

FPGA CONTROLLED RF PULSE GENERATOR

FOR TEACHING MRI

A Thesis

by

MARIAM NIDA USMANI

Submitted to the Graduate and Professional School of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Steven M. Wright

Committee Members, Paul V. Gratz

 Byul Hur

 Jim Ji

Head of Department, Miroslav Begovic

December 2021

Major Subject: Electrical Engineering

Copyright 2021 Mariam Nida Usmani

ii

ABSTRACT

Currently, many researchers in MRI are focused on creating low-cost MR setups using off-

the-shelf components that are comparable in performance to existing MR systems. A problem

these setups face is phase instability due to hardware components not synchronized perfectly. To

overcome this, systems with pulse generation and echo digitization on a single hardware platform

are gaining popularity.

With FPGAs gaining traction in recent years, it is unsurprising to find them being

incorporated in low-cost MR setups today. This is because of their suitability in highly precise

applications along with occupying smaller chip areas, consuming lesser power and keeping

equipment cost lower than their analog counterparts. Given the current scenario of virtual and

hybrid classes, FPGAs also make it possible to get hands-on experience in building working MR

setups using off-the-shelf components at home, which promotes learning while being socially

distant. Hardware platforms such as the Red Pitaya are well-suited for this purpose, which has an

Artix-7 FPGA coupled with a dual-core ARM Cortex A9 processor, and DACs and ADCs all

housed under the same chassis.

This thesis aims to build and test an RF pulse generator on an FPGA using a Red Pitaya

board. The pulse generator is integrated into a tabletop MR setup and its phase stability determined

using a Pentek high-speed digitizer. The entire process has been documented in a manual attached

to this document along with all source codes used. Finally, a discussion has been initiated regarding

the inclusion of a working digitizer within Pitaya itself, alongside the pulse generator.

iii

DEDICATION

I dedicate this thesis to my parents, my sister, and my grandparents for constantly

encouraging me to pursue my interests and strive for excellence.

 I thank my mother for being there for me during the highs and lows of life and motivate

me towards my goals, and my father for helping me reason out problems and refine my thinking

as an engineer.

 To my sister – thank you for all your love and support and adding to my happiness.

iv

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Wright, and my committee members, Dr.

Gratz, Dr. Hur and Dr. Ji for their invaluable guidance, support and learning opportunities

throughout the course of this research.

Thanks also goes out to Dr. Hur and ETID for teaching opportunities provided during my

time as a GAT for ESET 369. I offer my sincere appreciation to all friends and colleagues at MRSL

and the department faculty and staff of ECEN and ETID for making my time at Texas A&M

University a great experience.

Finally, my heartfelt thanks to my family for their encouragement, in particular my parents

and sister for their patience and love.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a thesis committee consisting of Dr. Steven M. Wright,

Chair, Dr. Paul V. Gratz, and Dr. Jim Ji of the Department of Electrical and Computer

Engineering and Dr. Byul Hur of the Department of Engineering Technology and Industrial

Distribution.

The SD image for STEMLab 125-14 used in this research (latest stable) has been created

by the Red Pitaya team; it is documented at

https://redpitaya.readthedocs.io/en/latest/quickStart/SDcard/SDcard.html

All Vivado projects were created by adapting and modifying Anton’s project directory

and code files from his GitHub page: https://github.com/apotocnik/redpitaya_guide

The server and client programs were constructed by modifying codes by Marco Marchini

on his gist page: https://gist.github.com/marcom04/22860f1168330605cac3c448982b0393

 All other work conducted for the thesis was completed by the student independently.

Funding Sources

Graduate study was partially supported by a summer 2020 research scholarship from the

Department of Electrical and Computer Engineering, Texas A&M University.

https://redpitaya.readthedocs.io/en/latest/quickStart/SDcard/SDcard.html
https://github.com/apotocnik/redpitaya_guide
https://gist.github.com/marcom04/22860f1168330605cac3c448982b0393

vi

NOMENCLATURE

FPGA Field Programmable Gate Array

CLB Complex Logic Block

PLL Phase Locked Loop

HDL Hardware Description Language

FF Flip Flop

MUX Multiplexer

MRI Magnetic Resonance Imaging

SNR Signal to Noise Ratio

STEM Science, Technology, Engineering and Management

FFC Fast Fourier Tracking

VHDL Very High-Speed Integrated Circuit Hardware Description Language

DAC Digital to Analog Convertor

RF Radio Frequency

SoC System on Chip

GPIO General Purpose Input/Output

NMR Nuclear Magnetic Resonance

MR Magnetic Resonance

PSG Pulse Sequence Generator

PC Personal Computer

TAMU Texas A&M University

MRSL Magnetic Resonance Systems Lab

ADC Analog to Digital Convertor

vii

AXI Advanced eXtensible Interface

AMBA Advanced Microcontroller Bus Architecture

DSO Digital Storage Oscilloscope

MIT Massachusetts Institute of Technology

OCRA Open-source Console for Real-time Acquisition

DDS Direct Digital Synthesizer

BRAM Block Random Access Memory

SE Spin Echo

FID Free Induction Decay

IP Intellectual Property

µs Microsecond

ns Nanosecond

TXG Transmission Gate

RXG Receive Gate

RTL Register Transfer Level

rad radian

Hz Hertz

MHz Megahertz

T Tesla

LUT Lookup Table

PA Power Amplifier

LPF Lowpass Filter

Vpp Peak-to-peak Voltage

viii

TABLE OF CONTENTS

Page

ABSTRACT .. ii

DEDICATION ... iii

ACKNOWLEDGEMENTS.. iv

CONTRIBUTORS AND FUNDING SOURCES ... v

NOMENCLATURE ... vi

TABLE OF CONTENTS ... viii

LIST OF FIGURES ... x

LIST OF TABLES ... xii

1. INTRODUCTION .. 1

2. BACKGROUND.. 2

 2.1 FPGAs – a brief history ... 2

 2.2 Digital circuits on an FPGA ... 2

 2.3 Advancements in MRI ... 3

 2.4 Phase Instability in MR Systems .. 4

 2.5 Pulse Generation and Programmable Logic .. 5

 2.6 Red Pitaya – an RF/digital workbench in a handheld chassis 6

3. METHODOLOGY ... 9

 3.1 Goals ... 9

 3.1.1 Hardware side ... 10

 3.1.2 Software/interface side .. 10

 3.1.3 Testing and phase stability .. 11

 3.2 RF Pulse Parameters .. 11

 3.3 Server and Client Pair .. 14

 3.4 AXI GPIOs .. 15

 3.5 Pulse state generation ... 17

 3.6 RTL Scripts ... 18

 3.7 Direct Digital Synthesis ... 19

 3.7.1 m_axis_phase_tdata .. 21

 3.8 Block design for pulse sequence generator (PSG) .. 22

ix

Page

 3.9 Testing and setups .. 25

 3.9.1 XSim Testing – Simulations .. 25

 3.9.2 RF1 Setup – PC, Pitaya and oscilloscope ... 28

 3.9.3 MR2 Setup – 4.7 T magnet and 2H sample .. 29

 3.10 Data processing for MR2 setup .. 31

4. IMPLEMENTATION .. 32

 4.1 Parameters used ... 32

 4.2 Waveforms and results ... 33

 4.2.1 Simulated – before bitstream generation .. 33

 4.2.2 After bitstream – Testing with PC inputs ... 44

 4.2.3 Testing on MR setup ... 47

 4.3 Future work ... 53

5. CONCLUSION .. 55

REFERENCES .. 56

APPENDIX A .. 60

APPENDIX B .. 66

APPENDIX C .. 70

APPENDIX D .. 73

APPENDIX E .. 75

APPENDIX F .. 111

x

LIST OF FIGURES

FIGURE Page

 1 Timing Diagram for Pulse States - Spin Echo (SE) .. 13

 2 AXI GPIO IPs in system.bd block design .. 16

 3 Address Editor displaying assigned addresses for AXI GPIOs 17

 4 pulse_state_generator and DDS_control – connected ... 18

 5 DAC_activator and Pitaya’s DAC IP – connected .. 19

 6 Layout of m_axis_phase_tdata ... 21

 7 Connecting PSG (housed in FPGA fabric) with I/O and other devices 22

 8 TXG and RXG connections on E1 of Pitaya – highlighted 23

 9 Complete block design for PSG ... 24

 10 Creating a hierarchy from selected blocks .. 26

 11 Complete block design for design_test.bd .. 27

 12 Setup for RF1 – pulse generation and triggering on Pitaya 28

 13 Setup for MR2 – 4.7 T magnet and 2H sample ... 30

 14 Simulation results for testbench code ... 34

 15 Check for phase increment and frequency – sequence #1 37

 16 Observing frequency and state change – sequence #1... 38

 17 Zoomed in – state transition ... 38

 18 Timings in second TR of sequence #1 .. 40

 19 Sequence #3 – start of RF90 .. 40

 20 Timings for third TR – sequence #3 ... 41

xi

 21 Sequence #5 – end of RF180 of last TR ... 42

 22 Simulation results without blank-out sequences ... 43

 23 Lag between TXG and RF90 (keeping dead_time = 0) ... 45

 24 Pitaya outputs (OUT1, TX, RXG) captured with BitScope DSO 45

 25 Pitaya RF output for 2.55 MHz captured with PicoScope 46

 26 Pitaya RF output for 10 MHz captured with PicoScope .. 46

 27 Pitaya RF output for 30.72 MHz captured with PicoScope 47

 28 Beginning of RF90 – 20 acquisitions superimposed, zoomed in 48

 29 End of RF90 – 20 acquisitions superimposed – zoomed out 49

 30 End of RF90 and ringdown, zoomed in .. 49

 31 End of RF90 – pure ringdown, zoomed in .. 50

 32 Beginning of RF180, zoomed in .. 50

 33 End of RF180 and ringdown, zoomed in .. 51

 34 End of RF180 – pure ringdown, zoomed in .. 51

 35 Magnitude of spectra acquired with Pentek at Larmor .. 52

 36 Phase of spectra acquired with Pentek – zoomed at Larmor 52

 37 Real part of spectra acquired with Pentek – zoomed at Larmor 53

xii

LIST OF TABLES

TABLE Page

 1 Pulse State Generation in Verilog .. 17

 2 Parameters used in XSim simulation .. 32

 3 Details on RF/MR testing .. 33

 4 Comparing time markers in Figure 14 with expected values 35

 5 Comparing time markers in Figure 18 with expected values 40

 6 Comparing time markers in Figure 20 with expected values 41

1

1. INTRODUCTION

Advancements in reconfigurable logic devices like Field Programmable Gate Arrays

(FPGAs) in recent times has made far-ranging changes to existing devices. It has become essential

to modernize existing and/or obsolete equipment with reconfigurable FPGAs [1]. This is expected,

given their low cost and size coupled with high reliability and accuracy. Moreover, their ability to

replicate complex analog circuit designs continues to improve dramatically.

This makes these devices highly suited in prototyping and developing digital logic to

address a wide spectrum of medical imaging modalities as well as medical devices [2] such as

Magnetic Resonance Imaging (MRI), which traditionally uses complex analog circuits. From an

educational viewpoint, it is equally important to make them accessible and easy to understand for

students in Science, Technology, Engineering and Management (STEM) programs to promote

research and development.

This project aims to build and test a simple MRI interface along with the underlying digital

logic for a pulse sequence generator implemented on Red Pitaya, an inexpensive FPGA

development board. The resulting circuit and interface serve as a base for future MR experiments

and logic/processing upgrades. To demonstrate its working, the fully configured Pitaya board was

integrated into an RF followed by an MR setup, one at a time, and its phase stability quantified.

Attached to this thesis are four sets of codes – the server and client programs, three RTL scripts,

one testbench/simulation script and two MATLAB programs. The first three sets of code pertain

to setting up the pulse generator and verifying its functionality. The MATLAB codes are intended

for processing data digitized in the MR setup. Finally, a manual walking through the design and

testing process of a simple pulse generator has been attached to this document.

2

2. BACKGROUND

2.1 FPGAs – a brief history

 The idea of programmable logic came into being with the introduction of XC157 by

Motorola in 1969 [3]. This is the first mask-programmed gate array to ever exist, with 12 intra-

connected gates and uncommitted inputs and outputs that could be interconnected according to the

engineer’s custom design. Over the years, this design was improved upon for speed, power

consumption and throughput leading to smaller devices that could be reconfigured just like

EEPROM (electrically erasable Programmable Read Only Memory). These were called Field

Programmable Gate Arrays (FPGAs), the first of which was the XC2064 chip invented by Ross

Freeman and Bernard Vonderschmitt, co-founders of Xilinx Inc[4]. It was produced using a 2 µm

fabrication process, housed 800 gates and sold for $55 in 1985.

 With fabrication techniques reaching the nanometer scale, it is now possible to etch

millions of gates on to the same chip space. This has allowed FPGAs to reach a level of

sophistication, making it viable to build complex circuits consisting of phase locked loops (PLLs)

and communication interfaces[5].

 The current trend in reconfigurable logic is to integrate FPGAs with processor cores to

form a System on Chip (SoC). This pairing creates a powerful computing platform with greater

system reliability, low power needs and low latency, all on the same chip dimensions or smaller.

2.2 Digital circuits on an FPGA

 The modern FPGA architecture comprises of arrays of I/O lines, configurable logic blocks

(CLBs) and routing channels. A very basic CLB will have one lookup table (LUT), one flip flop

(FF) and one multiplexer (MUX). By manipulating the I/O lines and routing channels CLBs can

be set to specific configuration – this is the basis of all logic circuits today.

3

To allow for this manipulation a set of languages called hardware description languages

(HDLs) have been created, the most popular being VHDL and Verilog. The idea behind HDLs is

to come up with a logic design and codify it. This codified logic is then converted into a

bitstream/gateware file which is flashed on to the FPGA fabric. It can be thought of as ‘activating’

the FPGA with your logic design, effectively creating an electrically erasable digital circuit.

 This conversion is done with the help of software such as Xilinx Vivado or Intel Quartus

Prime. To be clear, they offer features that go well beyond HDL code editing and

bitstream/gateware generation. These include logic simulators, which test a logic design before

generating its corresponding bitstream. Also, both have a large library of IP (Intellectual Property)

cores, which are basically reusable pieces of codified logic. This encourages FPGA designers to

break down their logic design into smaller, manageable portions that can be created and tested

independently, and interfaced with IP cores to build the desired digital circuit.

2.3 Advancements in MRI

MRI is a non-invasive, radiation-free imaging modality that is carried out in the RF range

of the electromagnetic spectrum, i.e., 2-200 MHz. This makes it quite appealing to use by doctors

as well as researchers. Because of this, MRI has been a witness to several technological leaps and

bounds ever since it was introduced as a diagnostic tool in the 1980s.

Improvements in RF coil design, pulse sequences, magnets and image processing have all

contributed to making MRIs a crucial part of patient studies. These include the adoption of phased

array coils on the receive side [6], using superconducting magnets for better field homogeneity and

higher field strengths [7], the addition of gradient pulses to image specific regions of the patient [8]

and better algorithms for image reconstruction using multidimensional Fourier transforms [9].

4

One focus of most MR-related research continues to be improved SNR and system stability

along with lower running/maintenance cost and patient scan time. To this end, MR systems

continue to be miniaturized by replacing existing components such as magnets [10-15] with smaller

ones demonstrating equal or better performance than the former. This enhances the portability of

MRI; many portable MR scanners have been designed [16-24] and studied [25] or improved [26-27] in

recent times. It is hoped that by simplifying the system workflow in this manner, MRI becomes

more accessible and affordable to the public [28].

2.4 Phase Instability in MR Systems

 Phase stability refers to the condition where an MR echo from each pulse sequence

repetition possesses the same amplitude and phase information, given that the pulse sequence

parameters, external magnetic field (B0) and other environmental factors like temperature remain

constant. As one can imagine, MR systems are prone to phase instability, making the generated

echoes somewhat unpredictable in location, amplitude, and phase. It is crucial to have a system

with predictable phase, especially when MR sequences with phase encoding gradients are used.

 Several ways have been proposed to overcome this. One includes digitizing the second half

of the last RF pulse (the RF180 in a Spin Echo sequence) and using the accumulated phase data to

post-process the collected echo data. This has been shown to work by Ogier et al. at MRSL when

investigating improvements in low-field MRI at 0.06 T [29].

 A method called Fast-Field Tracking (FFC) has been proposed to correct for phase

instabilities and ghosting. This involves varying B0 field in fixed steps throughout the duration of

an MR scan. Because of this method, reconstructed MR images can be corrected for phase and

artifacts anywhere between a few seconds to a couple of minutes, depending on the image size [30].

5

Yet another technique is to synchronize the digitizer with the transmit such that echo data

is collected precisely after all RF pulses in a sequence have been transmitted. To do this, trigger

pulses or gating signals may be used for activating and deactivating the digitizer. The catch to this

method is that the pulse generator and digitizer both possess operating frequencies much higher

than the frequencies of transmitted and received RF pulses and exist on the same device. The

current MR tabletop setup for ECEN 463/763 (Magnetic Resonance Engineering) implements this

using an NI chassis with a 14-bit PXI 5412 DAC card at 100 MSa/s for RF output, a 14-bit PXI

5122 ADC card at 100 MHz to digitize the receive, and an 8-channel PXI 6733 analog output card

for slow-speed digital I/O and generating gradients [39]. This chassis is combined with RF frontend

components outlined in the paper and gives a phase stable and reliable MR system.

2.5 Pulse generation and Programmable Logic

Modern MRI experiments are time-sensitive and extremely precise. Depending on the

amount of data acquired, they can also place high demands on processing power as well. Due to

the specialized and complex nature of circuitry involved, it also becomes a costly endeavor.

Further, pulse sequences, which are comprised of RF and gradient pulses, have been

traditionally created with closed source programmers in mind, making the concept of MRI appear

esoteric. Efforts in recent times seek to make pulse sequence programming open source – a notable

example being Pulseq [31]. It is a MATLAB toolbox/translator that generates MR pulses on several

legacy MR scanners – Siemens, Bruker and GE – all with the same lines of code. Pulseq was

successfully translated for use with a Varian scanner in 2018 [32]; to this day, it is used as a pulse

programmer for ECEN 411 – Introduction to MRI/MRS in Magnetic Resonance Systems Lab,

Texas A&M University (TAMU).

6

A renewed interest in MRI is being witnessed not only due to open-source pulse

programmers, but also with the rise of programmable logic, namely FPGAs. Their high reliability,

high processing power and low cost has appealed to researchers as well as students especially in

NMR at low fields. They have not only allowed for creating and miniaturizing MRI setups to

tabletop scanners with off-the-shelf components [33] but have also proven to be capable of high-

volume data processing [34] and image reconstruction using SENSE, a parallel MRI algorithm [35].

Coming back to MRI, FPGAs also allow for open-source pulse programmers to be

developed [36]. This is a big achievement which adds to the appeal of FPGAs – they not only bring

down machinery cost and space requirements, but also give beginners a chance to understand,

build and appreciate the practical working of MRI.

One such initiative is OPENCORE NMR [37], a project that continues to be actively updated

at the time of writing this thesis. It provides a console, and data processing software as well as

VHDL modules that can be assembled as a logic design to run on an Altera/Intel Cyclone III (65

nm technology node) or a Cyclone V (28 nm technology node) FPGA. The FPGA chip, DDSes,

DACs and ADCs are all hand-soldered and assembled to form the spectrometer on a single board.

While this is a good approach, it is mainly aimed towards researchers well-versed with MR

systems, RF modulation, VHDL modules and DDS. This may present difficulties for students with

no prior experience in MR development or FPGA programming to follow and understand. For this

reason, the author chose a development board with the above components already assembled on it

– the Red Pitaya STEMLab 125-14.

