/4

∑
κ,ι∈K×I

( 1

m

)3/4

≤ 2
√

2Sβd+5/4τ d+5/4 log 4/δ1
3/4|K × I|

( 1

m

)3/4

.

In the second line, we used Cauchy-Scharwz. Next, we used the fact that for s, a ∈ Xκ,ι, we have

n(j, l) ≥ mw(j, l)κ, refer to equation (B.22). Finally, we applied the assumption of |Xκ,ι| ≤ κ.

Please note that K × I is the set of all possible (κ, ι) pairs.
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The next term is

Yd(s0) =
√

8S log 4/δ1

∑
j,l∈X

1√
n(j, j)

τ−1∑
h=0

σ̃
(d)
h (j, l)× (P h−1I{j = ·, l ∼ π̃(j, ·, h)})(s0)

≤
√

8S log 4/δ1

∑
j,l∈X

1√
n(j, l)

×

√√√√τ−1∑
h=0

P h−1I{j = ·, l ∼ π̃(j, ·, h)}(s0)

×

√√√√τ−1∑
h=0

σ̃
(d)2

h (j, l)P h−1I{j = ·, l ∼ π̃(j, ·, h)}(s0)

=
√

8S log 4/δ1

∑
j,l∈X

√√√√w(j, l)

n(j, l)

τ−1∑
h=0

σ̃
(d)2

h (j, l)P h−1I{j = ·, l ∼ π̃(j, ·, h)}(s0)

=
√

8S log 4/δ1

∑
κ,ι

∑
j,l∈Xκ,ι

√√√√w(j, l)

n(j, l)

τ−1∑
h=0

σ̃
(d)2

h (j, l)P h−1I{j = ·, l ∼ π̃(j, ·, h)}(s0)

≤
√

8S log 4/δ1

∑
κ,ι

(√√√√|Xκ,ι|
∑

s,a∈Xκ,ι

w(s, a)

n(s, a)
×

√√√√τ−1∑
h=0

σ̃
(d)2

h (j, l)P h−1I{j = ·, l ∼ π̃(j, ·, h)}(s0)
)

≤
√

8S log 4/δ1

∑
κ,ι

√√√√ 1

m

∑
j,l∈Xκ,ι

τ−1∑
h=0

σ̃
(d)2

h (j, l)P h−1I{j = ·, a ∼ π̃(j, ·, h)}(s0)

≤
√

8S log 4/δ1|K × I|
m

×

√√√√∑
j,l∈X

τ−1∑
h=0

σ̃
(d)2

h (j, l)P h−1I{j = ·, l ∼ π̃(j, ·, h)}(s0)

≤
√

8S log 4/δ1|K × I|
m

×

√√√√ ∑
j∈S,l∈Lj

τ−1∑
h=0

σ̃
(d)2

h (j, l)P h−1I{j = ·, l ∼ π̃(j, ·, h)}(s0)

=

√√√√8S log 4/δ1|K × I|
m

τ−1∑
h=0

P h−1σ̃
(d)2

h (s0)

≤
√

8Sβ2d+3τ 2d+3 log 4/δ1|K × I|
m

.

In the forth and fifth line, we applied Cauchy-Scharwz inequality. Then, we used the definition
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of w(s, a) to get to third inequality. Next, we split the sum and applied Cauchy-Scharwz again

to obtain fifth inequality. Furthermore, we applied the assumption of |Xκ,ι| ≤ κ to get sixth

inequality. Next, we applied Cauchy-Scharwz inequality to obtain seventh inequality. And, the

final inequality follows from the facts that P h−1 is non-expansive and ‖σ̃(d)
h ‖∞ ≤ β2d+2τ 2d+2.

Thus, we have

Yd(s0) ≤
√

8Sβ2d+3τ 2d+3 log 4/δ1|K × I|
m

. (6.37)

However, we can improve this bound as follows

Yd(s0) ≤

√√√√8S log 4/δ1|K × I|
m

τ−1∑
h=0

P h−1σ̃
(d)2

h (s0)

=

√
8S log 4/δ1|K × I|

m

×

√√√√τ−1∑
h=0

P h−1σ̃
(d)2

h (s0)− P̃ h−1σ̃
(d)2

h (s0) + P̃ h−1σ̃
(d)2

h (s0)

≤
√

8S log 4/δ1|K × I|
m

×√√√√(β2d+2τ 2d+2 +
τ−1∑
h=0

P h−1r(2d+2)(s0)− P̃ h−1r(2d+2)(s0)
)

=

√
8S log 4/δ1|K × I|

m

×
√(

β2d+2τ 2d+2 + V
(2d+2)

0 (s0)− Ṽ (2d+2)
0 (s0)

)
=

√
8S log 4/δ1|K × I|

m
(β2d+2τ 2d+2 + ∆2d+2)

≤
√

8S log 4/δ1|K × I|
m

β2d+2τ 2d+2

+

√
8S log 4/δ1|K × I|

m
∆2d+2.

In the third step, we used Lemma 63 and definition of r(2d+2).
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The last term is

Zd(s0) = 3
√

2Sβd+1τ d+1 log 4/δ1

∑
j,l∈X

w(j, l)

n(j, l)

≤ 3
√

2Sβd+1τ d+1 log 4/δ1

∑
κ,ι

|Xκ,ι|
mκ

≤ 3
√

2Sβd+1τ d+1 log 4/δ1|K × I|
m

which we used n(j, l) ≥ mw(j, l)κ again.

Now, if we put all the pieces together, we have

∆d ≤
|F |βdτ dε

4ρtot
+ 2
√

2Sβd+5/4τ d+5/4 log 4/δ1
3/4

× |K × I|
( 1

m

)3/4

+
3
√

2Sβd+1τ d+1 log 4/δ1|K × I|
m

+

√
8S log 4/δ1|K × I|

m
β2d+2τ 2d+2

+

√
8S log 4/δ1|K × I|

m
∆2d+2.

If we choose m sufficiently large which will be shown later, then it is straightforward to show that

Ud(s0) ≤ Zd(s0) and Yd(s0) ≤ Zd(s0). Hence, if we expand the above inequality up to depth

γ = d log τ
2 log 2
e with D = {0, 2, 6, 14, . . . , γ}, we get

∆0 ≤
∑
d∈D\γ

(8S log 4/δ1|K × I|
m

) d
d+2

×
[ |F |βdτ 2ε

4ρtot
+ 3

√
8S log 4/δ1|K × I|τ 2d+2

m

] 2
d+2

+
(8S log 4/δ1|K × I|

m

) γ
γ+2

×
[ |F |βγτ γε

4ρtot
+ 3

√
8S log 4/δ1|K × I|τ 2γ+2

m

] 2
γ+2

.
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Here, we used inequality (B.23) to bound Zγ(s0). Finally, the proof completes if we let

m = 1280
Sβ2ρ2

totτ
2

ε2
(log2 log2 τ)2 log2

2

(8S2β2ρ2
totτ

2

ε

)
log

6

δ1

.

Proof of Theorem 13: By Lemma 33, we know that number of episodes where |Xκ,ι| > κ for

some κ, ι is bounded by 6Emax|L|m with probability at least 1− δ
2|F |(|L|+1)

. For all other episodes,

we have by Lemma 35 that for any flow f and any link l

|Ṽ π̃e
f,0(sf )− V π̃e

f,0(sf )| ≤
ε

ρtot
, |C̃ π̃e

f,l,0(sf )− C π̃e
f,l,0(sf )| ≤

ε

ρtot
. (6.38)

Using Lemma 30, we get that M ∈ Me for any episode e w.p. at least 1− δ
2|F |(|L|+1)

. Further,

we know that ELP outputs the policy π̃e such that

Ṽ π̃e
f,0(sf ) ≥ V π∗

f,0 (sf ), C̃ π̃e
f,l,0(sf ) ≤ Cl ∀l (6.39)

w.p. at least 1 − δ
2|F |(|L|+1)

. Combining the inequalities (C.2) with inequalities (B.25), we get that

for all episodes with |Xκ,ι| ≤ κ for all κ, ι

V π̃e
f,0(sf ) ≥ V π∗

f,0 (sf )−
ε

ρtot

w.p. at least 1− δ
2|F |(|L|+1)

. Thus we have

∑
f

ρfV
π̃e
f,0(sf ) ≥

∑
f

ρfV
π∗

f,0 (sf )− ε

w.p. at least 1− δ
2(|L|+1)

.
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Next for any l, C π̃e
f,l,0(sf ) ≤ C̃ π̃e

f,l,0(sf ) + ε
ρtot
. So,

∑
f

ρfC
π̃e
f,l,0(sf ) ≤

∑
f

ρf C̃
π̃e
f,l,0(sf ) + ε ≤ Cl + ε

w.p. 1, since the optimistic problem of (6.33) is feasible in this context. Applying the union bound

we get the desired result, if m satisfies

m ≥ 1280
Sβ2

maxρ
2
totτ

2
max

ε2
(log2 log2 τmax)2

× log2
2

(8β2
maxρ

2
totτ

2
maxS

2

ε

)
log

4

δ1

and

m ≥ 6τ 2
max

ε
log

2Emax

δ
.

From the definitions, we get

log
4

δ1

= log
4|F |SUmax

δ
= log

4|F |S|L|m
δ

.

Thus,

m ≥ 1280
Sβ2

maxρ
2
totτ

2
max

ε2
(log2 log2 τmax)2

× log2
2

(8β2
maxρ

2
totτ

2
maxS

2

ε

)
log

4|F |S|L|m
δ

.

It is well-known fact that for any constant B > 0, ν ≥ 2B lnB implies ν ≥ B ln ν. Using this, we

can set

m ≥ 2560
Sβ2

maxρ
2
totτ

2
max

ε2
(log2 log2 τmax)2

× log2
2

(8β2
maxρ

2
totτ

2
maxS

2

ε

)
×
[
log
(2048|F |S|L|τ 2

max(log2 log2 τmax)2

ε2δ

+ log log2
2

(8τ 2
max|S|2

ε

))]
.

124



Also,

Emax = log2 S log2

4Sβ2
maxρ

2
totτ

2
max

ε
≤ log2

2

4Sβ2
maxρ

2
totτ

2
max

ε

and

log
2|F |Emax

δ

= log
2|F | log2 S log2(4Sβ2

maxρ
2
totτ

2
max/ε)

δ

≤ log
2|F | log2

2(4Sβ2
maxρ

2
totτ

2
max/ε)

δ

≤ log
16|F |S3|L|τ 2

max

εδ
.

Setting

m = 2560
Sβ2

maxρ
2
totτ

2
max

ε2
(log2 log2 τmax)2 (6.40)

× log2
2

(8β2
maxρ

2
totτ

2
maxS

2

ε

)
(6.41)

×
[
log
(2048|F |S3|L|τ 2

max

ε2δ
(log2 log2 τmax)2

+ log log2
2

(8τ 2
maxS

2

ε

))]
.

is therefore a valid choice for m to ensure that with probability at least 1− δ
|F | , there are at most

6Emax|L|m = 15360
S|L|β2

maxρ
2
totτ

2
max

ε2
(log2 log2 τmax)2

× log2
2

(4Sβ2
maxρ

2
totτ

2
max

ε

)
×
[
log
(2048|F |S3|L|τ 2

max

ε2δ
(log2 log2 τmax)2

+ log log2
2

(8τ 2
maxS

2

ε

))]

sub-optimal episodes. �
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6.4.2 Algorithms based on Dual Decomposition

In this section, we propose two model-based RL algorithms. Both algorithms operate in a loop

consisting of two steps. First, they solve the per-packet MDP under the current model to obtain

sub-optimal solution of V ∗f (λ) with high probability. Next, the Lagrange multipliers, λ are updated

according to estimated model. The difference between the two algorithms is in how they sample

the system in order to construct the model and update it, using an offline or online approach. We

will show how both algorithms would result in an ε−optimal policy with high probability. We also

characterize the sample complexity according to Definition 6.

6.4.2.1 Generative Model-Based Learning-Dual

According to the GMBL-Dual algorithm, we use a traditional channel sounding approach, and

simply send n packets over each link for estimating the reliability of each link pl. For each link

l = (j, k), the transmission of a packet is ‘successful’ if the packet transmitted from node j in

the link l reaches node j in one time slot. We define the empirical link reliability, p̂l, as the ratio

of the successful transmission to the total number of transmission. Given p̂l, we can define the

approximate transmission kernel P̂ as (6.4) by replacing pl with p̂l. It is straight forward to see that

p̂l is an unbiased estimator of pl and P̂ is an unbiased estimator of P . The expectation w.r.t. to this

approximate transition kernel P̂ is denoted by Ê[·].

We now consider a different constrained MDP that is identical to the CMDP defined in Section

6.3 except that its transition kernel is P̂ instead of P . The expectation w.r.t. P̂ is denoted by Ê[·].

We define the quantities V̂ π
f (λ) in the same way as in (6.13) but by replacing E by Ê. The quantities

L̂(π, λ), D̂(λ) can also now be defined in a similar way as in (6.14) and (6.15) by replacing V π
f (λ)

with V̂ π
f (λ). The optimal dual variable λ̂∗ is defined as λ̂∗ = arg minλ D̂(λ). We also define

π̂f (λ) = arg max
πf

V̂
πf
f (λ), V̂ ∗f (λ) = V̂

π̂f (λ)

f (λ). (6.42)

Note that π̂f (λ) and V̂ ∗f (λ) can be computed by standard finite horizon dynamic programming

[34], and we omit the details.
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We also define the following quantities for describing the GMBL algorithm succinctly.

Ĉ
πf
l,f = Ê[

τf∑
τ=0

1{aπfi,f (t+ τ) = l}|i, f, sπfi,f (t) = sf ], (6.43)

R̂
πf
f = E[

τf∑
τ=0

rf (s
πf
i,f (t+ τ)|i, f, sπfi,f (t) = sf ], (6.44)

Ĉπ
l =

∑
f

ρf Ĉ
πf
l,f , R̂

π =
∑
f

ρf R̂
πf
f , for π = (πf )f∈F , (6.45)

Here π is the joint policy given by the collection of each individual policy πf . Note that from

(6.13), (6.43), (6.44), we can write

V̂
πf
f (λ) = R̂

πf
f −

∑
l

λlĈ
πf
l,f , (6.46)

L̂(π, λ) = R̂π +
∑
l

λl(Cl − Ĉπ
l ).

The GMBL-Dual algorithm is summarized in Algorithm 9.

Algorithm 9 Generative Model-Based Learning-Dual (GMBL-Dual)

1: Input: accuracy ε, δ. Initialize λl(0) = 0,∀l ∈ L
2: Send n = n(ε, δ) packets in each link l ∈ L
3: Estimate the link probability p̂l by transmitting n packets across all links uniformly
4: Construct the approximate transition kernel P̂
5: for m from 1 to M do
6: For each flow f , compute πf (m) = π̂f (λ(m)) according to (6.42). Define π(m) =

(πf (m))f∈F
7: Compute Ĉπ(m)

l according to (6.43) and (6.45)
8: Compute λl(m+ 1) for each link l as

λl(m+ 1) = ΠΛ(λl(m)− α(Cl − Ĉπ(m)
l ))§

9: Compute λ̂(M) = 1
M

∑M
m=1 λ(m).

10: Compute πf (M + 1) = π̂f (λ̂(M))

11: Output: π̂ = (πf (M + 1))f∈F , λ̂ = λ̂(M)
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We next present the sample complexity of GMBL-Dual.

Theorem 14. GMBL-Dual algorithm with

n(ε, δ) ≥
162Sρ2

totτ
3
max(βmax + |L|λmax)2 log 72|F |S2|L|τmax

δ

ε2
(6.47)

and parameters

M =
36|L|(τmaxρtot + Cmax)2λ2

max

ε2
, (6.48)

α =
ε

3|L|(τmaxρtot + Cmax)2
,

where λmax = ρtotβmax

Cmin
and Cmin = minl Cl, achieves a λ̂ and π̂ such that

P
(
|L(π̂, λ̂)− L(π∗, λ∗)| ≤ ε

)
≥ (1− δ).

The proof requires the use of multiple smaller results that we first present below, followed by

their integration to yield the proof of the main theorem.

Lemma 36. Let λmax = maxl λ
∗
l . Then, λmax <

ρtotβmax

Cmin
.

Proof. Considering OSP of (6.3) and reward matrix of each flow f (6.5), it is obvious that op-

timal policy for OSP would be transmitting packets rather than no-transmission, so that OSP

would yield positive result. Therefore, it means that each policy πf (λ∗) is consisted of transmit-

ting packets. Comparing value of transmission policy with no-transmission and knowing the fact

that no-transmission policy yield 0 reward for each flow, we conclude that V ∗f (λ∗) must be positive

for each flow f , otherwise no-transmission policy must have been chosen.

On the other hand, optimal policy of the network might utilize some of the links, not all the

links. Due to Complementary Slackness, [70], if link l is not used, then λ∗l would be 0. And,

chosen links would be utilized such that average utilization would be equal to their constraint, i.e.∑
f ρfC

π∗

f,l,0(sf ) = Cl . Hence, we continue with those links that their λ∗l would be positive.
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For any flow f, we know that

0 < V π∗

f,0 (λ∗) ≤ βf −
∑
l∈qf

λ∗l σl,f ,

where qf is the path from sf to df and σl,f is expected number of times that the packet of flow f is

being transmitted over link l. Therefore,

0 < βf −
∑
l∈qf

λ∗l σl,f .

Multiplying above term by ρf and summing both sides over f, we get

0 <
∑
f

ρfβf −
∑
f

∑
l∈qf

λ∗l ρfσl,f .

On the other hand, by rearranging summations we get

0 <
∑
f

βf −
∑
f

∑
l∈qf

λ∗l σl,f ≤ ρtotβmax −
∑
l∈G∗

λ∗l (
∑
f

ρfσl,f ),

where G∗ is subgraph of the network with all active links.

Further, we can write ρfσl,f using Cπ∗

f,l,0, where

Cπ∗

f,l,0(sf ) = lim
T→∞

1

T

T∑
t=1

cπ
∗

f,l(t).

So

0 <
∑
f

βf−
∑
f

∑
l∈qf

λ∗l ρfσl,f

≤ ρtotβmax −
∑
l∈G∗

λ∗l (
∑
f

ρfC
π∗

f,l,0(sf )).
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Next, ignoring the middle term we get

∑
l∈G∗

λ∗l (
∑
f

ρfC
π∗

f,l,0(sf )) < ρtotβmax.

Since all λ∗l and Cπ∗

f,l,0(sf ) are positive, we pick the λmax and the link corresponding to it and get

λmaxC
π∗

l(max) < ρtotβmax.

Now, we find the lower bound for the left-hand-side. We know that Cπ∗

l(max) ≥ Cmin according to

Complementary Slackness. Hence,

Cminλmax < ρtotβmax.

Therefor, proof completes.

Lemma 37. With the parameters M and α given by (6.48), we obtain |D̂(λ̂)− D̂(λ̂∗)| ≤ ε/3

This follows from the standard rate of convergence analysis of projected subgradient descent

algorithm for convex functions and proposition 36. For completeness we first reproduce that result.

We use the following result.

Theorem 15. [35] Let g : X → Rd be a convex function with ||∇g|| ≤ B1. Also, assume

that the domain of g(·) is bounded, i.e. ||x|| ≤ B2,∀x ∈ X . Consider the projected gradient

descent algorithm xm+1 = ΠX [xm − α∇g(xm)] where ΠX is the projection operator. Then, with

α = B2/(B1

√
M),

g(
1

M

M∑
m=1

xm)− g(x∗) ≤ B1B2√
M

Proof of Lemma 37: We first show that the subgradient of D̂(·) at λ, denoted by ∇D̂(λ) is
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given by

∇D̂(λ) = (Cl −
∑
f

ρf Ĉ
π̂(λ)
f,l,0 (sf ))l∈L.

Indeed, for any given λ′, λ,

D̂(λ′) = max
π

L̂(π, λ′) ≥ L̂(π̂(λ), λ′)

= R̂π̂(λ) +
∑
l

λ′l(Cl −
∑
f

ρf Ĉ
π̂(λ)
f,l,0 (sf ))

= R̂π̂(λ) +
∑
l

λl(Cl −
∑
f

ρf Ĉ
π̂(λ)
f,l,0 (sf ))

+
∑
l

(λ′l − λl)(Cl −
∑
f

ρf Ĉ
π̂(λ)
f,l,0 (sf ))

= D̂(λ) +
∑
l

(λ′l − λl)(Cl −
∑
f

ρf Ĉ
π̂(λ)
f,l,0 (sf ))

and hence the claim follows by the definition of subgradient.

