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 ABSTRACT 

 

Potato (Solanum tuberosum L.) is the world’s fourth most important crop after 

maize, rice, and wheat. The Texas A&M University (TAMU) Potato Breeding Program 

is working to produce early maturing russet, specialty, chipping, and red varieties suited 

to Texas growing conditions. The increasing urgency to develop superior performing 

varieties to meet the needs of the fresh and processing potato market necessitates the 

validation and application of new approaches in potato breeding, such as genome-wide 

association studies (GWAS) and genomic selection (GS). Recent advances in the 

development of high‐throughput genotyping platforms and whole-genome coverage and 

affordability have turned single nucleotide polymorphisms (SNPs) into one of the most 

promising tools for the investigation of genetic diversity and application of GWAS and 

GS in potato. Two hundred fourteen advanced clones selected over forty years were 

studied to assess the genetic diversity, population structure, linkage disequilibrium (LD), 

detect signatures of selection, and find marker trait associations for tuber morphology 

using the Illumina Infinium 22 K V3 Potato Array. Likewise, 384 unique chipping 

potato clones were used to evaluate GS for chipping quality in tetraploid potatoes. 

Results showed that most of the potato clones had high levels of heterozygosity, ranging 

from 0.22 to 0.80 with a mean of 0.59. Three groups of tetraploid clones, primarily 

based on potato market classes, were detected using the STRUCTURE software. The 

highest coefficient of differentiation observed between the groups was 0.14. Signatures 

of selection were uncovered in genes controlling potato flesh and skin color, length of 
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plant cycle and tuberization, and carbohydrate metabolism. The GWAS experiment 

yielded putative and novel markers/genes involved with tuber morphology traits. 

Genomic prediction using fry color, chip quality, specific gravity and yield gave 

reliabilities of 0.52, 0.17, 0.40 and 0.11, respectively. Even for limited reference 

populations and traits with low heritability, the accuracies found were encouraging. The 

comprehensive molecular characterization will help to better understand the genetic 

diversity of existing potato resources. Results from GWAS and GS will be helpful in 

increasing breeding efficiency. 
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1. INTRODUCTION  

1.1. Potato: A major food source 

Potato (Solanum tuberosum L.) is the world’s fourth most produced food crop 

after maize, rice, and wheat. According to FAOSTAT (2021), 370.4 million tonnes of 

potatoes were grown in 17.3 million ha in 2019. This represents a significant 

improvement (11%) over 2010's production of 333.6 million tons. China is the world's 

top potato producer, followed by India, Russia, and Ukraine. The United States is the 

fifth largest producer of potatoes in the world (NPC, 2019). 

Potatoes, the top vegetable crop in the United States, are grown commercially in 

30 states. Total potato production in the United States amounted to 19.2 million tonnes 

in 2019 (FAOSTAT, 2021). Idaho grows more potatoes than any other state, followed by 

Washington, North Dakota, Wisconsin, and Colorado (USDA NASS, 2019). Even 

though the area devoted to potato production in Texas is not large (approximately 8000 

ha.), growers can harvest and provide fresh potatoes to the market earlier than other 

states, and often receive two to three times higher prices than growers from Northern 

States (USDA NASS, 2019).  

Potato is an essential crop and is recommended as a food security crop by the 

United Nations (FAO, 2009; Devaux et al., 2014). Potatoes together with rice, wheat, 

and corn account for half of the world's food energy requirements (FAO, 2021). The 

potato’s significance may be derived from its esteemed place in the global diet as well as 

its economic significance for growers, processors, packers, and retailers (Ortiz & Mares, 

2017; Wijesinha-Bettoni & Mouillé, 2019). About 63 percent of potato sales are destined 
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for the processing market: French fries, chips, dehydrated potatoes, and other potato 

products. The remainder goes to the fresh market, as feed for farm animals, or used as 

seed tubers to grow the next season’s crop (USDA NASS, 2019). In the past, people 

consumed much of their potatoes fresh. Processed potatoes, such as French fries and 

hash browns, have increased in popularity since the 1950s, as the technology to freeze 

vegetables has improved (Keijbets, 2008). Likewise, potato chips are becoming the most 

consumed snack universally due to changes in consumer’s lifestyles and food 

consumption preferences (Liyanage et al., 2021). 

Potatoes is an ingredient in many dishes. Potatoes are nutrient-rich, contributing 

macro and micronutrients to the diet. They are especially high in vitamin C, potassium, 

and dietary fiber (Beals, 2019). Some animal studies and some human research studies 

suggest that potato consumption can have a positive impact on chronic disease risk 

factors by reducing blood pressure, blood lipids, and inflammation (McGill et al., 2013). 

Potato is also recognized as a functional food for athletes because it is rich in 

carbohydrates and nutrients of high quality (Kanter & Elkin, 2019). Thus, potato is one 

of the most important food crops and is becoming increasingly popular in the world due 

to its incomparable nutritional value, rising consumption,  and economic significance.  

1.2. Potato species and origin of cultivated potatoes 

The Solanaceae family comprises approximately 90 genera including 3,000-

4,000 species. Several members of this family have been important in human 

civilizations as food sources (potato, tomato, pepper, eggplant, tamarillo), ornamentals 

(petunia, Datura), and sources for drugs (tobacco, Atropa) (Gebhardt, 2016). Potato 
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belongs to the genus Solanum. Tuber-bearing species of Solanum are grouped in the 

Petota section which contains over 100 species (Spooner, 2009), about 70 percent of 

which are diploid, and the rest are triploids, tetraploids, pentaploid, and hexaploids. S. 

tuberosum L. includes thousands of varieties that vary by size, shape, color, and sensory 

characteristics. Commonly cultivated potato varieties are mostly tetraploid (2n = 4x = 

48), with a basic chromosome number of x = 12. The potato was domesticated about 

8,000 years ago around Lake Titicaca, which borders modern-day Bolivia and Peru, but 

potatoes have a wide-ranging center of diversity including Venezuela, Colombia, 

Ecuador, Argentina, Chile, across the Pampa and Chaco regions of Argentina, Uruguay, 

Paraguay, and southern Brazil and northward into Central America, Mexico, and the 

southwestern United States (Hijmans & Spooner, 2001). The wild relatives of potatoes 

provide a rich, diverse and unique source of genetic variation for potato breeding. They 

can be utilized in breeding programs as sources of disease/pest resistance, 

environmental stress tolerance, agronomic traits, and fresh and processing tuber quality. 

1.3. Potato breeding 

Potato (Solanum tuberosum L.) is an herbaceous, dicotyledonous plant usually 

vegetatively propagated at the commercial level using tuber (modified stem) seed pieces. 

The life cycle of vegetatively propagated potato plants is divided into five stages: sprout 

growth, plant establishment, tuber initiation, tuber bulking, and tuber maturation. 

Potatoes can also be reproduced sexually. Potato fruits (berries) contain botanical seeds, 

called true seeds (Sarkar, 2008). The potato growing season is typically 90-180 days but 
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can be as short as 75 days in subtropical lowlands and up to 180 days in the Andean 

highlands (Bradshaw & Ramsay, 2009).  

Hybridization is used by breeding programs to generate genetic variation and to 

combine, in progenies, traits of interest present in parental clones. During new cultivar 

development, approximately 40 traits are evaluated (Gebhardt, 2013) that are generally 

divided into yield and tuber quality characteristics, as well as tolerances to biotic and 

abiotic stresses. External quality traits required for fresh market and processed potatoes 

include tuber size and shape, eye depth, skin color, skin texture, and lack of blemishes 

due to bruising and diseases. Internal quality traits include dry matter content, nutritional 

quality, flavor, starch quantity and quality, and lack of defects such as vascular 

discoloration, hollow heart, and internal necrosis (Jansky, 2009). Cultivar development 

in potatoes is a multistep process, including first, identifying parents with desirable 

characteristics and crossing them to produce true potato seed (TPS). TPS is then planted 

typically under greenhouse conditions to produce segregating families of seedling tubers 

(50,000-100,000) for field planting. Evaluation and selection during the first and second 

field years are based on tuber morphological traits. Additional evaluation for important 

agronomic, quality, disease and pest resistance, and abiotic stresses take place in 

replicated trials over multiple years and locations. After the development of a cultivar 

profile, potato clones are cleaned in-vitro, increased for commercial testing, released as 

varieties, and protected (plant variety protection or registration). During the cleaning 

process, promising advanced clones are tested for the presence of virus and bacteria and 

cleaned if necessary, using thermotherapy and/or chemotherapy to eliminate the 



 

5 

 

pathogens (Wang et al., 2018). Multiplication includes tissue culture micropropagation 

in the lab, followed by greenhouse production and subsequent seed increase (production 

of certified seed) in the field for several years. Finally, market development and 

promotion of new varieties are necessary to explore grower, consumer, industry, and 

market retail for the intended use. All these components are essential for the successful 

development of new potato varieties and market acceptance. 

1.4. The Texas A&M Potato Breeding Program 

The Texas A&M Potato Breeding and Variety Development Program was 

established by Dr. J. Creighton Miller Jr. in 1972. Potato production responds to a varied 

set of environmental conditions, pest problems, and market niches, thus requiring the 

development of cultivars that are either widely adapted or suited for specific production 

areas. The goal of the Texas A&M Potato Breeding program is to provide improved 

cultivars with high yield, quality, disease/pest resistance, and tolerance to high 

temperatures that will enable producers in the U.S. Southwest region to remain viable 

and competitive and supply high quality, healthy and nutritious products to consumers.  

The Texas A&M Potato Breeding program has developed/co-developed and released 17 

new cultivars/clonal selections. Some of the new cultivars/clonal selections make up a 

substantial and increasing share of the regional/national potato acreage and have become 

important contributors to the economies of several states. Of all the cultivars released 

over the past 15 years by the 12 US potato breeding programs, those developed by the 

Texas program have ranked in the top four to five nationally in total acreage approved 

for seed certification over the past several years (NPC, 2019). This has been due, in large 
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measure, to the popularity of the four Texas Russet Norkotah selections (112, 223, 278, 

and 296). This is especially significant since Texas does not have a seed-potato industry. 

1.5. Limitations of cultivated tetraploid breeding 

Most commercial grown potatoes are autotetraploid (2n = 4x = 48), but diploid 

(2n = 2x = 24), triploid (2n = 3x = 36), and pentaploid (2n = 5x = 60) potatoes are also 

grown by farmers in South America (Watanabe, 2015). Improving yield, processing, 

storage traits, and disease resistance in potatoes through conventional breeding is more 

difficult than in other major food crops. Phenotypic recurrent selection is the main 

breeding strategy used in potatoes. Recurrent selection involves obtaining the best clones 

from the progeny, their assessment, and cross with established varieties and elite clones 

in a cyclic process. It can take 10-15 years to develop a new potato variety (Slater et al., 

2014). This is primarily due to the low rate of seed increase and the need to evaluate 

materials over several years and locations. Additionally, each multiplication cycle 

carries the risk of infection with tuber-borne diseases, especially viruses. Another factor 

influencing to the time to develop a potato variety is the growing environment which can 

affect many of the characteristics that contribute to a potato plant's phenotype, thus 

requiring multi-year, multi-location evaluations (Jansky, 2009). Finally, the search for 

useful genetic variability in wild relatives may be laborious and its introgression in 

cultivated varieties may be another challenge due to different ploidy levels and self and 

cross incompatibility issues (Slater et al., 2014). The cultivated potato has a complex 

genetic structure. Its autotetraploidy and vegetative propagation have led to the 

accumulation of mutations and a highly heterozygous genome (Watanabe, 2015). 
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Solanum tuberosum L. is a tetraploid with four homologues, each with 12 distinct 

chromosomes, resulting tetrasomic inheritance (Bradshaw, 2007). The selfing of a 

tetraploid with two alleles at a locus (AAaa) gives five different genotypic classes in its 

offspring: AAAA (quadruplex), AAAa (triplex), AAaa (duplex), Aaaa (simplex), and 

aaaa (nulliplex) based on the allelic dosage. If an allele has an additive effect, then one 

locus can result in considerable quantitative segregation. In potatoes, most diploid 

species are self-incompatible (Kirch et al., 1989) whereas most cultivated tetraploid 

species are self-compatible. Self-incompatibility in potatoes is controlled by the highly 

polymorphic S-locus (Kao & McCubbin, 1996). Though the tetraploids are compatible, 

the homozygosity approach is too slow for the development of an inbred line and suffers 

inbreeding depression upon selfing to be used as a breeding strategy. Major advances in 

genetics, molecular biology, and statistical genomics are providing breeders with 

molecular tools and software to increase genetic gain in the conventional potato breeding 

programs. 

