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ABSTRACT 

 

Currently, many researchers in MRI are focused on creating low-cost MR setups using off-

the-shelf components that are comparable in performance to existing MR systems. A problem 

these setups face is phase instability due to hardware components not synchronized perfectly. To 

overcome this, systems with pulse generation and echo digitization on a single hardware platform 

are gaining popularity.   

With FPGAs gaining traction in recent years, it is unsurprising to find them being 

incorporated in low-cost MR setups today. This is because of their suitability in highly precise 

applications along with occupying smaller chip areas, consuming lesser power and keeping 

equipment cost lower than their analog counterparts. Given the current scenario of virtual and 

hybrid classes, FPGAs also make it possible to get hands-on experience in building working MR 

setups using off-the-shelf components at home, which promotes learning while being socially 

distant. Hardware platforms such as the Red Pitaya are well-suited for this purpose, which has an 

Artix-7 FPGA coupled with a dual-core ARM Cortex A9 processor, and DACs and ADCs all 

housed under the same chassis.   

This thesis aims to build and test an RF pulse generator on an FPGA using a Red Pitaya 

board. The pulse generator is integrated into a tabletop MR setup and its phase stability determined 

using a Pentek high-speed digitizer. The entire process has been documented in a manual attached 

to this document along with all source codes used. Finally, a discussion has been initiated regarding 

the inclusion of a working digitizer within Pitaya itself, alongside the pulse generator.   
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1. INTRODUCTION 

 

Advancements in reconfigurable logic devices like Field Programmable Gate Arrays 

(FPGAs) in recent times has made far-ranging changes to existing devices. It has become essential 

to modernize existing and/or obsolete equipment with reconfigurable FPGAs [1]. This is expected, 

given their low cost and size coupled with high reliability and accuracy. Moreover, their ability to 

replicate complex analog circuit designs continues to improve dramatically. 

This makes these devices highly suited in prototyping and developing digital logic to 

address a wide spectrum of medical imaging modalities as well as medical devices [2] such as 

Magnetic Resonance Imaging (MRI), which traditionally uses complex analog circuits. From an 

educational viewpoint, it is equally important to make them accessible and easy to understand for 

students in Science, Technology, Engineering and Management (STEM) programs to promote 

research and development.  

This project aims to build and test a simple MRI interface along with the underlying digital 

logic for a pulse sequence generator implemented on Red Pitaya, an inexpensive FPGA 

development board. The resulting circuit and interface serve as a base for future MR experiments 

and logic/processing upgrades. To demonstrate its working, the fully configured Pitaya board was 

integrated into an RF followed by an MR setup, one at a time, and its phase stability quantified. 

Attached to this thesis are four sets of codes – the server and client programs, three RTL scripts, 

one testbench/simulation script and two MATLAB programs. The first three sets of code pertain 

to setting up the pulse generator and verifying its functionality. The MATLAB codes are intended 

for processing data digitized in the MR setup. Finally, a manual walking through the design and 

testing process of a simple pulse generator has been attached to this document.  
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2. BACKGROUND 

2.1 FPGAs – a brief history 

 The idea of programmable logic came into being with the introduction of XC157 by 

Motorola in 1969 [3]. This is the first mask-programmed gate array to ever exist, with 12 intra-

connected gates and uncommitted inputs and outputs that could be interconnected according to the 

engineer’s custom design. Over the years, this design was improved upon for speed, power 

consumption and throughput leading to smaller devices that could be reconfigured just like 

EEPROM (electrically erasable Programmable Read Only Memory). These were called Field 

Programmable Gate Arrays (FPGAs), the first of which was the XC2064 chip invented by Ross 

Freeman and Bernard Vonderschmitt, co-founders of Xilinx Inc[4]. It was produced using a 2 µm 

fabrication process, housed 800 gates and sold for $55 in 1985. 

 With fabrication techniques reaching the nanometer scale, it is now possible to etch 

millions of gates on to the same chip space. This has allowed FPGAs to reach a level of 

sophistication, making it viable to build complex circuits consisting of phase locked loops (PLLs) 

and communication interfaces[5].  

 The current trend in reconfigurable logic is to integrate FPGAs with processor cores to 

form a System on Chip (SoC). This pairing creates a powerful computing platform with greater 

system reliability, low power needs and low latency, all on the same chip dimensions or smaller. 

2.2 Digital circuits on an FPGA  

 The modern FPGA architecture comprises of arrays of I/O lines, configurable logic blocks 

(CLBs) and routing channels. A very basic CLB will have one lookup table (LUT), one flip flop 

(FF) and one multiplexer (MUX). By manipulating the I/O lines and routing channels CLBs can 

be set to specific configuration – this is the basis of all logic circuits today.  
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To allow for this manipulation a set of languages called hardware description languages 

(HDLs) have been created, the most popular being VHDL and Verilog. The idea behind HDLs is 

to come up with a logic design and codify it. This codified logic is then converted into a 

bitstream/gateware file which is flashed on to the FPGA fabric. It can be thought of as ‘activating’ 

the FPGA with your logic design, effectively creating an electrically erasable digital circuit.  

 This conversion is done with the help of software such as Xilinx Vivado or Intel Quartus 

Prime. To be clear, they offer features that go well beyond HDL code editing and 

bitstream/gateware generation. These include logic simulators, which test a logic design before 

generating its corresponding bitstream. Also, both have a large library of IP (Intellectual Property) 

cores, which are basically reusable pieces of codified logic. This encourages FPGA designers to 

break down their logic design into smaller, manageable portions that can be created and tested 

independently, and interfaced with IP cores to build the desired digital circuit.   

2.3 Advancements in MRI 

MRI is a non-invasive, radiation-free imaging modality that is carried out in the RF range 

of the electromagnetic spectrum, i.e., 2-200 MHz. This makes it quite appealing to use by doctors 

as well as researchers. Because of this, MRI has been a witness to several technological leaps and 

bounds ever since it was introduced as a diagnostic tool in the 1980s. 

Improvements in RF coil design, pulse sequences, magnets and image processing have all 

contributed to making MRIs a crucial part of patient studies. These include the adoption of phased 

array coils on the receive side [6], using superconducting magnets for better field homogeneity and 

higher field strengths [7], the addition of gradient pulses to image specific regions of the patient [8] 

and better algorithms for image reconstruction using multidimensional Fourier transforms [9].  
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One focus of most MR-related research continues to be improved SNR and system stability 

along with lower running/maintenance cost and patient scan time. To this end, MR systems 

continue to be miniaturized by replacing existing components such as magnets [10-15] with smaller 

ones demonstrating equal or better performance than the former. This enhances the portability of 

MRI; many portable MR scanners have been designed [16-24] and studied [25] or improved [26-27] in 

recent times. It is hoped that by simplifying the system workflow in this manner, MRI becomes 

more accessible and affordable to the public [28].     

2.4 Phase Instability in MR Systems 

 Phase stability refers to the condition where an MR echo from each pulse sequence 

repetition possesses the same amplitude and phase information, given that the pulse sequence 

parameters, external magnetic field (B0) and other environmental factors like temperature remain 

constant. As one can imagine, MR systems are prone to phase instability, making the generated 

echoes somewhat unpredictable in location, amplitude, and phase. It is crucial to have a system 

with predictable phase, especially when MR sequences with phase encoding gradients are used. 

 Several ways have been proposed to overcome this. One includes digitizing the second half 

of the last RF pulse (the RF180 in a Spin Echo sequence) and using the accumulated phase data to 

post-process the collected echo data. This has been shown to work by Ogier et al. at MRSL when 

investigating improvements in low-field MRI at 0.06 T [29].  

 A method called Fast-Field Tracking (FFC) has been proposed to correct for phase 

instabilities and ghosting. This involves varying B0 field in fixed steps throughout the duration of 

an MR scan. Because of this method, reconstructed MR images can be corrected for phase and 

artifacts anywhere between a few seconds to a couple of minutes, depending on the image size [30].  
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Yet another technique is to synchronize the digitizer with the transmit such that echo data 

is collected precisely after all RF pulses in a sequence have been transmitted. To do this, trigger 

pulses or gating signals may be used for activating and deactivating the digitizer. The catch to this 

method is that the pulse generator and digitizer both possess operating frequencies much higher 

than the frequencies of transmitted and received RF pulses and exist on the same device. The 

current MR tabletop setup for ECEN 463/763 (Magnetic Resonance Engineering) implements this 

using an NI chassis with a 14-bit PXI 5412 DAC card at 100 MSa/s for RF output, a 14-bit PXI 

5122 ADC card at 100 MHz to digitize the receive, and an 8-channel PXI 6733 analog output card 

for slow-speed digital I/O and generating gradients [39]. This chassis is combined with RF frontend 

components outlined in the paper and gives a phase stable and reliable MR system.   

2.5 Pulse generation and Programmable Logic  

Modern MRI experiments are time-sensitive and extremely precise. Depending on the 

amount of data acquired, they can also place high demands on processing power as well. Due to 

the specialized and complex nature of circuitry involved, it also becomes a costly endeavor.  

Further, pulse sequences, which are comprised of RF and gradient pulses, have been 

traditionally created with closed source programmers in mind, making the concept of MRI appear 

esoteric. Efforts in recent times seek to make pulse sequence programming open source – a notable 

example being Pulseq [31]. It is a MATLAB toolbox/translator that generates MR pulses on several 

legacy MR scanners – Siemens, Bruker and GE – all with the same lines of code. Pulseq was 

successfully translated for use with a Varian scanner in 2018 [32]; to this day, it is used as a pulse 

programmer for ECEN 411 – Introduction to MRI/MRS in Magnetic Resonance Systems Lab, 

Texas A&M University (TAMU).     
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A renewed interest in MRI is being witnessed not only due to open-source pulse 

programmers, but also with the rise of programmable logic, namely FPGAs. Their high reliability, 

high processing power and low cost has appealed to researchers as well as students especially in 

NMR at low fields. They have not only allowed for creating and miniaturizing MRI setups to 

tabletop scanners with off-the-shelf components [33] but have also proven to be capable of high-

volume data processing [34] and image reconstruction using SENSE, a parallel MRI algorithm [35].  

Coming back to MRI, FPGAs also allow for open-source pulse programmers to be 

developed [36]. This is a big achievement which adds to the appeal of FPGAs – they not only bring 

down machinery cost and space requirements, but also give beginners a chance to understand, 

build and appreciate the practical working of MRI. 

One such initiative is OPENCORE NMR [37], a project that continues to be actively updated 

at the time of writing this thesis. It provides a console, and data processing software as well as 

VHDL modules that can be assembled as a logic design to run on an Altera/Intel Cyclone III (65 

nm technology node) or a Cyclone V (28 nm technology node) FPGA. The FPGA chip, DDSes, 

DACs and ADCs are all hand-soldered and assembled to form the spectrometer on a single board. 

While this is a good approach, it is mainly aimed towards researchers well-versed with MR 

systems, RF modulation, VHDL modules and DDS. This may present difficulties for students with 

no prior experience in MR development or FPGA programming to follow and understand. For this 

reason, the author chose a development board with the above components already assembled on it 

– the Red Pitaya STEMLab 125-14.  

2.6 Red Pitaya – an RF/digital workbench in a handheld chassis   

MRI is highly specific when it comes to timing. RF transmission and acquisition must be 

done with extreme precision; any deviation from the preset timing parameters will lead to errors 
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and/or failed experiments. Hence, coupling this with the Red Pitaya development board is a good 

idea. It is housed inside an aluminum chassis of dimensions 11×7×2.5 cm, which makes it the size 

of a wallet. Several papers have been published demonstrating the capabilities of this handheld 

device for RF applications, especially as a Nuclear Magnetic Resonance (NMR) spectrometer 

[40][38]. With a clock frequency of 125 MHz, it is quite reliable when it comes to setting timed 

events, which is crucial in MRI. This has been demonstrated to work in the OCRA project 

conducted at MIT [38], which created a series of server and client codes in C and Python to control 

the existing bitstream-programmed FPGA fabric. This system demonstrated better phase stability 

than that of the existing Medusa console, which is promising.  

What makes the proposed system in this thesis different is the focus – OCRA developed 

an interface (set of server and client programs) to control the existing FPGA logic (underlying 

circuitry). The latter has remained more of less fixed, with limited guidance on how to verify its 

functionality before running its corresponding bitstream on the Red Pitaya. 

Here we leveraged the FPGA portion of Red Pitaya’s STEMLab 125-14 board for timed 

MR pulse events, integrating them with a much simpler version of a server-client pair, and 

provided a manual along with well-commented source codes for future development. In other 

words, this project allows for flexibility in both digital logic (underlying circuitry) as well as the 

interface (server and client).  

The focus of this research work is to build FPGA logic from the ground up, add an interface 

to it, and integrate it to an existing MR system consisting of a fully assembled RF frontend. In this 

study, a Pentek digitizer was used to quantify phase stability of the pulse generator and determine 

its efficacy for future MR experiments. Finally, the option of building a digitizer within the Pitaya 

has been explored as well and is discussed under ‘Future Work’.  
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All codes utilized in the study are kept simple enough to understand and deploy, and are 

attached as appendices A through D. A manual has been created for students to build their own 

pulse generator – it is attached to this thesis as Appendix E. Finally, Appendix F correlates the 

pulse generators created with the MR phenomenon.    
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3. METHODOLOGY 

3.1 Goals 

This thesis work utilizes the Red Pitaya STEMLab 125-14, a digital hardware platform 

costing under $400 with a clock frequency of 125 MHz. It has two 14-bit, 125 MHz digital-to-

analog convertors (DACs) with a memory depth of 16k samples. It also contains two 125 MSa/s 

RF output channels and extended general purpose input-output (GPIO) lines. These components 

are housed within an aluminum chassis of dimensions 11×7×2.5 cm, which is basically the size of 

a wallet. Of particular interest is the Xilinx Zynq 7010 SoC it houses, which has an Artix-7 

programmable logic (28 nm technology node) integrated with a dual-core ARM Cortex A9 

processor.  

The focus of this research is to upgrade the existing MRI teaching setup for ECEN 463/763 

(Magnetic Resonance Engineering) at TAMU that comprises of an NI chassis with a 14-bit PXI 

5412 DAC card at 100 MSa/s for RF output, a 14-bit PXI 5122 ADC card at 100 MHz to digitize 

the receive, and an 8-channel PXI 6733 DAC card for slow-speed digital I/O and generating 

gradients [39]. The upgraded MRI setup is more compact and less expensive than the existing one.  

While Pitaya is capable of digitizing data at 125 MS/s with analog input channels IN1 and 

IN2, it was decided to keep it strictly as a pulse generator and not use it as a digitizer as well. 

Digitizing entails the use of an ADC to sample incoming RF echoes. ADC-sampled data can be 

stored in a soft Block Random Access Memory (BRAM) on the FPGA and sent out to the server 

via a 32-bit AXI GPIO register. The issue arises when server attempts to read this data off the AXI 

GPIO’s memory address. BRAM data updates every 8 ns in memory, which is too fast for the 

server to read and transmit to the client before the AXI GPIO register is overwritten with a fresh 

value.  Creating a digitizer that works will require a better understanding of BRAM specifications 
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and AMBA AXI4 interface protocol, which is beyond the scope of this research. Hence the choice 

of a standalone digitizer has been made in place of digitizing within Pitaya during acquisition.   

Apart from pulse and GPIO timing and number of repetitions, the frequency of sine pulses, 

generated by a direct digital synthesizer (DDS), should be adjustable in the MR frequency range 

– from a few kHz up to a few hundred MHz. To accomplish this, a server program must be built 

that can run on top of the FPGA fabric within Pitaya and establish a socket connection with a client 

program running on another PC. Through this client, we intend to allow user control over RF pulse 

generation. 

3.1.1 Hardware side 

On the hardware side, our upgrade swaps out the DAC and ADC cards with a much smaller 

Red Pitaya board and a high-speed digitizer respectively, which simplifies and miniaturizes the 

MR setup. To achieve this, a pulse sequence generator (PSG) needs to be built from the ground 

up, tested, added to the FPGA fabric of Red Pitaya and integrated to an MR system.  A PSG is a 

highly accurate computer that accepts timing inputs from a user and generates real-time outputs to 

drive MRI experiments, namely trigger signals and sine wave pulses. All the timing inputs 

correspond to spin echo (SE) pulse parameters; hence the RF and trigger outputs must resemble 

the transmit side and gating signals of an SE as closely as possible.  

3.1.2 Software/interface side 

On the software/interface side, VIs (programs running in LabVIEW) will be replaced by a 

command line interface (CLI) – facilitated by a Python client program on a PC and a C server 

program executable running on top of the FPGA fabric of Pitaya. Basically, the client will establish 

a socket connection with the server and transfer pulse parameters to it. The server will convert 

these parameters to appropriate values and send them over to the digital circuit via memory 
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mapped I/O. In short, VIs shall be swapped out for a more stripped-down approach to device 

interfacing with a server-client pair of programs. 

3.1.3 Testing and phase stability 

As part of the testing process, the digital circuit’s functionality must be verified using 

simulations running on a testbench code. Since Vivado 2020.1 is to be used in this project, its 

XSim tool is a good choice for testbenching and simulations. This is to be done before bitstream 

generation. After bitstream generation, analog and GPIO outputs generated by the device will be 

tested using various oscilloscopes. 

Finally, the circuit and interface will be incorporated into two MR setups, their receive 

channel will be digitized for a certain number of repetitions, and raw data from both setups shall 

be processed in MATLAB. The goal is to extract the resulting echo from raw data, line them up 

and ensure the setups are phase stable.  

All program codes pertaining to designing and testing the PSG, server and client, and data 

processing shall be attached as appendices to this document. A detailed manual explaining the 

steps needed to control pulses and GPIOs generated off the Pitaya board is also to be attached as 

an appendix to this document. 

3.2 RF Pulse Parameters  

The timed events are set by the following spin echo (SE) pulse parameters: 

RF90 (in µs)   –  time used to tip magnetic spins by 90° 

Off_time (in µs)  –  time between RF90 end and RF180 start when RF output is a flatline 

RF180 (in µs)   –  time used to tip magnetic spins by 180° 

TR (in µs)   –  time after which all pulse events repeat 

Acquisition (in µs)  –  time after RF180 end up to when MR echo is expected to form 
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Repetitions   –  number of times the SE pulse sequence repeats 

Frequency (in MHz)  –  frequency of RF pulses 

Each RF pulse is directly tied to the NMR phenomenon, which is governed by the equations 

for Larmor frequency fLarmor and tip angle α given below. 

