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ABSTRACT

Reported is an experimental and computational investigation of the low temperature heat capac-

ity, thermodynamic functions, and thermal conductivity of stoichiometric, polycrystalline CeO2.

The experimentally measured heat capacity at T<15K provides an important correction to the his-

torically accepted experimental values, and the low temperature thermal conductivity serves as the

most comprehensive data set at T<400K available. Below 10 K, the heat capacity is observed to

obey the Debye T 3 law, with a Debye temperature of ΘD = 455 K. The entropy, enthalpy, and

Gibbs free energy functions are obtained from the experimental heat capacity and compared with

predictions from Hubbard-corrected density functional perturbation theory calculations done by

colleagues. The thermal conductivity for stoichiometric CeO2 is determined using the Maldanado

continuous measurement technique, along with Laser Flash Analysis, and analyzed according to

the Klemens-Callaway model. Further heat capacity measurements were done on nonstoichiomet-

ric CeO2−δ samples in order to investigate signs of an anomalous heat capacity contribution in

historical experimental values. The low temperature heat capacity data for nonstoichiometric sam-

ples showed a Schottky anomaly characteristic of Zeeman splitting in a paramagnetic salt. This

Schottky contribution shows a magnetic dependence typical of Zeeman splitting of ground state

energy levels. The nonstoichiometric heat capacity measurements were fitted with a multi-level

Schottky funtion, and then the entropy was calculated. This entropy scales with the number of

oxygen vacancies in the lattice. These measurements show signs of a more complex magnetic

structure that has so far been unreported in the literature for this material.
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NOMENCLATURE
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H Enthalpy

G Gibb’s Function

kB Boltzmann’s Constant

NA Avogadro’s Number

CV Specific Heat at Constant Volume

CP Specific Heat at Constant Pressure

E Energy

h or h̄ Planck’s Constant or reduced Planck’s Constant

v Frequency

ω Angular Frequency

ΘE Einstein Temperature

ΘD Debye Temperature

g(ω) Density of States
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1. INTRODUCTION1

Cerium dioxide (CeO2) is used in a wide range of technological applications owing to its fa-

vorable redox properties, physicochemical stability, optical transparency, high dielectric constant

and refractive index, and mixed electronic-ionic conduction properties. CeO2 has attracted consid-

erable attention recently as a catalyst due to its high oxygen mobility and storage capacity[10, 11].

CeO2 is also suitable for epitaxial growth on Si [12], making it desirable for applications in mi-

croelectronics. CeO2-based materials find applications as automotive and biomedical catalysts,

[13, 14] gas sensors, [15] in high-temperature superconducting tapes, [16] hydrogen production

and fuel cells, [17, 18, 19] and luminescence devices[20]. CeO2 also serves as a surrogate for ac-

tinide dioxide nuclear fuels, such as UO2 and PuO2, and other f-electron oxide materials of interest

in nuclear waste management[21, 22].

With the wide applicability of CeO2 in modern technology, there is great interest and a wealth

of information available for this material in the literature. Despite the vast amount of published

data, limited thermal data exist in the low-temperature range below ≃ 400 K. As recently discussed

in the review by Konings et al. [23], the most extensive set of low-temperature heat capacity data

for CeO2 was collected in 1961 by Westrum and Beale between 5 and 300 K by adiabatic calorime-

try [1]. Heat-capacity measurements were also reported by Riess et al. [5] (350 − 900 K) using

adiabatic scanning calorimetry, and by Gallagher and Dworzak [4] (418 − 758 K) and Krishnan

and Nagarajan [3] (280 − 820 K) by differential scanning calorimetry (DSC). High-temperature

enthalpy increment data were reported by Kuznetsov et al. [2] (in the range 608 − 1172 K, al-

though data down to 298 K were mentioned in other studies [3]), by King and Christensen [6]

(400− 1800 K), and by Yashvili et al. [7] (391− 1624 K).

Furthermore, limited density functional theory (DFT) studies focused recently on the high-

1Part of this chapter is reprinted with permission from "A Comprehensive Assessment of the Low-Temperature
Thermal Properties and Thermodynamic Functions of CeO2" by T. D. Morrison, E. S. Wood, P. F. Weck, E. Kim, S.
O. Woo, A. T. Nelson, and D. G.Naugle 2019. The Journal of Chemical Physics, vol. 151, p. 044202, Copyright 2019,
The Journal of Chemical Physics and AIP Publishing.[9]
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temperature thermodynamic properties of CeO2 [24, 25, 26]. These computational investiga-

tions utilized Hubbard-corrected DFT (DFT+U ) within either the local-density approximation

(LDA+U ) or the generalized-gradient approximation (GGA+U ) to correctly describe strong on-

site Coulomb repulsion between localized Ce 4f electrons. Both GGA+U studies by Gopal and

van de Walle [24] and Niu et al. [26] utilized the standard parameterization of Perdew, Burke,

and Ernzerhof [27] (PBE) to calculate the thermodynamic properties of CeO2. However, a recent

GGA+U study by Weck and Kim [28] demonstrated that the more recent Perdew, Burke, and

Ernzerhof revised parameterization for solids [29] (PBEsol) describes experimental crystalline pa-

rameters and properties of CeO2 and Ce2O3 with superior accuracy, compared to other standard

GGA functionals such as PBE. Therefore, a reexamination of the thermodynamic properties of

CeO2 using DFT+U /PBEsol appears timely.

This joint experimental investigation of the thermodynamic properties of CeO2 below ≃ 400 K is

motivated by a need to extend the fundamental understanding of the lower temperature behavior

of this versatile material and to present a comprehensive and accurate thermodynamic picture of

this material in the lower temperature regime, as well as to provide a solid experimental test of

recent first-principles calculations. The low temperature data presented here is essential for testing

the modern computational techniques. DFT studies can be well fitted to the higher temperature

regimes, but if they do not match the low temperature behavior the modeling is not a truly accurate

picture of the material.

Specifically, the T ≤ 400 K heat capacity, thermodynamic functions, and thermal conductivity

measurements of stoichiometric, polycrystalline, sintered CeO2 monolithic samples is reported.

The heat capacity is measured using adiabatic calorimetry employing a combination of relaxation

and the dual slope techniques. The entropy, enthalpy function, and Gibbs free energy function are

obtained from the experimental heat capacity data and compared with predictions from Hubbard-

corrected density functional perturbation theory (DFPT) calculations using the PBEsol functional.

The thermal conductivity is determined using the Maldanado continuous measurement technique,

along with Laser Flash Analysis (LFA), and analyzed according to the Klemens-Callaway model.
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The results reported in this study below ≃ 400 K provide accurate thermal data for CeO2 in a

temperature range of high relevance for technological applications.
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2. THEORETICAL BACKGROUND

2.1 Some Preliminary Thermodynamics

It is natural to begin the theoretical discussion of this work with some simple thermodynamics.

The material here will be clarified in the subsequent sections. Further, there are number of excellent

works which are devoted to the principles of thermodynamics, but I feel it is important to briefly

cover the fundamentals here.

Consider two blocks of a material. To make things more familiar, let’s imagine them to be

copper. If you were to bring one of the blocks into contact with a mercury thermometer, then after

a certain length of time, the thermometer would equilibrate to a constant value. After removal of the

first block, let the second block be brought into contact with the same thermometer. Suppose that

there is then no change in the reading on the thermometer. We can then conclude that both blocks

are in thermal equilibrium with the given thermometer. This idea can be stated more formally. If

system A is in thermal equilibrium with system B, and system B is in thermal equilibrium with

system C, then system A is in thermal equilibrium with system C. Thus the relationship of thermal

equilibrium is transitive. Note that this fact is not derivable from other laws, and since it logically

precedes the other thermodynamic laws it is often referred to as the zeroth law of thermodynamics.

This law is then the basis of temperature measurement as numbers can be placed on the mercury

thermometers allowing for quantitative evaluation. Comparing different thermometers as well as

other measurement devices such as thermocouples or resistance thermometers remains an issue.

This suggests the need for a standard scale. The current scale is the International Temperature

Scale of 1990 or ITS-90. [30]

It is well known that if a quantity of heat dQ is added to a closed system, that heat will either

increase the internal energy dU or contribute to the work done by the system dW . That is to say,

conservation of energy must always hold. This relation is known as the first law of thermodynamics
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and is formally stated

dQ = dU + dW. (2.1)

Following the first law of thermodynamics, the traditional quantitative statement of the second

law of thermodynamics is due to Clausius. [31] Assuming that the heat exchange is reversible

the second law of thermodynamics allows for the calculation of entropy S in accordance with the

relation

dQ = TdS. (2.2)

Note that this equality does not hold for irreversible process. The second law is therefore a state-

ment that the entropy must either remain constant or always increase in a closed system.

When calculating the work done by a system, the example of a compression of an ideal gas

is very easy to imagine. In an ideal gas, the work done by the system must be an expansion (in

volume) of the gas. This is because, in a closed system, the pressure P is the same in all directions.

Then dW must be of the form

dW = PdV. (2.3)

Combining equations 2.1, 2.2, and 2.3 one can see that the change in internal energy is then

dU = TdS − PdV. (2.4)

Continuing with the example of an ideal gas, they obey what is arguably the most famous

equation of state

PV = nRT (2.5)

where P is the pressure, V the volume, n the number of moles, R is a constant, and T is the

temperature. In general, the temperature, volume, and pressure are not independent and obey an

equation of state of the form

f(P, V, T ) = 0. (2.6)
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This means that only two of these quantities may be varied at the same time, and the other must be

held constant.

There are other thermodynamic functions besides the internal energy that are often convenient

to work with. These are the enthalpy H , the Helmholtz function A, and Gibb’s function G whose

differentials are given by

dH = d(U + PV ) = TdS + V dP (2.7)

dA = d(U − TS) = −SdT − PdV (2.8)

dG = d(U − TS + PV ) = −SdT + V dP. (2.9)

The above relations are just a reformulation of expressing the internal energy under various condi-

tions.

2.2 Heat Capacity

2.2.1 The Law of Dulong and Petit

We start with the application of equipartition of energy, which states that for each degree of

freedom there is 1
2
kBT of energy. From just the translational degrees of freedom we get 3

2
kBT of

energy per atom. Energy added to solids takes the form of atomic vibrations and that contributes

three additional degrees of freedom and a total energy per atom of 3kBT . The specific heat at

constant volume should be just the rate of change with temperature (temperature derivative) of that

energy.

Energy (per mole) = 3NAkBT (2.10)

where kB is Boltzmann’s constant, T is the Temperature in Kelvin, and NA is Avogadro’s number.

It follows that,

CV =
∂

∂T
(3NAkBT )

= 3NAkB mole−1

= 24.94 J mole−1 K−1.

(2.11)
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This is known as the law of Dulong and Petit, after the scientists credited with its discovery. [32]

This analysis holds for a large number of materials at room temperature. However, at low temper-

atures the specific heat falls off quite rapidly and approaches zero as the temperature approaches

zero on the Kelvin scale.

2.2.2 Einstein Model of the Lattice Heat Capacity

Einstein is mainly remembered for his contributions of special and general relativity. One of

the lesser known great contributions he gave to physics was to explain the deviation of specific

heats at low temperatures from the law of Dulong and Petit. Dulong and Petit had assumed that

Maxwell-Boltzmann statistics were valid at all temperatures and had used those statistics and the

equipartition of energy to form their famous result. In the early 1900s, Einstein took a different

approach. [33] Say there are N atoms in a lattice. He treated them as a set of 3N independent

harmonic oscillators in one dimension, giving each an identical frequency ν. He then quantized

the energy of the oscillators following the work of Planck 11 years earlier in 1900. According to

Planck the energy E may only take on the values

E = nhν, n = 0, 1, 2, ...

where n is a positive integer, ν is the frequency, and h is Planck’s constant. Modern literature often

quotes the above relation in a slightly modified manner,

E = n

(
h

2π

)
(2πν) = nh̄ω (2.12)

where n is an integer, ω is the angular frequency, and h̄ is the reduced Planck Constant, which has

a value of 1.054 571 800× 10−34 J s−1.

Classically, the average energy of a harmonic oscillator is just Ē = kBT . Clearly this isn’t

the case when using the discrete quantized values suggested by Planck. For this Einstein turned to

the Boltzmann distribution law (also known as Gibb’s distribution). According to this distribution
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the ratio of populations in thermal equilibrium of two adjacent energy levels (n′ = n + 1) is

e−(En′−En)/kBT = e−h̄ω/kBT . The average energy is then

Ē =

∞∑
n=0

nh̄ωe−nh̄ω/kBT

∞∑
n=0

e−nh̄ω/kBT

=
h̄ω
(
e−h̄ω/kBT + 2e−2h̄ω/kBT + . . .

)
(1 + e−h̄ω/kBT + e−2h̄ω/kBT + . . . )

where the denominator normalizes the distribution. Changing variables to x = −h̄ω/kBT and

rearranging, we have

Ē = h̄ω
d

dx
log
(
1 + ex + e2x + . . .

)
= h̄ω

d

dx
log

1

1− ex
=

h̄ω

e−x − 1

resulting in the final expression

Ē =
h̄ω

eh̄ω/kBT − 1
. (2.13)

At higher temperatures (where kBT >> h̄ω) the denominator can be Taylor expanded as

eh̄ω/kBT − 1 = 1 +

(
h̄ω

kBT

)
+ · · · − 1 ∼=

h̄ω

kBT

which reduces 2.13 to Ē = kBT . This is just the classical average energy kB!! So at high tempera-

tures the method of Einstein gives the classical result, but at low temperatures it adds new features.

At low temperatures (where kBT << h̄ω) the term eh̄ω/kBT >> 1 and dominates the expression.

It is therefore reasonable to approximate the average energy at low temperatures by

Ē ∼= h̄ωe−h̄ω/kBT . (2.14)

Therefore, as T →zero, the heat capacity approaches zero as

CV
∼= Nk

(
h̄ω

kBT

)2

e−h̄ω/kBT . (2.15)
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In the above expression, the exponential factor dominates over the T−2 term. The conclusion is that

the heat capacity in the Einstein model varies as e−h̄ω/kBT in this, the low-temperature limit. Sadly

Einstein’s model does not fit perfectly with experimental observations. The true low-temperature

behavior of the lattice specific heat shows a T 3 dependence, not exponential as predicted in this

model.