In order to bound ‖∇D̂(λ)‖, first note that from (6.43) Ĉ π̂f (λ)

f,l,0 (sf ) ≤ τmax. So,
∑

f ρf Ĉ
π(λ)
f,l,0 (sf ) ≤

τmaxρtot. Also, Cl ≤ Cmax. Hence, ‖∇D(λ)‖ =
√
L(τmaxρtot + Cmax).

Now, considering Lemma 36, we project λ(m) to set [0, 2λmax]. Using Theorem 15, we get the

desired result. �

Lemma 38. Let δP ∈ (0, 1). Then, if n ≥ 11664S2τ 2
f log 4/δP

3, for any flow f and for a given

λ ∈ [0, λmax] under any policy π

‖V π
f,0(λ)− V̂ π

f,0(λ)‖∞ ≤

√
18
Sτ 3

f (βf + |L|λmax)2 log 4/δP

n

w.p. at least 1− 3S2|L|τfδP .

Proof. The proof procedure is identical to proof of Lemma 28 with adjustment of ‖V π
f,0(λ) −

V̂ π
f,0(λ)‖∞ ≤ βf + |L|λmax.
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Lemma 39. Let δP ∈ (0, 1). Then, if n ≥ 11664S2τ 2
f log 4/δP

3, for a given λ ∈ [0, λmax]

|D̂(λ)−D(λ)| ≤ ρtot

√
18
Sτ 3

max(βmax + |L|λmax)2 log 4/δP
n

w.p. at least 1− 6|F |S2|L|τmaxδP .

Proof. For a given λ, consider two policies π(λ) and π̂(λ). Then for any flow f, according to

Lemma 38 we have

V
πf (λ)

f,0 (sf , λ) ≤ V̂
πf (λ)

f,0 (sf , λ) + ε′ ≤ V̂
π̂f (λ)

f,0 (sf , λ) + ε′ (6.49)

w.p. at least 1− 3S2|L|τfδP where ε′ =
√

18
Sτ3f (βf+|L|λmax)2 log 4/δP

n
. Please notice that the second

inequality is due to the fact π̂f (λ) = arg maxπ V̂
π
f,0(λ). Next, we have

V̂
π̂f (λ)

f,0 (sf , λ) ≤ V
π̂f (λ)

f,0 (sf , λ) + ε′ ≤ V
πf (λ)

f,0 (sf , λ) + ε′ (6.50)

w.p. at least 1− 3S2|L|τfδP . Now, combining the two inequalities (6.49) and (6.50), we get

|V̂ π̂f (λ)

f,0 (sf , λ)− V πf (λ)

f,0 (sf , λ)| ≤ ε′

w.p. at least 1− 6S2|L|τfδP . Using the above inequality, we get

|D̂(λ)−D(λ)| = |
∑
f

ρf (V̂
π̂f (λ)

f,0 (sf )− V
πf (λ)

f,0 (sf ))|

≤
∑
f

ρf |V̂
π̂f (λ)

f,0 (sf )− V
πf (λ)

f,0 (sf )| ≤ ρtotε
′

w.p. at least 1− 6|F |S2|L|τmaxδP . Hence the proof is complete.
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Lemma 40. Let δP ∈ (0, 1). Then, if n ≥ 11664S2τ 2
f log 4/δP

3, for a given λ ∈ [0, λmax]

|D̂(λ̂∗)−D(λ∗)| ≤ ρtot

√
18
Sτ 3

f (βf + |L|λmax)2 log 4/δP

n

w.p. at least 1− 12|F |S2|L|τmaxδP .

Proof. Since λ̂∗ = arg minλ D̂(λ), then D̂(λ̂∗) ≤ D̂(λ∗). Next, we have

D̂(λ∗) ≤ D(λ∗) + ε′ (6.51)

w.p. at least 1 − 6|F |S2|L|τmaxδP where ε′ = ρtot

√
18Sτ

3
max(βmax+|L|λmax)2 log 4/δP

n
according to

Lemma 39. Therefore, we have

D̂(λ̂∗) ≤ D(λ∗) + ε′ (6.52)

w.p. at least 1− 6|F |S2|L|τmaxδP . Taking identical steps, we get

D(λ∗) ≤ D̂(λ̂∗) + ε′ (6.53)

w.p. at least 1− 6|F |S2|L|τmaxδP . Finally, combining the inequalities (6.52) and (6.53) yields the

result.

Now, we are ready to prove Theorem 14.
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Proof of Theorem 14: We expand the result of theorem 14

|L(π̂, λ̂)− L(π∗, λ∗)|

= |
∑
l

λ̂lCl +
∑
f

ρfV
π̂f
f,0 (sf , λ̂)−D(λ∗)|

= |
∑
l

λ̂lCl +
∑
f

ρf V̂
π̂f
f,0 (sf , λ̂)−D(λ∗)

+
∑
f

ρf (V
π̂f
f,0 (sf , λ̂)− V̂ π̂f

f,0 (sf , λ̂))|

≤ |D̂(λ̂)−D(λ∗)|+
∑
f

ρf |V
π̂f
f,0 (sf , λ̂)− V̂ π̂f

f,0 (sf , λ̂)|.

First, we bound |D̂(λ̂)−D(λ∗)| by and expanding it further

|D̂(λ̂)−D(λ∗)| = |D̂(λ̂)− D̂(λ̂∗) + D̂(λ̂∗)−D(λ∗)|

≤ |D̂(λ̂)− D̂(λ̂∗)|+ |D̂(λ̂∗)−D(λ∗)| ≤ ε

3
+ ε′ (6.54)

w.p. at least 1 − 12|F |S2|L|τmaxδP where ε′ = ρtot

√
18Sτ

3
max(βmax+|L|λmax)2 log 4/δP

n
according to

Lemmas 37 and 40.

Next,

∑
f

ρf |V
π̂f
f,0 (sf , λ̂)− V̂ π̂f

f,0 (sf , λ̂)| ≤ ε′ (6.55)

w.p. at least 1− 6|F |S2|L|τmaxδP according to Lemma 38.

Eventually, we combine two inequalities (6.54) and (6.55) and get

|L(π̂, λ̂)− L(π∗, λ∗)|

≤ ε

3
+ 2ρtot

√
18
Sτ 3

max(βmax + |L|λmax)2 log 4/δP
n

w.p. at least 1 − 18|F |S2|L|τmaxδP . Hence, putting ε = 3ρtot

√
18Sτ

3
max(βmax+|L|λmax)2 log 4/δP

n
and
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δ = 18|F |S2|L|τmaxδP completes the proof. �

6.5 Simulation Results
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Figure 6.1: Objective Error-10-
Node Network
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Figure 6.2: Constraint
Violation-10-Node Network
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Figure 6.3: Duality Gap Error-
10-Node Network
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Figure 6.4: Objective Error-20-
Node Network
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Figure 6.5: Constraint
Violation-20-Node Network
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Figure 6.6: Duality Gap Error-
20-Node Network
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Figure 6.7: Objective Error-40-
Node Network
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Figure 6.8: Constraint
Violation-40-Node Network
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40-Node Network

In this section, we present simulation results to compare the performance of the GMBL-LP,

Online-CRL-LP and GMBL-Dual algorithms with respect to the optimal policy in the context

of attaining high weighted timely throughput in an IAB network. We develop three simulation

scenarios that are motivated by IAB node deployment features such as density of nodes and mm-
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wave communication [36]. The three scenarios represent different node densities. We consider

networks with 10, 20 and 40 nodes with 20, 80 and 320 number of links respectively. In every

scenario, for each link l, pl is uniformly randomly chosen from [0.5, 1.0], while Cl is chosen from

[1, 5]. We have two unicast flows in all scenarios. Packet arrivals to the system follow a Poisson

number of arrivals to each source node in each time slot. In all scenarios, both flows have same

weight of 2.

The performance metrics of interest are the error in the objective function which is the weighted

throughput engendered by the policy that is the outcome of the algorithm and aggregation of ca-

pacity constraint violations. We also consider the error corresponding to duality gap only for

GMBL-Dual algorithm. We define this error as

∣∣∣∣∣∑
l

λMl Cl +
∑
f

V
πf (λM )

f (λM)−D(λ∗)

∣∣∣∣∣ , (6.56)

where λM and πf (λM) are the Lagrange multipliers and policy that result from the execution of

GMBL-Dual algorithm. The error depends on the number of sub-gradient updates, M, which we

empirically set as 100 for good error performance.

Our graphs relate to sample complexity, reward, constraint violation and duality gap. We set a

packet budget for learning the model, and identify the error for each of our candidate algorithms.

Figures 6.1, 6.4 and 6.7 depict the relation between the error and transmission budget empirically

in the three scenarios. The graphs show that increasing the transmit budget reduces error for

all the algorithms which is inconsistent with Theorems 12, 13 and 14. However, Online-CRL-

LP outperforms both GMBL-LP and GMBL-Dual algorithms. This observation implicates that

Online-CRL-LP mostly concentrates on effective links, while the other two algorithms do not

distinguish between links. Here, we also observe that GMBL-LP and GMBL-Dual algorithms

perform similarly in terms of obtaining true objective. However, the figures show that when the

density of the network increases, GMBL-LP algorithm experiences more deviations compared to

other two algorithms.
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Next, we compare the total amount of capacity constraint violations of output of three algo-

rithms in figures 6.2, 6.5 and 6.8. These figures illustrate Online-CRL-LP also outperforms the

other two algorithms in terms of constraint violation. We also observe that while Online-CRL-LP

and GMBL-LP algorithms show a decrease in constraint violation, GMBL-Dual algorithm incur

an increase in constraint violation. This result happens from implementing deterministic policy

instead of stochastic policies. Because, we do not have access to obtain a stochastic policy for a

given MDP. Resolving this issue needs developing a tool to construct a stochastic policy for a given

MDP, or implementing two time-scale approximation which results in a totally different approach.

Further, we illustrate duality-gap error only for GMBL-Dual algorithm in figures 6.3, 6.6 and

6.9 because this result is only available for this algorithm. All the figures show that the duality gap

error characterized according to equation (6.56) decreases as the transmission budget increases.

These figures also implicate that even though the constraint violation does not decrease, the duality

gap error decreases which is consistent with Theorem 14.

Finally, comparing the graphs of each performance metric under the three network scenarios

indicate that a larger number of sources of randomness causes higher error. For example, the

figures 6.1, 6.4 and 6.7 show that the error is higher for scenario 2 (which has more links) than

scenario 1 for every transmit budget. This phenomenon is also seen in figures 6.2, 6.5 and 6.8, and

6.3, 6.6 and 6.9, which is consistent with Theorems 12, 13 and 14.

6.6 Conclusion

In this chapter, we considered the problem of maximizing the throughput of unicast flows with

strict per-packet deadlines over a multi-hop wireless network, motivated by 5G IAB mm-wave

networks. The problem formulation took the form on a CMDP, and, assuming that the link statistics

are unknown, can be solved using LP and dual-decomposition approaches. We proposed a model-

based RL approaches, and developed three of algorithms, based on offline channel sounding.
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7. SUMMARY AND DIRECTIONS OF FUTURE RESEARCH

In this thesis, we study learning in the face of constraints as applied to networked systems.

In the first three chapters, we introduced two notions of sample complexity for understanding the

performance of RL algorithms for safety-constrained applications. We developed two categories

of algorithms—offline GMBL and online algorithms in first three chapters. The main findings

of chapters 2 and 3 points to a logarithmic factor increase in sample complexity over the uncon-

strained regime suggesting the value of the approach to real systems. However, these algorithms are

based on LP approach which are computationally expensive. Therefore, in chapter 4, we concen-

trate on reducing the computational complexity of the constrained-RL algorithms by considering

dual approach.

In the next chapter, we studied the problem of broadcasting real-time flows with hard per-

packet deadlines in a multi-hop wireless network as a prospective application for our learning

algorithms. This problem is computationally complex due to the need to solve an MDP over the

network graph. We relax the problem using average link utilization constraints, and come up with

a novel decomposition approach that enables its solution in a distributed fashion. We propose the

DSR algorithm that maximizes the total timely-utility. The algorithm has a low complexity, and

has a really low coordination overhead. We also develop a simple index policy based on DSR

that is able to meet hard link utilization constraints. We simulate the variants of the algorithm,

comparing against several recent throughout optimal algorithms . In all cases, DSR and the index

policy have a better performance in terms of total timely-utility. We conclude that throughput and

delay optimality are fundamentally different, but simple near-optimal solutions are possible in the

delay-constrained case.

In final chapter, we considered the problem of maximizing the throughput of unicast flows with

strict per-packet deadlines over a multi-hop wireless network, motivated by 5G IAB mm-wave net-

works. The problem formulation took the form on a CMDP, and, assuming that the link statistics

are unknown, can be solved using LP and dual-decomposition approaches. We proposed a model-
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based RL approaches, and developed three of algorithms, based on offline channel sounding. We

introduced two notions of sample complexity. First notion is defined for objective maximization

and constraint satisfaction individually for understanding the performance of RL algorithms for

networks. With this definition, we developed two types of algorithms—GMBL-LP and online-

CRL-LP. Second notion of sample complexity integrates objective maximization and constraint

violations together. We designed algorithm GMBL-Dual based on this definition. Finally, we

compared the performance of the three algorithms and showed that they have almost similar per-

formance.
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APPENDIX A

APPENDIX OF CHAPTER 2

A.1 Extended-Linear Programming

ELP is a Linear Programming, LP, formulation indeed. So, we first present generic LP which

is used to solve CMDP problem of (3.4) [4], then build the idea of ELP based on that. To solve

CMDP problem (3.4) via LP approach, we convert this problem to a linear programming problem

formulated using new variables occupation measures. Now, consider µ as the finite-horizon state-

action occupation measure under policy π defined as

µ(s, a, π, h) := P(sh = s, ah = a|sh=0 = s0), (A.1)

where the probability is calculated w.r.t. underlying transition kernel under policy π, Pπ. It is

shown that objective function and constraint functions could be restated as functions of occupation

measures. Then, the problem would become to find the optimal occupation measures.

Now, if we let µ be any generic occupation measure defined as (B.1), then the equivalent LP to

CMDP problem (3.4) is

max
µ

∑
s,a,h

µ(s, a, h)r(s, a)

s.t.∑
s,a,h

µ(s, a, h)c(i, s, a) ≤ C̄i ∀i,

∑
a

µ(s, a, h) =
∑
s′,a′

P (s|s′, a′)µ(s′, a′, h− 1) ∀h ∈ {1, . . . , H − 1},

∑
a

µ(s0, a, 0) = 1,
∑
a

µ(s, a, 0) = 0 ∀s ∈ S\{s0},

µ(s, a, h) ≥ 0 ∀s, a, h

(A.2)
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It is proved that the LP (B.3) is equivalent to CMDP problem of (3.4), and the optimal policy

computed by this LP is also the solution to CMDP problem in [4]. Eventually, the optimal policy

π∗ is calculated as follows

π∗(s, a, h) =
µ(s, a, h)∑
b µ(s, b, h)

.

Now, given the estimated model P̂ , we get the ELP formulation if we define new occupancy

measure q(s, a, s′, h) = P (s′|s, a)µ(s, a, h). Eventually, the ELP formulation is

max
q

∑
s,a,s′,h

q(s, a, s′, h)r(s, a)

s.t.∑
s,a,s′,h

q(s, a, s′, h)c(i, s, a) ≤ C̄i ∀i ∈ {1, . . . , N},

∑
a,s′

q(s, a, s′, h) =
∑
s′,a′

q(s′, a′, s, h− 1) ∀h ∈ {1, . . . , H − 1},

∑
a,s′

q(s0, a, s
′, 0) = 1,

∑
a,s′

q(s, a, s′, 0) = 0 ∀s ∈ S\{s0},

q(s, a, s′, h) ≥ 0 ∀s, s′ ∈ S, a ∈ A, h ∈ {0, 1, . . . , H − 1},

q(s, a, s′, h)− (P̂ (s′|s, a) + β(s, a, s′))
∑
y

q(s, a, y, h) ≤ 0 ∀s, a, s′, h,

− q(s, a, s′, h) + (P̂ (s′|s, a)− β(s, a, s′))
∑
y

q(s, a, y, h) ≤ 0 ∀s, a, s′, h,

where β(s, a, s′) is the radius of the confidence interval around P̂ (s′|s, a) which depends on the

algorithm. The last two conditions in the above formulation include the confidence interval around

P̂ and distinguish ELP from generic LP formulation. At the end, ELP outputs the optimistic

policy, π̃ for Optimistic-GMBL and π̃k for Online-CRL, using the solution of above LP. Also, we

can calculate an optimistic transition kernel denoted by P̃ by means of optimal q(s, a, s′, h). In
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brief, the optimistic transition kernel and optimistic policy are computed as follows

P̃ (s′|s, a) =
q(s, a, s′, h, s0)∑
b q(s, a, b, h, s0)

, π̃∗(s, a, h) =

∑
s′ q(s, a, s

′, h, s0)∑
b,s′ q(s, b, s

′, h, s0)
.

The details of ELP about the time and space complexity is briefed in [5], so we do not present

them here.

A.2 Detailed Proofs for Upper PAC Bounds in Offline Mode

In this section, we assume that we have n samples from each (s, a) in every lemma presented.

Proof of Lemma 6: Fix a state, action and next state, i.e. s, a, s′. Then, according to Hoeffd-

ing’s inequality [30]

P(|P (s′|s, a)− P̂ (s′|s, a)| ≤
√

log 4/δP
2n

) ≥ 1− δP/2.

Now, we apply empirical Bernstein’s inequality [31] and get

P(|P (s′|s, a)− P̂ (s′|s, a)| ≤

√
2P̂ (s′|s, a)(1− P̂ (s′|s, a))

n
log

4

δP
+

2

3n
log

4

δP
) ≥ 1− δP/2.

By combining these two inequalities and applying union bound, we get

P(|P (s′|s, a)− P̂ (s′|s, a)| ≤ min{

√
2P̂ (s′|s, a)(1− P̂ (s′|s, a))

n
log

4

δP
+

2

3n
log

4

δP
,

√
log 4/δP

2n
})

≥ 1− δP .

Finally, we get the result by applying union bound over all state, action and next states. �

Lemma 41. Let δP ∈ (0, 1). Assume p, p̂, p̃ ∈ [0, 1] satisfy P(p ∈ PδP ) ≥ 1 − δP and p̃ ∈ PδP

where

PδP := {p′ ∈ [0, 1] : |p′ − p̂| ≤ min
(√2p̂(1− p̂)

n
log 4/δP +

2

3n
log 4/δP ,

√
log 4/δP

2n

)
}.
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Then,

|p− p̃| ≤
√

8p̃(1− p̃)
n

log 4/δP + 2
√

2
( log 4/δP

n

) 3
4

+ 3
√

2
log 4/δP

n

w.p. at least 1− δP .

Proof.

|p− p̃| ≤ |p− p̂|+ |p̂− p̃| ≤ 2

√
2p̂(1− p̂)

n
log 4/δP +

4

3n
log 4/δP

≤ 2

√
2 log 4/δP

n
(p̃+

√
log 4/δP

2n
)(1− p̃+

√
log 4/δP

2n
) +

4

3n
log 4/δP

= 2

√
2 log 4/δP

n

(
p̃(1− p̃) +

√
log 4/δP

2n
+

log 4/δP
2n

)
+

4

3n
log 4/δP

≤
√

8p̃(1− p̃)
n

log 4/δP + 2
√

2
( log 4/δP

n

) 3
4

+ 3
√

2
log 4/δP

n
.

The first term in the first line is true w.p. at least 1− δP , hence the proof is complete.

Lemma 42. Suppose there are two CMDPsM = 〈S,A, P, r, c, C̄, s0, H〉 andM ′ = 〈S,A, P ′, r, c, C̄, s0, H〉

satisfying assumption 3. Then, under any policy π

V π
0 − V ′π0 =

H−2∑
h=0

P
′h−1
π (Pπ − P ′π)V π

h+1 and V π
0 − V ′π0 =

H−2∑
h=0

P h−1
π (Pπ − P ′π)V ′πh+1,

and for any i ∈ {1, . . . , N},

Cπ
i,0 − C ′πi,0 =

H−2∑
h=0

P
′h−1
π (Pπ − P ′π)Cπ

i,h+1 and Cπ
i,0 − C ′πi,0 =

H−2∑
h=0

P h−1
π (Pπ − P ′π)C ′πi,h+1.