𝑓𝐿𝑎𝑟𝑚𝑜𝑟 =  𝛾𝐵0         (1) 

𝛼 = 𝛾𝐵1
′ 𝑡      (2) 

where γ = gyromagnetic ratio of sample in Hz T-1 H 

γ = gyromagnetic ratio of sample in rad s-1 T-1 

B1'= 0.5 × B field of the solenoid/RF coil 

B0 = B field of the magnet 

Note that γ and γ indicate the same thing – gyromagnetic ratio. They differ only in units; γ 

is in Hz/T and γ is in (rad/s)/T. The former value is used to calculate Larmor frequency in Hz, 

while the latter formula is utilized in tip angle computation (in radians). 

Basically, fLarmor is the frequency at which magnetic spins will precess when placed inside 

the permanent magnet. These spins will precess in the longitudinal direction and the net 

magnetization will remain constant; for this reason, no current is induced in the solenoid and no 

signal is picked up. 

To generate a signal (called a Free Induction Decay or FID) from the sample, we need to 

‘tip’ the spins in the transverse plane, where the solenoid is located. In other words, the spins must 

be tipped by α = 90°. This is done using the RF90 pulse, which is basically a sine wave of duration 

corresponding to α90 and frequency fLarmor. 

Note that the 90° tipped spins will undergo rapid dephasing due to T2* effects. This leads 

to signal loss, the spins recover back to longitudinal by T1 recovery, and the amount of detected 
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signal in the transverse/solenoid plane diminishes. To counteract this, a Spin Echo sequence will 

excite the sample with a second RF pulse – the RF180. This pulse possesses a pulse length 

corresponding to α180 (when the magnetization/spin is ‘tipped’ by 180°) and frequency fLarmor.  

The timed events are all tied to when the RF pulse and TXG/RXG signals are activated and 

deactivated, and for how long. Further, the frequency of the RF pulse sinusoid must be 

customizable – handy when performing frequency sweeps. Finally, we are dealing with a Spin 

Echo (SE) pulse sequence here – it comprises of two RF pulses generated after a certain amount 

of timed delay. Figure 1 explains this sequence in the most basic form, with the timed events 

labeled appropriately.  

 

Figure 1: Timing Diagram for Pulse States - Spin Echo (SE) 

TXG and RXG in the timing diagram correspond to GPIO lines programmed in Vivado. 

These are pins DIO0_N and DIO7_N respectively.  

There is a value called dead_time mentioned in the timing diagram – this is simply a preset 

delay between the rising edge of TXG and the beginning of RF90. In our project, this is maintained 

at a preset value of 100 µs everywhere unless stated otherwise. Next, TR (i.e., repetition time) is 

inclusive of all timed events – dead_time, RF90, Off_time, RF180, Acquisition, along with time 

when all RF and gating pulses are kept deactivated. Completion of one TR means that one 
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repetition has been completed and the same pulse sequence repeats till all Repetitions have been 

exhausted. 

Also note the presence of TE – the echo time. In SE, this is the distance between the center 

of RF90 and center of the MR echo. This parameter is not an input to the console – it merely 

indicates the location where the center of MR echo will show up. It is used to make sure the 

Acquisition time input is large enough to allow digitizing the echo; if it includes the echo center, 

the digitizer is capturing the right RF data from the receive side.      

Figure 1 does not correspond to an actual SE sequence. A complete SE sequence will have 

two TXG pulses – one for RF90 and one for RF180, and the RXG pulse/Acquisition will begin 

from the center of RF180. The TXG used in this research is different because it is utilized by 

Pentek to digitize the receive. After receiving the positive edge of TXG, Pentek is set to digitize 

the receive side of MR2 for 20 ms and re-triggers in the next TR, when another TXG pulse is 

generated on the GPIO. Finally, Acquisition is kept right after the end of RF180, so that if the 

receive is digitized using this, only the MR echo is digitized and not the transmitted pulses.   

3.3 Server and Client Pair 

The client program client_program.py establishes a socket connection to the server via 

Ethernet. Pitaya has its own IP address – using this, our client connects to server and timed events 

can now be inputted. The client takes these from the user and transfers to the server for further 

processing, along with saving a copy of the user inputs in a timestamped text file in the same folder 

it is located in.  

The server is a gcc-compiled executable version of server_program.c. It accepts all these 

values and converts RF90, Off_time, RF180, TR and Acquisition, all inputs in the microsecond 

scale, to number of cycles. This is done by multiplying them with 125 – the clock frequency of the 
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Pitaya in MHz. These values determine the number of cycles at which an RF pulse should turn on, 

when the trigger pulses are activated/deactivated and for how long etc. As for frequency of each 

pulse, that is computed using equation 3 – this is explained in section 3.7. The result is the variable 

Frequency. 

These computed values, along with Repetitions, are all sent via specific memory addresses 

in the device to the digital circuit on our FPGA fabric. As described in the next section, these 

memory addresses allow for AXI GPIOs to read these computed values and pass them on to the 

rest of the digital circuit. Please refer to Appendix A for the server and client programs used in this 

project. 

After computing and sending out all 7 pulse parameters to the digital circuit, the server 

waits till (TR*Repetitions) time has passed. Once that happens, it resets all computed values stored 

in its memory mapped I/O to zeros and waits for a second.  After this, it closes the socket 

connection and exits back to the PuTTY console. To launch a new MR scan, we simply run the 

executable again and send fresh parameters from the Python program, and the process repeats. 

3.4 AXI GPIOs 

 The role of an AXI GPIO IP is to map a maximum of two registers to device memory. 

Effectively, it implements memory mapped I/O so that both the CPU and FPGA fabric of the SoC 

can access the same address space for read/write operations. In this project, all pulse parameters 

are sent as 32-bit outputs in the block design – this means that the value for each parameter is read 

from its assigned memory location from the device and processed by rest of the bitstream-

programmed digital circuit.  
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Figure 2: AXI GPIO IPs in system.bd block design  

 

As seen in the figure above, 4 AXI GPIO blocks have been used for 7 outputs. These 

correspond to the seven timing parameters discussed in section 3.2 and are all sent to 

pulse_state_generator. They are crucial for setting things in motion in the circuit and generating 

the required RF and trigger pulses corresponding to a spin echo pulse sequence, as will be 

explained in upcoming sections.     

To use them in the circuit, all memory addresses need to be mapped to user space on the 

device using the auto-assign feature in Vivado’s Address editor – the steps are explained in detail 

in the attached user manual. When auto-assigned, the following addresses were assigned to the 

AXI GPIO cores. Note that each GPIO IP is named in order of the register that comes first in the 

address space – this means that in RF90_and_Off_time, RF90 occupies the address space 

0x41210000 ~ 0x41210007 and Off_time occupies 0x41210008 ~ 0x4121000F.  
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Figure 3: Address Editor displaying assigned addresses for AXI GPIOs 

 

3.5 Pulse state generation 

Relating the pulse parameters to timed events bring us to RTL codes created in Verilog. 

These codes relate a value ‘pulse era’ to a specific state value as indicated in the following table. 

Pulse era can be thought of as a count value that increments by 1 at every positive edge of the 125 

MHz clock signal driving the FPGA logic. 

 

Table 1: Pulse State Generation in Verilog 

In the Vivado block design, we have set dead_time equal to 100 µs. Hence, TXG is 

activated 100 µs before the actual RF pulse, whether it is a 90° or a 180° pulse. 

If pulse era becomes greater than TR, its value is reset to zero and the process continues 

‘Repetitions’ number of times. After this, the state generator will remain in state ‘2’. Meanwhile, 
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the server code is designed to wait till (TR*Repetitions) time has passed. Once that happens, it 

blanks out the state generator by sending all zeros as pulse parameters to it and waits for a second.  

After this, fresh parameters can be sent into the state generator for a new MR scan. 

3.6 RTL Scripts 

Three RTL scripts have been created here – pulse_state_generator, DDS_control and 

DAC_activator. The first script accepts all 7 AXI GPIO values and increments a counter called 

pulse_era in a manner discussed in section 4.2 and generates state values corresponding to pulse 

era in accordance with Table 1. Note that pulse_state_generator also outputs a resync_bit that is 

fed to DDS. This is important since it clears the phase accumulator when set to ‘1’ and allows 

phase accumulator to update itself when set to ‘0’. Hence, resync_bit is set to ‘1’ after an RF pulse 

has completed generation, i.e., right after state changes from ‘1’ to ‘2’ or ‘4’ to ‘3’. It is also set to 

‘1’ right before the pulse sequence begins or repeats. Without this functionality, the system may 

fail to generate the first RF90 pulse since resync_bit needs to be asserted high for one clock cycle 

before DDS can generate any output. At all other times, resync_bit is set to ‘0’.     

DDS_control accepts state values generated by pulse_state_generator (as state) and phase 

increment from AXI GPIO (as phase_inc_server) and passes on this phase increment value (as 

p_inc) and a phase offset value of zero (as p_off) to DDS, along with TXG and RXG signals 

according to Table 1. Their interconnections in the block design are shown in Figure 4. 

 

Figure 4: pulse_state_generator and DDS_control – connected 
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DAC_activator is needed to instruct the Red Pitaya DAC IP core when to generate a DAC 

output corresponding to RF90 or RF180 and when not to. The output tvalid_out connects directly 

to s_axis_tvalid of the DAC IP, as seen in the figure below. 

 

Figure 5: DAC_activator and Pitaya’s DAC IP – connected 

 

Its operation is simple – when phase generated by DDS changes, set tvalid_out as HIGH, 

hence activating the DAC. When phase generated by the DDS remains steady over two clock 

cycles or is zero, set tvalid_out as LOW, hence deactivating the DAC. The three script files are 

attached to Appendix B of this document. 

 3.7 Direct Digital Synthesis 

DDS is short for Direct Digital Synthesizer – it is an IP core in Vivado that generates an 

arbitrary sine waveform that updates by a certain ‘phase increment’ (determines frequency) after 

every clock cycle and are initialized by a ‘phase offset’ (determines starting position of arbitrary 

wave).  It contains a phase accumulator and a sine lookup table, both of which require 

m_axis_phase_tdata to be provided as input – basically, we need to plug in phase increment and 

offset to the right locations. This is explained in detail in the following subsection. 

By plugging in these values, the phase accumulator is instructed to compute a phase value 

– this is used to search the sine lookup table. The amplitude corresponding to this phase value is 

sent out as output. As mentioned in section 3.3, frequency of the sine pulses is governed by formula 

3. Formula 4 computes phase offset in degrees, as a function of phase word length. 
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𝑝ℎ𝑎𝑠𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 =
𝑓𝑜𝑢𝑡×2𝐵𝜃(𝑛)

𝑓𝑖𝑛
    (3) 

𝑝ℎ𝑎𝑠𝑒 𝑜𝑓𝑓𝑠𝑒𝑡, 𝛼 =
2𝐵𝜃(𝑛)×𝛼

360
      (4) 

where fout = desired output frequency of DDS 

fin = frequency of clock signal fed into DDS = 125 MHz 

Bθ(n) = phase width (part of DDS properties)  

In this project, Bθ(n) was equal to 30, after setting the DDS IP core according to steps 

outlined in section 3.2.5 of the Red Pitaya User Manual, attached as Appendix D to this document. 

DDS in this project is used to generate sinusoidal pulses that are offset by 0° (i.e., begin at 

zero phase). For this reason, only phase increment is calculated in the server program and not phase 

offset, and resync bit is set to zero to clear the phase accumulator of its previous value after a RF 

pulse has been generated fully. 

In fact, phase offset p_off is kept at a constant 0 in the RTL code DDS_control.v itself, 

whether pulses are being generated or not. Note that phase offset has not been added as an AXI 

GPIO output in the main project, although it is included in the Red Pitaya User Manual in chapter 

3. This is because the author anticipates phase offset being incorporated in future projects 

involving Pitaya bitstreams for MRI. 

Hence, only formula 3 is implemented in the server program, which takes fout from the user, 

converts it to the corresponding phase increment, and sends this phase increment to the Pitaya. The 

relevant lines of C code are mentioned on the next page. 

uint32_t RF90, Off_time, RF180, TR, Acq, reps;  

float frequency; 

int freq_MHz = 125; 

uint32_t phase_inc = 1<<30; //2^30 

… 
//Memory map pointers to AXI GPIO addresses 
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/* get frequency and other inputs from client */ 

… 

float val = 125/frequency; 
phase_inc /= val; //final DDS input  

*((uint32_t *)(cfg_90_and_Off_time + 0)) = RF90*freq_MHz;    

*((uint32_t *)(cfg_90_and_Off_time + 8)) = Off_time*freq_MHz; 

*((uint32_t *)(cfg_180_TR + 0)) = RF180*freq_MHz;        

*((uint32_t *)(cfg_180_TR + 8)) = TR*freq_MHz;    

*((uint32_t *)(cfg_Acq + 0)) = Acq*freq_MHz;   

*((uint32_t *)(cfg_Phase_inc_and_reps + 0)) = phase_inc; 

*((uint32_t *)(cfg_Phase_inc_and_reps + 8)) = reps; 
 

The first line sets an unsigned 32-bit integer value, phase_inc, as 230 using the right shift 

operator. Next, val, a float value, computes the result for 125/frequency up to 6 places after decimal 

point, assuming frequency is another float variable obtained from user. Finally, the last line of 

code divides phase_inc, i.e., 230, by val to give the result of 230×frequency/125. This way, the C 

executable computes the appropriate phase_inc value to send to AXI GPIO and transfer by 

DDS_control to DDS, ready for sine wave generation. 

A 32-bit value called s_axis_phase_tdata is outputted by the DDS – this is our digital RF 

waveform. It is converted to a 14-bit output by AXI4-Stream Red Pitaya DAC – this is the analog 

waveform that shows up at OUT1 port on the Pitaya board. 

3.7.1 m_axis_phase_tdata 

 

Figure 6: Layout of m_axis_phase_tdata 

The DDS IP functions by accepting a 72-bit input called m_axis_phase_tdata, the internal 

structure of which is given in figure 6. This complete input is sent by concatenating all the values 

underneath it – p_inc (phase increment), p_off (phase offset), resync_bit and xlconstant_0. Since 
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our phase width is 30 and both phase increment and offset are set to ‘Streaming’, both are 30 bits 

wide each. However, register memory in the DDS is assigned as multiples of 8, therefore 32 bits 

are assigned to each of them, with the last two bits from the MSB side left unused. Since p_off is 

always zero in this project and p_inc is computed keeping 30 bits in mind, there is no risk of bit 

overflow into the unused part of m_axis_phase_tdata – they will always remain zeros.  

As discussed before, resync_bit is set by pulse_state_generator as 0 or 1 as per requirement. 

xlconstant_0 is simply a 7-bit constant value that is all zeros – this is sent in to fill out the input to 

complete the required 72-bit input length.    

3.8 Block design for pulse sequence generator (PSG) 

 The complete block design for PSG is shown in the figure on the next page. A Verilog 

wrapper is generated for it and set as top module. Finally, a bitstream corresponding to the block 

design was generated in Vivado, transferred to Pitaya and activated using the cat command. This 

process forms our PSG digital circuit and is controlled by the server and client programs as shown 

in Figure 7. The TXG and RXG lines are allotted the GPIO output connections indicated in Figure 

8. These and RF output (OUT1) are tested in the next section. 

 
 

Figure 7: Connecting PSG (housed in FPGA fabric) with I/O and other devices  
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Figure 8: TXG and RXG connections on E1 of Pitaya – highlighted.  

Modified from Extension — Red Pitaya 0.97 documentation[41] 
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Figure 9: Complete block design for PSG 
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3.9 Testing and setups 

Three setups were used in this research. The first setup was completely digital – it used 

Vivado’s XSim tool to evaluate the functionality of the digital circuit and verify that it works 

before bitstream creation. A testbench code was created and used for the purpose – it is attached 

to the appendix of this document. 

The second one tested pulse and trigger generation after the bitstream was created and 

activated the FPGA fabric, and the server-client program pair was set up correctly. The output was 

observed on three different oscilloscopes for RF delays and responsiveness and ensuring that it 

matched all pulse parameters.    

The last one was an experiment run on an MR setup containing a 4.7 T Varian magnet. 

This setup involved connecting the Pitaya and PC to an RF frontend comprising of a power 

amplifier, a match and tune circuit, a passive T/R switch, one preamplifier and one digitizer. Pitaya 

was set to run a pulse sequence twenty times. The digitizer was triggered either by TXG or RXG 

for each repetition as explained later, and the resulting data was saved to PC and processed in 

MATLAB. The purpose behind this was to extract echoes and check for phase stability – whether 

the RF pulses and echoes from multiple repetitions aligned at the same locations or not.  

3.9.1 XSim Testing – Simulations 

The FPGA logic is verified through simulations running in Vivado’s XSim tool. The 

testbench code for the same is provided as an appendix. This is done after each RTL code is created 

and added to the block design described in figure 7.  

Basically, all the blocks highlighted below were selected and a hierarchy called hier_0 was 

created from it. Once created, the block clk_wiz_0 was added to the hierarchy as well.  
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Figure 10: Creating a hierarchy from selected blocks 

 

A new block diagram called design_test was created in the same project and hier_0 was 

added to it. After auto-generating input and output pins for hier_0, the hierarchy was ungrouped 

in design_test. 

Five multiplier IP cores were added to design_test. All of them were set as constant 

coefficient multipliers with input width set to 32 bits wide and coefficient being a constant integer 

value of 125. The output width was set at custom values of 31 as output MSB and 0 as output LSB. 

They were connected and all IPs and ports were named to match the block design given below. 