2.6 Red Pitaya – an RF/digital workbench in a handheld chassis

MRI is highly specific when it comes to timing. RF transmission and acquisition must be

done with extreme precision; any deviation from the preset timing parameters will lead to errors

7

and/or failed experiments. Hence, coupling this with the Red Pitaya development board is a good

idea. It is housed inside an aluminum chassis of dimensions 11×7×2.5 cm, which makes it the size

of a wallet. Several papers have been published demonstrating the capabilities of this handheld

device for RF applications, especially as a Nuclear Magnetic Resonance (NMR) spectrometer

[40][38]. With a clock frequency of 125 MHz, it is quite reliable when it comes to setting timed

events, which is crucial in MRI. This has been demonstrated to work in the OCRA project

conducted at MIT [38], which created a series of server and client codes in C and Python to control

the existing bitstream-programmed FPGA fabric. This system demonstrated better phase stability

than that of the existing Medusa console, which is promising.

What makes the proposed system in this thesis different is the focus – OCRA developed

an interface (set of server and client programs) to control the existing FPGA logic (underlying

circuitry). The latter has remained more of less fixed, with limited guidance on how to verify its

functionality before running its corresponding bitstream on the Red Pitaya.

Here we leveraged the FPGA portion of Red Pitaya’s STEMLab 125-14 board for timed

MR pulse events, integrating them with a much simpler version of a server-client pair, and

provided a manual along with well-commented source codes for future development. In other

words, this project allows for flexibility in both digital logic (underlying circuitry) as well as the

interface (server and client).

The focus of this research work is to build FPGA logic from the ground up, add an interface

to it, and integrate it to an existing MR system consisting of a fully assembled RF frontend. In this

study, a Pentek digitizer was used to quantify phase stability of the pulse generator and determine

its efficacy for future MR experiments. Finally, the option of building a digitizer within the Pitaya

has been explored as well and is discussed under ‘Future Work’.

8

All codes utilized in the study are kept simple enough to understand and deploy, and are

attached as appendices A through D. A manual has been created for students to build their own

pulse generator – it is attached to this thesis as Appendix E. Finally, Appendix F correlates the

pulse generators created with the MR phenomenon.

9

3. METHODOLOGY

3.1 Goals

This thesis work utilizes the Red Pitaya STEMLab 125-14, a digital hardware platform

costing under $400 with a clock frequency of 125 MHz. It has two 14-bit, 125 MHz digital-to-

analog convertors (DACs) with a memory depth of 16k samples. It also contains two 125 MSa/s

RF output channels and extended general purpose input-output (GPIO) lines. These components

are housed within an aluminum chassis of dimensions 11×7×2.5 cm, which is basically the size of

a wallet. Of particular interest is the Xilinx Zynq 7010 SoC it houses, which has an Artix-7

programmable logic (28 nm technology node) integrated with a dual-core ARM Cortex A9

processor.

The focus of this research is to upgrade the existing MRI teaching setup for ECEN 463/763

(Magnetic Resonance Engineering) at TAMU that comprises of an NI chassis with a 14-bit PXI

5412 DAC card at 100 MSa/s for RF output, a 14-bit PXI 5122 ADC card at 100 MHz to digitize

the receive, and an 8-channel PXI 6733 DAC card for slow-speed digital I/O and generating

gradients [39]. The upgraded MRI setup is more compact and less expensive than the existing one.

While Pitaya is capable of digitizing data at 125 MS/s with analog input channels IN1 and

IN2, it was decided to keep it strictly as a pulse generator and not use it as a digitizer as well.

Digitizing entails the use of an ADC to sample incoming RF echoes. ADC-sampled data can be

stored in a soft Block Random Access Memory (BRAM) on the FPGA and sent out to the server

via a 32-bit AXI GPIO register. The issue arises when server attempts to read this data off the AXI

GPIO’s memory address. BRAM data updates every 8 ns in memory, which is too fast for the

server to read and transmit to the client before the AXI GPIO register is overwritten with a fresh

value. Creating a digitizer that works will require a better understanding of BRAM specifications

10

and AMBA AXI4 interface protocol, which is beyond the scope of this research. Hence the choice

of a standalone digitizer has been made in place of digitizing within Pitaya during acquisition.

Apart from pulse and GPIO timing and number of repetitions, the frequency of sine pulses,

generated by a direct digital synthesizer (DDS), should be adjustable in the MR frequency range

– from a few kHz up to a few hundred MHz. To accomplish this, a server program must be built

that can run on top of the FPGA fabric within Pitaya and establish a socket connection with a client

program running on another PC. Through this client, we intend to allow user control over RF pulse

generation.

3.1.1 Hardware side

On the hardware side, our upgrade swaps out the DAC and ADC cards with a much smaller

Red Pitaya board and a high-speed digitizer respectively, which simplifies and miniaturizes the

MR setup. To achieve this, a pulse sequence generator (PSG) needs to be built from the ground

up, tested, added to the FPGA fabric of Red Pitaya and integrated to an MR system. A PSG is a

highly accurate computer that accepts timing inputs from a user and generates real-time outputs to

drive MRI experiments, namely trigger signals and sine wave pulses. All the timing inputs

correspond to spin echo (SE) pulse parameters; hence the RF and trigger outputs must resemble

the transmit side and gating signals of an SE as closely as possible.

3.1.2 Software/interface side

On the software/interface side, VIs (programs running in LabVIEW) will be replaced by a

command line interface (CLI) – facilitated by a Python client program on a PC and a C server

program executable running on top of the FPGA fabric of Pitaya. Basically, the client will establish

a socket connection with the server and transfer pulse parameters to it. The server will convert

these parameters to appropriate values and send them over to the digital circuit via memory

11

mapped I/O. In short, VIs shall be swapped out for a more stripped-down approach to device

interfacing with a server-client pair of programs.

3.1.3 Testing and phase stability

As part of the testing process, the digital circuit’s functionality must be verified using

simulations running on a testbench code. Since Vivado 2020.1 is to be used in this project, its

XSim tool is a good choice for testbenching and simulations. This is to be done before bitstream

generation. After bitstream generation, analog and GPIO outputs generated by the device will be

tested using various oscilloscopes.

Finally, the circuit and interface will be incorporated into two MR setups, their receive

channel will be digitized for a certain number of repetitions, and raw data from both setups shall

be processed in MATLAB. The goal is to extract the resulting echo from raw data, line them up

and ensure the setups are phase stable.

All program codes pertaining to designing and testing the PSG, server and client, and data

processing shall be attached as appendices to this document. A detailed manual explaining the

steps needed to control pulses and GPIOs generated off the Pitaya board is also to be attached as

an appendix to this document.

3.2 RF Pulse Parameters

The timed events are set by the following spin echo (SE) pulse parameters:

RF90 (in µs) – time used to tip magnetic spins by 90°

Off_time (in µs) – time between RF90 end and RF180 start when RF output is a flatline

RF180 (in µs) – time used to tip magnetic spins by 180°

TR (in µs) – time after which all pulse events repeat

Acquisition (in µs) – time after RF180 end up to when MR echo is expected to form

12

Repetitions – number of times the SE pulse sequence repeats

Frequency (in MHz) – frequency of RF pulses

Each RF pulse is directly tied to the NMR phenomenon, which is governed by the equations

for Larmor frequency fLarmor and tip angle α given below.

𝑓𝐿𝑎𝑟𝑚𝑜𝑟 = 𝛾𝐵0 (1)

𝛼 = 𝛾𝐵1
′ 𝑡 (2)

where γ = gyromagnetic ratio of sample in Hz T-1 H

γ = gyromagnetic ratio of sample in rad s-1 T-1

B1'= 0.5 × B field of the solenoid/RF coil

B0 = B field of the magnet

Note that γ and γ indicate the same thing – gyromagnetic ratio. They differ only in units; γ

is in Hz/T and γ is in (rad/s)/T. The former value is used to calculate Larmor frequency in Hz,

while the latter formula is utilized in tip angle computation (in radians).

Basically, fLarmor is the frequency at which magnetic spins will precess when placed inside

the permanent magnet. These spins will precess in the longitudinal direction and the net

magnetization will remain constant; for this reason, no current is induced in the solenoid and no

signal is picked up.

To generate a signal (called a Free Induction Decay or FID) from the sample, we need to

‘tip’ the spins in the transverse plane, where the solenoid is located. In other words, the spins must

be tipped by α = 90°. This is done using the RF90 pulse, which is basically a sine wave of duration

corresponding to α90 and frequency fLarmor.

Note that the 90° tipped spins will undergo rapid dephasing due to T2* effects. This leads

to signal loss, the spins recover back to longitudinal by T1 recovery, and the amount of detected

13

signal in the transverse/solenoid plane diminishes. To counteract this, a Spin Echo sequence will

excite the sample with a second RF pulse – the RF180. This pulse possesses a pulse length

corresponding to α180 (when the magnetization/spin is ‘tipped’ by 180°) and frequency fLarmor.

The timed events are all tied to when the RF pulse and TXG/RXG signals are activated and

deactivated, and for how long. Further, the frequency of the RF pulse sinusoid must be

customizable – handy when performing frequency sweeps. Finally, we are dealing with a Spin

Echo (SE) pulse sequence here – it comprises of two RF pulses generated after a certain amount

of timed delay. Figure 1 explains this sequence in the most basic form, with the timed events

labeled appropriately.

Figure 1: Timing Diagram for Pulse States - Spin Echo (SE)

TXG and RXG in the timing diagram correspond to GPIO lines programmed in Vivado.

These are pins DIO0_N and DIO7_N respectively.

There is a value called dead_time mentioned in the timing diagram – this is simply a preset

delay between the rising edge of TXG and the beginning of RF90. In our project, this is maintained

at a preset value of 100 µs everywhere unless stated otherwise. Next, TR (i.e., repetition time) is

inclusive of all timed events – dead_time, RF90, Off_time, RF180, Acquisition, along with time

when all RF and gating pulses are kept deactivated. Completion of one TR means that one

14

repetition has been completed and the same pulse sequence repeats till all Repetitions have been

exhausted.

Also note the presence of TE – the echo time. In SE, this is the distance between the center

of RF90 and center of the MR echo. This parameter is not an input to the console – it merely

indicates the location where the center of MR echo will show up. It is used to make sure the

Acquisition time input is large enough to allow digitizing the echo; if it includes the echo center,

the digitizer is capturing the right RF data from the receive side.

Figure 1 does not correspond to an actual SE sequence. A complete SE sequence will have

two TXG pulses – one for RF90 and one for RF180, and the RXG pulse/Acquisition will begin

from the center of RF180. The TXG used in this research is different because it is utilized by

Pentek to digitize the receive. After receiving the positive edge of TXG, Pentek is set to digitize

the receive side of MR2 for 20 ms and re-triggers in the next TR, when another TXG pulse is

generated on the GPIO. Finally, Acquisition is kept right after the end of RF180, so that if the

receive is digitized using this, only the MR echo is digitized and not the transmitted pulses.

3.3 Server and Client Pair

The client program client_program.py establishes a socket connection to the server via

Ethernet. Pitaya has its own IP address – using this, our client connects to server and timed events

can now be inputted. The client takes these from the user and transfers to the server for further

processing, along with saving a copy of the user inputs in a timestamped text file in the same folder

it is located in.

The server is a gcc-compiled executable version of server_program.c. It accepts all these

values and converts RF90, Off_time, RF180, TR and Acquisition, all inputs in the microsecond

scale, to number of cycles. This is done by multiplying them with 125 – the clock frequency of the

15

Pitaya in MHz. These values determine the number of cycles at which an RF pulse should turn on,

when the trigger pulses are activated/deactivated and for how long etc. As for frequency of each

pulse, that is computed using equation 3 – this is explained in section 3.7. The result is the variable

Frequency.

These computed values, along with Repetitions, are all sent via specific memory addresses

in the device to the digital circuit on our FPGA fabric. As described in the next section, these

memory addresses allow for AXI GPIOs to read these computed values and pass them on to the

rest of the digital circuit. Please refer to Appendix A for the server and client programs used in this

project.

After computing and sending out all 7 pulse parameters to the digital circuit, the server

waits till (TR*Repetitions) time has passed. Once that happens, it resets all computed values stored

in its memory mapped I/O to zeros and waits for a second. After this, it closes the socket

connection and exits back to the PuTTY console. To launch a new MR scan, we simply run the

executable again and send fresh parameters from the Python program, and the process repeats.

3.4 AXI GPIOs

 The role of an AXI GPIO IP is to map a maximum of two registers to device memory.

Effectively, it implements memory mapped I/O so that both the CPU and FPGA fabric of the SoC

can access the same address space for read/write operations. In this project, all pulse parameters

are sent as 32-bit outputs in the block design – this means that the value for each parameter is read

from its assigned memory location from the device and processed by rest of the bitstream-

programmed digital circuit.

16

Figure 2: AXI GPIO IPs in system.bd block design

As seen in the figure above, 4 AXI GPIO blocks have been used for 7 outputs. These

correspond to the seven timing parameters discussed in section 3.2 and are all sent to

pulse_state_generator. They are crucial for setting things in motion in the circuit and generating

the required RF and trigger pulses corresponding to a spin echo pulse sequence, as will be

explained in upcoming sections.

To use them in the circuit, all memory addresses need to be mapped to user space on the

device using the auto-assign feature in Vivado’s Address editor – the steps are explained in detail

in the attached user manual. When auto-assigned, the following addresses were assigned to the

AXI GPIO cores. Note that each GPIO IP is named in order of the register that comes first in the

address space – this means that in RF90_and_Off_time, RF90 occupies the address space

0x41210000 ~ 0x41210007 and Off_time occupies 0x41210008 ~ 0x4121000F.

17

Figure 3: Address Editor displaying assigned addresses for AXI GPIOs

3.5 Pulse state generation

Relating the pulse parameters to timed events bring us to RTL codes created in Verilog.

These codes relate a value ‘pulse era’ to a specific state value as indicated in the following table.

Pulse era can be thought of as a count value that increments by 1 at every positive edge of the 125

MHz clock signal driving the FPGA logic.

Table 1: Pulse State Generation in Verilog

In the Vivado block design, we have set dead_time equal to 100 µs. Hence, TXG is

activated 100 µs before the actual RF pulse, whether it is a 90° or a 180° pulse.

If pulse era becomes greater than TR, its value is reset to zero and the process continues

‘Repetitions’ number of times. After this, the state generator will remain in state ‘2’. Meanwhile,

18

the server code is designed to wait till (TR*Repetitions) time has passed. Once that happens, it

blanks out the state generator by sending all zeros as pulse parameters to it and waits for a second.

After this, fresh parameters can be sent into the state generator for a new MR scan.

3.6 RTL Scripts

Three RTL scripts have been created here – pulse_state_generator, DDS_control and

DAC_activator. The first script accepts all 7 AXI GPIO values and increments a counter called

pulse_era in a manner discussed in section 4.2 and generates state values corresponding to pulse

era in accordance with Table 1. Note that pulse_state_generator also outputs a resync_bit that is

fed to DDS. This is important since it clears the phase accumulator when set to ‘1’ and allows

phase accumulator to update itself when set to ‘0’. Hence, resync_bit is set to ‘1’ after an RF pulse

has completed generation, i.e., right after state changes from ‘1’ to ‘2’ or ‘4’ to ‘3’. It is also set to

‘1’ right before the pulse sequence begins or repeats. Without this functionality, the system may

fail to generate the first RF90 pulse since resync_bit needs to be asserted high for one clock cycle

before DDS can generate any output. At all other times, resync_bit is set to ‘0’.

DDS_control accepts state values generated by pulse_state_generator (as state) and phase

increment from AXI GPIO (as phase_inc_server) and passes on this phase increment value (as

p_inc) and a phase offset value of zero (as p_off) to DDS, along with TXG and RXG signals

according to Table 1. Their interconnections in the block design are shown in Figure 4.

Figure 4: pulse_state_generator and DDS_control – connected

19

DAC_activator is needed to instruct the Red Pitaya DAC IP core when to generate a DAC

output corresponding to RF90 or RF180 and when not to. The output tvalid_out connects directly

to s_axis_tvalid of the DAC IP, as seen in the figure below.

Figure 5: DAC_activator and Pitaya’s DAC IP – connected

Its operation is simple – when phase generated by DDS changes, set tvalid_out as HIGH,

hence activating the DAC. When phase generated by the DDS remains steady over two clock

cycles or is zero, set tvalid_out as LOW, hence deactivating the DAC. The three script files are

attached to Appendix B of this document.

 3.7 Direct Digital Synthesis

DDS is short for Direct Digital Synthesizer – it is an IP core in Vivado that generates an

arbitrary sine waveform that updates by a certain ‘phase increment’ (determines frequency) after

every clock cycle and are initialized by a ‘phase offset’ (determines starting position of arbitrary

wave). It contains a phase accumulator and a sine lookup table, both of which require

m_axis_phase_tdata to be provided as input – basically, we need to plug in phase increment and

offset to the right locations. This is explained in detail in the following subsection.

By plugging in these values, the phase accumulator is instructed to compute a phase value

– this is used to search the sine lookup table. The amplitude corresponding to this phase value is

sent out as output. As mentioned in section 3.3, frequency of the sine pulses is governed by formula

3. Formula 4 computes phase offset in degrees, as a function of phase word length.

20

𝑝ℎ𝑎𝑠𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 =
𝑓𝑜𝑢𝑡×2𝐵𝜃(𝑛)

𝑓𝑖𝑛
 (3)

𝑝ℎ𝑎𝑠𝑒 𝑜𝑓𝑓𝑠𝑒𝑡, 𝛼 =
2𝐵𝜃(𝑛)×𝛼

360
 (4)

where fout = desired output frequency of DDS

fin = frequency of clock signal fed into DDS = 125 MHz

Bθ(n) = phase width (part of DDS properties)

In this project, Bθ(n) was equal to 30, after setting the DDS IP core according to steps

outlined in section 3.2.5 of the Red Pitaya User Manual, attached as Appendix D to this document.

DDS in this project is used to generate sinusoidal pulses that are offset by 0° (i.e., begin at

zero phase). For this reason, only phase increment is calculated in the server program and not phase

offset, and resync bit is set to zero to clear the phase accumulator of its previous value after a RF

pulse has been generated fully.

In fact, phase offset p_off is kept at a constant 0 in the RTL code DDS_control.v itself,

whether pulses are being generated or not. Note that phase offset has not been added as an AXI

GPIO output in the main project, although it is included in the Red Pitaya User Manual in chapter

3. This is because the author anticipates phase offset being incorporated in future projects

involving Pitaya bitstreams for MRI.

Hence, only formula 3 is implemented in the server program, which takes fout from the user,

converts it to the corresponding phase increment, and sends this phase increment to the Pitaya. The

relevant lines of C code are mentioned on the next page.

uint32_t RF90, Off_time, RF180, TR, Acq, reps;

float frequency;

int freq_MHz = 125;

uint32_t phase_inc = 1<<30; //2^30

…
//Memory map pointers to AXI GPIO addresses

21

/* get frequency and other inputs from client */

…

float val = 125/frequency;
phase_inc /= val; //final DDS input

*((uint32_t *)(cfg_90_and_Off_time + 0)) = RF90*freq_MHz;

*((uint32_t *)(cfg_90_and_Off_time + 8)) = Off_time*freq_MHz;

*((uint32_t *)(cfg_180_TR + 0)) = RF180*freq_MHz;

*((uint32_t *)(cfg_180_TR + 8)) = TR*freq_MHz;

*((uint32_t *)(cfg_Acq + 0)) = Acq*freq_MHz;

*((uint32_t *)(cfg_Phase_inc_and_reps + 0)) = phase_inc;

*((uint32_t *)(cfg_Phase_inc_and_reps + 8)) = reps;

The first line sets an unsigned 32-bit integer value, phase_inc, as 230 using the right shift

operator. Next, val, a float value, computes the result for 125/frequency up to 6 places after decimal

point, assuming frequency is another float variable obtained from user. Finally, the last line of

code divides phase_inc, i.e., 230, by val to give the result of 230×frequency/125. This way, the C

executable computes the appropriate phase_inc value to send to AXI GPIO and transfer by

DDS_control to DDS, ready for sine wave generation.