Proof. We only prove the first statement of value function since the proof procedure for cost is
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identical. For a fixed h and s

V π
h (s)− V ′πh (s) = rπ(s) +

∑
s′

Pπ(s′|s)V π
h+1(s′)− (rπ(s) +

∑
s′

P ′π(s′|s)V ′πh+1(s′))

=
∑
s′

Pπ(s′|s)V π
h+1(s′)−

∑
s′

P ′π(s′|s)V π
h+1(s′) +

∑
s′

P ′π(s′|s)V π
h+1(s′)−

∑
s′

P ′π(s′|s)V ′πh+1(s′)

=
∑
s′

(Pπ(s′|s)− P ′π(s′|s))V π
h+1(s′) +

∑
s′

P ′π(s′|s)(V π
h+1(s′)− V ′πh+1(s′)).

Because V π
H−1(s) = V ′πH−1(s) = rπ(s), if we expand the second term until h = H − 1, we get the

result.

Lemma 43. Let δP ∈ (0, 1). Suppose there are two CMDPs M = 〈S,A, P, r, c, C̄, s0, H〉 and

M ′ = 〈S,A, P ′, r, c, C̄, s0, H〉 satisfying assumption 3. Further assume

|P (s′|s, a)− P ′(s′|s, a)| ≤ c1 + c2

√
P ′(s′|s, a)− (1− P ′(s′|s, a))

w.p. at least 1− δP for each s, s′ ∈ S, a ∈ A. Then, under any policy π

|
∑
s′

(Pπ(s′|s)− P ′π(s′|s))V ′πh+1(s′)| ≤ |S|c1‖V ′πh+1‖∞ + c2

√
|S|σ′πh (s)

for any (s, a) ∈ S × A and h ∈ [0, H − 2] w.p. at least 1− |S|δP , and

|
∑
s′

(Pπ(s′|s)− P ′π(s′|s))C ′πi,h+1(s′)| ≤ |S|c1‖C ′πi,h+1‖∞ + c2

√
|S|σ′πi,h(s)

for any (s, a) ∈ S × A, i ∈ {1, . . . , N} and h ∈ [0, H − 2] w.p. at least 1− |S|δP .

Proof. We only prove the statement of value function since the proof procedure for cost is identical.

Fix state s and define for this fixed state s the constant function V̄ π(s′) =
∑

s′′ P
′
π(s′′|s)V ′πh+1(s′′)

as the expected value function of the successor states of s. Note that V̄ π(s′) is a constant function
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and so V̄ π(s′) =
∑

s′′ P
′
π(s′′|s)V̄ π(s′′) =

∑
s′′ Pπ(s′′|s)V̄ π(s′′).

|
∑
s′

(Pπ(s′|s)− P ′π(s′|s))V ′πh+1(s′)| = |
∑
s′

(Pπ(s′|s)− P ′π(s′|s))V ′πh+1(s′) + V̄ π(s)− V̄ π(s)|

= |
∑
s′

(Pπ(s′|s)− P ′π(s′|s))(V ′πh+1(s′)− V̄ π(s′))|

≤
∑
s′

|Pπ(s′|s)− P ′π(s′|s)||V π
h+1(s′)− V̄ π(s′)| (A.3)

≤
∑
s′

(c1 + c2

√
P ′π(s′|s)− (1− P ′π(s′|s)))|V π

h+1(s′)− V̄ π(s′)|

≤ |S|c1‖V ′πh+1‖∞ + c2

∑
s′

√
P ′π(s′|s)(1− P ′π(s′|s))(V π

h+1(s′)− V̄ π(s′))2

≤ |S|c1‖V ′πh+1‖∞ + c2

√
|S|
∑
s′

P ′π(s′|s)(1− P ′π(s′|s))(V π
h+1(s′)− V̄ π(s′))2 (A.4)

≤ |S|c1‖V ′πh+1‖∞ + c2

√
|S|
∑
s′

P ′π(s′|s)(V π
h+1(s′)− V̄ π(s′))2

= |S|c1‖V ′πh+1‖∞ + c2

√
|S|σ′πh .

Inequality (B.7) holds w.p. at least 1 − |S|δP , since we used the assumption and applied the

triangle inequality and union bound. We then applied the assumed bound on |V ′πh+1(s′) − V̄ π(s′)|

and bounded it by ‖V ′πh+1‖∞ as all value functions are non-negative. In inequality (B.8), we applied

the Cauchy-Schwarz inequality and subsequently used the fact that each term is the sum is non-

negative and that (1− P ′π(s′|s)) ≤ 1. The final equality follows from the definition of σ′πh (s).

Lemma 44. Let δP ∈ (0, 1). Suppose there are two CMDPs M = 〈S,A, P, r, c, C̄, s0, H〉 and

M ′ = 〈S,A, P ′, r, c, C̄, s0, H〉 satisfying assumption 3. Further assume

|P (s′|s, a)− P ′(s′|s, a)| ≤ a√
n
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for all s, s′ ∈ S, a ∈ A w.p. at least 1− δP . Then, under any policy π

‖V π
H−1 − V ′πH−1‖∞ ≤ · · · ≤ ‖V π

0 − V ′π0 ‖∞ ≤ |S|H2a
1√
n
,

w.p. at least 1− |S|2|A|HδP , and for any i ∈ {1, . . . , N}

‖Cπ
i,H−1 − C ′πi,H−1‖∞ ≤ · · · ≤ ‖Cπ

i,0 − C ′πi,0‖∞ ≤ |S|H2a
1√
n

w.p. at least 1− |S|2|A|HδP .

Proof. We prove the statement of value function since the proof procedure for cost is identical. Let

∆h = maxs |V π
h (s)− V ′πh (s)|. Then

∆h = |V π
h (s)− V ′πh (s)| = |rπ(s) +

∑
s′

Pπ(s′|s)V π
h+1(s′)− (rπ(s) +

∑
s′

P ′π(s′|s)V ′πh+1(s′))|

= |
∑
s′

Pπ(s′|s)V π
h+1(s′)−

∑
s′

P ′π(s′|s)V π
h+1(s′) +

∑
s′

P ′π(s′|s)V π
h+1(s′)−

∑
s′

P ′π(s′|s)V ′πh+1(s′)|

≤
∑
s′

|(Pπ(s′|s)− P ′π(s′|s)|H + ∆h+1

≤ |S|Ha 1√
n

+ ∆h+1.

Thus,

∆h ≤ |S|Ha
1√
n

+ ∆h+1

w.p. at least 1− |S|2|A|δP by applying union bound over all current state, action and next state. If

we expand this recursively, we get

∆H−1 = 0 ≤ · · · ≤ ∆0 ≤ |S|H2a
1√
n

since ∆H−1 = maxs |rπ(s)− rπ(s)| = 0. By taking union bound over time-steps, we get the result
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holds w.p. at least 1− |S|2|A|HδP . Hence the proof is complete.

Lemma 45. Let δP ∈ (0, 1). Suppose there are two CMDPs M = 〈S,A, P, r, c, C̄, s0, H〉 and

M ′ = 〈S,A, P ′, r, c, C̄, s0, H〉 satisfying assumption 3. Further assume

|P (s′|s, a)− P ′(s′|s, a)| ≤ a√
n

w.p. at least 1 − δP for all s, s′ ∈ S, a ∈ A. Then if n ≥ a|S|H2, at any time-step h ∈ [0, H − 1]

and under any policy π

‖σπh − σ′πh ‖∞ ≤
2
√

2|S|H2a

n1/4
,

w.p. at least 1− 2|S|2|A|HδP , and similarly for any i ∈ {1, . . . , N}

‖σπi,h − σ′πi,h‖∞ ≤
2
√

2|S|H2a

n1/4

w.p. at least 1− 2|S|2|A|HδP .

Proof. We prove the statement of value function since the proof procedure for cost is identical. Fix

a state s. Then,

σπ
2

h (s) = σπ
2

h (s)− E′[(V π
h+1(sh+1)− P ′πV π

h+1(s))2] + E′[(V π
h+1(sh+1)− P ′πV π

h+1(s))2]

≤
∑
s′

(Pπ(s′|s)− P ′π(s′|s))V π2

h+1(s′)− [(
∑
s′

Pπ(s′|s)V π
h+1(s′))2 − (

∑
s′

P ′π(s′|s)V π
h+1(s′))2]

+ [
√
E′[(V π

h+1(sh+1)− V ′π1 (s1)− P ′π(V π
h+1 − V ′πh+1)(s))2] +

√
E′[(V ′πh+1(sh+1)− P ′π(V ′πh+1)(s))2]2,

where we applied triangular inequality in the last line. And, please note that E′ means expectation

w.r.t. transition kernel P ′π. It is straightforward to show that V ars′∼P ′π(·|s)(V
π
h (s′) − V ′πh (s′)) ≤
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‖V π
h − V ′πh ‖2

∞ implying

σπ
2

h (s) ≤
∑
s′

(Pπ(s′|s)− P ′π(s′|s))V π2

h+1(s′)

− [
∑
s′

(Pπ(s′|s)− P ′π(s′|s))V π
h+1(s′)][

∑
s′

(Pπ(s′|s) + P ′π(s′|s))V π
h+1(s′)]

+ (‖V π
h − V ′πh ‖∞ + σ′πh (s))2

w.p. at least 1− |S|δP Now, if we use Lemma 53, we get

σπ
2

h (s) ≤ [σ
′π
h (s) +

|S|H2a√
n

]2 +
2|S|aH2

√
n

≤ [σ
′π
h (s) +

|S|H2a√
n

+

√
2|S|H2a

n1/4
]2

≤ [σ
′π
h (s) +

2
√

2|S|H2a

n1/4
]2,

w.p. at least 1 − |S|2|A|HδP .∗ In the last line, we used the fact that for any x, y > 0 we have

x2 + y2 ≤ (x+ y)2. And, the assumption on n, dominates the term with 1
n1/4 over

√
n. Eventually,

the result follows by taking square root from both sides and union bound on both directions, i.e.

σ′πh (s) ≤ σπh(s) +
2
√

2|S|H2a

n1/4 . †

Lemma 46. [7] The variance of the value function defined as Σπ
t (s) = E[(

∑H−1
h=t r(sh)−V π

0 (s))2]

satisfies a Bellman equation Σπ
t (s) = σπ

2

t (s) +
∑

s′∈S Pπ(s′|s)V π
t+1(s′) which gives Σπ

t (s) =∑H
h=t(P

h−1
π σπ

2

h )(s). Since 0 ≤ Σπ
0 (s) ≤ H2, it follows that 0 ≤

∑H−1
h=0 (P h−1

π σπ
2

h )(s) ≤ H2

for all s ∈ S.

Corollary 5. The result of Lemma 63 also holds for variance of cost functions.

Proof of Lemma 28: We only prove the statement of value function since the proof procedure

for cost is identical. First, we apply Lemma 60 and get

|P (s′|s, a)− P̃ (s′|s, a)| ≤

√
8 ˜P (s′|s, a)(1− P̃ (s′|s, a))

n
log 4/δP + 2

√
2
( log 4/δP

n

) 3
4

+ 3
√

2
log 4/δP

n

∗Please note that when the assumption on transition kernel holds, then
∑
s′(Pπ(s

′|s) − P ′π(s′|s))V π
2

h+1(s
′) and

‖V πh − V ′πh ‖∞ are dependent. And, we can consider the one with lower probability.
†Here, we also know that the high probability bound on |σπh(s)− σ′πh (s)| is dependent over all (s, a).
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w.p. at least 1− δP . So, let

c1 = 2
√

2
( log 4/δP

n

) 3
4

+
3
√

2 log 4/δP
n

and c2 =

√
8 log 4/δP

n
(A.5)

Now, let fix state s :

|V π
0 (s)− Ṽ π

0 (s)| = |
H−2∑
h=0

P̃ h−1
π (Pπ − P̃π)V π

h+1|(s) (A.6)

≤
H−2∑
h=0

P̃ h−1
π |(Pπ − P̃π)V π

h+1|(s) ≤
H−2∑
h=0

P̃ h−1
π (|S|c1‖V π

h+1‖∞ + c2

√
|S|σπh)(s) (A.7)

≤ |S|H2c1 + c2

√
|S|

H−1∑
h=0

(P̃ h−1
π σπh)(s) (A.8)

≤ |S|H2c1 + c2

√
|S|

H−1∑
h=0

(P̃ h−1(σ̃πh +
21.25|S|0.5H(log 4/δP )0.25

n1/4
)(s) (A.9)

≤ |S|H2c1 + c2

√
|S|H

√√√√H−1∑
h=0

(P̃ h−1σ̃π
2

h )(s) + c2H
√
|S|2

1.25|S|0.5H(log 4/δP )0.25

n1/4
(A.10)

=
3
√

2|S|H2 log 4/δP
n

+
2
√

2|S|H2(log 4/δP )
3
4

n
3
4

+

√
8|S|H3 log 4/δP

n
+

22.75|S|H2(log 4/δP )
3
4

n
3
4

(A.11)

≤
√

128
|S|H3 log 4/δP

n
. (A.12)

In equation (B.16), we used Lemma 51. Then, we applied Lemma 52 to obtain inequality (B.17).

Next, we bound ‖V π
h+1‖∞ by H in inequality (B.18). To get inequality (B.19), we use Lemma

54, since we can bound P (·|s, a) − P̃ (·|s, a) by c2. And, we applied Cauchy-Scharwz inequal-

ity to get inequality (B.20). To get inequality (B.21), we applied Lemma 63 and substituting

c1 and c2 according to equations (B.15). Finally, inequality (A.12) follows from the fact that

n ≥ 2592|S|2H2 log 4/δP . Since the result is true for every s ∈ S, hence the proof is complete. �

Proof of Theorem 12: Let δP ∈ (0, 1). First, we know that optimistic planning problem (6.33)

is feasible w.p. at least 1− |S|2|A|δP . The following events are dependent on this event. Thus, we

consider the lowest probability of feasibility and following events.
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Now, we have

V π∗

0 (s0)−
√

128
|S|H3 log 4/δP

n
≤ Ṽ π∗

0 (s0) ≤ V π∗

0 (s0) +

√
128|S|H3 log 4/δP

n

w.p. at least 1− 3|S|2|A|HδP and

V π̃
0 (s0)−

√
128|S|H3 log 4/δP

n
≤ Ṽ π̃

0 (s0) ≤ V π̃
0 (s0) +

√
128|S|H3 log 4/δP

n

w.p. at least 1−3|S|2|A|HδP according to Lemma 28. On the other hand, we know that Ṽ π∗
0 (s0) ≤

Ṽ π̃
0 (s0). Thus, by combining these results we get

V π∗

0 (s0)−
√

128|S|H3 log 4/δP
n

≤ Ṽ π∗

0 (s) ≤ Ṽ π̃
0 (s0) ≤ V π̃

0 (s) +

√
128|S|H3 log 4/δP

n
.

It yields that V π̃
0 (s0) ≥ V π∗

0 (s0) − 2
√

128|S|H3 log 4/δP
n

w.p. at least 1 − 6|S|2|A|HδP by union

bound.

On the other hand, for any i ∈ {1, . . . , N} we have

C π̃
i,0(s0) ≤ C̃ π̃

i,0(s0) +

√
128|S|H3 log 4/δP

n
≤ C̄i +

√
128|S|H3 log 4/δP

n

w.p. at least 1 − 3|S|2|A|HδP according to Lemma 28. By taking union bound, we get that all

statements for value and cost functions hold w.p. at least 1− (3N + 6)|S|2|A|HδP . Hence, putting

ε = 2
√

128|S|H3 log 4/δP
n

and δ = 12(N + 2)|S|2|A|HδP concludes the proof. Please note that

ε < 2
9

√
H
|S| would satisfy the assumption in Lemma 28. �

A.3 Detailed Proof for Theorem 13

First, we bound total number of model updates in Algorithm 8.

Lemma 47. The total number of updates under algorithm 8 is bounded by Umax = |S|2|A|m.

Proof. Let fix a (s, a)−pair. Note that n(s, a) is not decreasing and also it increases up to |S|mH.

And, since update of model happens at the beginning of each episode, then maximum number of
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updates due to a single (s, a) happens at most |S|m number of times. Thus, maximum number of

updates due to all (s, a)−pairs is no larger than |S|2|A|m

Proof of Lemma 30: At each episode with model update k and for each (s, a), by Hoeffding’s

inequality [30] we have

|P (s′|s, a)− P̂ (s′|s, a)| ≤

√
log (4/δ1)

2n(s, a)

holds w.p. at least 1− δ1/2.

By empirical Brenstein’s inequality [31] we have

|P (s′|s, a)− P̂ (s′|s, a)| ≤

√
2P̂ (s′|s, a)(1− P̂ (s′|s, a))

n(s, a)
log

4

δ1

+
2

3n(s, a)
log

4

δ1

w.p. at least 1− δ1/2.

Combining above two inequalities and applying union bound, we get

P(|P (s′|s, a)− P̂ (s′|s, a)| ≤ min{

√
2P̂ (s′|s, a)(1− P̂ (s′|s, a))

n(s, a)
log

4

δ1

+
2

3n(s, a)
log

4

δ1

,

√
log 4/δ1

2n(s, a)
})

≥ 1− δ1.

Finally, we get the result by applying union bound over all model updates and next states. �

Now, we start proving Lemma 33. But, first we provide some useful lemmas.

Lemma 48. Total number of observations of (s, a) ∈ Xk,κ,ι with κ ∈ [1, |S| − 1] and ι > 0 over

all phases k is at most 3|S × A|mwικ. wι = min{wk(s, a) : ιk(s, a) = ι}.

Proof. Note that wι+1 = 2wι for ι > 0. Consider a phase k and a fixed (s, a) ∈ Xk,κ,ι. Since

we assumed ιk(s, a) = ι, then wι ≤ wk(s, a) ≤ 2wι. Similarly, from κk(s, a) = κ we have

nk(s,a)
2mwk(s,a)

≤ κ ≤ nk(s,a)
mwk(s,a)

which implies

mwικ ≤ mwk(s, a)κ ≤ nk(s, a) ≤ 2mwk(s, a)κ ≤ 4mwικ. (A.13)
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Therefore, each (s, a) in {(s, a) ∈ Xk,κ,ι : k ∈ N} can only be observed 3mwικ. Then, the

total observations is at most 3|S × A|mwικ.

Lemma 49. Number of episodes Eκ,ι in phases with |Xk,κ,ι| > κ is bounded for α ≥ 3 w.h.p.

P (Eκ,ι > αN) ≤ exp (−βwι(κ+ 1)N

H
),

where N = |S × A|m and β = α(3/α−1)2

7/3−1/α
.

Proof. Let νk :=
∑H−1

h=0 I{(sh, ah) ∈ Xk,κ,ι} be number of observations of (s, a) with |Xk,κ,ι| > κ.

We have k ∈ {1, ..., Eκ,ι}.

In these episodes |Xk,κ,ι| ≥ κ+ 1 and all (s, a) in partition (κ, ι) have wk(s, a) ≥ wι, then

E[νk|ν1, ..., νk−1] ≥ (κ+ 1)wι.

Also V[νk|ν1, ..., νk−1] ≤ E[νk|ν1, ..., νk−1]H since νk ∈ [0, H].

Now, we define the continuation:

ν+
k :=


νk i ≤ Eκ,ι

wι(κ+ 1) O.W.

and centralized auxiliary sequence

ν̄k :=
ν+
k wι(κ+ 1)

E[ν+
k |ν

+
1 , ..., ν

+
k−1]

.

By construction

E[ν̄k|ν̄1, ..., ν̄k−1] = wι(κ+ 1).
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According to lemma 57, we have Eκ,ι > αN if

αN∑
k=1

ν̄k ≤ 3Nwικ ≤ 3Nwι(κ+ 1).

Now, we define martingale below

Bk := E

[
αN∑
j=1

ν̄j|ν̄1, ..., ν̄k

]
=

k∑
j=1

ν̄j +
αN∑

j=k+1

E[ν̄j|ν̄1, ..., ν̄i],

which gives B0 = αNwι(κ+ 1) and BαN =
∑αN

k=1 ν̄k. Now, since ν+
k ∈ [0, H]

|Bk+1 −Bk| = |ν̄k − E[ν̄k|ν̄1, ..., ν̄k−1]| =
∣∣∣∣wι(κ+ 1)(ν+

k − E[ν+
k |ν̄1, ..., ν̄k−1])

E[ν+
k |ν

+
1 , ..., ν

+
k−1]

∣∣∣∣
≤ |ν+

k − E[ν+
k |ν̄1, ..., ν̄k−1]| ≤ H.