Despite the difference in the Einstein model from true behavior, the model gives a generally

good description of the behavior of the heat capacity at low temperatures. The "goodness" of

the description relies on the appropriate choice of adjustable parameters. A good fit is one that

minimizes the difference between the model and experimental values. Being an extremely simple

model, the adjustable parameter is just the oscillator frequency ω. However, results are often

discussed in terms of a characteristic temperature ΘE , known as the Einstein temperature, defined

as

h̄ω = kBΘE. (2.16)

The full expression for the heat capacity in terms of the Einstein temperature is given by

C =
∂U

∂T
=

∂
(
NĒ

)
∂T

= NkB

(
h̄ω

kBT

)2
eh̄ω/kBT

(eh̄ω/kBT − 1)
2

= NkB

(
ΘE

T

)2
eΘE/T

(eΘE/T − 1)
2

. (2.17)

2.2.3 Debye Model of the Lattice Heat Capacity

Einstein started with the assumption that all the harmonic oscillators were independent and

shared a single characteristic frequency. While this was a major step forward in understanding the

quantum nature of the heat capacity it doesn’t give an accurate description of the low-temperature

behavior. Einstein himself was aware of this fact. In real materials the theoretical ideal of indepen-

dent harmonic motion of the atoms is clearly not going to be true. Since the low-temperature limit

is described by the mathematical relation kBT << h̄ω it’s easy to see that low frequency/long

wavelength motions will dominate. This is often described as the high frequency modes being
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"frozen out." Therefore it’s unreasonable to assume that the motions of the lattice can be ascribed

to a single characteristic frequency. These failures of the Einstein model were improved upon by

the models of Debye and Born and von Kármán in 1912. [34, 35]

In deriving the Debye model it is usual to suppose that of the 3N normal modes of lattice

vibration there are g(ω)dω modes in the range ω to ω + dω. Summing over all the modes in a

continuous fashion gives a total lattice energy of

U =

∫
h̄ω

eh̄ω/kBT − 1
g(ω)dω. (2.18)

The problem of calculating the energy or subsequently any thermodynamic functions is reduced to

calculating g(ω), known as the frequency spectrum or density of states.

During the time these theories were developed there were no computers and calculations were

performed by hand. For real materials the calculations could be incredibly difficult, time con-

suming and tedious. Of course now, while still not trivial, these problems are performed using

computational physics. Born and von Kármán’s approach was the more complicated of the two,

and so Debye’s model, with it’s incredible simplicity, became the go to method.

Debye’s method relies on the fact stated above that as the temperature decreases the low fre-

quency modes dominate. In solids the low frequency modes are the acoustic oscillations. Acoustic

oscillations are of long wavelength and are much larger than the atomic dimensions of the crystal

lattice. This allows the ideas of an elastic continuum to be used. Debye assumed a monatomic, ho-

mogeneous, and isotropic solid with the added condition that there are only 3N available modes.

Once the 3N modes are filled the modes are then cut off. Alternatively this means that there is

some maximum frequency allowable, known as the Debye frequency.

In order to solve this problem Debye assumed that solutions to the differential equations had

a linear dispersion relation, i.e. that the frequency was linearly proportional to the wave number

k. Assuming the proportionality constant is the velocity of sound in the crystal, c, we should have
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ω = ck and dk/dω = 1/c, so that per unit volume

g(ω) =
3

2π2c
k2 =

3

2π2c3
ω2. (2.19)

This relation is based on the plane wave solution of the differential equation for an acoustic wave

in a cube and can be easily derived, or found elsewhere.

In elastic solids, there are three possible types of waves. There can be a longitudinal wave

of velocity cL and two transverse shear waves both with velocity cT . Modifying the frequency

spectrum accordingly gives

g(ω) =
ω2

2π2

(
1

c3L
+

2

c3T

)
. (2.20)

For simplicity the rest of the derivation uses 2.19, but can be derived using this relation with more

effort.

The internal energy is then given by

U =
3h̄

2π2c3

ωD∫
0

ω3

eh̄ω/kBT − 1
dω. (2.21)

The condition for the cut off or Debye maximum frequency ωD is that

ωD∫
0

g(ω)dω =
3

2π2c3

ωD∫
0

ω2dω = 3N (2.22)

which evaluated gives
ω3
D

2π2c3
= 3N (2.23)

or finally

ωD = c
(
6π2N

)1/3
. (2.24)

Is this reasonable? Recall that the wavelength is given by 2π/k. The wavenumber is usually
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measured in cm−1 and estimating a number of modes as 1023 the minimum wavelength would be

λ ∼ 2π cm

(6π2 1023)1/3
∼ 3.5Å. (2.25)

This value is on the order of atomic spacing, and is reasonable based on Debye’s criteria for the

wavelength.

As with the Einstein model, changing variables to x = h̄ω/kBT changes the internal energy to

the form

U = 9NkBT

(
T

ΘD

)3
xmax∫
0

x3

ex − 1
dx (2.26)

where

xmax =
h̄ωD

kBT
=

(
h̄c

kBT

)(
6π2N

)1/3
=

ΘD

T
, (2.27)

gives the definition of the Debye characteristic temperature ΘD. Performing the derivative to get

the heat capacity we find

CV = 9NkB

(
T

ΘD

)3
xmax∫
0

x4ex

(ex − 1)2
dx. (2.28)

In the high temperature limit, T >> ΘD, x is small and so we can take the approximation

ex ≈ 1 + x, then the internal energy becomes

U = 9NkBT

(
T

ΘD

)3
xmax∫
0

x2dx

= 9NkBT

(
T

ΘD

)3
1

3

(
ΘD

T

)3

= 3NkBT

(2.29)

and the heat capacity becomes

CV =
∂U

∂T
= 3NkB, (2.30)
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where we again obtain the law of Dulong and Petit.

In the low temperature limit, T << ΘD, xmax can be approximated as approaching infinity

such that ∞∫
0

x3

ex − 1
dx = 6ζ(4) = 6

∞∑
0

1

n4
=

π4

15
(2.31)

where ζ(4) is the Riemann zeta function. Thus for T << ΘD,

U =
3

5
π4NkB

(
T 4

Θ3
D

)
(2.32)

giving the heat capacity as

CV =
∂U

∂T
=

12

5
π4NkB

(
T

ΘD

)3

. (2.33)

Here is where the Debye model shines, the heat capacity is correctly described as a T 3 law at low

temperatures and is based on a single adjustable parameter, ΘD.

Debye’s model is extremely successful at fitting data for a wide variety of materials at low to

moderate temperatures. However, it is not without some faults. The periodicity of the lattice causes

the medium to be dispersive; i.e. the velocity of wave propagation is frequency dependent. In real

materials this means that the Debye function doesn’t fit the data perfectly without evaluating ΘD

at each temperature. In practice, as the temperature is lowered, the value of ΘD begins to decrease

around ΘD/2, has a minimum, and then rises to a constant value below ΘD/50. Therefore the

ΘD values calculated from the T 3 dependence are only truly valid below ΘD/50. The model of

Born and von Kármán avoided these pitfalls, as Blackman later showed[36], but the simplicity of

Debye’s model won the day and continues to be the preferred method of analysis even today.

2.2.4 The Diatomic Lattice

Up until this point the lattice of atoms has been assumed to be monatomic. Most of the in-

teresting materials under study today are made up of a handful of different atoms. The theory of

lattice dynamics of these polyatomic materials are beyond the scope of this document and won’t

be covered here, but we can easily extend the discussion so far to a lattice of two different atoms.
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Calculation of the exact solution to a diatomic lattice is more suited to a theoretical work and

won’t be done here. However, if the two atomic masses are very different, say m >> M we can

use an approximation. If m >> M then the optical branch of modes won’t vary too much and

can be treated like it’s nearly constant. The optical mode can then be approximated as a set of

harmonic oscillators having a frequency

ω0
∼=
[
2β

(
1

m
+

1

M

)]1/2
∼= [2β/M ]1/2 (2.34)

where β is a force constant relating the elastic stiffness to the lattice spacing. In this scheme we

can then treat the optical modes using the Einstein model while using the Debye model for the

acoustic modes. Modern analysis does exactly this, where the experimental heat capacity is fit to a

combination of the Enstein and Debye models.

2.2.5 Heat Capacity of Conduction Electrons

So far the discussion presented here has only touched on the lattice vibrations, also known as

phonons, contribution to the heat capacity. The materials in this study are non-conductive, and so

one might imagine that we could skip talking about the electronic contributions. However, without

developing the theory of free electrons in a metal, I will briefly discuss their contribution to the heat

capacity so that we can convince ourselves later that there is no electronic contributions. For free

electrons their dynamics are that of free classical particles. In this approximation, the electron ’gas’

has 3 degrees of freedom and would make a contribution of C(el) = 3
2
NkB to the heat capacity.

Here, N is the number of electrons per unit volume and not Avogadro’s number. If N = NA, then

at high temperatures it would be reasonable to expect a total heat capacity (phonon and electron)

of 9
2
NAkB. In reality, the total heat capacity of almost all materials at high temperatures doesn’t

deviate from the law of Dulong and Petit. That is to say the total heat capacity is still just 3NAkB

and the electrons do not contribute to the total at high temperatures.

The underlying reason that the electrons do not contribute significantly to the heat capacity at

high temperatures is ultimately a consequence of the Pauli exclusion principle. The argument for
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the effect of the Pauli exclusion principle’s effect on the contribution to the heat capacity will only

be outlined here. The full derivation is rather involved and won’t be presented, but can easily be

found in the literature. The Pauli exclusion principle states that each electron can only occupy a

single quantum state, and therefore unlike a classical gas cannot all have the same energy. The

energy is quantized and each energy level can hold only a certain number of electrons, i.e. the

ground state can hold a maximum of 2, the first excited state can hold a maximum of 12, etc.

Depending on the number of electrons available some states will be filled and others will be empty.

The level which divides the filled and vacant states is known as the Fermi level (after Enrico Fermi)

at absolute zero or EF (0).

Upon heating from absolute zero, only a small portion of electrons gain an energy of ∼ kBT

as happens classically. Instead only the electrons already within an energy range on the order of

kBT can be thermally excited. This fraction is on the order of T/TF , where TF = EF (0)/kB, and

each gain an energy also on the order of kBT . For N total electrons the thermal energy U is then

of the order NT/TF × kBT = NkBT
2/TF . The electronic heat capacity is then

CV =
∂U

∂T
≈ NkB

TF

T.

TF is on the order of 5× 104K, and so even at room temperature the contribution to the total heat

capacity is small. The full result for a free electron of mass m is

CV (el) = γT ; γ = π2N1/3kBm/(3π2)2/3h̄2. (2.35)

At sufficiently low temperatures, usually below 4K, the electronic contribution becomes dominant

over the phonon contribution. Recall the phonon contribution decreases as T 3 at low temperatures,

where the electronic contribution is linear in T . Then the low temperature limit of the heat capacity

is

CV = αT 3 + γT (2.36)
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where α is a constant and is given in equation (2.33).

2.2.6 Schottky Anomalies

The simple models proposed by Einstein and Debye have been very successful at describing

the physical behavior of the heat capacity. The fact that they are in use over 100 years later is

a testament to that success. Yet there are other contributions to the heat capacity observed in

experimental data that they don’t predict. Many of these deviations from the expected theory were

originally classified as "anomalous" as they deviated from the "normal" behavior expected. This

description has remained even though many of the "anomalies" are now well understood and are

expected normal behavior. It is best to remember that the theory presented here is only a simple

model, and therefore only an approximation of true results.

As an example of these deviations, suppose there is a system in which the particles can exist

in a group of m energy levels, separated from the ground state by energies ε1, ε2, . . . , εm and with

degeneracies g1, g2, . . . , gm. The probability of a particle occupying the ith level is

gie
−εi/kBT∑

n

gie−εi/kBT

in accordance with the Boltzmann distribution. The mean energy at temperature T for N indepen-

dent particles is then

E =

N
m∑
i=0

εigie
εi/kBT

m∑
i=0

gieεi/kBT

(2.37)

The specific heat is then calculated in the usual fashion, by taking the derivative dE/dT . This

general problem was solved by Schottky in 1922, [37] and so heat capacities of multilevel systems

are referred to as Schottky anomalies in his honor. The full calculation for multiple levels is quite

tedious, but a simple two-level system is easy to do. For the simple case of two levels equation

(2.37) becomes

E =
Nε1g1e

ε1/kBT

g0 + g1eε1/kBT
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and so the Schottky specific heat is then

CSch =
Nε21
kBT 2

g0
g1

e−ε1/kBT

[1 + (g0/g1)e−ε1/kBT ]2

= R

(
δ

T

)2
g0
g1

e−ε1/kBT

[1 + (g0/g1)e−ε1/kBT ]2

(2.38)

where δ = ε1/kB is the difference in energy between the two levels, measured in Kelvin. At

T ≪ δ, the upper level will have a small population, where at T ≫ δ both levels will be nearly

equal in population. It is only at T ≈ δ that there will be transitions from one level to another in any

appreciable amount. This manifests as a large hump in the specific heat, which can be separated

out from the lattice or electronic contributions. The quantitative form is such that

CSch = R

(
g0
g1

)(
δ

T

)2

e−δ/T T ≪ δ (2.39)

= Rg0g1(g0 + g1)
−2

(
δ

T

)2

T ≫ δ (2.40)

where it is easy to see that the Schottky heat capacity goes to zero at the extremes of either low or

high temperature. CSch obtains a maximum value at an intermediate temperature Tm which obeys

the relation (
g0
g1

)
eδ/Tm =

(δ/Tm) + 2

(δ/Tm)− 2
(2.41)

where the maximum value is itself

CSch(Tm) =
R

4

Tm

δ

[(
δ

Tm

)2

− 4

]
. (2.42)

Recall this is only for a two level system, and if there are more degenerate levels the full equations

must be used. It is further possible to use these relations to determine δ and g0/g1 from experi-

mentally observed values of the specific heat. However, it is difficult for most real materials due

to many contributions to the specific heat. CSch cannot always be easily separated from the lattice,

electronic, or other contributions.
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2.3 Thermal Conductivity of Solids

Thermal Conductivity is a measure of how much heat can flow through a substance without

appreciable displacement of its constituent particles. This transfer of heat through a material can

occur regardless of the form of the material, whether its a solid, liquid, or gas. For solid materials,

the heat transfer is most easily defined with a steady state of flow down a long rod where there is a

temperature gradient along the rod. This set up follow’s Fourier’s heat equation,

Q̇ = κ
A

L
∆T, (2.43)

where Q̇ is a heat flux, ∆T is the change in temperature measured across length L, of cross-

sectional area A, and κ is the thermal conductivity.