1.6. Potato genome, genetic markers, and genetic maps 

Most cultivated potatoes are autotetraploids (2n = 4x = 48). Since cultivated 

potato has a large complex genome, the development of genetic and genomic data has 

lagged behind other crop species. The whole-genome sequence of potatoes has led to the 

development of genetic tools and resources for potatoes. A homozygous doubled-

monoploid potato clone (DM1-3 516 R44) was sequenced via a whole-genome shotgun 

approach, providing a reference genome spanning 86% of the 844 Mbp genome and 

containing 39,031 predicted protein-coding genes (Xu et al., 2011). The sequencing also 
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identified 755 genes encoding polypeptides representing most of the currently known 

plant resistance (R) proteins (Bakker et al., 2011; Jupe et al., 2013). Likewise, 

sequencing and assembly of the genome of a diploid, self-compatible, inbred clone (M6) 

of S. chacoense generated an assembly of 826 Mbp and genome annotation yielded 

high‐confidence gene models representing 37,740 genes (Leisner et al., 2018). Genome 

sequences from cultivated potato covering traditional landraces including modern 

cultivars would be a powerful resource to understand the genome structure of potato 

(Ortiz, 2020). However, the sequencing difficulties arise due to the existence of four 

genome sequences resulting from autopolyploidization and repeated introgression of 

wild chromosome segments (Rodríguez et al., 2010). Recently, six cultivated varieties 

have been sequenced (Potato pan-genome consortium) and genome sequences were 

successfully assembled from modern potato cultivars (NRGene at 

http:/www.nrgene.com). Pan-genome analysis and NRGene’s genomes will help to map 

traits on the level of haplotypes. Many molecular methods have been developed in the 

past to detect natural DNA variations, beginning with a hybridization-based analysis of 

restriction fragment length polymorphisms (RFLPs) (Botstein et al., 1980). Thereafter, 

research advanced to PCR-based marker systems such as microsatellite (SSR) markers, 

RAPD markers (Welsh & McClelland, 1990), AFLP markers (P. Vos et al., 1995), and 

cleaved amplified polymorphic sequences (CAPS) markers (Konieczny & Ausubel, 

1993). Sequencing techniques, such as Sanger amplicon sequencing (Sanger et al., 

1977), then permitted the identification of single nucleotide polymorphisms (SNPs). 

SSRs and RAPDs have been used in potatoes for varietal identification and genetic 
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diversity assessments (Jamali et al., 2019). SNPs are increasingly being used due to their 

biallelic nature, high throughput, and abundance in most crop plants. Methods for 

minimizing genome complexity, such as genotyping by sequencing (GBS), restriction 

site-associated DNA sequencing (RADseq), and diversity array technology (DArTseq) 

have been developed to help discover new SNPs; however, the detection of SNP markers 

in polyploids is often difficult due to the repetitive segments of the genome and multiple 

ploidy levels (Bertioli et al., 2014). The development of potato markers and genetic map 

construction is mainly performed at the diploid level, using traditional quantitative trait 

loci (QTL) mapping. Relatively few software tools exist that can perform linkage 

mapping for polysomic species. TetraploidMap is perhaps the most popular and widely 

used software tool for Windows (Hackett et al., 2017). Other polyploid mapping 

software recently in use are the PERGOLA package in R (Grandke et al., 2017), 

polymapR (Bourke et al., 2018), and MAPpoly (Mollinari & Garcia, 2019). These 

advancements have aided in the identification of QTL that accounts for significant 

amounts of phenotypic variance within a polyploid population. 

The SolCAP Infinium Potato Array has been used to build linkage maps (Felcher 

et al., 2012), genotype populations for QTL analysis (Douches et al., 2014), and to 

determine variability in the biosynthesis of glycoalkaloids (Manrique-Carpintero et al., 

2014). To date, SNPs have been successfully used to detect novel QTLs and candidate 

SNPs associated with late blight resistance (Lindqvist-Kreuze et al., 2014; Massa et al., 

2015), internal heat necrosis (Schumann et al., 2017), Potato virus Y (da Silva et al., 
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2017), agronomic traits (Manrique-Carpintero et al., 2018), and processing quality 

(Massa et al., 2018). 

1.7. Potato SolCAP SNP array 

A single nucleotide polymorphism (SNP) is a variation at a single position in the 

DNA sequence. SNPs have rapidly gained the center stage of molecular genetics in 

recent years due to their abundance in genomes, biallelic nature, and their amenability 

for high-throughput detection formats and platforms. A consortium led by SolCAP 

(http://solcap.msu.edu/) identified 8,303 SNP markers from the commercial potato 

cultivars Atlantic, Premier Russet and Snowden (Hamilton et al., 2011). To validate 

these SNPs, Felcher et al. (2012) developed linkage maps for two diploid mapping 

populations (DRH and D84). Both populations used the doubled monoploid reference 

genotype DM1-3 516 R44 as the female parent but had different heterozygous diploid 

male parents (RH89-039-16 and 84SD22). Of the mapped markers, 3,018 SNPs (36%) 

are present in candidate genes; 536 SNPs (6%) are previously identified genetic markers; 

the remaining 4,749 SNPs (57%) are new SNPs spread across the chromosomes. Two 

additional public SNP arrays Infinium V2 12K (Hamilton et al., 2011) and V3 20K (Vos 

et al., 2015) have been developed and are helping potato breeders to incorporate 

genomic tools to improve the efficiency in potato improvement.  

1.8. Tetraploid SNP calling 

To determine the allele dosage in tetraploid individuals, one of five possible 

genotypes must be recognized for each SNP locus. The five different genotypic classes 

are: AAAA (quadruplex), AAAa (triplex), AAaa (duplex), Aaaa (simplex), and aaaa 
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(nulliplex). During SNP calling, Genome Studio software (Illumina, 2005) generates 

SNP theta scores, which are used to determine the allele dosage. Several different 

methods can be used to transform the continuous signal scores (theta values) to discrete 

genotype groups, including 1) pre-determined dose cluster calling boundaries 

(http:/solcap.msu.edu/potato infinium.shtml); 2) mixed models, FitTetra (Voorrips et al., 

2011; Hackett et al., 2013) 3) NbClust cluster analysis (Charrad et al., 2014) and 4) 

ClusterCall (Schmitz Carley et al., 2017). NbClust provides 30 indices to determine the 

number of clusters while ClusterCall uses hierarchical clustering and multiple F1 

populations to calibrate the relationship between signal intensity and allele dosage. 

1.9. Genetic diversity 

Among DNA markers, SSR and SNP have been successfully used in polyploid 

species for the evaluation of genetic diversity. SSR markers were initially preferred 

because of their random genome distribution, co-dominant nature, high polymorphism, 

ease of use, high clarity and reproducibility, low operating costs, automation 

convenience, ease of multiplexing, and low-quantity DNA use (Vieira et al., 2016). Bali 

et al. (2018) quantified the genetic variability among the Russet potato clones and 

studied the genetic relationships based on their pedigrees by using SSR markers. Recent 

advances in the development of high‐throughput genotyping platforms have turned SNPs 

into one of the most promising tools for the investigation of genetic diversity. 

Assessment of genetic diversity could provide valuable information for the genetic 

improvement of potatoes. The greater the genetic variability in the base population, the 

greater the opportunity for breeding. Several studies have been published implementing 
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the SolCAP Potato SNP Array for genetic diversity studies. Hirsch et al. (2013) 

retrospectively explored the effects of potato breeding at the genome level using the 8K 

SNP array. Kolech et al. (2016) used the SNP array to evaluate the genetic diversity of 

Ethiopian potato cultivars. Vos et al. (2015) developed a 20K SNP array and used it to 

genotype a total of 569 potato genotypes to identify footprints of the breeding history in 

contemporary breeding material. Similarly, other diversity studies have been done with 

the Colombian Central Collection (Berdugo-Cely et al., 2017), International Potato 

Center (CIP) collection (Ellis et al., 2018), and Japanese potatoes (Igarashi et al., 2019). 

1.10. Genome-Wide Association Study (GWAS) 

Genome-wide association study (GWAS) is a method for detecting marker-trait 

associations. GWAS provides the benefit of detecting QTLs within a range of 

individuals and is likely to achieve high mapping resolution for identifying candidate 

genes (Zhu et al., 2008). GWAS can be used for the study of complex traits when the 

development of mapping populations from crosses is not feasible (Gebhardt et al., 2004). 

An unstructured population in a GWAS contains many more cases of recombination and 

often traces back to shared ancestors. Therefore, it gives the potential of analyzing a 

widely genetically diverse population to have a greater genetic resolution (Rafalski, 

2010). However, the predictive strength of natural population-based mapping depends 

heavily on the degree of linkage disequilibrium (LD) and population structure, as well as 

the sample size and the frequency of minor alleles (MAF). LD is defined as the 

nonrandom association of two alleles in a population (Flint-Garcia et al., 2003). The 

faster LD declines, the denser the collection of genome-wide markers must be used to 
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detect causative loci markers in LD. The ability to detect significant marker-trait 

associations in GWAS is influenced by the trait's genetic architecture, heritability, the 

nature of the phenotypic data, and sample size (Cortes et al., 2021). GWAS aims to find 

SNPs where genotype variation is correlated with phenotype variation. The naive 

method has a high incidence of false positives, which arise when a result is declared 

significant when it is not. Two popular methods of multiple testing correction are 

limiting the false discovery rate (FDR) (Storey & Tibshirani, 2003), or using the 

Bonferroni correction. When compared to traditional approaches, the implementation of 

the mixed linear model for GWAS has significantly reduced the number of false 

positives (Yu et al., 2006). The MLM accounts for relatedness at two levels: population 

structure (Q) and kinship (K).  

GWAS has evolved to be an effective and widely used technique for studying 

complex traits in major crops. Some of the major highlights include GWAS conducted in 

maize to study leaf architecture (Tian et al., 2011), husk traits (Cui et al., 2016), and 

kernel test weight (X. Zhang et al., 2020). In rice, GWAS identified a gene 

comprehensively controlling rice architecture (Yano et al., 2019), mesocotyl elongation 

(Wu et al., 2015), and salt tolerance (Yuan et al., 2020). Likewise, Beyer et al. (2019) 

identified loci and candidate genes controlling root traits in wheat seedlings using 

GWAS.  

Improvements in both marker development technologies and analytical statistical 

methods have advanced efforts to map quantitative traits in polyploid species. The 

ability of GWAS to explore more diverse germplasm facilitates the detection of variants 
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with a clear effect across the discovery population. One challenge in applying GWAS to 

polyploid species is how to define relatedness (K) between polyploid individuals. 

Software tools like the GWASpoly R package (Rosyara et al., 2016) and the SHEsisPlus 

package (Shen et al., 2016) are available for polyploid GWAS. Of these, GWASpoly 

looks critically at the form of the kinship matrix K. The relationship matrix best 

mitigated the inflation of significance values and is the default K provided in 

GWASpoly. Alternatively, netgwas (Behrouzi et al., 2019) provides GWAS mapping for 

polyploids which uses graphical models to go beyond the mapping of single-marker 

associations to investigate genotype-phenotype interactions using all markers 

simultaneously in a graph structure. In potato, marker-trait associations were detected 

using high-throughput genome-wide markers such as for late blight resistance 

(Lindqvist-Kreuze et al., 2014), tuber shape and eye depth (Rosyara et al., 2016), protein 

content (Klaassen et al., 2019), morpho-agronomic traits (Zia et al., 2020), common scab 

resistance (Kaiser et al., 2020), and potato stolon traits and root traits (Yousaf et al., 

2021). 