Using

σ2 :=
αN∑
k=1

V[Bk −Bk−1|B1 −B0, ..., Bk−1 −Bk−2] =
αN∑
k=1

V[ν̄k|ν̄1, ..., ν̄k−1] ≤ αNHwι(κ+ 1) = HB0

we can apply Theorem 22 of [69] and obtain

P(Eκ,ι > αN) ≤ P

(
αN∑
k=1

ν̄k ≤ 3Nwι(κ+ 1)

)
= P(BαN −B0 ≤ 3B0/α−B0)

≤ exp (− (3/α− 1)2B2
0

2σ2 +H(1/3− 1/α)B0

)

for α ≥ 3. By simplifying it we get

P(Eκ,ι > αN) ≤ exp− α(3/α)2

7/3− 1/α

Nwι(κ+ 1)

H
.
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Proof of Lemma 33: Since wk(s, a) ≤ H , we have that wk(s,a)
wmin

< H
wmin

and so ιk(s, a) ≤

H/wmin = 4H2|S|/ε. In addition, |Xk,κ,ι| ≤ |S ×A| for all k, κ, ι and so |Xk,κ,ι| > κ can only be

true for κ ≤ |S|. Hence, only Emax = log2
H

wmin
log2 |S| possible values for (κ, ι) exists that can

have |Xk,κ,ι| > κ. By union bound over all (κ, ι) and lemma 58, we get

P(E ≤ αNEmax) ≥ P(max
(κ,ι)

Eκ,ι ≤ αN) ≥ 1− Emax exp (−βwι(κ+ 1)N

H
)

≥ 1− Emax exp (−βwminN
H

) = 1− Emax exp (−βwminm|S × A|
H

)

= 1− Emax exp (−βεm|S × A|
4H2|S|

).

Bounding the right hand-side by 1− δ/2 and solving for m gives

1− Emax exp (−βεm|S × A|
4H2|S|

) ≥ 1− δ/2⇔ m ≥ 4H2|S|
|S × A|βε

ln
2Emax
δ

.

Hence, the condition

m ≥ 4H2

βε
ln

2Emax
δ

is sufficient for desired result to hold. Plugging in α = 6 and β = α(3/α−1)2

7/3−1/α
would obtain the

statement to show. �

Next, we need the following corollaries to prove Lemma 35.

Corollary 6. If we substitute the δP with δ1 in Lemma 60, the result will pertain.

Corollary 7. If we substitute the δP with δ1 in Lemma 52, the result will pertain.

Proof of Lemma 35: We only prove the statement of value function since the proof procedure

for cost is identical.

Before proceeding, in this lemma we reason about a sequence of CMDPs Md which have the

same transition probabilities but different reward matrix r(d) and cost matrices c(d). Here, we only

present the definition of r(d), as definition of c(d) is identical to r(d). For d = 0, the reward matrix
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is the original reward function r of M (r(0) = r.) The following reward matrices are then defined

recursively as r(2d+2) = maxh σ
(d),2
h:H−1, where σ(d),2

h:H−1 is local variance of the value function w.r.t.

the rewards r(d). Note that for every d and h = 0, ..., H − 1 and s ∈ S, we have r(d)(s) ∈ [0, Hd].

In addition, we will drop the notations k and policy π̃k in the following lemmas, since the

statements are for a fixed episode k and all value functions, reward matrices and transition kernels

are defined under policy π̃k.

Now,

∆d := |V (d)
0 (s0)− Ṽ (d)

0 (s0)| = |
H−2∑
h=0

P h−1(P − P̃ )Ṽ
(d)
h+1(s0)|

≤
H−1∑
h=0

P h−1|P − P̃ Ṽ (d)
h+1|(s0)

=
H−1∑
h=0

P h−1

( ∑
s,a∈S×A

I{s = ·, a ∼ π̃(s, ·, h)}|(P − P̃ )Ṽ
(d)
h+1|

)
(s0)

=
∑

s,a∈S×A

H−1∑
h=0

P h−1
(
I{s = ·, a = π̃(s, ·, h)}|(P − P̃ )Ṽ

(d)
h+1|

)
(s0)

=
∑

s,a∈S×A

H−1∑
h=0

P h−1
(
I{s = ·, a = π̃(s, ·, h)}|(P − P̃ )Ṽ

(d)
h+1(s)|

)
(s0)

The first equality follows from Lemma 51, the second step from the fact that Vh+1 ≥ 0 and

P h−1 being non-expansive. In the third, we introduce an indicator function which does not change

the value as we sum over all (s, a) pairs. The fourth step relies on the linearity of P operators.

In the fifth step, we realize that I{s = ., a ∼ π̃(s, ·, h)}|(P − P̃ )Ṽ
(d)
h+1(·)| is a function that takes

nonzero values for input s.We can therefore replace the argument of the second term with swithout
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changing the value. The term becomes constant and by linearity of P, we can write

|V (d)
0 (s0)− Ṽ (d)

0 (s0)| = ∆d ≤
∑

s,a∈S×A

H−1∑
h=0

P h−1
(
I{s = ·, a ∼ π̃(s, ·, h)}|(P − P̃ )Ṽ

(d)
h+1(s)|

)
(s0)

≤
∑
s,a6∈X

H−1∑
h=0

‖Ṽ (d)
h+1‖∞(P h−1I{s = ·, a ∼ π̃(s, ·, h)})(s0)

+
∑
s,a∈X

H−1∑
h=0

|(P − P̃ )Ṽ
(d)
h+1(s)|(P h−1I{s = ·, a ∼ π̃(s, ·, h)})(s0)

≤
∑
s,a6∈X

H−1∑
h=0

Hd+1(P h−1I{s = ·, a ∼ π̃(s, ·, h)})(s0)

+
∑
s,a∈X

H−1∑
h=0

|(P − P̃ )Ṽ
(d)
h+1(s)|(P h−1I{s = ·, a ∼ π̃(s, ·, h)})(s0)

≤
∑
s,a6∈X

H−1∑
h=0

Hd+1(P h−1I{s = ·, a ∼ π̃(s, ·, h)})(s0)

+
∑
s,a∈X

H−1∑
h=0

||S|c1(s, a)Hd+1 + c2(s, a)
√
|S|σ̃(d)

h (s, a)|(P h−1I{s = ·, a ∼ π̃(s, ·, h)})(s0)

≤
∑
s,a6∈X

H∑
h=0

Hd+1(P h−1I{s = ·, a ∼ π̃(s, ·, h)})(s0)

+
∑
s,a∈X

H∑
h=0

||S|c1(s, a)Hd+1|(P h−1I{s = ·, a ∼ π̃(s, ·, h)})(s0)

+
∑
s,a∈X

H−1∑
h=0

|
√
|S|c2(s, a)σ̃

(d)
h (s, a)|(P h−1I{s = ·, a ∼ π̃(s, ·, h)})(s0)

≤
∑
s,a 6∈X

Hd+1w(s, a) +
∑
s,a∈X

|S|c1(s, a)Hd+1w(s, a)

+
∑
s,a∈X

√
|S|c2(s, a)

H−1∑
h=0

σ̃
(d)
h (s, a)(P h−1I{s = ·, a ∼ π̃(s, ·, h)})(s0)

≤ wmin|S|Hd+1 +
∑
s,a∈X

|S|c1(s, a)Hd+1w(s, a)

+
∑
s,a∈X

√
|S|c2(s, a)

H−1∑
h=0

σ̃
(d)
h (s, a)(P h−1I{s = ·, a ∼ π̃(s, ·, h)})(s0)

=
ε

4
Hd +

∑
s,a∈X

|S|c1(s, a)Hd+1w(s, a)

+
∑
s,a∈X

√
|S|c2(s, a)

H−1∑
h=0

σ̃
(d)
h (s, a)(P h−1I{s = ·, a ∼ π̃(s, ·, h)})(s0)164



In the second inequality, we split the sum over all (s, a) pairs and used the fact that P and P̃ are

non-expansive. The next step follows from ‖V (d)
h+1‖∞ ≤ ‖V

(d)
0 ‖∞ ≤ Hd+1. We then apply Lemma

52 and subsequently use that all terms are nonnegative and the definition ofw(s, a). Eventually, the

last two lines come from the fact that w(s, a) ≤ wmin for all (s, a) not in the active set. Besides,

please note that we are analyzing under the given policy π̃, which implies that there are only |S|

nonzero w in non-active set.

Using the assumption that M ∈M and M̃ ∈M from the fact that ELP chooses the optimistic

CMDP inM, we can apply Corollary 9 and get that

c1(s, a) = 2
√

2
( log 4/δ1

n(s, a)

)3/4

+ 3
√

2
log 4/δ1

n(s, a)
and c2(s, a) =

√
8

n(s, a)
log 4/δ1.

Plugging definitions above we have

∆d ≤
ε

4
Hd + 2

√
2|S|Hd+1 log 4/δ1

3/4
∑
s,a∈X

w(s, a)

n(s, a)3/4
+ 3
√

2|S|Hd+1 log 4/δ1

∑
s,a∈X

w(s, a)

n(s, a)

+
√

8|S| log 4/δ1

∑
s,a∈X

1√
n(s, a)

H−1∑
h=0

σ̃
(d)
h (s, a)(P h−1I{s = ·, a ∼ π̃(s, ·, h)})(s0)

Hence, we bound

∆d ≤
ε

4
Hd + Ud(s0) + Yd(s0) + Zd(s0)
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as a sum of three terms which we will consider individually in the following. The first term is

Ud(s0) = 2
√

2|S|Hd+1 log 4/δ1
3/4
∑
s,a∈X

w(s, a)

n(s, a)3/4

≤ 2
√

2|S|Hd+5/4 log 4/δ1
3/4

∑
κ,ι∈K×I

∑
s,a∈Xκ,ι

(w(s, a)

n(s, a)

)3/4

≤ 2
√

2|S|Hd+5/4 log 4/δ1
3/4

∑
κ,ι∈K×I

( |Xκ,ι|
mκ

)3/4

≤ 2
√

2|S|Hd+5/4 log 4/δ1
3/4

∑
κ,ι∈K×I

( 1

m

)3/4

≤ 2
√

2|S|Hd+5/4 log 4/δ1
3/4K × I

( 1

m

)3/4

.

In the second line, we used Cauchy-Scharwz. Next, we used the fact that for s, a ∈ Xκ,ι, we have

n(s, a) ≥ mw(s, a)κ, refer to equation (B.22). Finally, we applied the assumption of |Xκ,ι| ≤ κ.

Please note that K × I is the set of all possible (κ, ι) pairs.

The next term is

Yd(s0) = 3
√

2|S|Hd+1 log 4/δ1

∑
s,a∈X

w(s, a)

n(s, a)
≤ 3
√

2|S|Hd+1 log 4/δ1

∑
κ,ι

|Xκ,ι|
mκ

≤ 3
√

2|S|Hd+1 log 4/δ1|K × I|
m

which we used n(s, a) ≥ mw(s, a)κ again.
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The last term is

Zd(s0) =
√

8|S| log 4/δ1

∑
s,a∈X

1√
n(s, a)

H−1∑
h=0

σ̃
(d)
h (s, a)(P h−1I{s = ·, a ∼ π̃(s, ·, h)})(s0)

≤
√

8|S| log 4/δ1

∑
s,a∈X

1√
n(s, a)

√√√√H−1∑
h=0

P h−1I{s = ·, a ∼ π̃(s, ·, h)}(s0)

×

√√√√H−1∑
h=0

σ̃
(d)2

h (s, a)P h−1I{s = ·, a ∼ π̃(s, ·, h)}(s0)

=
√

8|S| log 4/δ1

∑
s,a∈X

√√√√w(s, a)

n(s, a)

H−1∑
h=0

σ̃
(d)2

h (s, a)P h−1I{s = ·, a ∼ π̃(s, ·, h)}(s0)

=
√

8|S| log 4/δ1

∑
κ,ι

∑
s,a∈Xκ,ι

√√√√w(s, a)

n(s, a)

H−1∑
h=0

σ̃
(d)2

h (s, a)P h−1I{s = ·, a ∼ π̃(s, ·, h)}(s0)

≤
√

8|S| log 4/δ1

∑
κ,ι

√√√√|Xκ,ι|
∑

s,a∈Xκ,ι

w(s, a)

n(s, a)

H−1∑
h=0

σ̃
(d)2

h (s, a)P h−1I{s = ·, a ∼ π̃(s, ·, h)}(s0)

≤
√

8|S| log 4/δ1

∑
κ,ι

√√√√ 1

m

∑
s,a∈Xκ,ι

H−1∑
h=0

σ̃
(d)2

h (s, a)P h−1I{s = ·, a ∼ π̃(s, ·, h)}(s0)

≤

√√√√8|S| log 4/δ1|K × I|
m

∑
s,a∈X

H−1∑
h=0

σ̃
(d)2

h (s, a)P h−1I{s = ·, a ∼ π̃(s, ·, h)}(s0)

≤

√√√√8|S| log 4/δ1|K × I|
m

∑
s,a∈S×A

H−1∑
h=0

σ̃
(d)2

h (s, a)P h−1I{s = ·, a ∼ π̃(s, ·, h)}(s0)

=

√√√√8|S| log 4/δ1|K × I|
m

H−1∑
h=0

P h−1σ̃
(d)2

h (s0)

≤
√

8|S|H2d+3 log 4/δ1|K × I|
m

.

In the second line, we applied Cauchy-Scharwz inequality. Then, we used the definition of w(s, a)

to get to third step. Next, we split the sum and applied Cauchy-Scharwz again to obtain fifth step.

Furthermore, we applied the assumption of |Xκ,ι| ≤ κ to get sixth step. Next, we applied Cauchy-

Scharwz inequality to obtain seventh step. And, the final step follows from the facts that P h−1 is
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non-expansive and ‖σ̃(d)
h ‖∞ ≤ H2d+2. Thus, we have

Zd(s0) ≤
√

8|S|H2d+3 log 4/δ1|K × I|
m

. (A.14)

However, we can improve this bound as follows

Zd(s0) ≤

√√√√8|S| log 4/δ1|K × I|
m

H−1∑
h=0

P h−1σ̃
(d)2

h (s0)

=

√√√√8|S| log 4/δ1|K × I|
m

H−1∑
h=0

P h−1σ̃
(d)2

h (s0)− P̃ h−1σ̃
(d)2

h (s0) + P̃ h−1σ̃
(d)2

h (s0)

≤

√√√√8|S| log 4/δ1|K × I|
m

(
H2d+2 +

H−1∑
h=0

P h−1r(2d+2)(s0)− P̃ h−1r(2d+2)(s0)
)

=

√
8|S| log 4/δ1|K × I|

m

(
H2d+2 + V

(2d+2)
0 (s0)− Ṽ (2d+2)

0 (s0)
)

=

√
8|S| log 4/δ1|K × I|

m
(H2d+2 + ∆2d+2)

≤
√

8|S| log 4/δ1|K × I|
m

H2d+2 +

√
8|S| log 4/δ1|K × I|

m
∆2d+2.

In the third step, we used Lemma 63 and definition of r(2d+2).

Now, if we put all the pieces together, we have

∆d ≤
ε

4
Hd + 2

√
2|S|Hd+5/4 log 4/δ1

3/4K × I
( 1

m

)3/4

+
3
√

2|S|Hd+1 log 4/δ1|K × I|
m

+

√
8|S| log 4/δ1|K × I|

m
H2d+2 +

√
8|S| log 4/δ1|K × I|

m
∆2d+2.

If we choose m sufficiently large which will be shown later, then it is straightforward to show that

Ud(s0) ≤ Zd(s0) and Yd(s0) ≤ Zd(s0). Hence, if we expand the above inequality up to depth
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β = d logH
2 log 2
e with D = {0, 2, 6, 14, . . . , β}, we get

∆0 ≤
∑
d∈D\β

(8|S| log 4/δ1|K × I|
m

) d
d+2
[ ε

4
Hd + 3

√
8|S| log 4/δ1|K × I|H2d+2

m

] 2
d+2

+
(8|S| log 4/δ1|K × I|

m

) β
β+2
[ ε

4
Hβ + 3

√
8|S| log 4/δ1|K × I|H2β+2

m

] 2
β+2

.

Here, we used inequality (B.23) to bound Zβ(s0). Finally, the proof completes if we let

m = 1280
|S|H2

ε2
(log2 log2H)2 log2

2

(8|S|2H2

ε

)
log

6

δ1

.

�.

Proof of Theorem 13: By Lemma 33, we know that number of episodes where |Xκ,ι| > κ for

some κ, ι is bounded by 6Emax|S||A|m with probability at least 1− δ
2(N+1)

. For all other episodes,

we have by Lemma 35 that for any i ∈ {1, . . . , N}

|Ṽ π̃k
0 (s0)− V π̃k

0 (s0)| ≤ ε, |C̃ π̃k
i,0(s0)− C π̃k

0 (s0)| ≤ ε. (A.15)

Using Lemma 30, we get that M ∈Mk for any episode k w.p. at least 1− δ
2(N+1)

. Further, we

know that ELP outputs the policy π̃k such that

Ṽ π̃k
0 (s0) ≥ V π∗

0 (s0), C̃ π̃k
i,0(s0) ≤ C̄i i ∈ {1, . . . , N} (A.16)

w.p. at least 1− δ
2(N+1)

. Combining the inequalities (C.2) with inequalities (B.25), we get that for

all episodes with |Xκ,ι| ≤ κ for all κ, ι

V π̃k
0 (s0) ≥ V π∗

0 (s0)− ε

w.p. at least 1 − δ
2(N+1)

and for any i, C π̃k
i,0(s0) ≤ C̄i + ε w.p. at least 1 − δ

2(N+1)
. Applying the
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union bound we get the desired result, if m satisfies

m ≥ 1280
|S|H2

ε2
(log2 log2H)2 log2

2

(8H2|S|2

ε

)
log

4

δ1

and

m ≥ 6H2

ε
log

2(N + 1)Emax

δ
.

From the definitions, we get

log
4

δ1

= log
4(N + 1)|S|Umax

δ
= log

4(N + 1)|S|2|A|m
δ

.

Thus,

m ≥ 1280
|S|H2

ε2
(log2 log2H)2 log2

2

(8H2|S|2

ε

)
log

4(N + 1)|S|2|A|m
δ

.

It is well-known fact that for any constant B > 0, ν ≥ 2B lnB implies ν ≥ B ln ν. Using this, we

can set

m ≥ 2560
|S|H2

ε2
(log2 log2H)2 log2

2

(8H2|S|2

ε

)
× log

(2048(N + 1)|S|3|A|H2

ε2δ
(log2 log2H)2 log2

2

(8H2|S|2

ε

))
.

On the other hand,

Emax = log2 |S| log2

4|S|H2

ε
≤ log2

2

4|S|H2

ε

and

log
2(N + 1)Emax

δ
= log

2(N + 1) log2 |S| log2(4|S|H2/ε)

δ
≤ log

2(N + 1) log2
2(4|S|H2/ε)

δ

≤ log
16(N + 1)|S|4|A|H2

εδ
.
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Setting

m = 2560
|S|H2

ε2
(log2 log2H)2 log2

2

(8H2|S|2

ε

)
(A.17)

× log
(2048(N + 1)|S|4|A|H2

ε2δ
(log2 log2H)2 log2

2

(8H2|S|2

ε

))
.

is therefore a valid choice for m to ensure that with probability at least 1− δ
(N+1)

, there are at most

6Emax|S||A|m =15360
|S|2|A|H2

ε2
(log2 log2H)2 log2

2

(4|S|H2

ε

)
log2

2

(8H2|S|2

ε

)
× log

(2048(N + 1)|S|4|A|H2

ε2δ
(log2 log2H)2 log2

2

(8H2|S|2

ε

))

sub-optimal episodes. �
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APPENDIX B

APPENDIX OF CHAPTER 3

B.1 Solving CMDP and Optimistic CMDP

There does not exists a standard dynamic programming approach (value iteration or policy

iteration) for solving CMDP. Instead, CMDPs are typically solved either using a Lagrangian ap-

proach or a linear programming approach (LP). In this chapter, we focus on the LP approach.

Here, we first briefly discuss the LP based approach for solving CMDP (3.4). We then show that

this approach can be extended to solve the optimistic CMDP problem 6.33.

As shown in [4], we can rewrite the CMDP problem as an LP using occupation measures. The

occupancy measure µ under policy is defined as

µ(s, a, π) := (1− γ)
∞∑
t=0

γtPπ(st = s, at = a|st=0 = s0), (B.1)

where the probability P(·) is calculated w.r.t. underlying transition kernel under policy π, Pπ. It is

easy to check that

(1− γ)V π =
∑
s,a

µ(s, a, π)r(s, a), (1− γ)Cπ
i =

∑
s,a

µ(s, a, π)c(i, s, a),∀i. (B.2)

Let µ be any generic occupation measure defined as (B.1). Now, the CMDP problem can be
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restated as an LP, to find the best occupation measure as follows [4].

max
µ

∑
s,a

µ(s, a)r(s, a) (B.3)

s.t.
∑
s,a

µ(s, a)c(i, s, a) ≤ C̄i/(1− γ), ∀i ∈ {1, . . . , N}, (B.4)

∑
s′,a

µ(s′, a)(I(s = s′)− γP (s′|s, a)) = (1− γ)I(s = s0) ∀s ∈ S (B.5)

µ(s, a) ≥ 0 ∀s ∈ S, a ∈ A (B.6)

It is proved that the LP (B.3) is equivalent to CMDP problem of (3.4), and the optimal policy

computed by this LP is also the solution to CMDP problem in [4]. Eventually, the optimal policy

π∗ is calculated as follows

π∗(s, a) =
µ(s, a)∑
b µ(s, b)

.