The blocks design was saved, an HDL wrapper was created from design_test.bd, and the resulting 

design_test_wrapper.v file was set as ‘top module’ under Sources in Vivado. Note that these 

multiplier IPs are not part of the original system.bd block design. In fact, they can be replaced with 

appropriate lines of code in the testbench file using a set of 5 wires, just like phase offset is 

computed from frequency by the testbench using phase_val_1 and phase_val_2 as explained later. 
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Figure 11: Complete block design for design_test.bd
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Next, the simulation code file provided in appendix D (design_test_TB.v) was set as ‘top’ 

module under Simulation Sources in Vivado. It has two differential clock inputs clk_in1_n and 

clk_in1_p that are set such that they toggle every 4 ns. They replicate two one-bit signals of 50% 

duty cycle that repeat every 8 ns – in other words, two differential clock inputs of 125 MHz each. 

This feeds into the Clocking Wizard IP which generates the required clock signals to drive all 

components of the device under test (DUT).  

The testbench code also computes phase increment (indicated by phase_val_2) from 

Frequency_Hz. Remember that the original block design does not compute phase increment – this 

is calculated and provided by the server program itself. Hence the lines of code below use two 32-

bit regs phase_part_1 and phase_part_2 to replicate the functionality of phase_inc and val used in 

the C server code; only the language differs. 

  phase_part_1 = Frequency_Hz * (1<<30);  

  phase_part_2 = phase_part_1/125000000;  

 

The remaining testbench code simply matches the relevant regs and wires with ports of the 

design_test_wrapper DUT (device under test) and sets the seven parameters in the following 

manner, with each sequence executed once for the stipulated duration, one after the other.  

After the functionality is verified in XSim, the bitstream file (a .bit file) is generated in 

Vivado. This is copied to the /tmp directory of Pitaya and activated using the cat command. 

3.9.2 RF1 Setup – PC, Pitaya and oscilloscope 

 

Figure 12: Setup for RF1 – pulse generation and triggering on Pitaya 
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 After activating Pitaya’s FPGA with our bitstream, the server executable is created and 

executed on the Pitaya. Inputs are set in the client, and the resulting outputs checked for time lag, 

correctness to timing inputs and initial phase offset of RF pulses. Four different DSOs (digital 

storage oscilloscopes) are used for this, each possessing a different sampling rate and number of 

input and trigger/GPIO channels.    

The first oscilloscope used is an Agilent DSO3062 to check the time lag between GPIO 

lines and RF output. For this test, the bitstream is modified such that dead_time equals zero. This 

will cause TXG to be set as HIGH at the same time as RF90 begins instead of being HIGH 100 µs 

before RF90 is generated. The check will be performed by inputting parameters for sequence #1 

and observing the time difference between the positive edge of TXG and the start of RF90 on the 

oscilloscope. They are also listed in the table below describing the properties, pulse parameters 

and tests performed with the digitizing instruments (DSOs or oscilloscopes). 

Next, the RF and GPIO (TXG and RXG) outputs will be observed on a BitScope DSO. 

Finally, to observe the beginning and ending phases of the RF90 and RF180 pulses and check if 

their output frequency matches the requested one, a PicoScope 3206 DSO is used. The RF output 

will be observed after inputting timing parameters mentioned in Table 3. 

3.9.3 MR2 Setup – 4.7 T magnet and 2H sample 

This setup uses the magnet of a legacy 4.7 T Varian scanner, which comes with its own 

match and tune circuit. The Pitaya’s output (OUT1) is connected to a 32 dB Minicircuits power 

amplifier (PA), as shown in the diagram. This connects to a T/R switch followed by a match and 

tune and a solenoid wrapped around a test tube filled with heavy water which contains 2H. This 

connects to the rest of the MR setup as shown in Figure 13. 
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Figure 13: Setup for MR2 – 4.7 T magnet and 2H sample 

 

Here,  γ = gyromagnetic ratio of 2H in Hz T-1 = 6.536 × 106 Hz T-1 

γ = gyromagnetic ratio of 2H in rad s-1 T-1 = 2π × 6.536 × 106 rad s-1 T-1 

B0 = B field of the magnet = 4.7 T 

This gives the Larmor frequency of this sample as γ × B0 = 30.72 MHz. Hence, the 

frequency input shall be set as 30.72 MHz on the client side, and the remaining pulse parameters 

from table 2.  

Apart from the PC, Pitaya and digitizer, all components of the workstation are completely 

analog. The PA connects to a 30.72 MHz match and tune network and a solenoid wrapped around 

a test tube containing 2H. The solenoid and match and tune is placed inside a 4.7 T permanent 

magnet – all the other components are placed outside the magnet. The solenoid, T/R switch and 

match-and-tune network are part of the receive channel. The echo travels this path into a Miteq 

AU1579 preamplifier which boosts the received signal level. The RF pulses generated by Pitaya 

follow the transmit path to reach the heavy water sample housed in the solenoid and an echo is 

sent out on the receive path. 

At the end of the acquisition/receive path, we place the Pentek digitizer. It has two analog 

input channels and one external trigger, and a bandwidth of 200 MHz. This makes it possible for 

Pentek to capture an analog signal upon an external trigger and record it as raw data for further 
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analysis. It will capture and record signals on the receive channel after the preamp stage based on 

trigger pulses sent out by Pitaya directly to it.  

Pitaya sends out two +3.3 V trigger pulse signals, TXG and RXG, on separate GPIO lines 

– this is described in the manual. Pentek is triggered by the TXG pulse such that digitization of the 

receive side begins on its rising edge. Using a LabVIEW program, an acquisition period of 20 ms 

is set – this instructs Pentek to digitize all signals from the receive side up to 20 ms after a rising 

edge is observed on TXG. Since Pitaya will send out 20 repetitions, Pentek will acquire data 20 

times and append data from each repetition in a new column of a .dat file.  

3.10 Data processing for MR2 Setup 

This is another step carried out on setup MR2, which described in subsection 3.9.3. The 

raw data generated by Pentek are files with the extension .dat. It is processed using two MATLAB 

scripts – ReadPentek.m and display_Pentek_RX.m. These scripts are attached to Appendix D of 

this document. 

 The goal of these scripts is to read raw data from its file and plot its graph, correct for DC 

offset, perform a Fourier Transform on it and plot the frequency response, identify the peak 

frequency level and crop out 25 kHz to its left and right, and display the result. All 20 echo peaks 

of Pentek data are then superimposed on top of one another on the same graph using MATLAB’s 

‘hold on’ feature. 
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4. IMPLEMENTATION 

4.1 Parameters used 

 For simulations, the following pulse sequences were used. The code for the same is 

provided in Appendix C – Testbench/Simulation Code. 

Sequence #1 #2 #3 #4 #5 

Duration (in µs) 800 5 800 5 800 

Frequency (in MHz) 2.55 0 10 0 30.72 

RF90 (in µs) 5 0 4 0 1 

Off_time (in µs) 10 0 4 0 4 

RF180 (in µs) 10 0 8 0 2 

Acquisition (in µs) 20 0 15 0 10 

TR (in µs) 180 0 150 0 130 

Repetitions 3 0 4 0 5 

Table 2: Parameters used in XSim simulation 

As seen above, all values are set in accordance with their units. The reason for choosing 

2.55 MHz for sequence #1 and 30.72 MHz for sequence #5 is to compare these against the pulses 

generated by the actual device after bitstream activation. Moreover, these are the Larmor 

frequencies of 1H at 0.06 T and 2H at 4.7 T – this is discussed in more detail in the next subsection. 

10 MHz in sequence #3 is an arbitrary frequency chosen to demonstrate the generation of pulses 

over a range of frequencies – this is not a Larmor frequency intended to be used in this project. 

Finally, Acquisition and TR are smaller than the typical values sent in to  

Sequences #2 and #3 have all parameters set to zero – the purpose is to demonstrate the 

‘blanking out’ requirement of our digital circuit. As a final check, these were toggled OFF to show 

the circuit indeed does not function correctly without a blanking sequence sent in before a fresh 

sequence. 
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In the testbench code, ‘_us’ suffix after a reg indicates that it is a parameter in 

microseconds, and ‘_Hz’ indicates that it is a parameter in Hz. Pound symbols (#) are used to set 

delays while the testbench controls the DUT. Since the time scale used is in nanoseconds (indicated 

by `timescale 1ns / 1ps), all delays are set in nanoseconds. With each delay, the DUT is allowed 

to run on a fixed set of inputs for the duration of that delay. After the delay, the inputs are 

overwritten with the next set of values, ready to be accepted by the DUT and the relevant output 

is generated. After 2.410 milliseconds, the testbench concludes its operation as it reaches the 

$finish command. 

Table 3 details all the pulse parameters and properties of the RF/MR testing performed. 

Instrument Agilent BitScope Picoscope Pentek 

Sampling Rate 1 GSa/s 5 MSa/s 50 MSa/s 200 MSa/s 

What to test Time lag Transmit Transmit Receive 

Test setup RF1  RF1 RF1 MR2 

Magnet Used X X X 4.7 T 

Test sample X X X 2H 

RF90 (in us) 5 70 70 600 

Off_time (in us) 10 300 300 6,500 

RF180 (in us) 10 140 140 1,200 

Acq (in us) 20 200 200 20,000 

TR (in us) 180 106 106 5.21×106 

Repetitions 3 24 24 20 

Frequency (in MHz) 2.55 2.55 2.55, 10, 30.72 30.72 

Table 3: Details on RF/MR testing 

4.2 Waveforms and results 

4.2.1 Simulated – before bitstream generation 

Following the method in subsection 3.9.1, all five sequences were executed correctly by 

our DUT in XSim. The complete waveform plot is shown below, containing inputs and outputs 

for all sequences.  
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Figure 14: Simulation results for testbench code
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 As expected, TXG was set HIGH by the circuit at the beginning of every TR and stayed 

like this for 100 µs, after which it was set LOW. Right after TXG was set to LOW, an RF sine 

pulse was activated by the circuit for RF90_us number of microseconds and then deactivated. All 

RF and GPIO outputs remained in LOW for Off_time_us number of microseconds. After that, 

another RF sine pulse was activated for RF180_us number of microseconds and deactivated. 

Finally, RXG was set HIGH right after RF180 generation was completed for Acq_us number of 

microseconds and then set to LOW. Once TR_us number of microseconds passed, the pulse 

generation process continued ‘Repetitions’ number of times. 

To verify the timing, markers were placed at specific locations of the plot – three at positive 

edges of TXG, three at negative edges of RXG and two at preset delays set using # symbol in the 

testbench code. The results are tabulated below. Note that #800_µs refers to a preset delay event 

of 800 µs – the suffix _µs indicates this value is in microseconds and refers to the Verilog line of 

#800000, or 800,000 ns. The subscript at the end of an event without # refers to its sequence 

number w.r.t. Table 2.  

Chain of timed events Expected time marker Simulated time marker 

TR1 × 1 180.000 µs 180.308 µs 

(TR1 × 2) + (dead_time + RF901 + Off_time1 
+ RF1801 + Acq1) 

505.000 µs 505.316 µs 

#800_µs 800.000 µs 800.012 µs 

#800_µs + #5_µs + TR3  955.000 µs 955.020 µs 

#800_us + #5_us + (TR3 × 3) + (dead_time 
+ RF903 + Off_time3 + RF1803 + Acq3) 

1386.000 µs 1386.036 µs 

#800_µs + #5_µs + #800_µs 1605.000 µs 1605.000 µs 

#800_µs + #5_µs+ #800_µs + #5_µs + (TR5 
× 1) 

1740.000 µs 1740.020 µs 

#800 + #5 + #800 + #5 + (TR5 × 4) + 
(dead_time + RF905 + Off_time5 + RF1805 + 

Acq5) 

2247.000 µs 2247.044 µs 

Table 4: Comparing time markers in Figure 14 with expected values 
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From this table, the largest difference between simulated and expected time events is 0.316 

µs; the difference is less than 1 µs. Hence, the RF output, TXG and RXG of each sequence indeed 

matches up in terms of overall timing for pulses to start and stop/ turn HIGH and LOW.  

The TXG and RXG outputs seem to be correctly generated – this is verified later by 

zooming in to one part of the graph. The number of times the pulse sequence repeats is also correct. 

This indicates a digital circuit with its output(s) matching the timing parameters discussed 

previously. 

4.2.1.1 Sequence #1 

Next, the graph was zoomed in to the end of the first RF180 pulse of sequence #1 to check 

if our testbench code computed the correct phase increment, and whether the generated RF pulse 

was of the right frequency. For this, we have the set frequency (input) = 2,550,000 Hz = 2.55 MHz 

and calculated phase increment = 21904333.21. Since phase increment fed into the DDS is an 

integer value, all digits after the decimal place would ideally be discarded, i.e., it must be 

21904333. 

 



 

37 

 

 

 

Figure 15: Check for phase increment and frequency – sequence #1 

   

The testbench-computed phase increment is phase_part_2; from the above figure, we see 

that this was computed as expected. The simulated frequency is calculated by finding the 

difference between the red marker and the first blue one and inverting this difference, which is 

106/(103.5081-103.1161) = 2.5510 MHz. This is very close to the set frequency value. 

Next, the graph was zoomed in further to observe the delay between state change from 4 

(RF ON)  to 3 (Acq ON) and the time resync, DDS and DAC respond to this state change. To 

double-check, frequency was calculated again in this graph based on markers – this time in the 

nanosecond scale.   
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Figure 16: Observing frequency and state change – sequence #1 

  

The simulated frequency here is 109/(124780.1 - 124388.1) = 2.5510 MHz. This is the same 

frequency as before. To quantify the time delay mentioned previously, the graph was zoomed into 

further as shown below. 

 

Figure 17: Zoomed in – state transition 
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We see that resync goes HIGH 8 ns after the state transition, or one clock cycle after 

changing states from 4 to 3. This matches our ideal, since resync is programmed to turn on one 

clock cycle after a state transition from that of non-zero phase increment (pulse generation) to zero 

increment (flatline). As expected, it is asserted for 1 clock cycle (8 ns) and then goes LOW.  

DAC output appears to remain a steady non-zero value 28.1 ns after the state change, or 

12.1 ns after resync is de-asserted. DDS takes a little longer (80.1 ns from state change, or 64.1 ns 

after de-asserting resync) to settle down to its ‘steady flatline’ level, i.e., 8190. This value of 8190 

shows up whenever no pulse is created by DDS and remains steady if no phase increment is fed to 

it. DAC appears to translate this steady flatline value to a zero in its output every time – hence this 

is not an issue. 

In this case, DAC generates a steady zero 100.1 ns after state change, or 84.1 ns after resync 

is de-asserted. We assume the longest delay, i.e., DAC output flatlines 100.1 ns later than expected. 

This comes down to 0.1001 us delay, which is negligible, considering our system needs to be 

precise only up to a micrometer.   

Next, the graph was zoomed out to view the second TR of sequence #1. To check for 

timings, four markers were places – one at the rising edge its TXG, one right before RF90 was 

generated, one at the rising edge of RXG and one at the rising edge of the next TXG pulse. The 

first rising TXG edge indicates start of the second TR; the second rising edge indicated the end of 

this TR and start of the next one. The timings from this figure were then tabulated in Table 3. 
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Figure 18: Timings in second TR of sequence #1 

 

Chain of timed events Expected time marker Simulated time marker 

TR1 × 1 180.000 µs 180.308 µs 

(TR1 × 1) + dead_time 280.000 µs 280.4441 µs 

(TR1 × 1) + (dead_time + RF901 + Off_time1 
+ RF1801) 

305.000 µs 305.3801 µs 

TR1 × 2 360.000 µs 360.316 µs 

Table 5: Comparing time markers in Figure 18 with expected values 

4.2.1.2 Sequence #3 

 

Figure 19: Sequence #3 – start of RF90  
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Figure 18 shows the beginning of RF90 for the third TR in sequence #3. It has the set 

frequency (input) = 10,000,000 Hz = 10 MHz and calculated phase increment = 85899345.92. 

Discarding digits beyond the decimal point gives 85899345 – this matches the computed phase 

increment. This phase increment value gives a frequency of 9.99 MHz – quite close to the 

requested 10 MHz. Next, the simulated frequency is 2×109/(1205492.1-1205292.1) = 10 MHz – 

this is the same as our set frequency value. Note that this value is multiplied by 2 because the 

difference between two sine waves was used in the calculation.  

 

Figure 20: Timings for third TR – sequence #3 

 

Chain of timed events Expected time marker Simulated time marker 

#800_us + #5_us + (TR3 × 1) 955.000 µs 955.020 µs 

#800_us + #5_us + (TR3 × 1) + dead_time 1055.000 µs 1055.0921 µs 

#800_us + #5_us + (TR3 × 1) + (dead_time 
+ RF903 + Off_time3 + RF1803) 

1086.000 µs 1086.020 µs 

 #800_us + #5_us + (TR3 × 2) 1105.000 µs 1105.028 µs 

Table 6: Comparing time markers in Figure 20 with expected values 

As seen from values in tables 3 and 4, the largest deviation from ideal time markers is 

0.4441 us for sequence #1 and 0.316 us for sequence #3.  
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4.2.1.3 Sequence #5 

 

Figure 21: Sequence #5 – end of RF180 of last TR 

Here, the graph is zoomed to the end of the last RF180 pulse in the last TR for sequence 

#5. The set frequency (input) equals 30,720,000 Hz = 30.72 MHz and calculated phase increment 

= 263882790.7. Discarding digits beyond the decimal point gives 263882790 – this matches the 

computed phase increment. This phase increment value gives a frequency of 30.719 MHz – quite 

close to the requested 30.72 MHz. Next, the simulated frequency is 14×109/(2237004.1-

2236548.1) = 30.701 MHz – this is slightly different from our set frequency value, but close 

nonetheless. It is tricky to verify the correctness of this pulse frequency in simulations alone 

because lesser number of samples are used to represent a sine wave of this frequency as compared 

to a 2.55 MHz or 10 MHz wave.   

In figures 16 and 19, the DAC output appears to be a rectangular wave modulated with a 

sine function – notice how it rises for one clock cycle and ‘dips’ every clock cycle. In figure 21, 
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the DAC output not only appears like a random waveform rather than a sine, but the DDS output 

does not resemble a 30.72 MHz sine at all. The reason for these outputs not being consistent with 

sine waves is due to two factors – frequency resolution of the DDS and the behavior of the DAC 

IP created by Pavel.  