1.11. Population structure analysis 

To minimize false-positive and false-negative correlations due to population 

stratification, GWAS must account for population structure (Teo, 2008). Although a 

marker may not be linked to a QTL, there is a significant risk that a significant 

association may be identified only based on the genetic relationship between individuals 

(Pritchard et al., 2000). There are several methods for evaluating population structure 

based on genetic markers. The factor analysis approach is principal component analysis 
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(PCA) (D’hoop et al., 2010), where genotypic information from molecular marker data 

is processed. Another approach is Bayesian clustering, implemented in the software 

Structure (Pritchard et al., 2000). Analysis of molecular variance (AMOVA) and 

hierarchical clustering (D’hoop et al., 2010) are similar approaches for population 

structure assessment. Likewise, the kinship matrix (K) account for hidden relationships 

between individuals (Yu et al., 2006).  

1.12. The Breeder’s Equation and Genetic Gain 

The breeder’s equation (R = irσA/t) has long been used to show how genetic 

response (R) changes in response to selection intensity (i), the square root of the additive 

genetic variance (σA),  and selection accuracy (r). In genomic selection (GS), r is the 

correlation between true breeding values (TBVs) and genomic-estimated breeding values 

(GEBVs), while in the phenotypic selection, r is equal to the square root of the narrow-

sense heritability (h) (Heffner et al., 2010). In the denominator, the number of years per 

cycle (t) measures efficiency by expressing the response to selection as a change over 

time.  

Plant breeders must increase at least one of the three components of the breeder's 

equation within a given period (t) in a breeding cycle, or reduce the length of the 

breeding cycle, if they want to increase the genetic gain of their breeding program (Cobb 

et al., 2019). It can be difficult to maximize genetic gains through phenotypic selection 

because trait heritability, environmental interactions, and time for trait expression all 

play a role (Yang Xu et al., 2017). Alternatively, genetic gain can be improved by using 
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various forms of marker-assisted selection (MAS), being genomic selection (GS) one of 

the most promising options.  

1.13. Marker-assisted selection (MAS) and Genomic Selection (GS) 

Marker-assisted selection (MAS) is an indirect selection process where a trait of 

interest is selected based on a marker linked to that trait (Collard & Mackill, 2008). 

Traditional MAS can only be used to select for qualitative traits or quantitative traits 

dominated by a small number of loci and can only be used to select one or a few QTL or 

gene loci since it uses a limited number of markers (Bernardo, 2008). However, GS 

jointly estimates all marker effects without significance testing to capture small‐effect 

QTL that is excluded by conventional MAS (Meuwissen et al., 2001; Xu et al., 2020). 

Many simulations and observational trials have shown the superiority of GS over 

conventional MAS for the enhancement of complex traits (Krishnappa et al., 2021). 

Genomic selection (GS) uses genome-wide single nucleotide polymorphism 

(SNP) marker data to predict and perform selection based on genomic estimated 

breeding values (GEBVs) of individuals (Meuwissen et al., 2001). Lines with the highest 

GEBVs are then chosen as parents or for advancement in a GS breeding program, while 

lines with the lowest GEBVs are eliminated. Traditional breeding strategies 

supplemented by GS reduce the need for large-scale phenotyping and accelerate genetic 

gain by shortening breeding cycles (Heffner et al., 2010). Another significant benefit of 

GS is that it allows for the selection of low-heritability traits (Heffner et al., 2011; J. 

Zhang et al., 2016; Klápště et al., 2020) and novel traits that are difficult or costly to test 

in practice but can be tested on a small reference population (Calus et al., 2013). GS 
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accuracy depends on genetic composition and size of the training population (TP), level 

of LD, marker density, trait heritability, the effective number of loci, model 

performance, and relationship between TP and the validation population (VP) (Rutkoski 

et al., 2015).  

The animal breeding sector pioneered GS and tested it (Meuwissen et al., 2001). 

Recently, it has been extended to crops, including wheat ( Poland et al., 2012; Rutkoski 

et al., 2015), maize (Zhao et al., 2012; Beyene et al., 2015), rice (Spindel & Iwata, 

2018), sorghum (Fernandes et al., 2018), barley (Lorenz et al., 2012), tomato (Duangjit 

et al., 2016), and potato (Habyarimana et al., 2017; Sverrisdóttir et al., 2017, 2018; 

Endelman et al., 2018) for identification of superior lines as well as predicting the 

performance potential. The polyBreedR package 

(https://github.com/jendelman/polyBreedR) has been recently designed to facilitate the 

use of genome-wide markers for GS in autotetraploid (4x) species.  

1.14. Tuber morphology traits in potato 

In the context of potato, morphological traits like tuber shape, eye depth, degree 

of russeting, tuber number, tuber weight, skin color, and flesh color are essential. Tuber 

shape is extremely important, and its expectation is based on historical regional 

preferences coupled with local culinary practices (Stark et al., 2020). Chips are made 

with round tubers, whereas French fries are made with long tubers. Likewise, the 

consumer expects table cultivars to be round or oval (van Eck et al., 1994; Chen et al., 

2018). Van Eck et al. (1994) identified a single locus, Ro, that explains the inheritance of 

qualitative tuber form, with round being dominant over long on chromosome 10, using 
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restriction fragment length polymorphisms (RFLPs). Other reports using populations 

with different genetic backgrounds mentioned QTLs on chromosomes 2, 5, and 11 

(Bradshaw et al., 2008), and 2 and 11 (ŚLiwka et al., 2008). Using a highly heterozygous 

diploid potato population and QTL analysis the major loci segregating for tuber shape 

was mapped to loci on chromosomes 2 and 10, with smaller effects mapping to three 

other chromosomes (Prashar et al., 2014). Thus, the findings of tuber shape inheritance 

whether it is monogenic or polygenic have been inconsistent.  The irregular shape and 

deep eyes in potatoes lead to higher costs due to significant peeling losses (Li et al., 

2005; Prashar et al., 2014). Eye depth tends to be dominated by a single locus, which is 4 

cM away from the Ro locus on chromosome 10 and is closely linked to it (Li et al., 

2005; ŚLiwka et al., 2008).  Another trait, russeting is an inherited trait in some potato 

cultivars such as Russet Burbank and Russet Norkotah (De Jong, 1981) but the 

development of a russeted skin in red-skinned cultivars like ‘Magen russeting’ is a 

physiological disorder (Lulai, 2007; Ginzberg et al., 2012). Tuber skin color and flesh 

color traits are important to consumers and industry contingent the end use of the potato. 

The presence of carotenoids causes the yellow to the orange coloration of potato tuber 

flesh (Nesterenko & Sink, 2003). A dominant allele at the Y (yellow) locus on 

chromosome 3 is responsible for the yellow flesh color (Bonierbale et al., 1988). A beta-

carotene hydroxylase gene (BCH) was found in the same position as the Y locus, 

suggesting that this is the most significant candidate gene for yellow flesh (Thorup et al., 

2000; Kloosterman et al., 2010). Anthocyanin pigments accumulate in the tuber flesh, 

giving it a red or purple color (Eichhorn & Winterhalter, 2005). The Pf locus tightly 



 

19 

 

linked with the I locus (encodes a MYB transcription factor) maps to chromosome 10 

and confers pigmented tuber flesh (De Jong, 1987). Also, the R locus which encodes 

dihydroflavonol 4-reductase (dfr) maps to chromosome 2 (De Jong et al., 2003) and it is 

essential for red anthocyanin production. For purple pigment formation in the potato 

skin, the P locus which encodes flavonoid 3′,5′-hydroxylase (f3′5′h) is required and it 

maps to chromosome 11 (Jung et al., 2005). The f3′5′h gene is expressed in the tuber skin 

only in the presence of I (Jung et al., 2005). Thus, breeding for morphological traits in 

potatoes is crucial as these traits affect consumption. 

1.15. Chipping quality traits in potato 

In terms of tuber appearance, the industry prefers shallow eyes, and a round-oval 

shape for processing chips, whereas long-oval-shaped tubers are favored for processing 

French fries. Greening, cracking, hollow tubers, secondary damage, rusty spots, and 

other issues should be avoided. The color of the peel, as well as the color of the flesh, 

should appeal to consumers’ preferences (Nacheva & Pevicharova, 2008; Wayumba et 

al., 2019). In the case of processing potatoes (chippers and French fries), most flesh is 

white. The preferred texture of chippers is smooth and of potatoes used for French fries 

is russet. The starch, dry matter, reducing sugars, proteins, and vitamin C content of 

tubers determine their post-harvest quality and nutritional value. For processing, high 

starch and high dry matter-rich cultivars are favored because they cook faster, have a 

better texture, high net weight of the final product, and use less oil while frying 

(Habyarimana et al., 2017). Starch content of 13% or more, solids or dry matter content 

of 20% or more, and/or specific gravity of 1.080 or more are desired for most processing 
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potatoes (Stark et al., 2020). Another, important trait in potato that determines the 

quality of processed potato is the reducing sugar content. Potatoes are best stored in low 

temperature (just above freezing) and high relative humidity (98%) conditions to ensure 

stable storage. Cold storage conditions eliminate issues related to diseases, sprouting, 

and shrinking (Kleinkopf et al., 2003). However, cold temperatures promote the 

breakdown of starch and the accumulation of reducing sugar in potato tubers. This is 

known as cold-induced sweetening (CIS). Accumulated reducing sugars react with free 

amino acids when processed at high temperatures, resulting in undesirable brown, bitter-

tasting products. Internal defects like internal heat necrosis (IHN), vascular browning, 

Fusarium wilt, stem end browning, hollow heart with discoloration, brown center, and 

internal black spot also contribute to browning and thus reduce chip quality. The potato 

processing industry is, therefore, searching for strategies to reduce browning. These 

processes are complex and controlled by several enzymes (Leonel et al., 2017). Selection 

for processing quality after long storage is costly and time-consuming and identification 

of clones using markers is desirable. Breeding programs have made efforts to develop 

cultivars that generate less sugar in cold storage, resulting in a lighter color potato chip. 

Much of the success has been attributed to the Lenape variety, a common parental stock 

in chip crosses since its introduction (Love et al., 1998). Lenape is a parent of chipping 

varieties including Atlantic, Trent, Belchip, and Snowden. Lenape had the highest dry 

matter content and was particularly responsible for a trend of increased dry matter 

content in newer varieties (Love et al., 1998). QTL mapping in populations of diploid 

potatoes reported QTL for chip color and reduced sugar accumulation associated with 
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candidate genes (Li et al., 2008). Recently, Byrne et al. (2020) identified a major QTL 

on chromosome 10 for fry color and predicted fry color with moderate accuracy using 

genome-wide markers. They also identified a small subset of SNPs for processing 

characteristics which can give moderate predictive ability. Likewise, genotyping-by-

sequencing developed genomic prediction models were used for starch content and 

chipping quality (Sverrisdóttir et al., 2017) and dry matter content and chipping quality 

(Sverrisdóttir et al., 2018). 

1.16. The approach of the current study 

Reports on the use of advanced clones selected over multiple years for diversity 

studies, association mapping, and genomic selection remain limited. The current study 

hypothesized that the Texas A&M University Potato Breeding Program’s clone bank 

collection is diverse and has variation in tuber morphology traits and chipping quality 

traits that can be used to identify genomic regions associated with these traits. Recent 

marker-dense platforms are expected to effectively account for relatedness in GWAS 

models, which will aid in the identification of genomic regions associated with important 

breeding traits. Finally, successful implementation of GS strategies for the potato 

breeding program is anticipated.  The specific objectives are as follows: 

Objective 1: Investigate potato varieties and advanced clones of the TAMU Potato 

Breeding Program (entered in the clone bank over 40 years of breeding) at the 

molecular level to assess genetic diversity for further genetic enhancement of 

important economic traits. 
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Objective 2: Identify genomic regions and superior individuals for tuber 

morphology traits in tetraploid advanced potato clones. 