Now, given the estimated model P̂ , we get the ELP formulation if we define new occupancy

measure q(s, a, s′) = P (s′|s, a)µ(s, a). Eventually, the ELP formulation is

max
q

∑
s,a,s′

q(s, a, s′)r(s, a)

s.t.∑
s,a,s′

q(s, a, s′)c(i, s, a) ≤ C̄i/(1− γ) ∀i ∈ {1, . . . , N},

∑
s′,a

[I(s′ = s)(
∑
s′′

q(s′′, s′, a))− γq(s′, s, a)] = (1− γ)I(s = s0) ∀s ∈ S

q(s, a, s′) ≥ 0 ∀s, s′ ∈ S, a ∈ A,

q(s, a, s′)− (P̂ (s′|s, a) + β(s, a, s′))
∑
y

q(s, a, y) ≤ 0 ∀s, a, s′,

− q(s, a, s′) + (P̂ (s′|s, a)− β(s, a, s′))
∑
y

q(s, a, y) ≤ 0 ∀s, a, s′
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where β(s, a, s′) is the radius of the confidence interval around P̂ (s′|s, a) which depends on the

algorithm. The last two conditions in the above formulation include the confidence interval around

P̂ and distinguish ELP from generic LP formulation. At the end, ELP outputs the optimistic

policy, π̃ for GM-CRL and π̃t for UC-CRL, using the solution of above LP. Also, we can calculate

an optimistic transition kernel denoted by P̃ by means of optimal q(s, a, s′). In brief, the optimistic

transition kernel and optimistic policy are computed as follows

P̃ (s′|s, a) =
q(s, a, s′)∑
b q(s, a, b)

, π̃∗(s, a) =

∑
s′ q(s, a, s

′)∑
b,s′ q(s, b, s

′)
.

B.2 Detailed Proofs for Sample Complexity of Generative Model Based Learning

In this section, we assume that we have n samples from each (s, a) in every lemma presented.

Proof of Lemma 6: Fix a state, action and next state, i.e. s, a, s′. Then, according to Hoeffd-

ing’s inequality [30]

P(|P (s′|s, a)− P̂ (s′|s, a)| ≤
√

log 4/δP
2n

) ≥ 1− δP/2.

Now, we apply empirical Bernstein’s inequality [31] and get

P(|P (s′|s, a)− P̂ (s′|s, a)| ≤

√
2P̂ (s′|s, a)(1− P̂ (s′|s, a))

n
log

4

δP
+

2

3n
log

4

δP
) ≥ 1− δP/2.

By combining these two inequalities and applying union bound, we get

P(|P (s′|s, a)− P̂ (s′|s, a)| ≤ min{

√
2P̂ (s′|s, a)(1− P̂ (s′|s, a))

n
log

4

δP
+

2

3n
log

4

δP
,

√
log 4/δP

2n
})

≥ 1− δP .

Finally, we get the result by applying union bound over all state, action and next states. �

Lemma 50. Let δP ∈ (0, 1). Assume p, p̂, p̃ ∈ [0, 1] satisfy P(p ∈ PδP ) ≥ 1 − δP and p̃ ∈ PδP
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where

PδP := {p′ ∈ [0, 1] : |p′ − p̂| ≤ min
(√2p̂(1− p̂)

n
log 4/δP +

2

3n
log 4/δP ,

√
log 4/δP

2n

)
}.

Then,

|p− p̃| ≤
√

8p̃(1− p̃)
n

log 4/δP + 2
√

2
( log 4/δP

n

) 3
4

+ 3
√

2
log 4/δP

n

w.p. at least 1− δP .

Proof.

|p− p̃| ≤ |p− p̂|+ |p̂− p̃| ≤ 2

√
2p̂(1− p̂)

n
log 4/δP +

4

3n
log 4/δP

≤ 2

√
2 log 4/δP

n
(p̃+

√
log 4/δP

2n
)(1− p̃+

√
log 4/δP

2n
) +

4

3n
log 4/δP

= 2

√
2 log 4/δP

n

(
p̃(1− p̃) +

√
log 4/δP

2n
+

log 4/δP
2n

)
+

4

3n
log 4/δP

≤
√

8p̃(1− p̃)
n

log 4/δP + 2
√

2
( log 4/δP

n

) 3
4

+ 3
√

2
log 4/δP

n
.

The first term in the first line is true w.p. at least 1− δP , hence the proof is complete.

Lemma 51. Suppose there are two CMDPsM = 〈S,A, P, r, c, C̄, s0, γ〉 andM ′ = 〈S,A, P ′, r, c, C̄, s0γ〉

satisfying assumption 3. Then, under any policy π

V π − V ′π = γ(I − γP ′π)−1(Pπ − P ′π)V π and V π − V ′π = γ(I − γPπ)−1(Pπ − P ′π)V ′π,

and for any i ∈ {1, . . . , N},

Cπ
i − C ′πi = γ(I − γP ′π)−1(Pπ − P ′π)Cπ

i and Cπ
i − C ′πi = γ(I − γPπ)−1(Pπ − P ′π)C ′πi .

Proof. We only prove the first statement of value function since the proof procedure for cost is
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identical. For a fixed s

V π(s)− V ′π(s) = rπ(s) + γ
∑
s′

Pπ(s′|s)V π(s′)− (rπ(s) + γ
∑
s′

P ′π(s′|s)V ′π(s′))

= γ
(∑

s′

Pπ(s′|s)V π(s′)−
∑
s′

P ′π(s′|s)V π(s′) +
∑
s′

P ′π(s′|s)V π(s′)−
∑
s′

P ′π(s′|s)V ′π(s′)
)

=
∑
s′

γ(Pπ(s′|s)− P ′π(s′|s))V π(s′) + γ
∑
s′

P ′π(s′|s)(V π(s′)− V ′π(s′)).

So, for vector V π − V ′π we have

V π − V ′π = γ(Pπ − P ′π)V π + γP ′π(V π − V ′π).

Reorganizing the above equation would yield the result.

Lemma 52. Let δP ∈ (0, 1). Suppose there are two CMDPs M =< S,A, P, r, c, C̄, γ > and

M ′ =< S,A, P ′, r, c, C̄, γ > satisfying assumption 3. Further assume

|P (s′|s, a)− P ′(s′|s, a)| ≤ c1 + c2

√
P ′(s′|s, a)− (1− P ′(s′|s, a))

w.p. at least 1− δP for each s, s′ ∈ S, a ∈ A. Then, under any policy π

|
∑
s′

(Pπ(s′|s)− P ′π(s′|s))V ′π(s′)| ≤ |S|c1‖V ′π‖∞ + c2

√
|S|σ2

V ′π(s)

for any (s, a) ∈ S × A w.p. at least 1− |S||A|δP , and

|
∑
s′

(Pπ(s′|s)− P ′π(s′|s))C ′πi (s′)| ≤ |S|c1‖C ′πi ‖∞ + c2

√
|S|σ2

C
′π
i

(s)

for any (s, a) ∈ S × A, i ∈ {1, . . . , N} w.p. at least 1− |S||A|δP .

Proof. We only prove the statement of value function since the proof procedure for cost is identical.

Fix state s and define for this fixed state s the constant function V̄ π(s′) =
∑

s′′ P
′
π(s′′|s)V ′π(s′′) as
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the expected value function of the successor states of s. Note that V̄ π(s′) is a constant function and

so V̄ π(s′) =
∑

s′′ P
′
π(s′′|s)V̄ π(s′′) =

∑
s′′ Pπ(s′′|s)V̄ π(s′′).

|
∑
s′

(Pπ(s′|s)− P ′π(s′|s))V ′π(s′)| = |
∑
s′

(Pπ(s′|s)− P ′π(s′|s))V ′π(s′) + V̄ π(s)− V̄ π(s)|

= |
∑
s′

(Pπ(s′|s)− P ′π(s′|s))(V ′π(s′)− V̄ π(s′))|

≤
∑
s′

|Pπ(s′|s)− P ′π(s′|s)||V π(s′)− V̄ π(s′)| (B.7)

≤
∑
s′

(c1 + c2

√
P ′π(s′|s)(1− P ′π(s′|s)))|V π(s′)− V̄ π(s′)|

≤ |S|c1‖V ′π‖∞ + c2

∑
s′

√
P ′π(s′|s)(1− P ′π(s′|s))(V π(s′)− V̄ π(s′))2

≤ |S|c1‖V ′π‖∞ + c2

√
|S|
∑
s′

P ′π(s′|s)(1− P ′π(s′|s))(V π(s′)− V̄ π(s′))2 (B.8)

≤ |S|c1‖V ′π‖∞ + c2

√
|S|
∑
s′

P ′π(s′|s)(V π(s′)− V̄ π(s′))2

= |S|c1‖V ′π‖∞ + c2

√
|S|σ2

V ′π .

Inequality (B.7) holds w.p. at least 1 − |S||A|δP , since we used the assumption and applied the

triangle inequality and union bound. Please note that the premise of the Lemma is true w.p. at

least 1− δP for every (s, a). Thus, the union bound gives 1− |S||A|δP . Next, we then applied the

assumed bound on |V ′π(s′) − V̄ π(s′)| and bounded it by ‖V ′π‖∞ as all value functions are non-

negative. In inequality (B.8), we applied the Cauchy-Schwarz inequality and subsequently used

the fact that each term is the sum is non-negative and that (1 − P ′π(s′|s)) ≤ 1. The final equality

follows from the definition of σ2
V ′π .

Lemma 53. Let δP ∈ (0, 1). Suppose there are two CMDPs M = 〈S,A, P, r, c, C̄, s0, γ〉 and

M ′ = 〈S,A, P ′, r, c, C̄, s0, γ〉 satisfying assumption 3. Further assume

|P (s′|s, a)− P ′(s′|s, a)| ≤ c3√
n
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for all s, s′ ∈ S, a ∈ A w.p. at least 1− δP . Then, under any policy π

‖V π − V ′π‖∞ ≤
c3γ|S|

(1− γ)2
√
n
,

w.p. at least 1− |S|2|A|δP , and for any i ∈ {1, . . . , N}

‖Cπ
i − C ′πi ‖∞ ≤

c3γ|S|
(1− γ)2

√
n

w.p. at least 1− |S|2|A|δP .

Proof. We prove the statement of value function since the proof procedure for cost is identical. Let

∆ = maxs |V π(s)− V ′π(s)|. Then

∆ = |V π(s)− V ′π(s)| = |rπ(s) + γ
∑
s′

Pπ(s′|s)V π(s′)− (rπ(s) + γ
∑
s′

P ′π(s′|s)V ′π(s′))|

= γ|
∑
s′

Pπ(s′|s)V π(s′)−
∑
s′

P ′π(s′|s)V π(s′) +
∑
s′

P ′π(s′|s)V π(s′)−
∑
s′

P ′π(s′|s)V ′π(s′)|

≤ γ
∑
s′

|(Pπ(s′|s)− P ′π(s′|s)|‖V π‖∞ + γ∆

≤ c3γ|S|
(1− γ)

√
n

+ γ∆.

Because, ‖V π‖∞ ≤ 1
(1−γ)

. Thus,

∆ ≤ c3γ|S|
(1− γ)2

√
n

w.p. at least 1 − |S|2|A|δP by applying union bound over all current state, action and next state.

Hence the proof is complete.

Lemma 54. Let δP ∈ (0, 1). Suppose there are two CMDPs M = 〈S,A, P, r, c, C̄, s0, γ〉 and
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M ′ = 〈S,A, P ′, r, c, C̄, s0γ〉 satisfying assumption 3. Further assume

|P (s′|s, a)− P ′(s′|s, a)| ≤ c3√
n

w.p. at least 1− δP for all s, s′ ∈ S, a ∈ A. Then if n ≥ γ2c3|S|
12(1−γ)2

, under any policy π

‖σV π − σV ′π‖∞ ≤
2γ
√

3c3|S|
(1− γ)n1/4

,

w.p. at least 1− 4|S|3|A|δP , and similarly for any i ∈ {1, . . . , N}

‖σCπi − σC′πi ‖∞ ≤
2γ
√

3c3|S|
(1− γ)n1/4

w.p. at least 1− 4|S|3|A|δP .

Proof. We prove the statement of value function since the proof procedure for cost is identical. Fix

a state s. Then,

σ2
V π(s) = σ2

V π(s)− γ2E′[(V π − P ′πV π)2(s)] + γ2E′[(V π − P ′πV π)2(s)]

≤ γ2
∑
s′

(Pπ(s′|s)− P ′π(s′|s))V π2

(s′)− γ2[(
∑
s′

Pπ(s′|s)V π(s′))2 − (
∑
s′

P ′π(s′|s)V π(s′))2]

+ [γ
√

E′[((V π − V ′π)− P ′π(V π − V ′π))2(s)] +
√
γ2E′[(V ′π − P ′πV ′π)2(s)]2,

where we applied triangular inequality in the last line. And, please note that E′ means expectation

w.r.t. transition kernel P ′π. It is straightforward to show that V ars′∼P ′π(·|s)(V
π(s′) − V ′π(s′)) ≤
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‖V π − V ′π‖2
∞ implying

σ2
V π(s) ≤ γ2

∑
s′

(Pπ(s′|s)− P ′π(s′|s))V π2

(s′) (B.9)

− γ2[
∑
s′

(Pπ(s′|s)− P ′π(s′|s))V π(s′)][
∑
s′

(Pπ(s′|s) + P ′π(s′|s))V π(s′)] (B.10)

+ (γ‖V π − V ′π‖∞ + σV ′π(s))2 (B.11)

≤ [σV ′π(s) +
γ2c3|S|

(1− γ)2
√
n

]2 +
3γ2c3|S|

(1− γ)2
√
n

(B.12)

≤ [σV ′π(s) +
γ2c3|S|

(1− γ)2
√
n

+
γ
√

3c3|S|
(1− γ)n1/4

]2 (B.13)

≤ [σV ′π(s) +
2γ
√

3c3|S|
(1− γ)n1/4

]2. (B.14)

To obtain inequality (B.12), we did the following. First, we used the premise of the Lemma

on transition kernel and the fact that |V π(s′)| ≤ 1
1−γ on lines (B.9) and (B.10). Corresponding

inequality holds w.p. at least 1 − |S||A|δP by taking union bound over all (s, a), because it must

be true for all (s, a). Next, we used Lemma 53 and get ‖V π − V
′π‖∞ ≤ γ2c3|S|

(1−γ)2
√
n

w.p. at least

1 − |S|2|A|δP . Further, we used the fact that for any x, y > 0 we have x2 + y2 ≤ (x + y)2 to get

inequality (B.13) which holds w.p. at least 1− 2|S|2|A|δP . The final inequality (B.14) is obtained

by considering the assumption on n, which dominates the term with 1
n1/4 over

√
n. Eventually, the

result follows by taking square root from both sides and taking union bound on all states and both

directions, i.e. σV ′π(s) ≤ σπ(s) +
2γ
√

3c3|S|
(1−γ)n1/4 .

Lemma 55. [6] The variance of the value function defined as ΣV π(s) = E[(
∑∞

t=0 γ
tr(st) −

V π(s))2] satisfies a Bellman equation ΣV π(s) = σ2
V π(s) + γ2

∑
s′∈S Pπ(s′|s)ΣV π(s′) which gives

ΣV π = (I − γ2Pπ)−1σ2
V π . Since 0 ≤ ΣV π(s) ≤ 1

(1−γ)2
, it follows that for every s ∈ S

0 ≤ (I − γ2Pπ)−1σ2
V π(s) ≤ 1

(1− γ)2
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and

0 ≤ (I − γ2Pπ)−1σV π(s) ≤ 2 log 2

(1− γ)1.5

for all s ∈ S.

Corollary 8. The result of Lemma 63 also holds for variance of cost functions.

Proof of Lemma 28: We only prove the statement of value function since the proof procedure

for cost is identical. First, we apply Lemma 60 and get

|P (s′|s, a)− P̃ (s′|s, a)| ≤

√
8 ˜P (s′|s, a)(1− P̃ (s′|s, a))

n
log 4/δP + 2

√
2
( log 4/δP

n

) 3
4

+ 3
√

2
log 4/δP

n

w.p. at least 1− δP . So, let

c1 = 2
√

2
( log 4/δP

n

) 3
4

+
3
√

2 log 4/δP
n

and c2 =

√
8 log 4/δP

n
(B.15)

Now, let fix state s :

|V π(s)− Ṽ π(s)| = γ|(I − γPπ)−1(Pπ − P̃π)Ṽ π|(s) (B.16)

≤ γ(I − γPπ)−1|(Pπ − P̃π)Ṽ π|(s) ≤ γ(I − γPπ)−1(|S|c1‖Ṽ π‖∞1 + c2

√
|S|σṼ π)(s) (B.17)

≤ γ|S|c1

(1− γ)2
+ c2γ

√
|S|((I − γPπ)−1σṼ π)(s) (B.18)

≤ γ|S|c1

(1− γ)2
+ c2γ

√
|S|((I − γPπ)−1(σV π +

22.2530.5γ|S|0.5(log 4/δP )0.25

(1− γ)n1/4
1))(s) (B.19)

≤ γ|S|c1

(1− γ)2
+

2 log 2c2γ
√
|S|

(1− γ)1.5
+

22.2530.5γ2c2|S|(log 4/δP )0.25

(1− γ)2n1/4
(B.20)

=
22.5γ log 2|S|0.5 log 4/δP

0.5

(1− γ)1.5n0.5
+

21.5γ|S| log 4/δP
0.75(1 + 22.2530.5γ)

(1− γ)2n0.75
+

20.53γ|S| log 4/δP
(1− γ)2n

≤ 3
22.5γ log 2|S|0.5 log 4/δP

0.5

(1− γ)1.5n0.5
. (B.21)

In equation (B.16), we used Lemma 51. Then, we applied Lemma 52 to obtain inequality (B.17)
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which holds w.p. at least 1 − |S||A|δP . Please note that 1 is a |S|−dimensional vector with

all elements being 1. Next, we bound ‖Ṽ π‖∞ by 1
1−γ in inequality (B.18). Also note that (I −

γPπ)−11(s) ≤ 1
1−γ . To get inequality (B.19), we use Lemma 54, since we can bound P (·|s, a) −

P̃ (·|s, a) by 2c2 due to the condition on n. This inequality holds w.p. at least 1 − 4|S|3|A|δP .

Inequality of line (B.20) is obtained by bounding (I − γP )−1σV π(s) by 2 log 2
(1−γ)1.5

using Lemma 63.

Finally, inequality (B.21) is according to the condition on n. Since the result must be true for every

s ∈ S, we take union bound over all s. Hence, the proof is complete. �

Proof of Theorem 12: Let δP ∈ (0, 1). First, we know that optimistic planning problem (6.33)

is feasible w.p. at least 1− |S|2|A|δP . The following events are dependent on this event. Thus, we

consider the lowest probability between feasibility and following events.

Now, we have

V π∗(s0)− 3γ log 2

√
32|S| log 4/δP

(1− γ)3n
≤ Ṽ π∗(s0) ≤ V π∗(s0) + 3γ log 2

√
32|S| log 4/δP

(1− γ)3n

w.p. at least 1− 5|S|3|A|δP and

V π̃(s0)− 3γ log 2

√
32|S| log 4/δP

(1− γ)3n
≤ Ṽ π̃(s0) ≤ V π̃(s0) + 3γ log 2

√
32|S| log 4/δP

(1− γ)3n

w.p. at least 1− 5|S|3|A|δP according to Lemma 28. On the other hand, we know that Ṽ π∗(s0) ≤

Ṽ π̃(s0). Thus, by combining these results we get

V π∗(s0)− 3γ log 2

√
32|S| log 4/δP

(1− γ)3n
≤ Ṽ π∗(s) ≤ Ṽ π̃(s0) ≤ V π̃(s) + 3γ log 2

√
32|S| log 4/δP

(1− γ)3n
.