A 32-bit value called s_axis_phase_tdata is outputted by the DDS – this is our digital RF

waveform. It is converted to a 14-bit output by AXI4-Stream Red Pitaya DAC – this is the analog

waveform that shows up at OUT1 port on the Pitaya board.

3.7.1 m_axis_phase_tdata

Figure 6: Layout of m_axis_phase_tdata

The DDS IP functions by accepting a 72-bit input called m_axis_phase_tdata, the internal

structure of which is given in figure 6. This complete input is sent by concatenating all the values

underneath it – p_inc (phase increment), p_off (phase offset), resync_bit and xlconstant_0. Since

22

our phase width is 30 and both phase increment and offset are set to ‘Streaming’, both are 30 bits

wide each. However, register memory in the DDS is assigned as multiples of 8, therefore 32 bits

are assigned to each of them, with the last two bits from the MSB side left unused. Since p_off is

always zero in this project and p_inc is computed keeping 30 bits in mind, there is no risk of bit

overflow into the unused part of m_axis_phase_tdata – they will always remain zeros.

As discussed before, resync_bit is set by pulse_state_generator as 0 or 1 as per requirement.

xlconstant_0 is simply a 7-bit constant value that is all zeros – this is sent in to fill out the input to

complete the required 72-bit input length.

3.8 Block design for pulse sequence generator (PSG)

 The complete block design for PSG is shown in the figure on the next page. A Verilog

wrapper is generated for it and set as top module. Finally, a bitstream corresponding to the block

design was generated in Vivado, transferred to Pitaya and activated using the cat command. This

process forms our PSG digital circuit and is controlled by the server and client programs as shown

in Figure 7. The TXG and RXG lines are allotted the GPIO output connections indicated in Figure

8. These and RF output (OUT1) are tested in the next section.

Figure 7: Connecting PSG (housed in FPGA fabric) with I/O and other devices

23

Figure 8: TXG and RXG connections on E1 of Pitaya – highlighted.

Modified from Extension — Red Pitaya 0.97 documentation[41]

24

Figure 9: Complete block design for PSG

25

3.9 Testing and setups

Three setups were used in this research. The first setup was completely digital – it used

Vivado’s XSim tool to evaluate the functionality of the digital circuit and verify that it works

before bitstream creation. A testbench code was created and used for the purpose – it is attached

to the appendix of this document.

The second one tested pulse and trigger generation after the bitstream was created and

activated the FPGA fabric, and the server-client program pair was set up correctly. The output was

observed on three different oscilloscopes for RF delays and responsiveness and ensuring that it

matched all pulse parameters.

The last one was an experiment run on an MR setup containing a 4.7 T Varian magnet.

This setup involved connecting the Pitaya and PC to an RF frontend comprising of a power

amplifier, a match and tune circuit, a passive T/R switch, one preamplifier and one digitizer. Pitaya

was set to run a pulse sequence twenty times. The digitizer was triggered either by TXG or RXG

for each repetition as explained later, and the resulting data was saved to PC and processed in

MATLAB. The purpose behind this was to extract echoes and check for phase stability – whether

the RF pulses and echoes from multiple repetitions aligned at the same locations or not.

3.9.1 XSim Testing – Simulations

The FPGA logic is verified through simulations running in Vivado’s XSim tool. The

testbench code for the same is provided as an appendix. This is done after each RTL code is created

and added to the block design described in figure 7.

Basically, all the blocks highlighted below were selected and a hierarchy called hier_0 was

created from it. Once created, the block clk_wiz_0 was added to the hierarchy as well.

26

Figure 10: Creating a hierarchy from selected blocks

A new block diagram called design_test was created in the same project and hier_0 was

added to it. After auto-generating input and output pins for hier_0, the hierarchy was ungrouped

in design_test.

Five multiplier IP cores were added to design_test. All of them were set as constant

coefficient multipliers with input width set to 32 bits wide and coefficient being a constant integer

value of 125. The output width was set at custom values of 31 as output MSB and 0 as output LSB.

They were connected and all IPs and ports were named to match the block design given below.

The blocks design was saved, an HDL wrapper was created from design_test.bd, and the resulting

design_test_wrapper.v file was set as ‘top module’ under Sources in Vivado. Note that these

multiplier IPs are not part of the original system.bd block design. In fact, they can be replaced with

appropriate lines of code in the testbench file using a set of 5 wires, just like phase offset is

computed from frequency by the testbench using phase_val_1 and phase_val_2 as explained later.

27

Figure 11: Complete block design for design_test.bd

28

Next, the simulation code file provided in appendix D (design_test_TB.v) was set as ‘top’

module under Simulation Sources in Vivado. It has two differential clock inputs clk_in1_n and

clk_in1_p that are set such that they toggle every 4 ns. They replicate two one-bit signals of 50%

duty cycle that repeat every 8 ns – in other words, two differential clock inputs of 125 MHz each.

This feeds into the Clocking Wizard IP which generates the required clock signals to drive all

components of the device under test (DUT).

The testbench code also computes phase increment (indicated by phase_val_2) from

Frequency_Hz. Remember that the original block design does not compute phase increment – this

is calculated and provided by the server program itself. Hence the lines of code below use two 32-

bit regs phase_part_1 and phase_part_2 to replicate the functionality of phase_inc and val used in

the C server code; only the language differs.

 phase_part_1 = Frequency_Hz * (1<<30);

 phase_part_2 = phase_part_1/125000000;

The remaining testbench code simply matches the relevant regs and wires with ports of the

design_test_wrapper DUT (device under test) and sets the seven parameters in the following

manner, with each sequence executed once for the stipulated duration, one after the other.

After the functionality is verified in XSim, the bitstream file (a .bit file) is generated in

Vivado. This is copied to the /tmp directory of Pitaya and activated using the cat command.

3.9.2 RF1 Setup – PC, Pitaya and oscilloscope

Figure 12: Setup for RF1 – pulse generation and triggering on Pitaya

29

 After activating Pitaya’s FPGA with our bitstream, the server executable is created and

executed on the Pitaya. Inputs are set in the client, and the resulting outputs checked for time lag,

correctness to timing inputs and initial phase offset of RF pulses. Four different DSOs (digital

storage oscilloscopes) are used for this, each possessing a different sampling rate and number of

input and trigger/GPIO channels.

The first oscilloscope used is an Agilent DSO3062 to check the time lag between GPIO

lines and RF output. For this test, the bitstream is modified such that dead_time equals zero. This

will cause TXG to be set as HIGH at the same time as RF90 begins instead of being HIGH 100 µs

before RF90 is generated. The check will be performed by inputting parameters for sequence #1

and observing the time difference between the positive edge of TXG and the start of RF90 on the

oscilloscope. They are also listed in the table below describing the properties, pulse parameters

and tests performed with the digitizing instruments (DSOs or oscilloscopes).

Next, the RF and GPIO (TXG and RXG) outputs will be observed on a BitScope DSO.

Finally, to observe the beginning and ending phases of the RF90 and RF180 pulses and check if

their output frequency matches the requested one, a PicoScope 3206 DSO is used. The RF output

will be observed after inputting timing parameters mentioned in Table 3.

3.9.3 MR2 Setup – 4.7 T magnet and 2H sample

This setup uses the magnet of a legacy 4.7 T Varian scanner, which comes with its own

match and tune circuit. The Pitaya’s output (OUT1) is connected to a 32 dB Minicircuits power

amplifier (PA), as shown in the diagram. This connects to a T/R switch followed by a match and

tune and a solenoid wrapped around a test tube filled with heavy water which contains 2H. This

connects to the rest of the MR setup as shown in Figure 13.

30

Figure 13: Setup for MR2 – 4.7 T magnet and 2H sample

Here, γ = gyromagnetic ratio of 2H in Hz T-1 = 6.536 × 106 Hz T-1

γ = gyromagnetic ratio of 2H in rad s-1 T-1 = 2π × 6.536 × 106 rad s-1 T-1

B0 = B field of the magnet = 4.7 T

This gives the Larmor frequency of this sample as γ × B0 = 30.72 MHz. Hence, the

frequency input shall be set as 30.72 MHz on the client side, and the remaining pulse parameters

from table 2.

Apart from the PC, Pitaya and digitizer, all components of the workstation are completely

analog. The PA connects to a 30.72 MHz match and tune network and a solenoid wrapped around

a test tube containing 2H. The solenoid and match and tune is placed inside a 4.7 T permanent

magnet – all the other components are placed outside the magnet. The solenoid, T/R switch and

match-and-tune network are part of the receive channel. The echo travels this path into a Miteq

AU1579 preamplifier which boosts the received signal level. The RF pulses generated by Pitaya

follow the transmit path to reach the heavy water sample housed in the solenoid and an echo is

sent out on the receive path.

At the end of the acquisition/receive path, we place the Pentek digitizer. It has two analog

input channels and one external trigger, and a bandwidth of 200 MHz. This makes it possible for

Pentek to capture an analog signal upon an external trigger and record it as raw data for further

31

analysis. It will capture and record signals on the receive channel after the preamp stage based on

trigger pulses sent out by Pitaya directly to it.

Pitaya sends out two +3.3 V trigger pulse signals, TXG and RXG, on separate GPIO lines

– this is described in the manual. Pentek is triggered by the TXG pulse such that digitization of the

receive side begins on its rising edge. Using a LabVIEW program, an acquisition period of 20 ms

is set – this instructs Pentek to digitize all signals from the receive side up to 20 ms after a rising

edge is observed on TXG. Since Pitaya will send out 20 repetitions, Pentek will acquire data 20

times and append data from each repetition in a new column of a .dat file.

3.10 Data processing for MR2 Setup

This is another step carried out on setup MR2, which described in subsection 3.9.3. The

raw data generated by Pentek are files with the extension .dat. It is processed using two MATLAB

scripts – ReadPentek.m and display_Pentek_RX.m. These scripts are attached to Appendix D of

this document.

 The goal of these scripts is to read raw data from its file and plot its graph, correct for DC

offset, perform a Fourier Transform on it and plot the frequency response, identify the peak

frequency level and crop out 25 kHz to its left and right, and display the result. All 20 echo peaks

of Pentek data are then superimposed on top of one another on the same graph using MATLAB’s

‘hold on’ feature.

32

4. IMPLEMENTATION

4.1 Parameters used

 For simulations, the following pulse sequences were used. The code for the same is

provided in Appendix C – Testbench/Simulation Code.

Sequence #1 #2 #3 #4 #5

Duration (in µs) 800 5 800 5 800

Frequency (in MHz) 2.55 0 10 0 30.72

RF90 (in µs) 5 0 4 0 1

Off_time (in µs) 10 0 4 0 4

RF180 (in µs) 10 0 8 0 2

Acquisition (in µs) 20 0 15 0 10

TR (in µs) 180 0 150 0 130

Repetitions 3 0 4 0 5

Table 2: Parameters used in XSim simulation

As seen above, all values are set in accordance with their units. The reason for choosing

2.55 MHz for sequence #1 and 30.72 MHz for sequence #5 is to compare these against the pulses

generated by the actual device after bitstream activation. Moreover, these are the Larmor

frequencies of 1H at 0.06 T and 2H at 4.7 T – this is discussed in more detail in the next subsection.

10 MHz in sequence #3 is an arbitrary frequency chosen to demonstrate the generation of pulses

over a range of frequencies – this is not a Larmor frequency intended to be used in this project.

Finally, Acquisition and TR are smaller than the typical values sent in to

Sequences #2 and #3 have all parameters set to zero – the purpose is to demonstrate the

‘blanking out’ requirement of our digital circuit. As a final check, these were toggled OFF to show

the circuit indeed does not function correctly without a blanking sequence sent in before a fresh

sequence.

33

In the testbench code, ‘_us’ suffix after a reg indicates that it is a parameter in

microseconds, and ‘_Hz’ indicates that it is a parameter in Hz. Pound symbols (#) are used to set

delays while the testbench controls the DUT. Since the time scale used is in nanoseconds (indicated

by `timescale 1ns / 1ps), all delays are set in nanoseconds. With each delay, the DUT is allowed

to run on a fixed set of inputs for the duration of that delay. After the delay, the inputs are

overwritten with the next set of values, ready to be accepted by the DUT and the relevant output

is generated. After 2.410 milliseconds, the testbench concludes its operation as it reaches the

$finish command.

Table 3 details all the pulse parameters and properties of the RF/MR testing performed.

Instrument Agilent BitScope Picoscope Pentek

Sampling Rate 1 GSa/s 5 MSa/s 50 MSa/s 200 MSa/s

What to test Time lag Transmit Transmit Receive

Test setup RF1 RF1 RF1 MR2

Magnet Used X X X 4.7 T

Test sample X X X 2H

RF90 (in us) 5 70 70 600

Off_time (in us) 10 300 300 6,500

RF180 (in us) 10 140 140 1,200

Acq (in us) 20 200 200 20,000

TR (in us) 180 106 106 5.21×106

Repetitions 3 24 24 20

Frequency (in MHz) 2.55 2.55 2.55, 10, 30.72 30.72

Table 3: Details on RF/MR testing

4.2 Waveforms and results

4.2.1 Simulated – before bitstream generation

Following the method in subsection 3.9.1, all five sequences were executed correctly by

our DUT in XSim. The complete waveform plot is shown below, containing inputs and outputs

for all sequences.

34

Figure 14: Simulation results for testbench code

35

 As expected, TXG was set HIGH by the circuit at the beginning of every TR and stayed

like this for 100 µs, after which it was set LOW. Right after TXG was set to LOW, an RF sine

pulse was activated by the circuit for RF90_us number of microseconds and then deactivated. All

RF and GPIO outputs remained in LOW for Off_time_us number of microseconds. After that,

another RF sine pulse was activated for RF180_us number of microseconds and deactivated.

Finally, RXG was set HIGH right after RF180 generation was completed for Acq_us number of

microseconds and then set to LOW. Once TR_us number of microseconds passed, the pulse

generation process continued ‘Repetitions’ number of times.

To verify the timing, markers were placed at specific locations of the plot – three at positive

edges of TXG, three at negative edges of RXG and two at preset delays set using # symbol in the

testbench code. The results are tabulated below. Note that #800_µs refers to a preset delay event

of 800 µs – the suffix _µs indicates this value is in microseconds and refers to the Verilog line of

#800000, or 800,000 ns. The subscript at the end of an event without # refers to its sequence

number w.r.t. Table 2.

Chain of timed events Expected time marker Simulated time marker

TR1 × 1 180.000 µs 180.308 µs

(TR1 × 2) + (dead_time + RF901 + Off_time1
+ RF1801 + Acq1)

505.000 µs 505.316 µs

#800_µs 800.000 µs 800.012 µs

#800_µs + #5_µs + TR3 955.000 µs 955.020 µs

#800_us + #5_us + (TR3 × 3) + (dead_time
+ RF903 + Off_time3 + RF1803 + Acq3)

1386.000 µs 1386.036 µs

#800_µs + #5_µs + #800_µs 1605.000 µs 1605.000 µs

#800_µs + #5_µs+ #800_µs + #5_µs + (TR5
× 1)

1740.000 µs 1740.020 µs

#800 + #5 + #800 + #5 + (TR5 × 4) +
(dead_time + RF905 + Off_time5 + RF1805 +

Acq5)

2247.000 µs 2247.044 µs

Table 4: Comparing time markers in Figure 14 with expected values

36

From this table, the largest difference between simulated and expected time events is 0.316

µs; the difference is less than 1 µs. Hence, the RF output, TXG and RXG of each sequence indeed

matches up in terms of overall timing for pulses to start and stop/ turn HIGH and LOW.

The TXG and RXG outputs seem to be correctly generated – this is verified later by

zooming in to one part of the graph. The number of times the pulse sequence repeats is also correct.

This indicates a digital circuit with its output(s) matching the timing parameters discussed

previously.

4.2.1.1 Sequence #1

Next, the graph was zoomed in to the end of the first RF180 pulse of sequence #1 to check

if our testbench code computed the correct phase increment, and whether the generated RF pulse

was of the right frequency. For this, we have the set frequency (input) = 2,550,000 Hz = 2.55 MHz

and calculated phase increment = 21904333.21. Since phase increment fed into the DDS is an

integer value, all digits after the decimal place would ideally be discarded, i.e., it must be

21904333.

37

Figure 15: Check for phase increment and frequency – sequence #1

The testbench-computed phase increment is phase_part_2; from the above figure, we see

that this was computed as expected. The simulated frequency is calculated by finding the

difference between the red marker and the first blue one and inverting this difference, which is

106/(103.5081-103.1161) = 2.5510 MHz. This is very close to the set frequency value.

Next, the graph was zoomed in further to observe the delay between state change from 4

(RF ON) to 3 (Acq ON) and the time resync, DDS and DAC respond to this state change. To

double-check, frequency was calculated again in this graph based on markers – this time in the

nanosecond scale.

38

Figure 16: Observing frequency and state change – sequence #1

The simulated frequency here is 109/(124780.1 - 124388.1) = 2.5510 MHz. This is the same

frequency as before. To quantify the time delay mentioned previously, the graph was zoomed into

further as shown below.

Figure 17: Zoomed in – state transition

39

We see that resync goes HIGH 8 ns after the state transition, or one clock cycle after

changing states from 4 to 3. This matches our ideal, since resync is programmed to turn on one

clock cycle after a state transition from that of non-zero phase increment (pulse generation) to zero

increment (flatline). As expected, it is asserted for 1 clock cycle (8 ns) and then goes LOW.

DAC output appears to remain a steady non-zero value 28.1 ns after the state change, or

12.1 ns after resync is de-asserted. DDS takes a little longer (80.1 ns from state change, or 64.1 ns

after de-asserting resync) to settle down to its ‘steady flatline’ level, i.e., 8190. This value of 8190

shows up whenever no pulse is created by DDS and remains steady if no phase increment is fed to

it. DAC appears to translate this steady flatline value to a zero in its output every time – hence this

is not an issue.

In this case, DAC generates a steady zero 100.1 ns after state change, or 84.1 ns after resync

is de-asserted. We assume the longest delay, i.e., DAC output flatlines 100.1 ns later than expected.

This comes down to 0.1001 us delay, which is negligible, considering our system needs to be

precise only up to a micrometer.

Next, the graph was zoomed out to view the second TR of sequence #1. To check for

timings, four markers were places – one at the rising edge its TXG, one right before RF90 was

generated, one at the rising edge of RXG and one at the rising edge of the next TXG pulse. The

first rising TXG edge indicates start of the second TR; the second rising edge indicated the end of

this TR and start of the next one. The timings from this figure were then tabulated in Table 3.

40

Figure 18: Timings in second TR of sequence #1

Chain of timed events Expected time marker Simulated time marker

TR1 × 1 180.000 µs 180.308 µs

(TR1 × 1) + dead_time 280.000 µs 280.4441 µs

(TR1 × 1) + (dead_time + RF901 + Off_time1
+ RF1801)

305.000 µs 305.3801 µs

TR1 × 2 360.000 µs 360.316 µs

Table 5: Comparing time markers in Figure 18 with expected values

4.2.1.2 Sequence #3

Figure 19: Sequence #3 – start of RF90

41

Figure 18 shows the beginning of RF90 for the third TR in sequence #3. It has the set

frequency (input) = 10,000,000 Hz = 10 MHz and calculated phase increment = 85899345.92.

Discarding digits beyond the decimal point gives 85899345 – this matches the computed phase

increment. This phase increment value gives a frequency of 9.99 MHz – quite close to the

requested 10 MHz. Next, the simulated frequency is 2×109/(1205492.1-1205292.1) = 10 MHz –

this is the same as our set frequency value. Note that this value is multiplied by 2 because the

difference between two sine waves was used in the calculation.