For most solids there are two main carriers available to transfer the heat. Free electrons are the

primary heat carrier in metals, and for non-metals the heat is carried by lattice waves, better known

as phonons. Phonons themselves are bosons (have integer spin), and obey Bose-Einstein statistics.

The details and derivations are found in any text of statistical mechanics and won’t be repeated

here. The normal way to envisage the movement of phonons throughout a solid is the phonon gas

model. The phonons themselves can be thought of as an ideal gas in an enclosed container where

the phonons are the particles of the gas and the solid itself is the container. In this way the standard

analysis of random processes can be applied so that the heat is carried by the phonons through a

material as they experience frequent scattering and deflection.

As with a classical gas, we can assume a mean free path of the phonons given by ℓ = uτ where

ℓ is the average distance traveled between collisions, u is the average velocity of the phonon, and

τ is the time between collisions. Assuming the material is the same in all directions, or isotropic,

then ℓ2 = ∆x2 + ∆y2 + ∆z2 = 3∆x2 where we can limit ourselves to one dimension ∆x, as

∆x = ∆y = ∆z.
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With a little bit of non-rigourous and creative re-arranging we see that,

1

τ
=

1

3
u

ℓ

∆x2
, (2.44)

and we can re-arrange 2.43 replacing L with ∆x such that

κ =
1

τ

Q

∆T

∆x

A
=

1

3
u

ℓ

∆x2

Q

∆T

∆x

A
(2.45)

and using Q
V
= Q

∆xA
= CV∆T , we finally arrive at the classical result that

κ =
1

3
CV uℓ. (2.46)

Note that this is making a large number of assumptions, particularly that the mean free path

is on the order of the sample dimensions, and is not mathematically rigorous, but we can use this

result as a sanity check to see if the phonon gas model is reasonable. Since we obtain the classical

result for a gas, we conclude that this model is reasonable as long as the assumed conditions of

the model hold. This isn’t always the case, and to obtain the true relation between the thermal

conductivity, κ, and the heat capacity, CV , one must go through the full mathematical rigor. As

this isn’t truly practical for this experimental work, the full statistical derivation will be omitted

and any reader is encouraged to explore the topic in the standard literature.

The important takeaway is that the thermal conductivity can be expected to vary proportionally

to the heat capacity at low temperatures and should take a T 3 dependence as shown in equation

2.33 of the Debye heat capacity model.

2.4 The Klemens-Callaway Model

A simple model for thermal conductivity at low temperatures is the Klemens-Callaway model

(KCM) [38]. The full model won’t be covered here, but briefly introduced. To solve the Boltzmann

transport equation, this model assumes a Debye phonon dispersion relation and utilizes a relaxation

19



time approximation. The thermal conductivity as a function of temperature T is then given by

κ = κ1 + κ2 (2.47a)

κ1 =
kB
2πv

(
kBT

h̄

)3
ΘD/T∫
0

τc
x4ex

(ex − 1)2
dx (2.47b)

κ2 =
kB
2πv

(
kBT

h̄

)3

(
β

ΘD/T∫
0

τc
τU

x4ex

(ex−1)2
dx

)2

ΘD/T∫
0

1
τU

(
1− βτc

τU

)
x4ex

(ex−1)2
dx

(2.47c)

where β is the ratio of nomal to Umklapp processes, v is the mean velocity of sound in the solid, τc

is the phonon relaxation time due to combined normal and Umklapp processes, τU is the phonon

relaxation time due to Umklpapp processes, x = h̄ω/kBT is the reduced phonon frequency, ω, kB,

h̄, and ΘD are as defined previously.

The second Callway term k2 is often neglected as it only becomes large enough to contribute to

the overall thermal conductivity in very pure crystals. Most materials, and the materials studied in

this work, have a large number of defects and so this term can safley be neglected such that κ ≈ κ1.

There are many nuances to these models and more advanced models have been developed, but

as we’ll see the experimental data in this work is well fitted to this simple model.
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3. EXPERIMENTAL METHODS1

3.1 The Quantum Design Physical Properties Measurement System

All measurements in this study were made using a Quantum Design (QD) Physical Properties

Measurement System (PPMS). The PPMS is a customizable automated cryostat system that can

be operated from 1.8 to 400K. Quantum Design provides a number of different options depending

on the needs of the user. Our PPMS is equipped with resistivity, torque magnetometry, a.c. trans-

port, heat capacity, and thermal transport options. It is also equipped with an activated charcoal

cryopump for the high vacuum required in the heat capacity and thermal transport options as well

as a 9T longitudinal magnet. Only those options with relevance to this work will be covered here.

The heat capacity option uses relaxation calorimetry to measure the heat capacity of samples. It

is also capable of using a variation of relaxation calorimetry called the Dual-Slope technique which

will be covered in section 3.2.3. Other methods of measuring heat capacity such as a.c. calorimetry

and differential scanning calorimetry are beyond the scope of this work. Details of how the heat

capacity option operates will be given in sections 3.2.1, 3.2.2, and 3.2.3. Equipment specific to

this option will be covered in section 3.2.4. Methods of sample preparation for heat capacity

measurements are discussed in chapter 4, section 4.2. The resolution of the system is 10 nJK−1

at 2K. A detailed evaluation of the accuracy of using the PPMS for heat capacity measurements

was published by Lashley et al. in 2003 [39]. Their results showed that the accuracy is 1% above

10K, which decreases to about 5% below 5K.

The thermal transport option (TTO) enables measurements of thermal properties, other than

heat capacity, including thermal conductivity κ, and the thermopower (or Seebeck coeffecient) α,

over the entire temperature and magnetic field range of the PPMS. This option can also measure

electical resistivity ρ using the a.c. transport option hardware. Combining all of the above mea-

surements the PPMS can assess the thermoelectric figure of merit, ZT = α2T/κρ, which is the

1Part of this chapter includes text and images from Quantum Design user manuals. Text and images taken from
Quantum Design user manuals are used with permission, © 2021 Quantum Design, Inc.
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main quantity of interest in investigating thermoelectric materials. Normal operation of the TTO

uses a pulse power method to measure the thermal conductivity; however, it can be set up using

the traditional steady state technique. Operational details will be discussed in sections 3.3.1 and

3.3.2. The hardware required for this option will be presented in section 3.3.3. Sample preparation

methods for the thermal conductivity measurements are given in chapter 4 section 4.3.

3.2 Heat Capacity

This section will give a brief background of relaxation calorimetry, introduce the theoretical

models used by the PPMS in measuring heat capacity, cover the heat capacity option hardware,

and describe methods of sample preparation for heat capacity measurements in the PPMS.

While the origin of modern calorimetry can be traced to the 18th century with the work of

Black[40], followed subsequently by Lavoisier and Laplace[41], it wasn’t until the twentieth cen-

tury with the pioneering work of Eucken [42] and Nernst [43] that we see the adiabatic calorime-

try we use today. The current standard is the thermal relaxation technique, which was devel-

oped by Bachmann et al. in 1972 [44]. This technique has proven to be immensely popular in

condensed-matter research and has spawned a variety of calorimeters based on thermal relaxation

[45, 46, 47, 48, 49]. Part of the popularity of this technique is that this adiabatic measurement

approach relies directly on the classical definition of the heat capacity,

Cp = lim
dT→0

(
dQ

dT

)
p

(3.1)

where dQ is the heat input to the system and dT is the corresponding temperature rise in the

measured sample.

3.2.1 Simple Model

The PPMS will first attempt to use a simple model to calculate the heat capacity during mea-

surements. This model assumes that the sample is in good thermal contact with the platform, i.e.

that both platform and sample are at the same temperature during measurement. It is also assumed

that the temperature change is small.
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In general, a relaxation calorimeter operating semi-adiabatically measures the total heat capac-

ity (sample and addenda) by using a simple relation,

Ctotal = K · τ, (3.2)

where K is the thermal conductance of the weak link between a sample platform and a thermal

bath and τ is the constant of the temperature relaxation time between the platform and bath.

Since the PPMS uses this technique for heat capacity measurement we can describe the tem-

perature T of the platform as a function of time t. This function obeys the equation,

Ctotal
dT

dt
= P (t)−Kw(T (t)− Tb), (3.3)

where Ctotal is the total heat capacity of the sample and platform; Kw is the thermal conductance of

the supporting wires; Tb is the temperature of the thermal bath (puck frame); and P (t) is the power

applied by the heater. Equation 3.3 is a simple heat balance equation where the rate of heating is

expressed on the left hand side of the equation and is balanced by the heater power minus the heat

loss through the wires on the right. A schematic of the experimental set up can be seen in figure

3.1 along with its corresponding equivalent electronic circuit in figure 3.2.

To measure the heat capacity, the PPMS applies a square heat pulse to the sample. After the

heater power is turned off the sample temperature relaxes toward the temperature of the thermal

bath. The software then uses a least-squares curve fitting technique where the measured response

curve is compared to the solution of equation 3.3.

During the heating portion of the measurement, the heater power P (t) is equal to a constant

P0, where during the cooling portion it is zero. This condition can be mathematically stated as

P (t) =


P0 (0 ≤ t ≤ t0)

0 (t > t0)

. (3.4)
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Figure 3.1: Schematic of the experimental apparatus used to measure heat capacity in the PPMS.
Adapted from Quantum Design user training material.

Figure 3.2: Circuit equivalent of the simple model for heat capacity. Adapted from Quantum
Design user training material.
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When the power is switched off at time t0 the solution to equation 3.3 is subjected to Dirich-

let boundary conditions such that Ton(t0) = Toff (t0). Since the power given in equation 3.4 is

piecewise constant, the solution to the differential equation 3.3 takes on a closed-form expression,

T (t) =


P0τ(1− e−t/τ )/Ctotal + Tb (0 ≤ t ≤ t0)

P0τ(1− e−t0/τ )e−(t−t0)/τ/Ctotal + Tb (t > t0)

, (3.5)

where τ = Ctotal/Kw. P0 and t0 are known values controlled by the software. This is illustrated in

figure 3.3.

The software can then adjust the parameters Ctotal, Kw, and Tb to optimize the curve fit. The

least-squares method finds its optimum when the sum, SLS , of squared residuals is a minimum.

For this application the sum is given by,

SLS(Ctotal, Kw, Tb) =
∑
i

(T (ti)− Ti)
2, (3.6)

where the ti are the measured times and Ti the corresponding measured temperatures. The PPMS

applies this simple model to measure addenda and in general for most samples.

At very low temperatures, and with certain samples, the thermal resistance between the sample

and the platform can no longer be neglected. This introduces another degree of freedom to the

model which can be included by adding a second time constant.

3.2.2 Two-tau Model™

For many cases, good results are obtained using the simple model discussed above. The two-

tau model2 is a more complicated fitting model used when thermal coupling between the sample

to be measured and platform is poor. Poor coupling can occur when the thermal conductance of

the sample or the grease used to bond the sample to the platform is small relative to that of the heat

leak through the connecting wires or if the heat capacity of the wires is significant. Samples with

2Two-tau model™ is a trademark of Quantum Design. Text and images taken from Quantum Design user manuals
are used with permission, © 2021 Quantum Design, Inc.
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Figure 3.3: Idealized heat pulse and temperature response from a sample studied in this work dur-
ing heat capacity measurement. A square-pulse of height P0 is applied (upper diagram), resulting
in a temperature change of the sample and platform (lower diagram). The temperature curve is raw
data of a typical response from those studied in this work. Adapted from Quantum Design user
training material.
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a thermal conductance comparable to the connecting wires will have regions of the sample with

different temperatures. T (t) must then be represented by a sum of exponentials with different time

constants [44]. Alternatively, an impedance mismatch between the sample, grease, and platform

would also require a sum of exponentials. Poor coupling is usually characterized by cooling curves

with an abnormally high initial slope compared to the rest of the decay [50].

The two-tau model uses a modified technique initially developed by Hwang et al. [51]. They

examine the scenario of an impedance mismatch. The poor thermal coupling is treated as two heat

flows, one between the sample and platform, then one between the platform and thermal bath as

seen in figure 3.4.

Figure 3.4: Schematic of the experimental apparatus used to measure heat capacity in the PPMS
showing the two-tau model. Adapted from Quantum Design user training material.

Since the heat flow is split into two separate terms, we must also split the heat capacity into

separate terms where Ctotal = Cplatform+Csample. An equivalent circuit diagram is given in figure
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Figure 3.5: Circuit equivalent of the two-tau model for heat capacity. Adapted from Quantum
Design user training material.
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3.5. Equation 3.3 is then modified to give the following two equations,

Cplatform
dTp

dt
= P (t)−Kw(Tp(t)− Tb) +Kg(Ts(t)− Tp(t)) (3.7a)

Csample
dTs

dt
= −Kg(Ts(t)− Tp(t)), (3.7b)

where Cplatform is the heat capacity of the sample platform, Csample is the heat capacity of the

sample, and Kg is the thermal conductance between the two due to the grease. The respective

temperatures of the platform and sample are given by Tp(t) and Ts(t).

Using the same power given in equation 3.4, the solution for the cooling curve (t > t0) is

represented by the expression,

Tp(t)− Tb =

(
P0

Kw

)[(
τ − τ2
τ1 − τ2

)
e−t/τ1 +

(
τ1 − τ

τ1 − τ2

)
e−t/τ2

]
, (3.8)

where the functional forms of τ1, and τ2 are given in equations 3.9a and 3.9b.[50]

τ1 =

(
τ + τs

2

)(
1 +

√
1− 4τsτp

(τ + τs)2

)
(3.9a)

τ2 =

(
τ + τs

2

)(
1−

√
1− 4τsτp

(τ + τs)2

)
(3.9b)

where

τ ≡ Csample + Cplatform

Kw

(3.10a)

τs ≡ Csample/Kg (3.10b)

τp ≡ Cplatform/Kw. (3.10c)

Note that τsτp = τ1τ2 and τ + τs = τ1 + τ2.

In this case, there are now 5 unknowns (instead of 3) that the computer needs to fit to the

model, namely Csample, Cplatform, Kg, Kw, and finally Tb. However, if the heat capacity of the
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platform Cplatform was measured by creating an addenda then there are only 4 unknowns. The

PPMS software automatically applies the two-tau model if sample coupling, defined as 100% ·

(Kg/(Kg +Kw)), falls below 100%.