Objective 3: Evaluate how well GS can predict chipping quality in tetraploid 

potatoes. 
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2. GENETIC DIVERSITY AND POPULATION STRUCTURE OF ADVANCED 

CLONES SELECTED OVER FORTY YEARS BY A POTATO BREEDING 

PROGRAM IN THE USA 

2.1. Introduction 

Potato (Solanum tuberosum L.) is the world’s fourth most important crop after 

maize, rice, and wheat (FAOSTAT, 2018). Worldwide, over one billion people consume 

potatoes as a staple food (USD NASS, 2019). Potatoes, the leading vegetable crop in the 

United States, are grown commercially in 30 states. Idaho grows more potatoes than any 

other state, followed by Washington, North Dakota, Wisconsin, and Colorado (USD 

NASS, 2019). Even though potato production in Texas is comparatively lower 

(approximately 8,000 ha), growers can harvest and provide fresh potatoes to the market 

earlier in the growing season than other states, and often receive two to three times 

higher prices than growers from Northern States (USD NASS, 2019). 

The Texas A&M University (TAMU) Potato Breeding Program was established 

by the late J. Creighton Miller Jr., Ph.D. in 1972 aiming to provide improved early 

maturing cultivars with high yield and quality that would enable Texas potato producers 

to remain viable and competitive, and to supply superior products to consumers. In 

recent years, the emphasis has been placed on increasing yield and quality in addition to 
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disease/pest resistances like Potato Virus Y (PVY), nematodes (Globodera rostochiensis 

and Globodera pallida), late blight (Phytophthora infestans), potato psyllid (Bactericera 

cockerelli carrying Candidatus Liberibacter, the causal agent of the zebra chip disease), 

high-temperature tolerance, cold sweetening resistance, health and nutritional properties, 

and broad adaptability. The TAMU Potato Breeding program has developed/co-

developed and released 17 cultivars, including clonal selections. Some of them make up 

a substantial and increasing share of the regional/national potato production and have 

become important contributors to the economies of several states. Of all the cultivars 

released over the past 15 years by the 12 US potato breeding programs, those developed 

by the Texas program have ranked in the top four to five nationally in the total area 

approved for seed certification over the past several years (NPC, 2019). This has been 

due, in large measure, to the popularity of the four Texas Russet Norkotah strains 

(Russet Norkotah 112, Russet Norkotah 223, Russet Norkotah 278, and Russet Norkotah 

296) with improved plant type to withstand environmental stresses. The Texas Russet 

Norkotah strains with increased vine vigor and some resistance to early dying 

(Verticillium wilt) are an outstanding early market alternative to the standard Russet 

Norkotah variety (Miller et al., 1999).  

Despite many available potato cultivars, there is a need for new cultivars. New 

cultivars must produce high yields under low inputs, have disease and pest resistance, 

and environmental stress tolerance such as high or low temperature, drought, and 

salinity. If possible, they should also have improved nutritional and health properties 

(Bradshaw, 2007a). Exploration of potato genetic diversity has been proposed to create 
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new varieties well adapted to these challenges, and also to better manage these 

collections. The development of new, improved varieties is done through breeding, 

which involves identifying superior and complementary parents from the available 

germplasm and crossing them to generate variability and permit selection of clones 

combining trait of interest. Breeders maintain valuable germplasm in tissue culture for 

long-term conservation of genetic resources, and also to initiate limited generation seed 

production of potato varieties from disease-free stocks. Thus, breeders have to think 

strategically to capture allelic diversity from a smaller set of parent combinations. For 

this, a breeder can use genetic distance based on molecular markers to complement co-

ancestry/pedigree analysis to avoid crossing closely related parents and hence prevent 

inbreeding depression and to ensure genetic variation for continued selection progress. 

Genetic distance-based criteria have also been strongly recommended for evaluation and 

creation of core sets (Odong et al., 2013).  

Further, the genetic characterization of clone bank collections is essential to 

assess their diversity and population structure. The identification of suitable genotypes 

from the study could serve as a source of new alleles in potato breeding programs. 

Molecular markers have been used to test the genetic diversity of potatoes. Recent 

advances in the development of high‐throughput genotyping platforms together with 

whole-genome coverage and affordability have turned single nucleotide polymorphisms 

(SNPs) into one of the most promising tools for the investigation of genetic diversity. 

Several studies have implemented the Infinium Potato Array (Illumina Inc., San Diego, 

CA, USA) for genetic diversity studies. The 8K SNP array distinguished diverse North 
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American varieties based mainly on market classes (Hirsch et al., 2013). Kolech et al. 

(2016) used the same set of 8K SNPs to evaluate the genetic diversity of Ethiopian 

potato cultivars. Vos et al. (2015) developed a 20K SNP array and used it to genotype a 

total of 569 potato genotypes and found fingerprints of the breeding history in recent 

breeding materials such as identification of introgression segments, selection, and 

founder signatures. Genetic diversity in the Colombian Central Collection of Solanum 

tuberosum L. using SNP markers found that the Andigena (autotetraploid) population 

was more genetically diverse, but less genetically sub structured than the Phureja 

(diploid) population (Berdugo-Cely et al., 2017).  Ellis et al. (2018) used the 12K SNP 

array for fingerprinting and diversity analysis of the cultivated potato collection from the 

International Potato Center (CIP) in Peru and reported some genetic redundancies among 

individual accessions with some putative misclassified accessions. Recently, Igarashi et 

al. (2019) used the 12K SNP array to characterize and compare 164 Japanese potatoes, 

including 70 breeding clones for chip processing with North American and European 

potatoes. Thus, the success of potato breeding depends on the understanding and use of 

the available gene pool of varieties and breeding clones. The Potato SNP array has been 

very useful for performing a robust and direct comparison of genetic diversity among 

different gene pools but has never been applied to the advanced clones selected over 

multiple years.  

Further, with the availability of high-density genotype data, it is possible to 

identify regions of the genome that provide evidence of selective pressure commonly 

known as “signatures of selection” (Cadzow et al., 2014). Different statistical 
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approaches have been developed to identify selection footprints. According to Vitti et al. 

(2013), they are of three main types: (a) measures based on the allelic frequencies (e.g., 

Tajima’s D, PCAdapt), (b) measures based on the differentiation between and within 

species/groups (e.g., XP-EHH, Fst), and (c) within population/groups measures based on 

extended haplotype homozygosity (e.g., iHS). These methods have been applied to 

several crops, including wheat (Pont et al., 2019), oat (Bekele et al., 2018), maize (Li et 

al., 2021), rice (He et al., 2015), tomato (Sauvage et al., 2017), and potato (Hardigan et 

al., 2017). The PCAdapt method tests how much each variant is associated with 

population structure, assuming that outlier variants are indicative of local adaptation. It 

does not need grouping of individuals into populations and can handle admixed 

individuals (Luu et al., 2017). The iHS approach measures the amount of extended 

haplotype homozygosity (EHH) for a given SNP within-population whereas XP-EHH 

compares the extended haplotype homozygosity between two populations (Sabeti et al., 

2007). Recent selection events in which haplotypes have almost or fully risen to fixation 

are detected by iHS and XP-EHH statistics (Sabeti et al., 2007). Thus, methods for 

detecting evidence of selection provides a mechanism for highlighting genomic regions 

which are often associated with functional traits. 

The goal of this research was to investigate potato varieties and advanced clones 

of the TAMU Potato Breeding Program (entered in the clone bank over 40 years of 

breeding) at the molecular level to assess genetic diversity for further genetic 

enhancement of important economic traits. In this study 214 TAMU potato clones were 

genotyped using 22K SNP markers to (a) examine the genetic diversity and the 
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population structure in the TAMU Potato Breeding clone bank collection, (b) to identify 

candidate loci under selection, (c) identify a “core set” to better manage the clone bank 

collection, and (d) check the accuracy of pedigree records of the clones. 

2.2. Methods 

2.2.1. Plant material 

Two hundred fourteen potato clones were included in this study. The clones 

represent fresh and processing market classes with a variation for skin type (russet and 

smooth), flesh and skin color, shape, agronomic, biotic, abiotic, and quality traits. The 

collection comprised 31 chipping, 62 russet, 32 yellow-skinned, 68 red-skinned, and 21 

purple-skinned clones. The collection was initiated during the 1980s and consisted 

mainly of early generation and advanced clones selected by the TAMU Potato Breeding 

Program. The introduction into tissue culture and virus eradication of early and advanced 

potato selections is a regular practice in the TAMU Potato Breeding Program since 

disease-free stocks from Texas selections are typically transferred to Colorado State 

University to produce clean seed for regional trials (SW and W). Some commercial 

cultivars developed by the TAMU Program were also preserved in the clone bank, 

including Russet Norkotah clonal selections (Russet Norkotah 112, Russet Norkotah 

223, Russet Norkotah 278, and Russet Norkotah 296), Sierra RoseTM (ATTX961014-

1R/Y), Sierra Gold™ (TX1523-1Ru/Y), Rio Rojo, COTX09022-3RuRE/Y (released 

under experimental ID), Reveille Russet (ATX91137-1Ru), Vanguard Russet (TX08352-

5Ru) and Stampede Russet (TXAV657-27Ru). Commercially popular varieties, 

including Russet Norkotah (standard), Atlantic, and Russet Burbank were included as 
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reference genotypes. White LaSoda (a white skinned mutant of Red LaSoda selected by 

the TAMU Program) and Yukon Gold Strain (TXYG79) were also included in the study. 

All of the clones are now maintained in the TAMU breeding clone bank. To 

micropropagate the clones, tissue culture media consisting of Murashige and Skoog 

(MS) (4.8 g/L), sucrose (30 g/L), and agar (8 g/L) was used. Clean (disease-free status 

confirmed by ELISA assays) plant materials were multiplied and moved to the 

greenhouse in Fall 2018 to produce mini tubers. In the greenhouse, 12 plantlets of each 

clone were grown for 110 days in a standard flat insert (TO Plastics, MN, USA) (26.82 

cm x 53.49 cm) with 32 cells (each cell size: 4.04 cm x 2.92 cm x 5.72 cm) filled with 

Sunshine Mix #1 (Sungro, Agawam, MA) with starter fertilizer Osmocote (Scotts 

Miracle-Gro, Marysville, OH). The photoperiod (light: dark) was 16:8 until flowering 

and 12:12 afterward to enhance tuberization. The greenhouse temperature averaged 20°C 

with a minimum of 14°C and a maximum of 31°C. Minitubers were harvested in Spring 

2019 and stored at room temperature for approximately a week to confirm the skin and 

flesh color of the clones. 

2.2.2. DNA extractions 

Genomic DNA was extracted from 50-80 mg of fresh young potato leaves from 

tissue culture plantlets using the DNeasy Plant Pro Kit® (Qiagen, Valencia, CA, USA). 

DNA quality was examined using 1% agarose gel 1X TBE (Tris-Borate and 

ethylenediaminetetraacetic acid) and staining with GelRed (Biotium Inc., CA, USA) 

using a V.U.V. transilluminator (Benchtop VUV Transilluminators, UVP). 

Quantification of DNA was performed in a spectrophotometer (Nano Drop™, Thermo 
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Scientific, Waltham, Massachusetts, USA). DNA concentration was verified using the 

Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen, SanDiego, CA) and samples with 

uniform DNA concentration (50 ng μL−1) were prepared. 

2.2.3. SNP genotyping 

Samples were assayed using the Infinium 22K V3 Potato Array on the Illumina 

iScan (Illumina Inc., San Diego, CA, USA) at Michigan State University. V3 Potato 

array includes the SNP from the Infinium 8303 Potato Array with additional markers 

from the Infinium high‐confidence SNPs (69K) (Hamilton et al., 2011) and the SolSTW 

20K array (Peter. G. Vos et al., 2015). Samples were SNP genotyped using the Illumina 

GenomeStudio 2.0.4 software (Illumina, San Diego, CA) for five-cluster (nulliplex = 

AAAA, simplex = AAAB, duplex = AABB, triplex = ABBB, and quadruplex = BBBB) 

marker calling using a custom tetraploid cluster file based on the PolyGentrain polyploid 

module calling of reference tetraploid samples (Illumina, San Diego, CA). The SNP 

genotype data were filtered to exclude low-quality, monomorphic SNPs, and loci with 

≥10% missing data. Also, the alleles-design option was displayed in GenomeStudio to 

get genotypes in nucleotide format for STRUCTURE input. The genotyping data were 

transformed into diploid form as AAAA=AA, BBBB=BB, and AAAB, AABB, 

ABBB=AB to use in analysis packages which do not support polyploid data.  