Figure 20: Timings for third TR – sequence #3

Chain of timed events Expected time marker Simulated time marker

#800_us + #5_us + (TR3 × 1) 955.000 µs 955.020 µs

#800_us + #5_us + (TR3 × 1) + dead_time 1055.000 µs 1055.0921 µs

#800_us + #5_us + (TR3 × 1) + (dead_time
+ RF903 + Off_time3 + RF1803)

1086.000 µs 1086.020 µs

 #800_us + #5_us + (TR3 × 2) 1105.000 µs 1105.028 µs

Table 6: Comparing time markers in Figure 20 with expected values

As seen from values in tables 3 and 4, the largest deviation from ideal time markers is

0.4441 us for sequence #1 and 0.316 us for sequence #3.

42

4.2.1.3 Sequence #5

Figure 21: Sequence #5 – end of RF180 of last TR

Here, the graph is zoomed to the end of the last RF180 pulse in the last TR for sequence

#5. The set frequency (input) equals 30,720,000 Hz = 30.72 MHz and calculated phase increment

= 263882790.7. Discarding digits beyond the decimal point gives 263882790 – this matches the

computed phase increment. This phase increment value gives a frequency of 30.719 MHz – quite

close to the requested 30.72 MHz. Next, the simulated frequency is 14×109/(2237004.1-

2236548.1) = 30.701 MHz – this is slightly different from our set frequency value, but close

nonetheless. It is tricky to verify the correctness of this pulse frequency in simulations alone

because lesser number of samples are used to represent a sine wave of this frequency as compared

to a 2.55 MHz or 10 MHz wave.

In figures 16 and 19, the DAC output appears to be a rectangular wave modulated with a

sine function – notice how it rises for one clock cycle and ‘dips’ every clock cycle. In figure 21,

43

the DAC output not only appears like a random waveform rather than a sine, but the DDS output

does not resemble a 30.72 MHz sine at all. The reason for these outputs not being consistent with

sine waves is due to two factors – frequency resolution of the DDS and the behavior of the DAC

IP created by Pavel.

Frequency resolution is given by fclk/2
Bθ, with fclk being the clock frequency of the system,

125 MHz and Bθ being the phase width, i.e., 30. This gives a frequency resolution of 125 × 106/230

= 0.1164 Hz. This corresponds to 8.58 ns – a sine wave with time period comparable to this value

will not appear precise in simulations. That is why 30.72 MHz has a DDS output appearing random

instead of a repeatable sinusoid.

Pavel’s DAC IP works by toggling between two values for every non-zero DDS input

value. This is the expected behavior of the DAC, as seen in figures 16 and 19. An analog output

stage consisting of a lowpass filter (LPF) exists between the 14-bit DAC output port of our digital

circuit and the SMA connector of OUT1 that causes the DAC IP output to ‘smoothen out’ into a

clean sinusoid as seen in oscilloscope results after bitstream generation.

4.2.1.4 ‘Blanking out’ after a scan

Figure 22: Simulation results without blank-out sequences

44

It was mentioned previously that requesting a new set of pulses without ‘blanking out’, i.e.,

setting all parameters to zero, will cause the circuit to behave unexpectedly. To demonstrate this,

all blocks of testbench code after 800 us # delays up to 5 us # delays were commented out,

essentially suppressing sequences #2 and #4. The result is shown above – rep_tracker is not reset

after accepting a new set of inputs, causing the corresponding sequence to run less than the

requested number of repetitions. Hence, it is important to perform a ‘blank out’ operation on the

inputs every time a new sequence of RF and GPIO pulses must be generated.

Overall, this set of simulations shows that all RTL codes were written and integrated

properly into the system. Notice that small values of RF90_us, Off_time_us, RF180_us and

Acq_us were chosen. This was done on purpose to allow simulation results to be generated quickly

and without overloading the computer. Although the DAC output did not represent a sine

waveform here, it was later verified that sine pulses were indeed generated in the indicated green

areas of the waveform.

4.2.2 After bitstream – Testing with PC inputs

To check for time lag between GPIO lines and OUT1, dead_time was temporarily set to

zero, the corresponding bitstream generated, and TXG and OUT1 from the bitstream-programmed

Pitaya were monitored with an Agilent oscilloscope. As seen in figure 7, the time lag between the

two was 84 ns. In other words, all frequencies beyond 11.9 MHz have their RF channel lagging

from the GPIO by at least one clock cycle. However, this lag remains constant, making it a

predictable and quantifiable lag with every repetition or parameter set.

45

Figure 23: Lag between TXG and RF90 (keeping dead_time = 0)

Next, OUT1 channel and GPIO lines were recorded over a BitScope DSO, as seen in figure

8. OUT1 IS the yellow waveform, the red and orange lines in the bottom half corresponded to

TXG and RXG respectively.

Figure 24: Pitaya outputs (OUT1, TX, RXG) captured with BitScope DSO

46

 Next, to observe frequency and amplitude, the PicoScope was used. TXG was used as a

trigger signal for this, giving the results below. In all output waveforms, the voltage is found to be

1.969 Vpp.

Figure 25: Pitaya RF output for 2.55 MHz captured with PicoScope

Figure 26: Pitaya RF output for 10 MHz captured with PicoScope

47

Figure 27: Pitaya RF output for 30.72 MHz captured with PicoScope

 Since PicoScope has a sampling rate of 50 MSa/s, it under-samples the 30.72 MHz signal,

making it appear jagged instead of sinusoidal. However, it is noted in later sections that the Pentek

digitizes this perfectly, giving an echo of 30.72 MHz.

When looking at the starting phase of all RF90 and RF180 pulses, all three sequences for

PicoScope have their RF90 and RF180 starting at the same phase value. This indicates that overall,

the output matches the input parameters, and the pulse generator is phase stable.

This demonstrated that Pitaya was now fully programmed for pulse generation and

triggering acquisition events and could be integrated with a PC and RF frontends to create a

working MR setup for spin echoes.

4.2.3 Testing on MR setup

In this setup, Pitaya was connected to an MR setup with a 4.7 T permanent magnet and the

receive side was analyzed using a Pentek digitizer with TXG as the triggering signal. This was

done to capture the transmitted pulses as well as the echo generated by the 2H sample.

48

Using the MATLAB codes attached to the appendix of this document, the captured data of

all 20 TRs were superimposed on top of each other. The superimposed data was zoomed in to

check how well the RF90s and RF180s overlap.

There is a 125 ns difference between the time when the RF90 is expected to show up and

the actual sequences. In other words, each RF90 starts 125 ns after the 100 us time step in our

waveform. Within the RF90 pulses itself there is a jitter of 5 ns. Upon zooming in the RF90 end

and ringdown, there is a 50 ns delay between expected and actual RF90 end, and a delay of 125 ns

between RF90 end and the beginning of ringdown. Jitter at RF90 end and ringdown stays the same,

at 5 ns.

Figure 28: Beginning of RF90 – 20 acquisitions superimposed, zoomed in

49

Figure 29: End of RF90 – 20 acquisitions superimposed – zoomed out

Figure 30: End of RF90 and ringdown, zoomed in

50

Figure 31: End of RF90 – pure ringdown, zoomed in

The beginning and end of RF180 were analyzed as well. RF180 starts 35 ns before expected

time and end 5 ns before expected time. The jitter is very close to the value before, at 6 ns. The

delay between RF180 end and its ringdown is 90 ns - less than that of RF90 and its ringdown. This

shows that all the RF pulses generated are phase stable.

Figure 32: Beginning of RF180, zoomed in

51

Figure 33: End of RF180 and ringdown, zoomed in

Figure 34: End of RF180 – pure ringdown, zoomed in

Finally, all data between 13.2 ms and 17.2 ms was cropped out. Based on inputted

parameters, 15.2 ms is where the echo peak will show up. This was Fourier Transformed to give

its spectrum. As seen in the figures, the magnitudes of all spectra superimposed perfectly on top

of each other at Larmor frequency, with a distinct peak showing up for all the acquisitions at

30.7226 MHz. The phases, however, do not seem to align well. At 30.7229 MHz, it is seen that

52

the phases vary from 1.2 radians to 2.2 radians, which is a large phase deviation between

acquisitions.

Figure 35: Magnitude of spectra acquired with Pentek at Larmor

Figure 36: Phase of spectra acquired with Pentek – zoomed at Larmor

53

Figure 37: Real part of spectra acquired with Pentek – zoomed at Larmor

A close inspection of the real part of echo spectra further confirms the phase instability of

the setup since they do not align well. It is very likely the echoes are not phase stable due to Pentek

not being perfectly synchronized with Pitaya. Because of this, it is not possible to create a phase

stable system with MR2. If this setup is to generate phase stable echoes, then Pentek must be

synchronized with Pitaya, preferably with a shared clock signal.

However, figures 28-34 indicate that the RF pulse generation (and hence Pitaya) is phase

stable since the RF90 and RF180 in each repetition superimpose well in the time domain.

Therefore, the complete system is controllable with a Pitaya configured with the author’s digital

circuit and interface, and capable of producing echoes with a high-speed digitizer. While the RF

pulses are phase stable, the MR echoes are not phase stable because the digitizer is not

synchronized with the pulse generator.

4.3 Future work

 Future developments of this project may involve digitization performed on the Pitaya itself

using BRAM IP cores as part of the digital circuit. This is quite beneficial as far as phase stability

54

of the echoes (and hence the entire system) is concerned since this allows for the digitizer and

pulse generator to coexist side by side on the same hardware platform and be perfectly

synchronized. With improved synchronization comes phase stability of MR echoes, which is

highly desirable. The author notes that this functionality is not trivial to implement and requires

sound knowledge of memories and TCP/IP to ensure correct implementation of data storage and

integration with AX14-Stream Red Pitaya ADC, an IP core that converts RF input to 14-bit digital

output, ready to be stored/transferred elsewhere for further processing.

 Coming to data processing, this feature can be implemented upon successful deployment

of digitization on Pitaya itself. Although this will make the circuit more complex, this will greatly

reduce equipment cost since an external PC and digitizer will no longer be required for data

processing – simply generate RF pulses and triggers from Pitaya, digitize the receive, and process

the raw data to obtain the echo information. The final echo information may be streamed out to

the client program which will save it on the client PC.

 It will be beneficial to add gradient pulse generation to this system as well. Since Pitaya

has only two RF output channels, OUT1 and OUT2, out of which the former is already used for

RF pulses, that leaves only OUT2 as a gradient pulse channel. This in conjunction with a gradient

coil can be used to create projection images of samples, just like the ones created with the MR

hardware in ECEN 463/763 using a planar gradient coil. To generate a complete 2D image, one

RF channel and three gradient channels are required – one for slice select, one for frequency

encode/readout and one for phase encode. This can be done by using two Pitaya boards at the same

time – this system will have 4 output channels which is sufficient for the task. For this to work, it

is important to ensure both Pitaya boards are perfectly synchronized.

55

5. CONCLUSION

The program codes in Verilog, C and Python, and the manual created in this project are

intended to guide students and researchers towards digital logic deployment in MR

instrumentation. By incorporating them in MR setups, students will gain hands-on experience in

RF pulse generation via digital circuits and appreciate its importance in MR applications. More

importantly, it will encourage them to formulate solutions to existing MR and RF problems in

terms of programmable logic and develop skills in FPGA prototyping. The digital circuit design,

server and client programs and testbench code serve as a baseline for researchers to create and add

more features to the circuit and interface for future MR experiments.

It is meant to act as system upgrade to the existing MR setup used in ECEN 463/763 –

Magnetic Resonance Engineering, at Texas A&M University, along with setting a baseline for

researchers to utilize programmable logic in signal generation through a Pitaya development board.

The results indicate that this signal generator is well suited for the task, seeing that its output

matches user inputs well, is easy to control and assemble, has phase stable outputs and can be

expanded to build more sophisticated setups for MRI experiments.

56

REFERENCES

[1] C. Thompson, "Upgrading obsolete integrated circuits using Field Programmable Gate Arrays

(FPGA)," in 2014 IEEE AUTOTEST, 2014-09-01 2014: IEEE, doi: 10.1109/autest.2014.6935173.

[2] M. M. Balas, "A New Generation of Biomedical Equipment: FPGA," in Advances in Intelligent

Analysis of Medical Data and Decision Support Systems: Springer International Publishing, 2013,

pp. 235-246.

[3] Motorola Semiconductor Data Book, Fourth Edition. Motorola Inc. 1969. p. IC-73.

[4] XCELL, Issue 32, Second Quarter, Xilinx Inc. 1999. p. 4. Accessed on: June 11, 2021 [Online].
Available: https://www.xilinx.com/publications/archives/xcell/Xcell32.pdf

[5] J. J. Rodriguez-Andina, M. J. Moure, and M. D. Valdes, “Features, Design Tools, and Application

Domains of FPGAs”, IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 1810–1823,

2007.

[6] Kaufman et al., “Switchable MRI RF Coil Array with Individual Coils Having Different and

Overlapping Fields of View”, U.S Patent 4881034, Nov. 14, 1989. Accessed on June 12, 2021
[Online]. Available: https://patents.google.com/patent/US4881034.

[7] Wood, A. “Magnetic venture: the story of Oxford Instruments”, Oxford University Press, ISBN 0- 19-

924108-2, 2001.

[8] P. Mansfield and A. A. Maudsley, “Planar spin imaging by NMR”, Journal of Magnetic Resonance

(1969), vol. 27, no. 1, pp. 101–119, 1977.

[9] A. Kumar, D. Welti, and R. R. Ernst, “NMR Fourier zeugmatography”, Journal of Magnetic Resonance

(1969), vol. 18, no. 1, pp. 69–83, 1975.

[10] J.E. Berlien, “Engineering MR Technology for Low-Cost Portable Device Design”, Honors and
Undergraduate Research, Texas A&M University, College Station, TX, USA May 2016. Accessed

on: June 29, 2021 [Online]. Available: https://hdl.handle.net/1969.1/167845.

[11] I. Kang, "A portable, low-cost, 3D-printed main magnetic field system for magnetic imaging," 2017

39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), 2017, pp. 3533-3536, doi: 10.1109/EMBC.2017.8037619.

[12] Z. H. Ren, W. C. Mu, and S. Y. Huang, “Design and Optimization of a Ring-Pair Permanent Magnet

Array for Head Imaging in a Low-Field Portable MRI System”, IEEE Transactions on Magnetics,

vol. 55, no. 1, pp. 1–8, 2019.

[13] S. Huang, Z. H. Ren, S. Obruchkov, J. Gong, R. Dykstra, and W. Yu, “Portable Low-Cost MRI System

Based on Permanent Magnets/Magnet Arrays”, Investigative Magnetic Resonance Imaging, vol.
23, no. 3, p. 179, 2019.

[14] G. Moresi and R. Magin, “Miniature permanent magnet for table-top NMR”, Concepts in Magnetic

Resonance, vol. 19B, no. 1, pp. 35–43, 2003.

57

[15] C. W. Windt, H. Soltner, D. V. Dusschoten and P. Blumler, "A portable Halbach magnet that can be
opened and closed without force: The NMR-CUFF," Journal of Magnetic Resonance, vol. 208,

pp. 27-33, 2011.

[16] C.Z. Cooley, “Portable low-cost magnetic resonance imaging”, Ph.D. thesis, Massachusetts Institute

of Technology, Cambridge, MA, USA, Aug. 2014. Accessed on: Jun. 29, 2021. [Online].

Available: https://dspace.mit.edu/handle/1721.1/93060

[17] C. Z. Cooley, J. P. Stockmann, B. D. Armstrong, M. Sarracanie, M. H. Lev, M. S. Rosen, and L. L.
Wald, “Two-dimensional imaging in a lightweight portable MRI scanner without gradient

coils”, Magnetic Resonance in Medicine, vol. 73, no. 2, pp. 872–883, 2015.

[18] M. Sarracanie, C. D. Lapierre, N. Salameh, D. E. J. Waddington, T. Witzel, and M. S. Rosen, “Low-

Cost High-Performance MRI”, Scientific Reports, vol. 5, no. 1, p. 15177, 2015.

[19] N. R. Routley and K. J. Carlton, “The HALO system—a light weight portable imaging
system”, Magnetic Resonance Imaging, vol. 22, no. 8, pp. 1145–1151, 2004.

[20] Z. H. Ren, S. Obruchkov, D. W. Lu, R. Dykstra, and S. Y. Huang, “A low-field portable magnetic

resonance imaging system for head imaging”, 2017.

[21] F. J. Mateen, C. Z. Cooley, J. P. Stockmann, D. R. Rice, A. C. Vogel, and L. L. Wald, “Low-field

portable brain MRI in CNS demyelinating disease”, Multiple Sclerosis and Related Disorders,

vol. 51, p. 102903, 2021.

[22] K.-M. Lei, D. Ha, Y.-Q. Song, R. M. Westervelt, R. Martins, P.-I. Mak, and D. Ham, “Portable NMR
with Parallelism”, Analytical Chemistry, vol. 92, no. 2, pp. 2112–2120, 2020.

[23] W.-H. Chang, J.-H. Chen, and L.-P. Hwang, “Single-sided mobile NMR with a Halbach

magnet”, Magnetic Resonance Imaging, vol. 24, no. 8, pp. 1095–1102, 2006.

[24] T. Kimura, Y. Geya, Y. Terada, K. Kose, T. Haishi, H. Gemma, and Y. Sekozawa, “Development of

a mobile magnetic resonance imaging system for outdoor tree measurements”, Review of

Scientific Instruments, vol. 82, no. 5, p. 053704, 2011.

[25] L. L. Wald, P. C. Mcdaniel, T. Witzel, J. P. Stockmann, and C. Z. Cooley, “Low‐cost and portable
MRI”, Journal of Magnetic Resonance Imaging, vol. 52, no. 3, pp. 686–696, 2020.

[26] D. W. Lu and S. Y. Huang, “A TSVD-based approach for flexible spatial encoding strategy in portable

Magnetic Resonance Imaging (MRI) system”, 2017.

[27] M.S. Wijchers, “Image Reconstuction in MRI: The Possibilities of Portable Low-cost MRI Scanners”,

M.S. thesis, Delft University of Technology, Mekelweg 5, 2628 CD Delft, Netherlands, Aug.

2016. Accessed on: June 29, 2021 [Online].
Available: https://repository.tudelft.nl/islandora/object/uuid:0a0685fc-ce0a-4580-a355-

978810005b71.

[28] T. O'Reilly and A. Webb, “Deconstructing and reconstructing MRI hardware”, Journal of Magnetic

Resonance, vol. 306, pp. 134–138, 2019.

58

[29] S. E. Ogier, “Improvements in Low Field MRI”, Honors and Undergraduate Research, Texas A&M
University, College Station, TX, USA May 2013. Accessed on: June 12, 2021 [Online].

Available: https://hdl.handle.net/1969.1/148860.

[30] L. M. Broche, P. J. Ross, G. R. Davies, and D. J. Lurie, “Simple algorithm for the correction of MRI

image artefacts due to random phase fluctuations”, Magnetic Resonance Imaging, vol. 44, pp. 55–

59, 2017.

[31] K. J. Layton et al., "Pulseq: A rapid and hardware-independent pulse sequence prototyping
framework," Magnetic Resonance in Medicine, vol. 77, no. 4, pp. 1544-1552, 2017-04-01 2017,

doi: 10.1002/mrm.26235.

[32] C. C. Bauer, "Adaptation of Open Source Pulseq Pulse Sequence Writing Toolbox for Varian

Compatibility", M.S. thesis, Texas A&M University, College Station, TX, USA, Dec. 2018.
Accessed on: May. 4, 2021 [Online]. Available:

https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/174608/BAUER-THESIS-

2018.pdf?sequence=1&isAllowed=y

[33] C. A. Michal, "A low-cost multi-channel software-defined radio-based NMR spectrometer and ultra-

affordable digital pulse programmer," Concepts in Magnetic Resonance Part B: Magnetic
Resonance Engineering, vol. 48B, no. 3, p. e21401, 2018-07-01 2018, doi: 10.1002/cmr.b.21401.