There are certain cases where both the simple model and the two-tau model give erroneous

results, specifically when Csample is not constant during the measurement. For these cases, we

must turn to slope analysis techniques.

3.2.3 Dual-Slope Technique

The thermal models and the data-fitting algorithm described in sections 3.2.1 and 3.2.2 assume

that the heat capacity is approximately constant over the range of temperatures covered by a single

measurement cycle. This assumption is not always true: for example, when materials being studied

undergo first order phase transitions. In such transitions, the heating and cooling curves during

relaxation must be treated separately. These cases are beyond the scope of this document, and

interested readers are referred to the literature for more information.

Analyzing the heating and cooling relaxation curves individually can be useful for all samples.

In this method, Ctotal is evaluated by directly comparing the heating and cooling rates of the sample

temperature without need of measuring the thermal conductance between sample and bath. To use

this technique, the heat capacity is measured continuously through a large temperature range. The

slope of T (t) is then calculated, making use of both the heating and the cooling curves. This

eliminates the need to know the thermal conductance of the weak link. This so called Dual Slope

(DS) method was proposed by Riegel and Weber [52].

More formally this is shown by,

Ctotal(T ) =
P (T )−Kw(T − Tb)

S(T )
, (3.11)

where S(T ) = dT/dt is the slope of the relaxation curve expressed as a function of temperature and

P (T ) is the heater power as a function of temperature. Note that this expression is for analyzing

the heating and cooling curves separately, which is important for samples undergoing first order
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transitions. For samples that don’t exhibit these features, we can combine the heating and cooling

curves into the simple expression,

Ctotal(T ) =
Ph(T )

Sh(T )− Sc(T )
. (3.12)

The "h" and "c" subscripts in this equation refer to the heating and cooling curves, respectively.

Pc(T ) = 0 as in equation 3.4. Nowhere in this formula is the Kw term used, as it has been

eliminated during the simultaneous equation solving. Figure 3.6 shows measurements made during

a typical heating and cooling cycle.

Figure 3.6: Typical example of a heat pulse in the dual slope method. Data is from a sample
measured in this study. Adapted from Quantum Design user training material.
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This has the benefit of removing uncertainties introduced by relatively poor knowledge of the

bath temperature and the wire conductance. This technique does not explicitly depend on the

heat loss through the wires; therefore, it is possible to obtain accurate heat capacity values from

relaxation curves that span 30% or more in temperature instead of the more typical 1–2%. This

allows much wider temperature spacing without compromising temperature coverage, leading to a

reduction in total measurement time.

3.2.4 Heat Capacity Hardware

The PPMS heat capacity hardware consists of a calorimetry puck, digital signal processing

(DSP) card, a sample mounting station, and high vacuum hardware. This section will cover the

basic design of the calorimetry puck and DSP card. Quantum Design provides various options,

particularly for use in 3He systems as well as a vertical puck for highly magnetic samples, which

are not covered here.

3.2.4.1 Calorimetry Puck

The PPMS calorimetry puck can be seen in figure 3.7. The puck itself is composed of the

sample platform and accompanying chuck. The sample platform is a thin 3mm× 3mm alumina

square. On the platform is a thin-film heater and a bare Cernox™ 3 thermometer. Calibration

of the Cernox thermometer is based on the ITS-90 temperature scale. The chuck, puck frame,

and thermal radiation shield are assumed to be gold plated oxygen-free high conductivity (OFHC)

copper. The "H grease" used for thermal connection between the chuck and the sample platform is

a hydrocarbon based grease called Apiezon H and is currently made by M&I Materials Limited.

3.2.4.2 Heat Capacity DSP Card

The heat capacity DSP card extends the base functionality of the PPMS motherboard to allow

heat capacity measurements. This card includes all the electronics needed to control the heaters

and thermometers simultaneously. Along with the puck hardware covered above, the DSP card is

3Cryogenic thermometer made by sputtering a zirconium oxynitride thin film. Trademarked and commercially
available from Lake Shore Cryotronics, Inc.
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Figure 3.7: Calorimeter Puck for the PPMS. Adapted from Quantum Design user training material.
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the heart of the heat capacity option. The card contains a digital signal processor used to control

a number of converters and gain amplifiers. Precise digital signal processing is required for mea-

suring the heater power and sample temperature versus time. To accomplish this, the DSP card

supplies heater power through a precision current source and a digital-to-analog converter (DAC).

The heater power used is then monitored by a separate analog-to-digital converter (ADC) and a

programmable gain stage. Another precision current source provides AC current for reading the

platform thermometer along with another ADC which measures the voltage across the thermome-

ter. The resistance of the thermometer is measured by driving a constant square-wave alternating

current at 244Hz in the thermometer. Resistance is then calculated on the card in approximately

4ms intervals by finding the difference between the positive and negative parts of the 244Hz cycle

as a current reversal technique. The DSP card also includes on-board resistors with minimal tem-

perature sensitivity for calibration. All of this is done in order to reduce error in the thermometer

measurement. The four-wire technique is used to reduce any contributions from the lead wires. The

square-wave alternating current is used to cancel any thermoelectric electromotive forces (EMFs)

by current reversal. Here the measurement voltage VM is given by a combination of measurements

with positive and negative polarity currents.

VM+ = VEMF + ISRTherm (3.13a)

VM− = VEMF − ISRTherm (3.13b)

VM =
VM+ − VM−

2
= |IS|RTherm, (3.13c)

where IS is the current source and RTherm is the thermometer resistance. Quantum Design also

utilizes twisted wire pairs in order to reduce errors induced by magnetic fields.

3.3 Thermal Conductivity

This section will give a brief background of thermal conductivity measurements, introduce

the theoretical models used in measuring thermal conductivity, cover the thermal transport option
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hardware, and describe methods of sample preparation for thermal conductivity measurements in

the PPMS.

The concept of heat flow can be argued to extend back to when man first discovered fire. As

such, the history of thermal conductivity is too immense to be covered in full here. Those interested

in the subject are encouraged to read the works of Burr [53], and Narasimhan [54, 55]. This short

history is a much-condensed version of the full history covered in those works.

Heat and heat flow have been known since before written documentation existed. Many great

scientists have contributed to the topic, and it cannot be fully explored in this work. However, in

terms of measurements and their techniques, it is convenient to start with the invention of the mer-

cury thermometer by Fahrenheit in the early 1700s. This is the accepted time period for repeatable

thermometry measurements, and the adoption of a standard temperature scale.

As briefly discussed in section 3.2, the work of Black, Lavoisier, and Laplace on latent and

specific heat in the middle 18th century paved the way for other quantitative thermodynamic mea-

surements. Lambert made a large contribution posthumously in 1779 with publication of work

introducing heat conservation, showing that the temperature profile of a heated object dropped off

logarithmically instead of linearly, and proving the importance of geometry in heat flow. Around

the same time, Benjamin Franklin conceived heat flow experiments that he prepared and gave to

Ingen-Houz, who showed that the rate of heat conduction differed depending on the material. Com-

parable to the work of Lavoisier and Laplace with the invention of a calorimeter, Count Rumford

(born Benjamin Thompson) is credited for inventing a heat flow measurement apparatus as well as

performing a number of measurements. The above mentioned works were all groundbreaking, and

helped to uncover some of the mystery of heat, which later allowed for more precise definitions of

heat in the 19th century as well as lay the groundwork for measurement techniques we use today.

Our basis of understanding today came from the work of Fourier in the 19th century. Fourier’s

mathematical analysis is still the basis of steady state heat flow methods we use today. While

others before him had uncovered parts of the picture, Fourier was unique in that he understood

the connection to specific heat. Fourier was also revolutionary in breaking away from accepted
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scientific thought at the time. Fourier is well-known for his theoretical physics contributions, but

in the time of formulation some of his ideas were so revolutionary that he required experimental

proof. Fourier then devised experimental techniques and carried out the first measurements of

thermal conductivity as we now know it.

Many other great physicists contributed to thermodynamics, such as Joule, Boltzmann, etc.

Further developments in thermal sciences are covered better elsewhere. Numerous measurement

devices have been developed, many in the 1950s and 1960s. Readers are encouraged to delve into

the papers and books of that time period, including authors such as G. White, R. Berman, G. Slack,

as well as many others.

3.3.1 Steady-State Method

Only the absolute axial steady-state method will be covered here. Other steady-state tech-

niques, such as the comparative or radial methods, were not used in this work, and can readily be

found in the literature.

The simplest experimental arrangement is that shown in figure 3.8. This is known as the lon-

gitudinal, or axial, heat-flow method. A known heat flux Q̇ is supplied by a heater to a sample of

uniform cross-sectional area A and length L. Ideally the same heat is removed at the other end.

We then have Fourier’s heat equation,

Q̇ = κ
A

L
∆T, (3.14)

where ∆T is the change in temperature measured across length L, and κ is the thermal con-

ductivity. The ratio A/L is often absorbed into one of the other factors or expressed as a constant

called the geometrical form factor.

The heat flux Q̇ is supplied by a small heater which in modern equipment usually consists of

a resistive circuit element. Since Q̇ has the same units as electronic power P = IV , the heat

input can be measured by monitoring the current and voltage drop across this resistive element.

Temperature is then measured at two points along the sample at a fixed distance. The PPMS uses
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Figure 3.8: Simple Steady State Heat Flow

two Cernox temperature sensors. Knowing the sample geometry one can then solve directly for

the thermal conduction,

κ =
L

A

Q̇

∆T
. (3.15)

Thus, in this arrangement, all quantities are directly measured.

This technique assumes that the sample is isotropic, homogenous, and that heat losses due to

radiation, heat conduction through gas or the connection leads, and convection currents are small.

With real samples, the assumptions of isotropy and homogeneity are suspect. However, with proper

care the heat losses can be controlled and minimized. The main disadvantage of this technique is

that achieving steady-state conditions can take enormous amounts of time. Thus, while the PPMS

can operate using this simple method, QD has employed the Pulse Power Method, also known as

the Maldonado technique, for normal operation. This method is discussed in the next section.
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3.3.2 Pulse Power Method

Steady-state methods are simple, yet powerful, and as with any experimental method, suffer

from drawbacks. The main drawback of steady-state techniques is the long measurement time re-

quired for steady-state conditions to be realized. The Pulse Power Method is an alternate technique

that allows for shorter measurement periods and is the default operation mode in the QD PPMS.

This method is attributed to Maldonado, who used it to measure both thermal conductivity and

thermoelectric power in 1992 [56]. The experimental setup is similar to that of the steady-state

measurement. The difference is that the bath temperature is slowly drifted and the heater current

is pulsed with a square wave. See figure 3.9. No steady-state conditions are ever established or

measured, allowing for measurement time to be substantially reduced.

As with heat capacity measurements, the thermal conductivity can be expressed in terms of an

equivalent circuit as in figure 3.10. The PPMS uses a slightly different model than the original

Maldonado technique. Mathematically, the model is given by the following equations,

Cheater
dTheater(t)

dt
= P (t)−Kleads(Theater(t)− Thot(t)) (3.16a)

Csample
dThot(t)

dt
= Kleads(Theater(t)− Thot(t))−Ksample(Thot(t)− Tcold(t)) (3.16b)

Ksample(Thot(t)− Tcold(t)) = Kleads(Tcold(t)− Tb), (3.16c)

where C represents the heat capacity, T is the time dependent temperature, P is the power input to

the heater, and K is the thermal conductivity. Subscripts denote the heater, sample, leads, and hot

and cold thermometers.

As with the heat capacity, QD uses a two-tau model for solving these differential equations.

The solution can be derived by a Laplace transform of these differential equations and is rather

involved, and will not be covered here. The change in temperature of the sample while heating is
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Figure 3.9: Schematic of the experimental apparatus used to measure thermal conductivity in the
PPMS. Adapted from Quantum Design user training material.
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Figure 3.10: Circuit equivalent of the thermal transport. Adapted from Quantum Design user
training material.
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then given by,

∆T (∆T∞, τ1, τ2; t) = ∆T∞ × [M(t− t0) + P−1M(t− t−1) + P−2M(t− t−2)] (3.17a)

M(τ1, τ2; t) = 1− τ1e
−t/τ1 − τ2e

−t/τ2

τ1 − τ2
(Heating) (3.17b)

where ∆T∞ represents the asymptotic temperature drop across the sample if the heater is left

on indefinitely, τ1 and τ2 are the long and short empirical time constants, respectively, of the

sample and Pn are the ratios of previous heater powers on previous pulses to the current pulse. See

figure 3.11 for an example of a heat pulse along with the temperature response at the hot and cold

thermometers in an idealized sample.

The cooling curve is modeled by changing the sign of the model equation, ∆Tcooling = A −

∆Theating, where A is a constant. The PPMS uses a non-linear least-squares fitting to fit the data

taken to these mathematical models and then reports the calculated thermal conductivity.

3.3.3 Thermal Conductivity Hardware

The PPMS Thermal Conductivity Option (TTO) hardware consists of a TTO puck (and its

subcomponents/accessories), the AC Transport (ACT) Option hardware (including digital signal

processing), a sample mounting station, and high vacuum hardware. This section will cover the

basic design of the TTO puck and brielfy discuss the ACT hardware. For more detail see the

Quantum Design hardware manuals [57, 58, 59, 60].

3.3.3.1 Thermal Transport Puck

The TTO sample puck can be seen in figure 3.12. The puck consists of a 12 pin plastic socket

interface, key indexed chuck, base, printed circuit board (PCB), thermometer/heater shoe assem-

blies, and isothermal radiation shield. There are three shoe assemblies, two temperature/voltage

shoes and one heater/current shoe. Each gold-plated copper "shoe" has a hole in which the ap-

propriate sample lead is inserted and held in the shoe by a small stainless steel metric M1 screw.

The temperature/voltage shoe assemblies contain a Cernox 1050 thermometer as well as a voltage
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Figure 3.11: Heat pulse and temperature response at hot and cold thermometer shoes during ther-
mal conductivity measurement.

Top Panel: Time trace of hot and cold thermometers during a heat pulse in this study; note that the
PPMS base temperature is slewing. This data taken while cooling.

Middle Panel: Corresponding temperature ∆T differentials across the sample, indicating thermal
time constants τ1 and τ2.

