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ABSTRACT 

 

Modeling unconventional reservoirs has been an active area of research in 

response to significant reserves in the U.S. Various analytical and numerical models 

incorporating relevant physics at varying fidelity levels have been proposed. A common 

approach to capture complex physics inherent in unconventional reservoirs is to run 

numerical reservoir simulations. However, fine spatio-temporal discretization is required 

to capture underlying nonlinear dynamics, resulting in long runtimes which are typically 

too computationally expensive to perform tasks like history matching and optimization. 

To address this challenge, the fast-marching method (FMM) based rapid simulation 

workflow has been proposed. The approach transforms original 2-D or 3-D problem into 

an equivalent 1-D problem along the diffusive time-of-flight (DTOF) coordinate 

representing travel time of pressure front propagation. The coordinate transformation 

enables significant savings in the computation time. To date, the powerful FMM-based 

simulation workflow has found many applications in modeling unconventional reservoirs, 

including rapid history matching and optimization. However, the approach poses certain 

limitations in capturing the effects of gravity because the physical direction of gravity is 

not necessarily aligned with the 1-D DTOF coordinate. Also, the current FMM 

calculations are difficult to generalize for irregular grid systems, such as unstructured 

grids, despite their increasing use in modern reservoir simulators. 

Three major research contributions are made in this dissertation. First, we present 

an extension of the FMM-based simulation workflow that can account for gravity. The 
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effects of gravity and multiphase flow are captured by retaining original discretization 

(gridblocks) for hydraulic fractures during the coordinate transformation. Second, a new 

FMM framework based on a finite-volume discretization of the Eikonal equation is 

developed as a generalization of the FMM calculations for irregular grid systems. The 

power and efficacy of the approach are demonstrated through its application to a variety 

of examples with different types of irregular grids. Third, an efficient deep learning-based 

approach that can visualize subsurface images, such as pressure propagation, in near real-

time is developed. The FMM-based simulation workflow developed in the previous 

chapters is used in place of full-physics simulation to efficiently generate training datasets. 

The workflow is further enhanced by incorporating an autoencoder to perform a 

dimensionality reduction. The resultant subsurface visualizations can be readily used for 

qualitative and quantitative characterization and forecasting of unconventional reservoirs.  

The novelty of the approach is the framework which combines the strengths of deep 

learning-based models and the FMM-based rapid simulation. 
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CHAPTER I  

INTRODUCTION* 

1.  

1.1 Literature Review 

There has been extensive research on the development and application of modeling 

approaches for tight unconventional reservoirs in response to their significant reserves in 

North America (EIA 2021). To date, many different approaches incorporating varying 

levels of data and physics have been proposed. 

1.1.1 Analytical Models 

For time series data, such as production data, decline curve analysis (DCA) (Arps 

1945, Fetkovich 1980, Carter 1985, Fetkovich et al. 1987, Blasingame et al. 1991, Palacio 
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and Blasingame 1993, Agarwal et al. 1999, Ilk et al. 2008, Duong 2010, Valkó and Lee 

2010) and pressure/rate transient analysis (PTA/RTA) (Wattenbarger et al. 1998, Ilk et al. 

2010, Song and Ehlig-Economides 2011, Nobakht and Clarkson 2012b, 2012a, Uzun et 

al. 2016, He, Cheng, et al. 2018) have been widely used for forecasting and reservoir 

characterization. While these methods provide significant benefits in terms of simplicity 

and computational efficiency, capturing complex physics inherent in unconventional 

reservoirs, such as heterogeneities of hydraulic fracture and reservoir properties, still 

remains a challenge. 

1.1.2 Full-physics Numerical Models 

Numerical simulations are capable of capturing complex nonlinear dynamics in 

unconventional reservoirs. Multiple continuum models (Warren and Root 1963, Kazemi, 

Merrill, et al. 1976), unstructured discrete fracture models (Cipolla et al. 2011, Cipolla et 

al. 2012, Sun and Schechter 2015, Marongiu-Porcu et al. 2016), multi-segment wells (Du 

et al. 2016), embedded discrete fracture models (EDFMs) (Li and Lee 2008, Moinfar et 

al. 2014, Ţene et al. 2017), and their hybrid models (Jiang and Younis 2016, Yang et al. 

2018) are some of the notable numerical models. In most unconventional reservoir 

developments in the U.S., operators often first drill the minimum number of wells (parent 

wells) to hold the acreages, followed by drilling infill (child) wells to enhance the recovery 

(Lindsay et al. 2018). As many operators initiated their developments between 2003 and 

2010, many parent wells have been depleted, leading to increasing number of infill wells 

in recent years. In fact, majority of the unconventional reservoirs have reached the point 

where the number of infill wells has surpassed that of newly drilled parent wells (Miller 



 

3 

 

et al. 2016). Refracturing is another technique that can potentially improve the recovery 

from both parent and infill wells (Lindsay et al. 2016, Xu et al. 2017). Rather than the 

simple analytical models focusing on time series data, the capability of the numerical 

models that allows us to ‘see’ within the subsurface by visualizing the simulation results 

on discretized gridblocks, such as pressure and stress fields, is particularly useful to better 

design field development plans including well and completion spacing as well as treatment 

designs. However, performing computationally intensive tasks such as history matching, 

uncertainty quantification, and optimization for unconventional reservoirs involving 

complex multiphase flow and geomechanics in high contrast systems with hydraulic and 

natural fractures can be too expensive. 

1.1.3 Reduced Order Models 

To address the time consuming full physics simulations, the use of fast proxy or 

surrogate models has been extensively investigated. Reduced order models (ROMs) using 

a proper orthogonal decomposition (POD) (Van Doren et al. 2006, Cardoso et al. 2009, 

He and Durlofsky 2014, Ghasemi et al. 2015) or a dynamic mode decomposition (DMD) 

(Ghommem et al. 2013, Ghommem et al. 2016, Kutz et al. 2016, Bao and Gildin 2017) 

are some of the popular approaches on the basis of model decomposition. Although 

efficient, the training (offline) procedure requiring multiple full simulation runs can be 

computationally expensive. As a result, while applications of such ROMs to cases like 2D 

or simple 3D cases in both conventional and unconventional reservoirs are available (He 

et al. 2013, Klie and Florez 2020), field scale applications have not yet been fully explored. 
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1.1.4 The Fast-Marching Method-Based Rapid Simulation 

In an effort to overcome the challenges posed by existing modeling approaches for 

unconventional reservoirs, applications of an asymptotic approach to the diffusivity 

equation have been proposed (Xie et al. 2015). The use of a high-frequency asymptotic 

solution to the diffusivity equation leads to the Eikonal equation which governs the 

propagation of a pressure front propagation and generalizes the depth of investigation (Lee 

1982) for heterogeneous reservoirs. Vasco et al. (2000) and Kulkarni et al. (2001) 

presented trajectory-based solutions to the Eikonal equation. Specifically, the trajectories 

are approximated by ray path (Vasco et al. 2000) or by convective streamlines (Kulkarni 

et al. 2001), then the phase or diffusive time-of-flight (DTOF) are obtained by calculating 

the line integral along the trajectories. An alternative approach to computing the DTOF is 

the fast marching method (FMM), a class of front-tracking algorithm, which does not 

require explicit construction of the trajectories and can solve the Eikonal equation 

efficiently without iterations (Sethian 1999). 

The DTOF represents the propagation time of the peak pressure disturbance caused 

by an impulse source. The propagation distance is known as the depth of investigation and 

the associated volume defined as drainage volume, which is the region of the reservoir 

contributing to the production of the well at any given time. The DTOF and drainage 

volume are quite useful quantities and have found many applications in modeling 

unconventional reservoirs. For example, we can visualize the drainage volume evolution 

by thresholding the propagation time at selected time intervals. This offers visual appeal 

and physically intuitive representation of the complex interaction between hydraulic and 
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natural fractures and can be utilized in order to optimize development plans, such as the 

number of hydraulic fracturing stages and their spacing (Vasco and Datta-Gupta 2016). 

Besides the visualizations, the DTOF can be used as a spatial coordinate in flow 

simulation. Specifically, we can transform original 2-D or 3-D problems into equivalent 

1-D problems along the DTOF (Zhang et al. 2016). This leads to substantial savings in 

computational time in the numerical simulation while maintaining accuracy. The original 

work (Zhang et al. 2016) focused on modeling shale-gas reservoirs. Later, the approach 

has been extended to account for more complex problems, such as multiphase and 

multicomponent flow (Fujita et al. 2016, Iino, Onishi, et al. 2020) and non-isothermal flow 

(Cui et al. 2016), as well as complex grid systems including multiple continuum models 

(Fujita et al. 2016), unstructured discrete fracture models (Yang et al. 2017), and EDFMs 

(Xue, Yang, et al. 2019a). Yang et al. (2015) and Xue, Yang, Park, et al. (2019) proposed 

another class of approach using the concept of DTOF for production data analysis. In their 

approach, instead of solving the Eikonal equation using the FMM, the DTOF and w() 

function, which is defined as derivative of drainage pore volume with respect to the DTOF, 

are obtained from the production data. The data-driven diagnostic plots using the DTOF 

and w() function offer a simple and intuitive understanding of the transient-drainage 

volume and fracture conductivity. In this study, we focus on solving the Eikonal equation 

using the FMM. 

The success of the DTOF-based approaches is contingent on the FMM. While well 

established for reservoir models with structured grid systems, the FMM is less 

straightforward in more general grid systems. For example, special treatments, such as 
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sub-gridding are required to handle unstructured grids (Yang et al. 2017), local grid 

refinements, and EDFMs (Xue, Yang, et al. 2019a). Such algorithms are typically less 

efficient and difficult to generalize. In addition to the discrete fracture models, dual-

porosity dual-permeability (DPDK) models where both matrix and fracture contribute to 

the flow are also widely used for modeling unconventional reservoirs (Hui et al. 2019, 

Thomas et al. 2019, Yang et al. 2018, Kumar et al. 2019). Although the FMM applications 

are successful in the dual-porosity single-permeability (DPSK) (Zhang et al. 2016) and 

triple-porosity single-permeability (TPSK) systems (Fujita et al. 2016), explicit tracking 

of the pressure front in the two interacting continua in DPDK systems is challenging. 

Furthermore, because the physical direction of gravity is not necessarily aligned with the 

1D DTOF coordinate, it is challenging to incorporate gravity effects in the current FMM-

based simulation workflow. 

1.2.5 Deep Learning-Based Models 

The success of deep learning in a variety of fields including computer vision, 

natural language processing, and many others (Goodfellow et al. 2016) has led to the use 

of such techniques in subsurface modeling. We note here that the following literature 

review is focused on the models for predicting state maps that are relevant to our focus in 

the dissertation, rather than simpler models, for example, ones with a univariate output 

dimension. One of the earliest works reported by Zhu and Zabaras (2018) showed an 

application of an image-to-image regression using a convolutional encoder-decoder 

network, whereby gridblocks in the discretized flow domain are treated like pixels in an 

image, to construct a surrogate model that predicts state maps given permeability maps. 
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The model is applied to a simple problem involving single phase steady-state flow with 

Gaussian permeability distribution. Extensions of the approach to multiphase flow (Mo et 

al. 2019) and non-Gaussian conductivity fields (Mo et al. 2020) were presented. In the 

context of reservoir simulation, Tang et al. (2020) applied a residual U-Net (Ronneberger 

et al. 2015) and a convolutional long short term memory recurrent neural network 

(Hochreiter and Schmidhuber 1997) to develop a surrogate model that predicts state maps 

and flow responses at wells, given permeability maps in 2D channelized reservoir models. 

An application of the surrogate model within a probabilistic history matching workflow 

has been demonstrated. Subsequently, Zhong et al. (2021) presented a slightly different 

deep learning-based surrogate model using the coupled generative adversarial network 

(Co-GAN) that predicts pressure and saturation simultaneously. Several recent works have 

focused on the application of such techniques for modeling geologic CO2 sequestration 

(Tang, Fu, et al. 2021, Tang, Ju, et al. 2021, Wen et al. 2021, Yan, Harp, Chen, et al. 2021). 

Recently, there has been intensive research efforts on investigating the use of deep 

learning-based methods to solve forward and inverse problems in science and engineering 

applications. Notable works that brought a new paradigm of data-driven modeling have 

been presented by Raissi et al. (2019) and Zhu et al. (2019). The method is often referred 

to as physics-informed neural network (PINN) or physics-informed machine learning 

(PIML). While standard deep learning models are typically trained solely using data, the 

loss function in the PIML framework consists of data misfit term(s) as well as 

regularization term(s) based on some physical laws, which are typically residuals of 

governing partial differential equations, to ensure that the trained model is consistent with 
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the given underlying physical laws. Partial derivatives in the physics term can be readily 

computed by leveraging the automatic differentiation (Baydin et al. 2018). In the field of 

reservoir modeling, applications of the PIML framework to the Buckley Leverett problem 

(Buckley and Leverett 1942) have been investigated by several authors (Fraces et al. 2020, 

Fuks 2020, Xu et al. 2021). More recently, Yan, Harp, and Pawar (2021) presented 

applications of PIML for modeling geologic CO2 sequestration. Despite the widespread 

use of deep learning-based methods for subsurface modeling in recent years, the 

applications are mostly limited to simple cases like two phase flows in 2D or simple 3D 

grid systems. The challenge here is that the workflow becomes very expensive as the 

complexity of the problem in terms of size in space and time and nonlinearity increases. 

There are two components contributing to the expensive runtime: generating datasets for 

training by running a large number of full physics simulations and the training (solving 

the minimization problem) to find optimal weights and biases of the neurons. The latter 

tends to be more evident in the PIML framework due to the physics term(s) in the loss 

function that typically results in slower convergence, as in other minimization problems 

with regularizations. 

 

1.2 Dissertation Outline 

We present extensions of the Fast-Marching Method (FMM)-based rapid 

simulation workflow and a variety of applications of the developed method. Details on 

these are provided in the following chapters. The highlights of each chapter are as follows: 
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• In the 2nd chapter, we present an extension of the FMM-based simulation that can 

account for gravity segregation and multiphase flow in hydraulic fracture planes. The 

implementation is first validated with a full-physics numerical simulator using 

illustrative examples. Then, an application to a 3D field-scale unconventional reservoir 

is presented to demonstrate the robustness of the approach. 

• In the 3rd chapter, we propose a generalized FMM for arbitrary finite-volume grid 

systems. A motivation for this work comes from the increasing use of irregular grid 

systems, such as multiple continuum and unstructured grids, in modern reservoir 

simulators and the limitations in the current FMM solvers for such grid systems. The 

new approach is first validated with analytical solutions using cases involving 

homogeneous reservoir properties. Then, the versatility and efficacy of the approach 

are demonstrated through the applications of the approach to a variety of irregular grid 

systems at varying levels of complexity. 

• In the 4th chapter, we present a novel deep learning-based workflow incorporating the 

FMM-based simulation that can efficiently visualize well drainage volume and 

pressure front propagation in unconventional reservoirs in near real-time. The approach 

combines the strengths of deep learning-based models and the FMM-based rapid 

simulation and for the first time, allows data-driven visualization of unconventional 

well drainage volume in 3D. 
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CHAPTER II 

FAST MARCHING METHOD BASED RAPID SIMULATION ACCOUNTING FOR 

GRAVITY† 

2.  

2.1 Chapter Summary 

The fast marching method (FMM)-based rapid reservoir simulation workflow has 

proven to be effective for various applications in unconventional reservoirs. The FMM-

based simulation relies on the concept of the ‘Diffusive-Time-of-Flight’ (DTOF) that 

represents the travel time of pressure front propagation and captures geological 

heterogeneity as a 1-D spatial coordinate. It is challenging to model gravity in the FMM-

based approach because the 1-D DTOF coordinate is not necessarily aligned with the 

physical direction of gravity.  

We present a novel FMM-based simulation workflow that can account for gravity 

segregation in the fracture planes. The DTOF is first obtained by solving the Eikonal 

equation using the FMM assuming that gravity segregation is negligible in the ultra-tight 

matrix domain. Next, the 3-D transport problems in the matrix domain are transformed 

into a 1-D problem using the DTOF as a spatial coordinate. The hydraulic fractures are 

treated as gridded 2D planes to allow for gravity segregation and are connected to the 1-

 

† Part of this chapter is reprinted with permission from “Onishi, Tsubasa, Iino, Atsushi, Jung, Hye Young et 

al. 2020. Fast Marching Method Based Rapid Simulation Accounting for Gravity. Proc., Asia Pacific 

Unconventional Resources Technology Conference, Brisbane, Australia, 18-19 November 20191093-

1111”. Copyright 2020 Society of Petroleum Engineers. Further reproduction is prohibited without 

permission. 
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D matrix domain through non-neighbor connections (NNCs). A critical aspect here is 

computing the matrix-fracture transmissibilities based on the surface area of the DTOF 

contour. The proposed approach retains the speed of the FMM-based simulation while 

incorporating additional dominant physical mechanisms. 

The FMM based model is benchmarked with a commercial finite volume simulator 

using a series of synthetic and field scale numerical examples encompassing different 

levels of geologic complexity to illustrate the accuracy and efficiency of the approach. We 

applied our proposed model and the standard FMM-based approach to synthetic cases and 

a field scale example with multi-million gridblocks and over 100 hydraulic fractures and 

compared flow responses and CPU time. It is found that the proposed approach effectively 

captures gravity effects, and the results are in close agreement with 3-D finite volume 

simulation compared to the standard FMM-based approach. The FMM-based approaches 

are orders of magnitude faster in CPU time than the 3-D finite volume simulation. These 

numerical examples clearly demonstrate that our proposed approach is able to adequately 

model gravity effects while retaining computational efficiency. 

The uniqueness of this work is incorporating gravity effects for the first time in the 

FMM-based reservoir simulation framework. The proposed approach is relatively simple 

and easy to implement, and the rapid workflow is capable of performing field scale history 

matching and optimization much faster and within realistic time frame. 
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2.2 Introduction 

Unconventional reservoirs account for a significant amount of hydrocarbon 

reserves in the U.S. (EIA 2021). In order to better understand the performance of 

unconventional reservoirs, analytical and numerical models incorporating relevant physics 

at varying fidelity levels have been developed. Decline curve analysis (Arps 1945, 

Fetkovich 1980) and pressure/rate transient analysis (Song and Ehlig-Economides 2011) 

are commonly used for fracture characterization and well performance predictions. While 

these analytical models provide significant benefits in terms of computational efficiency 

and simplicity, capturing important details such as heterogeneities of reservoir properties 

remains a considerable challenge. 

High-fidelity, full-physics numerical simulators that typically employ finite 

volume schemes are capable of simulating detailed non-linear descriptions. For fractured 

media, many approaches including multiple continuum models (Warren and Root 1963, 

Kazemi, Merrill, et al. 1976), unstructured discrete fracture models (Karimi-Fard and 

Firoozabadi 2001), and embedded discrete fracture models (EDFMs) (Li and Lee 2008, 

Moinfar et al. 2014) have been presented. For unconventional reservoirs, detailed spatial 

and temporal discretization is required to accurately model multiphase flow in complex 

fracture networks and high contrast systems and therefore numerical models tend to be 

computationally expensive. This challenge has been partly mitigated by state-of-the-art 

solvers, parallelization, and new numerical schemes; however, it is still too expensive to 

perform uncertainty assessments, history matching, or optimizations where hundreds or 

thousands of simulations may be required. The FMM-based approach has been applied to 
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rapid flow simulations accounting for realistic and complex flow physics such as multi-

phase and multi-component flow, non-isothermal flow, multiple continuum, and 

unstructured grid systems (Zhang et al. 2016, Fujita et al. 2016, Yang et al. 2017, Iino, 

Onishi, et al. 2020). The rapid workflow enables us to explore complex interactions among 

a large number of uncertain variables in field scale history matching and optimization 

problems (Iino et al. 2017). 

In an effort to improve computational efficiency in the numerical models, the Fast 

Marching Method based rapid flow simulation workflow has been proposed (Zhang et al. 

2016). This approach relies on a high frequency asymptotic solution of the diffusivity 

equation leading to the Eikonal equation in which we generalize the concept of radius of 

investigation (Lee 1982) for heterogeneous media. The Eikonal equation can be efficiently 

solved using the FMM for diffusive time of flight (DTOF), which is a representation of 

travel time of the ‘peak’ pressure response corresponding to an impulse source (Datta-

Gupta et al. 2011, Vasco and Datta-Gupta 2016). The 3-D problems are simplified into 

equivalent 1-D problems along the DTOF, leading to a significant speedup. 

It is worth mentioning that, recently, another class of approach, physics-based 

data-driven models, has been proposed (Zhang et al. 2018). In this approach, instead of 

starting from a reservoir model and calculating DTOF for the 3-D to 1-D coordinate 

transform, they introduced a new diffusive diagnostic function (DDF) which is also used 

to formulate a 1D flow equation, but different than the formulation using the DTOF. The 

workflow starts from data, instead of a reservoir model, and performs history matching 

using the available observed data and the 1-D simulation model in which DDFs are tuning 
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parameters. History matched DDFs can be used for flow diagnostics in unconventional 

reservoirs. Later, an extension of the approach that can adjust other parameters, such as 

initial pressure and saturation distributions, together with DDFs was presented (Zhang et 

al. 2019). 