2.2.4. Genetic diversity 

SNP genotypic data were used to study genetic diversity and to understand the 

genetic relationship among clones. Allele frequencies, polymorphic information content 
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(PIC), heterozygosity, and inbreeding coefficient were calculated in snpReady (Granato 

et al., 2018) package in R using the diploid genotypic calls.  

The average pairwise divergence among genotypes, which represents the 

nucleotide diversity per bp, π (pi), and the expected number of polymorphic sites per 

nucleotide, θ (theta), were estimated in TASSEL v5.2.39 (Bradbury et al., 2007) using 

the default settings for the diploid genotypic calls. The normalized measure of the 

difference between the observed (π) and expected (θ) nucleotide diversity, known as 

Tajima’s D, was also computed in TASSEL. 

2.2.5. Population structure 

Population structure was determined using STRUCTURE software version 2.3.4 

(Pritchard et al., 2000) using an admixture model of the diploid genotypic calls. 

STRUCTURE places clones in subpopulations based on similar patterns of variation. 

For each dataset, three replicates were performed for each value of K from one to ten 

with a 50,000 burn-in time, and the number of Markov Chain Monte Carlo replicates 

also set to 50,000. For each K, we checked whether the run parameters (likelihood, 

posterior probability of data and alpha) reach convergence within the burn-in period. The 

most probable K-value was determined by STRUCTURE Harvester (Earl & vonHoldt, 

2012), using the log probability of the data [LnP(D)] and delta K (ΔK) based on the rate 

of change in [LnP(D)] between successive K-values. 

2.2.6. Discriminant analysis of principal components (DAPC) 

DAPC was done using the adegenet package (Jombart & Ahmed, 2011) in R to 

identify and describe clusters based on genetic relationships using a diploid form of 



 

56 

 

genotyping data. The feature find.clusters was used to identify the number of clusters 

within the population. The K-means clustering decomposes the variable’s total variance 

into between-group and within-group components. The lowest associated BIC had 

defined the best number of subpopulations. The correct number of principal components 

(PCs) to be maintained was verified using a cross-validation feature (Xval.dapc). In this 

analysis, the data is divided into two sets: a training set (90 percent of the data) and a 

validation set (10 percent of the data). The members of each group are chosen by 

stratified random sampling, ensuring that at least one member of each group or 

population is reflected in the original data in both training and validation sets. DAPC is 

performed on the training set with a variable number of retained PCs, and the degree to 

which the analysis can accurately predict group membership of excluded individuals 

(those in the validation set) is used to determine the optimum number of retained PC. 

The sampling and DAPC procedures are repeated many times at every PC retention 

level. The best number of PCs that should be taken is associated with the lowest root 

mean square error. SNPZIP analysis was used to identify alleles with the largest 

contributions to form the linear discriminants and allocate the genotypes to the clusters. 

The coefficient of genetic differentiation among groups (Fst) was calculated using 

stamppFst in StAMPP package (Pembleton et al., 2013) in R. 

2.2.7. Hierarchal clustering 

Pairwise Nei genetic distance (Nei, 1972) was calculated, and a distance matrix 

was obtained with the StAMPP package (Pembleton et al., 2013) of R software using the 

tetraploid SNP genotype calls. The resulting matrix was used to build a dendrogram 
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using the hierarchical clustering (method= “Ward D”) implementing in the Ape package 

(Paradis et al., 2004) in R. Duplications, mislabeling, and errors with the naming were 

identified from the dendrogram based on clustering. After removing duplicates and 

mislabeled clones, a core set of clone bank collection was developed for long-term in-

vitro maintenance.  

2.2.8. Identification of selection signatures 

Signatures of selection analyses were performed using 10,106 SNPs applying 

three complementary statistical methods. The outlier test PCAdapt (Luu et al., 2017) was 

based on allele frequency differentiation whereas, the iHS (Voight et al., 2006) and the 

XP-EHH (Sabeti et al., 2007) were based on linkage disequilibrium (LD) patterns. 

PCAdapt Version 4 (Privé et al., 2020) was used to identify loci related to diversification 

in R. The option for performing LD clumping was applied, this removes variants in LD 

and ensures that more PCs capture population structure instead of LD structure (Privé et 

al., 2020). The initial number of PCs was set as K = 20, and the scree plot was used to 

pick the K that explains much of the variance. The choice of K was also verified by 

projecting individuals on the principal components (called PCAdapt's score plot) to see 

if the clustering level was consistent with the value selected for K. The Mahalanobis 

distances were then used to search for outlier SNPs and transformed into p‐values to 

perform hypothesis testing. A Q-Q plot of the predicted p-values vs. observed p-values 

was used to visualize the distribution of the p-values. The cut‐off for identifying 

selections was then based on the q‐value method using the qvalue R package, using 5% 

as false discovery rate threshold.  
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SHAPEIT2 (Delaneau et al., 2013) with a window size of 1 Mb and 500 

iterations, including 200 burn-in and pruning iterations, was used to derive haplotypes 

for iHS and XP-EHH analyses. The iHS and XP-EHH analysis was done using the rehh 

package (Gautier & Vitalis, 2012) in R v. 3.4.4. To allow better visualization and 

analysis of regions under selection, the iHS and XP-EHH scores were standardized to a 

distribution with zero mean and unit variance. In addition, p-values were calculated with 

the threshold set at 1 percent, as defined in Gautier and Naves (Gautier & Naves, 2011) 

and FDR performed following Storey and Tibshirani (Storey & Tibshirani, 2003). 

Candidate selection sweep regions were classified as SNP regions identified as being 

under selection by at least two of the statistics applied. Genes spanning 250 kb upstream 

and downstream of the candidate selection regions were retrieved from the 

representative gene annotation for the pseudomolecules from the Potato Genome 

Sequencing Consortium (PGSC) public data (Pham et al., 2020; Sharma et al., 2013; X. 

Xu et al., 2011) retrieved from 

http://solanaceae.plantbiology.msu.edu/pgsc_download.shtml. 

2.2.9. Core Set Identification 

A core set of most diverse clones was identified using Core Hunter 3 (De 

Beukelaer et al., 2018). This software generates subsets based on multiple genetic 

measures, including both distance measures and allelic diversity indices 

(http://www.corehunter.org). The function sampleCore in the R package of Core Hunter 

3 was run on a precomputed Nei’s distance matrix of 214 clones. 

 

http://www.corehunter.org/
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2.2.10. Pedigree information 

A curated dataset was used to check the accuracy of pedigree records using the 

methodology of Endelman et al. (2017). Pedigree information was assembled from 

variety release publications, published potato pedigree database, and TAMU potato 

program breeding records. If both parents were genotyped, the pedigree conflict rate was 

used to identify pedigree errors. For each of the parent-offspring trios (two parents and 

one offspring) in the dataset, a pedigree conflict metric was calculated as the percentage 

of monomorphic (i.e., non-segregating) markers in the cross at which the genotype of the 

offspring was different. When only one parent was genotyped, the marker vs. pedigree 

plot was used to confirm (or not) the known parent. 

2.3. Results 

Two hundred fourteen clones, including commercial and reference varieties 

maintained by the TAMU Potato Breeding Program, were genotyped with the Infinium 

22K V3 Potato Array. Stringent screening of the SNP markers using MAF removed 

10,669 SNP (50.7%) markers and additional filtering for more than 10% “No call rate” 

removed 252 (1.2%) SNP markers. After filtering, a total of 10,106 polymorphic SNP 

markers were selected for analysis.   

2.3.1. Genome-wide distribution of SNPs 

The SNPs were distributed across the 12 chromosomes. 10,106 SNP markers 

(after filtering) were mapped to 12 chromosomes represented as the 12 pseudomolecules 

of the potato genome DMv4.03 (Xu et al., 2011). Each chromosome had an average of 

842 markers ranging from 1,389 markers on Chr. 1 to 617 on Chr. 10. The average 
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distance between SNPs was 71 kb, but the SNP-to-SNP distribution was skewed: 39% of 

the marker to marker distances were less than 1 kb, and 18% were less than 10 kb. SNPs 

were enriched toward chromosome ends (Figure 2.1).  

 

 

Figure 2.1 Heatmap of 10,106 SNPs across the twelve potato chromosomes. The 

color intensity indicates the density of markers in that segment of the chromosome 

(white, low density; maroon, high density). SNP density is shown to increase toward 

the ends of the chromosomes where gene density is higher. 

 

2.3.2. Evaluation of SNP characteristics 

The mean expected heterozygosity value of the SNP markers was 0.39, ranging 

from 0.10 to 0.50. Minor allele frequency (MAF) ranged from 0.05 to 0.50, with a mean 

of 0.31 (Figure 2.2). The polymorphic information content (PIC), which denotes the 

relative informativeness of each marker, ranged from 0.09 to 0.38 with a mean of 0.31 

(Figure 2.3). Most of the clones had high levels of heterozygosity, ranging from 0.22 to 

0.80 with a mean of 0.59 (Appendix A12). The mean heterozygosity values for different 
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market classes were 0.62 (Chipping), 0.59 (Russet), and 0.58 (Red/Specialties). A clone 

(ATX91322-2Y/Y) with very low frequencies of simplex and triplex was found. Those 

two allelic classes are absent in diploids. ATX91322-2Y/Y produces very small 

potatoes, yellow skin, and very intense yellow flesh. Thus, we are declaring this clone as 

a diploid potato. The inbreeding coefficient was negative for many highly heterozygous 

clones ranging from -1.00 to 0.44, with a mean of -0.51 (Appendix A12). 

 

 

Figure 2.2 Distribution of minor allele frequency (MAF) of 10,106 SNPs in 214 

tetraploid clones. 
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Figure 2.3 Distribution of polymorphic information content (PIC) values of 10,106 

SNPs calculated for 214 tetraploid clones. 

 

2.3.3. Genetic diversity 

Based on the diploid genotypic calls analysis using TASSEL, the average 

pairwise divergence among genotypes (π), at SNP locations, was 0.39. This represents 

the nucleotide diversity per assayed SNP in the clones. The expected number of 

polymorphic sites per nucleotide (θ), which estimates the mutation rate in the collection, 

was 0.169 with 10,106 segregating sites. Tajima’s D, which estimates the normalized 

measure of the difference between the observed (π) and expected (θ) nucleotide diversity 

was 4.29.  

2.3.4. Population structure analysis 

STRUCTURE analysis showed that the number of subpopulations (K) ranged 

from zero to ten when using the diploid genotyping model (AA, AB, BB; 10,106 SNP 
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markers). The K value with the maximum likelihood was K = 3 (Figure 2.4, Appendix 

A1). Clones were assigned to a subpopulation if they had at least 50% membership 

within that group. Most of the reds, purples, and yellows (46.6% of total clones) grouped 

in subpopulation 1 (Red) (Figure 2.4).  

 

Figure 2.4 Proportional membership (Q) of each clone in the genetic clusters 

inferred by STRUCTURE (K= 3). This figure represents each individual as a 

vertical bar and its membership probability in each subpopulation. Individuals 

with the highest proportion of membership to subpopulation 1 (red color) 

corresponded to clones with red, purple, and yellow skin; Individuals belonging 

mainly to subpopulation 2 (green) include Russet Norkotah strain selections, and; 

Individuals with predominate membership to subpopulation 3 (blue) were russet 

and chipping clones. 