[34] L. Li and A. M. Wyrwicz, "Design of an MR image processing module on an FPGA chip," Journal

of Magnetic Resonance, vol. 255, pp. 51-58, 2015-06-01 2015, doi: 10.1016/j.jmr.2015.03.007.

[35] S. A. Qazi, M. F. Siddiqui, J. Jacob Wikner, and H. Omer, “ASIC modelling of SENSE for parallel

MRI”, Computers in Biology and Medicine, vol. 109, pp. 53–61, 2019.

[36] H.-Y. Chen, Y. Kim, P. Nath, and C. Hilty, "An ultra-low cost NMR device with arbitrary pulse

programming," Journal of Magnetic Resonance, vol. 255, pp. 100-105, 2015-06-01 2015, doi:
10.1016/j.jmr.2015.02.011.

[37] K. Takeda, "OPENCORE NMR: Open-source core modules for implementing an integrated FPGA-

based NMR spectrometer," Journal of Magnetic Resonance, vol. 192, no. 2, pp. 218-229, 2008-

06-01 2008, doi: 10.1016/j.jmr.2008.02.019

[38] S. Anand, "OCRA: A Low-Cost, Open-Source FPGA-Based MRI Console Capable of Real-Time
Control," M.E. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, Sept. 2018.

Accessed on: May. 1, 2021. [Online].

Available: https://dspace.mit.edu/bitstream/handle/1721.1/121619/1098041021-

MIT.pdf?sequence=1&isAllowed=y

[39] S. M. Wright, M. P. Mcdougall, and J. C. Bosshard, "A desktop imaging system for teaching MR
engineering," in 2010 Annual International Conference of the IEEE Engineering in Medicine and

Biology, 2010-08-01 2010: IEEE, doi: 10.1109/iembs.2010.5627156.

[40] J. B. W. Webber and P. Demin, "Credit-card sized field and benchtop NMR relaxometers using field

programmable gate arrays," Magnetic Resonance Imaging, vol. 56, pp. 45-51, 2019-02-01 2019,
doi: 10.1016/j.mri.2018.09.018.

59

[41] "3.1.1.2.2. Extension — Red Pitaya 0.97 documentation", Redpitaya.readthedocs.io, 2021. Accessed
on: August 27, 2021 [Online] Available:

https://redpitaya.readthedocs.io/en/latest/developerGuide/hardware/125-14/extent.html

60

APPENDIX A

SERVER AND CLIENT PROGRAMS

1. server_program.c

#include <sys/socket.h>

#include <arpa/inet.h> //inet_addr

#include <stdio.h>

#include <stdint.h>

#include <unistd.h> //write

#include <sys/mman.h>

#include <fcntl.h>

#include <stdlib.h>

#include <string.h>

#pragma pack(1)

typedef struct payload_t {

/* NOTE: All these are inputs are 32 bits long and in microseconds, taken from the

Python client. We get these from the client and send to bitstream-configured GPIO

– the first stage of our digital circuit */

 uint32_t RF90;

 uint32_t Off_time;

 uint32_t RF180;

 uint32_t TR;

 uint32_t Acq;

 uint32_t reps;

 float frequency;

} payload;

#pragma pack()

int main(int argc, char** argv)

{

 //Step 1: Initialize socket stuff

 int PORT = 2300;

 int BUFFSIZE = 512;

 char buff[BUFFSIZE];

 int ssock, csock;

 int nread;

 struct sockaddr_in client;

 int clilen = sizeof(client);

61

 //Step 2: Initialize bitstream control stuff

 int fd;

 char *name = "/dev/mem";

 void *cfg_90_and_Off_time, *cfg_180_TR, *cfg_Phase_inc_and_reps, *cfg_Acq; /*

pointers to address/memory locations used by bitstream's GPIO*/

 uint32_t phase_inc = 1<<30; //fed to DDS

 uint32_t RF90, Off_time, RF180, TR, Acq, reps; float frequency; //we get thes

e from the Python client

 int freq_MHz = 125; // 125 MHz - multiply with pulse timing parameters

 if((fd = open(name, O_RDWR)) < 0)

 {

 perror("open");

 return EXIT_FAILURE;

 }

 /* Mapping to addresses specified by bitstream's AXI GPIO

 (Please refer to your block design's 'Address Editor' in Vivado for this) */

 cfg_90_and_Off_time = mmap(NULL, sysconf(_SC_PAGESIZE),PROT_READ|PROT_WRITE, MA

P_SHARED, fd, 0x41210000);

 cfg_180_TR = mmap(NULL, sysconf(_SC_PAGESIZE),PROT_READ|PROT_WRITE, MAP_SHARED,

 fd, 0x41220000);

 cfg_Phase_inc_and_reps = mmap(NULL, sysconf(_SC_PAGESIZE),PROT_READ|PROT_WRITE,

 MAP_SHARED, fd, 0x41230000);

 cfg_Acq = mmap(NULL, sysconf(_SC_PAGESIZE),PROT_READ|PROT_WRITE, MAP_SHARED, fd

, 0x41200000);

// Creating and binding a socket

 struct sockaddr_in server;

 if ((ssock = socket(AF_INET, SOCK_STREAM, 0)) < 0)

 {

 printf("ERROR: Socket creation failed\n");

 exit(1);

 }

 printf("Socket created\n");

 bzero((char *) &server, sizeof(server));

 server.sin_family = AF_INET;

 server.sin_addr.s_addr = INADDR_ANY;

 server.sin_port = htons(PORT);

 if (bind(ssock, (struct sockaddr *)&server , sizeof(server)) < 0)

 {

 printf("ERROR: Bind failed\n");

62

 exit(1);

 }

 printf("Bind done\n");

 listen(ssock, 3);

 printf("Server listening on port %d\n", PORT);

 while (1)

 {

 csock = accept(ssock, (struct sockaddr *)&client, &clilen);

 if (csock < 0)

 {

 printf("Error: accept() failed\n");

 continue;

 }

 printf("Accepted connection from %s\n", inet_ntoa(client.sin_addr));

//Accepted socket connection. Now preparing to receive inputs from client

 bzero(buff, BUFFSIZE);

 while ((nread=read(csock, buff, BUFFSIZE)) > 0)

 {

 printf("Received %d bytes\n", nread);

 payload *p = (payload*) buff;

 //Print received inputs from Python client

 printf("\nReceived contents:\n");

 printf("RF90 \t\t = %d us\n", p->RF90);

 printf("Off_time \t = %d us\n", p->Off_time);

 printf("RF180 \t\t = %d us\n", p->RF180);

 printf("TR \t\t = %d us\n", p->TR);

 printf("Acquisition\t = %d us\n", p->Acq);

 printf("Repetitions\t = %d\n", p->reps);

 printf("Frequency\t = %0.6f MHz\n", p->frequency);

 RF90 = p->RF90;

 Off_time = p->Off_time;

 RF180 = p->RF180;

 TR = p->TR;

 Acq = p->Acq;

 reps = p->reps;

 frequency = p->frequency;

 }

 float val = 125/frequency;

 phase_inc /= val; //converting phase increment to final DDS value

63

 printf("\nConverted phase increment = %d", phase_inc);

 *((uint32_t *)(cfg_90_and_Off_time + 0)) = RF90*freq_MHz; // convert RF90 t

o number of clocks

 *((uint32_t *)(cfg_90_and_Off_time + 8)) = Off_time*freq_MHz; // convert Of

f_time to number of clocks

 *((uint32_t *)(cfg_180_TR + 0)) = RF180*freq_MHz; // convert RF180 to numbe

r of clocks

 *((uint32_t *)(cfg_180_TR + 8)) = TR*freq_MHz; // convert TR to number of c

locks

 *((uint32_t *)(cfg_Acq + 0)) = Acq*freq_MHz; // send acquisition

 *((uint32_t *)(cfg_Phase_inc_and_reps + 0)) = phase_inc; // send phase incr

ement

 *((uint32_t *)(cfg_Phase_inc_and_reps + 8)) = reps; // send repetitions

 for(int count_reps= 1; count_reps <= reps; count_reps ++){

 printf("\nRep #%d", count_reps);

 sleep(TR/1000000); //delay in seconds

 }

 printf("\nNow blanking out the pulse parameters...");

 *((uint32_t *)(cfg_90_and_Off_time + 0)) = 0; // convert RF90 to number of

clocks

 *((uint32_t *)(cfg_90_and_Off_time + 8)) = 0; // convert Off_time to number

 of clocks

 *((uint32_t *)(cfg_180_TR + 0)) = 0; // convert RF180 to number of clocks

 *((uint32_t *)(cfg_180_TR + 8)) = 0; // convert TR to number of clocks

 *((uint32_t *)(cfg_Phase_inc_and_reps + 0)) = 0; // send phase increment

 *((uint32_t *)(cfg_Phase_inc_and_reps + 8)) = 0; // send repetitions

 sleep(1);

 printf("\nOperation complete.");

 sleep(1);

 printf("\nClosing connection to client\n");

 sleep(1);

 printf("----------------------------\n");

 sleep(1);

 close(csock);

 return 0;

 }

}

64

2. client_program.py

#!/usr/bin/env python

""" client.py - Echo client for sending/receiving C-like structs via socket

References:

- Ctypes fundamental data types:

https://docs.python.org/2/library/ctypes.html#ctypes-fundamental-data-types-2

- Ctypes structures:

https://docs.python.org/2/library/ctypes.html#structures-and-unions

- Sockets: https://docs.python.org/2/howto/sockets.html

"""

import socket

import sys

from datetime import datetime #to name the MR output file

from ctypes import *

""" This class defines a C-like struct """

class Payload(Structure):

 fields = [("RF90", c_uint32), ("Off_time", c_uint32),

 ("RF180", c_uint32), ("TR", c_uint32),

 ("Acq", c_uint32), ("Reps", c_uint32),

 ("Frequency", c_float)]

def main():

 redpitaya = "169.254.217.146"

 #redpitaya = "169.254.156.79"

 server_addr = (redpitaya, 2300)

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 try:

 s.connect(server_addr)

 print ("Connected to %s" % repr(server_addr))

 except:

 print ("ERROR: Connection to %s refused" % repr(server_addr))

 sys.exit(1)

 try:

 #Send data to server

 print ("")

 payload_out = Payload(140,12895,280,5210000,20000,20,30.72)

 print("Sending these params:")

 print("RF90 \t\t = %d us \nOff_time \t = %d us \nRF180 \t\t = %d

us \nTR \t\t\t = %d us"

 "\nAcquisition\t = %d us\nRepetitions\t = %d \nFrequency\t

= %.6f MHz\n"

 % (payload_out.RF90,

 payload_out.Off_time,

 payload_out.RF180,

 payload_out.TR,

 payload_out.Acq,

 payload_out.Reps,

 payload_out.Frequency

))

 nsent = s.send(payload_out)

 # Alternative: s.sendall(...): continues to send data until

65

either

 # all data has been sent or an error occurs. No return value.

 print ("Sent %d bytes" % nsent)

 ct = datetime.now()

 stamp = ct.strftime("%b_%d_%Y_%I_%M_%S_%p")

 filename = "MR_data_" + stamp + ".txt"

 with open(filename, "a") as txt_file:

 txt_file.write('Sent out the following:\n')

 txt_file.write('RF90 = %d us\n' % (payload_out.RF90))

 txt_file.write('Off_time = %d us\n' % (payload_out.Off_time))

 txt_file.write('RF180 = %d us\n' % (payload_out.RF180))

 txt_file.write('TR = %d us\n' % (payload_out.TR))

 txt_file.write('Acquisition = %d us\n' % (payload_out.Acq))

 txt_file.write('Repetitions = %d\n' % (payload_out.Reps))

 txt_file.write('Frequency = %.6f MHz\n' %

(payload_out.Frequency))

 txt_file.write("\n")

 finally:

 print ("Closing socket")

 s.close()

if __name__ == "__main__":

 main()

66

APPENDIX B

RTL SCRIPTS

1. pulse_state_generator.v

`timescale 1ns / 1ps

module pulse_state_generator(

 input aclk,

 // inputs from user

 input [31:0] RF90, [31:0] Off_time, [31:0] RF180, [31:0] TR,

[31:0] Acq,

 input [31:0] repetitions,

 output [2:0] state,

 output resync

);

reg resync_bit = 0;

reg [31:0] pulse_era;

reg [31:0] dead_time = 12500; //100 us before RF90 or RF180 begins -

for TXG

reg [2:0] state_val = 2;

reg [31:0] rep_tracker = 0;

always @ (posedge aclk)

begin

 resync_bit <= 0;

 if (repetitions == 0) begin

 rep_tracker <= 1;

 pulse_era <= 0;

 state_val <= 2;//flatlines for TXG and RF OUT

 end

 else if (rep_tracker > repetitions) begin

 pulse_era <= 0;

 state_val <= 2; //flatlines for TXG and RF OUT

 end

 else if (pulse_era<dead_time)

 state_val <= 0; //TXG is ON

 else if (pulse_era<(dead_time+RF90))

 state_val <= 1; //RF90 and TXG is ON

 else if (pulse_era == (dead_time+RF90 + 1))

 resync_bit <= 1;

 else if (pulse_era<(dead_time+RF90+Off_time))

 state_val <= 2; //TXG and RF OUT are OFF

67

 else if (pulse_era<(dead_time+RF90+Off_time+RF180))

 state_val <= 4; //RF180 is ON, TXG is OFF

 else if (pulse_era == (dead_time+RF90+Off_time+RF180 + 1))

 resync_bit <= 1;

 else if (pulse_era<(dead_time+RF90+Off_time+RF180+Acq))

 state_val <= 3; //RXG is ON

 else if (pulse_era<TR)

 state_val <= 2; //flatlines for everything

 else begin

 pulse_era <= 0; // Reset counter

 resync_bit <= 1;

 rep_tracker <= rep_tracker + 1; //next cycle

 end

 pulse_era = pulse_era + 1; // increment counter

end

assign state = state_val;

assign resync = resync_bit;

endmodule

2. DDS_control.v

`timescale 1ns / 1ps

module DDS_control(

 input aclk,

 input [31:0] phase_inc_server,

 input [2:0] state,

 output [31:0] p_inc, //phase increment

 output [31:0] p_off, //phase offset

 output [1:0] phase_control,

 output reg TXG_bit, RXG_bit

);

reg [31:0] res, offset; //offset is redundant here - not used just yet

reg phase_val_bit = 0;

always @ (posedge aclk)

case (state)

0 : begin //dead time - turn on TXG

 offset <= 0;

 phase_val_bit <= 0;

 res <= 0;

 TXG_bit <= 1;

68

 RXG_bit <= 0;

 end

1 : begin //RF90 and TXG

 offset <= 0; //0 degree phase shift //2<<28; //180 degree

phase shift

 phase_val_bit <= 1;

 res <= phase_inc_server;

 TXG_bit <= 1;

 RXG_bit <= 0;

 end

2 : begin //Off_time and end of acq

 offset <= 0;

 phase_val_bit <= 0;

 res <= 0; //flatline

 TXG_bit <= 0;

 RXG_bit <= 0;

 end

3 : begin //Acquisition

 offset <= 0;

 phase_val_bit <= 0;

 res <= 0; //flatline

 TXG_bit <= 0;

 RXG_bit <= 1;

 end

4 : begin //RF180 with TXG being OFF

 offset <= 0; //0 degree phase shift //2<<28; //180 degree

phase shift

 phase_val_bit <= 1;

 res <= phase_inc_server;

 TXG_bit <= 0;

 RXG_bit <= 0;

 end

endcase

assign p_inc = res;

assign p_off = offset;

assign phase_control = phase_val_bit;

endmodule

3. DAC_activator.v

`timescale 1ns / 1ps

module DAC_activator(

 input aclk,

69

 input wire [31:0] DDS_phase,

 output tvalid_out

);

reg bit = 0;

reg [31:0] temp = 0;

always @ (posedge aclk)

begin

 if ((temp == DDS_phase)||(DDS_phase == 0))

 bit <= 0;

 else begin

 bit <= 1;

 temp <= DDS_phase;

 end

end

assign tvalid_out = bit;

endmodule

70

APPENDIX C

TESTBENCH/SIMULATION CODE

1. design_test_TB.v

`timescale 1ns / 1ps //resolution of XSim simulation

`define time_period 8 //time period of 125 MHz clock, i.e., 8 ns

module design_TB();

//Set all inputs as regs and all outputs as wires

 reg [31:0]Acq_us;

 reg [31:0]Frequency_Hz;

 reg [31:0]Off_time_us;

 reg [31:0]RF180_us;

 reg [31:0]RF90_us;

 wire RXG;

 reg [31:0]Repetitions;

 reg [31:0]TR_us;

 wire TXG;

 reg clk_in1_n = 1;

 reg clk_in1_p = 0;

 wire dac_clk_0;

 wire [13:0]dac_dat;

 wire dac_rst_0;

 wire dac_sel_0;

 wire dac_wrt_0;

 //Below two wires are meant to calculate phase increment from

frequency.