In this study, we focus on improving the numerical model using the FMM. 

Specifically, we present an extension of the FMM based flow simulation approach that 

can account for gravity segregation in the fracture planes. Because the physical direction 

of gravity is not aligned with the 1D DTOF coordinate, it is challenging to incorporate 

gravity effects in the current workflow. In our approach, unlike the standard FMM-based 

approach, we treat the hydraulic fracture domain and the matrix domain separately. The 

DTOF in the matrix domain is first obtained by solving the Eikonal equation using the 

FMM. Next, the 3-D problems in the matrix domain are transformed into 1-D problems 

using the DTOF as a spatial coordinate, assuming that gravity segregation is negligible in 

the ultra-tight matrix domain. The hydraulic fractures are treated as 2D planes to allow for 

gravity segregation. Each of the gridblocks in the hydraulic fracture planes is linked with 

the first gridblock in the 1-D matrix domain through non-neighbor connections (NNCs). 

The idea is similar to EDFMs, in which matrix-fracture connections are described by 

NNCs. 

The outline of this chapter is as follows. First, we present the simulation model 

formulation including the concept of the DTOF and coordinate transformation of the 3-D 

flow equation into an equivalent 1-D flow equation along the DTOF. Next, we provide the 

steps involved in our workflow to incorporate gravity effects. Then we present synthetic 
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illustrative examples. Finally, we demonstrate the robustness of our approach using a field 

scale unconventional reservoir. 

2.3 Methods 

The key concept of our FMM-based approach is transformation of the 3-D flow 

equation into equivalent 1-D flow equation along the DTOF coordinate. This section 

presents the concept of the DTOF and the coordinate transformation of diffusivity 

equation from 3-D space into 1-D DTOF space. Also, a detailed description of the 

proposed FMM based simulation approach accounting for gravity (FMMG) will be 

discussed. 

2.3.1 Diffusive Time-of-Flight 

Pressure propagation in porous media is a diffusive process but we can draw an 

analogy with propagating waves (Vasco and Datta-Gupta 2016). A high frequency 

asymptotic solution for diffusivity equation leads to the Eikonal equation governing the 

“phase” of propagating disturbance of pressure, which is represented by the DTOF. We 

will refer to this as the pressure ‘front’ analogous to wave fronts. The DTOF can be 

obtained by solving the Eikonal equation (Eq. (2.1)) which is derived from the diffusivity 

equation and its asymptotic solution (Datta-Gupta and King 2007, Vasco and Datta-Gupta 

2016), 

 ( )
( )
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


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x  
(2.1) 

where  and  represent the DTOF and diffusivity at location x, respectively. Under multi-

phase conditions, we define diffusivity as follows,  
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where : porosity, k: permeability, t: total mobility and ct: total compressibility. The 

Eikonal equation is a generalization of the well-known concept of radius of investigation 

for homogeneous reservoirs in the sense that it allows us to have spatial heterogeneity in 

the diffusivity. The Eikonal equation can be efficiently solved for the DTOF using the 

FMM, which is a class of front tracking methods constructing the DTOF solution in an 

orderly one-pass fashion outwards from the sources (Sethian 1999). Figure 2.1 shows 

examples of the DTOF calculated for homogeneous and heterogeneous reservoir models 

using the FMM where arbitrary well geometry can be accounted for including vertical, 

deviated/ horizontal, and multi-stage hydraulically fractured wells. 

 
(a) (b) (c) 

Figure 2.1 Examples of DTOF (Iino et al. 2019): Upper row is permeability 

distributions and lower row is the corresponding DTOF. (a) 2-D homogeneous 

reservoir with a vertical well. (b) 2-D heterogeneous reservoir with a horizontal well. 

(c) 3-D heterogeneous reservoir with a multi-stage hydraulically fractured well 

(reprinted with permission from Onishi et al., 2020). 
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2.3.2 Diffusive Time-of-Flight as a Spatial Coordinate 

The key idea of the rapid simulation based on the FMM is to utilize the DTOF as spatial 

coordinate in order to recast 3-D flow equations into equivalent 1-D flow equations. Figure 

2.2 illustrates 2-D homogenous (left) and heterogeneous (right) reservoirs with a vertical 

well depicted by stars. We expect circular propagation of the pressure front as depicted by 

the DTOF in homogeneous reservoirs, whereas the DTOF in heterogeneous reservoirs will 

be distorted due to the spatial heterogeneity. The diffusivity equation for heterogeneous 

reservoirs can be formulated along the DTOF coordinate which embeds the spatial 

heterogeneity. 

 
 

Figure 2.2 Analogy between the DTOF as a spatial coordinate and radial coordinate in 

a homogeneous reservoir (Zhang et al. 2016) (reprinted with permission from Onishi 

et al., 2020) 

 

Zhang et al. (2016) proposed a novel approach of coordinate transformation from physical 

3-D space into 1-D DTOF space, leading to the following diffusivity equation using the 

DTOF coordinate, 
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where single-phase, constant compressibility, and viscosity are assumed for simplicity. In 

the 1-D equation (Eq. (2.3)), the w() function is defined as the derivative of drainage pore 

volume, Vp, with respect to the DTOF, 

 ( )
d ( )

d

pV
w





=

 

(2.4) 

Comparison of Eq. (2.3) with the radial flow equation in Figure 2.2 reveals that w() 

function physically represents surface area of the propagating pressure front.  Solution of 

the Eikonal equation (Eq. (2.1)) using the FMM gives the DTOF mapped on gridblocks. 

The w() can be calculated based on the drainage pore volume, Vp, that is accumulated as 

a function of the DTOF (Zhang et al. 2016). Extension to more complicated cases, such 

as compressible fluid, multi-phase and multi-component flow, has also been proposed to 

date (Fujita et al. 2016, Iino, Onishi, et al. 2020). 

2.3.3 Workflow of the FMMG 

The standard FMM and FMMG approaches are summarized in Figure 2.3. In this figure, 

the top row, with red arrows, and the bottom row, with blue arrows, correspond to the 

FMM (Iino 2018) and the FMMG workflows, respectively. As seen in Figure 2.3, the 

FMMG approach is in many ways fundamentally similar to the standard FMM workflow. 

Therefore, we will focus on important aspects for the FMMG implementation in this 

section. First, multi-phase diffusivity on original 3D gridblocks is computed based on the 

initial reservoir properties. Next, the Eikonal equation is solved by FMM for the DTOF. 
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Here, we apply the multi-stencil FMM, in which each node has 26 neighbors in 3D space 

(8 neighbors in 2D) (Hassouna and Farag 2007). This treatment plays an important role to 

better represent pressure front propagation, especially in high contrast media like 

hydraulic fractures in unconventional reservoirs (Li 2018). In this step, we have special 

treatments in the FMMG to obtain surface area of the hydraulic fracture corresponding the 

first w(), which will be used to calculate transmissibilities between the hydraulic fracture 

gridblocks and the 1-D DTOF gridblocks representing the rest of the domain. This can be 

done by setting the source points along hydraulic fracture planes from which we start front 

tracking, as shown in Figure 2.4. As a result, a uniform DTOF(=0) is obtained within the 

hydraulic fracture plane using the FMMG approach, while we see propagating DTOF in 

the FMM (step 2). Once we obtain the DTOF, we utilize the DTOF as a 1-D spatial 

coordinate and calculate the drainage pore volume, Vp, along the 1-D DTOF coordinate 

(step 3). Next, Vp is discretized on the 1-D DTOF coordinate (step 4) and calculate the 

w() function (step 5). We note here that the w() function in the FMMG shows slightly 

greater values compared to the standard FMM at early time, with similar trends at late 

time (step 5). This is because the first w() in the FMMG corresponds to the surface area 

of the 2-D hydraulic fracture plane, whereas, there can be several 1-D gridblocks (w()) 

within the hydraulic fracture plane, (number of 1D-gridblocks (w()) varies depending on 

the discretization scheme) in the standard FMM approach. Finally, the 1-D (+2D hydraulic 

fracture plane if FMMG) simulation will be performed using the pore volume and 

transmissibilities obtained from the previous steps. In the FMMG approach, connections 

between the hydraulic fracture plane and the first DTOF gridblock are described by NNCs 
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(step 6). In this step, we calculate transmissibilities between each gridblock in the 

hydraulic fracture plane and the first 1-D gridblock, Ti as, 

 
i i aveT wT=

 

(2.5) 

where wi=Ai/AHF, Ai is the surface area of a gridblock in the hydraulic fracture plane, AHF 

is the total surface area of the hydraulic fracture plane, and Tave is an average 

transmissibility between the hydraulic fracture plane and the first 1-D grid that can be 

obtained using the first w(). The computed transmissibilities using Eq. (2.5) will be used 

as part of NNC inputs in the 1-D flow simulation. 

 
 

Figure 2.3 An Illustration of the standard FMM-based simulation workflow (top row 

with red arrows) and the FMM-based simulation workflow accounting for gravity 

(FMMG) (bottom row with blue arrows) (reprinted with permission from Onishi et al., 

2020) 
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Figure 2.4 Source points set-up for the standard FMM (top) and the FMMG (bottom) 

(reprinted with permission from Onishi et al., 2020) 

 

2.4 Validation 

We present cases to validate our FMM-based approaches using a commercial 

reservoir simulator (https://www.software.slb.com/products/eclipse). In this section, we 

first focus on 2D examples without gravity to validate implementation of the 

transmissibility calculations for NNCs in the FMMG workflow. The capability of the 

FMMG for capturing effects of gravity in 3-D examples will be analyzed in the next 

section. 

2.4.1 Example 1. 2D Homogeneous Case 

We begin with a single phase 2D homogeneous problem with a single hydraulic 

fracture. The geometry and reservoir properties are provided in Figure 2.5(a). The flow 

domain is discretized into 101×101×1 gridblocks, and tartan gridding is used to describe 

the hydraulic fracture. A slightly compressible system is assumed. The well produces 

water with a constant rate of 1.0 (stb/d) for 500 days. Computed DTOF maps obtained 

from the FMMG and the standard FMM are provided in Figure 2.5(b) and (c). Similar 

https://www.software.slb.com/products/eclipse
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trends are obtained in the top view (Figure 2.5(b) and (c), top), whereas we see different 

results between the FMMG and FMM in the hydraulic fracture plane (Figure 2.5(b) and 

(c), bottom). Specifically, while the FMMG shows DTOF=0 in the hydraulic fracture 

planes, the FMM shows small DTOF in the hydraulic fracture plane. This is because we 

setup the source points (DTOF=0) along the hydraulic fracture in the FMMG approach 

Figure 2.4. Using these results, the drainage pore volumes and w() functions are 

calculated along the DTOF coordinate as shown in Figure 2.6, in which different flow 

regimes can be identified between the FMMG and the standard FMM at early time. This 

is because, as discussed earlier, the first w() in the FMMG corresponds to the surface area 

of the hydraulic fracture (the first point on the blue line in Figure 2.6), therefore we see 

linear flow in the matrix immediately after the first w() in the FMMG, followed by radial 

flow, and finally boundary dominated flow. Detailed discussions of the flow diagnostics 

using w() functions are summarized in Xu et al., (2018). On the other hand, in the 

standard FMM, we see pressure propagation in the hydraulic fracture at early time, 

followed by a similar profile to the FMMG beyond the hydraulic fracture plane. These 

observations are consistent with the visual comparison of the DTOF map (Figure 2.5). 

Simulation results in terms of bottom-hole pressure (BHP) are compared as shown 

in Figure 2.7. Both the FMMG and the standard FMM show excellent agreement with the 

commercial finite volume simulator, validating our implementation of the transmissibility 

calculations for homogeneous media. 
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Figure 2.5 Homogeneous 2D model showing (a) uniform permeability distribution 

with a hydraulic fracture located at the center on the red line, (b) DTOF map based on 

FMMG, and (c) DTOF map based on FMM (reprinted with permission from Onishi et 

al., 2020) 

 

 
 

Figure 2.6 Comparison of the w() function for the FMMG (blue) and the FMM (red) 

(reprinted with permission from Onishi et al., 2020) 
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Figure 2.7 Model validation results showing comparison of simulated BHP responses 

between the commercial finite volume simulator (reference), the FMMG, and the 

standard FMM (reprinted with permission from Onishi et al., 2020) 

 

2.4.2 2D Heterogeneous Case 

Next, we demonstrate the FFMG model with a 2D heterogeneous reservoir with a 

single hydraulic fracture described by tartan gridding, to illustrate the capability of our 

approach for heterogeneous media. The model size is 6000× 6000× 100 (ft3) with 

218×200×1 grid discretization. The heterogeneous permeability field is provided in 

Figure 2.8(a). A slightly compressible system is assumed to have uniform porosity values 

of 0.1. Water was produced with a constant rate of 5.0 (stb/d) for 500 days. The computed 

DTOF maps in this example resulted in twisted trends reflecting the effect of the 

heterogeneity as shown in Figure 2.8(b) and (c). The w() diagnostic plot based on the 

DTOF maps is provided in Figure 2.9, in which  we see similar trends compared to the 

previous example. 
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Bottom-hole pressure (BHP) comparison is presented in Figure 2.10. Again, both the 

FMMG and the standard FMM show excellent agreement with the commercial finite 

volume simulator, validating our implementation of the transmissibility calculations for 

heterogeneous media. 

 
 

Figure 2.8 Heterogeneous 2D model showing (a) heterogeneous permeability 

distribution with a hydraulic fracture located at the center on the red line, (b) DTOF 

map based on FMMG, and (c) DTOF map based on FMM (reprinted with permission 

from Onishi et al., 2020) 

 

 
 

Figure 2.9 Comparison of the w() function for the FMMG (blue) and the FMM (red) 

(reprinted with permission from Onishi et al., 2020) 
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Figure 2.10 Model validation results showing comparison of simulated BHP responses 

between the commercial finite volume simulator (reference), the FMMG, and the 

standard FMM (reprinted with permission from Onishi et al., 2020) 

 

2.5 Applications 

Next, we apply the FMMG scheme to 3D multi-phase examples including 

synthetic and field scale models to examine capability of the FMMG for modeling gravity 

segregation. These applications are sufficiently realistic and complex to demonstrate the 

practical feasibility of our approach. 

2.5.1 3D Heterogeneous Reservoir 

In this example, we consider a synthetic unconventional reservoir. As shown in 

Figure 2.11, the model comprises a single horizontal well with 15 planner hydraulic 

fractures described by tartan gridding. Heterogeneous permeability distribution for the 

matrix and the stimulated reservoir volume (SRV), and a uniform porosity of 0.04 for the 

whole domain are assumed. The fluids modeled in this example are described by water, 

oil, and gas phases. Relative permeability curves and PVT data are provided in Figure 
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2.12 and Figure 2.13, respectively. Transmissibility reductions due to rock compaction 

effects are modeled using different tables for the hydraulic fractures, the SRV region, and 

the matrix (Figure 2.14). We applied a uniform initial pressure of 3,300 psi (initially 

undersaturated). Uniform water saturation values of 0.2, 0.3, and 0.6 are assigned to the 

matrix, the SRV, and the hydraulic fractures to mimic water saturation distribution at the 

end of hydraulic fracturing treatments. The well produces fluids for 1000 days with a 

constant BHP control of 1000 psi.  

Computed DTOF maps are shown in Figure 2.15, and the w() diagnostic plot 

based on the DTOF maps is provided in Figure 2.16. Here, again we see different trends 

between the FMM and FMMG results at early time, and subsequent flow regimes are 

similar in the two approaches. In this example, we see different flow regimes than the 

previous examples due to multiple hydraulic fracture planes and the SRV region. 

 

 
 

Figure 2.11 Heterogeneous 3D model showing logarithm of permeability distribution 

(left), and hydraulic fracture geometry and properties (right) (reprinted with 

permission from Onishi et al., 2020) 
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Figure 2.12 Relative permeability curves (reprinted with permission from Onishi et al., 

2020) 

 

  

  
 

Figure 2.13 PVT data (reprinted with permission from Onishi et al., 2020) 

 

 
 

Figure 2.14 Rock compaction table (reprinted with permission from Onishi et al., 2020) 
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Figure 2.15 Comparison of the DTOF maps for the FMMG (left) and the FMM (right) 

(reprinted with permission from Onishi et al., 2020) 

 

 
 

Figure 2.16 Comparison of the w() function for the FMMG (blue) and the FMM (red) 

(reprinted with permission from Onishi et al., 2020) 

 

Flow response comparisons are summarized in Figure 2.17. While solutions using 

the standard FMM shows deviations compared to the reference solution, good agreement 

was obtained between the reference solution and the FMMG solutions.  Figure 2.18-20 

show visual comparisons of the three different methods in terms of pressure, water 

saturation, and gas saturation at the end of the simulation period (1,000 days). In the 3D 
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views, all of them show similar results; however, averaged profiles are obtained in the 

standard FMM in the 2D cross section views. Clearly, the FMMG approach captures the 

effect of gravity and multi-phase flow in the hydraulic fracture planes. 

 
Figure 2.17 Flow response comparisons (reprinted with permission from Onishi et al., 

2020) 

 

 
 

Figure 2.18 Pressure distribution from the reference solution (left), FMMG (middle), and 

FMM (right) at the end of simulation (1000 days) (reprinted with permission from Onishi et 

al., 2020) 
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Figure 2.19 Water phase saturation from the reference solution (left), FMMG (middle), and 

FMM (right) at the end of simulation (1000 days) (reprinted with permission from Onishi et 

al., 2020) 

 

 
 

Figure 2.20 Gas phase saturation from the reference solution (left), FMMG (middle), 

and FMM (right) at the end of simulation (1000 days) (reprinted with permission from 

Onishi et al., 2020) 

 

2.5.2 Field Application 

Finally, we applied our modeling approach to a field scale example, a tight oil 

reservoir with typical reservoir properties in the Eagle Ford formation. The model size is 
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1200×6300×340(ft3) with 41×1267×46 (~2.4 million) grid discretization. Figure 2.21 

shows the model structure and grid properties with matrix permeability ranging between 

0.1-10 D and matrix porosity between 0.5-6.0 %. The same fluid model and rock 

compaction tables from the synthetic example in the previous case are used. Average 

initial pressure is 3,300 psi (initially undersaturated) and average water saturation values 

of 0.3 and 0.8 are assigned to the matrix and hydraulic fracture planes. The model consists 

of a single horizontal well with 120 hydraulic fractures (4 clusters×30 stages) described 

by tartan gridding. The well produces fluids for 200 days with a varying oil production 

rate constraint. With the large number of gridblocks and multi-phase flow, this is a 

challenging application of FMM-based rapid reservoir simulation workflow. 

The drainage volume propagation with time using the FMM and FMMG are shown 

in Figure 2.22. Again, different trends are obtained at early time due to the special 

treatment in the FMMG, and the subsequent trends are similar in the two approaches. This 

observation is consistent with the w() diagnostic plot provided in Figure 2.23. 

 
 

Figure 2.21 Grid permeability and hydraulic fracture properties (top), and grid porosity 

(bottom) (reprinted with permission from Onishi et al., 2020) 
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Figure 2.22 Drainage volume propagations with time: top row (FMM) and bottom row 

(FMMG) (reprinted with permission from Onishi et al., 2020) 

 

 
 

Figure 2.23 Comparison of the w() function for the FMMG (blue) and the FMM (red) 

(reprinted with permission from Onishi et al., 2020) 

 

Flow response comparisons are summarized in Figure 2.24. The FMMG captures 

the effects of gravity and multi-phase flow in the hydraulic fractures, resulting in good 

agreement with the reference solution, while the FMM solutions show deviations. 

However, the FMMG solutions degrade to some degree, which is likely due to the higher 
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complexity of the model (>100 hydraulic fractures). Use of the surface area weighted 

averaged transmissibilities (Eq. (2.5)) is possibly the cause of the issue. A potential 

treatment to improve this could be extending the region where we use original gridblocks. 

That is, using the matrix gridblocks surrounding the hydraulic fracture planes in addition 

to the hydraulic fracture planes, and connecting surface area of the matrix gridblocks with 

the first 1-D DTOF gridblock via NNCs when we build a FMMG simulation model. 

Transmissibility calculations using this approach are likely to be less affected by the 

averaging effects as reservoir properties in the matrix are typically much less 

heterogeneous. Another possibility of the discrepancies is the no flow boundaries at the 

fracture inferences and outer boundaries that may cause reflections and transmissions of 

pressure waves, leading to increase or loss in pressure amplitude (Wang et al. 2018). 

Although beyond scope of this study, this can be improved by using an extended FMM 

approach considering additional pressure front arrivals (Huang et al. 2017). 

CPU time comparison is provided in Figure 2.25. The FMM and FMMG 

approaches are found to be significantly more efficient than the reference case using the 

commercial simulator. The FMMG shows slightly more CPU time than the FMM 

approach because the FMMG approach solves for more unknowns (1D-grid along the 

DTOF + 2D hydraulic fracture planes) than the FMM approach (1D-grid along the DTOF). 

Nevertheless, the increment of CPU time in the FMMG approach is minimal. We 

recognize that the CPU of the FMM and FMMG mostly comes from pre-processing which 

includes solving the Eikonal equation (Eq. (2.1)), calculating 1-D transmissibilities, and 
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I/O. For the Eikonal solver, further speedup can be potentially obtained by, for example, 

parallelizing the workflow (Jeong and Whitaker 2007). 