 

For instance, the red skinned yellow flesh clone Sierra Rose, the purple skinned 

yellow flesh clone ATTX88654-2P/Y, and the yellow skin yellow flesh clone 

ATX91322-2Y/Y had complete membership in subpopulation 1. Russet Norkotah and its 

strain selections (8.4% of total clones) were grouped in a separate subpopulation 2 

(Green) (Figure 2.4). Most of the russet and chipping clones (40.6% of total clones) were 

grouped to subpopulation 3 (Blue) (Figure 2.4). For instance, the chipping clone Atlantic 

and the russet clone Reveille Russet had complete membership to subpopulation 3. 
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STRUCTURE analysis revealed significant admixtures in 4.67% of the total clones. e.g., 

White LaSoda, TX11454-9Ru/Y, and COTX87601-2Ru (Figure 2.4; Appendix A2).  

 

2.3.5. Discriminant analysis of principal components (DAPC) analysis 

The lowest Bayesian information criterion (BIC) value obtained using 

find.clusters function was three (Appendix A3), which was in concordance with the delta 

K obtained in STRUCTURE. These three clusters were used to analyze the DAPC 

(Figure 2.5). Twenty principal components capturing 34.3% variance and two 

discriminant eigenvalues were retained. These values were confirmed by a cross-

validation analysis (Appendix A4). Genotypes had membership coefficients to each 

group ranging from 0.5 to 1, thus confirming low admixture and high structured 

population. Exceptions to these values were clone NDTX059775-1W (chipper with 

white flesh), COTX10118-4Wpe/Y (specialty with white skin purple eyes, and yellow 

flesh), COTX03079-1W (chipper with white flesh), and COTX94216-1R (red skin white 

flesh) whose values were 0.36, 0.40, 0.43 and 0.44, respectively. In Figure 2.5, linear 

discriminant 1 separated Russet Norkotah and Red groups from the Chip & Russet group 

and linear discriminant 2 separated Red and Chip & Russet groups from the Russet 

Norkotah group. SNPZIP analysis detected 18 SNPs with the largest contribution to 

cluster identification. Two of them corresponded to linear discriminant 1, and the 

remaining 16 to the linear discriminant 2. Most of them annotated with known gene 

functions. The coefficient of genetic differentiation among groups was highest (0.14) 

between Red/Specialties and Russet Norkotah/strains, followed by Chip & Russet and 
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Russet Norkotah/strains (0.10). The lowest value (0.02) was found between the Chip & 

Russet and Red/Specialties groups suggesting low genetic differentiation among them. 

 

 

Figure 2.5 Discriminant analysis of principal components (DAPC) for 214 clones. 

The axes represent the first two linear discriminants. Circumferences surround 

each group, and small solid dots represent individual clones. Labels inside circles 

indicate the different subpopulations identified by DAPC analysis (Chip & Russet= 

chipping and russet clones, Red= red/specialties, and RN= Russet Norkotah and its 

strains). 
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2.3.6. Phylogenetic cluster analysis 

The dendrogram generated using Nei genetic distance and hierarchical clustering 

also revealed the presence of three clusters in the population (Figure 2.6). The 

assignment of the clones to the groups in the dendrogram corresponded to 92% and 93% 

with the allocation made by the STRUCTURE and DAPC analysis, respectively. 

Groupings of the clones were observed based on their lineage/pedigree. As a result, 

selections with one or both common parents clustered together along with their parental 

clones in the same group. However, the clones were not separated based on cross 

location. Cluster 1 (18 clones) comprised mainly of Russet Norkotah, its eight strains 

(TXNS 106, TXNS 118, TXNS 249, Russet Norkotah 102, Russet Norkotah 112, Russet 

Norkotah 223, Russet Norkotah 278, and Russet Norkotah 296), and nine other russet 

clones (Figure 2.6a). This is equivalent to 27% of the total russet clones used in this 

study. The dendrogram shows very low/no genetic distances between them. The origin 

of the clones in this cluster traces to crosses made by four breeding programs (Idaho, 

North Dakota, Colorado, and Texas). Similarly, cluster 2 (94 clones) was comprised 

mostly of reds, yellows, and purple clones (Figure 2.6b). This is equivalent to 96%, 

40%, and 76% of the total red, total yellows, and total purple clones, respectively. In the 

cluster, Sierra RoseTM and four additional red clones were distinct from the remaining 

clones in the group. Four chipping clones (AOTX95309−2W, ATTX95490−2W, 

TX12484−4W, and NDTX059828−2W) appeared as exceptions in this cluster consisting 

predominantly of red clones. The most prominent varieties in this cluster include White 

LaSoda, Sierra RoseTM, and Rio Rojo. The cross-location of the clones in this cluster 
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traces to eight potato breeding programs in the United States. Lastly, Cluster 3 (102 

clones) was comprised of chipping clones, russets, yellows, and purple. This is 

equivalent to 90%, 73%, 59%, and 23% of the total chipping clones, total russets, total 

yellows, and total purple clones, respectively (Figure 2.6c). Seven red clones appeared 

as exceptions in this cluster. COTX03187−1W grouped with russets rather than grouping 

with chippers. The most prominent varieties in cluster 3 include Atlantic, Tacna, Tokio, 

Sierra GoldTM, Krantz, and a recently released Texas variety COTX09022-3RuRE/Y 

(russet skin red eyes and yellow flesh, released under the experimental name). The origin 

of the clones in this cluster traces to crosses originally made by eight potato breeding 

programs in the United States. 

Under the current naming convention, the Texas Potato Breeding program 

typically uses a clone code that provides information about the place where the cross 

was made, where it was selected, year the cross was made, family number, selection 

number, type of skin, and sometimes type of flesh and other characteristics. For 

example, in ATX91137-1Ru, ‘A’ indicates the cross was made in Aberdeen, Idaho, TX= 

selected in Texas, 91 = year cross was made, 137 = family number, -1= selection 

number, and Ru = russet skin. After inspecting the dendrogram, we observed mislabeling 

in 5 clones (2.3 % of the total clones). For instance, a russet clone AOTX98096−1Ru 

was mislabeled as a red clone AOTX98096−1R. Likewise, COTX04303-3Ru/Y was 

mislabeled as COTX04303-3R/Y. The SNPs grouped both of them with russets and 

Russet Norkotah strains in the dendrogram. Inspection of parentage gave a hint about the 

error and the minitubers produced in the greenhouse further confirmed that these should 
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be russet clones (Appendix A5). All the corrected names are reflected in the dendrogram 

with an asterisk sign (*) at the end of the name. Atlantic was repeated (TAMU and MSU 

versions) as a quality control to detect duplications and they had almost zero Nei’s 

distance between them. After SNP comparisons, we found that some clones were 

identical. For instance, sister lines TX09403-15W and TX09403-21W cluster together 

and had almost zero Nei’s distance between them. Similarly, Russet Norkotah and 

Russet Norkotah strains could not be distinguished by the SNPs used in the current 

study. In another instance, clone AOTX95309-2W did not group with sister line 

AOTX95309-1W. AOTX95309-2W clustered together with Reds and tubers were red. 

Based on the dendrogram, parentage, and tuber color, the clone AOTX95309-2W could 

be considered an unintended mix and should be removed from the program. The use of 

SNP genotyping aided the discovery of typographic errors that occur during handling 

clonal material in the breeding program and/or tissue culture operations. Further, SNPs 

can also be used to define unique molecular fingerprints of released varieties and 

advanced clones and to calculate similarities (or distances) between new varieties and 

reference varieties and other released varieties. 
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Figure 2.6 A Ward Dendrogram of the 214 clones using hierarchical clustering 

(method = “ward D”), the lower part a. representing Russet Norkotah and its 

strains, the middle part b. representing red and specialties and top part c. 

representing chipping and russet clones are shown separately. In the X-axis are 

represented the Nei’s genetic distances between clones. The color of the clones 

represents the market class (Red = red clones, Purple = purple clones, and Yellow = 

yellow clones; Green = Russet Clones, and; Blue = chipping clones). Corrected 

names are indicated by an asterisk sign (*) at the end of the clone name. 

 

 

 

a. 
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2.3.7. Identification of candidate loci under selection 

Using the proportion of explained variance displayed, and projecting individuals on the 

principal components as a score plot (Appendix A6), we estimated the optimal number of PCs 

from the SNP matrix to be three. At α=0.05 corrected for the genomic inflation factor 

(λGC=1.20), 26 SNPs were found under selection on chromosomes 1, 2, 3, 4, 5, 7, 8, and 10 

c. 
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using the PCA-based method (Appendix A13). Some of the selected SNPs had known functions. 

For example, a SNP (PotVar0120627) was selected at 48.6 Mb on chromosome 3. It had been 

reported that the Y-locus controlling the white-to-yellow flesh color in potato mapped to 

chromosome 3 (Bonierbale et al., 1988) and is believed to be regulated primarily by the b-

carotene hydroxylase (BCH) gene (Kloosterman et al., 2010). Likewise, after adopting the false 

discovery rate of 0.01, 127 SNPs and 100 SNPs were found under selection using the iHS and 

XP-EHH tests, respectively. Figure 2.7 to Figure 2.9 shows the Manhattan plots illustrating the 

SNPs identified as being under selection pressure on all potato chromosomes according to the 

three tests assayed.  

 

 

Figure 2.7 Manhattan plot showing the distribution of candidate outlier SNPs from 

PCAdapt where Y-axes represent P values and significant SNPs above α=0.05 are 

in orange color. 
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Eighteen regions were identified under selection by at least two of the statistics applied 

and were defined as candidate selection sweep regions. These regions occur on all chromosomes 

except 3 and 5 (Table 2.1). These SNPs were related to diversification and some of them were 

found associated with a specific phenotype. Some of the candidate genes had known functions 

and are discussed in the next section. 

 

 

Figure 2.8 Distribution of standardized iHS scores in three groups of potatoes. 

Significant SNPs above 1% false discovery rate (FDR) threshold are colored 

according to groups (iHS_chipru = blue; iHS_red = red; iHS_rn = green) 
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Figure 2.9 Distribution of standardized XP-EHH scores between three groups of 

potatoes. Significant SNPs above 1% false discovery rate (FDR) threshold are 

colored according to groups (XP-EHH chirpru vs red = orange; XP-EHH chipru vs 

rn = purple; XP-EHH red vs rn = cyan) 

 

Table 2.1 Description of the candidate selective sweep regions detected using 

PCAdapt, iHS and XP-EHH analyses in potato. 
Chr Selective 

sweep 

region (Mb) 

No. of 

candidate 

genes 

Top significant SNP Functional Annotation Max 

iHS/XPEHH/PCAdapt 

statistic 

P-val 

1 2.60-3.10 47 PotVar0044963 Flesh Color 3.1, 3.4 2.8, 3.2 

1 19.41-19.91 11 solcap_snp_c2_49758 
 

3.1, 2.9 2.7, 2.5 

1 29.43-29.93 15 PotVar0122478 
 

-3.5, -5.6 3.4, 7.7 

1 66.98-67.48 44 PotVar0098497 
 

-3.0, -2.9 2.6, 2.5 

2 46.15-46.65 68 solcap_snp_c2_24864 Length of plant cycle and tuberization 3.3, 3.9 3, 4 

4 3.66-4.16 37 PotVar0106879 
 

3.2, -3.1 2.9, 2.7 

6 15.52-16.02 12 solcap_snp_c2_18787 
 

3.2, 2.9 2.8, 2.4 

6 17.14-17.64 8 solcap_snp_c1_9601 
 

3.2, 2.9 2.8, 2.4 

6 20.06-20.56 14 solcap_snp_c2_56793 
 

3.1, 2.8 2.7, 2.3 

6 21.00-21.50 16 solcap_snp_c2_33233 
 

3.1, 2.8 2.7, 2.2 

6 21.48-21.98 8 PotVar0083629 
 

3.1, 2.8 2.7, 2.2 

7 10.58-11.08 20 solcap_snp_c1_2404 Stolon attachment 3.2, -3.4 2.9, 3.2 

7 40.36-40.86 25 solcap_snp_c2_9380 
 

3.2, 3.1 2.8, 2.7 

8 42.87-43.37 32 PotVar0086811 
 

3.3, -2.8 3, 2.3 

9 3.48-3.98 43 PotVar0012376 Flesh Color -3.6, -3.0 3.5, 2.5 

10 55.60-56.10 57 PotVar0005291 Cytokinin metabolism, Pelargonidin 30.5, 3.4 6.0, 3.2 

11 9.12-9.62 28 solcap_snp_c2_53683 
 

-4.1, -3.5 4.4, 3.3 

12 2.83-3.33 54 PotVar0031150 
 

3.7, 3.4 3.6, 3.2 
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Figure 2.10 Population-wide comparison of genetic covariance calculated from 

markers with the additive relationship calculated from pedigree records, for clone 

Vanguard Russet.  