Frequency resolution is given by fclk/2
Bθ, with fclk being the clock frequency of the system, 

125 MHz and Bθ being the phase width, i.e., 30. This gives a frequency resolution of 125 × 106/230 

= 0.1164 Hz. This corresponds to 8.58 ns – a sine wave with time period comparable to this value 

will not appear precise in simulations. That is why 30.72 MHz has a DDS output appearing random 

instead of a repeatable sinusoid. 

Pavel’s DAC IP works by toggling between two values for every non-zero DDS input 

value. This is the expected behavior of the DAC, as seen in figures 16 and 19. An analog output 

stage consisting of a lowpass filter (LPF) exists between the 14-bit DAC output port of our digital 

circuit and the SMA connector of OUT1 that causes the DAC IP output to ‘smoothen out’ into a 

clean sinusoid as seen in oscilloscope results after bitstream generation.      

4.2.1.4 ‘Blanking out’ after a scan 

 

Figure 22: Simulation results without blank-out sequences 
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It was mentioned previously that requesting a new set of pulses without ‘blanking out’, i.e., 

setting all parameters to zero, will cause the circuit to behave unexpectedly. To demonstrate this, 

all blocks of testbench code after 800 us # delays up to 5 us # delays were commented out, 

essentially suppressing sequences #2 and #4. The result is shown above – rep_tracker is not reset 

after accepting a new set of inputs, causing the corresponding sequence to run less than the 

requested number of repetitions. Hence, it is important to perform a ‘blank out’ operation on the 

inputs every time a new sequence of RF and GPIO pulses must be generated. 

Overall, this set of simulations shows that all RTL codes were written and integrated 

properly into the system. Notice that small values of RF90_us, Off_time_us, RF180_us and 

Acq_us were chosen. This was done on purpose to allow simulation results to be generated quickly 

and without overloading the computer. Although the DAC output did not represent a sine 

waveform here, it was later verified that sine pulses were indeed generated in the indicated green 

areas of the waveform.  

4.2.2 After bitstream – Testing with PC inputs 

To check for time lag between GPIO lines and OUT1, dead_time was temporarily set to 

zero, the corresponding bitstream generated, and TXG  and OUT1 from the bitstream-programmed 

Pitaya were monitored with an Agilent oscilloscope. As seen in figure 7, the time lag between the 

two was 84 ns. In other words, all frequencies beyond 11.9 MHz have their RF channel lagging 

from the GPIO by at least one clock cycle. However, this lag remains constant, making it a 

predictable and quantifiable lag with every repetition or parameter set.      
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Figure 23: Lag between TXG and RF90 (keeping dead_time = 0) 

Next, OUT1 channel and GPIO lines were recorded over a BitScope DSO, as seen in figure 

8. OUT1 IS the yellow waveform, the red and orange lines in the bottom half corresponded to 

TXG and RXG respectively. 

 

Figure 24: Pitaya outputs (OUT1, TX, RXG) captured with BitScope DSO 
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 Next, to observe frequency and amplitude, the PicoScope was used. TXG was used as a 

trigger signal for this, giving the results below. In all output waveforms, the voltage is found to be 

1.969 Vpp. 

 

Figure 25: Pitaya RF output for 2.55 MHz captured with PicoScope 

 

 

Figure 26: Pitaya RF output for 10 MHz captured with PicoScope 
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Figure 27: Pitaya RF output for 30.72 MHz captured with PicoScope 

 Since PicoScope has a sampling rate of 50 MSa/s, it under-samples the 30.72 MHz signal, 

making it appear jagged instead of sinusoidal. However, it is noted in later sections that the Pentek 

digitizes this perfectly, giving an echo of 30.72 MHz.   

When looking at the starting phase of all RF90 and RF180 pulses, all three sequences for 

PicoScope have their RF90 and RF180 starting at the same phase value. This indicates that overall, 

the output matches the input parameters, and the pulse generator is phase stable. 

This demonstrated that Pitaya was now fully programmed for pulse generation and 

triggering acquisition events and could be integrated with a PC and RF frontends to create a 

working MR setup for spin echoes. 

4.2.3 Testing on MR setup 

In this setup, Pitaya was connected to an MR setup with a 4.7 T permanent magnet and the 

receive side was analyzed using a Pentek digitizer with TXG as the triggering signal. This was 

done to capture the transmitted pulses as well as the echo generated by the 2H sample.  
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Using the MATLAB codes attached to the appendix of this document, the captured data of 

all 20 TRs were superimposed on top of each other. The superimposed data was zoomed in to 

check how well the RF90s and RF180s overlap. 

There is a 125 ns difference between the time when the RF90 is expected to show up and 

the actual sequences. In other words, each RF90 starts 125 ns after the 100 us time step in our 

waveform. Within the RF90 pulses itself there is a jitter of 5 ns. Upon zooming in the RF90 end 

and ringdown, there is a 50 ns delay between expected and actual RF90 end, and a delay of 125 ns 

between RF90 end and the beginning of ringdown. Jitter at RF90 end and ringdown stays the same, 

at 5 ns. 

 

Figure 28: Beginning of RF90 – 20 acquisitions superimposed, zoomed in 
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Figure 29: End of RF90 – 20 acquisitions superimposed – zoomed out 

 

 

Figure 30: End of RF90 and ringdown, zoomed in 
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Figure 31: End of RF90 – pure ringdown, zoomed in 

The beginning and end of RF180 were analyzed as well. RF180 starts 35 ns before expected 

time and end 5 ns before expected time. The jitter is very close to the value before, at 6 ns. The 

delay between RF180 end and its ringdown is 90 ns - less than that of RF90 and its ringdown. This 

shows that all the RF pulses generated are phase stable. 

 

 

Figure 32: Beginning of RF180, zoomed in 
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Figure 33: End of RF180 and ringdown, zoomed in 

 

 

Figure 34: End of RF180 – pure ringdown, zoomed in 

Finally, all data between 13.2 ms and 17.2 ms was cropped out. Based on inputted 

parameters, 15.2 ms is where the echo peak will show up. This was Fourier Transformed to give 

its spectrum. As seen in the figures, the magnitudes of all spectra superimposed perfectly on top 

of each other at Larmor frequency, with a distinct peak showing up for all the acquisitions at 

30.7226 MHz. The phases, however, do not seem to align well. At 30.7229 MHz, it is seen that 
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the phases vary from 1.2 radians to 2.2 radians, which is a large phase deviation between 

acquisitions.  

 

 

Figure 35: Magnitude of spectra acquired with Pentek at Larmor 

 

 

Figure 36: Phase of spectra acquired with Pentek – zoomed at Larmor 
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Figure 37: Real part of spectra acquired with Pentek – zoomed at Larmor 

A close inspection of the real part of echo spectra further confirms the phase instability of 

the setup since they do not align well. It is very likely the echoes are not phase stable due to Pentek 

not being perfectly synchronized with Pitaya. Because of this, it is not possible to create a phase 

stable system with MR2. If this setup is to generate phase stable echoes, then Pentek must be 

synchronized with Pitaya, preferably with a shared clock signal. 

However, figures 28-34 indicate that the RF pulse generation (and hence Pitaya) is phase 

stable since the RF90 and RF180 in each repetition superimpose well in the time domain. 

Therefore, the complete system is controllable with a Pitaya configured with the author’s digital 

circuit and interface, and capable of producing echoes with a high-speed digitizer. While the RF 

pulses are phase stable, the MR echoes are not phase stable because the digitizer is not 

synchronized with the pulse generator. 

4.3 Future work 

 Future developments of this project may involve digitization performed on the Pitaya itself 

using BRAM IP cores as part of the digital circuit. This is quite beneficial as far as phase stability 
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of the echoes (and hence the entire system) is concerned since this allows for the digitizer and 

pulse generator to coexist side by side on the same hardware platform and be perfectly 

synchronized. With improved synchronization comes phase stability of MR echoes, which is 

highly desirable. The author notes that this functionality is not trivial to implement and requires 

sound knowledge of memories and TCP/IP to ensure correct implementation of data storage and 

integration with AX14-Stream Red Pitaya ADC, an IP core that converts RF input to 14-bit digital 

output, ready to be stored/transferred elsewhere for further processing. 

 Coming to data processing, this feature can be implemented upon successful deployment 

of digitization on Pitaya itself. Although this will make the circuit more complex, this will greatly 

reduce equipment cost since an external PC and digitizer will no longer be required for data 

processing – simply generate RF pulses and triggers from Pitaya, digitize the receive, and process 

the raw data to obtain the echo information. The final echo information may be streamed out to 

the client program which will save it on the client PC.  

 It will be beneficial to add gradient pulse generation to this system as well. Since Pitaya 

has only two RF output channels, OUT1 and OUT2, out of which the former is already used for 

RF pulses, that leaves only OUT2 as a gradient pulse channel. This in conjunction with a gradient 

coil can be used to create projection images of samples, just like the ones created with the MR 

hardware in ECEN 463/763 using a planar gradient coil. To generate a complete 2D image, one 

RF channel and three gradient channels are required – one for slice select, one for frequency 

encode/readout and one for phase encode. This can be done by using two Pitaya boards at the same 

time – this system will have 4 output channels which is sufficient for the task. For this to work, it 

is important to ensure both Pitaya boards are perfectly synchronized. 
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5. CONCLUSION 

The program codes in Verilog, C and Python, and the manual created in this project are 

intended to guide students and researchers towards digital logic deployment in MR 

instrumentation. By incorporating them in MR setups, students will gain hands-on experience in 

RF pulse generation via digital circuits and appreciate its importance in MR applications. More 

importantly, it will encourage them to formulate solutions to existing MR and RF problems in 

terms of programmable logic and develop skills in FPGA prototyping. The digital circuit design, 

server and client programs and testbench code serve as a baseline for researchers to create and add 

more features to the circuit and interface for future MR experiments.        

It is meant to act as system upgrade to the existing MR setup used in ECEN 463/763 – 

Magnetic Resonance Engineering, at Texas A&M University, along with setting a baseline for 

researchers to utilize programmable logic in signal generation through a Pitaya development board. 

The results indicate that this signal generator is well suited for the task, seeing that its output 

matches user inputs well, is easy to control and assemble, has phase stable outputs and can be 

expanded to build more sophisticated setups for MRI experiments.  
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APPENDIX A 

SERVER AND CLIENT PROGRAMS 

1. server_program.c 

#include <sys/socket.h> 

#include <arpa/inet.h> //inet_addr 

#include <stdio.h> 

#include <stdint.h> 

#include <unistd.h>    //write 

#include <sys/mman.h> 

#include <fcntl.h> 

#include <stdlib.h> 

#include <string.h> 

 

#pragma pack(1) 

 

typedef struct payload_t { 

/* NOTE: All these are inputs are 32 bits long and in microseconds, taken from the 

Python client. We get these from the client and send to bitstream-configured GPIO 

– the first stage of our digital circuit */ 

 

    uint32_t RF90;  

    uint32_t Off_time; 

    uint32_t RF180; 

    uint32_t TR; 

    uint32_t Acq; 

    uint32_t reps; 

    float frequency; 

} payload; 

 

#pragma pack() 

 

int main(int argc, char** argv) 

{ 

    //Step 1: Initialize socket stuff 

    int PORT = 2300; 

    int BUFFSIZE = 512; 

    char buff[BUFFSIZE]; 

    int ssock, csock; 

    int nread; 

    struct sockaddr_in client; 

    int clilen = sizeof(client); 
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    //Step 2: Initialize bitstream control stuff 

    int fd;    

    char *name = "/dev/mem"; 

    void *cfg_90_and_Off_time, *cfg_180_TR, *cfg_Phase_inc_and_reps, *cfg_Acq; /*

pointers to address/memory locations used by bitstream's GPIO*/ 

    uint32_t phase_inc = 1<<30; //fed to DDS 

    uint32_t RF90, Off_time, RF180, TR, Acq, reps; float frequency; //we get thes

e from the Python client 

    int freq_MHz = 125; // 125 MHz - multiply with pulse timing parameters 

  

   if((fd = open(name, O_RDWR)) < 0) 

  { 

    perror("open"); 

    return EXIT_FAILURE; 

  } 

 

  /* Mapping to addresses specified by bitstream's AXI GPIO 

  (Please refer to your block design's 'Address Editor' in Vivado for this) */ 

  cfg_90_and_Off_time = mmap(NULL, sysconf(_SC_PAGESIZE),PROT_READ|PROT_WRITE, MA

P_SHARED, fd, 0x41210000); 

  cfg_180_TR = mmap(NULL, sysconf(_SC_PAGESIZE),PROT_READ|PROT_WRITE, MAP_SHARED,

 fd, 0x41220000); 

  cfg_Phase_inc_and_reps = mmap(NULL, sysconf(_SC_PAGESIZE),PROT_READ|PROT_WRITE,

 MAP_SHARED, fd, 0x41230000); 

  cfg_Acq = mmap(NULL, sysconf(_SC_PAGESIZE),PROT_READ|PROT_WRITE, MAP_SHARED, fd

, 0x41200000); 

 

// Creating and binding a socket 

    struct sockaddr_in server; 

 

    if ((ssock = socket(AF_INET, SOCK_STREAM, 0)) < 0) 

    { 

        printf("ERROR: Socket creation failed\n"); 

        exit(1); 

    } 

    printf("Socket created\n"); 

 

    bzero((char *) &server, sizeof(server)); 

    server.sin_family = AF_INET; 

    server.sin_addr.s_addr = INADDR_ANY; 

    server.sin_port = htons(PORT); 

    if (bind(ssock, (struct sockaddr *)&server , sizeof(server)) < 0) 

    { 

        printf("ERROR: Bind failed\n"); 
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        exit(1); 

    } 

    printf("Bind done\n"); 

    listen(ssock, 3); 

    printf("Server listening on port %d\n", PORT); 

 

    while (1) 

    { 

        csock = accept(ssock, (struct sockaddr *)&client, &clilen); 

        if (csock < 0) 

        { 

            printf("Error: accept() failed\n"); 

            continue; 

        } 

 

        printf("Accepted connection from %s\n", inet_ntoa(client.sin_addr)); 

 

//Accepted socket connection. Now preparing to receive inputs from client  

        bzero(buff, BUFFSIZE); 

        while ((nread=read(csock, buff, BUFFSIZE)) > 0) 

        { 

            printf("Received %d bytes\n", nread); 

            payload *p = (payload*) buff;  

 

            //Print received inputs from Python client 

            printf("\nReceived contents:\n"); 

            printf("RF90 \t\t = %d us\n", p->RF90); 

            printf("Off_time \t = %d us\n", p->Off_time); 

            printf("RF180 \t\t = %d us\n", p->RF180);  

            printf("TR \t\t = %d us\n", p->TR); 

            printf("Acquisition\t = %d us\n", p->Acq); 

            printf("Repetitions\t = %d\n", p->reps); 

            printf("Frequency\t = %0.6f MHz\n", p->frequency); 

 

            RF90 = p->RF90; 

            Off_time = p->Off_time; 

            RF180 = p->RF180; 

            TR = p->TR; 

            Acq = p->Acq; 

            reps = p->reps; 

            frequency = p->frequency; 

        } 

         

    float val = 125/frequency; 

    phase_inc /= val; //converting phase increment to final DDS value   
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    printf("\nConverted phase increment = %d", phase_inc); 

 

    *((uint32_t *)(cfg_90_and_Off_time + 0)) = RF90*freq_MHz;   // convert RF90 t

o number of clocks 

    *((uint32_t *)(cfg_90_and_Off_time + 8)) = Off_time*freq_MHz;   // convert Of

f_time to number of clocks 

    *((uint32_t *)(cfg_180_TR + 0)) = RF180*freq_MHz;   // convert RF180 to numbe

r of clocks 

    *((uint32_t *)(cfg_180_TR + 8)) = TR*freq_MHz;   // convert TR to number of c

locks 

    *((uint32_t *)(cfg_Acq + 0)) = Acq*freq_MHz;   // send acquisition  

    *((uint32_t *)(cfg_Phase_inc_and_reps + 0)) = phase_inc;   // send phase incr

ement 

    *((uint32_t *)(cfg_Phase_inc_and_reps + 8)) = reps;   // send repetitions 

     

 

    for(int count_reps= 1; count_reps <= reps; count_reps ++){ 

        printf("\nRep #%d", count_reps); 

        sleep(TR/1000000); //delay in seconds 

    } 

    printf("\nNow blanking out the pulse parameters..."); 

    *((uint32_t *)(cfg_90_and_Off_time + 0)) = 0;   // convert RF90 to number of 

clocks 

    *((uint32_t *)(cfg_90_and_Off_time + 8)) = 0;   // convert Off_time to number

 of clocks 

    *((uint32_t *)(cfg_180_TR + 0)) = 0;   // convert RF180 to number of clocks 

    *((uint32_t *)(cfg_180_TR + 8)) = 0;   // convert TR to number of clocks 

    *((uint32_t *)(cfg_Phase_inc_and_reps + 0)) = 0;   // send phase increment 

    *((uint32_t *)(cfg_Phase_inc_and_reps + 8)) = 0;   // send repetitions  

    sleep(1); 

    printf("\nOperation complete."); 

    sleep(1); 

    printf("\nClosing connection to client\n"); 

    sleep(1); 

    printf("----------------------------\n"); 

    sleep(1); 

    close(csock); 

    return 0; 

    } 

} 
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2. client_program.py 

#!/usr/bin/env python 

 

""" client.py - Echo client for sending/receiving C-like structs via socket 

References: 

- Ctypes fundamental data types: 

https://docs.python.org/2/library/ctypes.html#ctypes-fundamental-data-types-2 

- Ctypes structures: 

https://docs.python.org/2/library/ctypes.html#structures-and-unions 

- Sockets: https://docs.python.org/2/howto/sockets.html 

""" 

 

import socket 

import sys 

from datetime import datetime #to name the MR output file 

from ctypes import * 

 

""" This class defines a C-like struct """ 

class Payload(Structure): 

    _fields_ = [("RF90", c_uint32), ("Off_time", c_uint32), 

                ("RF180", c_uint32), ("TR", c_uint32), 

                ("Acq", c_uint32), ("Reps", c_uint32), 

                ("Frequency", c_float)] 

 

def main(): 

    redpitaya = "169.254.217.146" 

    #redpitaya = "169.254.156.79" 

    server_addr = (redpitaya, 2300) 