 
 

Figure 2.24 Flow response comparisons (Symbol: reference, dash line: FMM, and solid line: 

FMMG) (reprinted with permission from Onishi et al., 2020) 

 

 
 

Figure 2.25 CPU time comparison (reprinted with permission from Onishi et al., 2020) 
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2.6 Conclusions 

The FMM-based simulation approach accounting for gravity effects has been 

presented. We demonstrated the efficacy, utility and practical feasibility of our approach 

using synthetic and field-scale examples with realistic levels of complexity. From the 

observations made in this study, following conclusions are drawn: 

• Our method treats hydraulic fractures and a matrix domain separately. While 3-D 

problems in a matrix domain are transformed into 1-D problems along the DTOF, 

original 2-D gridblocks are retained to represent the hydraulic fracture planes. 

Connections between the 1-D matrix domain and the hydraulic fractures are described 

by NNCs. These changes are relatively minor and can be easily implemented into an 

existing FMM-based rapid simulation workflow. 

• We first tested our implementation using 2D examples without gravity to examine the 

NNC treatment. Good agreement was obtained between the reference solution, the 

FMM, and the FMMG, in homogeneous and heterogeneous examples, validating our 

transmissibility calculations. 

• The proposed approach is applied to 3D synthetic and field scale examples. Our 

approach captures the effect of gravity in the hydraulic fracture plane which is vital for 

reliable prediction of the multiphase flow during unconventional reservoir 

developments, while retaining computational efficiency of rapid FMM-based 

simulation workflow. 
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CHAPTER III 

COMPUTING PRESSURE FRONT PROPAGATION USING THE DIFFUSIVE TIME 

OF FLIGHT IN STRUCTURED AND UNSTRUCTURED GRID SYSTEMS VIA THE 

FAST MARCHING METHOD‡ 

3.  

3.1 Chapter Summary 

Diffusive-time-of-flight (DTOF), representing the travel time of pressure front 

propagation, has found many applications in unconventional reservoir performance 

analysis. The computation of DTOF typically involves upwind finite difference of the 

Eikonal equation and solution using the fast-marching method (FMM). However, the 

application of the finite difference-based FMM to irregular grid systems remains a 

challenge. In this study, we present a novel and robust method for solving the Eikonal 

equation using finite volume discretization and the FMM. 

The implementation is first validated with analytical solutions using isotropic and 

anisotropic models with homogeneous reservoir properties. Consistent DTOF 

distributions are obtained between the proposed approach and the analytical solutions. 

 

‡ Part of this chapter is reprinted with permission from “Hongquan, Chen, Tsubasa, Onishi, Jaeyoung, Park 

et al. 2020. Computing Pressure Front Propagation Using the Diffusive Time of Flight in Structured and 

Unstructured Grid Systems Via the Fast Marching Method. Proc., SPE Annual Technical Conference and 

Exhibition. https://doi.org/10.2118/201771-MS”. Copyright 2020 Society of Petroleum Engineers. Further 

reproduction is prohibited without permission. 

 
‡ Part of this chapter is reprinted with permission from “Chen, Hongquan, Onishi, Tsubasa, Park, Jaeyoung 

et al. 2021. Computing Pressure Front Propagation Using the Diffusive-Time-of-Flight in Structured and 

Unstructured Grid Systems via the Fast-Marching Method. SPE Journal: 1-21”. Copyright 2021 Society of 

Petroleum Engineers. Further reproduction is prohibited without permission. 

https://doi.org/10.2118/201771-MS
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Next, the implementation is applied to unconventional reservoirs with hydraulic and 

natural fractures. Our approach relies on cell volumes and connections (transmissibilities) 

rather than the grid geometry, and thus can be easily applied to complex grid systems. For 

illustrative purposes, we present applications of the proposed method to embedded 

discrete fracture models (EDFMs), dual-porosity dual-permeability models (DPDK), and 

unstructured perpendicular-bisectional (PEBI) grids with heterogeneous reservoir 

properties. Visualization of the DTOF provides flow diagnostics, such as evolution of the 

drainage volume of the wells and well interactions. 

The novelty of the proposed approach is its broad applicability to arbitrary grid 

systems and ease of implementation in commercial reservoir simulators. This makes the 

approach well-suited for field applications with complex grid geometry and complex well 

architecture. 

 

3.2 Introduction 

Modeling unconventional reservoir developments has been an active area of 

research as a response to the significant amount of reserves in the U.S. (EIA 2021). 

Various numerical and analytical models incorporating relevant physics at varying fidelity 

levels have been proposed. Multiple continuum models (Warren and Root 1963, Kazemi, 

Merrill Jr, et al. 1976), unstructured discrete fracture models (Cipolla et al. 2011), multi-

segment well (Du et al. 2016), and embedded discrete fracture models (EDFMs) (Li and 

Lee 2008) are some of the notable numerical models that have been proposed. In order to 

capture the complex non-linear descriptions, detailed spatial-temporal discretization is 
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required to accurately represent multiphase flow in complex fracture networks and high 

contrast systems. Therefore, the numerical models tend to be computationally expensive. 

As a result, simple analytical models, such as decline curve analysis (Arps 1945, Fetkovich 

1980) and rate transient analysis (Fetkovich et al. 1987, Blasingame et al. 1991, Song and 

Ehlig-Economides 2011) have become popular. Although conceptually simple and 

computationally efficient, these analytical models are typically dependent on certain 

assumptions including homogeneous reservoir properties, planar fractures, and single-

phase flow. Therefore, capturing more detailed physics still remains a challenge in these 

simplified models. 

In an effort to overcome the challenges in the existing modeling approaches for 

unconventional reservoirs, applications of an asymptotic approach to the diffusivity 

equation have been proposed (Xie et al. 2015). The use of an asymptotic solution to the 

diffusivity equation leads to the Eikonal equation which governs the propagation of a 

pressure front propagation and generalizes the depth of investigation (Lee 1982) for 

heterogeneous reservoirs. Vasco et al. (2000) and Kulkarni et al. (2001) presented 

trajectory-based solutions to the Eikonal equation. Specifically, the trajectories are 

approximated by ray path (Vasco et al. 2000) or by convective streamlines (Kulkarni et 

al. 2001), then the phase or diffusive time-of-flight (DTOF) are obtained by calculating 

the line integral along the trajectories. An alternative approach to computing the DTOF is 

the fast marching method (FMM), a class of front-tracking algorithm, which does not 

require explicit construction of the trajectories and can solve the Eikonal equation 

efficiently without iterations (Sethian 1999). 
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The DTOF represents the propagation time of the peak pressure disturbance caused 

by an impulse source. The propagation distance is known as the depth of investigation and 

the associated volume defined as drainage volume which is the region of the reservoir 

contributing to the production of the well at any given time. The DTOF and drainage 

volume are quite useful quantities and have found many applications in modeling 

unconventional reservoirs. For example, we can visualize the drainage volume evolution 

by thresholding the propagation time at selected time intervals. This offers visual appeal 

and physically intuitive representation of the complex interaction between hydraulic and 

natural fractures and can be utilized in order to optimize development plans, such as the 

number of hydraulic fracturing stages and their spacing (Vasco and Datta-Gupta 2016). 

Besides the visualizations, the DTOF can be used as a spatial coordinate in flow 

simulation. Specifically, we can transform original 2-D or 3-D problems into equivalent 

1-D problems along the DTOF (Zhang et al. 2016). This leads to substantial savings in 

computational time in the numerical simulation while retaining accuracy. The original 

work (Zhang et al. 2016) focused on modeling shale-gas reservoirs. Later, the approach 

has been extended to account for more complex problems, such as multiphase and 

multicomponent flow (Fujita et al. 2016, Iino, Onishi, et al. 2020), non-isothermal flow 

(Cui et al. 2016), and gravity (Onishi, Iino, et al. 2019), as well as complex grid systems 

including multiple continuum models (Fujita et al. 2016), unstructured discrete fracture 

models (Yang et al. 2017), and EDFMs (Xue, Yang, et al. 2019a). Yang et al. (2015) and 

Xue, Yang, Park, et al. (2019) proposed another class of approach using the concept of 

DTOF for production data analysis. In their approach, the DTOF and w() function which 
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is defined as derivative of drainage pore volume with respect to the DTOF are obtained 

from the production data, instead of solving the Eikonal equation using the FMM. The 

data-driven diagnostic plots using the DTOF and w() function offer a simple and intuitive 

understanding of the transient-drainage volume and fracture conductivity. In this study, 

we focus on solving the Eikonal equation using the FMM. 

The success of the DTOF-based approaches is contingent on the FMM. While well 

established for reservoir models with structured grid systems, the FMM is less 

straightforward in more-general grid systems. For example, special treatments, such as 

sub-gridding are required to handle unstructured grids (Yang et al. 2017), local grid 

refinements, and EDFMs (Xue, Yang, et al. 2019a). Such algorithms are typically less 

efficient and difficult to generalize. In addition to the discrete fracture models, dual-

porosity dual-permeability (DPDK) models where both matrix and fracture contribute to 

the flow are also widely used for modeling unconventional reservoirs (Hui et al. 2019, 

Thomas et al. 2019, Yang et al. 2018, Kumar et al. 2019). Although the FMM applications 

are successful in the dual-porosity single-permeability (DPSK) (Zhang et al. 2016) and 

triple-porosity single-permeability (TPSK) systems (Fujita et al. 2016), explicit tracking 

of the pressure front in the two interacting continua in DPDK systems is challenging. 

It is worth mentioning that we have seen similar challenges in the context of flow 

diagnostics for conventional reservoirs on the basis of two key parameters, streamlines 

and convective time-of-flight, defined as the travel time of neural tracer influenced by a 

defined velocity field (Datta-Gupta and King 2007) along the streamlines. The streamlines 

and convective time-of-flight have been utilized in a number of applications, including, 
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but not limited to visualization (Olalotiti-Lawal et al. 2019) forward simulation (Batycky 

et al. 1997, Jessen and Orr Jr 2002, Cheng et al. 2006, Iino and Arihara 2007, Tanaka et 

al. 2014, Olalotiti-Lawal, Tanaka, et al. 2020), data integration (Vasco et al. 1998, He et 

al. 2002, Cheng et al. 2005, Bhark et al. 2012, Tanaka et al. 2015, Kam and Datta-Gupta 

2016, Olalotiti-Lawal et al. 2019, Chen, Yang, et al. 2020, Liu et al. 2020), and 

optimization (Thiele and Batycky 2003, Alhuthali et al. 2007, Tanaka et al. 2017, Tanaka 

et al. 2020). The streamline-based methods are quite useful but require explicit streamline 

tracing (Pollock 1988). Although possible, tracing streamlines is difficult and less efficient 

in the irregular grid systems (Prevost et al. 2001, Matringe and Juanes 2005, Jimenez et 

al. 2010, Zhang et al. 2012, Chen, Onishi, et al. 2020) like the front tracking in the FMM 

discussed earlier. As a result, an alternative finite volume based approach has been 

proposed by Natvig et al. (2007). In their approach, a single matrix solve generates the 

convective time-of-flight and numerical tracer concentrations on finite-volume grids. 

These information can be used in the applications that have been done using streamlines 

in a more general manner with the finite volume framework (Shahvali et al. 2012). It may 

suffer from numerical dispersion effects which are tied with any grid-based methods 

(Lantz 1971), unlike the streamline-based methods which offer sub-grid resolutions, hence 

less numerical artifacts. The effects of numerical dispersion can be significant if there are 

high concentration of wells in a small region with relatively coarsened grid resolution. 

Nevertheless, the finite volume based flow diagnostics approach is widely accepted in 

industry and has found many practical applications (Lie et al. 2015, Møyner et al. 2015, 

Olalotiti-Lawal, Hetz, et al. 2020) due to its utility and compatibility with the existing 
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reservoir simulators. The majority of commercial reservoir simulators use finite volume 

methods, and many techniques to address the numerical artifacts already exist. Such 

techniques can be readily incorporated in the finite volume based flow diagnostics 

approach. 

This study is inspired by the previous works on the finite volume based flow 

diagnostics method for conventional reservoirs. In this study, we present a finite volume 

based approach for solving the Eikonal equation using the FMM which is designed for 

diffusive processes, typical characteristics in tight unconventional reservoirs. We put forth 

a robust method that circumvents the need of the special treatments, such as sub-gridding 

(Xue, Yang, et al. 2019a), for solving the Eikonal equation in irregular grid systems by 

introducing a finite volume discretization of the Eikonal equation. The discrete systems 

can be efficiently solved by the FMM. As presented in the following sections, the proposed 

method is general and applicable to arbitrary finite-volume grid systems in reservoir 

models, including, but not limited to single porosity models, DPDK models, EDFM, and 

unstructured grids. 

The following sections are organized as follows. First, we revisit the concept of 

pressure front propagation and the asymptotic approach. We then provide a description of 

the proposed finite volume based method. The implementation is validated by comparing 

with a series of analytical and numerical examples. Next, we present applications of our 

approach to field scale examples to illustrate the robustness and versatility of the approach. 

Our focus in this study is flow diagnostics in unconventional reservoirs using the DTOF 

and visualization of the drainage volume. Although further applications, such as the rapid 
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1-D flow simulation utilizing the DTOF as a 1-D spatial coordinate (Zhang et al. 2016, 

Iino et al. 2020), can be readily done using the DTOF and drainage pore volume, we leave 

them as future work. 

 

3.3 Methods 

3.3.1 Pressure Front Propagation 

This section describes details of the proposed approach. The notations in this work 

follow the convention as follows: 

• A vector is treated as a column vector by default, and a row vector is denoted by 

transpose notation T. 

• Divergence of a vector v is interpreted as the “transpose” of the gradient operator 

multiplied by the column vector, that is,  v is expressed as T v . 

The single-phase fluid flow in porous media is governed by the diffusion equation, 
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(3.1) 

where p is pressure, k is permeability tensor,  is porosity,  is fluid viscosity,  is fluid 

density, ct is total compressibility, g is the gravity acceleration, and z is the depth. Using 

Fourier transform of the diffusion equation and a high-frequency asymptotic approach, we 

can derive the Eikonal equation that governs the pressure front propagation in the 

subsurface (Vasco et al. 2000), 
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(3.2) 

where  is the DTOF representing the propagation time. In previous studies, the upwind 

finite difference method has been used to discretize the Eikonal equation into a quadratic 

form, which is subsequently solved by the FMM. 
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where the finite difference operator D for x  directions can be written as and 

( )1, , , , /x

ijk i j k i j kD x  +

+= −   and ( ), , 1, , /x

ijk i j k i j kD x  −

−= −  . Similar formulas hold for y  

and z  directions. The finite-difference-based solution has been extended to unstructured 

grids (Yang et al. 2017), local grid refinements, and EDFM (Xue, Yang, et al. 2019a). 

However, such algorithms are strictly dependent on grid geometry and difficult to 

generalize for complex reservoir architecture and stratigraphy, which are typically 

modeled by gridblock volumes and connections. This study formulates the finite volume 

form of the Eikonal equation and implements its corresponding FMM solution so as to lay 

the foundation for the DTOF-based applications on general finite-volume grid systems. 

3.3.2 The Finite-volume Formulation 

The goal here is to enable the calculation of DTOF based on properties of cell volumes 

and cell connections. The calculation of cell connections usually involves surface integrals 

converted from volume integrals in the partial differential equation containing divergence 

terms. Hence, the strategy is to expand the Eikonal equation into terms with divergence 
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operator. Using product rule, the left-hand side of Eq. (3.2) is first converted into two 

divergence terms. 

 ( ) ( )T T T       =   −  k k k

 

(3.4) 

The partial differential equation is then integrated within a finite volume (Figure 3.1a), 

shown as follows, 

 ( ) ( )( ) ( )T T

t
V V

dV c dV      −   = k k

 

(3.5) 

 

Figure 3.1 Illustration of the geometries for the finite-volume derivation: (left) a 

volume V bounded by the surface S with the surface normal n, and (right) 

discretization of a polyhedron in terms of connections (reprinted with permission from 

Chen et al., 2021). 

 

The volume integral on the left-hand side of Eq. (3.5) can be transformed into surface 

integrals (Eq. (3.6)) using the divergence theorem. This step aims to associate the variation 

of DTOF with flow properties on the interface of two volume elements. 
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(3.6) 

Eq. (3.6) shows the detailed steps to get the surface integrals, in which the area of surface 

element is dS and its normal direction is n. Here, we also use DTOF at the cell center c 

as a representative DTOF for the volume integration containing the second divergence 

term. The integral form of the Eikonal equation is finally expressed as follows, 

 ( ) ( ) ( )
T T

c t
S S V

dS dS c dV     −  =  k n k n

 
(3.7) 

Each term in Eq. (3.7) needs to be discretized (Figure 3.1b) to get the form of algebraic 

equations. Eq. (3.8) gives the discretization of the first term. The contact area of the 

interface with respect to connection i is Ai; A,i, kA,i, and A,i are representative values on 

the surface element, and Li is the distance from block center to that interface. Also, 

(TA,ikA,ini), the product of gradient of DTOF and permeability tensor in the normal 

direction of the interface, is approximated by the finite difference term (A,i-c)/Li and the 

directional permeability kA,i, which finally leads to the transmissibility of the 

corresponding connection TA,i defined as kA,iAi/Li. Particularly, the connection 

transmissibilities in our implementation are the standard ones obtained from any reservoir 

simulator. 
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Similarly, Eqs. (3.9) and (3.10) give the discretization of the second and the third terms in 

Eq. (3.7), respectively. 

 ( ) ( )( ), ,

T

c c A i c A i
S

i

dS T     = − k n

 
(3.9) 

 ( )t p t
V

c dV V c =
 

(3.10) 

Where, Vp is the pore volume of the gridblock. Substituting Eqs. (3.8) - (3.10) into Eq. 

(3.7), we get the following expression, 

 ( )( )2

, ,A i c A i p t

i

T V c  − =

 

(3.11) 

For the two gridblocks in a connection, the one with smaller DTOF is called the upstream 

gridblock. The single-point-upstream weighting scheme is necessary to formulate the 

FMM to solve this problem. Adopting upstream gridblock DTOF i to replace the surface 

DTOF i for each connection, we can get the finite volume form of the Eikonal equation. 

 ( )( )2

,max ,0
connections

c i A i p t

i

T V c  − =

 

(3.12) 

Accounting for the upstream connections only, we get the following final form, 
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 ( )( )2

,

upstream
connections

c i A i p t

i

T V c  − =

 

(3.13) 

Figure 3.2 gives an example of the surface DTOF interpolation based on the single-point-

upstream weighting scheme. Based on the scenario (1, 2<c<3, 4, 5), Connections 1 

and 2 are upstream connections where A,i − c = i − c, and Connections 3, 4, and 5 are 

downstream connections where A,i − c = 0. 

 

Figure 3.2 Illustration of the upstream scheme for the surface DTOF in a given 

scenario where 1, 2<c<3, 4, 5 (reprinted with permission from Chen et al., 2021) 

 

3.3.3 The Fast-Marching Method 

From Eq. (3.13), we can see that the DTOF of a gridblock only depends on its upstream 

gridblocks, and the calculation of the DTOF involves solving a local quadratic equation. 

This enables the solution of s to be constructed in an orderly fashion from smaller values 

to larger values. Such strategy is developed as a numerical algorithm called the FMM by 

Sethian (1999). Though the FMM is initially developed on the nodes in the finite 

difference scheme, it can also be extended to the gridblocks in the finite-volume scheme. 
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The calculation or update of the DTOF values by FMM contains only upwind neighbors 

and strictly follows the causality of the pressure propagation process. During the 

progression of the FMM, gridblocks are dynamically labeled as far (not yet visited), 

considered (visited and value tentatively assigned), and accepted (visited and value 

permanently assigned). The basic steps are as follows, 

1. To begin with, assign every assign every gridblock xi an infinite DTOF value, i =+∞, 

and label them as ‘far’; assign gridblocks where the pressure front propagation starts 

their initial values (usually zero), i = 0, and label them as ‘accepted’ (Figure 3.3a). 

2. For every far gridblock xi connected to the accepted ones, use Eq. (3.13) to calculate a 

new DTOF value 𝜏̃ and label it as ‘considered’ (Figure 3.3b). 

3. Let 𝑥̃ be the one with smallest DTOF value among all ‘considered’ gridblocks, and 

label 𝑥̃ as ‘accepted’ (Figure 3.3c). 

4. For every xi connected to 𝑥̃, if xi is either ‘considered’ or ‘far’, calculate a new DTOF 

value 𝜏̃  using Eq. (3.13). If 𝜏̃  < 𝜏𝑖 , set 𝜏𝑖  = 𝜏̃ . If xi is labeled as ‘far’, set it as 

‘considered’ (Figure 3.3d). 