It yields that V π̃(s0) ≥ V π∗(s0) − 6γ log 2
√

32|S| log 4/δP
(1−γ)3n

w.p. at least 1 − 10|S|3|A|δP by union

bound.
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On the other hand, for any i ∈ {1, . . . , N} we have

C π̃
i (s0) ≤ C̃ π̃

i (s0) + 3γ log 2

√
32|S| log 4/δP

(1− γ)3n
≤ C̄i + 3γ log 2

√
32|S| log 4/δP

(1− γ)3n

w.p. at least 1 − 5|S|3|A|δP according to Lemma 28. By taking union bound, we get that all

statements for value and cost functions hold w.p. at least 1− (5N + 10)|S|3|A|δP . Hence, putting

ε = 6γ log 2
√

32|S| log 4/δP
(1−γ)3n

and δ = (5N + 10)|S|3|A|δP concludes the proof. Please note that

ε < 0.22γ√
|S|(1−γ)

would satisfy the assumption in Lemma 28. �

B.3 Detailed Proof for Theorem 4

First, we bound total number of model updates in Algorithm 4.

Lemma 56. The total number of updates under algorithm 4 is bounded by Umax = |S|2|A|m
1−γ .

Proof. Let fix a (s, a)−pair. Note that n(s, a) is not decreasing and also it increases up to |S|m
(1−γ)

.

And, since update of model happens at the beginning of each time-step, then maximum number of

updates due to a single (s, a) happens at most |S|m
(1−γ)

number of times. Thus, maximum number of

updates due to all (s, a)−pairs is no larger than |S|
2|A|m
1−γ

Proof of Lemma 30: At each time-step with model update t and for each (s, a), by Hoeffding’s

inequality [30] we have

|P (s′|s, a)− P̂ (s′|s, a)| ≤

√
log (4/δ1)

2n(s, a)

holds w.p. at least 1− δ1/2.

By empirical Brenstein’s inequality [31] we have

|P (s′|s, a)− P̂ (s′|s, a)| ≤

√
2P̂ (s′|s, a)(1− P̂ (s′|s, a))

n(s, a)
log

4

δ1

+
2

3n(s, a)
log

4

δ1

w.p. at least 1− δ1/2.
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Combining above two inequalities and applying union bound, we get

P(|P (s′|s, a)− P̂ (s′|s, a)| ≤ min{

√
2P̂ (s′|s, a)(1− P̂ (s′|s, a))

n(s, a)
log

4

δ1

+
2

3n(s, a)
log

4

δ1

,

√
log 4/δ1

2n(s, a)
})

≥ 1− δ1.

Finally, we get the result by applying union bound over all model updates and next states. �

Now, we start proving Lemma 33. But, first we provide some useful lemmas.

Lemma 57. Total number of observations of (s, a) ∈ Xt,κ,ι with κ ∈ [1, |S| − 1] and ι > 0 over

all time-steps t is at most 3|S × A|mwικ. wι = min{wt(s, a) : ιt(s, a) = ι}.

Proof. Note that wι+1 = 2wι for ι > 0. Consider a time-step t and a fixed (s, a) ∈ Xt,κ,ι. Since

we assumed ιt(s, a) = ι, then wι ≤ wt(s, a) ≤ 2wι. Similarly, from κt(s, a) = κ we have

nt(s,a)
2mwt(s,a)

≤ κ ≤ nt(s,a)
mwt(s,a)

which implies

mwικ ≤ mwt(s, a)κ ≤ nt(s, a) ≤ 2mwt(s, a)κ ≤ 4mwικ. (B.22)

Therefore, each (s, a) in {(s, a) ∈ Xt,κ,ι : k ∈ N} can only be observed 3mwικ. Then, the

total observations is at most 3|S × A|mwικ.

Lemma 58. Number of time-steps Eκ,ι with |Xt,κ,ι| > κ is bounded for α ≥ 3 w.h.p.

P (Eκ,ι > αK) ≤ exp (−βwι(κ+ 1)K(1− γ)2),

where K = |S × A|m and β = α(3/α−1)2

7/3−1/α
.

Proof. Let νt :=
∑t

k=0 γ
k I{(sk, ak) ∈ Xk,κ,ι} be discounted number of observations of (s, a)

with |Xk,κ,ι| > κ. We have t ∈ {1, ..., Eκ,ι}.

In these time-steps |Xt,κ,ι| ≥ κ+ 1 and all (s, a) in partition (κ, ι) have wt(s, a) ≥ wι, then

E[νt|ν1, . . . , νt−1] ≥ (κ+ 1)wι.
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Also V[νt|ν1, . . . , νt−1] ≤ E[νt|ν1, . . . , νt−1]/(1− γ) since νt ∈ [0, 1
1−γ ].

Now, we define the continuation:

ν+
t :=


νt t ≤ Eκ,ι

wι(κ+ 1) O.W.

and centralized auxiliary sequence

ν̄t :=
ν+
t wι(κ+ 1)

E[ν+
t |ν+

1 , . . . , ν
+
t−1]

.

By construction

E[ν̄t|ν̄1, . . . , ν̄t−1] = wι(κ+ 1).

According to lemma 57, we have Eκ,ι > αK if

αK∑
t=1

ν̄t ≤ 3Kwικ(1− γ) ≤ 3Kwι(κ+ 1)(1− γ).

The factor of (1 − γ) is due to fact that ν̄t is discounted number of visitation. While, Eκ,ι is total

number of visitations. Hence, we normalize that by multiplying the right hand side by (1− γ).

Now, we define martingale below

Bt := E

[
αK∑
j=1

ν̄j|ν̄1, . . . , ν̄t

]
=

t∑
j=1

ν̄j +
αK∑

j=t+1

E[ν̄j|ν̄1, ..., ν̄t],

which gives B0 = αKwι(κ+ 1) and BαK =
∑αK

t=1 ν̄t. Now, since ν+
t ∈ [0, 1

1−γ ]

|Bt+1 −Bt| = |ν̄t − E[ν̄t|ν̄1, . . . , ν̄t−1]| =

∣∣∣∣∣wι(κ+ 1)(ν+
t − E[ν+

t |ν̄1, . . . , ν̄t−1])

E[ν+
t |ν+

, . . . , ν
+
t−1]

∣∣∣∣∣
≤ |ν+

t − E[ν+
t |ν̄1, . . . , ν̄t−1]| ≤ 1

1− γ
.
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Using

σ2 :=
αK∑
t=1

V[Bt −Bt−1|B1 −B0, . . . , Bt−1 −Bt−2] =
αK∑
t=1

V[ν̄t|ν̄1, . . . , ν̄t−1] ≤ α
Kwι(κ+ 1)

1− γ
=

B0

1− γ
.

We can apply Theorem 22 of [69] and obtain

P(Eκ,ι > αK) ≤ P

(
αK∑
t=1

ν̄t ≤ 3Kwι(κ+ 1)(1− γ)

)
= P(BαK −B0 ≤ (3B0/α−B0)(1− γ))

≤ exp (− (3/α− 1)2B2
0(1− γ)

2σ2 + (1/3− 1/α)B0/(1− γ)
)

for α ≥ 3. By simplifying it we get

P(Eκ,ι > αK) ≤ exp
(
−Kwι(κ+ 1)(1− γ)2 α(3/α)2

7/3− 1/α

)
.

Proof of Lemma 33: Since wt(s, a) ≤ 1
1−γ , we have that wt(s,a)

wmin
< 1

wmin(1−γ)
and so ιt(s, a) ≤

1
(1−γ)wmin

= 4|S|
ε(1−γ)2

. In addition, |Xt,κ,ι| ≤ |S| for all t, κ, ι and so |Xt,κ,ι| > κ can only be true for

κ ≤ |S|. Hence, only Emax = log2
1

wmin(1−γ)
log2 |S| possible values for (κ, ι) exists that can have

|Xt,κ,ι| > κ. By union bound over all (κ, ι) and lemma 58, we get

P(E ≤ αKEmax) ≥ P(max
(κ,ι)
≤ αK) ≥ 1− Emax exp (−βwι(κ+ 1)K(1− γ)2)

≥ 1− Emax exp (−βwminK(1− γ)2) = 1− Emax exp (−βwminm|S × A|(1− γ)2)

= 1− Emax exp (−βεm|S × A|(1− γ)3

4|S|
).

Bounding the right hand-side by 1− δ
2(N+1)

and solving for m gives

1− Emax exp (−βεm|S × A|(1− γ)3

4|S|
) ≥ 1− δ

2(N + 1)
⇔ m ≥ 4|S|

|S × A|(1− γ)3βε
log

2Emax
δ

.
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Hence, the condition

m ≥ 4

β(1− γ)2ε
log

2(N + 1)Emax
δ

is sufficient for desired result to hold. Plugging in α = 6 and β = α(3/α−1)2

7/3−1/α
would obtain the

statement to show. �

Next, we need the following corollaries to prove Lemma 35.

Corollary 9. If we substitute the δP with δ1 in Lemma 60, the result will pertain.

Corollary 10. If we substitute the δP with δ1 in Lemma 52, the result will pertain.

Proof of Lemma 35: We only prove the statement of value function since the proof procedure

for cost is identical.

Before proceeding, in this lemma we reason about a sequence of CMDPs Md which have the

same transition probabilities but different reward matrix r(d) and cost matrices c(d). Here, we only

present the definition of r(d), as definition of c(d) is identical to r(d). For d = 0, the reward matrix

is the original reward function r of M (r(0) = r.) The following reward matrices are then defined

recursively under policy π as r(2d+2)
π = σ

(d),2

V (d),π , where σ(d),2

V (d),π is local variance of the value function

w.r.t. the rewards r(d). Note that for every d and s ∈ S, we have r(d)(s) ∈ [0, 1
(1−γ)d

].

In addition, we will drop the notations t and policy π̃t in the following lemmas, since the

statements are for a fixed time-step t and all value functions, reward matrices and transition kernels

are defined under policy π̃t.
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Now,

∆d := |V (d)(s0)− Ṽ (d)(s0)| = |γ(I − γP )−1(P − P̃ )Ṽ (d)(s0)|

≤ γ(I − γP )−1|P − P̃ Ṽ (d)|(s0)

= γ(I − γP )−1

( ∑
s,a∈S×A

I{s = ·, a ∼ π̃(s, ·)}|(P − P̃ )Ṽ (d)|

)
(s0)

=
∑

s,a∈S×A

γ(I − γP )−1
(
I{s = ·, a = π̃(s, ·)}|(P − P̃ )Ṽ (d)|

)
(s0)

=
∑

s,a∈S×A

γ(I − γP )−1
(
I{s = ·, a = π̃(s, ·)}|(P − P̃ )Ṽ (d)(s)|

)
(s0)

The first equality follows from Lemma 51, the second step from the fact that all elements os V

is non-negative and (I − γP )−1 being non-expansive. In the third line, we introduce an indicator

function which does not change the value as we sum over all (s, a) pairs. The fourth step relies on

the linearity of P operators. In the fifth step, we realize that I{s = ., a ∼ π̃(s, ·)}|(P − P̃ )Ṽ (d)(·)|

is a function that takes nonzero values for input s. We can therefore replace the argument of the

second term with s without changing the value. The term becomes constant and by linearity of P,
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we can write

|V (d)(s0)− Ṽ (d)(s0)| = ∆d ≤
∑

s,a∈S×A

γ(I − γP )−1
(
I{s = ·, a ∼ π̃(s, ·)}|(P − P̃ )Ṽ (d)(s)|

)
(s0)

≤ γ
∑
s,a6∈X

‖Ṽ (d)‖∞(I − γP )−1(I{s = ·, a ∼ π̃(s, ·)})(s0)

+ γ
∑
s,a∈X

|(P − P̃ )Ṽ (d)(s)|(I − γP )−1I{s = ·, a ∼ π̃(s, ·)})(s0)

≤ γ
∑
s,a6∈X

1

(1− γ)d+1
(I − γP )−1(I{s = ·, a ∼ π̃(s, ·)})(s0)

+ γ
∑
s,a∈X

|(P − P̃ )Ṽ (d)(s)|(I − γP )−1I{s = ·, a ∼ π̃(s, ·)})(s0)

≤ γ
∑
s,a6∈X

1

(1− γ)d+1
(I − γP )−1(I{s = ·, a ∼ π̃(s, ·)})(s0)

+ γ
∑
s,a∈X

||S|c1(s, a)
1

(1− γ)d+1
+ c2(s, a)

√
|S|σ(d)

Ṽ
(s)|(I − γP )−1(I{s = ·, a ∼ π̃(s, ·)})(s0)

≤ γ
∑
s,a6∈X

1

(1− γ)d+1
(I − γP )−1(I{s = ·, a ∼ π̃(s, ·)})(s0)

+ γ
∑
s,a∈X

||S|c1(s, a)
1

(1− γ)d+1
|(I − γP )−1(I{s = ·, a ∼ π̃(s, ·)})(s0)

+ γ
∑
s,a∈X

|
√
|S|c2(s, a)σ

(d)

Ṽ
(s)|(I − γP )−1(I{s = ·, a ∼ π̃(s, ·)})(s0)

≤
∑
s,a6∈X

1

(1− γ)d+1
w(s, a) +

∑
s,a∈X

|S|c1(s, a)
1

(1− γ)d+1
w(s, a)

+ γ
∑
s,a∈X

√
|S|c2(s, a)σ

(d)

Ṽ
(s)(I − γ)−1(I{s = ·, a ∼ π̃(s, ·)})(s0)

≤ wmin|S|
(1− γ)d+1

+
∑
s,a∈X

|S|c1(s, a)w(s, a)

(1− γ)d+1

+ γ
∑
s,a∈X

√
|S|c2(s, a)σ

(d)

Ṽ
(s)(I − γP )−1(I{s = ·, a ∼ π̃(s, ·)})(s0)

=
ε

4(1− γ)d
+
∑
s,a∈X

|S|c1(s, a)w(s, a)

(1− γ)d+1

+ γ
∑
s,a∈X

√
|S|c2(s, a)σ

(d)

Ṽ
(s)(I − γP )−1(I{s = ·, a ∼ π̃(s, ·)})(s0)
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In the second inequality, we split the sum over all (s, a) pairs and used the fact that P and P̃

are non-expansive. The next step follows from ‖V (d)‖∞ ≤ 1
(1−γ)d+1 . We then apply Lemma 52 and

subsequently use that all terms are nonnegative and the definition of w(s, a). Eventually, the last

two lines come from the fact that w(s, a) ≤ wmin for all (s, a) not in the active set. Besides, please

note that we are analyzing under the given policy π̃, which implies that there are only |S| nonzero

w in non-active set.

Using the assumption that M ∈M and M̃ ∈M from the fact that ELP chooses the optimistic

CMDP inM, we can apply Corollary 9 and get that

c1(s, a) = 2
√

2
( log 4/δ1

n(s, a)

)3/4

+ 3
√

2
log 4/δ1

n(s, a)
and c2(s, a) =

√
8

n(s, a)
log 4/δ1.

Plugging definitions above we have

∆d ≤
ε

4(1− γ)d
+ 2
√

2
|S|

(1− γ)d+1
log 4/δ1

3/4
∑
s,a∈X

w(s, a)

n(s, a)3/4
+ 3
√

2
|S|

(1− γ)d+1
log 4/δ1

∑
s,a∈X

w(s, a)

n(s, a)

+
√

8|S| log 4/δ1

∑
s,a∈X

γ√
n(s, a)

σ
(d)

Ṽ
(s)(I − γP )−1(I{s = ·, a ∼ π̃(s, ·)})(s0)

Hence, we bound

∆d ≤
ε

4(1− γ)d
+ Ud(s0) + Yd(s0) + Zd(s0)
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as a sum of three terms which we will consider individually in the following. The first term is

Ud(s0) = 2
√

2
|S|

(1− γ)d+1
log 4/δ1

3/4
∑
s,a∈X

w(s, a)

n(s, a)3/4

≤ 2
√

2
|S|

(1− γ)d+5/4
log 4/δ1

3/4
∑

κ,ι∈K×I

∑
s,a∈Xκ,ι

(w(s, a)

n(s, a)

)3/4

≤ 2
√

2
|S|

(1− γ)d+5/4
log 4/δ1

3/4
∑

κ,ι∈K×I

( |Xκ,ι|
mκ

)3/4

≤ 2
√

2
|S|

(1− γ)d+5/4
log 4/δ1

3/4
∑

κ,ι∈K×I

( 1

m

)3/4

≤ 2
√

2
|S|

(1− γ)d+5/4
log 4/δ1

3/4K × I
( 1

m

)3/4

.

In the second line, we used Cauchy-Scharwz. Next, we used the fact that for s, a ∈ Xκ,ι, we have

n(s, a) ≥ mw(s, a)κ, refer to equation (B.22). Finally, we applied the assumption of |Xκ,ι| ≤ κ.

Please note that K × I is the set of all possible (κ, ι) pairs.

The next term is

Yd(s0) = 3
√

2
|S|

(1− γ)d+1
log 4/δ1

∑
s,a∈X

w(s, a)

n(s, a)
≤ 3
√

2
|S|

(1− γ)d+1
log 4/δ1

∑
κ,ι

|Xκ,ι|
mκ

≤ 3
√

2|S| log 4/δ1|K × I|
m(1− γ)d+1

which we used n(s, a) ≥ mw(s, a)κ again.
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The last term is

Zd(s0) =
√

8|S| log 4/δ1

∑
s,a∈X

γ√
n(s, a)

(I − γP )−1σ
(d)

Ṽ
(s)(I{s = ·, a ∼ π̃(s, ·)})(s0)

≤
√

8|S| log 4/δ1

∑
s,a∈X

γ√
n(s, a)

√
(I − γP )−1I{s = ·, a ∼ π̃(s, ·)}(s0)

×
√

(I − γP )−1σ
(d),2

Ṽ
(s)I{s = ·, a ∼ π̃(s, ·)}(s0)

= γ
√

8|S| log 4/δ1

∑
s,a∈X

√
w(s, a)

n(s, a)
(I − γP )−1σ

(d),2

Ṽ
(s)I{s = ·, a ∼ π̃(s, ·)}(s0)

= γ
√

8|S| log 4/δ1

∑
κ,ι

∑
s,a∈Xκ,ι

√
w(s, a)

n(s, a)
(I − γP )−1σ

(d),2

Ṽ
(s)I{s = ·, a ∼ π̃(s, ·)}(s0)

≤ γ
√

8|S| log 4/δ1

∑
κ,ι

√√√√|Xκ,ι|
∑

s,a∈Xκ,ι

w(s, a)

n(s, a)
(I − γP )−1σ

(d),2

Ṽ
(s)I{s = ·, a ∼ π̃(s, ·)}(s0)

≤ γ
√

8|S| log 4/δ1

∑
κ,ι

√
1

m

∑
s,a∈Xκ,ι

(I − γP )−1σ
(d),2
h (s)I{s = ·, a ∼ π̃(s, ·)}(s0)

≤ γ

√√√√8|S| log 4/δ1|K × I|
m

∑
s,a∈X

(I − γP )−1σ
(d),2

Ṽ
(s)I{s = ·, a ∼ π̃(s, ·)}(s0)

≤ γ

√√√√8|S| log 4/δ1|K × I|
m

∑
s,a∈S×A

(I − γP )−1σ
(d),2

Ṽ
(s)I{s = ·, a ∼ π̃(s, ·)}(s0)

= γ

√
8|S| log 4/δ1|K × I|

m
(I − γP )−1σ

(d),2

Ṽ
(s0)

≤

√
8|S| log 4/δ1|K × I|

m(1− γ)2d+3
.

In the second line, we applied Cauchy-Scharwz inequality. Then, we used the definition of w(s, a)

to get to third step. Next, we split the sum and applied Cauchy-Scharwz again to obtain fifth

step. Furthermore, we applied the assumption of |Xκ,ι| ≤ κ to get sixth step. Next, we applied

Cauchy-Scharwz inequality to obtain seventh step. And, the final step follows from the facts that
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γ ≤ 1, (I − γP )−1(s0) ≤ 1
1−γ and ‖σ(d)

Ṽ
‖∞ ≤ 1

(1−γ)2d+2 . Thus, we have

Zd(s0) ≤

√
8|S| log 4/δ1|K × I|

m(1− γ)2d+3
. (B.23)

However, we can improve this bound as follows

Zd(s0) ≤ γ

√
8|S| log 4/δ1|K × I|

m
(I − γP )−1σ

(d),2

Ṽ
(s0)

= γ

√
8|S| log 4/δ1|K × I|

m
(I − γP )−1σ

(d),2

Ṽ
(s0)− (I − γP̃−1)σ

(d),2

Ṽ
(s0) + (I − γP̃ )−1σ

(d),2

Ṽ
(s0)

≤ γ

√
8|S| log 4/δ1|K × I|

m

( 1

(1− γ)2d+2
+ (I − γP )−1r(2d+2)(s0)− (I − γP̃ )−1r(2d+2)(s0)

)
= γ

√
8|S| log 4/δ1|K × I|

m

( 1

(1− γ)2d+2
+ V (2d+2)(s0)− Ṽ (2d+2)(s0)

)
= γ

√
8|S| log 4/δ1|K × I|

m
(

1

(1− γ)2d+2
+ ∆2d+2)

≤

√
8|S| log 4/δ1|K × I|

m(1− γ)2d+2
+

√
8|S| log 4/δ1|K × I|

m
∆2d+2.