    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

    try: 

        s.connect(server_addr) 

        print ("Connected to %s" % repr(server_addr)) 

    except: 

        print ("ERROR: Connection to %s refused" % repr(server_addr)) 

        sys.exit(1) 

 

    try: 

            #Send data to server 

            print ("") 

            payload_out = Payload(140,12895,280,5210000,20000,20,30.72) 

            print("Sending these params:") 

            print("RF90 \t\t = %d us \nOff_time \t = %d us \nRF180 \t\t = %d 

us \nTR \t\t\t = %d us" 

                  "\nAcquisition\t = %d us\nRepetitions\t = %d \nFrequency\t 

= %.6f MHz\n" 

                                       % (payload_out.RF90, 

                                          payload_out.Off_time, 

                                          payload_out.RF180, 

                                          payload_out.TR, 

                                          payload_out.Acq, 

                                          payload_out.Reps, 

                                          payload_out.Frequency 

                                          )) 

            nsent = s.send(payload_out) 

            # Alternative: s.sendall(...): continues to send data until 



 

65 

 

 

either 

            # all data has been sent or an error occurs. No return value. 

            print ("Sent %d bytes" % nsent) 

            ct = datetime.now() 

            stamp = ct.strftime("%b_%d_%Y_%I_%M_%S_%p") 

            filename = "MR_data_" + stamp + ".txt" 

            with open(filename, "a") as txt_file: 

                txt_file.write('Sent out the following:\n') 

                txt_file.write('RF90 = %d us\n' % (payload_out.RF90)) 

                txt_file.write('Off_time = %d us\n' % (payload_out.Off_time)) 

                txt_file.write('RF180 = %d us\n' % (payload_out.RF180)) 

                txt_file.write('TR = %d us\n' % (payload_out.TR)) 

                txt_file.write('Acquisition = %d us\n' % (payload_out.Acq)) 

                txt_file.write('Repetitions = %d\n' % (payload_out.Reps)) 

                txt_file.write('Frequency = %.6f MHz\n' % 

(payload_out.Frequency)) 

                txt_file.write("\n") 

    finally: 

        print ("Closing socket") 

        s.close() 

 

if __name__ == "__main__": 

    main() 
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APPENDIX B 

RTL SCRIPTS 

1. pulse_state_generator.v 

`timescale 1ns / 1ps 

 

module pulse_state_generator( 

    input aclk, 

    // inputs from user 

    input [31:0] RF90, [31:0] Off_time, [31:0] RF180, [31:0] TR, 

[31:0] Acq, 

    input [31:0] repetitions, 

    output [2:0] state, 

    output resync 

    ); 

 

reg resync_bit = 0; 

reg [31:0] pulse_era; 

reg [31:0] dead_time = 12500; //100 us before RF90 or RF180 begins - 

for TXG 

reg [2:0] state_val = 2; 

reg [31:0] rep_tracker = 0; 

 

always @ (posedge aclk) 

begin 

    resync_bit <= 0; 

    if (repetitions == 0) begin 

        rep_tracker <= 1; 

        pulse_era <= 0; 

        state_val <= 2;//flatlines for TXG and RF OUT 

    end 

    else if (rep_tracker > repetitions) begin 

        pulse_era <= 0; 

        state_val <= 2; //flatlines for TXG and RF OUT 

    end 

    else if (pulse_era<dead_time) 

        state_val <= 0; //TXG is ON 

    else if (pulse_era<(dead_time+RF90))  

        state_val <= 1; //RF90 and TXG is ON 

    else if (pulse_era == (dead_time+RF90 + 1)) 

        resync_bit <= 1; 

    else if (pulse_era<(dead_time+RF90+Off_time)) 

        state_val <= 2; //TXG and RF OUT are OFF 
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    else if (pulse_era<(dead_time+RF90+Off_time+RF180)) 

        state_val <= 4; //RF180 is ON, TXG is OFF 

    else if (pulse_era == (dead_time+RF90+Off_time+RF180 + 1)) 

        resync_bit <= 1; 

    else if (pulse_era<(dead_time+RF90+Off_time+RF180+Acq)) 

        state_val <= 3; //RXG is ON 

    else if (pulse_era<TR)  

        state_val <= 2; //flatlines for everything 

    else begin 

        pulse_era <= 0;     // Reset counter  

        resync_bit <= 1; 

        rep_tracker <= rep_tracker + 1; //next cycle 

        end 

    pulse_era = pulse_era + 1;  // increment counter 

end 

 

assign state = state_val; 

assign resync = resync_bit; 

     

endmodule 

 

2. DDS_control.v 

`timescale 1ns / 1ps 

 

module DDS_control( 

    input aclk, 

    input [31:0] phase_inc_server, 

    input [2:0] state, 

    output [31:0] p_inc, //phase increment 

    output [31:0] p_off, //phase offset 

    output [1:0] phase_control, 

    output reg TXG_bit, RXG_bit 

    ); 

 

reg [31:0] res, offset; //offset is redundant here - not used just yet 

reg phase_val_bit = 0; 

 

always @ (posedge aclk) 

case (state) 

0   : begin //dead time - turn on TXG 

        offset <= 0; 

        phase_val_bit <= 0; 

        res <= 0;  

        TXG_bit <= 1; 
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        RXG_bit <= 0; 

      end 

1   : begin     //RF90 and TXG 

        offset <= 0;     //0 degree phase shift //2<<28; //180 degree 

phase shift 

        phase_val_bit <= 1;  

        res <= phase_inc_server; 

        TXG_bit <= 1;          

        RXG_bit <= 0; 

      end 

2   : begin     //Off_time and end of acq 

        offset <= 0; 

        phase_val_bit <= 0; 

        res <= 0;        //flatline  

        TXG_bit <= 0; 

        RXG_bit <= 0; 

      end 

3   : begin     //Acquisition 

        offset <= 0; 

        phase_val_bit <= 0; 

        res <= 0;        //flatline  

        TXG_bit <= 0; 

        RXG_bit <= 1; 

      end 

4   : begin     //RF180 with TXG being OFF 

        offset <= 0;     //0 degree phase shift //2<<28; //180 degree 

phase shift 

        phase_val_bit <= 1;  

        res <= phase_inc_server; 

        TXG_bit <= 0;          

        RXG_bit <= 0; 

      end       

endcase 

 

assign p_inc = res; 

assign p_off = offset; 

assign phase_control = phase_val_bit;      

     

endmodule 

 

3. DAC_activator.v 

`timescale 1ns / 1ps 

module DAC_activator( 

    input aclk, 
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    input wire [31:0] DDS_phase, 

    output tvalid_out 

    ); 

reg bit = 0; 

reg [31:0] temp = 0; 

always @ (posedge aclk)     

begin 

    if ((temp == DDS_phase)||(DDS_phase == 0)) 

        bit <= 0; 

    else begin 

        bit <= 1; 

        temp <= DDS_phase; 

        end 

end 

assign tvalid_out = bit; 

endmodule 
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APPENDIX C 

TESTBENCH/SIMULATION CODE 

1. design_test_TB.v 

`timescale 1ns / 1ps //resolution of XSim simulation 

`define time_period 8 //time period of 125 MHz clock, i.e., 8 ns 

 

module design_TB(); 

 

//Set all inputs as regs and all outputs as wires 

 

  reg [31:0]Acq_us; 

  reg [31:0]Frequency_Hz; 

  reg [31:0]Off_time_us; 

  reg [31:0]RF180_us; 

  reg [31:0]RF90_us; 

  wire RXG; 

  reg [31:0]Repetitions; 

  reg [31:0]TR_us; 

  wire TXG; 

  reg clk_in1_n = 1; 

  reg clk_in1_p = 0; 

  wire dac_clk_0; 

  wire [13:0]dac_dat; 

  wire dac_rst_0; 

  wire dac_sel_0; 

  wire dac_wrt_0; 

  //Below two wires are meant to calculate phase increment from 

frequency. 

  //Basically, this testbench performs the same arithmetic done by the 

server to obtain phase increment.  

  reg [63:0] phase_part_1;// = Frequency_Hz * (2<<30);  

  reg [31:0] phase_part_2;// = phase_part_1/125000000;   

 

design_test_wrapper DUT 

/* connecting previously defined regs and wires to ports in DUT 

instance of design_test_wrapper */  

   (.Acq_us(Acq_us), 

    .Frequency(phase_part_2), 

    .Off_time_us(Off_time_us), 

    .RF180_us(RF180_us), 

    .RF90_us(RF90_us), 

    .RXG(RXG), 
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    .Repetitions(Repetitions), 

    .TR_us(TR_us), 

    .TXG(TXG), 

    .clk_in1_n(clk_in1_n), 

    .clk_in1_p(clk_in1_p), 

    .dac_clk_0(dac_clk_0), 

    .dac_dat(dac_dat), 

    .dac_rst_0(dac_rst_0), 

    .dac_sel_0(dac_sel_0), 

    .dac_wrt_0(dac_wrt_0) 

    ); 

 

/* Now sending inputs to design_test_wrapper (a subsection of system.bd 

– the system block design) */ 

 

initial begin 

//Toggle below set of inputs every 4 ns 

forever #(`time_period/2) begin 

  clk_in1_n = ~clk_in1_n;  

  clk_in1_p = ~clk_in1_p;  

end  

end 

 

initial begin  

//Configure below sets of inputs once 

 

//Enter first set of pulse parameters – sequence #1 

  Frequency_Hz = 2550000; //2.55 MHz 

  phase_part_1 = Frequency_Hz * (1<<30);  

  phase_part_2 = phase_part_1/125000000;  

  RF90_us <= 5;    

  Off_time_us <= 10; 

  RF180_us <= 10; 

  Acq_us <= 20; 

  TR_us <= 180; 

  Repetitions <= 3; 

#800000 //wait for 800 us 

 

//Blanking out pulse generator – sequence #2 

  Frequency_Hz = 0; //0 MHz 

  phase_part_1 = Frequency_Hz * (1<<30);  

  phase_part_2 = phase_part_1/125000000;  

  RF90_us <= 0; 

  Off_time_us <= 0; 

  RF180_us <= 0; 
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  Acq_us <= 0; 

  TR_us <= 0; 

  Repetitions <= 0; 

#5000 //wait for 5 us 

 

//Enter second set of pulse parameters – sequence #3 

  Frequency_Hz = 10000000; //10 MHz 

  phase_part_1 = Frequency_Hz * (1<<30);  

  phase_part_2 = phase_part_1/125000000;  

  RF90_us <= 4; 

  Off_time_us <= 4; 

  RF180_us <= 8; 

  Acq_us <= 15; 

  TR_us <= 150; 

  Repetitions <= 4; 

#800000 //wait for 800 us 

 

//Blanking out pulse generator – sequence #4 

  Frequency_Hz = 0; 

  phase_part_1 = Frequency_Hz * (1<<30);  

  phase_part_2 = phase_part_1/125000000;  

  RF90_us <= 0; 

  Off_time_us <= 0; 

  RF180_us <= 0; 

  Acq_us <= 0; 

  TR_us <= 0; 

  Repetitions <= 0;  

#5000 //wait for 5 us 

 

//Enter third set of pulse parameters – sequence #5 

  Frequency_Hz = 30720000; //30.72 MHz 

  phase_part_1 = Frequency_Hz * (1<<30);  

  phase_part_2 = phase_part_1/125000000;  

  RF90_us <= 1; 

  Off_time_us <= 4; 

  RF180_us <= 2; 

  Acq_us <= 10; 

  TR_us <= 130; 

  Repetitions <= 5; 

 

#800000 //wait for 800 us 

 $finish; //simulation has completed 

end 

 

endmodule 
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APPENDIX D 

MATLAB CODES 

1. ReadPentek.m 

function [datamat] = ReadPentek(filename, samprate, at, nacq) 

 

% Pentek Recon Code 

 

fid = fopen(strcat(filename, '.dat'), 'r');  

data = fread(fid, 'int16');  

fclose(fid);  

sizeacq = samprate*at;  

timeline = linspace(0,at,sizeacq)'; 

idata = data(1:2:end);  

qdata = data(2:2:end);  

dataformed = idata + 1j*qdata;  

ns = length(dataformed)/nacq; 

datamat = reshape(dataformed, [ns nacq]); 

end 

  

2. display_Pentek_RX.m 

%% Crop out the echo data - 2 ms before and 2 ms after center 

clc; close all; clear all 

file_handle = ReadPentek('5-25-

2021\05242021_Mariam30r73MHz_3_ch2',200e6,70e-3,20); 

[rows, cols] = size(file_handle); 

X = linspace(0, 70e-3, rows)'; 

for a = 1:cols 

minValue = 13.2e-3; 

maxValue = 17.2e-3; 

indexesInRange = X >= minValue & X <= maxValue; 

Data2 = [X(indexesInRange) file_handle(indexesInRange,a)]; 

% plot(Data2(:,1),real(Data2(:,2))); 

%    title("Receive digitized by Pentek for 20 reps - 4 ms echo 

data"); 

%    xlabel("Time (in seconds)"); 

%    ylabel("Signal level (in V)"); 

%    xlim([minValue maxValue]) 

%    ylim([-0.5e4 0.5e4]) 

%    hold on 

%    grid on 

fs = 200e6; 

spec = fftshift(fft(fftshift(Data2(:,2)))); 

n = length(Data2(:,2)); 

freq = (-(n-1)/2:(n-1)/2)*(fs/n); 

%   figure; plot(freq * 1e-6, abs(spec)); 

%    title("Spectrum of echo data - no DC correction"); 

%    xlabel("Frequency (in MHz)"); 
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%    grid on 

dccorr = mean(Data2(end-5000:end,2)); 

Data2(:,2) = Data2(:,2) - dccorr;   

%% Now take FT of cropped signal data 

fs = 200e6; 

spec = fftshift(fft(fftshift(Data2(:,2)))); 

n = length(Data2(:,2)); 

freq = (-(n-1)/2:(n-1)/2)*(fs/n); 

%  plot(freq * 1e-6, abs(spec)); 

%    title("Spectrum of echo data - with DC correction - 20 acqs"); 

%    xlabel("Frequency (in MHz)"); 

%    hold on 

%    grid on 

%% Brickwall - crop 50 kHz around center frequency 

freq = freq*1e-6; 

center_point = 30.72; 

 [~, lower_lim]= min(abs(freq-(center_point-0.025)));  

 [~, upper_lim]= min(abs(freq-(center_point+0.025)));  

cropped_spec = spec(lower_lim:upper_lim); 

cropped_freq = freq(lower_lim:upper_lim); 

 

plot(cropped_freq, real(cropped_spec)); 

    title("Spectrum of echo - cropped out Larmor - 20 acqs (real)"); 

    xlabel("Frequency (in MHz)"); 

    ylabel("Magnitude"); 

    hold on 

    grid on 

    xlim([min(cropped_freq) max(cropped_freq)]) 

 

% plot(cropped_freq, abs(cropped_spec)); 

%     title("Spectrum of echo - cropped out Larmor - 20 acqs 

(magnitude)"); 

%     xlabel("Frequency (in MHz)"); 

%     hold on 

%     grid on 

%     xlim([min(cropped_freq) max(cropped_freq)]) 

     

    plot(cropped_freq, angle(cropped_spec)); 

    title("Spectrum of echo - cropped out Larmor - 20 acqs (phase)"); 

    %xlabel("Frequency (in MHz)"); 

    hold on 

    grid on 

    xlim([min(cropped_freq) max(cropped_freq)]) 

sig = max(abs(cropped_spec)); 

noise = mean(abs(cropped_spec(1:end/4))); 

SNR = sig/noise 

  

x = 1:lower_lim-1; 

y = upper_lim+1:length(spec); 

spec(x) = 0; 

spec(y) = 0; 

end 
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APPENDIX E 

Following is a user manual created for students to build and test projects for the Red Pitaya 

development board in MRSL. 
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1 Introduction 
 

This document serves as a starting point for those new to an FPGA programming environment and 

MRI. It should allow you to create a project on a Windows machine, deploy the same on a Red 

Pitaya board and build a working MR system centered around it. 

 

Basically, this is a guide on how to design and build a digital circuit on FPGA fabric and create an 

interface around it for user control. 

 

1.1 Red Pitaya 

 

The Red Pitaya board used at TAMU-MRSL consists of a Zynq 7010 FPGA chip. The 

environment used to access this is a custom-built Ubuntu OS, called STEMlab 125-14.  

The latest OS version during the time of writing this manual is 1.04. 

 

1.2 Project Overview 

 

In general, every Red Pitaya project has three components: 

1. a bitstream file (.BIT) 

2. server program (compiled from a .c file) 

3. client program (a Python script) 

 

Out of all these, the bitstream file is the most important component. This directly configures the 

Zynq 7010 FPGA housed within Red Pitaya.  

 

Server and client programs provide a way to interact with a bitstream-activated FPGA. While 

server runs on top of the FPGA, the client runs on an independent PC (the ‘client PC’). This client 

connects to the server using Ethernet sockets and provides an interface for the PC used to control 

the FPGA system. Depending on the interface, it may be a CLI (command line interface), a GUI 

(graphical user interface), or a combination of both. 

 

This guide helps set up a bitstream controlled with a Python CLI. This may be replaced with a 

Python GUI using editors such as QT Designer, but GUIs are beyond the scope of this manual.  

 

1.3 Prerequisites 

1.3.1 Hardware 

 

To get started with FPGA programming on Pitaya, you will need the following digital components: 

 

1. A Red Pitaya development board (STEMlab 125-14) 

2. A Windows 10 PC 

3. A blank micro SD card (min. 4 GB) 

4. A 5V/3A micro USB cable (preferably with a wall socket plug) 
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NOTE: For hardware testing, you will also need an oscilloscope. 

 

1.3.2 Software 
 

This manual walks through the installation and setup for the following programs: 

1. Vivado  

2. PuTTY 

3. WinSCP 

4. PyCharm 

 

A few other software may be required to control the oscilloscope – they are not covered in this 

manual.  

 

Finally, the following zipped folders contain all programs required to get started with:  

a) MRI experiments (chapter 3):  
mr_experiment_SE.zip 

 

b) Your first Vivado project (chapter 4):  
base_project.zip 

 

2 Getting Started 
2.1 Micro SD Card 

 

The first step is to download the zipped SD image of the STEMLab 125-14 OS from this link and 

unzip it: 

https://downloads.redpitaya.com/downloads/STEMlab-125-1x/STEMlab_125-xx_OS_1.04-

7_stable.img.zip 

 

Insert the blank SD card into a card reader in the Windows PC. If the above link gives an error, go 

to https://redpitaya.readthedocs.io/en/latest/quickStart/SDcard/SDcard.html and click on the 

highlighted option. 