5. If there exists a ‘considered’ node, return to Step 3. Otherwise, terminate. 

 
(a) (b) (c) (d) 

Figure 3.3 Illustration of the FMM on finite volume gridblocks (reprinted with 

permission from Chen et al., 2021) 
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There are significant differences between the implementation of this finite-volume 

FMM and previous variations of finite-difference FMM (Sethian 1999, Yang et al. 2017, 

Li 2018, Xue, Yang, et al. 2019a). The finite-difference-FMM variations propose a sub-

grid resolution in which nodes of interest are not only placed in the center but also on the 

boundary of each gridblock following a five-stencil or nine-stencil scheme in 2D (can be 

extended to nine-stencil or 27-stencil scheme in 3D), and DTOF values need to be 

calculated or updated based on each triangular element (Figure 3.4). The connections and 

causalities between nodes of interest in the finite-difference FMM depend on the grid 

geometry and property features, such as anisotropy and heterogeneity, leading to a 

situation in which DTOF gradients may not be consistent with model characteristics. The 

causality issues have been discussed in several previous papers (Sethian and Vladimirsky 

2001, Zhang et al. 2013). In this finite-volume FMM, only one DTOF value for each 

gridblock is calculated, and no geometry calculation is involved because the grid geometry 

and properties are presented by transmissibilities and pore volumes obtained from finite-

volume simulators. Although the finite-volume FMM does not use the sub-grid resolution 

designed for the causality issue, its simplicity and robustness can extend the FMM 

application to much more complex grids, and its universal usage of the transmissibility 

and the pore volume inherently guarantees a better consistency between the FMM 

diagnostics and simulation results. 
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                                                        (a)                                               (b) 

Figure 3.4 2D sub-grid discretization schemes in a finite-difference-FMM 

implementation: (a) five-stencil scheme and (b) nine-stencil scheme (reprinted with 

permission from Chen et al., 2021) 

 

3.4 Validation 

In this section, we validate our implementation using simple 2D homogeneous 

reservoirs, for which we can analytically calculate the DTOF,  (𝑥⃗), using the path of the 

fastest pressure propagation back to the source points (i.e., well cell), where  = 0. 

Specifically,  = r/√𝛼, where r is distance from the source point, and  is the diffusivity 

(=k/ct). We will show comparisons between the analytical solution and the numerical 

solution using our implementation, in terms of the DTOF distribution, cumulative 

drainage pore volume along  and the w() diagnostic plot which is the derivative of the 

drainage pore volume with respect to DTOF (Zhang et al. 2016). 

3.4.1 Example 1: 2D Homogeneous, Isotropic Case 

The first example comprises of a homogeneous square domain of length 1.0 (ft). 

The grid resolution is 501×501×1. The other grid properties are summarized in Figure 
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3.5a. The fluid viscosity is 1.0 (cp), and the total compressibility is 2.0e-6 (psi-1). The 

model consists of a single production well in the center of the domain. 

 A comparison of the DTOF is shown in Figure 3.5b-c. The DTOF using our 

approach shows good agreement with the analytical solution. In addition to the visual 

comparison, we conducted a quantitative comparison using the relative error of the DTOF 

over the domain, 

 ( )
2

2

1 1
a n a

N N
i i i

i i

relative error   
= =

= − 
 

(3.14) 

where, N is the number of gridblocks, 𝜏𝑎
𝑖  and 𝜏𝑛

𝑖  denote the DTOF at gridblock i using the 

analytical solution and the numerical solution. In this example, we obtained the relative 

error = 3.56e-5. 

   
(a) (b) (c) 

Figure 3.5 Homogeneous and isotropic case: (a) model domain and grid properties, (b) 

analytical DTOF (√ℎ𝑟), and (c) FMM-based DTOF (√ℎ𝑟) (reprinted with permission 

from Chen et al., 2021). 

 

Furthermore, comparisons of cumulative drainage pore volume, Vp(), and the w() 

diagnostic plot are shown in Figure 3.6. Here, Vp() is sum of pore volumes within 

gridblocks whose   values are smaller than   of interest (x-axis in Figure 3.6a), whereas, 

the w() function is defined as dVp()/d and represents surface area of the pressure front 
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propagation. In the plots in Figure 3.6, our approach shows excellent agreement with the 

analytical solution. The w() diagnostic plot (Figure 3.6b) is useful for flow regime 

identification. At early time, the w() shows a unit slope, indicating radial flow regime. 

Later, the pressure front reaches the reservoir boundary, and Vp() no longer increases. As 

a result, we obtain a sharp drop in the w() which corresponds to boundary dominated 

pseudo-steady state (PSS) flow. For more detailed discussions on the w() diagnostic plots, 

the reader is referred to Xue, Yang, Park, et al. (2019). 

  
(a) (b) 

Figure 3.6 Diagnostic plots comparing the analytical solution and the FMM approach 

based on the homogeneous and isotropic case: (a) Vp() and (b) w() (reprinted with 

permission from Chen et al., 2021) 

 

3.4.2 Example 2: 2D Homogeneous, Anisotropic Case 

We repeated the same exercise using a case involving permeability anisotropy 

(kx/ky=5). The other settings are same as the example 1. The permeability anisotropy needs 

to be considered in the analytical solution as shown below. 

 ( )( ) ( )
2 2

, where /y x source source

r
r k k x x y y


= = − + −

 
(3.15) 
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A visual comparison of the DTOF, and the Vp() and w() diagnostic plots are 

provided in Figure 3.7b-c, and Figure 3.8, respectively. As expected, the DTOF maps are 

elongated due to the anisotropy. Another interesting observation here is that the w() 

function drops twice (Figure 3.8b). This is because, as seen in Figure 3.7, the pressure 

front first reaches the horizontal boundary. After that, the Vp() still keeps increasing until 

the front reaches the vertical boundary. As a result, the first w() drop is not as sharp as 

the second drop since the Vp() still increases after the first boundary effect. Finally, the 

front arrives at the vertical boundary and w() shows a sharp drop. 

Again, we obtained excellent agreement between the FMM approach and the 

analytical solution, validating our implementation for scenarios with permeability 

anisotropy. 

   
(a) (b) (c) 

Figure 3.7 Homogeneous and anisotropic case: (a) model domain and grid properties, 

(b) analytical DTOF (√ℎ𝑟), and (c) FMM-based DTOF (√ℎ𝑟). The relative error is 

2.06e-5 (reprinted with permission from Chen et al., 2021). 
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(a) (b) 

Figure 3.8 Diagnostic plots comparing the analytical solution and the FMM approach 

based on the homogeneous and anisotropic case: (a) Vp() and (b) w() (reprinted with 

permission from Chen et al., 2021) 

 

3.4.3 Grid Resolution Sensitivity 

In this section, we investigate sensitivity of grid resolution. While a small domain 

size and fine scale discretization are used for validation purposes in the previous section, 

here we use a larger domain size and different grid resolutions to investigate the accuracy 

of our numerical approach in more realistic settings. In this exercise, again we consider 

homogeneous reservoirs, isotropic and anisotropic permeabilities (kx/ky=5), and the 

domain size of the case is 2,430×2,430×10 (ft3). We consider 3 different discretization 

schemes, 243×243, 81×81, and 27×27. The other reservoir properties are the same as the 

examples in the previous section. Visual comparisons of the DTOF, and the Vp() are 

displayed in Figure 3.9 and Figure 3.10. As expected, as the grid resolution is coarsened, 

the difference between analytical and numerical methods becomes more evident. For 

instance, the Vp() calculations using coarser grids show deviations compared to the 

analytical solution in both isotropic and anisotropic cases (Figure 3.10), whereas, the 

solutions using the fine scale gridding converges to the reference. As in any numerical 
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simulation study, it is recommended to carry out a grid resolution sensitivity to understand 

its impact on the solution. 

 

Figure 3.9 Comparisons of the map of DTOF (√ℎ𝑟) using different grid resolutions. 

Top: 2D homogeneous and isotropic cases, and bottom: 2D anisotropic cases 

(reprinted with permission from Chen et al., 2021) 

 

  
(a) (b) 

Figure 3.10 Comparison of the Vp() using different grid resolutions for (a) 2D 

homogeneous and isotropic cases, and (b) for 2D anisotropic cases (reprinted with 

permission from Chen et al., 2021) 
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3.5 Applications 

In this section, we discuss applications of our approach to the DPDK models, 

EDFM, and unstructured grids. In each case, we present both simplified and field-scale 

examples to demonstrate the underlying concepts and the practical feasibility of our 

approach. 

3.5.1 Dual-Porosity Dual-Permeability Models 

Dual-porosity models are often used for modeling fractured reservoirs involving 

different flow mechanisms in fractures and rock matrix (Figure 3.11). In the dual-porosity 

single-permeability (DPSK) model, the reservoir is discretized into two interacting 

continua, matrix and fracture, assuming that the majority of flow occurs in the fracture 

domain and matrix acts as source/sink. In contrast, both matrix and fracture domains are 

sufficiently conductive and contribute to flow in dual-porosity dual-permeability (DPDK) 

systems. The interactions between the two continua can be described by the transfer 

transmissibility (Kazemi, Merrill Jr, et al. 1976) which are used together with the 

transmissibilities within each of the domains during the pressure front tracking in our finite 

volume based approach. 

This work presents, for the first time, applications of the FMM and concept of the 

DTOF to DPDK systems. We first present detailed numerical experiments and discussions 

and then a field-scale example. 
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(a) (b) 

Figure 3.11 Illustrations of (a) DPSK model, and (b) DPDK model (reprinted with 

permission from Chen et al., 2021) 

 

2D homogeneous case. First, we applied our approach to a simple 2D homogeneous 

DPDK system with a single well at the center of the domain completed in both matrix and 

fracture system. The flow domain is discretized into 101×101×1 gridblocks (for each 

domain) with cell sizes of 29.7×29.7×100 (ft3). The fluid properties are same as the 

validation case. Uniform grid properties are assigned and summarized in Table 3.1. Note 

that  is a geometric shape factor (Kazemi, Merrill Jr, et al. 1976). 

 

Parameter Value 

Permeability (matrix, fracture), km, kf (mD) 1.0e-4, 1.0 

Porosity (matrix, fracture), m, f, (-) 0.05, 0.01 

Shape factor, , (ft-2) 0.12 

Table 3.1 Inputs for the 2D homogeneous case (reprinted with permission 

from Chen et al., 2021) 

 

Figure 3.12 presents the drainage volume evolution using different threshold DTOF 

values. Specifically,  = 5, 10, and 20 (√ℎ𝑟), corresponding to some timings showing 

different characteristics: 



 

60 

 

1. The pressure front propagation visible only in the fracture domain 

2. We start seeing the pressure front propagation in the matrix domain. The front in the 

fracture domain has evolved further. 

3. The pressure front covers the entire fracture domain and majority of the matrix domain. 

The visualizations provide useful insights regarding the propagating pressure front in the 

two interacting continua. More detailed analyses can be done using the Vp() and w() 

plots shown in Figure 3.13. As expected, the pressure front propagates within the more 

conductive fracture domain in the beginning, and then propagates in the matrix at a later 

time. The magnitude of Vp() is different for the two continua (Figure 3.13a). This is 

because the matrix domain has greater pore volume. In addition, in the w() diagnostic 

plot (Figure 3.13b), we see a unit slope corresponding to radial flow in the fracture domain 

at early time. Next, the w() shows an increase at  ~6(√ℎ𝑟) which corresponds to the 

timing when the pressure front starts propagating in the matrix domain (the green line in 

Figure 3.13a). Later, while we start seeing the boundary effects in the fracture domain at 

 ~15(√ℎ𝑟), the w() does not show a drop because the pressure front is still propagating 

in the matrix domain. Finally, beyond  ~20(√ℎ𝑟 ), the pressure front arrived at the 

boundary in the matrix domain and as a result, the w() shows a signature of boundary 

dominated pseudo steady state. 
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Figure 3.12 Visualizing the evolution of the drainage volume in the 2D homogeneous 

DPDK model using different DTOF threshold values (reprinted with permission from 

Chen et al., 2021) 

 

  

(a) (b) 

Figure 3.13 Diagnostic plots for the 2D homogeneous DPDK model: (a) Vp() and (b) 

w() (reprinted with permission from Chen et al., 2021) 

 

Sensitivity Analysis. Sensitivity studies were conducted to evaluate the effects of 

influential parameters on pressure front propagation in DPDK systems. Specifically, we 

attempt to investigate the effects of shape factor (fracture geometry), , and matrix 
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permeability, km. Both contribute to the transfer transmissibility (Kazemi, Merrill Jr, et al. 

1976). To this end, we defined ranges to be explored for each of the parameters shown in 

Table 3.2, ran the finite volume based FMM to cases with low/high values, and compared 

the DTOF maps and the diagnostic plots. Since the goal here is to investigate the 

influences of  and km over the pressure propagation in the matrix, we select 𝜏 = 20√ℎ𝑟 

as the investigation time when the fracture media is already fully covered by the pressure 

front. 

Parameter Low Mid High 

shape factor,   (ft-2) 0.012 0.12 1.2 

matrix permeability, km, (mD) 1.0e-6 1.0e-4 1.0e-2 

Table 3.2 Parameters for the sensitivity study for DPDK systems (reprinted with 

permission from Chen et al., 2021) 

 

A visual inspection of the drainage volume evolution maps for different  and km 

are provided in Figure 3.14 and Figure 3.15. Similar trends are obtained in the fracture 

domain using different values of  and km, whereas, we see greater drainage volume as  

and km increase in the matrix domain, as expected. The corresponding w() diagnostic 

plots are shown in Figure 3.16. A first observation is that,  contributes to the timing of 

the pressure front arrival into the matrix domain. In Figure 3.16a, all the cases show a unit 

slope corresponding to radial flow at early time. Later, the pressure front arrives at the 

matrix domain, and we see increases in the w() plot whose timing varies depending upon 

the  values. While the matrix domain starts draining before the boundary effects in the 

fracture domain come into play in the base case (=0.12 ft-2) and the case with the high 

value ( =1.2 ft-2), the matrix domain starts draining after the fracture domain is fully 
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propagated in the low value case (=0.012 ft-2). As a result, the w() (the low value case, 

=0.012 ft-2) increases for the second time after the first drop caused by the boundary 

dominated flow in the fracture domain. Figure 3.16b shows the effect of matrix 

permeability, km, on the w() diagnostic plot in which noticeable differences compared to 

the shape factor sensitivity (Figure 3.16a) are observed at early time for the high value 

case (km=1.0e-2 mD). That is, we do not see a unit slope, a signature of radial flow. The 

unit slope in other cases are resulted from the radial flow in the fracture domain. The slope 

increases more than the unit slope as the pressure front starts propagating in the matrix 

domain. We miss the lag caused by the delay of pressure propagation in the matrix domain 

in the high matrix permeability case, and there are two possible reasons. First, the 

magnitude of km ratio (=km,high/km,base) is greater than that of  ratio (=high/base). As a 

result, the use of km,high enhances matrix-fracture connections more that high does. Note 

here that the transfer transmissibility is defined as  T=C∙km∙Vb,m∙ where C is a unit 

conversion constant (field), km is matrix permeability, Vb,m is bulk volume of the matrix 

gridblock, and  is the shape factor (Schlumberger 2015). This explains the first reason. 

Second, the matrix permeability contributes to not only matrix-fracture connections, but 

also matrix-matrix connections. The different trends using the low value (km=1.0e-6 mD) 

can be explained similarly. 

We note here that the detailed analyses on the basis of the DTOF and w() for 

DPDK systems were achieved using our finite volume based FMM approach, which 

would be difficult with the existing FMM-based approaches,  and in fact, DPDK systems 
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have never been explored in the context of the DTOF and w() in the past for 

understanding flow regimes. 

 

Figure 3.14 Visualizing the evolution of the drainage volume in the 2D homogeneous 

DPDK model using different values of shape factor, . The threshold value of  is 20 

(√ℎ𝑟) (reprinted with permission from Chen et al., 2021). 

 

 

Figure 3.15 Visualizing the evolution of the drainage volume in the 2D homogeneous 

DPDK model using different values of matrix permeability, km. The threshold value of 

 is 20 (√ℎ𝑟) (reprinted with permission from Chen et al., 2021). 
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(a) (b) 

Figure 3.16 w() diagnostic plots investigating sensitivities of (a) shape factor, , and 

(b) matrix permeability, km based on the 2D homogeneous DPDK model (reprinted 

with permission from Chen et al., 2021) 

 

2D heterogeneous case. We repeated the same exercises using a 2D heterogeneous case. 

This time, the fracture permeability is heterogeneous as shown in Figure 3.17, whereas, 

the matrix permeability remains homogeneous (km=1.0e-4 mD). The other inputs are same 

as the example 1. 

 

Figure 3.17 2D Heterogeneous DPDK model: heterogeneous fracture permeability and 

uniform matrix permeability (km=1.0e-4 mD) (reprinted with permission from Chen et 

al., 2021) 
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The maps of drainage volume evolution using different DTOF threshold values are 

provided in Figure 3.18. An interesting observation here is the pressure front propagation 

in the matrix domain. Although the matrix domain has uniform grid properties, shape of 

the DTOF contour maps is twisted (top row, Figure 3.18). This implies that the drainage 

in the matrix domain is dominated by the pressure propagations through the matrix-

fracture connections, rather than the matrix-matrix connections. In addition, the Vp() and 

w() plots are shown in Figure 3.19. Slightly different results are obtained compared to 

the previous example due to fracture heterogeneity; however, the overall trends and flow 

regimes are similar. 

 

Figure 3.18 Visualizing the evolution of the drainage volume in the 2D heterogeneous 

DPDK model using different threshold values (in √ℎ𝑟) (reprinted with permission 

from Chen et al., 2021) 
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(a) (b) 

Figure 3.19 Diagnostic plots for the 2D heterogenous DPDK model: (a) Vp() and (b) 

w() (reprinted with permission from Chen et al., 2021) 

 

Sensitivity Analysis. Again, we conducted sensitivity studies to evaluate the effects of 

shape factor, , and matrix permeability, km, using the same parameters ranges (Table 3.2). 

While we observed different trends to a certain degree due to the heterogeneity, in general, 

same conclusions can be drawn from this study as the homogeneous reservoir. 

 

Field-scale application. We applied our approach to a field-scale shale gas reservoir based 

on (Fujita et al. 2016). The model size is 2,000×4,000×150 (ft3) with 200×400×30 grid 

discretization for each of the domains (~4.8 million active gridblocks). Figure 3.20 shows 

the heterogeneous permeability distribution for the fracture domain. The matrix domain 

has uniform permeability and porosity values of 1.0e-4 mD and 0.1 respectively, and a 

uniform porosity of 0.01 is used for the fracture domain. A homogeneous shape factor of 

0.12 is assumed. The fluid model is based on the original study by (Fujita et al. 2016). The 

model comprises a single horizontal well with 12 hydraulic fractures using the original 

grid resolution. Effective values of grid permeability are assigned to the hydraulic 

fractures. With the large number of gridblocks and the additional matrix-fracture 
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connections (2.4 million matrix-fracture connections), this is a challenging application of 

our proposed approach. 

 

Figure 3.20 Field-scale gas reservoir showing fracture permeability field, and 

hydraulic fractures along the horizontal well (reprinted with permission from Chen et 

al., 2021) 

 

The reservoir drainage by the well at various times by thresholding the DTOF, and 

corresponding w() diagnostic plot are shown in Figure 3.21, and Figure 3.22. We can 

identify multiple flow regimes. At the beginning, the pressure front propagates inside the 

hydraulic fracture planes, followed by the propagation beyond the hydraulic fracture 

planes into the fracture domain. Later, the matrix domain starts draining. Finally, the 

pressure front reaches the domain boundaries and the w() shows a drop. It is worth 

mentioning that the FMM calculations only cost roughly 17 seconds using a 64-bit Intel○R  

Xeon○R  central processing unit (CPU) E5-2630 v4 at 2.20 GHz and 32.0 GB RAM. Note 

here that we focused on the CPU time of the FMM solver itself excluding I/O. Despite the 

complexity of the model with multi-million gridblocks, the efficacy of our implementation 

is demonstrated here. 
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Figure 3.21 Visualizing the evolution of the drainage volume in the 3D DPDK model 

using different DTOF threshold values (reprinted with permission from Chen et al., 

2021) 

 

 

Figure 3.22 w() plot for the field scale DPDK gas reservoir (reprinted with 

permission from Chen et al., 2021) 

 

3.5.2 Embedded Discrete Fracture Models 

Next, we applied our approach to the embedded discrete fracture models (EDFM). 

In the EDFM, the reservoir gridblocks are used to represent the matrix domain, while 

dominant fractures are explicitly described within the matrix domain as 2D planes. The 

matrix-fracture interactions are modeled by a local flow assumption with appropriate 
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transmissibility which typically employs non-neighbor connections (NNCs) in the 

implementation. The realistic representation of large fractures and the flexibility in 

gridding are quite advantageous, and the EDFM approach is currently recognized as a 

promising alternative to classical fracture modeling approaches. The EDFM approach was 

originally introduced by Li and Lee (2008), and Moinfar et al. (2014) and Ţene et al. 

(2017) are some of the notable extensions. In this work, our EDFM implementation is 

based on the original work. 

 

3D homogeneous case. First, we applied our approach to a simple 3D homogeneous case 

with a single hydraulic fracture described by the EDFM approach (Figure 3.23). The 

matrix domain is discretized into 75×75×5 gridblocks with cell sizes of 20.0×20.0×20.0 

(ft3). The fluid modeled in this study assumes typical shale oil reservoir properties(Iino et 

al. 2017). More detailed grid properties are summarized in Table 3.3. 