 //Basically, this testbench performs the same arithmetic done by the

server to obtain phase increment.

 reg [63:0] phase_part_1;// = Frequency_Hz * (2<<30);

 reg [31:0] phase_part_2;// = phase_part_1/125000000;

design_test_wrapper DUT

/* connecting previously defined regs and wires to ports in DUT

instance of design_test_wrapper */

 (.Acq_us(Acq_us),

 .Frequency(phase_part_2),

 .Off_time_us(Off_time_us),

 .RF180_us(RF180_us),

 .RF90_us(RF90_us),

 .RXG(RXG),

71

 .Repetitions(Repetitions),

 .TR_us(TR_us),

 .TXG(TXG),

 .clk_in1_n(clk_in1_n),

 .clk_in1_p(clk_in1_p),

 .dac_clk_0(dac_clk_0),

 .dac_dat(dac_dat),

 .dac_rst_0(dac_rst_0),

 .dac_sel_0(dac_sel_0),

 .dac_wrt_0(dac_wrt_0)

);

/* Now sending inputs to design_test_wrapper (a subsection of system.bd

– the system block design) */

initial begin

//Toggle below set of inputs every 4 ns

forever #(`time_period/2) begin

 clk_in1_n = ~clk_in1_n;

 clk_in1_p = ~clk_in1_p;

end

end

initial begin

//Configure below sets of inputs once

//Enter first set of pulse parameters – sequence #1

 Frequency_Hz = 2550000; //2.55 MHz

 phase_part_1 = Frequency_Hz * (1<<30);

 phase_part_2 = phase_part_1/125000000;

 RF90_us <= 5;

 Off_time_us <= 10;

 RF180_us <= 10;

 Acq_us <= 20;

 TR_us <= 180;

 Repetitions <= 3;

#800000 //wait for 800 us

//Blanking out pulse generator – sequence #2

 Frequency_Hz = 0; //0 MHz

 phase_part_1 = Frequency_Hz * (1<<30);

 phase_part_2 = phase_part_1/125000000;

 RF90_us <= 0;

 Off_time_us <= 0;

 RF180_us <= 0;

72

 Acq_us <= 0;

 TR_us <= 0;

 Repetitions <= 0;

#5000 //wait for 5 us

//Enter second set of pulse parameters – sequence #3

 Frequency_Hz = 10000000; //10 MHz

 phase_part_1 = Frequency_Hz * (1<<30);

 phase_part_2 = phase_part_1/125000000;

 RF90_us <= 4;

 Off_time_us <= 4;

 RF180_us <= 8;

 Acq_us <= 15;

 TR_us <= 150;

 Repetitions <= 4;

#800000 //wait for 800 us

//Blanking out pulse generator – sequence #4

 Frequency_Hz = 0;

 phase_part_1 = Frequency_Hz * (1<<30);

 phase_part_2 = phase_part_1/125000000;

 RF90_us <= 0;

 Off_time_us <= 0;

 RF180_us <= 0;

 Acq_us <= 0;

 TR_us <= 0;

 Repetitions <= 0;

#5000 //wait for 5 us

//Enter third set of pulse parameters – sequence #5

 Frequency_Hz = 30720000; //30.72 MHz

 phase_part_1 = Frequency_Hz * (1<<30);

 phase_part_2 = phase_part_1/125000000;

 RF90_us <= 1;

 Off_time_us <= 4;

 RF180_us <= 2;

 Acq_us <= 10;

 TR_us <= 130;

 Repetitions <= 5;

#800000 //wait for 800 us

 $finish; //simulation has completed

end

endmodule

73

APPENDIX D

MATLAB CODES

1. ReadPentek.m

function [datamat] = ReadPentek(filename, samprate, at, nacq)

% Pentek Recon Code

fid = fopen(strcat(filename, '.dat'), 'r');

data = fread(fid, 'int16');

fclose(fid);

sizeacq = samprate*at;

timeline = linspace(0,at,sizeacq)';

idata = data(1:2:end);

qdata = data(2:2:end);

dataformed = idata + 1j*qdata;

ns = length(dataformed)/nacq;

datamat = reshape(dataformed, [ns nacq]);

end

2. display_Pentek_RX.m

%% Crop out the echo data - 2 ms before and 2 ms after center

clc; close all; clear all

file_handle = ReadPentek('5-25-

2021\05242021_Mariam30r73MHz_3_ch2',200e6,70e-3,20);

[rows, cols] = size(file_handle);

X = linspace(0, 70e-3, rows)';

for a = 1:cols

minValue = 13.2e-3;

maxValue = 17.2e-3;

indexesInRange = X >= minValue & X <= maxValue;

Data2 = [X(indexesInRange) file_handle(indexesInRange,a)];

% plot(Data2(:,1),real(Data2(:,2)));

% title("Receive digitized by Pentek for 20 reps - 4 ms echo

data");

% xlabel("Time (in seconds)");

% ylabel("Signal level (in V)");

% xlim([minValue maxValue])

% ylim([-0.5e4 0.5e4])

% hold on

% grid on

fs = 200e6;

spec = fftshift(fft(fftshift(Data2(:,2))));

n = length(Data2(:,2));

freq = (-(n-1)/2:(n-1)/2)*(fs/n);

% figure; plot(freq * 1e-6, abs(spec));

% title("Spectrum of echo data - no DC correction");

% xlabel("Frequency (in MHz)");

74

% grid on

dccorr = mean(Data2(end-5000:end,2));

Data2(:,2) = Data2(:,2) - dccorr;

%% Now take FT of cropped signal data

fs = 200e6;

spec = fftshift(fft(fftshift(Data2(:,2))));

n = length(Data2(:,2));

freq = (-(n-1)/2:(n-1)/2)*(fs/n);

% plot(freq * 1e-6, abs(spec));

% title("Spectrum of echo data - with DC correction - 20 acqs");

% xlabel("Frequency (in MHz)");

% hold on

% grid on

%% Brickwall - crop 50 kHz around center frequency

freq = freq*1e-6;

center_point = 30.72;

 [~, lower_lim]= min(abs(freq-(center_point-0.025)));

 [~, upper_lim]= min(abs(freq-(center_point+0.025)));

cropped_spec = spec(lower_lim:upper_lim);

cropped_freq = freq(lower_lim:upper_lim);

plot(cropped_freq, real(cropped_spec));

 title("Spectrum of echo - cropped out Larmor - 20 acqs (real)");

 xlabel("Frequency (in MHz)");

 ylabel("Magnitude");

 hold on

 grid on

 xlim([min(cropped_freq) max(cropped_freq)])

% plot(cropped_freq, abs(cropped_spec));

% title("Spectrum of echo - cropped out Larmor - 20 acqs

(magnitude)");

% xlabel("Frequency (in MHz)");

% hold on

% grid on

% xlim([min(cropped_freq) max(cropped_freq)])

 plot(cropped_freq, angle(cropped_spec));

 title("Spectrum of echo - cropped out Larmor - 20 acqs (phase)");

 %xlabel("Frequency (in MHz)");

 hold on

 grid on

 xlim([min(cropped_freq) max(cropped_freq)])

sig = max(abs(cropped_spec));

noise = mean(abs(cropped_spec(1:end/4)));

SNR = sig/noise

x = 1:lower_lim-1;

y = upper_lim+1:length(spec);

spec(x) = 0;

spec(y) = 0;

end

75

APPENDIX E

Following is a user manual created for students to build and test projects for the Red Pitaya

development board in MRSL.

Programming the Red Pitaya for

MR Pulse Sequences

Magnetic Resonance Systems Lab

Texas A&M University

By: Mariam Nida Usmani

June 2021

76

Page

1. Introduction .. 78

 1.1 Red Pitaya ... 78

 1.2 Project Overview ... 78

 1.3 Prerequisites .. 78

 1.3.1

Hardware .. 78

 1.3.2 Software .. 79

2. Getting Started ... 79

 2.1 Micro SD Card... 79

 2.2 Red Pitaya Machine ... 80

 2.3 Windows PC – Basic

Setup 80 ..

 2.3.1 Vivado ... 81

 2.3.2 PuTTY .. 81

 2.3.3 WinSCP .. 81

 2.3.4 PyCharm ... 82

3. Your First Vivado Project ... 83

 3.1 A new project .. 83

 3.2 The IP cores ... 84

 3.2.1 Processing System ... 85

 3.2.2 AXI Interconnect... 85

 3.2.3 Clocking Wizard ... 85

 3.2.4 AXI GPIO ... 86

 3.2.5 DDS Compiler .. 86

 3.2.6 AXI4-Stream Red Pitaya DAC .. 87

 3.2.7 Constant .. 87

 3.2.8 Concat ... 87

 3.3 Your own RTL script(s) ... 88

 3.3.1 Parts of an RTL script ... 88

 3.3.2 Deciding on the functionality .. 88

 3.3.3 state_generator .. 89

 3.3.4 DDS_controller ... 90

 3.4 Block design – clean up and unify .. 93

 3.5 Programming GPIOs .. 94

 3.6 Connecting the blocks together .. 96

 3.6.1 Pins and ports .. 96

 3.6.2 The actual connections .. 96

 3.7 The bitstream file ... 100

 3.8 Bitstream testing .. 100

4. User Interface ... 103

 4.1 Server .. 103

77

 4.1.1 AXI GPIO addresses ... 103

 4.1.2 C program ... 104

Page

 4.2 Client ... 107

 4.3 Putting them together ... 108

5. Version control ... 109

6. Troubleshooting ... 110

7. Useful Bash Commands ... 110

78

1 Introduction

This document serves as a starting point for those new to an FPGA programming environment and

MRI. It should allow you to create a project on a Windows machine, deploy the same on a Red

Pitaya board and build a working MR system centered around it.

Basically, this is a guide on how to design and build a digital circuit on FPGA fabric and create an

interface around it for user control.

1.1 Red Pitaya

The Red Pitaya board used at TAMU-MRSL consists of a Zynq 7010 FPGA chip. The

environment used to access this is a custom-built Ubuntu OS, called STEMlab 125-14.

The latest OS version during the time of writing this manual is 1.04.

1.2 Project Overview

In general, every Red Pitaya project has three components:

1. a bitstream file (.BIT)

2. server program (compiled from a .c file)

3. client program (a Python script)

Out of all these, the bitstream file is the most important component. This directly configures the

Zynq 7010 FPGA housed within Red Pitaya.

Server and client programs provide a way to interact with a bitstream-activated FPGA. While

server runs on top of the FPGA, the client runs on an independent PC (the ‘client PC’). This client

connects to the server using Ethernet sockets and provides an interface for the PC used to control

the FPGA system. Depending on the interface, it may be a CLI (command line interface), a GUI

(graphical user interface), or a combination of both.

This guide helps set up a bitstream controlled with a Python CLI. This may be replaced with a

Python GUI using editors such as QT Designer, but GUIs are beyond the scope of this manual.

1.3 Prerequisites

1.3.1 Hardware

To get started with FPGA programming on Pitaya, you will need the following digital components:

1. A Red Pitaya development board (STEMlab 125-14)

2. A Windows 10 PC

3. A blank micro SD card (min. 4 GB)

4. A 5V/3A micro USB cable (preferably with a wall socket plug)

79

NOTE: For hardware testing, you will also need an oscilloscope.

1.3.2 Software

This manual walks through the installation and setup for the following programs:

1. Vivado

2. PuTTY

3. WinSCP

4. PyCharm

A few other software may be required to control the oscilloscope – they are not covered in this

manual.

Finally, the following zipped folders contain all programs required to get started with:

a) MRI experiments (chapter 3):
mr_experiment_SE.zip

b) Your first Vivado project (chapter 4):
base_project.zip

2 Getting Started
2.1 Micro SD Card

The first step is to download the zipped SD image of the STEMLab 125-14 OS from this link and

unzip it:

https://downloads.redpitaya.com/downloads/STEMlab-125-1x/STEMlab_125-xx_OS_1.04-

7_stable.img.zip

Insert the blank SD card into a card reader in the Windows PC. If the above link gives an error, go

to https://redpitaya.readthedocs.io/en/latest/quickStart/SDcard/SDcard.html and click on the

highlighted option.

Next, download Win32 Disk Imager from the link below. Install and run the program.

https://sourceforge.net/projects/win32diskimager/

Under ‘Image File’, select the path to the .img file of STEMlab OS. Make sure the drive letter

under ‘Device’ corresponds to the SD card you inserted. Once all this is confirmed, hit ‘Write’.

The SD image will take a few minutes to be written, after which a ‘Write Successful’ dialog box

appears. Safely remove this microSD card from the PC and move on to the next section.

https://downloads.redpitaya.com/downloads/STEMlab-125-1x/STEMlab_125-xx_OS_1.04-7_stable.img.zip
https://downloads.redpitaya.com/downloads/STEMlab-125-1x/STEMlab_125-xx_OS_1.04-7_stable.img.zip
https://redpitaya.readthedocs.io/en/latest/quickStart/SDcard/SDcard.html
https://sourceforge.net/projects/win32diskimager/

80

2.2 Red Pitaya Machine

Insert the microSD card previously prepared into its slot in the Red Pitaya development board.

Plug the microUSB cable to the ‘PWR’ socket on the board. Be careful to connect to ‘PWR’ socket

only and not ‘CONS’ socket. Failure to do so may result in damage to the board.

Now power on the machine. You will initially see a green LED lit up; this confirms the power

supply. Momentarily, a blue LED should also light up. This confirms access to the SD card.

Finally, let a few more seconds pass, and you should see a red LED blinking, in a ‘heartbeat’

pattern (two flashes at a time). This confirms that the development board is fully loaded, and ready

for use.

Now connect the Red Pitaya board to your Windows PC using an Ethernet cable. Wait for 30

seconds and open a web browser.

Type the address pasted on the back of the board (of the form rp-fxxxx.local/), and press

Enter. If successful, the following web page opens:

NOTE: If the web page is unreachable, try disconnecting the PC from its WiFi network and try

again.

Now go to System>Network manager and note the address under ‘Wired connection status’. This

is the IP address of the board (not to be confused with the webpage; that is simply its URL) and

will be of the form abc.def.ghi.jkl.

2.3 Windows PC - Basic Setup

81

Essentially, Vivado, PuTTY, WinSCP and PyCharm will be installed and configured on the

Windows PC.

2.3.1 Vivado

NOTE: All Verilog codes in this manual have been tested using version 2020.1 of Xilinx Vivado;

hence this installation guide is for that specific version. You might want to install a more recent

version instead – the steps will remain same.

Go to the webpage below, and search for ‘Vivado Design Suite - HLx Editions - 2020.1’

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-

design-tools.html

Click on the link ‘Xilinx Unified Installer 2020.1: Windows Self Extracting Web Installer’. You

will be redirected to a Xilinx Sign-In page. If you do not possess one already, go ahead and create

a Xilinx account. If you already have one, just enter your credentials and sign in.

Fill up the required fields in the Name and Address Verification form and click on ‘Download’.

An executable file should start downloading now.

Launch the downloaded executable and follow the instructions in the installation wizard. Make

sure to select ‘Vivado’ when prompted about the product, and ‘Vivado HL WebPACK’ as the

edition to be installed. Keep everything else as default and continue with the installation.

This step will take anywhere between half an hour to several hours, depending on your Internet

connection. Once fully downloaded and installed, Vivado is ready for use. Follow the setup wizard,

keeping all the default fields and check boxes.

2.3.2 PuTTY

Go to this webpage and download the 64-bit MSI package file:

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Click on the downloaded file to launch the setup wizard. Follow the installation steps that show

up, keeping everything as default.

2.3.3 WinSCP

Scroll down the linked webpage below and press ‘Download WinSCP’. Launch the downloaded

executable and follow the setup wizard.

https://winscp.net/eng/download.php

Now that WinSCP has been installed, it must be configured to ensure a working development

environment. Launch WinSCP; a login window opens. For host name, type in Pitaya’s IP address.

Enter root as both username and password, then press Save. Keep the site name as ‘Red Pitaya’

and press OK. Now press the Login button; a warning window might pop up. Simply press Yes

and continue.

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://winscp.net/eng/download.php

82

Retype the password as root and press OK. Navigate from root to /tmp in Pitaya’s window – this

is where the bitstream and C files will be stored and activated/executed.

2.3.4 PyCharm

First download Python for Windows from https://www.python.org/downloads/. Select ‘Add

Python X.X to PATH’ and press ‘Install Now’.

After that you can download PyCharm Community version from the link below and follow its

installation procedure. We will use PyCharm to launch our user console.

https://www.jetbrains.com/pycharm/download/#section=windows

2.4 Deploying a Prebuilt Project

Open WinSCP and log in to Pitaya. Within WinSCP navigate to the directory where

mr_experiment_SE was extracted. From there, move to

\tmp\pulse_sequence_generator\pulse_sequence_generator.runs\impl_1 – you

should now see a file named system_wrapper.bit. Drag it to the /tmp directory of Pitaya.

Now go to mr_experiment_SE\Server-client pair in both WinSCP and File Explorer.

Drag server_program.c to Pitaya’s /tmp directory and open client_program.py in File

Explorer.

Within WinSCP open a PuTTY terminal, log in with ‘root’ as password and type in the following

commands:

cd /tmp

cat system_wrapper.bit > /dev/xdevcfg

chmod u+x server_program.c

gcc -o exec server_program.c

./exec

You will be greeted with this PuTTY screen:

Now open client_program.py in PyCharm. In the code, note the numbers highlighted below

– these are parameters you can set for this pulse generator. The second print explains what each

parameter is, along with their units (if any).

https://www.python.org/downloads/
https://www.jetbrains.com/pycharm/download/#section=windows

83

Go to Run>Run>client_program. Upon success you will note a timestamped .txt file created in the

same folder as client_program. This is a record of all parameters set in the current pulse

sequence – useful for future reference.

3 Your First Vivado Project

In this section, we start with a ‘skeleton’ Vivado project with all the Pitaya-specific IP cores and

config files included and build on it. Afterwards, we add an interface on top of it and deploy a

complete set of bitstream, server and client programs together.

3.1 A new project

To make things simple, you would have been provided a zipped folder named

base_project.zip with all the required directories. Go ahead and unzip this folder. Once

unzipped, you will note the following directory structure:

Do not alter this directory structure. Any changes made to it at this stage may result in Vivado

projects not compiling due to errors.

Launch Vivado. Once opened, go to the Tcl console, and type the following set of commands:

cd

cd /full/path/to/base_project

84

source red_pitaya_skeleton.tcl

NOTE: If you copy-paste the path address to base_project in console for the second command,

make sure to change all back slashes (‘\’) to forward slashes (‘/’) before hitting enter. Otherwise

Tcl will throw up an error.

The last command takes about 6 minutes to execute on an Intel i7 machine (9th gen) with 16 GB

RAM. After executing, click on ‘Block Diagram’ under the Project Manager menu. A block layout

of the skeleton project will appear, such as the one below.

Also, the directory will now look like this:

Now you can go ahead and add more blocks (formally called IP cores) the block design. This can

be using the provided IP cores by Xilinx and Pavel, as well as the ones created by your own Verilog

and/or XDC files.

3.2 The IP cores

There are several IP cores available for us to use. Here, we will focus on the once already available

in Vivado, and the ones built using the source command (see section 4.1). The latter cores are

custom-made for the Red Pitaya board. Out of all these cores, a few are required to build a

bitstream for an MR project. The essential ones are already present in the ‘system’ diagram of

your_first_project. Below are all the cores that need to be added and/or re-customized to

our needs.

85

3.2.1 Processing System

Under Diagram, double-click on processing_system7_0. This opens the Re-customize IP

window. Go to PS-PL Configuration>HP Slave AXI Interface. Uncheck the square box next to S

AXI HP0 interface. Click OK to save this change and exit the window.

3.2.2 AXI Interconnect

Double-click ps7_0_axi_periph. Under Top Level Settings, select 3 from the drop-down menu

next to Number of Master Interfaces. By doing this, we ensure that 3 AXI GPIOs can be connected

to our block design – its importance will be explained in a bit. Press OK to customize this core and

save changes.

3.2.3 Clocking Wizard

Notice that this IP core is absent from our block design. To add it, right-click on an empty spot in

the Diagram window and click ‘Add IP’. In the search bar, type Clocking Wizard. One option will

show up in search results – double-click on that. Double-click on clk_wiz_0. Under Clocking

Options> Primitive select PLL. Scroll down and set your Input Clock Information just like the

screenshot below.

In the same menu, go to Output Clocks page and set the output clocks identical to this screenshot:

Scroll down and deselect ‘reset’ under Enable Optional Inputs/ Outputs for MMCM/PLL. Now go

to ‘Summary’ page and make sure it is identical to the snap below.

86

3.2.4 AXI GPIO

We need 3 of these cores. One is already present in our diagram, axi_gpio_0. Single-click this

and hit CTRL+C followed by CTRL+V two times. We now have 3 AXI GPIO cores awaiting

connections.

3.2.5 DDS Compiler

This is the heart of our system – it is responsible for generating RF pulses. Just like Clocking

Wizard this IP core needs to be added. Right-click on an empty spot in Diagram again and search

for DDS Compiler. When found, select it to add to the diagram. Double-click to customize. Refer

to this screenshot for setting the Configuration page:

87

Under Implementation, set the following:

Phase Increment Programmability: Streaming (with Resync checked)

Phase Offset Programmability: Streaming

Your summary page should now look like this. Press OK to customize and exit the menu.

3.2.6 AXI4-Stream Red Pitaya DAC

This is a Pitaya-specific core created by Pavel Demin. Use the same steps as used before for

Clocking Wizard to add AXI4-Stream Red Pitaya DAC to the block design. Note that searching

for ‘DAC’ results in two identical IP cores as shown below.

That is because two versions of the DAC IP core exist. Select both, one at a time. Two blocks will

show up – retain the core with wrt_clk pin present. Delete the DAC core without this pin by left

clicking and pressing Delete on the keyboard.

3.2.7 Constant

We need two Constant IP cores in this project. Right-click and add this IP core to the block design.

Left-click on it and copy-paste it again. In the Re-customize window for xlconstant_0, set

Const width as 7 and Const val as 0. Press OK and save changes (Ctrl+S).

3.2.8 Concat

Right-click and add this IP core to the block design. Double-click on it, enter Number of Ports as

4 and press Enter after setting the port widths as below.

88

3.3 Your own RTL script(s)

MRI requires three parameters to be specified – timing, pulse frequency and number of pulses. To

this end, two RTL scripts will be created – a pulse state generator and a DDS controller.

3.3.1 Parts of an RTL script

The diagram below illustrates the basic parts of an RTL script in Verilog – a module name, a port

list and module contents.

Vivado generates the first two in its Source Wizard; this leaves us with only the module contents

to draft out. The next section explains the basic functionality we need for RF pulse generation.