 
 

Next, download Win32 Disk Imager from the link below. Install and run the program. 

https://sourceforge.net/projects/win32diskimager/ 

 

Under ‘Image File’, select the path to the .img file of STEMlab OS. Make sure the drive letter 

under ‘Device’ corresponds to the SD card you inserted. Once all this is confirmed, hit ‘Write’.  

 

The SD image will take a few minutes to be written, after which a ‘Write Successful’ dialog box 

appears. Safely remove this microSD card from the PC and move on to the next section. 

https://downloads.redpitaya.com/downloads/STEMlab-125-1x/STEMlab_125-xx_OS_1.04-7_stable.img.zip
https://downloads.redpitaya.com/downloads/STEMlab-125-1x/STEMlab_125-xx_OS_1.04-7_stable.img.zip
https://redpitaya.readthedocs.io/en/latest/quickStart/SDcard/SDcard.html
https://sourceforge.net/projects/win32diskimager/
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2.2 Red Pitaya Machine 

 

Insert the microSD card previously prepared into its slot in the Red Pitaya development board. 

Plug the microUSB cable to the ‘PWR’ socket on the board. Be careful to connect to ‘PWR’ socket 

only and not ‘CONS’ socket. Failure to do so may result in damage to the board. 

Now power on the machine. You will initially see a green LED lit up; this confirms the power 

supply. Momentarily, a blue LED should also light up. This confirms access to the SD card. 

Finally, let a few more seconds pass, and you should see a red LED blinking, in a ‘heartbeat’ 

pattern (two flashes at a time). This confirms that the development board is fully loaded, and ready 

for use. 

 

Now connect the Red Pitaya board to your Windows PC using an Ethernet cable. Wait for 30 

seconds and open a web browser. 

Type the address pasted on the back of the board (of the form rp-fxxxx.local/), and press 

Enter. If successful, the following web page opens: 

 

 
 

NOTE: If the web page is unreachable, try disconnecting the PC from its WiFi network and try 

again. 

 

Now go to System>Network manager and note the address under ‘Wired connection status’. This 

is the IP address of the board (not to be confused with the webpage; that is simply its URL) and 

will be of the form abc.def.ghi.jkl. 

 

2.3 Windows PC - Basic Setup 
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Essentially, Vivado, PuTTY, WinSCP and PyCharm will be installed and configured on the 

Windows PC. 

 

2.3.1 Vivado 

 

NOTE: All Verilog codes in this manual have been tested using version 2020.1 of Xilinx Vivado; 

hence this installation guide is for that specific version. You might want to install a more recent 

version instead – the steps will remain same. 

 

Go to the webpage below, and search for ‘Vivado Design Suite - HLx Editions - 2020.1’ 

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-

design-tools.html 

 

Click on the link ‘Xilinx Unified Installer 2020.1: Windows Self Extracting Web Installer’. You 

will be redirected to a Xilinx Sign-In page. If you do not possess one already, go ahead and create 

a Xilinx account. If you already have one, just enter your credentials and sign in. 

Fill up the required fields in the Name and Address Verification form and click on ‘Download’. 

An executable file should start downloading now. 

 

Launch the downloaded executable and follow the instructions in the installation wizard. Make 

sure to select ‘Vivado’ when prompted about the product, and ‘Vivado HL WebPACK’ as the 

edition to be installed. Keep everything else as default and continue with the installation. 

This step will take anywhere between half an hour to several hours, depending on your Internet 

connection. Once fully downloaded and installed, Vivado is ready for use. Follow the setup wizard, 

keeping all the default fields and check boxes. 

 

2.3.2 PuTTY 

 

Go to this webpage and download the 64-bit MSI package file: 

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html 

Click on the downloaded file to launch the setup wizard. Follow the installation steps that show 

up, keeping everything as default. 

 

2.3.3 WinSCP 

 

Scroll down the linked webpage below and press ‘Download WinSCP’. Launch the downloaded 

executable and follow the setup wizard.  

https://winscp.net/eng/download.php 

 

Now that WinSCP has been installed, it must be configured to ensure a working development 

environment. Launch WinSCP; a login window opens. For host name, type in Pitaya’s IP address. 

Enter root as both username and password, then press Save. Keep the site name as ‘Red Pitaya’ 

and press OK. Now press the Login button; a warning window might pop up. Simply press Yes 

and continue.  

 

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://winscp.net/eng/download.php
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Retype the password as root and press OK. Navigate from root to /tmp in Pitaya’s window – this 

is where the bitstream and C files will be stored and activated/executed.  

 

 

2.3.4 PyCharm 

 

First download Python for Windows from https://www.python.org/downloads/. Select ‘Add 

Python X.X to PATH’ and press ‘Install Now’. 

 

After that you can download PyCharm Community version from the link below and follow its 

installation procedure. We will use PyCharm to launch our user console. 

https://www.jetbrains.com/pycharm/download/#section=windows 

 

2.4 Deploying a Prebuilt Project 

 

Open WinSCP and log in to Pitaya. Within WinSCP navigate to the directory where 

mr_experiment_SE was extracted. From there, move to 

\tmp\pulse_sequence_generator\pulse_sequence_generator.runs\impl_1 – you 

should now see a file named system_wrapper.bit. Drag it to the /tmp directory of Pitaya. 

 

Now go to mr_experiment_SE\Server-client pair in both WinSCP and File Explorer. 

Drag server_program.c to Pitaya’s /tmp directory and open client_program.py in File 

Explorer.  

Within WinSCP open a PuTTY terminal, log in with ‘root’ as password and type in the following 

commands: 

 
cd /tmp 

cat system_wrapper.bit > /dev/xdevcfg 

chmod u+x server_program.c 

gcc -o exec server_program.c 

./exec 

 

You will be greeted with this PuTTY screen: 

 

 
 

Now open client_program.py in PyCharm. In the code, note the numbers highlighted below 

– these are parameters you can set for this pulse generator. The second print explains what each 

parameter is, along with their units (if any).  

 

https://www.python.org/downloads/
https://www.jetbrains.com/pycharm/download/#section=windows
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Go to Run>Run>client_program. Upon success you will note a timestamped .txt file created in the 

same folder as client_program. This is a record of all parameters set in the current pulse 

sequence – useful for future reference. 

 

3 Your First Vivado Project 
 

In this section, we start with a ‘skeleton’ Vivado project with all the Pitaya-specific IP cores and 

config files included and build on it. Afterwards, we add an interface on top of it and deploy a 

complete set of bitstream, server and client programs together. 

 

3.1  A new project 

 

To make things simple, you would have been provided a zipped folder named 

base_project.zip with all the required directories. Go ahead and unzip this folder. Once 

unzipped, you will note the following directory structure: 

 
 

Do not alter this directory structure. Any changes made to it at this stage may result in Vivado 

projects not compiling due to errors. 

 

Launch Vivado. Once opened, go to the Tcl console, and type the following set of commands: 

 
cd 

cd /full/path/to/base_project 
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source red_pitaya_skeleton.tcl  

 

NOTE: If you copy-paste the path address to base_project in console for the second command, 

make sure to change all back slashes (‘\’) to forward slashes (‘/’) before hitting enter. Otherwise 

Tcl will throw up an error. 

 

The last command takes about 6 minutes to execute on an Intel i7 machine (9th gen) with 16 GB 

RAM. After executing, click on ‘Block Diagram’ under the Project Manager menu.  A block layout 

of the skeleton project will appear, such as the one below. 

 
 

Also, the directory will now look like this: 

 
 

Now you can go ahead and add more blocks (formally called IP cores) the block design.  This can 

be using the provided IP cores by Xilinx and Pavel, as well as the ones created by your own Verilog 

and/or XDC files. 

 

3.2 The IP cores 

 

There are several IP cores available for us to use.  Here, we will focus on the once already available 

in Vivado, and the ones built using the source command (see section 4.1).  The latter cores are 

custom-made for the Red Pitaya board. Out of all these cores, a few are required to build a 

bitstream for an MR project. The essential ones are already present in the ‘system’ diagram of 

your_first_project. Below are all the cores that need to be added and/or re-customized to 

our needs. 
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3.2.1 Processing System 

 

Under Diagram, double-click on processing_system7_0. This opens the Re-customize IP 

window. Go to PS-PL Configuration>HP Slave AXI Interface. Uncheck the square box next to S 

AXI HP0 interface. Click OK to save this change and exit the window.  

 

3.2.2 AXI Interconnect 

 

Double-click ps7_0_axi_periph. Under Top Level Settings, select 3 from the drop-down menu 

next to Number of Master Interfaces. By doing this, we ensure that 3 AXI GPIOs can be connected 

to our block design – its importance will be explained in a bit. Press OK to customize this core and 

save changes. 

 

3.2.3    Clocking Wizard 

 

Notice that this IP core is absent from our block design. To add it, right-click on an empty spot in 

the Diagram window and click ‘Add IP’. In the search bar, type Clocking Wizard. One option will 

show up in search results – double-click on that. Double-click on clk_wiz_0. Under Clocking 

Options> Primitive select PLL. Scroll down and set your Input Clock Information just like the 

screenshot below. 

 
 

In the same menu, go to Output Clocks page and set the output clocks identical to this screenshot: 

 

 
 

Scroll down and deselect ‘reset’ under Enable Optional Inputs/ Outputs for MMCM/PLL. Now go 

to ‘Summary’ page and make sure it is identical to the snap below. 
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3.2.4 AXI GPIO 

 

We need 3 of these cores. One is already present in our diagram, axi_gpio_0. Single-click this 

and hit CTRL+C followed by CTRL+V two times.  We now have 3 AXI GPIO cores awaiting 

connections. 

 

3.2.5 DDS Compiler 

 

This is the heart of our system – it is responsible for generating RF pulses. Just like Clocking 

Wizard this IP core needs to be added.  Right-click on an empty spot in Diagram again and search 

for DDS Compiler. When found, select it to add to the diagram. Double-click to customize. Refer 

to this screenshot for setting the Configuration page: 
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Under Implementation, set the following: 

 
Phase Increment Programmability: Streaming (with Resync checked) 

Phase Offset Programmability: Streaming 

 

Your summary page should now look like this. Press OK to customize and exit the menu. 

 

 
 

3.2.6 AXI4-Stream Red Pitaya DAC 

 

This is a Pitaya-specific core created by Pavel Demin. Use the same steps as used before for 

Clocking Wizard to add AXI4-Stream Red Pitaya DAC to the block design. Note that searching 

for ‘DAC’ results in two identical IP cores as shown below. 

 
 

That is because two versions of the DAC IP core exist. Select both, one at a time. Two blocks will 

show up – retain the core with wrt_clk pin present. Delete the DAC core without this pin by left 

clicking and pressing Delete on the keyboard.  

 

3.2.7 Constant 

 

We need two Constant IP cores in this project. Right-click and add this IP core to the block design. 

Left-click on it and copy-paste it again.  In the Re-customize window for xlconstant_0, set 

Const width as 7 and Const val as 0. Press OK and save changes (Ctrl+S). 

 

3.2.8 Concat 

 

Right-click and add this IP core to the block design. Double-click on it, enter Number of Ports as 

4 and press Enter after setting the port widths as below. 
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3.3 Your own RTL script(s) 

 

MRI requires three parameters to be specified – timing, pulse frequency and number of pulses. To 

this end, two RTL scripts will be created – a pulse state generator and a DDS controller. 

 

3.3.1 Parts of an RTL script 

 

The diagram below illustrates the basic parts of an RTL script in Verilog – a module name, a port 

list and module contents.  

 
 

Vivado generates the first two in its Source Wizard; this leaves us with only the module contents 

to draft out. The next section explains the basic functionality we need for RF pulse generation.  

 

3.3.2 Deciding on the functionality 

 

The first step is to decide on the states. To keep it simple, we consider two states – ‘RF ON’ 

(corresponds to Pitaya generating a sine RF waveform) and ‘RF OFF’ (corresponds to Pitaya 

staying inactive). It is recommended that the functionality be tabulated – one has been provided 

below for generating RF pulses indefinitely. 

 

Pulse Era State Values RF TXG RXG 

0 ~ off_cycles 0 OFF 0 1 

off_cycles ~ off_cycles + on_cycles 1 ON 1 0 
 

RF OFF is assigned a state value 0 and RF ON has a state value 1. Next, we have off_cycles 

and on_cycles. These indicate the number of clock cycles for which a state value must be 

retained. In other words, they decide the pulse era. 
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TXG (short for transmit gating) and RXG (short for receive gating) are two external 3.3 V GPIO 

pins we will be controlling, with 1 corresponding to a logical high and 0 corresponding to a logical 

low. NOTE: This is completely unrelated to state values; do not confuse logical high and low with 

that. 

 

Finally, the states will cycle for a certain number of times. Let us denote this with ‘rep’. A variable 

in our RTL code will keep track of how many times the states have been cycled through. Once it 

has cycled through states 0 and 1 ‘rep’ number of times, no more pulses must be generated. In 

other words, we keep it in state 0 until a new set of parameters are fed in.  

Having a layout in mind, we proceed towards building a pulse sate generator – aptly named 

state_generator. 

 

3.3.3 state_generator 

 

Go to Flow Navigator>Project Manager>Add Sources. Select Add or Create Design Sources and 

hit Next. Click on Create File, leave the file type as Verilog and name it as state_generator, 

keeping the location local to project. Click Finish. Set the I/O Ports as shown below. Press OK 

after this. 

 
 

This file will now show up under Sources>Design Sources. Double-click on it. Notice the contents 

of the file – it includes a commented section followed by these lines: 
 

module state_generator( 

    input clk, 

    input [31:0] on_cycles, 

    input [31:0] off_cycles, 

    input [31:0] reps, 

    output state 

    ); 

endmodule 

 

To translate the previous table to Verilog an always block is required. Go ahead and type in this 

code in between ); and endmodule. 

 
reg [31:0] pulse_era = 0, rep_tracker = 0; 

 

always @ (posedge clk) 

begin 
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   if (reps == 0) begin 

        rep_tracker <= 0; 

        pulse_era <= 0; 

        end 

    else if ((pulse_era < off_cycles)||(rep_tracker == reps)) 

    begin 

        state <= 0; 

        pulse_era <= pulse_era + 1; 

    end 

    else if (pulse_era < off_cycles + on_cycles) 

    begin 

        state <= 1; 

        pulse_era <= pulse_era + 1; 

    end 

     

    else begin 

        pulse_era <= 0; 

        rep_tracker <= rep_tracker + 1; 

        end 

end 

 

The pulse_era register is important – it keeps track of the number of clock cycles passed. We 

use another register rep_tracker to check if the requested number of reps has been completed 

or not. Comparing this with inputs off_cycles and on_cycles helps determine the correct state 

of the generator. In other words, we have created a complex Moore finite state machine (FSM).    

 

For this to work without errors, the port declaration for state needs to be modified. Go to the 

port list of state_generator and type reg between output and state. This creates a register 

that retains the value of state within the always block. Save this file. 

 

3.3.4 DDS_controller 

 

Using the generated states, we need to create digital RF pulses off DDS Compiler. It generates a 

sine waveform of specified frequency using two inputs – phase increment and phase offset.  Both 

were set to ‘streaming’ in its Re-Customize IP window – the intention was to create RF pulses as 

per user specifications. 

 

Basically, a DDS (short for Direct Digital Synthesizer) accepts a phase input, looks up the sine 

value corresponding to it and outputs the same. Vivado’s DDS Compiler is designed such that it 

accepts a phase increment and a phase offset and generates a sine wave matching these parameters. 

Phase increment decides how fast the wave amplitude changes with each clock cycle, while phase 

offset determines the starting angle value for which the sine wave is generated. 

𝑝ℎ𝑎𝑠𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡, 𝑝𝑖𝑛𝑐 =
𝑓𝑜𝑢𝑡×2𝐵𝜃(𝑛)

𝑓𝑖𝑛
     (1) 

𝑝ℎ𝑎𝑠𝑒 𝑜𝑓𝑓𝑠𝑒𝑡, 𝑝𝑜𝑓𝑓 =
2𝐵𝜃(𝑛)×𝛼

360
         (2) 
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In this chapter, we will keep phase offset at 0. However, bear in mind that this can be altered in 

the bitstream later as per requirement. To control phase increment and offset, another script will 

act as an intermediary between state_generator and DDS Compiler – we name it 

DDS_controller.   

 

Just like state_generator, go to Flow Navigator>Project Manager>Add Sources. Select Add 

or Create Design Sources and hit Next. Click on Create File, leave the file type as Verilog and 

name it as DDS_controller, keeping the location local to project. Click Finish. 

Set the I/O Ports as shown below. Press OK after this. 

 
 

Once again, we need an always block and a few registers. Go ahead and copy-paste the below code 

snippet between ); and endmodule: 

 
always @ (posedge clk) 

 case (state)  

     0: begin 

            phase_increment <= 0; 

            phase_offset <= 0; 

            TXG_bit <= 0; 

            RXG_bit <= 1; 

            resync <= 1; 

            resync_bar <= 0; 

        end 

     1: begin 

            phase_increment <= pinc_server; 

            phase_offset <= poff_none; 

            TXG_bit <= 1; 

            RXG_bit <= 0; 

            resync <= 0; 

            resync_bar <= 1; 

        end 

 endcase 

 

Finally, modify its port list to match this screenshot. Save this file. 
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TIP: If you need to add a new pin to the RTL modules or any functionality for that matter, be sure 

to add these changes directly to the design source files and not instances; changes to the latter 

might not be recognized by Vivado. To do this simply go to Sources>Design 

Sources>your_RTL_script_file_name.v and save your edits there. Make sure to hit ‘Run 

Synthesis’ under Flow Navigator>Synthesis to reflect the changes everywhere. 

 

3.4    Block design – clean up and unify 

 

Go to the Diagram window and delete pins daisy_n_0 and daisy_p_0. Right-click on an empty 

spot and select ‘Add Module’. Both your modules should show up like the figure below. If not, go 

back to the Verilog source files, correct any syntax errors, save them, and try again. 