In the third step, we used Lemma 63 and definition of r(2d+2). In the last line, we used the fact that

γ ≤ 1.

Now, if we put all the pieces together, we have

∆d ≤
ε

4(1− γ)d
+

2
√

2|S|
(1− γ)d+5/4

log 4/δ1
3/4|K × I|

( 1

m

)3/4

+
3
√

2|S| log 4/δ1|K × I|
m(1− γ)d+1

+

√
8|S| log 4/δ1|K × I|

m(1− γ)2d+2
+

√
8|S| log 4/δ1|K × I|

m
∆2d+2.

If we choose m sufficiently large which will be shown later, then it is straightforward to show that

Ud(s0) ≤ Zd(s0) and Yd(s0) ≤ Zd(s0). Hence, if we expand the above inequality up to depth

193



β = d 1
2 log 2

log 1
1−γ e with D = {0, 2, 6, 14, . . . , β}, we get

∆0 ≤
∑
d∈D\β

(8|S| log 4/δ1|K × I|
m

) d
d+2
[ε(1− γ)d

4
+ 3

√
8|S| log 4/δ1|K × I|

m(1− γ)2d+2

] 2
d+2

+
(8|S| log 4/δ1|K × I|

m

) β
β+2
[ ε

4(1− γ)β
+ 3

√
8|S| log 4/δ1|K × I|

m(1− γ)2β+2

] 2
β+2

.

Here, we used inequality (B.23) to bound Zβ(s0). Finally, the proof completes if we let

m = 1280
|S|

ε2(1− γ)2
(log2 log2(

1

(1− γ)
))2 log2

2

( 8|S|2

ε(1− γ)2

)
log

6

δ1

.

�.

Proof of Theorem 4: By Lemma 33, we know that number of time-steps where |Xκ,ι| > κ for

some κ, ι is bounded by 6Emax|S||A|mwith probability at least 1− δ
2(N+1)

. For all other time-steps,

we have by Lemma 35 that for any i ∈ {1, . . . , N}

|Ṽ π̃t(s0)− V π̃t(s0)| ≤ ε, |C̃ π̃t
i (s0)− C π̃t

i (s0)| ≤ ε. (B.24)

Using Lemma 30, we get that M ∈ Mt for any time-step t w.p. at least 1 − δ
2(N+1)

. Further,

we know that ELP outputs the policy π̃t such that

Ṽ π̃t(s0) ≥ V π∗(s0), C̃ π̃t
i (s0) ≤ C̄i i ∈ {1, . . . , N} (B.25)

w.p. at least 1− δ
2(N+1)

. Combining the inequalities (C.2) with inequalities (B.25), we get that for

all time-steps with |Xκ,ι| ≤ κ for all κ, ι

V π̃t(s0) ≥ V π∗(s0)− ε

w.p. at least 1 − δ
2(N+1)

and for any i, C π̃t
i (s0) ≤ C̄i + ε w.p. at least 1 − δ

2(N+1)
. Applying the
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union bound we get the desired result, if m satisfies

m ≥ 1280
|S|

ε2(1− γ)2
(log2 log2(

1

1− γ
))2 log2

2

( 8|S|2

ε(1− γ)2

)
log

4

δ1

and

m ≥ 4

ε(1− γ)3
log

2(N + 1)Emax

δ
.

From the definitions, we get

log
4

δ1

= log
4(N + 1)|S|Umax

δ
= log

4(N + 1)|S|2|A|m
δ

.

Thus,

m ≥ 1280
|S|

ε2(1− γ)3
(log2 log2(

1

1− γ
))2 log2

2

( 8|S|2

ε(1− γ)2

)
log

4(N + 1)|S|2|A|m
δ

. (B.26)

It is well-known fact that for any constant B > 0, ν ≥ 2B logB implies ν ≥ B log ν. we can use

this sufficiency condition to satisfy (B.26) by setting m as follows:

m ≥ 2560
|S|

ε2(1− γ)3
(log2 log2(

1

1− γ
))2 log2

2

( 8|S|2

ε(1− γ)2

)
× log

(5120(N + 1)|S|3|A|
ε2δ(1− γ)3

(log2 log2(
1

1− γ
))2 log2

2

( 8|S|2

ε(1− γ)2

))
.

Also,

Emax = log2 |S| log2

4|S|
ε(1− γ)2

≤ log2
2

4|S|
ε(1− γ)2

and

log
2(N + 1)Emax

δ
= log

2(N + 1) log2 |S| log2( 4|S|
ε(1−γ)2

)

δ
≤ log

2(N + 1) log2
2( 4|S|
ε(1−γ)2

)

δ

≤ log
16(N + 1)|S|4|A|

εδ(1− γ)3
.
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Setting

m = 2560
|S|

ε2(1− γ)3
(log2 log2(

1

1− γ
))2 log2

2

( 8|S|2

ε(1− γ)2

)
(B.27)

× log
(5120(N + 1)|S|4|A|

ε2δ(1− γ)3
(log2 log2(

1

1− γ
))2 log2

2

( 8|S|2

ε(1− γ)2

))
.

is therefore a valid choice for m to ensure that with probability at least 1− δ
(N+1)

, there are at most

6Emax|S||A|m =15360
|S|2|A|

ε2(1− γ)3
(log2 log2(

1

1− γ
))2 log2

2

( 4|S|
ε(1− γ)2

)
log2

2

( 8|S|2

ε(1− γ)2

)
× log

(5120(N + 1)|S|4|A|
ε2δ(1− γ)3

(log2 log2(
1

1− γ
))2 log2

2

( 8|S|2

ε(1− γ)2

))

time-steps which neither are optimal nor near-optimal. �
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APPENDIX C

APPENDIX OF CHAPTER 4

C.1 GMBL-Dual

Proof of Proposition 1: Considering optimization problem of (4.4) and Assumptions 5 and 6,

it is obvious that optimal policy of the problem (4.4) would yield positive result, i.e. V π∗
0 (s0) =

V
π∗(λ∗)

0 (s0) > 0. Comparing value of π∗ with do-nothing policy and knowing the fact that do-

nothing policy yield 0 reward, we conclude that V π∗(λ∗)
0 (s0, λ

∗) must be positive, otherwise do-

nothing policy must have been chosen.

On the other hand, optimal policy might satisfy some of constraints tightly, not all of them.

Due to Complementary Slackness, if constraint i is not completely satisfied, then λ∗i would be 0.

First, consider the case where there is no tight satisfaction. Then, all the λ∗i would be 0. So, we

focus on the case where there is at least one positive λ∗i . Thus, we have

0 < V
π∗(λ∗)

0 (s0, λ
∗) = V

π∗(λ∗)
0 (s0)−

∑
i

λ∗i C̄i ≤ H −
∑
i

λ∗i C̄i,

Therefore,

0 ≤ H −
∑
i

λ∗i C̄i ≤ H −BλC̄min.

The second inequality comes from the fact that λmax must appear, and the worst case is that it

appears at least once with the least C̄i. Hence the proof completes. �

C.2 Online-CRL-Dual

Before proceeding with Lemma 17, for any λ ∈ [0, Bλ] we reason about a sequence of MDPs

Md,λ which have the same transition probabilities but different reward matrix r(d)
c (λ). For d = 0,

the reward matrix is the original reward function rc(λ) of Mλ (r(0)
c (λ) = rc(λ).) The following
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reward matrices are then defined recursively as r(2d+2)
c (λ) = maxh σ

(d),2
h , where σ(d),2

h:H−1 is local

variance of the value function w.r.t. the rewards r(d)
c (λ). Note that for every d and h = 0, ..., H − 1

and (s, a) ∈ S × A, we have r(d)
c (λ, s, a) ∈ [0, (HNBλ)

d].

In addition, we will drop the notations k, λ̃(k) and policy π̃k(λ̃(k)) in the following lemmas,

since the statements are for a fixed episode k and all value functions, reward matrices and transition

kernels are defined under policy π̃k(λ̃(k)).

Now, we present and prove some lemmas required for Lemma 17.

Lemma 59.

V0 − Ṽ0 =
H−2∑
h=0

P h−1(P − P̃ )Ṽh+1.

Proof. For a fixed h and s :

Vh(s)− Ṽh(s) = rc(s) +
∑
s′

P (s′|s)Vh+1(s′)− rc(s)−
∑
s′

P̃ (s′|s)Ṽh+1(s′)

+
∑
s′

P (s′|s)Ṽh+1(s′)−
∑
s′

P (s′|s)Ṽh+1(s′)

=
∑
s′

P (s′|s)(Vh+1(s′)− Ṽh+1(s′)) +
∑
s′

(P (s′|s)− P̃ (s′|s))Ṽh+1(s′).

Since we have VH−1(s) = rc(s) = ṼH−1(s), we can recursively expand the first difference until

h = 0 and get the result.

Lemma 60. Assume p, p̂, p̃ ∈ [0, 1] satisfy p̂ ∈ P and p̃ ∈ P where

P := {p′ ∈ [0, 1] :|p− p′| ≤
√

ln 6/δP
2n

,

|p− p′| ≤
√

2p(1− p)
n

ln (6/δP ) +
2

3n
ln (6/δP ),

|p′(1− p′)− p(1− p)| ≤ 2 ln (6/δP )

n− 1
}.
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Then

|p− p̃| ≤
√

8p̃(1− p̃)
n

ln (6/δP ) +
16

3(n− 1)
ln (6/δP ).

Proof.

|p− p̃| ≤ |p− p̂|+ |p̂− p̃| ≤ 2

√
2p̂(1− p̂)

n
ln (6/δP ) + 2

2

3n
ln (6/δP )

≤ 2

√
2

n

(
p̃(1− p̃) +

2 ln (6/δP )

n− 1

)
ln (6/δP ) +

4

3n
ln (6/δP )

≤ 2

√
2p̃(1− p̃)

n
ln (6δP ) + 2

2 ln (6/δP )

n− 1
+

4

3n
ln (6/δP )

≤ 2

√
2p̃(1− p̃)

n
ln (6δP ) +

16

3(n− 1)
ln (6/δP ).

Lemma 61. Assume

|P (s′|s, a)− P̃ (s′|s, a)| ≤ c1(s, a) + c2(s, a)

√
P̃ (s′|s, a)(1− P̃ (s′|s, a))

for a = πh(s) and all s′, s ∈ S. Then

|
∑
s′

(P (s′|s)− P̃ (s′|s))Ṽh+1(s)| ≤ c1(s, a)|S|‖Ṽh+1‖∞ + c2(s, a)
√
|S|σ̃h(s)

for any (s, a) ∈ S × A.

Proof. Let s and a = πh(s) be fixed and define for this fixed s the constant function V̄ (s′) =∑
s′′ P̃ (s′′|s′)Ṽh+1(s′′) as the expected value function of successor states of s. Note that V̄ (s′) is a

constant function and so V̄ (s′) =
∑

s′′ P̃ (s′′|s′)V̄ (s′′) =
∑

s′′ P (s′′|s′)V̄ (s′′).
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|
∑
s′

(P (s′|s)− P̃ (s′|s))Ṽh+1(s′)| = |
∑
s′

(P (s′|s)− P̃ (s′|s))Ṽh+1(s′) + V̄ (s)− V̄ (s)|

= |
∑
s′

(P (s′|s)− P̃ (s′|s))(Ṽh+1 − V̄ )(s′)|

≤
∑
s′

|P (s′|s, a)− P̃ (s′|s, a)||Ṽh+1(s′)− V̄ (s′)|

≤
∑
s′

(
c1(s, a) + c2(s, a)

√
P̃ (s′|s, a)(1− P̃ (s′|s, a))

)
|Ṽh+1(s′)− V̄ (s′)|

≤ |S|c1(s, a)‖Ṽh+1‖∞ + c2(s, a)
∑
s′

√
P̃ (s′|s, a)(1− P̃ (s′|s, a))(Ṽh+1(s′)− V̄ (s′))2

≤ |S|c1(s, a)‖Ṽh+1‖∞ + c2(s, a)

√
|S|
∑
s′

P̃ (s′|s, a)(1− P̃ (s, a))(Ṽh+1(s′)− V̄ (s′))2

≤ |S|c1(s, a)‖Ṽh+1‖∞ + c2(s, a)

√
|S|
∑
s′

P̃ (s′|s, a)(Ṽh+1(s′)− V̄ (s′))2

≤ |S|c1(s, a)‖Ṽh+1‖∞ + c2(s, a)
√
Sσ̃h(s).

In the first inequality, we wrote the definition of P and P̃ and applied the triangle inequality. We

then applied the assumed bound and bounded |Ṽh+1(s′)− V̄ (s′)| by ‖Vh+1‖∞ as all value functions

are non-negative. In fourth inequality, we applied Cauchy-Schwartz inequality and subsequently

used the fact that each term in the sum is non-negative and that (1 − P̃ (s′|s, a)) ≤ 1. The final

inequality follows from the definition of σ̃h.

Lemma 62. Assume M ∈Mk. If |Xκ,ι| ≤ κ for all (κ, ι), then

∆d := |V (d)
1:H(s0)− Ṽ (d)(s0)| ≤ Âd + B̂d + min{Ĉd, Ĉ ′d + Ĉ ′′

√
∆2d+2}

where

Âd =
ε

20
(HNBλ)

d, B̂d =
64(HNBλ)

d+1|K × I|
3m

ln (6/δP ),
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and

Ĉ ′d =

√
|K × I|16

m
(HNBλ)2d+2 ln (6/δP ), Ĉd = Ĉ ′d

√
HNBλ, Ĉ

′′ =

√
|K × I|16

m
ln (6/δP ).

Proof. In this lemma we assume that we are in a fixed phase k, so, we drop the index of k.

∆d = |V (d)
0 (s0)− Ṽ (d)

0 (s0)| = |
H−2∑
h=0

P h−1(P − P̃ )Ṽ
(d)
h+1(s0)|

≤
(H−2)∑
h=0

P h−1|(P − P̃ )Ṽ
(d)
h+1|(s0)

=
H−2∑
h=0

P h−1
(∑
s,a

I{s = ·, a = πh(s)}|(P − P̃ )Ṽ
(d)
h+1|

)
(s0)

=
∑
s,a

H−2∑
h=0

P h−1
(
I{s = ·, a = πh(s)}|(P − P̃ )Ṽ

(d)
h+1|

)
(s0)

=
∑
s,a

H−2∑
h=0

P h−1
(
I{s = ·, a = πh(s)}|(P − P̃ )Ṽ

(d)
h+1(s)|

)
(s0)

The first equality follows from Lemma 59, the second step from the fact that Vh+1 ≥ 0 and P h−1

being non-expansive. In the third, we introduce an indicator function which does not change the

value as we sum over all (s, a) pairs. The fourth step relies on the linearity of P h−1 operators.

In the fifth step, we realize that I{s = ·, a = πh(s)}|(P − P̃ )Ṽ
(d)
h+1(·)| is a function that takes

nonzero values for input s. We can therefore replace the argument of the second term with s
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without changing the value. The term becomes constant and by linearity of P h−1, we can write

|V (d)
0 (s0)− Ṽ (d)

0 (s0)| = ∆d ≤
∑
s,a

H−2∑
h=0

P h−1
(
I{s = ·, a = πh(s)}|(P − P̃ )Ṽ

(d)
h+1(s)|

)
(s0)

≤
∑
s,a6∈X

H−2∑
h=0

‖Ṽ (d)
h+1‖∞(P h−1I{s = ·, a = πh(s)})(s0)

+
∑
s,a∈X

H−2∑
h=0

|(P − P̃ )Ṽ
(d)
h+1(s)|(P h−1I{s = ·, a = πh(s)})(s0)

≤
∑
s,a6∈X

H−2∑
h=0

(HNBλ)
d+1(P h−1I{s = ·, a = πh(s)})(s0)

+
∑
s,a∈X

H−2∑
h=0

|(P − P̃ )Ṽ
(d)
h+1(s)|(P h−1I{s = ·, a = πh(s)})(s0)

≤
∑
s,a6∈X

H−2∑
h=0

(HNBλ)
d+1(P h−1I{s = ·, a = πh(s)})(s0)

+
∑
s,a∈X

H−2∑
h=0

||S|c1(s, a)(HNBλ)
d+1 + c2(s, a)

√
|S|σ̃(d)

h (s, a)|(P h−1I{s = ·, a = πh(s)})(s0)

≤
∑
s,a6∈X

H−1∑
h=0

(HNBλ)
d+1(P h−1I{s = ·, a = πh(s)})(s0)

+
∑
s,a∈X

H−1∑
h=0

||S|c1(s, a)(HNBλ)
d+1|(P h−1I{s = ·, a = πh(s)})(s0)

+
∑
s,a∈X

H−2∑
h=0

|c2(s, a)
√
|S|σ̃(d)

h (s, a)|(P h−1I{s = ·, a = πh(s)})(s0)

≤
∑
s,a6∈X

(HNBλ)
d+1w(s, a) +

∑
s,a∈X

|S|c1(s, a)(HNBλ)
d+1w(s, a)

+
∑
s,a∈X

√
|S|c2(s, a)

H−2∑
h=0

σ̃
(d)
h (s, a)(P h−1I{s = ·, a = πh(s)})(s0)

≤
∑
s,a6∈X

(HNBλ)
d+1w(s, a) +

∑
s,a∈X

|S|c1(s, a)(HNBλ)
d+1w(s, a)

+
∑
s,a∈X

√
|S|c2(s, a)

H−2∑
h=0

σ̃
(d)
h (s, a)(P h−1I{s = ·, a = πh(s)})(s0)

In the second inequality, we split the sum over all (s, a) pairs and used the fact that P and P̃ are
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non-expansive. The next step follows from ‖V (d)
h+1‖∞ ≤ ‖V

(d)
0 ‖∞ ≤ (HNBλ)

d+1. We then apply

Lemma 61 and subsequently use that all terms are non-negative and the definition ofw(s, a).Using

the assumption that M ∈M and M̃ ∈M, we can apply Lemma 60 and get that

c2(s, a) =

√
8

n(s, a)
ln

6

δP
and c1(s, a) =

16

3(n(s, a)− 1)
ln

6

δP
.

Hence, we bound

∆d ≤ A(s0) +B(s0) + C(s0)

as a sum of three terms which we will consider individually in the following. The first term is

A(s0) =
∑
s,a6∈X

(HNBλ)
d+1w(s, a) ≤ wmin|S|(HNBλ)

d+1 ≤ ε(HNBλ)
d+1|S|

20HNBλ|S|
=

ε

20
(HNBλ)

d = Âd

as w(s, a) ≤ wmin for all (s, a) not in the active set and that the policy is deterministic, which

implies that there are only |S| nonzero w. The next term is

B(s0) = |S|
∑
s,a∈X

w(s, a)(HNBλ)
d+1 16

3(n(s, a)− 1)
ln

6

δP

= 2(HNBλ)
d+1 ln

6

δP

∑
κ,ι

∑
s,a∈Xκ,ι

w(s, a)
16

3(n(s, a)− 1)

=
32

3
(HNBλ)

d+1 ln
6

δP

∑
κ,ι

∑
s,a∈Xκ,ι

w(s, a)

n(s, a)

n(s, a)

n(s, a)− 1
.

For s, a ∈ Xκ,ι, we have n(s, a) ≥ mw(s, a)κ and so

w(s, a)

n(s, a)
≤ 1

κm
.
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Further, for all relevant (s, a) pairs, we have n(s, a) > 1 which implies

B(s0) ≤ 64(HNBλ)
d+1

3
ln

6

δP

∑
κ,ι

|Xκ,ι|
κm

and since, |Xκ,ι| ≤ κ

B(s0) ≤ 64(HNBλ)
d+1|K × I|

3m
ln

6

δP
= B̂d

where K × I is the set of all possible (κ, ι) pairs. The last term is

C(s0) =
√
|S|

∑
s,a∈X

c2(s, a)
H−2∑
h=0

σ̃
(d)
h (s, a)P h−1I{s = ·, a = πh(s)}(s0)

≤
√
|S|

∑
s,a∈X

c2(s, a)

√√√√H−2∑
h=0

P h−1I{s = ·, a = πh(s)}

×

√√√√H−2∑
h=0

σ̃
(d),2
h (s, a)P h−1I{s = ·, a = πh(s)}(s0)

≤
√
|S|

∑
s,a∈X

√√√√8w(s, a)

n(s, a)
ln

6

δP

H−2∑
h=0

σ̃
(d),2
h (s, a)P h−1I{s = ·, a = πh(s)}(s0)

where we first applied the Cauchy-Schwartz inequality and then used the definition of c2(s, a) and
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w(s, a).