 

  
(a) (b) 

Figure 3.23 Homogeneous 3D EDFM case showing uniform permeability distribution 

with a hydraulic fracture located at center of the domain. (a) with mesh, and (b) 

without matrix mesh (reprinted with permission from Chen et al., 2021) 
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Parameter Value 

Matrix  
Permeability, km, (mD) 1.0e-4 

Porosity, m, (-) 0.12 

Hydraulic fracture  
Conductivity, kfwf, (mD-ft) 500 

Porosity, f, (-) 0.25 

Half-length, xf, (ft) 150 
Height, hf, (ft) 100 

Table 3.3 Inputs for the 3D homogeneous 

EDFM case (reprinted with permission from 

Chen et al., 2021) 

 

The results are summarized in Figure 3.24. As expected, the DTOF map shows 

linear flow at early time, followed by radial flow and boundary dominated PSS flow that 

correspond to the distinct w() profiles, namely, a constant w() at early time, followed by 

a unit slope and a sharp drop. These observations are consistent with the previous studies 

on the w() diagnostic plots using a similar illustrative example (Yang et al. 2015, Xue et 

al. 2018). 

 

 
(a) (b) 

Figure 3.24 FMM application on the 3D homogeneous EDFM case: (a) DTOF map 

and (b) w() (reprinted with permission from Chen et al., 2021) 

 

Unconventional reservoir with multistage hydraulic fractures. This case involves 

multistage hydraulic fractures along a horizontal well (Figure 3.25). The model settings 
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are based on the  previous study on the FMM implementation for the EDFM by Xue, 

Yang, et al. (2019a)  in which 2.5D triangular prisms are the basic unit during the front 

tracking and the DTOF is calculated at local virtual tetrahedrons. While successful in cases 

with relatively small number of fractures, the approach becomes difficult to generalize as 

the number of fractures and their intersections increase because the sub-gridding becomes 

more and more complex. On the contrary, the proposed finite volume based approach 

depends on connections of the gridblocks, rather than the geometry, and can be seamlessly 

extended to the EDFM. We present an application of our implementation to a case 

involving a large number of natural fractures on top of the hydraulic fractures (case 2 in 

Figure 3.25). The case is sufficiently realistic and complex to demonstrate the efficacy and 

practicality of our approach. We note here that the natural fractures are generated using 

Petrel’s fracture modeling module (Schlumberger). The same fluid model from the 

previous example (shale oil) is assumed, and the other detailed settings are summarized in 

Table 3.4. 
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Figure 3.25 3D EDFM cases with hydraulic fractures along the horizontal well. Top: 

without natural fractures, and bottom: with natural fractures (reprinted with 

permission from Chen et al., 2021) 

 

Parameter Value 

Matrix  
Permeability, km, (mD) 1.0e-4 

Porosity, m, (-) 0.046 

Hydraulic fracture  
Conductivity, kfwf, (mD-ft) 200 

Porosity, f, (-) 0.25 

Half-length, xf, (ft) 250-300 
Height, hf, (ft) 100 
Natural fracture  
Conductivity, knfwnf, (mD-ft) 1.0 

Porosity, nf, (-) 0.25 

Table 3.4 Inputs for the 3D realistic EDFM 

cases (reprinted with permission from Chen et 

al., 2021) 
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A comparison of the drainage volume evolution with and without natural fractures is 

provided in Figure 3.26a. The effects of the natural fractures can be clearly observed. 

Figure 3.26b shows the w() diagnostic plot. While we have been focusing on identifying 

flow regimes using the trends of the w() diagnostic plots, the amplitude of the w() at 

early time and intermediate time can be used as an indicator of the fracture surface area. 

Specifically, greater magnitude of the w() indicates greater fracture surface area, and vice 

versa. In Figure 3.26a, as one might expect, the magnitude of w() in  case 2 (with natural 

fractures) is greater than case 1 (without natural fractures) at early and intermediate time, 

due to the natural fractures. Also, case 2 shows the boundary effects earlier than case 1 

(without natural fractures). This is also because of the natural fractures that are more 

conductive and enhances the speed of the pressure front propagation. Finally, we 

conducted a CPU time comparison using the same machine (a 64-bit Intel○R  Xeon○R  central 

processing unit (CPU) E5-2630 v4 at 2.20 GHz and 32.0 GB RAM). The CPU time for 

case 1 (25,540 active gridblocks) and case 2 (66,630 active gridblocks) are roughly 0.02 

seconds and 0.07 seconds, respectively. This demonstrates the efficiency of our 

implementation, even for the cases involving complex natural fractures. 
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(a) (b) 

Figure 3.26 FMM applications on 3D realistic EDFM cases: (a) DTOF maps and (b) 

w() (reprinted with permission from Chen et al., 2021) 

 

3.5.3 Unstructured Grid Systems 

The last application of this novel finite volume based FMM will be on unstructured 

grids. Unstructured grids have been used to explicitly capture fluid flow in geometrically 

complex reservoirs with great flexibility (Heinemann et al. 1989, Palagi and Aziz 1994). 

They are able to maintain high resolution around fractures and are widely used to model 

fractured reservoirs. In the following unstructured grid examples, the Voronoi or PEBI 

gridding technique is used (Lie 2019). The Delaunay triangles are first generated such that 

no vertices of a triangle are inside the circumcircle of any other triangle. Next, the PEBI 

grid is formed by connecting the circumcenters of neighboring Delaunay triangles (Figure 

3.27a). The transmissibility across the PEBI grid cells is deduced from the triangle 
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geometry, and the detailed derivation and associated formulation can be found in Lie 

(2019). 

  
(a) (b) 

Figure 3.27 PEBI grid generation: (a) Delaunay triangulation and (b) PEBI grid based 

on the triangles (reprinted with permission from Chen et al., 2021) 

 

Example 1: 2D homogeneous, isotropic case. The first example is a homogeneous square 

domain, 1,000ft×1,000ft. The permeability is 1mD and the porosity is 0.1. The grid 

consists of 17,424 cells with a producer at the center. Figure 3.28a shows the PEBI grid. 

For comparison purposes, the analytic DTOF is calculated at the centroids of PEBI grid 

cells (Figure 3.28b). The DTOF based on our proposed FMM is shown in Figure 3.28c. 

The FMM DTOF shows good agreement with the analytic DTOF. The relative error 

between the analytic and finite volume based FMM DTOF is 1.2×10-3. 
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(a) 

  
(b) (c) 

Figure 3.28 2D Homogenous PEBI model: (a) grid, (b) analytic DTOF, (c) FMM-

based DTOF (reprinted with permission from Chen et al., 2021) 

 

The drainage volume and w() diagnostic plot based on the analytic and finite volume 

based FMM DTOF are compared in Figure 3.29. Similar results are obtained compared to 

the previous validation example (Figure 3.6). 
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(a) (b) 

Figure 3.29 Diagnostic plots comparing the analytical solution and our approach based 

on the 2D homogeneous PEBI model: (a) Vp() and (b) w() (reprinted with 

permission from Chen et al., 2021) 

 

Example 2: 2D heterogeneous case. This example is using the same grid as example 1 

but with heterogeneous permeability. Figure 3.30a shows permeability in log10 scale. 

Figure 3.30b shows the DTOF whose contours are distorted due to heterogeneity. The w() 

diagnostic plot (Figure 3.30c) also reflects the impact of heterogeneity compared to Figure 

3.29b. 
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(a) (b) 

  
(c) (d) 

Figure 3.30 2D Heterogeneous PEBI model: (a) permeability field, (b) FMM-based 

DTOF, (c) Vp(), and (d) w() (reprinted with permission from Chen et al., 2021) 

 

Example 3: Complex fracture geometry. The last demonstration of the finite volume 

based FMM application on PEBI grid incorporates discrete fracture modeling. Two 

scenarios are examined. The first scenario contains simplified hydraulic fractures (Figure 

3.31a), and the second scenario has natural fractures in addition (Figure 3.31b). The 

hydraulic fractures have a cluster spacing of approximate 200ft. The porosity is 0.05 for 

both the matrix and fractures. The matrix permeability is 0.0001 mD. Fracture 

conductivity for hydraulic and natural fractures are 10 mD-ft and 0.1 mD-ft, respectively. 

The pressure propagations in these two scenarios are shown in terms of DTOF (Figure 

3.31c-d). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.31 3D PEBI models: (a) scenario 1 containing hydraulic fracture only, (b) 

scenario 2 containing both hydraulic and natural fractures, (c) DTOF of scenario 1, 

and (d) DTOF of scenario 2 (reprinted with permission from Chen et al., 2021) 

 

The example cases also show the impact of natural fractures on the transient process 

according to the drainage volume and w() plots. The natural fractures connect the 
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hydraulic fractures and ultimately form a network of fractures. Compared to scenario 1, 

scenario 2 has much faster pressure propagation (Figure 3.32a), larger surface area of the 

fracture network, indicated by the w() value at early stage, and earlier detection of 

boundary effects (Figure 3.32b). 

  
(a) (b) 

Figure 3.32 Diagnostic plots comparing the two scenarios: (a) Vp() and (b) w() 

(reprinted with permission from Chen et al., 2021) 

 

It is worth mentioning that unstructured grids are known for their capacity to preserve the 

transient fidelity in fracture models due to their high resolution around fractures (Cipolla 

et al. 2011). However, the fine grids also cause remarkable computation cost which can 

limit the application of unstructured grids in field scale applications. The FMM based 

approach presented here provides an efficient solution for ranking high fidelity fracture 

models. 

 

3.6 Conclusions 

In this study, we have proposed a novel and robust method for solving the Eikonal 

equation using finite volume discretization and the FMM. The approach can be applied to 
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arbitrary simulation grids without the need of special treatments for irregular grid systems. 

The calculated DTOF provides powerful utilities in visualizing and analyzing the pressure 

front propagation in structured and unstructured grid systems. 

• The finite volume form of the Eikonal equation is free of grid geometries and depends 

on cell volumes and intercell transmissibilities which are universal for both structured 

and unstructured grids and provided by finite volume simulators.  

• The finite volume FMM implementation is validated with analytical solutions using 

isotropic and anisotropic models with homogeneous reservoir properties. Consistent 

DTOF distributions are obtained between the proposed approach and the analytical 

solutions.  

• The implementation is applied to reservoirs with hydraulic and natural fractures 

modeled by complex grid systems such as DPDK models, EDFM, and unstructured 

grids (PEBI). The generated DTOF maps are utilized to visualize the pressure front 

propagation in fractured reservoirs. The Vp() and w() diagnostic plots based on the 

DTOF are used to identify flow regimes and fracture network surface area.  

• For each type of grid, we have included applications on simplified and realistic field-

scale fracture models. The simplified models illustrate the concepts and analysis 

involved in the applications, and the field-scale models demonstrate robustness and 

efficiency of the proposed method for realistic applications. 
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CHAPTER IV 

AN EFFICIENT DEEP LEARNING-BASED WORKFLOW INCORPORATING A 

REDUCED PHYSICS MODEL FOR SUBSURFACE IMAGING IN 

UNCONVENTIONAL RESERVOIRS§ 

4.  

4.1 Chapter Summary 

We present a novel deep learning-based workflow incorporating a reduced physics 

model that can efficiently visualize well drainage volume and pressure front propagation 

in unconventional reservoirs in near real-time. The visualizations can be readily used for 

qualitative and quantitative characterization and forecasting of unconventional reservoirs. 

Our aim is to develop an efficient workflow that allows us to ‘see’ within the 

subsurface given measured data, such as production data. The most simplistic way to 

achieve the goal may be to merely train a deep learning-based regression model where the 

input consists of some measured data, and the output is a subsurface image, such as 

pressure field. However, the high output dimension that corresponds to spatio-temporal 

steps makes the training inefficient. To address this challenge, an autoencoder network is 

applied to discover lower dimensional latent variables that represent high dimensional 

output images. In our approach, the regression model is trained to predict latent variables, 

 

§Part of this chapter is reprinted with permission from Onishi, Tsubasa, Chen, Hongquan, Datta-Gupta, 

Akhil et al. 2021. An Efficient Deep Learning-Based Workflow Incorporating a Reduced Physics Model for 

Subsurface Imaging in Unconventional Reservoirs. Proc., SPE Annual Technical Conference and 

Exhibition. Copyright 2021 Society of Petroleum Engineers. Further reproduction is prohibited without 

permission.    
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instead of directly constructing an image. In the prediction step, the trained regression 

model first predicts latent variables given measured data, then the latent variables will be 

used as inputs of the trained decoder to generate a subsurface image. In addition, fast 

marching-method (FMM)-based rapid simulation workflow which transforms original 2D 

or 3D problems into 1D problems, is used in place of full-physics simulation to efficiently 

generate datasets for training. The capability of the FMM-based rapid simulation allows 

us to generate sufficient datasets within realistic simulation times, even for field scale 

applications. 

We first demonstrate the proposed approach using a simple illustrative example. 

Next, the approach is applied to a field scale reservoir model based on publicly available 

data on the Hydraulic Fracturing Test Site-I (HFTS-I), which is sufficiently complex to 

demonstrate the power and efficacy of the approach. We will further demonstrate the 

utility of the approach to account for subsurface uncertainty. 

Our approach, for the first time, allows for data-driven visualization of 

unconventional well drainage volume in 3D. The novelty of our approach is the framework 

which combines the strengths of deep learning-based models and the FMM-based rapid 

simulation. The workflow has flexibility to incorporate various asset types and associated 

measured data. 

 

4.2 Introduction 

There has been extensive research on the development and application of modeling 

approaches for tight unconventional reservoirs as a response to their significant reserves 
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in North America (EIA 2021). To date, many different approaches incorporating varying 

levels of data and physics have been proposed. 

For time series data, such as production data, decline curve analysis (DCA) (Arps 

1945, Fetkovich 1980, Carter 1985, Fetkovich et al. 1987, Blasingame et al. 1991, Palacio 

and Blasingame 1993, Agarwal et al. 1999, Ilk et al. 2008, Duong 2010, Valkó and Lee 

2010) and pressure/rate transient analysis (PTA/RTA) (Wattenbarger et al. 1998, Ilk et al. 

2010, Song and Ehlig-Economides 2011, Nobakht and Clarkson 2012b, 2012a, Uzun et 

al. 2016, He, Cheng, et al. 2018) have been widely used for forecasting and reservoir 

characterization. While these methods provide significant benefits in terms of simplicity 

and computational efficiency, capturing complex physics inherent in unconventional 

reservoirs, such as heterogeneities of hydraulic fracture and reservoir properties, still 

remains a challenge. 

Numerical simulations are capable of capturing the complex nonlinear dynamics 

in unconventional reservoirs. Multiple continuum models (Warren and Root 1963, 

Kazemi, Merrill, et al. 1976), unstructured discrete fracture models (Cipolla et al. 2011, 

Cipolla et al. 2012, Sun and Schechter 2015, Marongiu-Porcu et al. 2016), multi-segment 

wells (Du et al. 2016), embedded discrete fracture models (EDFMs) (Li and Lee 2008, 

Moinfar et al. 2014, Ţene et al. 2017), and their hybrid models (Jiang and Younis 2016, 

Yang et al. 2018) are some of the notable numerical models. In most unconventional 

reservoir developments in the U.S., operators often first drill the minimum number of 

wells (parent wells) to hold the acreages, followed by drilling infill (child) wells to 

enhance the recovery (Lindsay et al. 2018). As many operators initiated their 
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developments between 2003 and 2010, many parent wells have been depleted, leading to 

increasing number of infill wells in recent years. In fact, majority of the unconventional 

reservoirs have reached the point where the number of infill wells has surpassed that of 

newly drilled parent wells (Miller et al. 2016). Refracturing is another technique that can 

potentially improve the recovery from both parent and infill wells (Lindsay et al. 2016, 

Xu et al. 2017). Rather than the simple analytical models focusing on time series data, the 

capability of the numerical models that allows us to see within the subsurface by 

visualizing the simulation results on discretized gridblocks, such as pressure and stress 

fields, is particularly useful to better design field development plans including well and 

completion spacing as well as treatment designs. However, numerical simulation for 

unconventional reservoirs involving complex multiphase flow and geomechanics in high 

contrast systems with hydraulic and natural fractures can be too expensive to perform 

computationally intensive tasks like history matching, uncertainty quantification, and 

optimization. 

To address the time consuming full physics simulations, the use of fast proxy or 

surrogate models has been extensively investigated. Reduced order models (ROMs) using 

a proper orthogonal decomposition (POD) (Van Doren et al. 2006, Cardoso et al. 2009, 

He and Durlofsky 2014, Ghasemi et al. 2015) or a dynamic mode decomposition (DMD) 

(Ghommem et al. 2013, Ghommem et al. 2016, Kutz et al. 2016, Bao and Gildin 2017) 

are some of the popular approaches on the basis of model decomposition. Although 

efficient, the training (offline) procedure requiring multiple full simulation runs can be 

computationally expensive. As a result, while applications of such ROMs to cases like 2D 
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or simple 3D cases in both conventional and unconventional reservoirs are available (He 

et al. 2013, Klie and Florez 2020), field scale applications have not yet been fully explored. 

Another class of ROM is the fast-marching method (FMM)-based rapid simulation (Zhang 

et al. 2016). This method aims to achieve faster computations via coordinate 

transformation using the diffusive time-of-flight (DTOF), and it does not require the 

training processes as in the other ROMs discussed earlier. The DTOF represents the 

propagation time of the peak pressure disturbance caused by an impulse source and is 

given by a solution of the Eikonal equation which governs the propagation of pressure 

fronts and generalizes the depth of investigation for heterogeneous reservoirs (Datta-

Gupta et al. 2011). The Eikonal equation can be efficiently solved by the FMM, a class of 

front tracking algorithm (Sethian 1999). Once the DTOF is obtained, the original 2D or 

3D problems can be transformed into equivalent 1D problems along the DTOF, leading to 

significant savings in runtime of the simulation. The FMM-based simulation was 

originally developed for shale-gas reservoirs (Zhang et al. 2016), and has been extended 

to account for more complex problems including multi-phase and multi-component flow 

(Fujita et al. 2016, Iino et al. 2017), non-isothermal flow (Cui et al. 2016), gravity (Onishi 

et al. 2020), as well as more complex grid systems, such as unstructured grid (Yang et al. 

2017) and EDFMs (Xue, Yang, et al. 2019a), and has shown to provide good 

approximation of full physics simulations. Furthermore, the robustness and efficiency of 

the method has been demonstrated by the field scale applications (Iino, Onishi, et al. 2020, 

Iino, Jung, et al. 2020). 
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The success of deep learning in a variety of fields including computer vision, 

natural language processing, and many others (Goodfellow et al. 2016) has led to the use 

of such techniques in subsurface modeling. We note here that the following literature 

review is focused on the models for predicting state maps that are relevant to our proposed 

workflow, rather than simpler models, for example, ones with a univariate output 

dimension. One of the earliest works reported by Zhu and Zabaras (2018) showed an 

application of an image-to-image regression using a convolutional encoder-decoder 

network, whereby gridblocks in the discretized flow domain are treated like pixels in an 

image, to construct a surrogate model that predicts state maps given permeability maps. 

The model is applied to a simple problem involving single phase steady-state flow with 

Gaussian permeability distribution. Extensions of the approach to multiphase flow (Mo et 

al. 2019) and non-Gaussian conductivity fields (Mo et al. 2020) were presented. In the 

context of reservoir simulation, Tang et al. (2020) applied a residual U-Net (Ronneberger 

et al. 2015) and a convolutional long short term memory recurrent neural network 

(Hochreiter and Schmidhuber 1997) to develop a surrogate model that predicts state maps 

and flow responses at wells given permeability maps in 2D channelized reservoir models. 

An application of the surrogate model within a probabilistic history matching workflow 

has been demonstrated. Subsequently, Zhong et al. (2021) presented a slightly different 

deep learning-based surrogate model using the coupled generative adversarial network 

(Co-GAN) that predicts pressure and saturation simultaneously. Several recent works have 

focused on the application of such techniques for modeling geologic CO2 sequestration 

(Tang, Fu, et al. 2021, Tang, Ju, et al. 2021, Wen et al. 2021, Yan, Harp, Chen, et al. 2021). 
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Recently, there has been intensive research efforts on investigating the use of deep 

learning-based methods to solve forward and inverse problems in science and engineering 

applications. Notable works that brought a new paradigm of data-driven modeling have 

been presented by Raissi et al. (2019) and Zhu et al. (2019). The method is often referred 

to as physics-informed neural network (PINN) or physics-informed machine learning 

(PIML). While standard deep learning models are typically trained solely using data, the 

loss function in the PIML framework consists of data misfit term(s) as well as 

regularization term(s) based on some physical laws, which are typically residuals of 

governing partial differential equations, to ensure that the trained model is consistent with 

the given underlying physical laws. Partial derivatives in the physics term can be readily 

computed by leveraging the automatic differentiation (Baydin et al. 2018). In the field of 

reservoir modeling, applications of the PIML framework to the Buckley Leverett problem 

(Buckley and Leverett 1942) have been investigated by several authors (Fraces et al. 2020, 

Fuks 2020, Xu et al. 2021). More recently, Yan, Harp, and Pawar (2021) presented 

applications of PIML for modeling geologic CO2 sequestration. Despite the widespread 

use of deep learning-based methods for subsurface modeling in recent years, the 

applications are mostly limited to simple cases like two phase flows in 2D or simple 3D 

grid systems. The challenge here is that the workflow becomes very expensive as the 

complexity of the problem in terms of size in space and time and nonlinearity increases. 