3.3.2 Deciding on the functionality

The first step is to decide on the states. To keep it simple, we consider two states – ‘RF ON’

(corresponds to Pitaya generating a sine RF waveform) and ‘RF OFF’ (corresponds to Pitaya

staying inactive). It is recommended that the functionality be tabulated – one has been provided

below for generating RF pulses indefinitely.

Pulse Era State Values RF TXG RXG

0 ~ off_cycles 0 OFF 0 1

off_cycles ~ off_cycles + on_cycles 1 ON 1 0

RF OFF is assigned a state value 0 and RF ON has a state value 1. Next, we have off_cycles

and on_cycles. These indicate the number of clock cycles for which a state value must be

retained. In other words, they decide the pulse era.

89

TXG (short for transmit gating) and RXG (short for receive gating) are two external 3.3 V GPIO

pins we will be controlling, with 1 corresponding to a logical high and 0 corresponding to a logical

low. NOTE: This is completely unrelated to state values; do not confuse logical high and low with

that.

Finally, the states will cycle for a certain number of times. Let us denote this with ‘rep’. A variable

in our RTL code will keep track of how many times the states have been cycled through. Once it

has cycled through states 0 and 1 ‘rep’ number of times, no more pulses must be generated. In

other words, we keep it in state 0 until a new set of parameters are fed in.

Having a layout in mind, we proceed towards building a pulse sate generator – aptly named

state_generator.

3.3.3 state_generator

Go to Flow Navigator>Project Manager>Add Sources. Select Add or Create Design Sources and

hit Next. Click on Create File, leave the file type as Verilog and name it as state_generator,

keeping the location local to project. Click Finish. Set the I/O Ports as shown below. Press OK

after this.

This file will now show up under Sources>Design Sources. Double-click on it. Notice the contents

of the file – it includes a commented section followed by these lines:

module state_generator(

 input clk,

 input [31:0] on_cycles,

 input [31:0] off_cycles,

 input [31:0] reps,

 output state

);

endmodule

To translate the previous table to Verilog an always block is required. Go ahead and type in this

code in between); and endmodule.

reg [31:0] pulse_era = 0, rep_tracker = 0;

always @ (posedge clk)

begin

90

 if (reps == 0) begin

 rep_tracker <= 0;

 pulse_era <= 0;

 end

 else if ((pulse_era < off_cycles)||(rep_tracker == reps))

 begin

 state <= 0;

 pulse_era <= pulse_era + 1;

 end

 else if (pulse_era < off_cycles + on_cycles)

 begin

 state <= 1;

 pulse_era <= pulse_era + 1;

 end

 else begin

 pulse_era <= 0;

 rep_tracker <= rep_tracker + 1;

 end

end

The pulse_era register is important – it keeps track of the number of clock cycles passed. We

use another register rep_tracker to check if the requested number of reps has been completed

or not. Comparing this with inputs off_cycles and on_cycles helps determine the correct state

of the generator. In other words, we have created a complex Moore finite state machine (FSM).

For this to work without errors, the port declaration for state needs to be modified. Go to the

port list of state_generator and type reg between output and state. This creates a register

that retains the value of state within the always block. Save this file.

3.3.4 DDS_controller

Using the generated states, we need to create digital RF pulses off DDS Compiler. It generates a

sine waveform of specified frequency using two inputs – phase increment and phase offset. Both

were set to ‘streaming’ in its Re-Customize IP window – the intention was to create RF pulses as

per user specifications.

Basically, a DDS (short for Direct Digital Synthesizer) accepts a phase input, looks up the sine

value corresponding to it and outputs the same. Vivado’s DDS Compiler is designed such that it

accepts a phase increment and a phase offset and generates a sine wave matching these parameters.

Phase increment decides how fast the wave amplitude changes with each clock cycle, while phase

offset determines the starting angle value for which the sine wave is generated.

𝑝ℎ𝑎𝑠𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡, 𝑝𝑖𝑛𝑐 =
𝑓𝑜𝑢𝑡×2𝐵𝜃(𝑛)

𝑓𝑖𝑛
 (1)

𝑝ℎ𝑎𝑠𝑒 𝑜𝑓𝑓𝑠𝑒𝑡, 𝑝𝑜𝑓𝑓 =
2𝐵𝜃(𝑛)×𝛼

360
 (2)

91

In this chapter, we will keep phase offset at 0. However, bear in mind that this can be altered in

the bitstream later as per requirement. To control phase increment and offset, another script will

act as an intermediary between state_generator and DDS Compiler – we name it

DDS_controller.

Just like state_generator, go to Flow Navigator>Project Manager>Add Sources. Select Add

or Create Design Sources and hit Next. Click on Create File, leave the file type as Verilog and

name it as DDS_controller, keeping the location local to project. Click Finish.

Set the I/O Ports as shown below. Press OK after this.

Once again, we need an always block and a few registers. Go ahead and copy-paste the below code

snippet between); and endmodule:

always @ (posedge clk)

 case (state)

 0: begin

 phase_increment <= 0;

 phase_offset <= 0;

 TXG_bit <= 0;

 RXG_bit <= 1;

 resync <= 1;

 resync_bar <= 0;

 end

 1: begin

 phase_increment <= pinc_server;

 phase_offset <= poff_none;

 TXG_bit <= 1;

 RXG_bit <= 0;

 resync <= 0;

 resync_bar <= 1;

 end

 endcase

Finally, modify its port list to match this screenshot. Save this file.

92

TIP: If you need to add a new pin to the RTL modules or any functionality for that matter, be sure

to add these changes directly to the design source files and not instances; changes to the latter

might not be recognized by Vivado. To do this simply go to Sources>Design

Sources>your_RTL_script_file_name.v and save your edits there. Make sure to hit ‘Run

Synthesis’ under Flow Navigator>Synthesis to reflect the changes everywhere.

3.4 Block design – clean up and unify

Go to the Diagram window and delete pins daisy_n_0 and daisy_p_0. Right-click on an empty

spot and select ‘Add Module’. Both your modules should show up like the figure below. If not, go

back to the Verilog source files, correct any syntax errors, save them, and try again.

One by one select a module and press OK. Both will show up as blocks in the diagram with ‘RTL’

printed on them. The overall diagram will now look like this:

93

3.5 Programming GPIOs

Now that the logic for TXG and RXG has been written out in Verilog and all blocks connected,

we need to select and activate physical GPIO pins on Pitaya’s extension connectors. It is useful in,

say, generating trigger pulses to drive other devices in the MR system.

Click on ‘Open Block Design’. Your block design shows up in the Diagram window. Note the pins

exp_n_tri_io[7:0] and exp_p_tri_io[7:0] as shown in the figure below. These pins will

be siphoned off for our purposes.

In the TCL console type these commands.
create_bd_port -dir O TXG

create_bd_port -dir O RXG

Two output ports named TXG and RXG will be generated and added to the diagram; we will

connect these shortly.

Go to the link indicated below and decide on your pins of interest.

https://redpitaya.readthedocs.io/en/latest/developerGuide/125-14/extent.html

https://redpitaya.readthedocs.io/en/latest/developerGuide/125-14/extent.html

94

In this tutorial, we pick pin 4 for TXG with these details from the developer guide:
Pin #: 4

Description: DIO0_N

FPGA pin number: G18

FPGA pin description: IO_L16N_T2_35

Voltage levels: 3.3V

Similarly, we pick pin 18 for RXG with these details from the developer guide:
Pin #: 18

Description: DIO7_N

FPGA pin number: M15

FPGA pin description: IO_L23N_T3_35

Voltage levels: 3.3V

Having decided on the pins, navigate to Sources> Constraints> constrs_1> ports.xdc. Comment

out the lines with ‘G18’ and ‘M15’ in it using the # symbol – these are the pins we will siphon off

as TXG and RXG respectively. Go to the bottom of the XDC file and type the following

commands. Save the XDC file.

Custom

set_property IOSTANDARD LVCMOS33 [get_ports TXG]

set_property SLEW FAST [get_ports TXG]

set_property DRIVE 8 [get_ports TXG]

set_property PACKAGE_PIN G18 [get_ports TXG]

set_property IOSTANDARD LVCMOS33 [get_ports RXG]

set_property SLEW FAST [get_ports RXG]

set_property DRIVE 8 [get_ports RXG]

set_property PACKAGE_PIN M15 [get_ports RXG]

3.6 Connecting the blocks together

Go to Flow Navigator> IP Integrator> Open Block Design.

3.6.1 Pins and ports

Note that some blocks in the diagram have ‘+’ symbols in place of where you would expect a pin.

These are called ‘interface pins’, typically prefixed with M_AXIS or S_AXIS. Some of the

connections require actual ‘pins’ and not the ‘interface pin’ and vice versa. Below is what a channel

looks like with a ‘+’ symbol (M_AXIS_DATA and M_AXIS_PHASE), and individual ports with a ‘-

’ symbol next to their channel (S_AXIS_PHASE).

95

To toggle between ‘interface pin’ and ‘pin’, simply mouse over to the ‘-’ or ‘+’ symbol. The cursor

turns into either two upward chevrons or downward chevrons. Left click once to toggle. Below is

the result after a toggle at M_AXIS_DATA:

Toggle M_AXIS_DATA back to ‘interface pin’ for now.

3.6.2 The actual connections

Now that all the blocks, pins and ports are present, we can go ahead and connect them all up. In

Diagram, left click on clk_out1 of clk_wiz_0, release and left click on clk pin of

state_generator_0. This makes one connection. Similarly, make all connections between

pins, interface pins and ports to match the block diagram in the next page. Delete all unconnected

ports from the diagram.

Your diagram may not exactly look like this – this is expected. If all the cores have the exact same

connections as above, their placement does not matter. You can further clean up the diagram by

pressing the ‘Regenerate Layout’ button in the diagram window – the one that is highlighted below.

96

97

Finally, go to Flow Navigator > Synthesis and hit ‘Run Synthesis’. Press OK. A window with

launch run critical messages might show up – simply press OK. Once the synthesis is complete,

click on ‘Open Synthesized Design’. Next, type ‘Package Pins’ in the search bar as indicated

below, and press Enter.

A sub-window named Package Pins will show up at the bottom. Use its search tool to find G18.

In this instance, it is present in I/O bank 35. Now open the drop-down menu of I/O Bank 35 and

look at the ‘Ports’ field of M15. Ensure that G18 is set like this.

Repeat the same for M15. Ensure it is set like this. Save everything (Ctrl+S).

3.7 The bitstream file

Click ‘Generate Bitstream’ under Flow Navigator>Program and Debug. This will take a few

minutes. Once the bitstream has been successfully generated, navigate to the folder with the

Vivado project file (a .xpr file). It is present under xxx.runs/impl_1/

The bitstream is name system_wrapper.bit. This will program the FPGA with the digital design

we have built in Vivado.

3.8 Bitstream Testing

Testbenches are extremely useful for testing out functionality before programming it to an FPGA.

It is important to know the parts that make up a testbench. The following diagram explains it in a

little more detail.

98

Red Pitaya – Run simulations on cores/module script

This guide allows for simulations to be run on the existing block design and/or .v module file,

before the actual bitstream file is generated and activated in Red Pitaya.

It is very useful to check Verilog modules before integrating them into bigger block designs.

NOTE: Hierarchies

As you develop your block design, it will become increasingly complex, with many IP cores and

connections cluttering the screen. There is a way to deal with the clutter - group each set of IP

cores under a ‘hierarchy’, preferably by functionality. We will use a hierarchy to section off a

portion of the block design that requires testing.

Go to IP Integrator > Open Block Design. Select the blocks whose functionality you want to

simulate using the Select Area button in the Diagram window (see highlighted button below)

Use this button to select the following blocks:

Right-click on the selected set of blocks and click on Create Hierarchy from the drop-down menu.

Leave the cell name as hier_0 and press OK. This will cause all the blocks to be housed under a

single block called hier_0; this is our hierarchy.

Drag and drop clk_wiz_0 in hier_0. We now have the complete set of blocks to be testbenched.

Right-click on this newly created hierarchy and select Copy. Go to IP Integrator > Create Block

Design, and give the block design an appropriate name, e.g., first_hier. In the Diagram

workspace right-click anywhere, select Paste, and the hierarchy will be copied.

99

To complete the block design, ports must be added. For this, simply right click on the hierarchy

block again, and select Make external. This will generate all the required input and output ports.

Under ‘Design Sources’, the new block design will show up as a .bd file (see figure 1). Right click

it and select ‘Create HDL wrapper’. Select ‘Let Vivado manage wrapper and auto-update’.

Once complete, the process will generate a .v file corresponding to the block design. Right-click

this and select ‘Set as top’.

Go back to the previous block design, right-click on the hierarchy block and select Ungroup

Hierarchy. This will revert the block design to what it was before the hierarchy.

Now the testbench code will be created. Go the Flow Navigator > Add Sources and select Add or

create simulation sources. Click on Create file, give an appropriate name (e.g. first_TB), and hit

Finish. When prompted for module inputs and outputs, do not specify any.

The new simulation source (a .v file) will show up under Sources > Simulation sources. Expand

this menu, and click on this .v file.

Go to Design Sources, and double click on the first_hier_wrapper.v file (source code). Copy

all lines from module first_hier_wrapper up to output state_0.

Go to the file first_TB.v and in between the module definition and endmodule (in the

highlighted yellow portion below), paste the previously copied lines of code.

After the paste, rearrange the lines such that the ones with input and output keywords are placed

between the two lines having module keywords. Change all input keywords to reg and output

keywords to wire.

Go to the line with module first_hier_wrapper and change it to first_hier_wrapper

DUT. In the port list, have all ports with a . prefix, followed by the same input/output name in

brackets. It should match the diagram below.

100

Since our hierarchy is sequential, it needs to be driven via a clock signal. Red Pitaya has a clock

signal of 125 MHz – this makes the time period 8 ns. Go the top of the file and type in `define

time_period 8 .

We have two differential adc_clk_i pins for the clock signal input – adc_clk_n_i_0 and

adc_clk_p_i_0. These need to be initialized to make Clocking Wizard work. In the same file,

go to their reg definitions, set adc_clk_n_i_0 as 0 and adc_clk_p_i_0 as 1. Next, the clock

signal needs to toggle at 50% duty cycle – or half the time period. Go to the end of the port list and

type in the following:

initial

begin

forever #(`time_period/2) begin

adc_clk_n_i_0 <= ~adc_clk_n_i_0; //toggle every 4 ns

adc_clk_p_i_0 <= ~adc_clk_p_i_0; //toggle every 4 ns

end

end

After this, append the following lines of code to the end of the testbench file, right before

endmodule:

initial begin

//Enter first set of input parameters

 off_cycles_0 <= 20; //RF OFF for 20 clock cycles

 on_cycles_0 <= 40; //RF ON for 40 clock cycles

 pinc_server_0 <= 25769804; //3 MHz

 poff_none_0 <= 0; //0 degrees

 reps_0 <= 3; //run sequence 3 times

101

#5000 //retain above values for 5 us

//Blankout sequence begins – to reset pulse generator

 off_cycles_0 <= 0;

 on_cycles_0 <= 0;

 pinc_server_0 <= 0;

 poff_none_0 <= 0 ;

 reps_0 <= 0;

#5000 //retain above values for 5 us

//Enter second set of input parameters

 off_cycles_0 <= 100; //RF OFF for 100 clock cycles

 on_cycles_0 <= 30; //RF ON for 30 clock cycles

 pinc_server_0 <= 85899346; //10 MHz

 reps_0 <= 4; //run sequence 4 times

 poff_none_0 <= 268435456; //90 degrees

#5000 //retain above values for 5 us

//Blankout sequence begins – to reset pulse generator

 off_cycles_0 <= 0;

 on_cycles_0 <= 0;

 pinc_server_0 <= 0;

 reps_0 <= 0;

 poff_none_0 <= 0;

#5000 //retain above values for 5 us

//Enter third set of input parameters

 off_cycles_0 <= 50; //RF OFF for 50 clock cycles

 on_cycles_0 <= 50; //RF ON for 50 clock cycles

 pinc_server_0 <= 128849019; //15 MHz

 reps_0 <= 5; //run sequence 5 times

 poff_none_0 <= 536870912; //180 degrees

#5000 //retain above values for 5 us

 $finish; //completed the simulation

end

Set the testbench code first_TB.v as top. Go to Flow Navigator>Simulation>Run

Simulation>Run Behavioral Simulation and a waveform plot will show up. Open it and note that

the inputs are flatlines – this is expected, since these were not set in the testbench code! The clock

input (if present) would be running continuously regardless – this was already set in the code.

If you would like to see an analog signal on a multi-bit output (such as that of DDS or DAC),

follow the steps below.

Go to the simulation wave window and right-click on dac_dat_o_0[13:0]. Go to Waveform

Style> Analog Settings. Under Analog Settings, make sure to set the interpolation style as ‘hold’.

102

Select ‘Apply’. Next, right-click on dac_dat_o_0[13:0] again and go to Radix > Signed

Decimal.

To display DDS output on the waveform window, go to Scope > first_TB > DUT > first_hier_i >

hier_0 and right-click on dds_compiler_0. Select ‘Add to Wave Window’. This causes all the

inputs and outputs of DDS Compiler to show up on the simulation wave window. Right-click on

m_axis_data_tdata[31:0] and follow the same steps mentioned in the previous paragraph to

set it to analog with ‘hold’ interpolation style, with radix as ‘Signed Decimal’.

Finally, hit the play button (the one with an inverted omega subscript), as shown in the figure.

Make sure to set the time duration in the text box before pressing the button.

The simulation will now run for the stipulated amount of time, generating a waveform

corresponding to the wrapper code (DUT, or device under test). After the simulation is complete,

it is advised to set system_wrapper.v under Sources>Design Sources back as top. Without this,

a bitstream file corresponding to ‘system’ cannot be generated.

4 User Interface

Now that the design has been testbenched and bitstream generated, we need to build an interface

around it. There are two parts to it – the server (resides on Pitaya) and the client (resides on the

PC).

4.1 Server

The idea behind our server is to make our custom design available for user control. For this to

work, the server must correctly map to AXI GPIO addresses of the bitstream-activated FPGA.

Also, it needs to establish a socket connection with the PC to accept user inputs remotely.

4.1.1 AXI GPIO addresses

These need to be set. Go to Flow Navigator>IP Integrator and in the search box type Address

Editor. Note that axi_gpio_0 is assigned while the other two AXI GPIOs are unassigned. Right

click on Network 0 and press ‘Assign All’. Ensure the ranges for all three are 64K; they should

now look like the menu below. We will incorporate these addresses in the C code.

103

4.1.2 C program

This server code integrates with the AXI GPIO addresses set previously. Simply copy-paste this

into a C file and save it to the PC as first_server_program.c.

#include <sys/socket.h>

#include <arpa/inet.h> //inet_addr

#include <stdio.h>

#include <stdint.h>

#include <unistd.h> //write

#include <sys/mman.h>

#include <fcntl.h>

#include <stdlib.h>

#include <string.h>

#pragma pack(1)

typedef struct payload_t {

 //NOTE: All these inputs are presumed to be in microseconds.