C(s0) ≤
√
|S|
∑
κ,ι

∑
s,a∈Xκ,ι

√√√√8w(s, a)

n(s, a)
ln

6

δP

H−2∑
h=0

σ̃
(d),2
h (s, a)P h−1I{s = ·, a = πh(s)}(s0)

≤
√
|S|
∑
κ,ι

√√√√|Xκ,ι|
∑

s,a∈Xκ,ι

8w(s, a)

n(s, a)
ln

6

δP

H−2∑
h=0

σ̃
(d),2
h (s, a)P h−1I{s = ·, a = πh(s)}(s0)

≤
√
|S|
∑
κ,ι

√√√√ ∑
s,a∈Xκ,ι

8

m
ln

6

δP

H−2∑
h=0

σ̃
(d),2
h (s, a)P h−1I{s = ·, a = πh(s)}(s0)

≤

√√√√|S||K × I| 8
m

ln
6

δP

∑
s,a∈X

H−2∑
h=0

σ̃
(d),2
h (s, a)P h−1I{s = ·, a = πh(s)}(s0)

≤

√√√√|S||K × I| 8
m

ln
6

δP

∑
s,a∈S×A

H−2∑
h=0

σ̃
(d),2
h (s, a)P h−1I{s = ·, a = πh(s)}(s0)

=

√√√√|S||K × I| 8
m

ln
6

δP

H−2∑
h=0

P h−1σ̃
(d),2
h (s0)

≤
√
|S||K × I|8(HNBλ)2d+3 ln (6/δP )

m
= Ĉd.

We first split the sum and applied the Cauchy-Schwartz inequality. Then, we used again the fact

that w(s,a)
n(s,a)

≤ 1
κm

and |Xκ,ι| ≤ κ. In the fourth step, we applied Cauchy-Schwartz and the final

inequality follows from ‖σ̃(d),2
h ‖ ≤ (HNBλ)

2d+2 and the fact that P h−1 is non-expansive. Alter-

natively, we can rewrite the bound as:

C(s0) ≤

√√√√|S||K × I| 8
m

ln
6

δP

H−2∑
h=0

P h−1σ̃
(d),2
h (s0)

=

√√√√|S||K × I| 8
m

ln
6

δP

H−2∑
h=0

P h−1σ̃
(d),2
h (s0)− P̃ h−1σ̃

(d),2
h (s0) + P̃ h−1σ̃

(d),2
h (s0).

Next lemma 63 shows that the variance Σ̃
(d)
0 also satisfies the Bellman equation with local variances

σ̃
(d),2
h . This insight allows us to bound

∑H−2
h=0 P̃

h−1σ̃
(d),2
h (s0) = Σ̃

(d)
0 (s0) ≤ (HNBλ)

2d+2. Also,
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note that σ̃(d),2
h = r

(2d+2)
c which gives us

C(s0) ≤

√√√√|S||K × I| 8
m

ln
6

δP

(
(HNBλ)2d+2 +

H−2∑
h=0

P h−1r
(2d+2)
c (s0)− P̃ h−1r

(2d+2)
c (s0)

)
=

√
|S||K × I| 8

m
ln

6

δP

(
(HNBλ)2d+2 + V

(2d+2)
0 (s0)− Ṽ (2d+2)

0 (s0)
)

≤
√
|S||K × I| 8

m
ln

6

δP
((HNBλ)2d+2 + ∆2d+2)

≤
√
|S||K × I| 8

m
ln

6

δP
(HNBλ)2d+2 +

√
|S||K × I| 8

m
∆2d+2 ln

6

δP
= Ĉ ′d + Ĉ ′′

√
∆2d+2.

Lemma 63. [7] The variance of the value function defined as Σπ
t (s) = E[(

∑H−1
h=t r(sh)−V π

0 (s))2]

satisfies a Bellman equation Σπ
t (s) = σπ

2

t (s) +
∑

s′∈S Pπ(s′|s)V π
t+1(s′) which gives Σπ

t (s) =∑H
h=t(P

h−1
π σπ

2

h )(s). Since 0 ≤ Σπ
0 (s) ≤ H2, it follows that 0 ≤

∑H−1
h=0 (P h−1

π σπ
2

h )(s) ≤ H2

for all s ∈ S.

Proof of Lemma 17: The recursive bound from lemma 62

∆d ≤ Âd + B̂d + Ĉ ′d + Ĉ ′′
√

∆2d+2

has the form ∆d ≤ Yd + Z
√

∆2d+2. Expanding this form and using the triangle inequality gives

∆0 ≤ Y0 + Z∆2 ≤ Y0 + Z

√
Y2 + Z

√
∆6 ≤ Y0 + Z

√
Y2 + Z3/2∆

1/4
6

≤ Y0 + Z
√
Y2 + Z3/2Y

1/4
6 + Z7/4∆

1/8
1 4 ≤ . . .

and by doing this up to level γ =
⌈

lnH
2 ln 2

⌉
, we obtain

∆0 ≤
∑

d∈D\{γ}

Z
2d
2+dY

2
2+d

d + Z
2γ
2+γ ∆

2
2+γ
γ

whereD = {0, 2, 6, 14, ...}. Note that the exponent of H compared to m is larger in Ĉ ′d than in B̂d.
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Therefore, for sufficiently large m, Ĉ ′d dominates the other term. More precisely, for

m ≥ 256H

9
|K × I| ln 6

δP
(C.1)

we have B̂d ≤ Ĉ ′d. We can therefore consider Z = Ĉ ′′ and Yd = 2Ĉ ′d + Âd. Also, since Ĉd ≥ Ĉ ′d,

we can bound ∆γ ≤ Âγ + 2Ĉγ. For notational simplicity, we will use auxiliary variable

m1 =
16|K × I|H2

mε2
ln

6

δP

and get

Z = Ĉ ′′ =
√
m1

ε

H
and

Yd = Âd + 2Ĉ ′d = (1/4 + 2
√
m1H

dε and

∆γ ≤ Âγ + 2Ĉγ = (1/4 + 2
√
m1H)Hγε.

Then

(Z2dY 2
d )(2+d)−1

= (md
1ε

2d+2(1/4 + 2
√
m1)2)(2+d)−1

= ε(md
1ε
d(1/4 + 2

√
m1)2)(2+d)−1

and

(Z2γ∆γ)
(2+γ)−1

=
(
mγ

1ε
2γ+2(1/4 + 2

√
m1H)2

)(2+γ)−1

= ε
(
mγ

1ε
γ(1/4 + 2

√
m1H)2

)(2+γ)−1

.
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Putting these pieces together, we obtain

∆0

ε
≤

∑
d∈D\{γ}

(εm1)
d

2+d

(
1

4
+ 2
√
m1

) 2
d+2

+ (εm1)
γ
γ+2

(
1

4
+ 2
√
Hm1

) 2
γ+2

=
1

4
+ 2
√
m1 +

∑
d∈D\{0,γ}

(εm1)
d

2+d

(
1

4
+ 2
√
m1

) 2
d+2

+ (εm1)
γ
γ+2

(
1

4
+ 2
√
Hm1

) 2
γ+2

≤ 1

4
+ 2
√
m1 +

∑
d∈D\{0,γ}

(εm1)
d

2+d

[(
1

4

) 2
d+2

+ (2
√
m1)

2
d+2

]

+ (εm1)
γ

2+γ

[(
1

4

) 2
γ+2

+ (2
√
Hm1)

2
γ+2

]

where we used the fact that (a + b)φ ≤ aφ + bφ for a, b > 0 and 0 < φ < 1. We now bound the

H1/(2+γ) by using the definition of γ. Since

1

2 + γ
=

2 ln 2

4 ln 2 + lnH
≤ 2 logH 2

and since H ≥ 1, we have H1/(2+γ) ≤ 4. Therefore,

∆0

ε
≤ 1

4
+ 2
√
m1 +

∑
d∈D\{0,γ}

(εm1)
d

2+d

[(
1

4

) 2
d+2

+ (2
√
m1)

2
d+2

]

+ (εm1)
γ

2+γ

[(
1

4

) 2
γ+2

+ 4(2
√
m1)

2
γ+2

]

≤ 1

4
+ 2
√
m1 +

∑
d∈D\{0}

(εm1)
d

2+d

[(
1

4

) 2
d+2

+ (2
√
m1)

2
d+2

]

≤ 1

4
+ 2
√
m1

log2 γ∑
i=1

(εm1)1−2−i

[(
1

4

)2−i

+ 4(2
√
m1)2−i

]

≤ 1

4
+ 2
√
m1

log2 γ∑
i=1

m1−2−i

1

[(
1

4

)2−i

+ 4(2
√
m1)2−i

]
.

In the first inequality, we used the bound forH1/(2+γ) and in the second inequality we simplified

the expression by noting that all terms are non-negative. In the next step, we re-parameterized the
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sum. In the final inequality, we used the assumption that 0 < ε ≤ 1 and therefore ε1−2−i ≤ 1.

∆0

ε
≤ 1

4
+ 2
√
m1 +

1

4

log2 γ∑
i=1

(4m1)1−2−i + 4

log2 γ∑
i=1

(m1)1−2−i(4m1)2−i−1

≤ 1

4
+ 2
√
m1 +

1

4

log2 γ∑
i=1

(4m1)1−2−i + 16

log2 γ∑
i=1

(m1

4

)1−2−i−1

.

By requiring that

m1 ≤
1

4

and noting that 1− 2−i ≥ 1/2 and 1− 2−i−1 ≥ 3/4 for i ≥ 1, we can bound the expression by

∆0

ε
≤ 1

4
+ 2
√
m1 +

1

4
log2 γ

√
4m1 + 16 log2 γ

(m1

4

)3/4

.

By requiring that m1 ≤ 1/64 and m1 ≤ (2 log2 γ)−2 and m1 ≤ 1/64(log2 γ)−4/3, we can

assure that ∆0 ≤ ε. Taking all assumptions on m1 we made above together, we realize that

m1 ≤
(

1

8 log2 log2H

)2

≤
(

1

8 log2 γ

)2

is sufficient for them to hold where we used log 2γ = log2 (
⌈

1
2

log2H
⌉
) ≤ log2 log2H. This gives

the following condition on m

m ≥ 1024(log2 log2H)2|K × I|H
2

ε2
ln

6

δ1

which is a stronger condition that one in equation C.1.

By construction of ι(s, a), we have ι(s, a) ≤ 2 H
wmin

= 8H2|S|2
ε

. Also, κ(s, a) ≤ |S|mH
mwmin

=

4|S|2H2

ε
. Therefore

|K × I| ≤ log2

4|S|2H2

ε
log2

8H2|S|2

ε
≤ log2

2

8H2|S|2

ε
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which let us conclude that

m ≥ 1024
H2

ε2
(log2 log2H)2 log2

2

8H2|S|2

ε
ln

6

δ1

is sufficient condition and thus, the statement to show holds. �

Proof of Lemma 18: By Lemma 16, we know that number of episodes where |Xκ,ι| > κ for

some κ, ι is bounded by 6Emax|S||A|m with probability at least 1 − δ
8
. For all other episodes, we

have by Lemma 17 that

|Ṽ π̃k(λ̃(k))
0 (s0, λ̃

(k))− V π̃k(λ̃(k))
0 (s0, λ̃

(k))| ≤ ε

5
. (C.2)

Using Lemma 15, we get that M ∈ Mk for any episode k w.p. at least 1 − δ
8
. Hence, we get

the first result by applying the union bound if m satisfies

m ≥ 12800
|S|N2B2

λH
2

ε2
(log2 log2H)2 log2

2

(8H2|S|2

ε

)
log

6

δP
and

m ≥ 30H2

ε
log

10Emax

δ
.

From the definitions, we get

log
6

δP
= log

60|S|Umax

δ
= log

60|S|2|A|m
δ

.

Thus,

m ≥ 51200
|S|N2B2

λH
2

ε2
(log2 log2H)2 log2

2

(40H2|S|2

ε

)
log

60|S|2|A|m
δ

.

It is well-known fact that for any constant B > 0, ν ≥ 2B lnB implies ν ≥ B ln ν. Using this, we
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can set

m ≥ 102400
|S|N2B2

λH
2

ε2
(log2 log2H)2 log2

2

(40H2|S|2

ε

)
× log

(2048|S|3|A|H2

ε2δ
(log2 log2H)2 log2

2

(40H2|S|2

ε

))
.

On the other hand,

Emax = log2 |S| log2

40|S|H2

ε
≤ log2

2

40|S|H2

ε

and

log
10Emax

δ
= log

10 log2 |S| log2(40|S|H2/ε)

δ
≤ log

10 log2
2(40|S|H2/ε)

δ

≤ log
|S|4|A|H2

εδ
.

Setting

m = 102400
|S|N2B2

λH
2

ε2
(log2 log2H)2 log2

2

(40H2|S|2

ε

)
(C.3)

× log
(2048|S|4|A|H2

ε2δ
(log2 log2H)2 log2

2

(40H2|S|2

ε

))
.

is therefore a valid choice for m to ensure that with probability at least 1− δ
4
, there are at most

6Emax|S||A|m =614400
|S|2|A|N2B2

λH
2

ε2
(log2 log2H)2 log2

2

(4|S|H2

ε

)
log2

2

(8H2|S|2

ε

)
× log

(2048|S|4|A|H2

ε2δ
(log2 log2H)2 log2

2

(8H2|S|2

ε

))

sub-optimal episodes. Finally the proof concludes by the definition of dual function D(λ). �.

Proof of Lemma 19: Suppose we have n number of samples from each (s, a) which n ≥

2592|S|2H2 log 4/δ1. For a given λ ∈ [0, Bλ], we use Lemma 2 of [33] with adjustment. For any
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s ∈ S, first

Ṽ
π̃(λ)

0 (s, λ) ≥ Ṽ
π∗(λ)

0 (s, λ) ≥ V
π∗(λ)

0 (s, λ)−
√

32|S|H3N2B2
λ log 4/δ1

n
(C.4)

w.p. at least 1− 3|S|2|A| log 4/δ1. Next

V
π∗(λ)

0 (s, λ) ≥ V
π̃(λ)

0 (s, λ) ≥ Ṽ
π̃(λ)

0 (s, λ)−
√

32|S|H3N2B2
λ log 4/δ1

n
(C.5)

w.p. at least 1− 3|S|2|A|H log 4/δ1. Combining the two inequalities (C.4) and (C.5) leads us to

‖Ṽ π̃(λ)
0 (λ)− V π∗

0 (λ)‖∞ ≤
√

32|S|H3N2B2
λ log 4/δ1

n

w.p. at least 1 − 6|S|2|A|Hδ1. Now if we put ε
5

=

√
32|S|H3N2B2

λ log 4/δ1
n

and δ
4

= 6|S|2|A|Hδ1,

we get that n << |S|mH, which concludes that if we have |S|mH number of samples from each

(s, a), we get

P(‖Ṽ π̃(λ)
0 (λ)− V π∗

0 (λ)‖∞ ≤
ε

5
) ≥ 1− δ

4
.

Finally the proof concludes by the definition of dual function D(λ). �

Proof of Lemma 20 : For any k ∈ [0, K]:

E[‖xk+1 − x∗‖2|xk] = E[‖ΠX (xk − αg̃(xk))− x∗‖2|xk]

≤ E[‖xk − αg̃(xk)− x∗‖2|xk] = ‖xk − x∗‖2 + α2E[‖g̃‖2|xk]− 2αE[g̃T (xk)(xk − x∗)|xk]

≤ ‖xk − x∗‖2 + α2E[‖g̃‖2|xk]− 2α(g(xk)− g(x∗))

First inequality is due to the fact that distance from projection of point xk+1 to x∗ is smaller than

the distance from xk+1 to x∗. And the last inequality yields from the the fact that g̃ is unbiased

noisy subgradient of g(·). Now, we take expectation w.r.t. xk:
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E[‖xk+1 − x∗‖2] ≤ E[‖xk − x∗‖2] + α2E[‖g̃‖2]− 2αE[g(xk)− g(x∗)]

Now, we apply this procedure recursively from K to 1 and use the facts that ‖x‖ ≤ B1,∀x ∈ X

and ‖g̃‖ ≤ B2 :

E[‖xK+1 − x∗‖2] ≤ B2
1 +Kα2B2

2 − 2αE[
K∑
k=1

g(xk)−Kg(x∗)]

Because E[‖xK+1 − x∗‖2] is non-negative

E[
1

K

K∑
k=1

g(xk)− g(x∗)] ≤ B2
1 +Kα2B2

2

2Kα
.

Since g(·) is a convex function, then g( 1
K

∑K
k=1 xk)) ≤

1
K

∑K
k=1 g(xk). Hence,

E[g(
1

K

K∑
k=1

xk)− g(x∗)] ≤ B2
1 +Kα2B2

2

2Kα
.

Now, if we choose α = B1

B2

√
K
, we get

E[g(
1

K

K∑
k=1

xk)− g(x∗)] ≤ B1B2√
K

. (C.6)

�

Proof of Proposition 2 : For any given λ′ and λ from [0, Bλ]

D̃k(λ
′) = max

π,M ′∈Mλ′
L′k(π, λ

′) ≥ Ṽ
π̃k(λ)

0 (s0) +
∑
i

λ′i(C̄i − C̃
π̃k(λ)
i,0 (s0))

= Ṽ
π̃k(λ)

0 (s0) +
∑
i

λi(C̄i − C̃ π̃k(λ)
i,0 (s0)) +

∑
i

(λ′i − λi)(C̄i − C̃
π̃k(λ)
i,0 (s0))

= D̃k(λ) +
∑
i

(λ′i − λi)(C̄i − C̃
π̃k(λ)
i,0 (s0)).
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It shows that the vector [C̃
π̃k(λ)
i,0 (s0)]i is subgradient of D̃k(λ). Now, if we take E[·|Fε/5] we have:

D̃(λ′) ≥ D̃(λ) + (λ′ − λ)TE[[C̄i − C̃ π̃k(λ)
i,0 (s0)]i|Fε/5],

we get that [C̄i− C̃ π̃k(λ)
i,0 (s0)]i is stochastic subgradient of D̃(λ) by definition. Hence, we can apply

Lemma 20 and get the result with K and α specified by (4.24). To certify the choice of those

parameters, we provide the bound on λ and [C̃
π̃k(λ)
i,0 (s0)]i.

First, we bound λ :

‖λ‖2 =

√√√√ N∑
i=1

λ2
i ≤
√
NBλ ≤

√
N

H

C̄min

.

Next, we bound [C̃
π̃k(λ)
i,0 (s0)]i :

‖[C̃ π̃k(λ)
i,0 (s0)]i‖2 =

√√√√ N∑
i=1

(C̃
π̃k(λ)
i,0 (s0))2 ≤

√
N(H + C̄max).

Substituting these bounds for B1 and B2 in Lemma 20 would get

|D̃(λ̃(k))− D̃(λ̃∗)| ≤ ε

5
. (C.7)

Now, consider the following

D̃k(λ̃
(k))− D̃(λ̃∗) = D̃k(λ̃

(k))−D(λ̃(k)) +D(λ̃(k))− D̃(λ̃(k)) + D̃(λ̃(k))− D̃(λ̃∗)

≤ ε

5
+D(λ̃(k))− D̃(λ̃(k)) + D̃(λ̃(k))− D̃(λ̃∗)

≤ ε

5
+
ε

5
+ D̃(λ̃(k))− D̃(λ̃∗)

ε

5
+
ε

5
+
ε

5
=

3ε

5
.

w.p. at least 1− δ
4
. The first inequality is due to Lemma 18. The second is according to inequality
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(4.29) and Lemma 19. Finally, the last line is due to (C.7). Hence, the proof is complete. �

Proof of Lemma 21: For a given 0 < ε, δ < 1, we get that for any λ ∈ [0, Bλ] Algorithm 6

gives

P(|D̃(λ)−D(λ)| ≤ ε

5
) ≥ 1− δ

4
. (C.8)

according to Lemma 19.Now, for λ̃∗ we have

D̃(λ̃∗) ≤ D̃(λ∗) ≤ D(λ∗) +
ε

5
(C.9)

w.p. at least 1 − δ
4
. The first inequality is due to the definition of λ̃∗, and the second inequality is

true according to (C.8). Finally, consider

D̃k(λ̃
(k))−D(λ∗) = D̃k(λ̃

(k))− D̃(λ̃∗) + D̃(λ̃∗)−D(λ∗)

≤ 3ε

5
+
ε

5
=

4ε

5

w.p. at least 1− 3δ
4

according to proposition 2 and (C.9). Hence, the proof is complete. �
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