There are two components contributing to the expensive runtime: generating datasets for 

training by running a large number of full physics simulations and the training (solving 

the minimization problem) to find optimal weights and biases of the neurons. The latter 
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tends to be more evident in the PIML framework due to the physics term(s) in the loss 

function that typically results in slower convergence, as in other minimization problems 

with regularizations. 

In this paper, we put forth a novel deep learning-based workflow incorporating a 

ROM that can efficiently visualize the well drainage volume and pressure propagation in 

unconventional reservoirs. The workflow generates a subsurface image (e.g., pressure 

propagation) given routinely measured data from the fields (e.g., production data, 

distributed data along horizontal wells, etc.). The expensive runtime of full physics 

simulations is addressed by replacing the forward model by the FMM-based rapid 

simulation. Furthermore, we leverage an autoencoder for dimensionality reduction to 

further enhance the workflow. The architecture of the deep learning model is designed to 

be simple so that the choices of the ROM and measured data are readily changeable. As 

presented in the following sections, the proposed approach is simple, efficient, and 

applicable to 3D field scale unconventional reservoir models that involve a large number 

of hydraulic fractures and multiphase flow. 

 

4.3 Methods 

In this section, we first describe the FMM-based simulation approach, then provide 

a description of the proposed deep learning-based workflow, followed by an illustrative 

example. 
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4.3.1 The FMM-Based Rapid Simulation 

In this study, we will take advantage of the FMM-based rapid simulation in place 

of the full physics simulation to accelerate the offline step. The workflow is summarized 

in Figure 4.1. Here, we will focus on the key concepts, and the reader is referred to Iino 

(2018) for more comprehensive details. The first step is to compute the multiphase 

diffusivity at all the gridlocks, 
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where, t is total mobility, k is permeability,  is porosity, ct is total compressibility, and 

x is location. The next step is to compute the DTOF by solving the Eikonal equation which 

is derived from a high frequency asymptotic solution to the diffusivity equation. The 

derivation is based on an analogy between pressure propagation in porous media and wave 

propagation (Vasco and Datta-Gupta 2016). 
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where,  and  are the DTOF and the diffusivity at location x. The DTOF represents travel 

time of a propagating pressure front. The Eikonal equation can be solved by a front 

tracking algorithm called the FMM (Sethian 1999) that is very efficient, because the 

computations only involve solving local quadratic equations, and there is no global matrix 

inversion. Once the DTOF is obtained, it can be utilized as spatial coordinate to transform 

3D problems into equivalent 1D problems. Visually, each of the rings in the step 2 in 

Figure 4.1 represents a single gridblock after the coordinate transformation. 

Mathematically, we can formulate 1D diffusivity equation as follows (Zhang et al. 2016), 
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where, the w() function represents a surface area of propagating pressure front and 

defined as, 
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where, Vp() is cumulative drainage pore volume along the DTOF. In other words, it is 

sum of pore volumes within gridblocks whose  values are smaller than the  of interest. 

After the coordinate transformation, the 1D flow domain is discretized, and the pore 

volumes and transmissibilities are computed. Finally, rapid 1D simulation is performed, 

which has been shown to be good approximation of the original 3D problem and offers 

significantly faster computations. While single phase and constant compressibility and 

viscosity are assumed in Eq. (4.3) for simplicity, extensions to multiphase and 

multicomponent flow as well as multiple continuum models are available in literature 

(Iino, Onishi, et al. 2020). This workflow will be used as a fast forward model in the 

following sections. 

 

Figure 4.1 The FMM-based simulation workflow (Onishi et al. 2020) (reprinted with 

permission from Onishi et al., 2021) 
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4.3.2 The Proposed Approach 

As an example, we consider a situation where measured data, including multiphase 

production rates, bottom-hole pressure, and flow rate along a lateral are available. Our aim 

is to develop an efficient workflow that allows us to ‘see’ within the subsurface given 

measured data (Appendix A). 

 

Figure 4.2 Overview of the proposed approach (reprinted with permission from Onishi 

et al., 2021) 

 

The most simplistic model to achieve our objective may be a deep learning-based 

regression model using a feedforward neural network and convolutional neural networks 

(CNNs). Specifically, the inputs are first passed to the feedforward neural network 

containing several hidden layers. The last hidden layer is connected to a stack of CNNs 

that eventually outputs a 3D subsurface image. This simple architecture, however, may be 

difficult to train because of the high output dimension that corresponds to the number of 

discretized spatio-temporal steps. In practical applications, it can easily exceed the order 
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of millions. A viable remedy would be the use of dimensionality reduction techniques, 

such as principal component analysis (PCA). PCA-based techniques have found various 

applications in geological parameterization (Oliver 1996, Reynolds et al. 1996, Sarma et 

al. 2006). A well-known limitation of the PCA-based parameterization techniques is the 

Gaussian assumption that makes it inapplicable to complex parameter distributions, such 

as those found in permeability distributions in channelized reservoirs (non-Gaussian). 

Subsequently, several extensions including the kernel PCA (KPCA) (Sarma et al. 2008) 

and the optimization-based PCA (O-PCA) (Vo and Durlofsky 2014) have been proposed. 

Recently, applications of deep learning-based generative models, such as (variational) 

autoencoders (Canchumuni et al. 2017, Laloy et al. 2017), generative adversarial network 

(GAN) (Chan and Elsheikh 2017, Laloy et al. 2018), and CNN-PCA (Liu et al. 2019), to 

geological parameterization are being actively explored. These techniques are essentially 

nonlinear generalization of PCA (Baldi and Hornik 1989) and have shown to outperform 

the existing PCA-based techniques in capturing more complex features. In our application, 

since the problem settings involve high contrast systems due to hydraulic and natural 

fractures, the output images are likely to exhibit sharp contrasts (similar to channelized 

reservoirs). Therefore, we adopt an autoencoder whose capability in capturing complex 

features is well suited for our problems of interest. Among the deep learning-based 

generative methods, an autoencoder may be one of the simplest methods. The use of more 

sophisticated methods will be investigated in future works. 

A step by step workflow of the proposed approach is summarized in Figure 4.3, which is 

based on the well-known Design of Experiment (DoE)-based techniques (Bhark and 
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Dehghani 2014, Olalotiti-Lawal et al. 2018, Li et al. 2019). More detailed descriptions of 

the workflow in Figure 4.3 are as follows: 

1. Parameters that potentially have influences on the objective function are identified, 

typically based on some prior knowledge. The objective function is defined as a root 

mean square error over nd data points, 
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= −m m  (4.5) 

where, Oj(m) is the objective function for metric j (=oil production rate (OPR), water 

production rate (WPR), gas production rate (GPR), cumulative oil production (OPC), 

etc. at a certain well) given parameter m, di
obs is observed data, and di

sim(m) is 

simulation response given parameter m at step i. In this study, the one-variable-at-a-

time design is applied to generate tornado plots, from which the influential parameters 

are selected for the subsequent steps. It should be noted that the simple tornado plots 

have several limitations: coverage of the uncertain space is limited, the results are 

strongly dependent on the base case, and interactions between parameters may not be 

accounted for (Li et al. 2019). More sophisticated statistical analysis, such as t-tests, 

will be considered in future work. 

2. The selected influential parameters from the step 1 will be used in sampling via a Latin 

hypercube design (McKay et al. 2000) to generate cases for the FMM-based 

simulation. The number of samples is typically in the order of hundreds or thousands, 

depending on complexity of the problem. 

3. The FMM-based rapid simulation is applied to the samples from the step 2 to generate 

datasets. The rapid simulation capability allows users to explore a variety of 
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parameters, even for field scale applications within realistic simulation times that 

would be difficult to achieve with full physics simulations. 

4. The DTOF maps are used to train an autoencoder which learns a nonlinear mapping 

of an input image ( ix ) to a low dimensional latent space via ( )i i=z x  (encoder), then 

back via ( )ˆ
i i=x z  (decoder) by solving the minimization problem, 
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where, AEθ  are the parameters to be tuned (weights and biases) in the autoencoder 

during the training, and ns is the number of samples. The loss function is defined as a 

mean square error between an original DTOF image ( ix ) and a reconstructed DTOF 

image ( ˆ
ix ). Here, iτ  is normalized to ix  [0 1] using minimum and maximum values of 

τ among the training and validation datasets, 
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The encoder and decoder include CNNs and dense layers, and more details of the 

architecture will be discussed in the following sections. In our application, instead of 

a set of pressure and saturation maps, a DTOF map is used as representative subsurface 

images over the simulation period. This means that each sample has only one image 

of DTOF, rather than a set of pressure and saturation maps over the time steps. The 

intention behind this is as follows: 

• The use of a single DTOF image per realization allows us to work with much 

simpler autoencoder architecture compared to the use of a set of the state maps that 
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may require more complex architecture like recurrent neural networks, making the 

training more difficult. 

• Once we predict the DTOF, it can be readily used as a 1D spatial coordinate in the 

rapid FMM-based simulation, from which we can obtain pressure and saturation 

maps. The runtime of the FMM-based simulation is typically less than a few 

minutes. Alternatively, we could use a more complex autoencoder for a set of 

pressure and saturation maps to directly predict them. However, the computational 

cost for the training is expected to be more expensive. 

• The DTOF depends on the multiphase diffusivity which is a function of pressure 

and saturation (Eq. (4.1)), and therefore can change during simulations. The initial 

condition is typically used to compute the multiphase diffusivity (step 1 in Figure 

4.1). As reported by Iino, Onishi, et al. (2020), changes in the total mobility and 

total compressibility due to pressure and saturation changes are compensated by 

each other (Eq. (4.1)) in typical unconventional reservoir development scenarios 

(i.e., depletion), and the shape of the DTOF map does not significantly change 

during simulations. Therefore, it is reasonable to use a single representative DTOF 

image per realization. 

5. In this step, we train a deep learning-based regression model consisting of a simple 

feedforward neural network that predicts a vector of the latent variable given measured 

data, such as production data, by solving the following minimization problem, 
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where, regθ  are the weights and biases on the neurons in the regression model, z  is 

the known latent variable (normalized to [0 1] in a similar manner to Eq. (4.7)) from 

the trained autoencoder, and ẑ is the predicted latent variables. While the multiphase 

production data and flow rate along the lateral are collected and saved for this step in 

Figure 4.3, the workflow has flexibility to incorporate different data types, and is 

applicable to various asset types and associated measured data. 

6. We have already trained and saved the autoencoder (step 4) and the regression model 

(step 5) from the previous steps. In this step, the two models are combined to construct 

a hybrid model that consists of the regression model and the decoder (part of the 

autoencoder). The hybrid model predicts a DTOF map given measured data. An 

extension of the workflow to account for uncertainties will be discussed in the next 

section. 

 

It should be noted that there exist recent works that present deep learning-based 

methods combining a regression model with an autoencoder (Champion et al. 2019, Razak 

and Jafarpour 2020) and an approach combining a reduced physics model and a response 

surface design (Tanaka et al. 2020), and part of our workflow is inspired by them. The 

novelty of our approach is the use of the FMM-based simulation and the concept of the 

DTOF that substantially accelerates the workflow, making it applicable to field-scale 

applications. Additionally, the simple and flexible workflow is applicable to various types 

of measured data. 
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Figure 4.3 The proposed deep learning-based workflow incorporating the FMM-based 

rapid simulation (reprinted with permission from Onishi et al., 2021) 

 

4.3.3. Example: A Synthetic Unconventional Reservoir 

Case Description. In this section, we demonstrate the proposed workflow using a 2D 

synthetic unconventional reservoir. The model size is 1,000 × 1,000 × 10 ft3 with 
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100×100×1 grid discretization for the matrix domain. The model consists of a horizontal 

well (P1) with 5 hydraulic fractures and 10 natural fractures as shown in Figure 4.4. In 

addition, there is a monitoring well (O1) near P1 that measures downhole pressure at the 

five gauges (gray dots along O1 in Figure 4.4). In this example, we skip the step 1 in 

Figure 4.3 and focus on geometry and orientation of both hydraulic and natural fractures 

as parameters of interest as shown in Table 4.1. Assuming uniform distributions for all the 

parameters, a Latin hypercube sampling is applied to generate 1,000 samples for step 3 in 

Figure 4.3. The fractures are described by the EDFM technique (Li and Lee 2008) that 

enables flexible mesh generation and is well suited for our application, where a large 

number of realizations with different fracture orientation and geometry will be generated. 

For hydraulic and natural fracture gridblocks, uniform conductivity values of 100 (mD-ft) 

and 10 (mD-ft) are assigned, and the matrix domain has homogeneous properties as shown 

in Figure 4.4. In addition, for the matrix gridblocks connected with: (1) the hydraulic 

fracture gridblocks and (2) natural fracture gridblocks connecting with the hydraulic 

fractures, a permeability value of 1.0 (mD) is used to mimic the results of stimulation. 

Next, DTOF maps are generated using the FMM for all the samples. Although well 

established for structured grid systems, for irregular grid systems like EDFMs, special 

treatments, such as sub-gridding, are required to compute the DTOF using the original 

FMM approach based on the finite difference discretization (Xue, Yang, et al. 2019a). 

Such special treatments are typically not straightforward and difficult to be generalized. 

In our application, we utilized the recently proposed finite volume based FMM that is 

robust and applicable to arbitrary grid systems (Chen et al. 2021). Grid geometry of one 
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of the samples and corresponding DTOF are provided in Figure 4.4, from which we 

observe effects of the fractures. Specifically, while the DTOF propagates smoothly in the 

homogeneous matrix domain, it shows discontinuities near the hydraulic fractures due to 

the large conductivity contrasts as seen in the enlarged view in Figure 4.4. 

 

Figure 4.4 2D synthetic unconventional reservoir. Top: model domain and fracture 

geometry, and bottom: the DTOF map and an enlarged view (reprinted with 

permission from Onishi et al., 2021) 

 

Parameter Low High 

Hydraulic fractures (x5) 
  

Length, LHF, (ft) 100 500 

Natural fractures (x10) 
  

Coordinate of origin, x0, (ft) 200 650 

Coordinate of origin, y0, (ft) 200 650 

Angle (degree from horizontal line, y=y0) 20 40 

Length, LNF, (ft) 35 100 

Table 4.1 Input variables and their ranges (reprinted with permission from 

Onishi et al., 2021) 
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The FMM-based simulation. The following inputs are used together with the grid 

information for the FMM-based simulation. The fluids modeled in this study are described 

by three phase (oil, water, and gas) flow based on the publicly available data on the HFTS-

I test site in the West Texas Midland Basin. The relative permeability curves are provided 

in Figure 4.5a, and capillary pressure is assumed to be negligible. Rock compaction effects 

due to depletion are described by transmissibility and pore volume multipliers shown in 

Figure 4.5b. The model is initialized using uniform pressure, water saturation, and gas 

saturation of 3,500 (psi), 0.4, and 0. The bubble point pressure is approximately 2,800 

(psi), and the reservoir is initially undersaturated. The well (P1) produces fluids for 200 

days with a minimum bottom-hole pressure control of 1,000 (psi). 

   

(a) (b) 

Figure 4.5 (a): three phase relative permeability curves, and (b): rock compaction 

table. Trs and Vp stand for transmissibility and pore volume multipliers. The subscripts 

are domain indices. ‘m’, ‘srv’, and ‘f’ stand for matrix, stimulated reservoir volume 

(matrix gridblock connecting with fractures), and fracture (reprinted with permission 

from Onishi et al., 2021). 

 

Validation of the ROM. Before applying any ROMs, it is useful to ensure that the ROM 

is good approximation of the full-physics simulation. We randomly selected 100 from the 

1,000 samples and compared the simulation results between the full-physics simulation 

and the FMM-based simulation. The average runtimes of the full physics simulation and 
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FMM-based simulation are roughly 70 and 30 seconds, respectively. In the FMM-based 

simulation workflow, there are additional steps for preprocessing (solving the Eikonal 

equation, Eq. (4.2) via the FMM) for which the runtime is observed to be almost negligible 

(~0.005 seconds). As reported by Iino, Onishi, et al. (2020), the speedup factor is expected 

to be more significant as the complexity of the problem increases. Comparisons of 

cumulative production are provided in Appendix A, from which an overall good 

agreement is obtained. We will further validate the FMM-based simulation by conducting 

more quantitative comparisons through the application of the relative error over the time 

steps, 
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where, j
s is the relative error of sample s, in terms of metric j (=OPR, WPR, and GPR), 

nd is the number of data points (time steps), di
ref and di

FMM stand for the simulation results 

using reference solution (full-physics simulation) and FMM-based simulation at step i. 

The overall relative error of metric j over the randomly selected 100 samples is computed 

as, 
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where, ns
FMM is the number of samples (=100). As a result, the overall relative error values 

of 1.01e-5, 2.47e-5, and 3.95e-5 are obtained for OPR, WPR, and GPR. We notice here 

that the FMM-based simulation slightly overestimates the cumulative productions. This is 

because it is based on the 1D DTOF coordinate that approximates the original 2D problem. 

For more details on assumptions in the FMM-based simulation and potential limitations, 
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the reader is referred to Iino (2018). Nevertheless, the relative errors are sufficiently small, 

validating the use of the FMM-based simulation. 

 

 
Figure 4.6 Comparisons between full-physics simulation (reference) vs FMM-based 

simulation. Top: cumulative production comparisons of one of the samples. Bottom: 

Cross-plots comparing cumulative production at the end of simulation period for the 

randomly selected 100 samples (reprinted with permission from Onishi et al., 2021). 

 

Generating datasets. The FMM-based simulation is applied to all the 1,000 samples to 

generate datasets. The DTOF maps, multiphase production data, and pressure data at the 

pressure gauges along the monitoring well are saved for the subsequent steps (Figure 4.7). 

The use of downhole pressure data at the pressure gauges instead of flow rate data along 

a lateral as in Figure 4.3 is to demonstrate flexibility of the proposed workflow. An 
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interesting observation here is that some of the samples show flat pressure responses at 

the gauges, whereas others show declining trends. This is because lengths of the five 

hydraulic fractures vary in each sample. The flat trends are observed at the pressure gauges 

that are not affected by hydraulic fractures. For the next steps, the samples are divided into 

700, 150, and 150 for training, validation, and test, for training both an autoencoder and a 

regression model. 

 

Figure 4.7 Datasets generated using the FMM-based rapid simulation (reprinted with 

permission from Onishi et al., 2021) 

 

Training an autoencoder. Next step is to train an autoencoder to discover latent variables, 

𝒛 from high-dimensional input data. Architecture of the autoencoder includes CNNs and 

dense layers shown in Figure 4.8 and more detailed settings of the autoencoder are 

provided in Appendix A. We note here that, the number of active gridblocks (or pixels) 
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has to be the same in all the samples for an autoencoder training. In the EDFM framework, 

fractures are discretized at boundaries of the matrix gridblocks, and the discretized fracture 

control volumes are connected with the matrix gridblocks via non-neighbor connections 

(NNCs). Therefore, the number of active gridblocks (matrix + fractures) can vary in 

different samples with different fracture configurations, and the raw DTOF maps are not 

directly applicable to an autoencoder. In our application, since our primary goal is to 

visualize the subsurface images, we focus on the matrix domain so that dimensions of the 

DTOF maps are consistent across all the samples. This is a reasonable workaround for the 

following reasons. First, effects of the fractures are implicitly reflected in the matrix 

gridblocks connecting with the fracture gridblocks. Second, the discrete fractures have 

very small pore volumes, and the flow inside the fractures typically does not exhibit 

significant impact on analyses using DTOF maps, such as the w() diagnostic plot (Xue, 

Yang, Park, et al. 2019). 