 //we get these from the Python client, and send to bitstream

 GPIO

 uint32_t Off_time;

 uint32_t On_time;

 uint32_t Reps;

 float frequency;

} payload;

#pragma pack()

int main(int argc, char** argv)

{

 //Step 1: Initialize socket stuff

 int PORT = 2300;

 int BUFFSIZE = 512;

 char buff[BUFFSIZE];

 int ssock, csock;

 int nread;

 struct sockaddr_in client;

 int clilen = sizeof(client);

 //Step 2: Initialize bitstream control stuff

 int fd;

 char *name = "/dev/mem";

 void *cfg_Off_On_time, *cfg_pinc_poff, *cfg_state_reps; /*po

inters to address/memory locations used by bitstream's GPIO*/

 uint32_t phase_inc = 1<<30; //phase increment - fed to DDS

104

 uint32_t Off_time, On_time, Reps; float frequency; //we get

this from the Python client

 int freq_MHz = 125; // 125 MHz - multiply with pulse timing

params

 if((fd = open(name, O_RDWR)) < 0)

 {

 perror("open");

 return EXIT_FAILURE;

 }

 /* Mapping to addresses specified by bitstream's AXI GPIO

 (Please refer to your block design's 'Address Editor' in Viv

ado for this) */

 cfg_Off_On_time = mmap(NULL, sysconf(_SC_PAGESIZE),PROT_READ

|PROT_WRITE, MAP_SHARED, fd, 0x42000000);

 cfg_pinc_poff = mmap(NULL, sysconf(_SC_PAGESIZE),PROT_READ|P

ROT_WRITE, MAP_SHARED, fd, 0x41200000);

 cfg_state_reps = mmap(NULL, sysconf(_SC_PAGESIZE),PROT_READ|

PROT_WRITE, MAP_SHARED, fd, 0x41210000);

 struct sockaddr_in server;

 if ((ssock = socket(AF_INET, SOCK_STREAM, 0)) < 0)

 {

 printf("ERROR: Socket creation failed\n");

 exit(1);

 }

 printf("Socket created\n");

 bzero((char *) &server, sizeof(server));

 server.sin_family = AF_INET;

 server.sin_addr.s_addr = INADDR_ANY;

 server.sin_port = htons(PORT);

 if (bind(ssock, (struct sockaddr *)&server , sizeof(server))

 < 0)

 {

 printf("ERROR: Bind failed\n");

 exit(1);

 }

 printf("Bind done\n");

 listen(ssock, 3);

 printf("Server listening on port %d\n", PORT);

 while (1)

 {

105

 csock = accept(ssock, (struct sockaddr *)&client, &clile

n);

 if (csock < 0)

 {

 printf("Error: accept() failed\n");

 continue;

 }

 printf("Accepted connection from %s\n", inet_ntoa(client

.sin_addr));

 bzero(buff, BUFFSIZE);

 while ((nread=read(csock, buff, BUFFSIZE)) > 0)

 {

 printf("Received %d bytes\n", nread);

 payload *p = (payload*) buff;

 //Print received inputs from Python client

 printf("\nReceived contents:\n");

 printf("Off_time \t = %d us\n", p->Off_time);

 printf("On_time \t = %d us\n", p->On_time);

 printf("Repetitions\t = %d\n", p->Reps);

 printf("Frequency\t = %0.6f MHz\n", p->frequency);

 Off_time = p->Off_time;

 On_time = p->On_time;

 Reps = p->Reps;

 frequency = p->frequency;

 }

 float val = 125/frequency;

 phase_inc /= val; //converting phase increment to final DDS

value

 printf("\nConverted phase increment = %d", phase_inc);

 *((uint32_t *)(cfg_Off_On_time + 0)) = Off_time*freq_MHz;

// convert Off_time to number of clocks

 *((uint32_t *)(cfg_Off_On_time + 8)) = On_time*freq_MHz;

// convert On_time to number of clocks

 *((uint32_t *)(cfg_pinc_poff + 0)) = phase_inc;

// send phase increment

 *((uint32_t *)(cfg_pinc_poff + 8)) = 0;

// send phase offset

 *((uint32_t *)(cfg_state_reps + 8)) = Reps;

// send repetitions

 int total_time = (Off_time + On_time) *Reps;

106

 total_time /= 1000000; //convert from microseconds to second

s

 printf("\nTime to complete pulse sequence = %d seconds", tot

al_time);

 sleep(total_time);

 printf("\nNow blanking out the pulse parameters...");

 *((uint32_t *)(cfg_Off_On_time + 0)) = 0;

 *((uint32_t *)(cfg_Off_On_time + 8)) = 0;

 *((uint32_t *)(cfg_pinc_poff + 0)) = 0;

 *((uint32_t *)(cfg_pinc_poff + 8)) = 0;

 *((uint32_t *)(cfg_state_reps + 8)) = 0;

 sleep(1); //blank out for 1

second

 printf("\nOperation complete.");

 sleep(1);

 printf("\nClosing connection to client\n");

 sleep(1);

 printf("----------------------------\n");

 sleep(1);

 close(csock);

 return 0;

 }

}

4.2 Client

Now that the server program exists, the client needs to be built. This will allow the PC user to enter

inputs and hand them over to server via the socket connection. Copy-paste the code below into a

.py file and save it to PC as first_client_program.py. Make sure to replace

abc.def.ghi.jkl with IP address of Red Pitaya. This is listed under System > Network

manager.

#!/usr/bin/env python

import socket

import sys

from datetime import datetime #to name the MR parameter .txt

file

from ctypes import *

""" This class defines a C-like struct """

class Payload(Structure):

 fields = [("Off_time", c_uint32), ("On_time", c_uint32),

 ("Reps", c_uint32), ("Frequency", c_float)]

107

def main():

 redpitaya = "abc.def.ghi.jkl" #Replace with Pitaya’s IP

address

 server_addr = (redpitaya, 2300)

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 try:

 s.connect(server_addr)

 print ("Connected to %s" % repr(server_addr))

 except:

 print ("ERROR: Connection to %s refused" %

repr(server_addr))

 sys.exit(1)

 try:

 #Send data to server

 print ("")

 payload_out = payload_out =

Payload(2000,5000,35,30.72)

 print("Sending these params:")

 print("Off_time \t = %d us \nOn_time \t = %d us"

 "\nRepetitions\t = %d \nFrequency\t = %.6f

MHz\n"

 % (payload_out.Off_time,

 payload_out.On_time,

 payload_out.Reps,

 payload_out.Frequency

))

 nsent = s.send(payload_out)

 print ("Sent %d bytes" % nsent)

 ct = datetime.now()

 stamp = ct.strftime("%b_%d_%Y_%I_%M_%S_%p")

 filename = "MR_data_" + stamp + ".txt"

 with open(filename, "a") as txt_file:

 txt_file.write('Sent out the following:\n')

 txt_file.write('Off_time = %d us\n' %

(payload_out.Off_time))

 txt_file.write('On_time = %d us\n' %

(payload_out.On_time))

 txt_file.write('Repetitions = %d\n' %

(payload_out.Reps))

 txt_file.write('Frequency = %.6f MHz\n' %

(payload_out.Frequency))

 txt_file.write("\n")

 finally:

 print ("Closing socket")

108

 s.close()

if __name__ == "__main__":

 main()

4.3 Putting them together

Open WinSCP and log in to Red Pitaya. Go to the directory containing

first_server_program.c and drag-drop it into Pitaya’s /tmp directory. Next, go to the

directory containing system_wrapper.bit from the project folder
your_base_directory\base_project\tmp\your_first_project\your_first_pro

ject.runs\impl_1\. Drag-drop system_wrapper.bit from here into Pitaya’s /tmp

directory.

Within WinSCP open a PuTTY terminal, log in with ‘root’ as password and type in the following

commands:

cd /tmp

cat system_wrapper.bit > /dev/xdevcfg

chmod u+x first_server_program.c

gcc -o exec first_server_program.c

./exec

The second command activates the bitstream. The commands that follow are meant to create a

binary executable from the C code and run it. If successful, Terminal will look like this:

Connect OUT1 to an oscilloscope for the RF pulses. The TXG and RXG signals may be read off

the indicated GPIO lines – simply hook them up to an oscilloscope to verify.

109

Now open first_client_program.py in PyCharm. Note the highlighted numbers – these are the

parameters you can set for the pulse generator you just built. The second print explains what each

parameter is, along with their units (if any).

Go to Run>Run>first_client_program. Upon success you will note RF pulse generated from OUT1

of Pitaya (to verify this, hook up OUT1 to an oscilloscope) along with a timestamped .txt file

created in the same directory as the Python code. This is a record of all parameters set in the current

pulse sequence – very useful for future reference.

5 Version Control

This outlines the process of creating copies of your Vivado project for version control. If a Vivado

project runs into errors, it is good to have backup copies like these.

1. Go to File>Project>Write Tcl.

2. Select the output directory of your choice, and name it as build.tcl in the output file

filed, along with the rest of the directory path. Make sure ‘Copy sources to new project’

and ‘Recreate block designs using Tcl’ is checked.

3. Go to the directory where the .tcl file has been generated. Once there, copy the cores,

scripts and cfg folders into the same folder as build.tcl. If your design has RTL

scripts or custom Pitaya cores, copy tmp into the folder as well.

4. Open a new Vivado window. In the Tcl console, type the following:

cd

cd \path\to\build.tcl

source build.tcl

5. Success! Your project is fully built from the Tcl file.

110

6 Troubleshooting

• An internal exception has been detected, Vivado may be in unstable state, would you like

to exit now?

This shows up randomly when using Vivado. The software seems to trip up after using it for a

while. When this happens, be sure to hit Ctrl+S to save all your work, exit Vivado and re-launch

Vivado. We don’t have a better fix for Vivado’s internal exception at this time.

• Unable to login to a PuTTY or WinSCP session of Pitaya, despite being able to log in

before

This is common. For some reason, the IP address of the device reconfigures occasionally. This can

cause the device to have two, even three possible IP addresses.

If this happens open its webpage (rp-xxxxxx) in a web browser. Go to System > Network manager

and note the IP address from there. Use this address to launch PuTTY and/or WinSCP sessions for

Pitaya.

• Bus error in PuTTY window

There are two possibilities as to why this happens:

1. The C and/or Python codes from chapter 3 are used with the bitstream from chapter 4

2. The C and/or Python codes from chapter 4 are used with the bitstream from chapter 3

The C and Python programs used in chapter 3 are included in the unzipped folder

mr_experiment_SE. Make sure to use this with the bitstream from mr_experiment_SE only.

The C and Python programs in chapter 4 are not included in the unzipped folder base_project. You

need to manually copy-paste these into new C and Python files before use.

7 Useful Bash Commands

•cd: Change directory command - for moving to a specific directory

Syntax: cd 〈path/to/source〉 〈path/to/destination〉

•cp: Copy command - for copying files or folders

Syntax: cp 〈path/to/source〉 〈path/to/destination〉

•rm: Remove command - for deleting files or folders

Syntax: rm 〈path/to/source〉 〈path/to/destination〉

•chmod: Change mode command - for changing the access permissions to files or folders

Syntax: chmod 〈path/to/source〉 〈path/to/destination〉

•cat: Concatenate command - for sequentially writing files to a standard output

Syntax: cat 〈path/to/source〉 〈path/to/destination〉

111

APPENDIX F

CORRELATING PULSE GENERATION WITH MRI

1. Executing MR Pulse Generator – from mr_experiment_SE

The timed events are set by the following spin echo (SE) pulse parameters, along with their units:

RF90 (in µs) – time used to tip magnetic spins by 90°

Off_time (in µs) – time between RF90 end and RF180 beginning when RF output is a

flatline

RF180 (in µs) – time used to tip magnetic spins by 180°

TR (in µs) – time after which all pulse events repeat

Acquisition (in µs) – time slot after RF180 end when MR echo is expected to form

Repetitions – number of times the SE pulse sequence repeats

Frequency (in MHz) – Larmor frequency of RF pulses

These events are used to set RF pulses for NMR applications. Each RF pulse generated here is

directly tied to the NMR phenomenon, which is governed by the equations for Larmor frequency

fLarmor and tip angle α given below.

𝑓𝐿𝑎𝑟𝑚𝑜𝑟 = 𝛾𝐵0 (1)

𝛼 = 𝛾𝐵1
′ 𝑡 (2)

where γ = gyromagnetic ratio of sample in Hz T-1 H

γ = gyromagnetic ratio of sample in rad s-1 T-1

B1'= 0.5 × B field of the solenoid/RF coil

B0 = B field of the magnet

Below is a timing diagram demonstrating one repetition of the SE pulse sequence used in

mr_experiment_SE, as a function of microseconds.

Timing Diagram for Pulse States - Spin Echo (SE)

112

The value dead_time is hard coded within the digital circuit to be 100 µs. It indicates the time

period before RF90 begins when TXG pulse is activated. It is useful for gating purposes.

Also note the presence of TE – the echo time. In SE, this is the distance between the center of

RF90 and center of the MR echo. This parameter is not an input to the console – it merely indicates

the location where the center of MR echo will show up. It is used to make sure the Acquisition

time input is large enough to allow digitizing the echo; if it includes the echo center, the digitizer

is capturing the right RF data from the receive side.

To implement the above timing diagram, the provided digital circuit used a counter called ‘pulse

era’ to keep track of time passed. According to the range pulse era lies in, a state value is assigned

which corresponds to RF, TXG and RXG outputs being activated or deactivated according to the

table below.

Pulse Era State Value RF TXG RXG

0 ~ dead_time 0 OFF 1 0

dead_time ~ dead_time + RF90 1 ON 1 0

dead_time + RF90 ~ dead_time + RF90 + Off_time 2 OFF 0 0

dead_time + RF90 + Off_time ~ dead_time + RF90 +
Off_time + RF180

4 ON 0 0

dead_time + RF90 + Off_time + RF180 ~ dead_time +
RF90 + Off_time + RF180 + Acq

3 OFF 0 1

dead_time + RF90 + Off_time + RF180 + Acq ~ TR 2 OFF 0 0

MR Pulse State Generation in Verilog

The pulse parameters are set in the client program (client_program.py) in the portion highlighted

below.

After running the server code server_program.c followed by client code client_program.py as

outlined in the manual in Appendix E, RF and GPIO (i.e., TXG and RXG) outputs can be used to

drive MR experiments.

113

2. Executing RF Pulse Generator – from base_project

The timed events are set by the following RF pulse parameters:

on_time – number of microseconds for which RF pulse and TXG signal is generated

off_time – number of microseconds for which only RXG signal is generated

Frequency – frequency of RF pulse

Repetitions – number of times the RF sequence repeats

These are NOT tied to the MR phenomenon – they are meant to demonstrate a simple RF pulse

generator. Below is a timing diagram demonstrating one repetition of the RF pulse sequence used

in base_project, as a function of microseconds.

Timing Diagram for Pulse States – RF pulses

To implement the above timing diagram, the digital circuit created in base_project (after following

instructions from the provided user manual in Appendix E) utilizes a counter called ‘pulse era’ to

keep track of number of clock cycles passed. According to the range pulse era lies in, a state value

is assigned which corresponds to RF, TXG and RXG outputs being activated or deactivated

according to the table below.

Pulse Era State Value RF TXG RXG

0 ~ off_time 0 OFF 0 1

off_time ~ off_time + on_time 1 ON 1 0

RF Pulse State Generation in Verilog

While these are the parameters visible on the user side, the first three need to be converted into

values usable by the digital circuit. This conversion is done by the server program

first_server_program.c in the manual. Basically, it translates the parameters on_time, off_time and

frequency into on_cycles, off_cycles, and phase_inc and phase_off. These values are described

below.

on_cycles – number of clock cycles for which RF pulse and TXG signal is generated

off_cycles – number of clock cycles for which only RXG signal is generated

phase_inc – determines frequency of RF pulse

phase_off – determines initial phase of RF pulse

114

In simple terms, phase increment and phase offset are used to control the frequency and

initial/starting phase of the RF pulse(s) to be generated. Our digital circuit uses a DDS (Direct

Digital Synthesizer) to generate sine pulses, hence it is crucial that its phase increment and phase

offset inputs are computed correctly before sending in as inputs.

Phase increment decides how fast the wave amplitude changes with each clock cycle, while phase

offset determines the starting angle value for which the sine wave is generated. They are governed

by the formulas given below.

𝑝ℎ𝑎𝑠𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡, 𝑝𝑖𝑛𝑐 =
𝑓𝑜𝑢𝑡×2𝐵𝜃(𝑛)

𝑓𝑖𝑛
 (1)

𝑝ℎ𝑎𝑠𝑒 𝑜𝑓𝑓𝑠𝑒𝑡, 𝑝𝑜𝑓𝑓 =
2𝐵𝜃(𝑛)×𝛼

360
 (2)

Note that first_server_program.c in base_project sets phase_offset (i.e., p_off) as 0. While the

digital circuit accepts this as a processed value input, this value has not been incorporated as a

Python parameter nor any conversion has been done by first_server_project.c. An upgrade to

base_project may be to add an input called ‘Angle Offset’ in first_client_program.py, convert to

the required value of phase_offset in first_server_project.c, and send this converted value to the

digital circuit via AXI GPIO instead of 0.

These conversions by first_server_program.c ensure that the correct values are passed on to the

digital circuit for RF and GPIO output generation.

Overall, pulse parameters are set in the client program (client_program.py) in the portion

highlighted below.

After running the server code first_server_program.c followed by client code

first_client_program.py as outlined in the manual in Appendix E, RF and GPIO (i.e., TXG and

RXG) outputs can be viewed on an oscilloscope.

3. Simulating RF Pulse Generator – from base_project

As mentioned in chapter 4 of the manual, a portion of the digital circuit (the hierarchy hier_0) is

taken and simulated against a set of input values using the testbench program provided –

first_TB.v. It sends out 5 sets of input values to the sectioned-out digital circuit, i.e., hier_0. This

is done by sending one input set, waiting for a duration of 5 microseconds, and then sending out

the next input set. All values used are listed in the table below. Note that values are sent in directly

115

to the digital circuit without any conversions. The RF pulse parameters corresponding to these

values are listed in brackets.

Sequence #1 #2 #3 #4 #5

Duration (in µs) 5 5 5 5 5

off_cycles
20

(0.160 µs)

0

(0.000 µs)

100

(0.800 µs)

0

(0.000 µs)

50

(0.400 µs)

on_cycles
40

(0.320 µs)

0

(0.000 µs)

30

(0.240 µs)

0

(0.000 µs)

50

(0.400 µs)

phase_inc
25769804

(3 MHz)

0

(0 MHz)

85899346

(10 MHz)

0

(0 MHz)

128849019

(15 MHz)

phase_off
0

(0°)

0

(0°)

268435456

(90°)

0

(0°)

536870912

(180°)

Repetitions 3 0 4 0 5

Values used in XSim simulation

Observe sequences #2 and #4 – these effectively send out zeros to the digital circuit and wait for

5 microseconds. The result of this is shown below – rep_tracker is reset after accepting a new set

of inputs, causing the corresponding sequence to run for the requested number of repetitions.

Hence, it is important to perform a ‘blank out’ operation on the inputs every time a new sequence

of RF and GPIO pulses must be generated.

Upon a successful run, XSim generates the simulation results as shown on the next page.

116

Simulation results for testbench code in base_project

117

Zooming in to sequences 1, 3 and 5 shows that the DAC output (dac_dat_o_0), DDS outputs

(m_axis_data_tdata for amplitude, m_axis_phase_tdata for phase) and TXG and RXG are indeed

being generated correctly in accordance to the set input values of off cycles (off_cycles_0), on

cycles (on_cycles_0), repetitions (reps_0), phase increment (pinc_server_0) and phase offset

(poff_none_0).

Zoomed in – Simulation results for sequence #1

Zoomed in – Simulation results for sequence #3

118

Zoomed in – Simulation results for sequence #5

NOTE: Blankout is initiated after the sleep() function in server_program.c (used in

mr_experiment_SE) and first_server_program.c (used in base_project).

The input to sleep() is the total time (in seconds) required to complete all RF/MR pulse sequences.

It is computed as follows:

For mr_experiment_SE, it is equal to TR*Repetitions/1,000,000.

For base_project, it is equal to (on_time + off_time)*Repetitions/1,000,000.

A limitation in both C programs is that sleep() works correctly if the total time is at least one

second long. If it is less than a second, the sleep() function may not execute and force the digital

circuit to blank out its RF and GPIO outputs even before all repetitions have been completed.

Hence, due to the nature of blank out operations performed by server_program.c and

first_server_program.c, it is important to enter pulse parameters such that they are at least 1 second

long.