 

 
 

One by one select a module and press OK. Both will show up as blocks in the diagram with ‘RTL’ 

printed on them. The overall diagram will now look like this: 
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3.5    Programming GPIOs 

 

Now that the logic for TXG and RXG has been written out in Verilog and all blocks connected, 

we need to select and activate physical GPIO pins on Pitaya’s extension connectors. It is useful in, 

say, generating trigger pulses to drive other devices in the MR system. 

 

Click on ‘Open Block Design’. Your block design shows up in the Diagram window. Note the pins 

exp_n_tri_io[7:0] and exp_p_tri_io[7:0] as shown in the figure below. These pins will 

be siphoned off for our purposes. 

 
 

In the TCL console type these commands. 
create_bd_port -dir O TXG 

create_bd_port -dir O RXG 

 

Two output ports named TXG and RXG will be generated and added to the diagram; we will 

connect these shortly. 

 

Go to the link indicated below and decide on your pins of interest.  

https://redpitaya.readthedocs.io/en/latest/developerGuide/125-14/extent.html 
 

https://redpitaya.readthedocs.io/en/latest/developerGuide/125-14/extent.html
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In this tutorial, we pick pin 4 for TXG with these details from the developer guide: 
Pin #:      4 

Description:    DIO0_N 

FPGA pin number:   G18 

FPGA pin description:  IO_L16N_T2_35 

Voltage levels:   3.3V 

 

Similarly, we pick pin 18 for RXG with these details from the developer guide: 
Pin #:      18 

Description:    DIO7_N 

FPGA pin number:   M15 

FPGA pin description:  IO_L23N_T3_35 

Voltage levels:   3.3V 

 

Having decided on the pins, navigate to Sources> Constraints> constrs_1> ports.xdc. Comment 

out the lines with ‘G18’ and ‘M15’ in it using the # symbol – these are the pins we will siphon off 

as TXG and RXG respectively. Go to the bottom of the XDC file and type the following 

commands. Save the XDC file. 

 
## Custom 

set_property IOSTANDARD LVCMOS33 [get_ports TXG] 

set_property SLEW FAST [get_ports TXG] 

set_property DRIVE 8 [get_ports TXG] 

set_property PACKAGE_PIN G18 [get_ports TXG] 

 

set_property IOSTANDARD LVCMOS33 [get_ports RXG] 

set_property SLEW FAST [get_ports RXG] 

set_property DRIVE 8 [get_ports RXG] 

set_property PACKAGE_PIN M15 [get_ports RXG] 

 

3.6   Connecting the blocks together 

 

Go to Flow Navigator> IP Integrator> Open Block Design. 

 

3.6.1 Pins and ports 

 

Note that some blocks in the diagram have ‘+’ symbols in place of where you would expect a pin. 

These are called ‘interface pins’, typically prefixed with M_AXIS or S_AXIS. Some of the 

connections require actual ‘pins’ and not the ‘interface pin’ and vice versa. Below is what a channel 

looks like with a ‘+’ symbol (M_AXIS_DATA and M_AXIS_PHASE), and individual ports with a ‘-

’ symbol next to their channel (S_AXIS_PHASE). 
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To toggle between ‘interface pin’ and ‘pin’, simply mouse over to the ‘-’ or ‘+’ symbol. The cursor 

turns into either two upward chevrons or downward chevrons. Left click once to toggle. Below is 

the result after a toggle at M_AXIS_DATA: 

 
 

Toggle M_AXIS_DATA back to ‘interface pin’ for now.  

 

3.6.2 The actual connections 

 

Now that all the blocks, pins and ports are present, we can go ahead and connect them all up. In 

Diagram, left click on clk_out1 of clk_wiz_0, release and left click on clk pin of 

state_generator_0. This makes one connection. Similarly, make all connections between 

pins, interface pins and ports to match the block diagram in the next page. Delete all unconnected 

ports from the diagram. 

 

Your diagram may not exactly look like this – this is expected. If all the cores have the exact same 

connections as above, their placement does not matter.  You can further clean up the diagram by 

pressing the ‘Regenerate Layout’ button in the diagram window – the one that is highlighted below. 
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Finally, go to Flow Navigator > Synthesis and hit ‘Run Synthesis’. Press OK. A window with 

launch run critical messages might show up – simply press OK. Once the synthesis is complete, 

click on ‘Open Synthesized Design’. Next, type ‘Package Pins’ in the search bar as indicated 

below, and press Enter. 

 
 

A sub-window named Package Pins will show up at the bottom. Use its search tool to find G18. 

In this instance, it is present in I/O bank 35. Now open the drop-down menu of I/O Bank 35 and 

look at the ‘Ports’ field of M15. Ensure that G18 is set like this. 

 

 
 

Repeat the same for M15. Ensure it is set like this. Save everything (Ctrl+S). 

 

 
 

3.7    The bitstream file  

 

Click ‘Generate Bitstream’ under Flow Navigator>Program and Debug. This will take a few 

minutes. Once the bitstream has been successfully generated, navigate to the folder with the 

Vivado project file (a .xpr file). It is present under xxx.runs/impl_1/  

 

The bitstream is name system_wrapper.bit. This will program the FPGA with the digital design 

we have built in Vivado. 

 

3.8    Bitstream Testing 

 

Testbenches are extremely useful for testing out functionality before programming it to an FPGA. 

It is important to know the parts that make up a testbench. The following diagram explains it in a 

little more detail. 
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Red Pitaya – Run simulations on cores/module script 

 

This guide allows for simulations to be run on the existing block design and/or .v module file, 

before the actual bitstream file is generated and activated in Red Pitaya. 

It is very useful to check Verilog modules before integrating them into bigger block designs. 

 

NOTE: Hierarchies 

As you develop your block design, it will become increasingly complex, with many IP cores and 

connections cluttering the screen.  There is a way to deal with the clutter - group each set of IP 

cores under a ‘hierarchy’, preferably by functionality. We will use a hierarchy to section off a 

portion of the block design that requires testing. 

 

Go to IP Integrator > Open Block Design. Select the blocks whose functionality you want to 

simulate using the Select Area button in the Diagram window (see highlighted button below) 

 

 
 

Use this button to select the following blocks: 

 
 

Right-click on the selected set of blocks and click on Create Hierarchy from the drop-down menu. 

Leave the cell name as hier_0 and press OK. This will cause all the blocks to be housed under a 

single block called hier_0; this is our hierarchy.  

 

Drag and drop clk_wiz_0 in hier_0. We now have the complete set of blocks to be testbenched. 

Right-click on this newly created hierarchy and select Copy. Go to IP Integrator > Create Block 

Design, and give the block design an appropriate name, e.g., first_hier. In the Diagram 

workspace right-click anywhere, select Paste, and the hierarchy will be copied. 
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To complete the block design, ports must be added. For this, simply right click on the hierarchy 

block again, and select Make external. This will generate all the required input and output ports. 

Under ‘Design Sources’, the new block design will show up as a .bd file (see figure 1). Right click 

it and select ‘Create HDL wrapper’. Select ‘Let Vivado manage wrapper and auto-update’. 

 

 
 

Once complete, the process will generate a .v file corresponding to the block design. Right-click 

this and select ‘Set as top’. 

 

Go back to the previous block design, right-click on the hierarchy block and select Ungroup 

Hierarchy. This will revert the block design to what it was before the hierarchy. 

Now the testbench code will be created. Go the Flow Navigator > Add Sources and select Add or 

create simulation sources. Click on Create file, give an appropriate name (e.g. first_TB), and hit 

Finish. When prompted for module inputs and outputs, do not specify any.  

The new simulation source (a .v file) will show up under Sources > Simulation sources. Expand 

this menu, and click on this .v file. 

 

Go to Design Sources, and double click on the first_hier_wrapper.v file (source code). Copy 

all lines from module first_hier_wrapper up to output state_0. 

Go to the file first_TB.v and in between the module definition and endmodule (in the 

highlighted yellow portion below), paste the previously copied lines of code. 

 
 

After the paste, rearrange the lines such that the ones with input and output keywords are placed 

between the two lines having module keywords. Change all input keywords to reg and output 

keywords to wire. 

 

Go to the line with module first_hier_wrapper and change it to first_hier_wrapper 

DUT. In the port list, have all ports with a . prefix, followed by the same input/output name in 

brackets. It should match the diagram below. 
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Since our hierarchy is sequential, it needs to be driven via a clock signal. Red Pitaya has a clock 

signal of 125 MHz – this makes the time period 8 ns. Go the top of the file and type in `define 

time_period 8 . 

 

We have two differential adc_clk_i pins for the clock signal input – adc_clk_n_i_0 and 

adc_clk_p_i_0. These need to be initialized to make Clocking Wizard work. In the same file, 

go to their reg definitions, set adc_clk_n_i_0 as 0 and adc_clk_p_i_0 as 1. Next, the clock 

signal needs to toggle at 50% duty cycle – or half the time period. Go to the end of the port list and 

type in the following:  

 
initial 

begin     

forever #(`time_period/2) begin  

adc_clk_n_i_0 <= ~adc_clk_n_i_0; //toggle every 4 ns 

adc_clk_p_i_0 <= ~adc_clk_p_i_0; //toggle every 4 ns 

end 

end 

 

After this, append the following lines of code to the end of the testbench file, right before 

endmodule: 

 
initial begin  

 

//Enter first set of input parameters 

  off_cycles_0 <= 20; //RF OFF for 20 clock cycles 

  on_cycles_0  <= 40; //RF ON for 40 clock cycles   

  pinc_server_0 <= 25769804; //3 MHz 

  poff_none_0 <= 0; //0 degrees 

  reps_0 <= 3;  //run sequence 3 times 
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#5000         //retain above values for 5 us    

   

//Blankout sequence begins – to reset pulse generator 

  off_cycles_0 <= 0; 

  on_cycles_0 <= 0; 

  pinc_server_0 <= 0;  

  poff_none_0 <= 0 ;  

  reps_0 <= 0; 

#5000         //retain above values for 5 us   

    

//Enter second set of input parameters 

  off_cycles_0 <= 100; //RF OFF for 100 clock cycles 

  on_cycles_0 <= 30;   //RF ON for 30 clock cycles 

  pinc_server_0 <= 85899346; //10 MHz 

  reps_0 <= 4;  //run sequence 4 times 

  poff_none_0 <= 268435456; //90 degrees   

#5000         //retain above values for 5 us  

     

//Blankout sequence begins – to reset pulse generator 

  off_cycles_0 <= 0; 

  on_cycles_0 <= 0; 

  pinc_server_0 <= 0; 

  reps_0 <= 0; 

  poff_none_0 <= 0;   

#5000         //retain above values for 5 us      

 

//Enter third set of input parameters 

  off_cycles_0 <= 50;  //RF OFF for 50 clock cycles 

  on_cycles_0 <= 50;   //RF ON for 50 clock cycles 

  pinc_server_0 <= 128849019; //15 MHz 

  reps_0 <= 5;   //run sequence 5 times 

  poff_none_0 <= 536870912; //180 degrees 

#5000         //retain above values for 5 us      

 

  $finish;   //completed the simulation 

end 

 

Set the testbench code first_TB.v as top. Go to Flow Navigator>Simulation>Run 

Simulation>Run Behavioral Simulation and a waveform plot will show up. Open it and note that 

the inputs are flatlines – this is expected, since these were not set in the testbench code! The clock 

input (if present) would be running continuously regardless – this was already set in the code. 

 

If you would like to see an analog signal on a multi-bit output (such as that of DDS or DAC), 

follow the steps below.  

Go to the simulation wave window and right-click on dac_dat_o_0[13:0]. Go to Waveform 

Style> Analog Settings. Under Analog Settings, make sure to set the interpolation style as ‘hold’. 
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Select ‘Apply’. Next, right-click on dac_dat_o_0[13:0] again and go to Radix > Signed 

Decimal. 

 

To display DDS output on the waveform window, go to Scope > first_TB > DUT > first_hier_i > 

hier_0 and right-click on dds_compiler_0. Select ‘Add to Wave Window’. This causes all the 

inputs and outputs of DDS Compiler to show up on the simulation wave window. Right-click on 

m_axis_data_tdata[31:0] and follow the same steps mentioned in the previous paragraph to 

set it to analog with ‘hold’ interpolation style, with radix as ‘Signed Decimal’.  

 

Finally, hit the play button (the one with an inverted omega subscript), as shown in the figure. 

Make sure to set the time duration in the text box before pressing the button. 

 

 
 

The simulation will now run for the stipulated amount of time, generating a waveform 

corresponding to the wrapper code (DUT, or device under test). After the simulation is complete, 

it is advised to set system_wrapper.v under Sources>Design Sources back as top. Without this, 

a bitstream file corresponding to ‘system’ cannot be generated. 

 

4 User Interface 

 
Now that the design has been testbenched and bitstream generated, we need to build an interface 

around it. There are two parts to it – the server (resides on Pitaya) and the client (resides on the 

PC). 

 
4.1 Server 

 

The idea behind our server is to make our custom design available for user control. For this to 

work, the server must correctly map to AXI GPIO addresses of the bitstream-activated FPGA. 

Also, it needs to establish a socket connection with the PC to accept user inputs remotely. 

 

4.1.1 AXI GPIO addresses 

 

These need to be set. Go to Flow Navigator>IP Integrator and in the search box type Address 

Editor. Note that axi_gpio_0 is assigned while the other two AXI GPIOs are unassigned. Right 

click on Network 0 and press ‘Assign All’. Ensure the ranges for all three are 64K; they should 

now look like the menu below. We will incorporate these addresses in the C code. 
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4.1.2 C program 

 

This server code integrates with the AXI GPIO addresses set previously. Simply copy-paste this 

into a C file and save it to the PC as first_server_program.c. 

 

#include <sys/socket.h> 

#include <arpa/inet.h> //inet_addr 

#include <stdio.h> 

#include <stdint.h> 

#include <unistd.h>    //write 

#include <sys/mman.h> 

#include <fcntl.h> 

#include <stdlib.h> 

#include <string.h> 

 

#pragma pack(1) 

 

typedef struct payload_t { 

    //NOTE: All these inputs are presumed to be in microseconds. 

    //we get these from the Python client, and send to bitstream

 GPIO 

    uint32_t Off_time; 

    uint32_t On_time; 

    uint32_t Reps; 

    float frequency; 

} payload; 

 

#pragma pack() 

 

int main(int argc, char** argv) 

{ 

    //Step 1: Initialize socket stuff 

    int PORT = 2300; 

    int BUFFSIZE = 512; 

    char buff[BUFFSIZE]; 

    int ssock, csock; 

    int nread; 

    struct sockaddr_in client; 

    int clilen = sizeof(client); 

 

    //Step 2: Initialize bitstream control stuff 

    int fd;    

    char *name = "/dev/mem"; 

    void *cfg_Off_On_time, *cfg_pinc_poff, *cfg_state_reps; /*po

inters to address/memory locations used by bitstream's GPIO*/ 

    uint32_t phase_inc = 1<<30; //phase increment - fed to DDS 
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    uint32_t Off_time, On_time, Reps; float frequency; //we get 

this from the Python client 

    int freq_MHz = 125; // 125 MHz - multiply with pulse timing 

params 

  

   if((fd = open(name, O_RDWR)) < 0) 

  { 

    perror("open"); 

    return EXIT_FAILURE; 

  } 

 

    /* Mapping to addresses specified by bitstream's AXI GPIO 

    (Please refer to your block design's 'Address Editor' in Viv

ado for this) */ 

    cfg_Off_On_time = mmap(NULL, sysconf(_SC_PAGESIZE),PROT_READ

|PROT_WRITE, MAP_SHARED, fd, 0x42000000); 

    cfg_pinc_poff = mmap(NULL, sysconf(_SC_PAGESIZE),PROT_READ|P

ROT_WRITE, MAP_SHARED, fd, 0x41200000); 

    cfg_state_reps = mmap(NULL, sysconf(_SC_PAGESIZE),PROT_READ|

PROT_WRITE, MAP_SHARED, fd, 0x41210000); 

 

    struct sockaddr_in server; 

 

    if ((ssock = socket(AF_INET, SOCK_STREAM, 0)) < 0) 

    { 

        printf("ERROR: Socket creation failed\n"); 

        exit(1); 

    } 

    printf("Socket created\n"); 

 

    bzero((char *) &server, sizeof(server)); 

    server.sin_family = AF_INET; 

    server.sin_addr.s_addr = INADDR_ANY; 

    server.sin_port = htons(PORT); 

    if (bind(ssock, (struct sockaddr *)&server , sizeof(server))

 < 0) 

    { 

        printf("ERROR: Bind failed\n"); 

        exit(1); 

    } 

    printf("Bind done\n"); 

    listen(ssock, 3); 

    printf("Server listening on port %d\n", PORT); 

 

    while (1) 

    { 
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        csock = accept(ssock, (struct sockaddr *)&client, &clile

n); 

        if (csock < 0) 

        { 

            printf("Error: accept() failed\n"); 

            continue; 

        } 

 

        printf("Accepted connection from %s\n", inet_ntoa(client

.sin_addr)); 

        bzero(buff, BUFFSIZE); 

        while ((nread=read(csock, buff, BUFFSIZE)) > 0) 

        { 

            printf("Received %d bytes\n", nread); 

            payload *p = (payload*) buff;  

 

            //Print received inputs from Python client 

            printf("\nReceived contents:\n"); 

            printf("Off_time \t = %d us\n", p->Off_time); 

            printf("On_time \t = %d us\n", p->On_time); 

            printf("Repetitions\t = %d\n", p->Reps); 

            printf("Frequency\t = %0.6f MHz\n", p->frequency); 

 

            Off_time = p->Off_time; 

            On_time = p->On_time; 

            Reps = p->Reps; 

            frequency = p->frequency; 

        } 

         

    float val = 125/frequency; 

    phase_inc /= val; //converting phase increment to final DDS 

value   

    printf("\nConverted phase increment = %d", phase_inc); 

 

    *((uint32_t *)(cfg_Off_On_time + 0)) = Off_time*freq_MHz;   

// convert Off_time to number of clocks 

    *((uint32_t *)(cfg_Off_On_time + 8)) = On_time*freq_MHz;    

// convert On_time to number of clocks 

    *((uint32_t *)(cfg_pinc_poff + 0)) = phase_inc;             

// send phase increment 

    *((uint32_t *)(cfg_pinc_poff + 8)) = 0;                     

// send phase offset 

    *((uint32_t *)(cfg_state_reps + 8)) = Reps;                 

// send repetitions 

     

    int total_time = (Off_time + On_time) *Reps; 
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    total_time /= 1000000; //convert from microseconds to second

s 

    printf("\nTime to complete pulse sequence = %d seconds", tot

al_time); 

    sleep(total_time); 

 

    printf("\nNow blanking out the pulse parameters..."); 

    *((uint32_t *)(cfg_Off_On_time + 0)) = 0;                    

    *((uint32_t *)(cfg_Off_On_time + 8)) = 0;                    

    *((uint32_t *)(cfg_pinc_poff + 0)) = 0;                      

    *((uint32_t *)(cfg_pinc_poff + 8)) = 0;                      

    *((uint32_t *)(cfg_state_reps + 8)) = 0;                     

    sleep(1);                                 //blank out for 1 

second 

    printf("\nOperation complete."); 

    sleep(1); 

    printf("\nClosing connection to client\n"); 

    sleep(1); 

    printf("----------------------------\n"); 

    sleep(1); 

    close(csock); 

    return 0; 

    } 

} 

 
4.2 Client 

 

Now that the server program exists, the client needs to be built. This will allow the PC user to enter 

inputs and hand them over to server via the socket connection. Copy-paste the code below into a 

.py file and save it to PC as first_client_program.py. Make sure to replace 

abc.def.ghi.jkl with IP address of Red Pitaya. This is listed under System > Network 

manager. 