 

Figure 4.8 Schematic of the autoencoder (reprinted with permission from Onishi et al., 

2021) 

 

For the training, batch size of 64, the maximum number of epochs of 5,000, and 

patience of 50, are used. The optimization algorithm used in this study is the adaptive 

moment estimation (ADAM) (Kingma and Ba 2014), a commonly used gradient-based 
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method in training deep learning models. The initial learning rate in ADAM is 0.001. The 

runtime for the training process was approximately 3 minutes, which had stopped at 

around 1200 epochs because the validation loss did not show improvement in the last 50 

epochs (=patience) (Figure 4.9). The training was run on a GPU in Google Colaboratory 

(Bisong 2019) which is a shared GPU, the runtime is observed to be slightly different in 

each run depending on the available memory. The trained model is then applied to the test 

dataset (150 samples), and visual comparisons between the original DTOF maps and 

reconstructed (predicted) maps are shown in Figure 4.10. Although some small effects of 

natural fractures are partially not captured in the predicted DTOF maps, an overall good 

agreement is obtained. Additionally, the relative errors are evaluated for the test samples 

as, 
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where, 
s is the relative error of sample s, in terms of , nb

m is the number of the matrix 

gridblocks (not the total number of active gridblocks including fractures). Then, the 

overall relative error over the 150 test samples is computed as, 
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ns
test is the number of test samples (=150). As a result, an overall relative error of 2.81e-4 

is obtained. The low value indicates successful training of the autoencoder. 
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Figure 4.9 Model loss on training and validation datasets (autoencoder) (reprinted with 

permission from Onishi et al., 2021) 

 

  

Figure 4.10 Visual comparison of DTOF maps between randomly selected 10 samples 

among the 150 test samples (top), and corresponding reconstructed DTOF maps 

(√days) using the trained autoencoder (bottom) (reprinted with permission from 

Onishi et al., 2021) 

 

Training a regression model. Next, a regression model is trained using a simple 

feedforward neural network and the same training and validation datasets. Its architecture 

is shown in Figure 4.11, and more detailed settings can be found in Appendix A. The 

ADAM optimizer with the same settings as the autoencoder training is applied, and the 

result of the minimization is provided in Figure 4.12. With the simple architecture, runtime 

for the training was less than one minute. Again, the relative error for the regression model 

was computed as follows, 
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where, z
s is the relative error of sample s, in terms of z, nz is dimension of the latent space 

(=32). Then, the overall relative error over the 150 test samples is, 
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As a result, we obtained the relative error of 5.57e-2. For both the autoencoder and the 

regression model, multiple combinations of hyperparameters (model architecture, 

activation function, batch size, learning rate, etc.) were tested, and the ones that showed 

the best performance (minimum validation loss) were used. The models could be further 

improved by exploring the hyperparameter space (Bergstra and Bengio 2012), and this 

will be investigated in our future work. 

 

Figure 4.11 Architecture of the regression model (reprinted with permission from 

Onishi et al., 2021) 
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Figure 4.12 Model loss on training and validation datasets (regression model) 

(reprinted with permission from Onishi et al., 2021) 

 

Prediction (blind-test). The trained regression model and the decoder are combined to 

build a hybrid model that predicts DTOF maps given measured data. The hybrid model is 

applied to measured data from one of the test samples. A comparison between the 

predicted DTOF map and the true DTOF map is shown on the right hand side in Figure 

4.13, from which the predicted DTOF visually shows good agreement with the true DTOF. 

We notice here that the 3rd hydraulic fracture is shorter than the others. This observation 

is consistent with the measured data at the pressure gauges, where only the 3rd gauge shows 

flat pressure throughout the simulation period, meaning that the 3rd fracture did not reach 

the 3rd gauge. The relative error between the predicted DTOF and true DTOF maps (Eq. 

(4.11)) is 1.44e-3. In addition, the hybrid model was applied to all the 150 test samples. 

Visual comparisons of DTOF maps are provided in Figure 4.14 where we can confirm 

similar trends between the true DTOF maps and the predicted maps. Furthermore, we 

evaluated the overall relative error over the test samples using Eq. (4.12) and obtained a 

value of 3.52e-3, validating the hybrid model. 
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Figure 4.13 Architecture of the hybrid model (reprinted with permission from Onishi 

et al., 2021) 

 

 

Figure 4.14 Visual comparison of DTOF maps between randomly selected 10 samples 

among the 150 test samples (top), and corresponding predicted DTOF maps (√days) 
using the hybrid model (bottom) (reprinted with permission from Onishi et al., 2021) 

 

Let us consider a situation where the measured data shown in left side in Figure 

4.13 is available. We predicted a single DTOF map using the hybrid model. At this point, 

the prediction is deterministic, and we would like to obtain multiple plausible realizations 

of DTOF maps to account for subsurface uncertainty. In our approach, we aim to find 

samples among the training and validation datasets that are similar to the predicted DTOF 

map. To this end, multidimensional scaling (MDS) is applied. MDS is a technique to 

translate a dissimilarity matrix consisting of pair-wise dissimilarities between individuals 

associated with high-dimensional data into a configuration of points in n-D Euclidian 

space (Borg and Groenen 2005). The visually intuitive representation of the individuals in 
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a low dimensional map is useful for understanding dissimilarities between them. In the 

context of subsurface modeling, MDS has found many applications, for example, 

uncertainty quantification in reservoir performance (Scheidt and Caers 2009). In our 

application, we utilized MDS to map the training and validation samples together with the 

test case into a low dimensional (2D) space, whereby the measure of dissimilarity to 

compute a dissimilarity matrix is values of the latent variables (z) associated with each of 

the samples. The resultant 2D map through the application of MDS is provided in Figure 

4.15, in which each point represents a sample, and distances between points indicate 

dissimilarities between the samples, in terms of the values of latent variable (z). As seen 

here, DTOF maps associated with the points that are far away from each other show quite 

different characteristics. In contrast, similar DTOF maps are obtained from the nearest 

neighbors (red points) of the test case (×). The nearest neighbors can be viewed as multiple 

plausible realizations of subsurface images in this example and can be utilized for a variety 

of applications. For example, the visualizations can help engineers design field 

development strategies, such as well and completion spacing for infill wells. Also, the 

DTOF maps can be utilized as a 1D spatial coordinate (Figure 4.1) to perform rapid 

simulations for the multiple scenarios. 
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Figure 4.15 2D MDS space where each point represents a sample (reprinted with 

permission from Onishi et al., 2021). 

 

Furthermore, we will demonstrate the utility of our approach using another 

scenario where the pressure gauges are not available. In this case, the regression model 

was trained solely based on the production data and then was combined with the trained 

decoder. Subsequently, the hybrid model was used to predict a DTOF map given the 

production data from the same test sample as shown in Figure 4.16. As opposed to the 

previous scenario, the predicted DTOF map shows much larger discrepancies compared 

with the true DTOF map (the relative error of DTOF is 1.20e-2). This observation suggests 

that the pressure gauges provide valuable information for understanding the subsurface. 

Although this conclusion is foreseeable in this simple exercise, the workflow is flexible 

and applicable to various scenarios and is a useful tool to evaluate different data-

acquisition programs. That is, the workflow allows us to ask questions like “should we 

install pressure gauges? If so, where and how many of them do we need?” This can be 



 

114 

 

quickly answered by training multiple regression models (step 5 in Figure 4.3) with 

varying availability and locations of the gauges (typically takes less than one minute each), 

then evaluating the performance of the hybrid model. Since the dynamic pressure 

responses at different locations in the reservoir can be readily accessible from the existing 

simulation outputs (step 2 in Figure 4.3), locations of the gauges do not have to be the 

same as the five gauges in the example. Also, the data type is not limited to pressure 

responses. Any data type, as long as it is available in outputs or inputs of the simulator, 

can be readily incorporated in the workflow. Optimal combinations of types and amount 

of data to be collected and resultant uncertainty reduction can be systematically found. For 

example, we can solve a minimization problem, where the regression is a forward model, 

and the objective function consists of a test error term for DTOF maps and is 

simultaneously penalized as cost of the measurements increases. The workflow can be 

further enhanced by incorporating more elegant approaches for uncertainty quantification 

(e.g., He, Sarma, et al. (2018)) or sensor placing optimization (Manohar et al. 2018). We 

leave these potential applications for future work. 

 

Figure 4.16 Architecture of the hybrid model. Inputs consist of production data only 

(reprinted with permission from Onishi et al., 2021). 
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4.4 Field Application 

In this section, we present an application of our approach to a field-scale 

unconventional reservoir. The case is sufficiently realistic to demonstrate practicality of 

the proposed approach. 

Case Description. The case is built after a field-based hydraulic fracturing research 

program in the West Texas Midland Basin, the HFTS-I (Ciezobka and Reeves 2021). The 

primary targets of the study are eleven horizontal wells with 400+ stages drilled in upper 

and middle Wolfcamp formation. A variety of collected field data, such as core data and 

microseismic surveys, has been made publicly available by the operaters. In our 

application, we focus on one of the wells, and built a sector geologic model (Figure 4.17a). 

The size of the model is 1,886.5×11,237×618 ft3 with 23×137×47 grid discretization for 

the matrix domain. More than 100 hydraulic fractures are added on top the matrix domain 

via the EDFM approach, and their extent and orientations are based on the available 

microseismic data (Maity 2018, Stegent and Candler 2018). The fluid model is the same 

as the one in the previous example case. For the matrix domain, homogeneous 

permeability and porosity (km=0.05 nD and m=0.05) are assumed, and uniform values of 

3000 psi, 0.3, 0, and 0.987 are assigned for initial pressure, water saturation, gas saturation, 

and solution gas-oil-ratio. These values on the gridblocks are based on the available data 

and a previous simulation study (Forrest et al. 2018). The bubble point pressure is 

approximately 2,800 (psi), and therefore the reservoir is initially undersaturated. In 

addition, since little observed data during production phase is available, synthetic 
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observed data, including multiphase production and bottom-hole pressure data for 150 

days, is generated (Figure 4.17b). 

  

(a) (b) 

Figure 4.17 (a) Field-scale reservoir with 100+ hydraulic fractures described by 

EDFMs and (b) the observed data (reprinted with permission from Onishi et al., 2021) 

 

Parameterization. The first step is to identify an initial set of parameters that are thought 

to be influential on the observed data, and their distribution and ranges as shown in Table 

4.2. There are two regions: hydraulic fractures and stimulated reservoir volume (SRV). 

The SRV region is defined as matrix gridblocks connecting with fracture gridblocks via 

non-neighbor connections (NNCs), whereas the hydraulic fracture regions are simply the 

hydraulic fracture gridblocks. This means that the SRV region varies in each realization 

with different fracture geometries. The hydraulic fractures described by the EDFMs 

(Figure 4.17) correspond to propped regions that are part of the estimated fracture extents 

based on the microseismic data at HFTS-I and its interpretation (Stegent and Candler 

2018). Lengths (horizontal extent and height) of the fractures are parameterized by a 

uniform multiplier that corresponds to fraction of the propped region. Properties of the 

fractures including their conductivity and porosity are also considered. The effects of 



 

117 

 

stimulation near the fractures, such as small natural fractures connecting with the 

hydraulic fractures, are represented as effective gridblock permeability at the SRV region, 

to which a uniform permeability multiplier is applied. For both fracture and SRV domain, 

uniform values of high initial water saturation are assigned to mimic the effects of 

fracturing treatments. In addition, rock compaction effects due to depletion are described 

by transmissibility and pore volume multipliers (Raghavan and Chin 2002, Park et al. 

2021), 

 
( )expjTRMULT b P= −   

(4.15) 

and, 

 ( )
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where, TRMULTj is transmissibility multiplier for region j (fracture or SRV), bj is the 

transmissibility multiplier coefficient that corresponds to values of TRMULT in Table 4.2 

for region j, P = Pini-P, PVMULTj is pore volume multiplier for region j, and cpp is pore 

volume multiplier coefficient (PVMULT in Table 4.2). In this application, the three phase 

relative permeability functions for the two regions are modeled according to the Brooks-

Corey function (Brooks and Corey 1964) defined as, 
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where, the normalized water and gas saturations are given by, 
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The three phase oil relative permeability is then computed as, 

 
( )g rog w wc row

ro

g w wc

S k S S k
k

S S S

+ −
=

+ −
 

(4.20) 

where, the residual and connate saturations are assumed to be zero. Also, end-points of 

the relative permeabilities are 1.0 except for the water relative permeability for the matrix 

(water-wet). These setting are based on the laboratory experiments on core samples 

obtained from the Wolfcamp formation (Ojha et al. 2018). For the sensitivity study, we 

will focus on the exponents and end-point water relative permeability for the matrix. An 

example of rock compaction tables and relative permeability curves is provided in Figure 

4.5. 

Parameter Symbol Low Base High Distribution 

Hydraulic fractures (HF)      

Length multiplier, (-) HF_LENGTH 0.2 0.35 0.5 Uniform 
Conductivity, (mD-ft) HF_COND 10 60 100 Uniform 

Porosity, (-) HF_PORO 0.05 0.1 0.2 Uniform 
Transmissibility multiplier coefficient, (psi-1) HF_TRMULT -5 -4 -3 Uniform (log10) 

Initial water saturation, (-) HF_SWI 0.5 0.7 0.9 Uniform 
Water relative permeability exponent, (-) HF_KRWN 1 3 5 Uniform 

Oil-water relative permeability exponent, (-) HF_KROWN 1 3 5 Uniform 
Gas relative permeability exponent, (-) HF_KRGN 1 3 5 Uniform 

Gas-oil relative permeability exponent, (-) HF_KROGN 1 3 5 Uniform 

SRV      

Permeability multiplier, (-) SRV_KMULT 3 5 7 Uniform (log10) 
Transmissibility multiplier coefficient, (psi-1) SRV_TRMULT -4.3 -3.3 -2.3 Uniform (log10) 

Initial water saturation, (-) SRV_SWI 0.3 0.45 0.6 Uniform 
End point water relative permeability, (-) SRV_KRWEP 0.3 0.5 0.7 Uniform 
Water relative permeability exponent, (-) SRV_KRWN 4 8 12 Uniform 

Oil-water relative permeability exponent, (-) SRV _KROWN 2 5 8 Uniform 
Gas relative permeability exponent, (-) SRV _KRGN 2 5 8 Uniform 

Gas-oil relative permeability exponent, (-) SRV _KROGN 2 5 8 Uniform 

HF & SRV      

Pore volume multiplier coefficient in rock 
compaction table, (-) 

PVMULT 30 40 80 Uniform 

Table 4.2 Identified uncertain parameters and their ranges for the field-scale 

unconventional reservoir (reprinted with permission from Onishi et al., 2021) 
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While we have defined the parameters for large-scale updates, such as uniform 

multipliers, in Table 4.2, we eventually would like to consider more local information like 

stage-level hydraulic fracture lengths. To this end, we follow a two-step hierarchical 

approach. First, we perform large-scale updates of the reservoir properties in Table 4.2 by 

integrating the observed production data into the reservoir model using the multi-objective 

genetic algorithm (MOGA). The history matched reservoir model and reduced 

uncertainties of the parameters will be the starting point of the next step which involves 

sampling of the influential parameters (step 2 in Figure 4.3). The parameters for the 

sampling include two categories: (1) lengths of the hydraulic fractures, and (2) parameters 

whose uncertainties remained relatively high even after history matching, if any exist. For 

the other parameters, whose uncertainties are found to be sufficiently reduced after history 

matching, values from the best individual with the smallest objective function values will 

be used for all the samples. The subsequent steps are the same as the example case 

discussed before. 

Sensitivity Analysis. A one-variable-at-a-time design is applied to generate tornado plots 

shown in Figure 4.18. The simulations are carried out with bottom-hole pressure constraint 

based on the observed data, and therefore the metrics of the objective functions are OPR, 

WPR, and GPR (Eq. (4.5)). As a result, majority of the parameters for the hydraulic 

fractures and two parameters among the parameters for the SRV region including 

permeability multiplier and initial water saturation are found to be sensitive, and these will 

be used during history matching. 
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Figure 4.18 Tornado plots showing the results of the sensitivity analysis (reprinted 

with permission from Onishi et al., 2021) 

 

Validation of the ROM. While the 3D flow simulations were used in the sensitivity 

analysis, running hundreds or thousands of them for history matching can be 

computationally expensive. Instead, the FMM-based rapid simulation will be used to 

accelerate the workflow. In this section, we validate the accuracy of the FMM-based 

simulation by comparing with 3-D simulation results for the 37 samples used in the 

sensitivity analysis (high and low cases for 18 parameters plus the base case). The 

comparisons are summarized in Figure 4.19, in which there are excellent agreements 

between the two methods. Furthermore, the overall relative errors with respect to OPR, 

WPR, and GPR are 8.58e-6, 9.44e-6, and 1.34e-6, respectively. These observations 

validate the use of the FMM-based simulation approach. We notice here that the accuracy 

is better than the example case (Figure 4.6). This may be because of the absence of natural 

fractures in this case. The runtime of the FMM-based simulations is 2-3 minutes on 

average, which is roughly 5 fold reduction compared to the 3D simulation. The speedup 

factor becomes more evident as size and complexity of the problem increases. 
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Figure 4.19 Comparisons between full-physics simulation (reference) vs FMM-based 

simulation. Top: cumulative production comparisons of one of the samples. Bottom: 

Cross-plots comparing cumulative production at the end of simulation period for the 

37 samples used in the sensitivity analysis (reprinted with permission from Onishi et 

al., 2021) 

 

Global history matching. Reservoir model calibration is performed using the MOGA 

(Park et al. 2013) to update the 11 sensitive parameters identified from the sensitivity 

analysis. Three objective functions are defined as misfits between the observed data and 

simulated responses, as described in Eq. (4.5) where the metric j = OPR, WPR, and GPR. 

In our application, first 120 days of the observed data is used to compute the objective 

functions, whereas the rest (30 days) will be used for validation. The MOGA was run for 

30 generations with a population size of 50, and the results are provided in Figure 4.20. 
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We see that values of the objective functions are decreasing as generation advances 

(Figure 4.20a). Also, trends of the observed data are well captured by the updated 

individuals (Figure 4.20b). At the same time, a satisfactory reduction in uncertainties was 

obtained for most parameters, as shown in Figure 4.21. We notice here that uncertainties 

of certain parameters including fracture conductivity and the exponents for the water-oil 

relative permeability curves for the hydraulic fractures remained relatively high even after 

history matching. 

  
(a) (b) 

Figure 4.20  Results of the history matching. (a) objective function reduction with 

generation and (b) flow response comparisons before and after the history matching 

(reprinted with permission from Onishi et al., 2021) 

 

 

  

(a) (b) 

Figure 4.21 (a) Box-plots of normalized parameter distributions and (b) a bar chart 

showing variance of each of the parameters after history matching (reprinted with 

permission from Onishi et al., 2021) 
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Following Figure 4.3, the next step is to conduct sampling. The parameters of 

interest include the three relatively uncertain parameters from the history matching results 

(HF_COND, HF_KRWN, and HF_KROWN), and lengths of the hydraulic fractures. 

According to the available data, there are 37 stages along the lateral, and 11 of them are 

representative stages (Figure 4.22), at which measurement errors are minimal, and the data 

exhibits high confidence (Warpinski 2009, Stegent and Candler 2018). The parameters for 

the hydraulic fractures will be stage-level length multipliers [0.75 1.25] for each of the 

representative stages (×11). Subsequently, 2000 samples were generated through the 

application of a Latin hypercube design. 

 

Figure 4.22 Schematic of the lateral with hydraulic fractures (reprinted with 

permission from Onishi et al., 2021) 

 

Generating datasets. The FMM-based simulation is applied to all the 2000 samples to 

generate datasets. The simulations are constrained by the observed bottom-hole pressure. 

The DTOF maps, multiphase production data, and distributed flow rate data along the 

lateral at a certain time, which can be obtained from production logging tools in practice, 

are saved for the trainings as shown in Figure 4.23. In regard to multiphase production 

responses, we observe wider ranges in oil and water production than gas production. This 

is likely because the exponents for oil-water relative permeability curves are the 

parameters of interest, whereas fixed oil-gas relative permeability curves are used for all 
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the samples. The other observation here is that the flow rate profiles show higher values 

at stages with longer length, because of greater surface area of the hydraulic fractures. The 

samples are divided into 1400, 300, and 300, for training, validation, and test, respectively. 

 

Figure 4.23 Datasets generated using the FMM-based rapid simulation for the field-

scale application (reprinted with permission from Onishi et al., 2021) 

 

Training an autoencoder. Next, we trained an autoencoder. Architecture of the 

autoencoder includes CNNs and dense layers as shown in Figure 4.24, and more detailed 

settings are provided in Appendix A. In contrast to the 2D example case, 3D CNNs that 

are typically used with 3D image data, such as images from computerized tomography 

(CT) scans (Zheng et al. 2020), are employed for the 3D DTOF maps. 

 

Figure 4.24 Schematic of the autoencoder for the field-scale application (reprinted 

with permission from Onishi et al., 2021) 
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For the training, batch size of 256, the maximum number of epochs of 10,000, and patience 

of 50, are used. The other settings and the procedures are the same as the example case. 

The runtime for the training process was approximately 110 minutes, which had stopped 

at around 4800 epochs (Figure 4.25). The increased runtime compared to the example case 

is because of the large and more complex neural network architecture, resulting in more 

parameters (weights and biases) to be tuned during the training. The trained model is then 

applied to the test dataset (300 samples), and visual comparisons between the original 

DTOF maps and reconstructed maps are shown in Figure 4.26, and an overall relative 

error of 4.92e-3 is obtained. Although it is difficult to visually verify if the reconstructed 

3D images are close enough to the original 3D images in Figure 4.26, the low relative 

error value validates accuracy of the trained autoencoder. 

 

Figure 4.25 Model loss on training and validation datasets (autoencoder) (reprinted 

with permission from Onishi et al., 2021) 
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Figure 4.26 Visual comparison of DTOF maps between randomly selected 5 samples 

among the 300 test samples (top), and corresponding reconstructed DTOF maps using 

the trained autoencoder (bottom) (reprinted with permission from Onishi et al., 2021) 

 

Training a regression model. Next, a regression model is trained. Architecture of the 

model is displayed in Figure 4.27. In this application, the dimensions of the input data are 

different, specifically, the dimensions of the production data and the distributed flow rate 

data correspond to the number of time steps and the number of data points along the lateral. 

To accommodate the two different data types, two separate input layers are used for each 

of them. The input layers are connected with the intermediate layers that will be 

concatenated to form a single hidden layer connected with a set of other hidden layers. 