Bottom Panel: Heater power during square-wave heat pulse.
Adapted from Quantum Design user training material.
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lead that is soldered to the shoe itself. The heater/current shoe assembly contains a resistive heater

chip as well as an electrical current source lead (I+) that is soldered to the shoe. At the other end

of each shoe assembly is a five-pin electrical plug on which the serial number is written. These

plug into the PCB connected to the base. Each shoe type, heater or thermometer, is individually

serialized. In order to minimize thermal conduction away from the sample, QD uses 2 in long,

3mil diameter manganin wires for all connections except the (I+) current lead, which is made of

PD-135 low-resistance copper alloy. The sample is connected to the puck at the coldfoot, which

contains a Phillips screw and a stainless steel clamp on the bottom that clamps onto the sample

lead. A copper isothermal radiation shield screws into the base of the puck in order to minimize

radiation between the sample and the environment. A copper shield plate is also placed between

the sample stage and the PCB sockets to minimize radiation effects.

3.3.3.2 ACT Controller Card

The TTO system uses hardware for the ACT option in order to generate the heat pulse and

read back the sample thermal voltages in the thermal measurements, and to make the four-probe

resistivity measurement on the sample. The driver board in the ACT Controller excites the sample

by receiving and amplifying the signal from the AC boards digital signal processor. The sample

signal is detected by a preamplification board, which sends the signal to the ACT DSP for process-

ing. The ACT option provides as much as 200mA of current when being controlled by the TTO

system. More details are available in the Quantum Design hardware manuals [57, 58, 59, 60].

3.4 Laser Flash Analysis

Laser Flash Analysis results were performed by the Nelson group at Los Alamos National

Laboratory. These results are compared with the measurements done on the Quantum Design

system in the Naugle laboratory at Texas A&M University. An LFA 427 made by Netzch-Gmbh

(Germany) was used for the measurement. This instrument uses a pulsed laser to irradiate the

bottom of a pellet sample mounted in a carrier system and inside a furnace. The furnace is heated

to a desired temperature before measurement. A thermocouple measures the sample temperature
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Figure 3.12: Thermal Transport Option Puck. Adapted from Quantum Design user training mate-
rial.
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and an infrared (IR) detector are used to simultaneously determine the heat capacity and thermal

diffusivity. The method used is based upon the original work by Parker et al.[61].
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4. SAMPLE PREPARATION1

4.1 Sample Fabrication

The experimental investigations in this study were performed on rod-like cylinders prepared via

conventional powder metallurgical methods. These samples were prepared by the Nelson group

at Los Alamos National Laborities. CeO2 monoliths were prepared using a modified procedure

to that reported by Nelson et al. [21]. CeO2 powder (Alfa Aesar 99.99% purity rare-earth oxide

(REO) basis, Lot C09Y013) was mixed with a binding agent, 0.45% ethylene bis(stearamide)

(Sigma Aldrich Lot 1204CD). The binder and powder were homogenized using a high energy

ball mill for 30 minutes in a zirconia jar and with zirconia ball. The resulting powder was sieved

through a -200 mesh sieve to produce a fine power for pressing. The powder was pressed into

cylindrical geometries (pellets) with a 4.17 mm diameter and approximately 6.5 mm tall. The

pellets were sintered on a bed of CeO2 powder at 1873 K for 4 hours in an Al2O3 crucible. A 1473

K isothermal soak, following the sintering step, was employed to set the CeO2.0 stoichiometry.

Figure 4.1: Thermal profile used to sinter CeO2.

1Part of this chapter is reprinted with permission from "A Comprehensive Assessment of the Low-Temperature
Thermal Properties and Thermodynamic Functions of CeO2" by T. D. Morrison, E. S. Wood, P. F. Weck, E. Kim, S.
O. Woo, A. T. Nelson, and D. G.Naugle 2019. The Journal of Chemical Physics, vol. 151, p. 044202, Copyright 2019,
The Journal of Chemical Physics and AIP Publishing.[9]
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Following the sintering profile, each pellet was weighed on a balance calibrated to 1 mg. The

height and diameter were measured using calipers. These measurements were used to calculate a

geometric density (7.21 g/cm3) [62] and percent theoretical density, which was determined to be

97% ± 1%. Average grain size was measured to be 20.5 µm with a 1.9 µm standard deviation

using the ASTM standard E112-12 Circular Intercept Procedure. A characteristic micrograph of

this microstructure is displayed in Figure 4.2.

The stoichiometry of the CeO2 is assumed to be minimally reduced (i.e. CeO1.995). See Nelson

et al. [21] for more details on the achievable stoichiometries of CeO2 via powder metallurgical

methods.

4.2 Heat Capacity Sample Preparation

Prior to heat capacity measurements a small flat disk of approximately 1mm height was cut

from the pellets using a wire diamond saw. Samples were weighed to within 0.1mg with an

analytical balance. Measurements were performed in a Quantum Design Physical Properties Mea-

surement System (PPMS) from 2 to 400K. In all measurements, Apiezon N grease was placed

on the sample platform to facilitate thermal conduction between the sample and platform. Ca,

the combined addenda heat capacity of the platform, temperature sensor, heater, and including the

contribution of the grease, was measured over the desired temperature range before the sample was

loaded onto the platform. Addenda measurements were performed before each run. Ca was then

subtracted from the total measured heat capacity to obtain the heat capacity of the sample. The

standard relaxation technique was adopted for the entire temperature range. For finer spaced data

the dual-slope method[52] was employed from 2 to 40K.

4.3 Thermal Conductivity Sample Preparation

For thermal conductivity measurements samples were prepared by first cutting the sample into

a small brick of approximately 7mm× 1mm× 1mm using a wire diamond saw. Samples were

covered with Kapton tape exposing only the ends and small sections where the leads were to

be attached. 50 nm of gold-palladium was then sputter coated onto the surface with an Anatech
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100 µm 

Figure 4.2: Micrograph of CeO2 at 700× magnification using a backscatter detector. Sample was
cross-sectioned and thermally etched prior to imaging.
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Hummer Sputtering System. Leads to the sample were made using high thermal conductivity

epoxy (Epotek EK2000) and 5 mil (0.127mm) diameter bare copper wire. The bare copper wire

was wrapped around the sample on the sputtered gold-palladium surface to provide temperature

measurement leads and twisted together to make a snug fit against the sample. The epoxy was then

used to cement the copper wire leads to the sample. Finally the Kapton tape was removed and the

epoxy cured. We used the cure schedule recommended by the manufacturer to attain the highest

thermal conductivity. This cure schedule consisted of an initial cure at 125 °C for 2 h followed by

two step thermal post-cure of 150 °C for 36min and 200 °C for 15min. The cure schedule was

performed in a laboratory furnace using an argon atmosphere and according to the manufacturer,

would result in a thermal conductivity of approximately 35.5Wm−1K−1. The finished samples

are represented by a typical example in Figure 4.3.

All samples were prepared in a 4 probe configuration to reduce contact resistance. Samples

were measured multiple times by calipers to get an average of the cross sectional area and length

between the two thermometer contacts. Since CeO2 is an electrical insulator the 4 probe con-

figuration is only reducing the thermal resistance and would normally be measured in a 2 probe

configuration, however the high conductance of CeO2 results in the sample thermal resistance

and contact thermal resistance being of similar magnitude and as such, extreme care was taken to

eliminate any effects of contact resistance. Thermal conductivity measurements were performed

using the thermal transport option (TTO) of the Quantum Design PPMS. The TTO used a 2 kΩ

metal film resistor as a heat source and 2 Cernox® resistance thermometers made by Lake Shore

Cryotronics. These thermometers offer excellent measurement stability over the entire available

temperature range of the PPMS. [63] The samples were mounted by first attaching one of the outer

copper wire leads to the cold foot heat sink of the TTO puck. The heater and both the "hot" and

"cold" thermometers are attached to gold plated oxygen free high conductivity copper mounts. The

other 3 copper wires of the 4 probe configuration were mounted to the thermometers and heaters

by means of a screw. Thermal losses between the copper wire and the platforms is assumed to be

negligible. Great care was taken to not have any physical contact between the thermometers and
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Figure 4.3: Microscope image of a typical CeO2 sample after preparation with copper wire and
high thermal conductivity epoxy.
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Figure 4.4: Microscope image of a typical CeO2 sample after mounting on the Quantum Design
thermal transport option measurement puck.

the TTO puck itself. An example image of one of the fully mounted CeO2 samples is presented in

Figure 4.4. As previously discussed in section 3.3.2 the PPMS was operated in continuous mea-

surement mode, which utilizes the Maldanado[56] technique. Curves were taken from 2 to 400K

while both cooling and heating at a rate of 0.5K/min.
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5. STOICHIOMETRIC CEO2 RESULTS AND DISCUSSION1

In this chapter I will present the detailed experimental results of our stoichiometric, polycrys-

talline, sintered CeO2 monolithic samples. This data will then be compared with other experi-

mental literature, laser flash analysis experiments done at Los Alamos National Laboratory as well

as density functional perturbation theory (DFPT) calculations performed by colleagues at Sandia

National Laboratory/University of Nevada Las Vegas. By collecting high quality thermodynamic

experimental data in the T ≤ 400 K range we are able to provide a unique look at how well modern

computational calculations match with fundamental thermodynamic experiments. Although this

range has been experimentally measured before, it will be shown that these results define a new

standard for low temperature measurements of this material. With the exception of the Laser Flash

Analysis measurements, all experimental work was performed by me at Texas A&M. The work

presented in this chapter has been published by Morrison et al. "A Comprehensive Assessment of

the Low-Temperature Thermal Properties and Thermodynamic Functions of CeO2," The Journal

of Chemical Physics (2019) [9]. Much of the same material will be presented here, with in depth

expansion of the discussion where appropriate. Considerable work was done in doing numerical

integration of the heat capacity data to extract the thermodynamic functions of this material. A

more thorough discussion of this aspect, as well as the Klemens-Callaway model fitting will be

included. Results of non-stoichiometric ceria will be reviewed in chapter 6.

5.1 Raman Spectroscopy

In order to verify that the samples studied were of high quality and also attempt to character-

ize the oxygen vacancies present, a series of Raman spectroscopy measurements were performed.

Raman measurements were performed at room temperature using a Jobin Yvon Horiba LabRAM

HR (Villeneuve d’Ascq, France) instrument coupled to an Olympus BX41 microscope with a 50Œ

1Part of this chapter is reprinted with permission from "A Comprehensive Assessment of the Low-Temperature
Thermal Properties and Thermodynamic Functions of CeO2" by T. D. Morrison, E. S. Wood, P. F. Weck, E. Kim, S.
O. Woo, A. T. Nelson, and D. G.Naugle 2019. The Journal of Chemical Physics, vol. 151, p. 044202, Copyright 2019,
The Journal of Chemical Physics and AIP Publishing.[9]
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objective using a 514.5 nm laser excitation from an Ar-ion laser. An 1800 lines/mm grating spec-

trometer equipped with a Peltier-cooled charge-coupled device (CCD) detector (Andor) was used

to acquire spectra yielding a spectral resolution better than 2 cm−1 and spatial resolution of about

1 µm. The experimentally determined Raman spectrum of a typical CeO2 sample in this study (see

Figure 5.1) shows the distinct F2g band at 465 cm−1. Extraction of the Raman peak was carried

out via custom code written in the python programming language and utilizing the python built

in module Lmfit along with a combination of other python packages for data analysis including

Pandas. To properly model the Raman peak I chose to use a custom model that is a combination

of the LorenztianModel class and LinearModel class. The linear part of the model was to take out

the background measurement, while the Lorenztian model was the actual peak fitting shape. The

Lorenztian model is based on the Cauchy-Lorentz distribution function. This model has three Pa-

rameters: amplitude, center, and sigma. In addition, parameters for the full width at half maximum

and maximum peak height are included as constraints.

f(x;A, µ, σ) =
A

π

[ σ

(x− µ)2 + σ2

]
(5.1)

where the parameter amplitude corresponds to A, center to µ, and sigma to σ. The full width

at half maximum is then given by 2σ.

Results of this modeling gave a peak of 464.8 cm−1 agreeing completely (and within the esti-

mated spectral resolution of 2 cm−1 ) with "eye-ball" graphing results of a peak at 465 cm−1 . The

full width at half maximum is measured to be 7 cm−1 using this Lorentzian fit. This band is con-

sistent with single crystal CeO2 at 465 cm−1 [64, 65, 66]. As detailed in previous polycrystalline

sample measurements [67, 68] large grain size samples show a Raman spectra consistent with

single crystal samples. DFPT calculations performed by Sandia/UNLV as part of the published

study predict a value of 458 cm−1. This is in good agreement with the experimentally obtained

value. The lack of any other peaks in the 400-600 cm−1 range indicate that the samples are highly

stoichiometric with no detectable oxygen vacancies. See Schilling et al. [68] for a thorough

discussion of the effect of oxygen vacancies on the F2g band. Further Raman measurements of
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Figure 5.1: Typical Raman Shift of CeO2 Samples in this study. The vertical line at 465 cm−1
represents the F2g peak and is typical of high quality samples.
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nonstoichiometric CeO2 − δ samples will be presented with their heat capacity data in chapter 6.

5.2 Molar Heat Capacity

Figure 5.2 displays the isobaric molar heat capacity at standard pressure (P = 1 bar) de-

termined by my experiments at Texas A&M. Figure 5.3 depicts the calculated entropy from the

low-temperature calorimetric measurements of the present study and those of Westrum and Beale

[1], along with DFPT calculated values for bulk CeO2. Figure 5.2 also shows calorimetric data

from Kuznetsov et al.[2], Krishnan and Nagarajan[3], Gallagher and Dworzak[4], Riess et al.[5],

and King and Christensen[6].

Measured results are in excellent agreement with those of Westrum and Beale throughout most

of the temperature range, with an important correction at T<15K. Estimated error bars are ±5% or

smaller as detailed in Lashley et al. [39]. Data presented here is an average of 3 different samples.

Each data point was also taken 3 times for each sample and averaged together (2 times for dual

slope data).

As shown on the inset C/T vs T2 plot in Figure 5.2, below 15 K (where T 2 < 200) there is a

significant deviation in the data from the previously published values. The deviation in the current

and previously reported data can, in part, be due to improvement in measurement techniques over

the last 60 years. Modern instruments such as the PPMS feature high volume automatic data col-

lection and analysis, as well as real time slope fitting and precise temperature control. Westrum

and Beale had two operators of their cryostat system and took their data by hand while simulta-

neously compensating temperature drifts. Their work is extremely impressive and should remain

a recognized gold standard. However, the difference is hypothesized here to be due to impurities

in Westrum and Beale’s original samples. This argument is supported by the excellent work of

Gruber et al. [69] concerning impurities in Ce2O3 samples measured by Westrum and Beale. The

deviation of Westrum and Beale’s CeO2 data from that reported here at low temperatures shows

characteristics similar to that of a Schottky anomaly, which could be due to sample impurities.