 

2.3.8. Core set identification 

The analysis of genetic diversity and population structure of 214 clones identified 

sub-populations in the clone bank and some of the genotypes were quite similar. A core 

set of 43 clones (Appendix A14) was selected to maximize diversity and minimize 

redundancy using Core Hunter 3 software. Among the core set, 14 clones were from the 

Chipping market class, 11 Russet, and seven, five, and six from the Red, Purple, and 

Yellow market classes, respectively. The genetic diversity of the core set was estimated 

to represent the extent of diversity captured from the total collection. Comparisons of all 

genetic parameters indicated that the values for the core set were almost equal to those 

for the total collection (Table 2.2). The mean genetic distance of the whole collection 
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was 0.09, but this value increased to 0.10 in the core set. Similarly, the mean PIC and the 

mean MAF of the whole collection were both 0.31, while those of the core set were 0.31 

and 0.30, respectively. DAPC analysis and hierarchical clustering showed the presence 

of four clusters in the core set (Appendix A7 and Appendix A8). 

Table 2.2 Comparison of the genetic diversity of the whole collection (214 clones) 

versus a core set (43 clones) based on genetic distance, polymorphism information 

content (PIC) and minor allele frequency (MAF). 

 

Nei’s genetic distance PIC MAF 

Whole  

collection 

 (214 clones) 

Core set  

(43 clones) 

Whole  

collection  

(214 clones) 

Core set 

 (43 clones) 

Whole 

collection 

 (214 clones) 

Core set 

 (43 clones) 

Mean Range Mean Range Mean Range Mean Range Mean Range Mean Range 

0.09 0-0.17 0.10 0.07-0.17 0.31 0.09-0.38 0.31 0.10-0.38 0.31 0.05-0.50 0.30 0.06-0.50 

 

 

2.3.9. Pedigree information 

For 12 of the parent-offspring trios having genotyping data for both parents, 

pedigree was found accurate for ten trios with no pedigree conflict. Figure 2.10 shows 

the marker vs. pedigree plot for Vanguard Russet without pedigree errors. The parents 

are in the top right corner of the figure, with both an additive relationship (A) and 

genetic covariance (G) of 0.5 and unrelated individuals with additive relationship A=0 to 

the parents. One of the grandparents of Vanguard Russet, TX08350-12Ru is plotted at 

A=0.25 and has less genetic covariance than the parents based on markers. Whereas, for 

clone NDTX4930-5W and TX11461-3W the conflict rate was 24.5% and 19%, 

respectively (Table 2.3). The male parent of NDTX4930-5W and female parent of 
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TX11461-3W is found erroneous from the marker vs. pedigree plot. In the case of 12 

clones with one parent genotyped, five parents were found correct and seven parents 

were found erroneous (Appendix A9-A11) 

 

Table 2.3 Parent-offspring trios for which both recorded parents were genotyped. 

Pedigree conflict rates are shown in percentages. 

 

Clone Name Market Class Female Parent Male Parent Pedigree Conflict % 

Atlantic Chipping Wauseon Lenape 0.0 

NDTX4930-5W Chipping ND860-2 Western Russet† 24.5 

TX09396-1W Chipping Atlantic Lamoka 0.0 

TX09403-21W Chipping Waneta Ivory Crisp 0.0 

TX11461-3W  Chipping Waneta† Chipeta 19.0 

TX09403-15W Chipping Waneta Ivory Crisp 0.0 

COTX08121-1Ru  Russet AC96052-1Ru Blazer 0.0 

COTX08121-4Ru Russet AC96052-1Ru Blazer 0.0 

TX08350-12Ru Russet TXA549-1Ru AC96052-1Ru 0.0 

Vanguard Russet  Russet TXA549-1Ru AOTX98137-1Ru 0.0 

COTX08322-10Ru Russet Blazer AC96052-1Ru 0.0 

† The erroneous parent is shown in bold. 

 

2.4. Discussion 

Tissue culture clone banks often contain potato varieties and breeding lines from 

several different regions and programs. Characterizing breeding collection germplasm is 

crucial in plant breeding, as the genetic advancement of economically valuable traits 

relies on the genetic diversity available within the breeding gene pool. Knowledge about 
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genetic diversity also assists in minimizing the use of closely related clones as parents in 

breeding programs, which might lead to a high risk of inbreeding depression and 

reduced genetic variation. Genetic diversity, population structure, and molecular marker 

knowledge may accelerate the selection of desirable traits in potato. In the present study, 

population structure and genetic diversity were evaluated in a tissue culture clone bank 

collection composed of 214 diverse clones. This collection contains advanced selections 

from the TAMU Potato Breeding Program entered in tissue culture over 40 years of 

breeding efforts.  

The availability of SNP arrays has enabled genotyping the germplasm of crops 

like potatoes. SNP distribution across the genome assessed by analyzing filtered SNP 

density shows the typical pattern of distinctly reduced recombination in pericentromeric 

regions and increased varying recombination rates in euchromatic regions for all 

chromosomes. Larger regions with no SNP coverage are usually found in large 

pericentromeric regions, where repetitive DNA makes it difficult to distinguish unique 

flanking regions around SNPs (Otyama et al., 2019; Stupar et al., 2002). A similar 

distribution has been observed in sorghum (Evans et al., 2013), wild tomatoes (Bhardwaj 

et al., 2016), and Prunus (Guajardo et al., 2020). SNPs offer high-resolution markers to 

breeding programs far beyond traditionally used approaches depending solely on 

pedigrees (Brown, 1989) or phenotypic data (Bretting & Widrlechner, 2010). In the 

present study, the average PIC value was 0.31. Most SNPs (69%) had PIC values 

ranging from 0.30 to 0.38, while for the remaining percentage, it was < 0.30. The SNPs 

having PIC values ranging from 0.25 to 0.5 are considered moderately informative 
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(Botstein et al., 1980). This may support the idea that, despite breeding efforts, genetic 

diversity in our set of clones has not been narrowed. Similar PIC values were previously 

reported in collections of potatoes tested for genetic diversity using the SolCap SNP 

array (Bali et al., 2018; Berdugo-Cely et al., 2017). 

Heterozygosity is an indicator of genetic variability in a population, and it is 

related to the polymorphic nature at each locus. In this study, a high level of 

heterozygosity was observed; in the TAMU potato breeding collection, this could be due 

to the high levels of genetic variation at loci with vital significance for adaptive response 

to environmental changes. Loss of heterozygosity was related to lower fitness 

(Manrique-Carpintero et al., 2018). Potato is an outcrossing species; thus, heterozygosity 

is usually higher than expected. Selection, migration, mutation, hybridization, 

polyploidization, and introgression elucidate the high diversity of potatoes (Berdugo-

Cely et al., 2017). The average percent heterozygosity (59%) observed in the TAMU 

potato collection was similar to Hirsch et al. (2013) and Igarashi et al. (2019), who 

reported the average value of 56% and 60%, respectively. However, the lowest 

heterozygosity value we observed was 22% in clone ATX91322-2Y/Y, which was found 

to be a diploid selected by the program based upon five cluster genotypes calling. 

Igarashi et al. (2019) reported that the average percent heterozygosity of the 2x varieties 

(23%) was much lower than that of the 4x genotypes. Five cluster genotypes calling has 

successfully been used to predict ploidy determinations of diploid, triploid, and 

tetraploid samples (Alsahlany et al., 2019; Ellis et al., 2018). When the simplex and 

triplex frequency was close to zero, the sample was considered to be diploid, and when 
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the frequency was over 0.20, then the progeny samples were considered to be tetraploid. 

This finding is similar to Hirsch et al. (2013), indicating that greater ploidy can be 

correlated with greater heterozygosity, and vice versa. Almost all the highly 

heterozygous clones had negative inbreeding coefficients, which happens when observed 

heterozygous clones are larger than expected due to an excess outcrossing. Increasing 

the heterozygosity of clones and widening their genetic base are important aspects of 

breeding programs to have desired combinations of abiotic and biotic stress tolerances 

and high yield. It is clear from the heterozygosity analyses and SNP evaluation, that the 

Texas A&M potato breeding program harbors considerable genetic diversity. 

Tajima’s D (Tajima, 1989) provides a distinction between randomly altering loci 

and non-randomly evolving loci arising from directional selection, introgression, genetic 

bottleneck, and/or drift. Generally, a positive value of Tajima’s D arises from an excess 

of intermediate frequency alleles and can result from population bottlenecks, structure, 

and/or balancing selection (Ching et al., 2002). These factors are likely present in potato 

breeding clones. The observed Tajima’s D value of 4.29 in this study is higher than in 

sorghum (0.30) (Hamblin et al., 2004) and soybean (1.08) (Zhu et al., 2003), both of 

which show a significant bottleneck in their population history. To elucidate the 

possibility that the elevated D value occurred due to population subdivision, we assessed 

population structure as suggested by Pritchard et al. (2000). When SNPs from all 

chromosomes were included in the analysis, a significant subdivision was observed 

(Figure 2.4) indicating a relatively heterogeneous population. 
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Understanding population structure helps allow the successful use of genotypes 

for breeding purposes. Alleles that are divergent among clusters are a guide to detecting 

the principal differences due to breeding strategies and different origins among 

subpopulations. The STRUCTURE analysis provided further insight into the admixture 

and the number of populations in this collection. Structure analysis identified subgroups, 

as in other studies (Hirsch et al., 2013; Peter. G. Vos et al., 2015). Our results support 

hybridization or outcrossing among the individuals and a five percent admixture. 

DAPC analysis divided the population into well-defined clusters according to 

their genetic structure and market classes. The DAPC approach offers an alternative to 

STRUCTURE software as it does not require the populations to be in Hardy-Weinberg 

equilibrium, and it can support large sets of data (Campoy et al., 2016). Our results 

identified good consistency between STRUCTURE and DAPC analysis when admixed 

clones were not considered.  

The clustering of individuals gives interesting clues for increasing diversity in 

breeding programs and germplasm collections. Clear knowledge of the germplasm 

structure and clusters assists in parental choice in breeding programs, improving genetic 

diversity, and enhancing the potential gain from the selection. Both help to increase 

breeding program efficiency to face new demands from consumers and the industry, as 

well as new ecological issues like adaptation to climate change and pest resistances. In 

this study, clustering corresponded with the similarity in the genetic background of the 

clones. However, clustering was not dependent on the place where the original cross was 

done suggesting a huge gene flow across breeding programs due to the reciprocal 
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exchange of true potato seed of unselected families and use in crossing blocks of 

parental germplasm from potato breeding programs throughout the United States. Bali et 

al. (2018) were unable to separate Russet potato clones according to the breeding 

programs they originated from, which was an indicator of the free flow of germplasm 

among the potato breeding programs. Several quantitative differences (e.g., vine size, 

maturity, average tuber size, yield, etc.) existed among the strains and Russet Norkotah 

(Miller et al., 2004). However, clonal selections (strains) were not differentiated 

genetically despite using more than 11,000 genome-wide SNP markers. Previous studies 

using Amplified Fragment Length Polymorphisms (AFLPs) and microsatellite markers 

were also unable to detect differences between intraclonal variants of the potato cultivar 

Russet Norkotah (Hale et al., 2005). The differences between the strains could be due to 

epigenetic variation, and most of them may not be observed by SNPs (Xu et al., 2019).  

Maintaining consistent and unique clone names in the clone bank is important for 

future cultivar identification, research, and breeding. There are many instances in the 

program where naming errors could be introduced. The longer a clone is handled in the 

program, the greater the potential of mixing or mislabeling. The Infinium 22K V3 Potato 

SNP Array generated unique genetic fingerprints to identify accessions where errors had 

occurred. The majority (97.6%) of the clones evaluated had no errors in genetic identity. 