More details of the architecture are provided in Appendix A. The training procedure is 

the same as the example case and is finished at around 150 epochs, as shown in Figure 

4.28. The runtime was approximately 38 seconds. 
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Figure 4.27 Architecture of the regression model (reprinted with permission from 

Onishi et al., 2021) 

 

 

 

Figure 4.28 Model loss on training and validation datasets (regression model) 

(reprinted with permission from Onishi et al., 2021) 

 

Prediction (blind-test). Finally, the trained regression model and the decoder are 

combined to build a hybrid model. The hybrid model is applied to measured data from one 

of the test samples. Figure 4.29 shows architecture of the model and a comparison between 

the predicted DTOF map and the true DTOF map. The predicted DTOF map visually 

shows good agreement with the true DTOF. The relative error between the predicted 

DTOF and true DTOF maps (Eq. (4.11)) was 1.93e-3. In a similar manner as the example 
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in Figure 4.15, MDS is applied to the training and validation samples, and the test sample, 

and the resultant 2D MDS map is shown in Figure 4.30. The data points in close proximity 

to the × in the figure (red points) indicate similarity of the latent variables (z) for the 

DTOF maps. In contrast, data points that are located further apart have very little 

similarity, especially within the circled region of the DTOF maps. As demonstrated above, 

the proposed workflow is applicable to 3D field scale unconventional reservoirs. The 

outcome of the workflow (DTOF maps) can be utilized for various applications including 

visualization, rapid simulations, and uncertainty quantification. 

 

 

Figure 4.29 Architecture of the hybrid model for the field-scale application (reprinted 

with permission from Onishi et al., 2021) 
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Figure 4.30 2D MDS space where each point represents a sample (reprinted with 

permission from Onishi et al., 2021). 

 

4.4 Conclusion 

We presented a deep learning-based workflow incorporating the FMM-based rapid 

simulation. The workflow has been successfully applied to a synthetic 2D case and a 3D 

field-scale case.  From the discussions made, the following conclusions can be drawn. 

• A novel deep learning-based workflow that can efficiently visualize subsurface flow 

has been developed. The approach incorporates the FMM-based rapid simulation and 

the concept of DTOF to accelerate the workflow. Specifically, generating training 

datasets can be efficiently done by using the FMM-based rapid simulation, and the 

use of DTOF allows us to use a simple architecture of the deep learning-based models. 

The dimensionality reduction via an autoencoder further enhances the workflow. 
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• The workflow has been demonstrated with a 2D illustrative example. We introduced 

potential applications of the approach, including the post-processing using MDS to 

account for uncertainties and the workflow that can be used to evaluate data 

acquisition programs. 

• We applied the proposed approach to a 3D field scale unconventional reservoir 

involving more than 100 hydraulic fractures. The reservoir model was built after the 

publicly available data on the HFTS-I test site. The successful application 

demonstrated the robustness and efficacy of the approach. While we focused on the 

sector model encompassing a single horizontal well, the workflow can be extended to 

full field with multiple wells. 

• The flexibility of the approach has been demonstrated using the two cases with 

different types of measured data. Specifically, the 2D case entails multiphase 

production data and pressure responses at the pressure gauges, whereas the 3D case 

has multiphase production data and distributed flow rate data along the lateral. The 

workflow can be readily extended to incorporate other data type, as long as it is 

available in inputs or outputs of the simulator. 

• Since our primary focus in this work is to demonstrate the new workflow, relatively 

simple methods were used. The parameter screening procedure could be improved by 

using more sophisticated statistical analysis, such as t-tests, instead of the one-

variable-at-a-time design. For deep learning models, we adopted an autoencoder and 

a simple feedforward neural network. The use of more advanced architecture, such as 

a variational autoencoder or a generative adversarial network, can potentially further 
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improve the workflow. Also, the models could be optimized by exploring the 

hyperparameter space. In addition, post-processing using MDS could be enhanced by 

incorporating some kernel methods to transform the Euclidian space. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

5.  

5.1 Chapter Summary 

We have presented extensions of the Fast-Marching Method (FMM)-based rapid 

simulation workflow and a variety of applications. In this chapter, we discuss the 

conclusions reached and provide recommendations for future research. 

 

5.2 Conclusions 

In the 2nd Chapter, an extension of the FMM-based rapid simulation workflow 

accounting for gravity was proposed. Based on the study, the following conclusions are 

drawn. 

• The proposed approach accounts for gravity effects and multiphase flow within 

hydraulic fractures by treating hydraulic fractures and a matrix domain separately. 

While 3-D problems in a matrix domain are transformed into 1-D problems along the 

DTOF, original 2-D gridblocks are retained for the hydraulic fracture planes. After the 

coordinate transformation via the DTOF, connections between the 1-D matrix domain 

and the hydraulic fractures are described by NNCs. These changes are relatively minor 

and can be easily implemented into an existing FMM-based rapid simulation workflow. 

• The implementation has been benchmarked with a full-physics model with good 

agreement for synthetic and field scale cases. 
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• Through the simulation studies, we found that the effect of gravity is less significant in 

cases involving hydraulic fracture gridblocks with infinite conductivities. This is likely 

because all the hydraulic fracture planes deplete almost instantly and uniformly as soon 

as the well starts production. On the other hand, flow within hydraulic fractures planes 

can be more complex (heterogeneous) in finite conductivity hydraulic fracture cases. 

The proposed approach is well suited for such scenarios. 

• In the field scale application, the proposed approach has been shown to be capable of 

capturing the effect of gravity and multiphase flow in the hydraulic fracture planes 

while maintaining computational efficiency of the rapid FMM-based simulation 

workflow. 

Next, we introduced the robust FMM approach based on finite-volume 

discretization of the Eikonal equation. The proposed approach is dependent on pore 

volume and connections (transmissibilities) between gridblocks, rather than grid geometry 

as in the previously proposed finite-difference-based FMM approaches, and it is readily 

applicable to arbitrary finite-volume grid systems. This work addresses a major limitation 

of the prior FMM approaches for irregular grid systems, which is the need of the special 

treatments, such as sub-gridding, making it difficult to generalize. On the basis of 

discussions in the 3rd Chapter, we draw the following conclusions. 

• The implementation has been first validated using simple homogeneous cases. 

Excellent agreements in terms of DTOF maps and the Vp() and w() diagnostic plots 

were obtained between the proposed approach and the analytical solution. 
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• The robustness and efficacy of the approach have been demonstrated through the 

applications of the approach to a variety of grid systems, including structured grids, 

EDFMs, DPDK, as well as unstructured PEBI grids, at varying levels of complexity. 

The finite-volume framework is compatible with commonly used commercial reservoir 

simulators. 

• The existing FMM applications, such as the FMM-based simulation and the Vp() and 

w() diagnostic plots can be enhanced by incorporating the proposed approach within 

the workflow. 

Finally, an efficient deep learning-based workflow for subsurface imaging in 

unconventional reservoir is presented. Our approach, for the first time, allows for data-

driven visualization of unconventional well drainage volume in 3D. From the discussions 

made, the following conclusions can be drawn. 

• A novel deep learning-based workflow that can efficiently visualize subsurface has 

been developed. The approach incorporates the FMM-based rapid simulation and the 

concept of DTOF to accelerate the workflow. Specifically, generating training datasets 

can be efficiently done by using the FMM-based rapid simulation, and the use of DTOF 

allows us to use a simple architecture of the deep learning-based models. The 

dimensionality reduction via an autoencoder further enhances the workflow. 

• We demonstrated the efficacy and utility of the approach using the two examples, a 

synthetic case and a field-scale application, with different types of measured data. 
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• We introduced potential applications of the approach, including the post-processing 

using MDS to account for uncertainties and the workflow that can be used to evaluate 

data acquisition programs. 

• Since our primary focus in this work is to demonstrate the new workflow, relatively 

simple methods were used. Therefore, the workflow can be further enhanced by 

incorporating more advanced methods. This will be discussed in the next section. 

 

5.3 Recommendations 

Although the FMM-based simulation approach accounting for gravity has been 

shown to be a good approximation of the full-physics simulation in the synthetic examples, 

we observed that the solutions degrade to some degree in the field-scale application 

involving 100+ hydraulic fractures. This indicates that the surface area weighted averaged 

transmissibilities (Eq. (2.5)) may not be able to capture the complex connections between 

the many hydraulic fracture gridblocks and the surrounding matrix gridblocks. In addition, 

the FMM-based simulation results are found to be sensitive to discretization scheme (the 

number of 1-D DTOF gridblocks), especially near the well, as reported by (Iino 2018). A 

viable remedy would be extending the region where we use original 2-D or 3-D gridblocks. 

Accuracy and stability of the approach can be improved by retaining the matrix (or SRV) 

gridblocks surrounding the hydraulic fracture planes in addition to the hydraulic fracture 

planes and connecting surface area of the retained gridblocks with the first 1-D DTOF 

gridblock via NNCs, as shown in Figure 5.1. 
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Figure 5.1 An extension of the FMM-based simulation workflow accounting for 

gravity 

 

Transmissibility calculations using this approach are likely less affected by the averaging 

effects as reservoir properties in the matrix are typically much less heterogeneous. Also, 

the gridding scheme is expected to be less sensitive for the 1-D DTOF domain 

corresponding to the matrix, where there are little changes in pressure and saturations 

during simulations. We note here that, while this treatment is likely to improve the 

accuracy and stability of the approach, the number of gridblocks in the FMM-based 

simulation becomes greater than the original workflow, resulting in increased runtime. 

Multiple scenarios using different gridding schemes need to be investigated to find an 

optimal trade-off between accuracy and runtime. 

For the finite-volume based FMM approach, the use of grid refinement techniques, 

such as local grid refinement can improve accuracy of the approach. It is similar to the 

multi-stencil FMM based on the finite difference discretization (Hassouna and Farag 

2007) but differs in a sense that the implementation can be done in a much simpler way. 



 

137 

 

In the existing multi-stencil FMM approach, the sub-gridding is dependent on the grid 

geometry, and it is difficult to generalize for complex grid systems. In our approach, we 

can take advantage of the capability of the existing commercial reservoir simulator to 

perform grid refinements within the simulator, and local pore volumes and connection 

information (NNCs) are readily obtained from outputs of the simulator. Then, the Eikonal 

equation can be solved for the DTOF without any modifications in our implementation. 

In addition, while well established for single porosity models and dual-porosity single-

permeability models, the FMM-based simulation approach for DPDK reservoir models 

has not yet been fully explored. Recommendations in this research direction are 

summarized in Appendix B. 

Finally, for the deep learning-based subsurface imaging method, the following 

research directions are recommended: 

• The parameter screening procedure could be improved by using more sophisticated 

statistical analysis, such as t-test, instead of the one-variable-at-a-time design. 

• An investigation of more advanced methods, such as a variational autoencoder or a 

generative adversarial network, as a dimensionality reduction technique in the 

workflow would be an interesting area of future research. 

• For the deep learning model architectures, although we tested multiple combinations 

of the hyperparameters and used the best ones (minimum validation loss), extensively 

exploring hyper parameter space (Bergstra and Bengio 2012) could further optimize 

the models. 
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• Post-processing using MDS could be enhanced by incorporating some kernel methods 

to transform the Euclidian space. 

• Application of the proposed workflow to conventional reservoirs is also an interesting 

research direction. An example would be an application of the workflow to subsurface 

imaging and risk assessment during geologic CO2 sequestration, which has been an 

active area of research in recent years in response to climate change due to higher CO2 

concentration in the atmosphere. Incorporating the convective time-of-flight (Datta-

Gupta and King 2007), instead of the DTOF, in the workflow may be a better option in 

capturing convective fluxes, hence movement of CO2 plume. On the other hand, the 

DTOF may be directly applicable if the problem of interest is tracking pressure during 

CO2 sequestration for situations like pressure management and risk assessment of brine 

leakage through legacy wells (Onishi, Nguyen, et al. 2019). 
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APPENDIX A 

DEEP LEARNING MODEL SETTING DETAILS 

 

Detailed deep learning model settings in terms of operations at each of the layers 

and output shapes are summarized in the tables below. ‘None’ in the ‘Output Shape’ 

columns corresponds to the number of batch size during the trainings. The ‘Relu’ 

activation function is used for all the layers, except for the output layers, where ‘Sigmoid’ 

is used to scale the values to [0, 1]. 

 

Model Layer Output Shape 

Encoder Input (None, 100, 100, 1) 

 Conv2D layer #1 (8 filters, kernel size 3×3, stride 2) (None, 50, 50, 8) 

 Conv2D layer #2 (16 filters, kernel size 3×3, stride 2) (None, 25, 25, 16) 

 Conv2D layer #3 (32 filters, kernel size 3×3, stride 2) (None, 13, 13, 32) 

 Flatten (None, 5048) 

 Dense layer (latent space) (None, 32) 

Decoder Decoder dense layer (None, 5408) 

 Reshape (None, 13, 13, 32) 

 Conv2D transpose layer (16 filters, kernel size 3×3, stride 2) (None, 26, 26, 16) 

 Conv2D transpose layer (8 filters, kernel size 3×3, stride 2) (None, 52, 52, 8) 

 Conv2D transpose layer (1 filters, kernel size 3×3, stride 2) (None, 104, 104, 1) 

 Cropping2D (None, 100, 100, 1) 

Table A1. Architecture of the autoencoder for the 2D synthetic case 
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Model Layer Output Shape 

Feedforward Input (None, 8, 201) 

 Dense #1 (None, 8, 40) 

 Dense #2 (None, 8, 40) 

 Dense #3 (None, 8, 40) 

 Dense #4 (None, 8, 40) 

 Dense #5 (None, 8, 40) 

 Flatten (None, 320) 

 Dense #6 (output) (None, 32) 

Table A2. Architecture of the regression model for the 2D synthetic case 

 

Model Layer Output Shape 

Encoder Input (None, 23, 137, 47, 1) 

 Conv3D layer #1 (8 filters, kernel size 3×3×3, stride 2) (None, 12, 69, 24, 8) 

 Conv3D layer #2 (16 filters, kernel size 3×3×3, stride 2) (None, 6, 35, 12, 16) 

 Conv3D layer #3 (32 filters, kernel size 3×3×3, stride 2) (None, 3, 18, 6, 32) 

 Flatten (None, 10368) 

 Dense layer (latent space) (None, 256) 

Decoder Decoder dense layer (None, 10368) 

 Reshape (None, 3, 18, 6, 32) 

 Conv3D transpose layer (16 filters, kernel size 3×3×3, stride 2) (None, 6, 36, 12, 16) 

 Conv3D transpose layer (8 filters, kernel size 3×3×3, stride 2) (None, 12, 72, 24, 8) 

 Conv3D transpose layer (1 filters, kernel size 3×3×3, stride 2) (None, 24, 144, 48, 1) 

 Cropping3D (None, 23, 137, 47, 1) 

Table A3. Architecture of the autoencoder for the 3D field-scale application 
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Model Layer Output Shape 

Feedforward Input #1 (None, 3, 151) 

 Input #2 (None, 1, 112) 

 Intermediate layer #1 (None, 3, 100) 

 Intermediate layer #2 (None, 1, 100) 

 Concatenate (None, 4, 100) 

 Dense #1 (None, 4, 100) 

 Dense #2 (None, 4, 100) 

 Dense #3 (None, 4, 100) 

 Flatten (None, 400) 

 Dense #4 (output) (None, 256) 

Table A4. Architecture of the regression model for the 3D field-scale application 
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APPENDIX B 

THE FMM-BASED SIMULATION FOR DPDK RESERVOIR MODELS 

 

Let us consider a single-phase flow problem in unconventional reservoirs. The key 

assumption in the FMM-based simulation is P(x,t) ≈ P((x),t). In other words, we assume 

that the DTOF contours are aligned with pressure changes. Before investigating 

application of the FMM-based simulation approach to DPDK reservoir models, let us 

revisit a single-porosity problem. We consider a 2D homogeneous reservoir as shown in 

Figure B1(a). The model size is 3000×3000×100 (ft3) with 101×101×1 grid discretization. 

Uniform permeability and porosity values of 1.0e-2 (mD) and 0.05 are used. There is a 

producer located at the center of the domain, producing fluids with a constant production 

rate. Figure B1 shows a visual comparison between a pressure map at a certain time step 

before the solutions are strongly affected by the finite boundary effects and the DTOF 

map. In addition, following King et al. (2016), a cross-plot comparing exp(-2/4t) and 

dP/dt is provided in Figure B2, in which a high value of R2 is obtained. Some scatters that 

are not aligned with the straight line (scatters at around exp(-2/4t) = 1) correspond to the 

near well region, where the DTOF calculations show numerical artifacts. Specifically, 

while it takes some time for the pressure front to travel from the well to boundary of the 

well cell, =0 is uniformly assigned at the well cell (source point) in the DTOF calculations 

because the solutions are based on the original grid resolution. This can be mitigated by 

using the local grid refinement technique for gridblocks at the near well region, for 



 

155 

 

example. Nevertheless, exp(-2/4t) and dP/dt are mostly well aligned on the straight line, 

validating the assumption. 

 

Figure B1 A visual comparison between a pressure map (left) and a DTOF map (right) 

for a 2D homogeneous single-porosity example 

 

 

Figure B2 Numerical validation of the asymptotic pressure approximation for a 2D 

homogeneous single-porosity example 

 

We repeated the same exercise using a DPDK reservoir model. The reservoir size 

and discretization scheme for each domain are the same as the single-porosity case, and 

the reservoir properties are summarized in Table B1. Visual comparisons of pressure and 

DTOF maps are shown in Figure B3. While we see slightly faster pressure front 
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propagation in the fracture domain, the overall pressure and DTOF profiles are similar in 

the two systems. This is because the conductivity contrast between the two systems is 

moderate, as in typical settings in DPDK reservoir models, where both fracture and matrix 

domain contribute to the flow. Next, we compared exp(-2/4t) and dP/dt, and the results 

are shown in Figure B4. 

Parameter Value 

Permeability (matrix, fracture), km, kf (mD) 1.0e-4, 1.0e-2 

Porosity (matrix, fracture), m, f, (-) 0.05, 0.01 

Shape factor, , (ft-2) 0.12 

Table B1 Inputs for the 2D homogeneous DPDK case 

 

 

Figure B3 Visual comparisons between pressure maps (left column) and DTOF map 

(right column) for a 2D homogeneous DPDK reservoir 
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Figure B4 Numerical validation of the asymptotic pressure approximation for a 2D 

homogeneous DPDK reservoir 

 

There are two interesting observations. First, there are two different groups of scatters that 

correspond to the two different systems. Second, in contrast to the single-porosity case, 

the scatters no longer follow a straight line trend. This is likely because of the interactions 

between the two systems. The resultant DTOF map may be utilized within the FMM-based 

simulation approach for DPDK reservoirs. However, while well established for single-

porosity and dual-porosity single-permeability (DPSK) models (Fujita et al. 2016, Iino 

2018), the use of DTOF within the FMM-based simulation workflow for DPDK reservoir 

models has not yet been fully explored. Here, we recommend an extension of the FMM-

based simulation workflow for DPDK reservoirs. First, we compute the DTOF for fracture 

and matrix domains using the proposed FMM approach in Chapter III. Then, the DTOF is 

utilized for coordinate transformation for the two systems, as shown in Figure B5. Next, 

discretization in the DTOF coordinate can be done using the fracture DTOF following the 

FMM-based simulation approach for DPSK reservoir models. Then, we compute 

transmissibilities within each domain using the w() function based on the cumulative 
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drainage pore volume and DTOF in each domain as in Figure 4.1. In addition, 

transmissibilities (transfer transmissibilities) between the two domains (T=C∙km∙Vb,m∙ 

where C is a unit conversion constant (field), km is matrix permeability, Vb,m is bulk volume 

of the matrix gridblock, and  is the shape factor (Schlumberger 2015)) can be computed 

using averaged reservoir properties in each 1-D matrix gridblock along the DTOF, 

including permeability, bulk volume, and shape factor. This approach is similar to the 

existing FMM-based simulation approach for DPSK reservoir models (Fujita et al. 2016, 

Iino 2018), but differs in a sense that there are matrix-matrix connections. Another 

potential approach to compute the 1-D transmissibilities is to take advantage of the local 

quadratic equation based on the finite-volume discretization of the Eikonal equation (Eq. 

(3.13)). 

 ( )( )2

,

upstream
connections

c i A i p t

i

T V c  − =

 

(3.13) 

While c (DTOF at cell center) is an unknown variable during the FMM calculations, after 

we compute the DTOF and perform coordinate transformation, Eq. (3.13) can be applied 

to compute 1-D transmissibilities using the known DTOF, pore volume, viscosity, and 

total compressibility. The transmissibilities within and between the domains can be 

computed solely based on Eq. (3.13). Although seemingly promising, this option is new 

and has not yet been tested. We recommend conducting validation and testing in future 

work. Once the 1-D transmissibilities are obtained, we can utilize them to build a 1-D 

DPDK simulation model. While we focused on single-phase flow problems above, 
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extensions to multiphase flow can be readily done through the application of multiphase 

diffusivity (Iino 2018). 

 

Figure B5 An illustration of the FMM-based simulation approach for a DPDK 

reservoir model 

 