This is supported by measurement of Cp in nonstoichiometric samples (CeO2−δ, δ = 0 − 0.032)

that will be presented in the chapter 6.
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Figure 5.2: Measured standard-pressure isobaric molar heat capacity (CP) of CeO2 and
DFPT/PBEsol calculated CP and isochoric molar heat capacity (CV). Calorimetric data from
previous studies are also displayed: Westrum and Beale[1], Kuznetsov et al.[2], Krishnan and
Nagarajan[3], Gallagher and Dworzak[4], Riess et al.[5], King and Christensen[6]. Inset shows
experimental data as C/T vs. T 2 and a fit of the data to the low-temperature T 3 limit of the simple
Debye model.
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Figure 5.3: Calorimetric data and DFPT/PBEsol results for the entropy of CeO2. Calorimetric
data from Westrum and Beale[1] are also represented.
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All measurements showed the expected sigmoid behavior typical of crystalline salts. At low

temperatures the well known Debye model provides a simple yet successful one parameter model

to describe the heat capacity [34]. For the phonon contribution, the low temperature limit of the

heat capacity reduces to

C =
12

5
π4NAkB(

T

ΘD

)3 (5.2)

where NA is Avogadro’s number, ΘD is the Debye temperature, kB and T are the same as de-

fined above, and C = Cv ≈ Cp. Thus, at sufficiently low T , C varies vary as T 3 and a plot of

C/T against T 2 will be a straight line. It must be stressed that equation (5.2) is valid only for

temperatures of the order of T < ΘD/50.

As can be seen in the inset of Figure 5.2 there is no indication of magnetic or electronic contri-

butions to the heat capacity of stoichiometric CeO2. To extract ΘD a linear least squares regression

was performed on C/T vs. T 2 data. Since CeO2 is not a monatomic solid, equation (5.2) must be

multiplied by the number of atoms per molecule to properly fit the data. Using the simple Debye

model ΘD was calculated to be 455 K. This value lies in between previously reported data: ΘD =

409 K[8], 480 K[70], and also within the range of recent theoretical calculations ΘD= 481 K[28]

and ΘD= 414.5-582.9 K[25] depending on calculated parameters.

This experimental work was motivated in part to provide a unique test to the modern compu-

tational calculations available. Most of the interest in CeO2 lies in the high temperature regime,

where CeO2 is used as a non-nuclear surrogate for UO2 and PuO2. Total-energy calculations were

conducted using spin-polarized density functional theory (DFT), as implemented in the Vienna Ab

initio Simulation Package (VASP) [71, 72]. The parameterization of Perdew, Burke, and Ernzerhof

revised for solids [29] (PBEsol) was utilized, since it accurately reproduces the measured crystal

parameters and properties of CeO2 [73, 28]. Information about this is included here for context, but

the work was not done by me and so will not receive attention in this thesis. For more information

please refer to the published paper [9].

To compare to the experimental work, the isobaric molar heat capacity, CP, was computed as

the second derivative of the Gibbs free energy with respect to the temperature by colleagues at
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Sandia/UNLV:

CP(T, P ) = −T
∂2G(T, P )

∂T 2
= T

∂V (T, P )

∂T

∂S(T, V )

∂V

∣∣∣
V=V (T,P )

+CV[T, V (T, P )]

(5.3)

where V (T, P ) corresponds to the equilibrium volume at T and P . In Eq. (5.3), the isochoric

molar heat capacity CV is defined as,

CV = kB
∑

(βh̄ω)2
eβh̄ω

[eβh̄ω − 1]2
, (5.4)

and the entropy is computed using the expression:

S = −kB
∑

ln
[
1− e−βh̄ω

]
− 1

T

∑ h̄ω

eβh̄ω − 1
. (5.5)

The standard values calculated from DFPT at T = 298.15 K by the Sandia/UNLV group and

published in [9] are C0
P = 63.4 J mol−1 K−1 and S0

P = 61.1 J mol−1 K−1, and are in good

agreement with calorimetric data. They show less than 2% deviation from the experimental values.

5.3 Thermodynamic Functions

In order to derive the enthalpy and entropy functions, the thermal evolution of the isobaric heat

capacity calculated from DFPT/PBEsol for bulk CeO2 was fitted using a nonlinear least-squares

regression to a Haas-Fisher-type polynomial [74],

CP = a+ bT + cT−2 + dT−0.5 + eT 2, (5.6)

with the resulting optimized coefficients in the temperature range 100-450 K: a = 2.04096 · 102,

b = −1.370 · 10−1, c = 2.44059095 · 105, d = −1.901314 · 103, and e = 8.5 · 10−5. The sum of

squared differences between calculated and fitted CP data was 7 · 10−3.
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The enthalpy function, (HT −H298.15) · T−1, was calculated by analytical integration of the fit

to the isobaric heat capacity using the formula:

(HT −H298.15) · T−1 =

T∫
298.15

CP(T )dT, (5.7)

The Gibbs energy function, (GT −H298.15) · T−1, was computed using the expression:

(GT −H298.15) · T−1 = (HT −H298.15) · T−1 − S, (5.8)

where S is the entropy calculated from Eq. (5.5). Results for the experimental and computed

enthalpy function and Gibbs energy function for bulk CeO2 are shown in Figures 5.4 and 5.5,

along with previous experimental data from Westrum and Beale [1], King and Christensen [6], and

Yashvili et al. [7]

5.4 Thermal Conductivity

In Figure 5.6 presents the thermal conductivity of bulk CeO2 pellets from 2-400 K using the

Maldonado[56] technique. Also presented are the results of LFA (this work), along with previ-

ously published data by Khafizov et al. [8]. Low-temperature thermal conductivity data and LFA

data in this study are in excellent agreement. Further, measured values are in good agreement with

previously published data. The only low-temperature thermal conductivity data of bulk polycrys-

talline CeO2 pellets in the literature to date was performed by Khafizov et al. [8]. However, the

focus of that study was mainly thin films of CeO2, not the bulk properties and used modulated ther-

moreflectance microscopy (MTRM) from 77-1000 K. The room temperature value of the thermal

conductivity was found to be 16.7 W m−1 K−1, also in good agreement with that determined for

CeO2 of similar purity. [75]

In order to determine the thermal conductivity using LFA, the thermal diffusivity was measured

on three samples. All three samples provided data in good agreement across the temperature range

investigated. The thermal diffusivity is observed to monotonically decrease with temperature, as
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Figure 5.4: Experimental data and DFPT/PBEsol results for the enthalpy function of CeO2. Calori-
metric data from Westrum and Beale[1], King and Christensen[6], and Yashvili et al.[7] are also
shown.

61



0 50 100 150 200 250 300 350 400 450

Temperature (K)

60

80

100

120

140

160

180

200

220

240

260

280

300

G
ib

b
s
 e

n
e

rg
y
 f

u
n

c
ti
o

n
 (

J
.m

o
l-1

.K
-1

) Expt., this study

DFPT/PBEsol, this study

Expt., Westrum and Beale

Figure 5.5: Experimental data and DFPT/PBEsol results for the Gibbs energy function of CeO2.
Calorimetric data from Westrum and Beale[1] are also displayed.

62



0 50 100 150 200 250 300 350 400
Temperature (K)

0

20

40

60

80

100

120

Th
er

m
al

 C
on

du
ct

iv
ity

 (W
 m

1  
K

1 )

Expt., this study
Expt., LFA, this study
Expt., Khafizov et al.
KCM Fit, this study
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typical of an oxide ceramic in this temperature range. Thermal conductivity can then be calculated

using the product of the thermal diffusivity, specific heat capacity, and density. The heat capacity

of CeO2 measured as described earlier in this work provides this data as a function of temperature

over the temperature range where LFA was used to collect thermal diffusivity data. This data is

converted from a molar heat capacity to a specific heat capacity by assuming a molar mass of

CeO2 as 172.12 g/mol. Density is assumed constant as 6.85 g/cm3. This value corresponds to 95%

theoretical density, within 1% of the value measured for all samples measured.

A simple model for thermal conductivity at low temperatures is the Klemens-Callaway model

(KCM) [38]. To solve the Boltzmann transport equation, this model assumes a Debye phonon

dispersion relation and utilizes a relaxation time approximation. The thermal conductivity as a

function of temperature T is then given by

κ =
kB
2πv

(
kBT

h̄

)3
ΘD/T∫
0

τ(x, T )
x4ex

(ex − 1)2
dx (5.9)

where v is the mean velocity of sound in the solid, τ(x, T ) is the phonon relaxation time, x =

h̄ω/kBT is the reduced phonon frequency, and ω, kB, h̄, and ΘD are as defined above. Higher order

correction terms are neglected for simplicity. The Debye temperature was taken from the above

experimental heat capacity measurements to be ΘD = 455 K. Then the mean velocity of sound is

calculated to be 3610 m/s using the relation v = kBΘD/h̄
3
√
6π2N/V0, where N is the number of

atoms per unit cell, and V0 = a3/4 is the volume per unit cell, with a being the lattice constant of

5.411 Å. In general, the Debye temperature is not constant and at higher temperatures anharmonic,

and other effects must be considered.[76, 77] A plot displaying the temperature dependence of ΘD

is pictured in Figure 5.7.
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Figure 5.7: Variation of the effective Debye temperature ΘD with T for stoichiometric CeO2.

65



5.4.1 Discussion on Phonon Scattering

The scattering rate τ−1(x, T ) is a combination of the different scattering mechanisms that fol-

low the Matthiessen rule and is given by the following equation:[16]

τ−1(x, T ) = v/L+ αx4T 4 + βUx
2T 3e−ΘD/bT + βNx

2T 5. (5.10)

Here, included (in order) are the boundary scattering, point defect (Rayleigh) scattering, 3-phonon

Umklapp and Normal phonon-phonon interactions through the adjustable parameters L, α, βU ,

and βN respectively. To obtain a best fit to the data, b in the Umklapp expression is left as a further

adjustable parameter, though decent fits are obtained by leaving it as a constant, i.e. b = 3.

For the boundary scattering term the parameter L represents the Casimir length [78], an ef-

fective phonon mean free path. For single crystal materials this is given by sample geometry.

However, in the context of a polycrystalline aggregate such as this, it can be thought of as the grain

size. This analysis gives a best fit when L = 15.4 µm which is in general agreement with the

measured averaged grain size of 20.5 µm.

Point defect scattering gives a Rayleigh like term of ω4 ∝ x4T 4. Klemens [79] then gives the

relaxation time in terms of mass defect or isotope scattering. The fitting parameter α is then given

by

α =

(
kB
h̄

)4
V0

4πv3
Γ (5.11)

where Γ is the scattering parameter due to mass fluctuations and is given by Γ = Σifi
(
∆Mi

M

)2
.

Here fi is the atomic fraction of the ith isotope whose mass is Mi. M is the average atomic mass

and ∆Mi = |M−Mi|. This expression must further be modified to include multiple atoms and can

also be shown to include effects of strain field scattering [80, 81]. It is difficult to extract physical

insights from this term as the matter is further complicated by the easy reduction of CeO2 into

off stoichiometric phases. Also, as discussed below, analysis shows a nearly complete domination

of the scattering by 3-phonon Umklapp processes. This analysis gives an α = 40.6 s−1 K−4.

This value is similar to the fitting parameter given by Khafizov [8] as well as parameters used in
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analysis of high purity UO2 and ThO2 single crystals [82] indicating the samples are of reasonably

high quality.

Results indicate that the 3-phonon Umklapp process was the dominating factor with a value of

βU = 7.31 ·104 s−1 K−3. In order to obtain the best fit b was allowed to vary with the best fit giving

b = 3.2. Assuming the relation

βU =

(
kb
h̄

)2
h̄γ2

Mv2ΘD

(5.12)

where γ is the Grüneisen parameter and a value of the average atomic mass M = ρV0/N =

9.53 · 10−23 g. These values suggest a Grüneisen parameter of 4.78 which is well beyond the 2.5

obtained by Khafizov et al. and the value of 1.24 for optical phonons. As the system temperature

approaches the Debye temperature the Normal process becomes important. In order to bring the

fitted function in line with the experimental data, an unphysical value of -0.184 s−1 K−5 is obtained

for βN . The results for βU and βN clearly show the failure of this simple model in explaining

the experimental data. Analyses using more complex models, while motivated by this work, are

beyond its scope.
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6. NONSTOICHIOMETRIC CEO2−δ RESULTS AND DISCUSSION

As was shown in the previous chapter, stoichiometric CeO2 behaves in perfect accordance with

the theory of heat capacity and thermal conductivity for insulators. However, the high quality

data previously obtained by Westrum and Beale [1] showed a distinct additional heat capacity at

temperatures T < 15 K. I hypothesized that this additional heat capacity was due to impurity of

Westrum and Beale’s samples based upon the excellent analysis of Gruber et al. [69] The additional

heat capacity appeared in the form of a Schottky anomaly, which is a result of Zeeman energy level

splitting. The most likely impurity of Westrum and Beale’s samples was an oxygen deficiency in

the lattice. This is due to the ability of CeO2 to easily give up oxygen in a redox reaction. Although

only briefly touched upon in this work, one of the large uses for CeO2 is as a catalyst in oxidation

reactions. Of bigger interest in this study is that this behavior also allows experimentation on a

non-radioactive material that can be compared with radioactive PuO2−δ with the assumption that

oxygen vacancies will result in similar behavior in the two materials. In order to definitively and

quantitatively study whether oxygen deficiencies were the source of the additional heat capacity,

reduced oxide ceria samples were obtained from the Los Alamos group. This chapter will present

the experimental data of these nonstoichiometric reduced oxides (of the form CeO2−δ) and briefly

touch upon the supporting theory.