 
#!/usr/bin/env python 

 

import socket 

import sys 

from datetime import datetime #to name the MR parameter .txt 

file 

from ctypes import * 

 

""" This class defines a C-like struct """ 

class Payload(Structure): 

    _fields_ = [("Off_time", c_uint32), ("On_time", c_uint32), 

                ("Reps", c_uint32), ("Frequency", c_float)] 
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def main(): 

    redpitaya = "abc.def.ghi.jkl" #Replace with Pitaya’s IP 

address 

    server_addr = (redpitaya, 2300) 

    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

    try: 

        s.connect(server_addr) 

        print ("Connected to %s" % repr(server_addr)) 

    except: 

        print ("ERROR: Connection to %s refused" % 

repr(server_addr)) 

        sys.exit(1) 

 

    try: 

            #Send data to server 

            print ("") 

            payload_out = payload_out = 

Payload(2000,5000,35,30.72) 

            print("Sending these params:") 

            print("Off_time \t = %d us \nOn_time \t = %d us" 

                  "\nRepetitions\t = %d \nFrequency\t = %.6f 

MHz\n" 

                                       % (payload_out.Off_time, 

                                          payload_out.On_time, 

                                          payload_out.Reps, 

                                          payload_out.Frequency 

                                          )) 

            nsent = s.send(payload_out) 

            print ("Sent %d bytes" % nsent) 

            ct = datetime.now() 

            stamp = ct.strftime("%b_%d_%Y_%I_%M_%S_%p") 

            filename = "MR_data_" + stamp + ".txt" 

            with open(filename, "a") as txt_file: 

                txt_file.write('Sent out the following:\n') 

                txt_file.write('Off_time = %d us\n' % 

(payload_out.Off_time)) 

                txt_file.write('On_time = %d us\n' % 

(payload_out.On_time)) 

                txt_file.write('Repetitions = %d\n' % 

(payload_out.Reps)) 

                txt_file.write('Frequency = %.6f MHz\n' % 

(payload_out.Frequency)) 

                txt_file.write("\n") 

    finally: 

        print ("Closing socket") 
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        s.close() 

 

if __name__ == "__main__": 

    main() 

 
4.3 Putting them together 
 

Open WinSCP and log in to Red Pitaya. Go to the directory containing 

first_server_program.c and drag-drop it into Pitaya’s /tmp directory. Next, go to the 

directory containing system_wrapper.bit from the project folder 
your_base_directory\base_project\tmp\your_first_project\your_first_pro

ject.runs\impl_1\. Drag-drop system_wrapper.bit from here into Pitaya’s /tmp 

directory.  

Within WinSCP open a PuTTY terminal, log in with ‘root’ as password and type in the following 

commands: 
 

cd /tmp 

cat system_wrapper.bit > /dev/xdevcfg 

chmod u+x first_server_program.c 

gcc -o exec first_server_program.c 

./exec 

 

The second command activates the bitstream. The commands that follow are meant to create a 

binary executable from the C code and run it. If successful, Terminal will look like this: 

 

 
 

Connect OUT1 to an oscilloscope for the RF pulses. The TXG and RXG signals may be read off 

the indicated GPIO lines – simply hook them up to an oscilloscope to verify. 
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Now open first_client_program.py in PyCharm. Note the highlighted numbers – these are the 

parameters you can set for the pulse generator you just built. The second print explains what each 

parameter is, along with their units (if any).  

 

 
 

Go to Run>Run>first_client_program. Upon success you will note RF pulse generated from OUT1 

of Pitaya (to verify this, hook up OUT1 to an oscilloscope) along with a timestamped .txt file 

created in the same directory as the Python code. This is a record of all parameters set in the current 

pulse sequence – very useful for future reference. 

 

5 Version Control 
 

This outlines the process of creating copies of your Vivado project for version control. If a Vivado 

project runs into errors, it is good to have backup copies like these. 

 

1. Go to File>Project>Write Tcl. 

2. Select the output directory of your choice, and name it as build.tcl in the output file 

filed, along with the rest of the directory path. Make sure ‘Copy sources to new project’ 

and ‘Recreate block designs using Tcl’ is checked. 

3. Go to the directory where the .tcl file has been generated. Once there, copy the cores, 

scripts and cfg folders into the same folder as build.tcl. If your design has RTL 

scripts or custom Pitaya cores, copy tmp into the folder as well. 

4. Open a new Vivado window. In the Tcl console, type the following: 

cd 

cd \path\to\build.tcl 

source build.tcl 

5. Success! Your project is fully built from the Tcl file. 
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6 Troubleshooting 

 

• An internal exception has been detected, Vivado may be in unstable state, would you like 

to exit now?  

This shows up randomly when using Vivado. The software seems to trip up after using it for a 

while. When this happens, be sure to hit Ctrl+S to save all your work, exit Vivado and re-launch 

Vivado. We don’t have a better fix for Vivado’s internal exception at this time. 

 

• Unable to login to a PuTTY or WinSCP session of Pitaya, despite being able to log in 

before  

This is common. For some reason, the IP address of the device reconfigures occasionally. This can 

cause the device to have two, even three possible IP addresses. 

If this happens open its webpage (rp-xxxxxx) in a web browser. Go to System > Network manager 

and note the IP address from there. Use this address to launch PuTTY and/or WinSCP sessions for 

Pitaya. 

 

• Bus error in PuTTY window 

There are two possibilities as to why this happens: 

1.  The C and/or Python codes from chapter 3 are used with the bitstream from chapter 4 

2.  The C and/or Python codes from chapter 4 are used with the bitstream from chapter 3 

 

The C and Python programs used in chapter 3 are included in the unzipped folder 

mr_experiment_SE. Make sure to use this with the bitstream from mr_experiment_SE only. 

The C and Python programs in chapter 4 are not included in the unzipped folder base_project. You 

need to manually copy-paste these into new C and Python files before use. 

 

 

7 Useful Bash Commands 
 

•cd:  Change directory command - for moving to a specific directory 

Syntax:  cd 〈path/to/source〉 〈path/to/destination〉 
 

•cp:  Copy command - for copying files or folders  

Syntax:  cp 〈path/to/source〉 〈path/to/destination〉 
 
•rm:  Remove command - for deleting files or folders  

Syntax:  rm 〈path/to/source〉 〈path/to/destination〉 
 

•chmod:  Change mode command - for changing the access permissions to files or folders 

Syntax:  chmod 〈path/to/source〉 〈path/to/destination〉 
 

•cat:  Concatenate command - for sequentially writing files to a standard output  

Syntax:  cat 〈path/to/source〉 〈path/to/destination〉 
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APPENDIX F 

CORRELATING PULSE GENERATION WITH MRI 

1. Executing MR Pulse Generator – from mr_experiment_SE 

The timed events are set by the following spin echo (SE) pulse parameters, along with their units: 

RF90 (in µs)   –  time used to tip magnetic spins by 90° 

Off_time (in µs)  –  time between RF90 end and RF180 beginning when RF output is a  

flatline 

RF180 (in µs)   –  time used to tip magnetic spins by 180° 

TR (in µs)   –  time after which all pulse events repeat 

Acquisition (in µs)  –  time slot after RF180 end when MR echo is expected to form 

Repetitions   –  number of times the SE pulse sequence repeats 

Frequency (in MHz)  –  Larmor frequency of RF pulses 

These events are used to set RF pulses for NMR applications. Each RF pulse generated here is 

directly tied to the NMR phenomenon, which is governed by the equations for Larmor frequency 

fLarmor and tip angle α given below. 

 

𝑓𝐿𝑎𝑟𝑚𝑜𝑟 =  𝛾𝐵0         (1) 

𝛼 = 𝛾𝐵1
′ 𝑡      (2) 

 

where γ = gyromagnetic ratio of sample in Hz T-1 H 

γ = gyromagnetic ratio of sample in rad s-1 T-1 

B1'= 0.5 × B field of the solenoid/RF coil 

B0 = B field of the magnet 

 

Below is a timing diagram demonstrating one repetition of the SE pulse sequence used in 

mr_experiment_SE, as a function of microseconds.  

 

 

Timing Diagram for Pulse States - Spin Echo (SE) 
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The value dead_time is hard coded within the digital circuit to be 100 µs. It indicates the time 

period before RF90 begins when TXG pulse is activated. It is useful for gating purposes. 

Also note the presence of TE – the echo time. In SE, this is the distance between the center of 

RF90 and center of the MR echo. This parameter is not an input to the console – it merely indicates 

the location where the center of MR echo will show up. It is used to make sure the Acquisition 

time input is large enough to allow digitizing the echo; if it includes the echo center, the digitizer 

is capturing the right RF data from the receive side. 

 

To implement the above timing diagram, the provided digital circuit used a counter called ‘pulse 

era’ to keep track of time passed. According to the range pulse era lies in, a state value is assigned 

which corresponds to RF, TXG and RXG outputs being activated or deactivated according to the 

table below.  

 

Pulse Era State Value RF TXG RXG 

0 ~ dead_time 0 OFF 1 0 

dead_time ~ dead_time + RF90 1 ON 1 0 

dead_time + RF90 ~ dead_time + RF90 + Off_time 2 OFF 0 0 

dead_time + RF90 + Off_time ~ dead_time + RF90 + 
Off_time + RF180 

4 ON 0 0 

dead_time + RF90 + Off_time + RF180 ~ dead_time + 
RF90 + Off_time + RF180 + Acq 

3 OFF 0 1 

dead_time + RF90 + Off_time + RF180 + Acq ~ TR 2 OFF 0 0 

MR Pulse State Generation in Verilog 

The pulse parameters are set in the client program (client_program.py) in the portion highlighted 

below. 

 

After running the server code server_program.c followed by client code client_program.py as 

outlined in the manual in Appendix E, RF and GPIO (i.e., TXG and RXG) outputs can be used to 

drive MR experiments. 
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2. Executing RF Pulse Generator – from base_project 

The timed events are set by the following RF pulse parameters: 

on_time –  number of microseconds for which RF pulse and TXG signal is generated 

off_time  –  number of microseconds for which only RXG signal is generated 

Frequency  –  frequency of RF pulse 

Repetitions  –  number of times the RF sequence repeats 

 

These are NOT tied to the MR phenomenon – they are meant to demonstrate a simple RF pulse 

generator. Below is a timing diagram demonstrating one repetition of the RF pulse sequence used 

in base_project, as a function of microseconds.  

 
Timing Diagram for Pulse States – RF pulses 

To implement the above timing diagram, the digital circuit created in base_project (after following 

instructions from the provided user manual in Appendix E) utilizes a counter called ‘pulse era’ to 

keep track of number of clock cycles passed. According to the range pulse era lies in, a state value 

is assigned which corresponds to RF, TXG and RXG outputs being activated or deactivated 

according to the table below. 

 

Pulse Era State Value RF TXG RXG 

0 ~ off_time 0 OFF 0 1 

off_time ~ off_time + on_time 1 ON 1 0 

RF Pulse State Generation in Verilog 

While these are the parameters visible on the user side, the first three need to be converted into 

values usable by the digital circuit. This conversion is done by the server program 

first_server_program.c in the manual. Basically, it translates the parameters on_time, off_time and 

frequency into on_cycles, off_cycles, and phase_inc and phase_off. These values are described 

below. 

 

on_cycles  –  number of clock cycles for which RF pulse and TXG signal is generated 

off_cycles  –  number of clock cycles for which only RXG signal is generated  

phase_inc  –  determines frequency of RF pulse 

phase_off  –  determines initial phase of RF pulse  
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In simple terms, phase increment and phase offset are used to control the frequency and 

initial/starting phase of the RF pulse(s) to be generated. Our digital circuit uses a DDS (Direct 

Digital Synthesizer) to generate sine pulses, hence it is crucial that its phase increment and phase 

offset inputs are computed correctly before sending in as inputs.  

 

Phase increment decides how fast the wave amplitude changes with each clock cycle, while phase 

offset determines the starting angle value for which the sine wave is generated. They are governed 

by the formulas given below. 

𝑝ℎ𝑎𝑠𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡, 𝑝𝑖𝑛𝑐 =
𝑓𝑜𝑢𝑡×2𝐵𝜃(𝑛)

𝑓𝑖𝑛
     (1) 

𝑝ℎ𝑎𝑠𝑒 𝑜𝑓𝑓𝑠𝑒𝑡, 𝑝𝑜𝑓𝑓 =
2𝐵𝜃(𝑛)×𝛼

360
        (2) 

 

Note that first_server_program.c in base_project sets phase_offset (i.e., p_off) as 0. While the 

digital circuit accepts this as a processed value input, this value has not been incorporated as a 

Python parameter nor any conversion has been done by first_server_project.c. An upgrade to 

base_project may be to add an input called ‘Angle Offset’ in first_client_program.py, convert to 

the required value of phase_offset in first_server_project.c, and send this converted value to the 

digital circuit via AXI GPIO instead of 0.   

  

These conversions by first_server_program.c ensure that the correct values are passed on to the 

digital circuit for RF and GPIO output generation. 

Overall, pulse parameters are set in the client program (client_program.py) in the portion 

highlighted below. 

 
After running the server code first_server_program.c followed by client code 

first_client_program.py as outlined in the manual in Appendix E, RF and GPIO (i.e., TXG and 

RXG) outputs can be viewed on an oscilloscope. 

3. Simulating RF Pulse Generator – from base_project 

As mentioned in chapter 4 of the manual, a portion of the digital circuit (the hierarchy hier_0) is 

taken and simulated against a set of input values using the testbench program provided – 

first_TB.v. It sends out 5 sets of input values to the sectioned-out digital circuit, i.e., hier_0. This 

is done by sending one input set, waiting for a duration of 5 microseconds, and then sending out 

the next input set. All values used are listed in the table below. Note that values are sent in directly 
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to the digital circuit without any conversions. The RF pulse parameters corresponding to these 

values are listed in brackets.    

 

Sequence #1 #2 #3 #4 #5 

Duration (in µs) 5 5 5 5 5 

off_cycles 
20 

(0.160 µs) 

0 

(0.000 µs) 

100 

(0.800 µs) 

0 

(0.000 µs) 

50 

(0.400 µs) 

on_cycles 
40 

(0.320 µs) 

0 

(0.000 µs) 

30 

(0.240 µs) 

0 

(0.000 µs) 

50 

(0.400 µs) 

phase_inc 
25769804 

(3 MHz) 

0  

(0 MHz) 

85899346 

(10 MHz) 

0  

(0 MHz) 

128849019  

(15 MHz) 

phase_off 
0  

(0°) 

0  

(0°) 

268435456  

(90°) 

0  

(0°) 

536870912  

(180°) 

Repetitions 3 0 4 0 5 

Values used in XSim simulation 

Observe sequences #2 and #4 – these effectively send out zeros to the digital circuit and wait for 

5 microseconds. The result of this is shown below – rep_tracker is reset after accepting a new set 

of inputs, causing the corresponding sequence to run for the requested number of repetitions. 

Hence, it is important to perform a ‘blank out’ operation on the inputs every time a new sequence 

of RF and GPIO pulses must be generated. 

Upon a successful run, XSim generates the simulation results as shown on the next page. 
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Simulation results for testbench code in base_project
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Zooming in to sequences 1, 3 and 5 shows that the DAC output (dac_dat_o_0), DDS outputs 

(m_axis_data_tdata for amplitude, m_axis_phase_tdata for phase) and TXG and RXG are indeed 

being generated correctly in accordance to the set input values of off cycles (off_cycles_0), on 

cycles (on_cycles_0), repetitions (reps_0), phase increment (pinc_server_0) and phase offset 

(poff_none_0).   

 
 

Zoomed in – Simulation results for sequence #1 

 

 
 

Zoomed in – Simulation results for sequence #3 
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Zoomed in – Simulation results for sequence #5 

 

NOTE: Blankout is initiated after the sleep() function in server_program.c (used in 

mr_experiment_SE) and first_server_program.c (used in base_project).  

The input to sleep() is the total time (in seconds) required to complete all RF/MR pulse sequences. 

It is computed as follows: 

For mr_experiment_SE, it is equal to TR*Repetitions/1,000,000. 

For base_project, it is equal to (on_time + off_time)*Repetitions/1,000,000.  

A limitation in both C programs is that sleep() works correctly if the total time is at least one 

second long. If it is less than a second, the sleep() function may not execute and force the digital 

circuit to blank out its RF and GPIO outputs even before all repetitions have been completed. 

Hence, due to the nature of blank out operations performed by server_program.c and 

first_server_program.c, it is important to enter pulse parameters such that they are at least 1 second 

long. 

 