6.1 Oxygen Vacancies in Nonstoichiometric CeO2−δ

Pure, stoichiometric ceria is an insulating pale-yellow oxide with the cubic fluorite lattice struc-

ture and has a space group of Fm3̄m,[12] as seen in Figure 6.1. The lattice parameter is a0 =

5.411Å. Cerium atoms are located at the corners and face centers of a cube, and Oxygen atoms at

the center of tetrahedral Cerium cages. Each Cerium atom is surrounded by eight nearest-neighbor

Oxygen atoms. Cerium is stable in both Ce3+ and Ce4+ oxidation states, leading to stable oxide

compounds of Cerium (III) Oxide and Cerium (IV) Oxide, the sesquioxide Ce2O3 and dioxide

CeO2 respectively. Further compounds of cerium and oxygen of the fluorite-type lattice such as
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Figure 6.1: Crystal structure of stoichiometric CeO2. Cerium atoms (yellow) are located at the
corners and face centers of a cube, and Oxygen atoms (red) at the center of tetrahedral Cerium
cages. Each Cerium atom is surrounded by eight nearest-neighbor Oxygen atoms.

found in CeO2 and their compositions can be described with the relation CenO2n−2m, where n and

m are integers with (n > m).[83] Reduction of Ce(IV) to Ce(III) by oxygen release resulting in

oxygen vacancies in the crystal structure allows for formation of nonstiochiometric CeO2−δ.[84]

The cubic flourite structure can tolerate a wide range of oxygen deficiency with 0 < δ < 0.28. For

larger values of δ, a series of ordered oxygen vacancy superstructures is found, ending with Ce2O3,

equivalent to a value of δ = 0.5, which crystallizes in the related hexagonal bixbyite structure. [85]

For the experimental data presented here we cannot determine the precise location of oxygen

vacancies, only note that for every missing Oxygen anion there must exist two Cerium (III) cations
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to maintain charge neutrality. Computational studies have shown that it is more energetically favor-

able for vacancies to form on surface locations and preferentially on certain crystal axis.[86] Since

all of the samples studied here are polycrystalline pellets, that implies any oxygen vacancies would

preferentially form on grain boundaries of the samples and would result in highly stoichiometric

and nonstoichiometric localized regions. The polycrystallinity of the samples therefore result in

a highly disordered system, which is difficult to analyze but can provide a rich playground for

studying interesting physics.

6.2 Sample Reduction

Sample reductions were carried out by the Los Alamos group in a thermogravimetric analyzer

(TGA). Prior to reduction the sintered CeO2 was weighed on a benchtop balance calibrated to

0.01 mg. The samples were placed on an Al22O3 platform in a commercial simultaneous thermal

analyzer (STA 449 F3, Netzsch Instruments, Selb, Germany) to measure the mass loss during

both ramp and isothermal reductions. The samples were then reduction heat treated in the TGA.

For each sample the final stoichiometry was calculated by accounting for the initial mass of the

CeO2 sample and the mass following reduction as measured on the bench-top balance, which is

a common technique used to discern O/M following reduction. [87, 88, 89] The stoichiometries

listed here are the expected stoichiometry at time of measurement. CeO2−δ stoichiometry is not

necessarily stable at low temperatures and may have drifted in the time between thermogravimetric

analysis and heat capacity measurements.

6.3 Raman Spectroscopy of CeO2−δ

Oxygen vacancies in the CeO2−δ lattice should theoretically lead to additional Raman peaks in

the 600-800 (cm−1) range. According to Weber et al. [65], these are due to the longitudinal optical

modes. With the lattice strain caused by the vacancies, peak broadening should occur on the main

F2g peak, accompanied by a slight leftward shift of the peak position. [65, 90] As mentioned in

Chapter 5 Section 5.1 the CeO2−δ samples were also measured via the same Raman spectroscopy

experiment in an effort to verify the oxygen deficiency. As can be seen in Figure 6.2, neither a
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Figure 6.2: Raman Shift of nonstoichiometric CeO2−δ samples observed in this study compared
with stoichiometric CeO2 samples. Theoretical overtone peaks above the F2g peak in the range
600-800 (cm−1) are not observed for these samples, nor is a broadening of the F2g peak. The
Raman spectrums have been shifted vertically for clarity.

broadening of the F2g peak, leftward shift, nor any overtone peaks in the 600-800 (cm−1) range

were observed.

These results are not particularly surprising, as the highest amount of Oxygen reduction studied

in these samples was δ = 0.032. The overtones should also be more absorbent to UV light wave-

lengths, meaning the 514.5 nm Ar-ion excitation laser was not the most suitable choice to bring

out the overtone peaks. Unfortunately re-measurement with a UV laser was not possible, nor was

confirmation by X-ray Diffraction, Neutron scattering or other techniques. Further Raman effect

studies must therefore be relegated to suggested future work. Based upon the Raman results there
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was no difference between the reduced samples and stoichiometric CeO2. It may be said of all the

samples that they were of ultra high purity, and as the reader will see below that heat capacity gives

a very sensitive probe of the Oxygen vacancies, with the drawback that a low temperature cryostat

with high magnetic field is not available in all labs, and a unique contribution by this work.

6.4 Molar Heat Capacity of CeO2−δ

As was demonstrated in Chapter 5, stoichiometric CeO2 displays textbook theoretical behavior

of an insulating solid for all thermodynamic functions. Our measurements set a new standard

for low temperature reference data, providing an important correction to T< 15 K measurements

originally obtained by Westrum and Beale.[1] Later experiments by Justice and Westrum [91],

as well as the analysis by Gruber et al. [69] of Ce2O3 samples, clearly show a distinct Schottky

anomaly in the T< 15 K range. As discussed in Section 6.1 above, as we reduce the stoichiometric

CeO2 by introducing oxygen vacancies in the lattice we will eventually end up with the compound

of Ce2O3. Therefore it is natural to conclude that the extra heat capacity contribution observed

between our CeO2 data versus Westrum and Beale’s is a result of oxygen vacancies and a Schottky

contribution. This naturally led to a further line of inquiry: How does the Schottky contribution

scale with increasing reduction? In order to answer this question we set out to measure the reduced

oxide samples mentioned above.

The LANL group supplied a range of reduced oxide samples for measurement and five dif-

ferent reduction were chosen on the basis that they featured a unique enough δ to show a distinct

difference. These were CeO1.968, CeO1.975, CeO1.984, CeO1.993, and CeO1.998 whose heat capac-

ity is represented in Figures 6.3,6.4,6.5,6.6, and 6.7 respectively. As previously noted, the actual

stoichiometry at the time of the heat capacity measurement may have changed from that of the

thermogravimetric measurement. All samples were measured in the entire temperature range of 2-

400 K at 0 T, and confirmed the presence of an extra heat capacity term, assumed to be a Schottky

contribution. In order to further investigate the assumed Schottky contribution, additional mea-

surements were taken from 2-40 K at integer magnetic fields from 0-9 T. The results presented in

Figures 6.3-6.7 are all plotted from 0 < T < 15 K in order to highlight the observed extra contri-
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bution to the heat capacity in the low temperature regime. For all the crystals, as the temperature is

lowered, the low-temperature anomaly upturn appears to develop starting at approximately 4-5 K

when there is 0 T applied field. This effect can most easily be seen in Figure 6.4. With increas-

ing applied field the upturn shifts to higher temperatures and it becomes clear that there is a peak

resulting in a downturn of the heat capacity as the temperature is lowered toward 0 K. With zero

applied field the peak of the anomaly is below our capability of measurement and should appear

near 1 K. To measure the full anomaly the measurement will need to be repeated in a cryostat with

a dilution refrigerator.

As an aid to quick comparison, all the figures are presented on the same scale of 0 to 150mJmol−1K−1.

Helium liquid shows a heat capacity peak in this temperature regime, so extra caution was taken

to measure accurate sample puck heat capacity before measurement. Measurements in this region

showed approximately ±8% error or less when comparing multiple runs. This value is slightly

worse than the expected measurement error (< ±5%) for this temperature region on the PPMS

system [39] and we attribute this variation due to absorbed Helium on the sample puck. Final mea-

surements presented here were taken with extra caution to remove any helium in gas in the sample

space and are taken as the ideal values.

The stoichiometric data of Chapter 5 is also plotted as a solid line. There can be no electronic

contribution to the heat capacity, as even with the creation of lattice vacancies the number of those

vacancies and the polycrystalline nature of the samples should not lead to electronic conduction.

We must therefore conclude that there is no electronic contribution, only a lattice and an anomalous

contribution. While the anomalous contribution is magnetically dependent on the applied field,

its magnitude does not show a distinctive sharp peak that would be characteristic of an onset of

magnetic ordering, nor would we expect any long range ordering due to the low number of oxygen

vacancies. Subsequent investigation was carried out by subtracting off the phonon contribution

to the heat capacity CLattice from the total to view only the anomalous portion. The next section

will make it clear that this anomalous heat capacity is indeed a Schottky term and can be fit by

assuming a set of split energy levels.
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Figure 6.3: Total molar heat capacity of CeO1.968 at 0-9 T (symbols). The number of plotted points
has been reduced for clarity. The lattice heat capacity of stoichiometric CeO2 is plotted as a solid
line.
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Figure 6.4: Total molar heat capacity of CeO1.975 at 0-9 T (symbols). The number of plotted points
has been reduced for clarity. The lattice heat capacity of stoichiometric CeO2 is plotted as a solid
line.
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Figure 6.5: Total molar heat capacity of CeO1.984 at 0-9 T (symbols). The number of plotted points
has been reduced for clarity. The lattice heat capacity of stoichiometric CeO2 is plotted as a solid
line.
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Figure 6.6: Total molar heat capacity of CeO1.993 at 0-9 T (symbols). The number of plotted points
has been reduced for clarity. The lattice heat capacity of stoichiometric CeO2 is plotted as a solid
line.
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Figure 6.7: Total molar heat capacity of CeO1.998 at 0-9 T (symbols). The number of plotted points
has been reduced for clarity. The lattice heat capacity of stoichiometric CeO2 is plotted as a solid
line.
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6.5 Schottky Contribution to the Heat Capacity

As discussed in length above, measurements of stoichiometric CeO2 clearly showed only a

lattice phonon contribution. This is serendipitous for the calculation of the Schottky term, as the

lattice value can be directly subtracted from the total heat capacity to obtain the Schottky term.

Explicitly this is expressed as

CSch(T,H) = C(T,H)− CLattice (6.1)

where CSch(T,H) represents the anomalous term, C(T,H) is the total heat capacity, both as a

function of temperature T and applied magnetic field H , and CLattice is the heat capacity of the

stoichiometric samples. If the raw experimental data weren’t available, CLattice would need to be

calculated from the Einstein or Debye models of the heat capacity. In order to correct for slight

temperature differences between runs and to make a perfect subtraction the lattice heat capacity

curve and anomalous curves first needed to be interpolated from discrete data into a function.

The SciPy interpolation packaged was used for this along with the 1-D interpolation function.

Experimental Data was interpolated using the cubic spline option, which will fit a number of low

order polynomials to the data instead of a single high order polynomial. The interpolated data

could then be directly subtracted. The temperature measurement points of the total heat capacity

term were used, while the lattice subtracted term was adjusted to match. For example, if the

total heat capacity C(T,H) was measured at T = 2.15 K and the CLattice term was measured

at T = 2.16 K, then CLattice interpolated at T = 2.15 K and then directly subtracted to yield

CSch(T,H) at T = 2.15 K.

Calculating the anomalous term in this manner for all samples, temperatures and applied mag-

netic fields, it is clear to see that the shape gives that of a Schottky anomaly with the distinct feature

that the Schottky term falls off quickly at temperatures below the maximum value and slowly above

this value. Figures 6.8-6.12 plot the results of this calculation and demonstrate Schottky anomaly

behavior clearly. The number of plotted points has been reduced for clarity, and each plot has a
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Figure 6.8: Schottky contribution at 0-9 T (symbols) for the CeO1.968 sample. The number of
plotted points has been reduced for clarity. Also plotted is a multi-level Schottky fitting function
that shows excellent agreement with the plotted data.

Schottky fitting function plotted for each applied field. Details of the fitted function will be dis-

cussed below. Of particular note is that even with zero applied field, there is a clear Schottky peak.

Also observed is a substantial broadening of the peak with higher applied magnetic fields.

The data is obviously of the Schottky form discussed in Chapter 2 Equation 2.37, but the

energy between the 2F5/2 ground state of any Ce3+ free electron and the next 2F7/2 excited state

is too large at ≈ 273 meV[92] to adequately explain the peak. With the peak at zero applied

field occurring below 5 K the energy should be approximately the same order of magnitude and

would be expected to be ≈ 0.1− 1.0 meV. The natural examples of energy gaps at this magnitude

are found in paramagnetic salts, which have energy level spacings of approximately 1 to 10 K.
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Figure 6.9: Schottky contribution at 0-9 T (symbols) for the CeO1.975 sample. The number of
plotted points has been reduced for clarity. Also plotted is a multi-level Schottky fitting function
that shows excellent agreement with the plotted data.

81



0 5 10 15
T (K)

0

50

100

150

C
P
−
C
L
a
tt
ic
e

(m
J
m
ol
e−

1
K
−1

)

CeO1.984

0T

1T

2T

3T

4T

5T

6T

7T

8T

9T

0T Fit

1T Fit

2T Fit

3T Fit

4T Fit

5T Fit

6T Fit

7T Fit

8T Fit

9T Fit

Figure 6.10: Schottky contribution at 0-9 T (symbols) for the CeO1.984 sample. The number of
plotted points has been reduced for clarity. Also plotted is a multi-level Schottky fitting function
that shows excellent agreement with the plotted data.
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Figure 6.11: Schottky contribution at 0-9 T (symbols) for the CeO1.993 sample. The number of
plotted points has been reduced for clarity. Also plotted is a multi-level Schottky fitting function
that shows excellent agreement with the plotted data.
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Figure 6.12: Schottky contribution at 0-9 T (symbols) for the CeO1.998 sample. The number of
plotted points has been reduced for clarity. Also plotted is a multi-level Schottky fitting function
that shows excellent agreement with the plotted data.
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Thus the Ce3+ free electrons must be contributing to the heat capacity in this temperature regime

via magnetic interaction. The Schottky upturn is therefore due to magnetic defects in the lattice

created when an oxygen vacancy produces two Ce3+ free electrons. Each electron has a magnetic

dipole moment and the spin quantum number is s = 1/2. The Ce3+ free electrons do not share an

orbit and should therefore exhibit a paramagnetic response to an externally applied field.

For the magnetic moment of a paramagnet, we can use Langevin’s theory to describe the states

of the system. In this formulation there is no interaction between the magnetic dipoles and are only

affected by increases in temperature (thermal agitation) and applied field so we can use a simple

term for the energy. Using a Boltzmann distribution to count the probability of being in either the

spin up or spin down state, we end up with a magnetization of the form

M = Nµtanh(µH/kBT ) (6.2)

which when placed in an applied field H, the energy is then MH and the specific heat becomes

CM = (Nµ2H2/kBT
2)sech2(µH/kBT ). (6.3)

This is equivalent to Equation 2.37 but with the energy gap set to 2µH and g0 = g1. This

is of course just the classic Zeeman effect that splits the ground state in an applied magnetic

field. A quick calculation shows that if we set the magnetic dipole moment equal to the Bohr

Magneton such that µ = µB and the applied field to 1 − 10 T then the energy gap would be

≈ 0.116 − 1.16 meV, which matches our expected energy gap for a Schottky peak below 5 K as

we expected above. Based upon only the relation 2µH we would expect the energy gap at zero

applied field to disappear, but the Schottky anomaly clearly remains even at zero applied field. In

1907 Weiss suggested a mechanism to explain this behavior for ferromagnetic materials.[93] Weiss

work showed that due to magnetization of other parts of a solid there is an internal magnetic field

acting on the elementary dipoles such that

85



Heff =
√

H2
ext +H2

0 (6.4)

where Hext is the externally applied field and H0 is taken as the intrinsic internal field.

For nonstiochiometric CeO2−δ samples studied here, there aren’t enough oxygen vacancies to

justify taking an effective internal field across the entire material, yet the magnetic energy gap is

still present at zero applied field. The only reasonable explanation is that the magnetic impurities

are relatively close to each other forming clusters of magnetic defects that would then act on each

other as an internal field. STM measurements [94, 95] of nonstiochiometric CeO2−δ show that the

oxygen vacancies do indeed form clusters, and so the assumption that magnetic impurities in our

samples are clustered seems plausible.

6.6 Magnetic Function Fitting

To fit the magnetic contribution with a function, a simple 2-level system could potentially be

used, and was attempted. The fit was relatively poor, especially with increasing applied magnetic

fields. For independent magnetic clusters Langevin’s theory can still be applied, but the total spin

for the Ce3+ electrons must be taken into account as J ̸= 1/2 and is instead J = 5/2 for the

ground state. The corresponding specific heat should be generalized to the multilevel Schottky

function[96, 97]:

Cm = NkB

[
x2ex

(ex − 1)2
− (2J + 1)2

x2e(2J+1)x

(e(2J+1)x − 1)2

]
(6.5)

where x = gµBHeff/kBT , Heff =
√
H2

ext +H2
0 as in Equation 6.4, and g is taken as the

effective Lande g factor for the cluster.

This multilevel Schottky function shows a peak broadening more consistent with, and fits the

data better at temperatures below 10 K, than a simple 2-level Schottky function. In order to simplify

the fitting and physical analysis, only N , Hext, and H0 were varied, while J and g were held

constant. For the Ce3+ electrons, J = L − S = 3 − 1/2 = 5/2 and g = 6/7 is calculated by the

equation
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g = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
, (6.6)

where J ,S,L refer to the total, spin, and orbital angular momentum quantum numbers respectively.

Ideally one could fit all the adjustable parameters, but there is an increased danger of letting

one or more parameters become unphysical by over fitting. As the number of parameters increase

it is also easy to have an initial fitting guess that won’t converge. An example of possible over

fitting is given in Figure 6.13. The internal magnetic field H0 is plotted against the applied field H .

Physically the internal magnetic field should only be effective at low applied fields and quickly fall

to zero as higher external fields are applied. This is true for the curves of CeO1.998, CeO1.984, and

CeO1.975, but breaks down for CeO1.993 and CeO1.968. There is likely a more complex magnetic

interaction happening in all of these samples that cannot be determined by heat capacity mea-

surements alone. It was not possible during the course of this work to complete more magnetic

behavior measurements, and leaves opportunity for future work to investigate.

The Schottky term should fall off as T−2 as the temperature is increased and eventually trend

toward zero. Careful observation of the graphs in Figures 6.8-6.12 show that the multilevel Schot-

tky term is not the only contribution. As the temperature is increased from zero, the Schottky term

is prominent below T < 10 K, but for T > 10 K there is still additional heat capacity above the

lattice term that appears to increase as the temperature is increased. This additional heat capacity

remains all the way up to the highest temperatures measured. Initially this additional heat capacity

was thought to be another Schottky like peak due to an energy gap attributed to spin-orbit cou-

pling or crystal field splitting. Fits using a second Schottky peak in this manner produced poor

fitting with high residuals and was abandoned. Further literature review points to an additional

contribution by magnon spin waves.[98, 99, 100] Magnons obey Bose-Einstein statistics and have

a number of similarities to phonons, including a dispersion relation. The derivation won’t be pre-

sented here, but follows the same steps covered in Chapter 2. For ferromagnetic materials this

results in an addition to the heat capacity of the form Cm ∝ T 3/2 at low temperatures. Inter-

estingly anti-ferromagnetic systems take on a much different form of Cm ∝ T 3. In general, the
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magnetic anisotropy will introduce a finite gap in the magnon dispersion curve, which will scale

the above relations as e
−∆Magnon

kBT . The relation can also be modified by the dimensions involved.

We can summarize these results into a simple formula:

CM ∝ T
d
m e

−∆Magnon
kBT (6.7)

where d is the dimensionality of magnon excitations and m is defined as the exponent in the

dispersion relation w ∝ km. For antiferromagnetic magnons = 1 and for ferromagnetic magnons

= 2. To fit this function both d/m and ∆Magnon were allowed to vary, but d/m was then fixed

when an initial best fit obtained.

The Schottky addition to the heat capacity and magnon spin wave addition to the heat capacity

were then combined and fitted to the experimental data. The fitting results using this combined

function are displayed in Figures 6.8-6.12 along with the experimental data. Agreement with

the experimental data is excellent, with only slight variation from the data at the peak and also

for high magnetic field curves. Better fits might be obtainable by allowing more parameters to

vary, but the analysis becomes much more difficult. For example, the best fits gave a surprising

d/m ratio of 0.5, implying that the clusters of magnetic impurities behave as a 1D ferromagnetic

spin wave above approximately 10K. At first glance this appears entirely unphysical, and made

analysis extremely difficult. There is some evidence that CeO2 can exhibit ferromagnetism, even at

room temperature.[101] However, without a more thorough study of specifically the magnetism by

susceptibility measurements no firm conclusion can be made. This additional heat capacity above

10 K only raises more questions and provides an opportunity for further study. Clearly there is

more complex magnetic behavior occurring.

6.7 Spin-Orbit Coupling

As mentioned in the previous section, the choice of fitting using a magnon spin wave appears

unphysical due to the localized nature of the Ce3+ electrons. The magnon spin wave fitted function

showed the best fit to the experimental data, however there is a possible alternate explanation for
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the additional heat capacity contribution above 10 K. When looking at the T<10 K Schottky peak,

the spin-orbit coupling energy gap of the 2F5/2 ground state of any Ce3+ free electron and the next

2F7/2 excited state was dismissed due to the relatively large energy gap of ∆ =≈ 300 meV[92,

102, 103, 104]. While this energy gap is much too large to explain the Schottky peak below 10 K,

it is reasonable to assume that it might be producing a broad Schottky peak that extends beyond

the measured range and produces a peak at a much higher temperature.

Some of the best evidence that this is the real physical situation are experiments and DFT cal-

culations done for PuO2. McNeilly’s measured band gap of 1.8 eV[105] for the spin-orbit coupling

of the J=5/2 ground state and J=7/2 excited state of PuO2 fits very well with DFT calculations of

Nakamura et al. [106]. Nakamura et al. argue that this is the root cause of the insulating param-

agnetic behavior in PuO2. This result lends strong credence to the idea that a spin-orbit coupling

splitting is the root cause of the additional heat capacity above 10 K seen in CeO2−δ. A schematic

representation of the energy level splitting for these states due to spin-orbit coupling is given in

figure 6.14.

The heat capacity measurements here were only performed up to 40 K with the expectation that

the Schottky peak would be completely characterized at this temperature. While this is true for the

T<10 K Schottky peak, if we assume that spin-orbit coupling interactions are causing a second

Schottky type peak for T>10 K, these measurements are not enough to fully characterize this peak

and measurements should be extended to the entire range of 1.8-400 K. A further difficulty with this

type of characterization is that at temperatures approaching room temperature and above, the lattice

contribution and any anharmonic terms may prove difficult to subtract out without substantial error.

Definitive proof of this peak should therefore be left to other measurement methods such as electron

paramagnetic resonance (EPR).

6.8 Entropy of CeO2−δ

The heat capacity and the entropy are closely related by the equation:

S =

∫ T

0

Cp

T
dT + S0. (6.8)
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Figure 6.14: Schematic of the 4f electron energy levels, including spin-orbit coupling and crystal
field splitting terms. Figure is not to scale.
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Since the heat capacity and temperature are both experimentally determined, we can perform a

numerical integration to obtain the entropy S. This calculation is more easily performed on the

fitted heat capacity function, as it can be calculated for any temperature. It is possible to perform

the calculation on the experimental data as well, as was shown in Chapter 5, Figure 5.3 for stoi-

chiometric CeO2. The entropy calculation for CeO2−δ is more difficult because the Schottky peak

extends below the capability of measurement for our system. Assuming the heat capacity follows

the general trend of the Schottky function, it is still possible to perform this calculation, however

the true experimental data will deviate from the ideal fitted function.

Calculating the entropy of the magnetic contribution discussed in section 6.5 yields the curves

in Figures 6.15-6.19. For clarity, the experimental data has been left off of these plots and only

the entropy curves corresponding to the magnetic fitting function are presented. The temperature

is also plotted on log scale so that the entire range of 0 − 40 K can be plotted. It should be noted

that the sharp upturn above 10 K is an artifact of the log scale plotting and the actual behavior is a

continual slow rise in entropy that corresponds to higher energy states being occupied.

The form of the entropy is that of a classic paramagnetic salt, and therefore it is reasonable to

expect a total entropy due to the Schottky portion (T < 10 K) to scale as S = nRln(2) where

n represents the number of spins either parallel or antiparallel to the field. Since there is also an

additional magnetic contribution for temperatures (T < 10 K), the entropy continues to rise and

does not asymptotically approach nRln(2) as might be expected for only the Schottky portion.

Due to the continued rise of the entropy, a suitable choice must be made on where to calculate

the maximum entropy due to the Schottky portion. For this work the inflection point where the

entropy changes from concave down to concave up was chosen. This value was determined only

at an applied field of 0 T for all of the samples and is included in Figures 6.15-6.7. The plateau

like behavior in the entropy is a current line of research for frustrated magnetic systems[107], and

it appears nonstoichiometric CeO2−δ may be a candidate for frustrated magnetism. Further study

is needed.
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Figure 6.15: Calculated entropy at 0-9 T for the CeO1.968 sample. For clarity, experimental data
has been left off and the horizontal axis has been plotted on a logarithmic scale. Also plotted is the
entropy at the inflection point for the 0T curve.
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Figure 6.16: Calculated entropy at 0-9 T for the CeO1.975 sample. For clarity, experimental data
has been left off and the horizontal axis has been plotted on a logarithmic scale. Also plotted is the
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Figure 6.17: Calculated entropy at 0-9 T for the CeO1.984 sample. For clarity, experimental data
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Figure 6.18: Calculated entropy at 0-9 T for the CeO1.993 sample. For clarity, experimental data
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Figure 6.19: Calculated entropy at 0-9 T for the CeO1.998 sample. For clarity, experimental data
has been left off and the horizontal axis has been plotted on a logarithmic scale. Also plotted is the
entropy at the inflection point for the 0T curve.

97



7. SUMMARY AND CONCLUSIONS

7.1 Conclusions

New experimental measurements of the heat capacity and thermal conductivity below 400 K

joined with first principle calculations were performed for stoichiometric CeO2. Experimentally,

raman spectroscopy was performed, the heat capacity was determined by adiabatic calorimetry,

while the thermal conductivity was measured with a combination of square wave a.c. drift method

(the Maldonado technique), and laser flash analysis. These results were then compared to first

principle calculations by density functional perturbation theory. Further thermodynamic properties

were calculated and reported using both the experimental data and DFPT results.

Novel heat capacity data was acquired at low-temperature, the new data shows a correction to

the existing literature data, and was used to calculate improved thermodynamic functions reported

here. The standard values calculated at T = 298.15 K for heat capacity and entropy in this study

were 63.4 J mol−1 K−1 and 61.1 J mol−1 K−1, respectively. The heat capacity was examined in

terms of the simple Debye model, yielding a Debye temperature of 455 K. DFPT results were in

good agreement with measured data and previously published literature. The entropy, enthalpy

function and Gibbs function were also tabulated from experimental data and theoretical predic-

tions.

The thermal conductivity of stoichiometric CeO2 was examined using both laser flash analysis

and the Maldonado technique. Room temperature values for the thermal conductivity are similar

to those of other high quality CeO2 samples. The thermal conductivity was also analyzed in terms

of the Klemens-Callaway model. The mean velocity of sound was determined to be 3610 m/s. At

the low temperatures of this study, the thermal conductivity is dominated by 3-phonon Umklaap

processes. However, heat conduction of CeO2 is more complex than simple models can account

for and deserves further study in subsequent work.

This study provides a refreshed, accurate, and comprehensive thermodynamic picture of the
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bulk properties of CeO2 in the low-temperature regime. Experimental results show excellent agree-

ment with each other and the DFPT calculations.

The low temperature anomaly of the heat capacity in nonstoichiometric CeO2−δ samples was

investigated in order to examine the deviation of historical CeO2 data from that presented here.

This anomalous heat capacity was shown to have a Schottky term that is attributed to Zeeman

splitting of Ce3+ cations as well as an additional magnon like term. The low temperature magnetic

behavior of CeO2−δ appears to be a novel measurement and should aid in future studies of rare

earth oxide materials.

7.2 Further Study

During the course of this work the thermal conductivity of the CeO2−δ samples was not able

to be completed. A natural extension of this work would be to measure the thermal conductivity

of these reduced oxides. The complex magnetic behavior observed in the heat capacity measure-

ments of the CeO2−δ samples could benefit from a more thorough theoretical analysis as well as

additional measurements. The magnetic susceptibility should be measured and if possible electron

paramagnetic resonance should also be performed.
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