It is common in most gene banks to have some errors in the collection. Ellis et al. (2018) 

at the International Potato Center (CIP) found 4.4% of accessions were genetically 

mismatched, and in some cases, the SNP results identified the mixed accession. 

Barcoding, automatic data collection, curation, and other quality control strategies will 
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help to minimize errors. Studies such as this can help identify and correct errors in the 

breeding program. In addition, SNP fingerprints and genetic distance comparisons can 

be useful for plant variety protection (PVP), as well as for the verification of the identity 

of clones in the foundation, certification, and breeding programs. 

Our main goal for selection signature analysis was to detect regions that show 

preferential selection in the genome of potatoes. To accomplish this, we used three 

different, but complementary, statistical methods: PCAdapt, iHS, and XP-EHH. The use 

of a combination of methods for selection sweep detection allows different emerging 

patterns of selection to be identified, and it also improves the reliability and accuracy of 

the analyses (Pavlidis & Alachiotis, 2017). Potato breeding efforts currently center on 

improving different market classes such as chip and French fry processing, pigmented, 

table russets, and yellows (Hamilton et al., 2011). Most (but not all) hybridizations are 

made between clones within a market class. Over time one might expect these market 

classes to diverge, not only in terms of the few traits that define each class, but also in 

terms of unlinked, selectively neutral DNA markers (Hamilton et al., 2011). Several of 

the identified SNPs and sweep regions in this study are associated with functions of 

interest and warrant further investigation.  

A SNP (PotVar0120627) was selected by PCAdapt at 48.6 Mb on chromosome 3 

controlling the white-to-yellow flesh color. Sharma et al. (2018) using genome-wide 

association mapping found a strong association for flesh color at 49.4 Mb on the same 

chromosome. Similarly, SNPs belonging to the sweep region detected by this study on 

chromosomes 1 and 9 (Table 2.1) had been previously identified as significant SNPs for 
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flesh color (Sharma et al., 2018). The SNPs at the sweep region (10.58-11.08 Mb) on 

chromosome 7 were reported to have a significant association for the stolon attachment 

trait in potato (Sharma et al., 2018). In a previous QTL study, Manrique-Carpintero et al. 

(2018) identified candidate genes (Dof Zinc Finger Protein-StCDF3, CONSTANS-CO) 

in the photoperiod regulatory pathway associated with length of plant cycle and 

tuberization in the QTL region on chromosome 2 around 46 Mb. The XPEHH test from 

our study has also detected a sweep at the same location (46.15-46.65 Mb) on the same 

chromosome. Likewise, Manrique-Carpintero et al. (2018) had reported a cytokinin 

riboside 5′-monophosphate phosphoribohydrolase LOG3 gene located in the QTL region 

at 56 Mb on chromosome 10. Differential expression and pleiotropic effects of LOG 

genes show their major role in cytokinin metabolism to modulate plant growth and 

development in Arabidopsis (Kuroha et al., 2009) and tomato (Mu et al., 2017). The 

sweep region at chromosome 10 (55.60-56.10 Mb) detected by both iHS and PCAdapt 

tests in our study matched with this finding. The Sucrose transporter 4 (SUT4) gene 

involving an accumulation of sucrose and starch in the terminal sink, is located at 65.8 

Mb on chromosome 4 (Chincinska et al., 2013; Manrique-Carpintero et al., 2018). Our 

XPEHH test between the ChipRu and Red groups selected three SNPs 

(solcap_snp_c2_55781, solcap_snp_c2_55780 and solcap_snp_c2_55779) at 65.9 Mb on 

the same chromosome. It is well known that Red potatoes have less starch and more 

sugars than Chip and Russet potatoes (Stark et al., 2020). Parra-Galindo et al. (2019) 

reported the QTL AnthoX_Adeny, colocalized on chromosome 10 at 57.3 Mb 

(PGSC0003DMT400060833/Adenylyl-sulfate kinase gene), explaining 41.1% of the 



 

85 

 

phenotypic variance of pelargonidin. As illustrated in a colored potato study, the red 

cultivars contained predominantly pelargonidin derivatives, while the purple/blue 

varieties had peonidin, petunidin, and malvidin as the main aglycones (Oertel et al., 

2017). These results will allow a better understanding of the genetic architecture and will 

open avenues for studying candidates for biochemical and functional studies of admixed 

advanced potato selections. 

Most plant breeders want to make better use of plant genetic resources in their 

breeding programs but have trouble maintaining many clones and prioritizing clones for 

parental selection. Some breeders define a subset of clones that reflect the greater 

collection. The core subset can also be maintained as a backup collection to preserve 

important genes. In this study, we proposed a core set of 43 potato clones, accounting for 

20% of the total collection using CoreHunter software. A sampling percentage of 

20~30% was suggested by Hintum et al. (2000). Nevertheless, all core germplasm sets 

do not have a fixed size, as different crops and targets require different sampling 

percentages. In earlier studies, a core set of 48 was defined for capturing the genetic 

diversity of a collection of 350 tetraploid cultivated potato varieties using SSR data 

(Esnault et al., 2016). A core set of 27 genotypes was developed from 138 accessions of 

potato cultivars from the Western Highlands region of Cameroon using SSR markers 

(Anoumaa et al., 2017). Core Hunter software has been used for core set selection in 

earlier studies of different crops, including wheat (Ambati et al., 2020), Brazilian 

grapevine germplasm (Oliveira et al., 2020), banana (Bawin et al., 2019), sweetpotato 

(Su et al., 2017), and common bean (Mahajan et al., 2017). In many reports, genetic 
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diversity and cluster analysis were used to evaluate the efficiency of the development of 

the core germplasm set. In the present study, the genetic distance increased as expected 

after the removal of genetically similar clones during core germplasm set development. 

Having a core collection as a backup of important genes and source of parents is a good 

idea. However, in reality, core collections may not meet the needs of modern breeding 

approaches, such as genomic selection and genome-wide association studies where more 

individuals are desired to increase the statistical detection power. 

2.5. Conclusions 

Our analysis of the genetic diversity and population structure of the advanced 

clones in the TAMU Potato Breeding Program found a significant subdivision among 

clones, indicating a heterogeneous collection. Further, the SNP markers used in the study 

allowed the differentiation among breeding clones and the development of a core 

germplasm set of 43 clones, accounting for 20% of the total collection. Additionally, we 

used the SNP array to validate pedigree information. The genome-wide SNP 

characterization of these 214 clones, development of the core set, and reporting of the 

correct pedigree in this study will be useful for future genomic studies, parental 

selection, and germplasm management in potato breeding program. 
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3. IDENTIFICATION OF GENOMIC REGIONS AND SUPERIOR INDIVIDUALS 

FOR TUBER MORPHOLOGY TRAITS IN TETRAPLOID POTATO BREEDING 

CLONES  

3.1. Introduction 

Domestication and selective breeding have resulted in significant morphological 

variation in organ shape in cultivated plant species (Sun et al., 2017). Examples of 

studies on phenotypic diversity and their genetic basis include the wheat grain size and 

shape (Gegas et al., 2010), tomato and melon fruit shape (Monforte et al., 2014), and 

morphotype diversification in Brassica rapa and Brassica oleracea (Cheng et al., 2016).  

Potato domestication took place around 8,000 years ago from a wild diploid Solanum 

species in an area located on the border of present-day Peru and Bolivia (Spooner et al., 

2005). Modern cultivars are the result of extensive crossbreeding between cultivar 

groups as well as wild species. Andean tetraploid varieties likely resulted from repeated 

sexual polyploidization of early landrace diploids (Spooner et al., 2014). The 

domestication of the potato involved selection of shorter stolons, larger tubers, diverse 

tuber shape, and reduction of bitter tuber glycoalkaloids (Spooner et al., 2005).  

Currently, potato breeding activities in the United States are concentrated on 

developing six distinct market groups (chip processing, French fry processing, 

pigmented, table russet, round white table, and yellow) (Hamilton et al., 2011). The 

market-class-specific morphological traits include tuber shape, eye depth, degree of 

russeting, tuber number, tuber weight, skin color, and flesh color. The tuber shape is 

extremely important and is based on historical regional preferences coupled with local 
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culinary practices (Stark et al., 2020). Chips are made with round tubers, whereas French 

fries are made with long tubers. Likewise, the consumer expects table cultivars to be 

round or oval (van Eck, Jacobs, van den Berg, et al., 1994; Chen et al., 2018). The 

irregular shape and deep eyes in potatoes lead to higher costs due to significant peeling 

losses (Li et al., 2005; ŚLiwka et al., 2008). Another trait, skin russeting is an inherited 

trait in some potato cultivars such as Russet Burbank and Russet Norkotah (De Jong, 

1981), but the development of a russeted skin in red-skinned cultivars like ‘Magen 

russeting’ is a physiological disorder (Lulai, 2007; Ginzberg et al., 2012). Tuber sizes, 

skin color, and flesh color traits are also preferred by consumers and industry depending 

on the use of potatoes. Thus, breeding for morphological traits in potatoes is crucial as 

these traits affect consumption. 

The cultivated potato has a complex genetic structure. It is a vegetatively 

propagated, highly heterozygous, autotetraploid (2n = 4x = 48) crop with a basic 

chromosome number of 12 and genome size of 844 Mbp (Xu et al., 2011). Due to high 

heterozygosity, broad segregation for many traits, not just target traits, will occur when a 

breeder makes a cross (Bonierbale et al., 2020). Some of these traits are poorly 

characterized or the heritability of traits is low (Thiele et al., 2021). Due to this 

complexity in autopolyploids, most molecular methods and techniques have been limited 

to diploids (Bourke, Voorrips, et al., 2018).  

Utilizing bi-parental populations in diploid potatoes, quantitative trait loci (QTL) 

mapping studies have been performed to map several quality traits. The findings of tuber 

shape inheritance, whether it is monogenic or polygenic have been inconsistent. Van Eck 
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et al. (1994a), using restriction fragment length polymorphisms (RFLPs), identified a 

single locus, the Ro, that explains the inheritance of qualitative tuber form, with round 

being dominant over long on chromosome 10. Other reports using populations with 

different genetic backgrounds mention QTLs on chromosomes 2, 5, and 11 (Bradshaw et 

al., 2008), and 2 and 11 (ŚLiwka et al., 2008). Eye depth was linked to the Ro locus on 

chromosome 10 (Li et al., 2005; ŚLiwka et al., 2008). Similarly, using QTL analysis, a 

dominant allele at the Y (yellow) locus on potato chromosome 3 is responsible for the 

yellow flesh color (Bonierbale et al., 1988). A beta-carotene hydroxylase gene (BCH) 

was found in the same position as the Y locus, suggesting that this is the most likely 

candidate gene for yellow flesh (Thorup et al., 2000; Kloosterman et al., 2010). 

Anthocyanin pigments accumulate in the tuber flesh, giving it a red or purple color 

(Eichhorn & Winterhalter, 2005). The Pf locus tightly linked with the I locus (encode a 

MYB transcription factor) maps to chromosome 10 and confers pigmented tuber flesh 

(De Jong, 1987). Also, the R locus which encodes dihydroflavonol 4-reductase (dfr) 

maps to chromosome 2 (De Jong et al., 2003) and it is essential for red anthocyanin 

production. For purple pigment formation in the potato skin, the P locus which encodes 

flavonoid 3′,5′-hydroxylase (f3′5′h) is required and it maps to chromosome 11 (Jung et 

al., 2005). The f3′5′h gene co-segregates with P, and it is expressed in the tuber skin only 

in the presence of I (Jung et al., 2005). 

Recent molecular technologies and analytical platforms hold the promise of 

unlocking previously unattainable levels of understanding of polyploid genomes. 

TetraploidSNPMap (Hackett et al., 2017), allows extensive use of allelic dosage data to 
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carry out linkage analysis and QTL mapping in autotetraploid species. Other polyploid 

mapping software recently in use are the PERGOLA package in R (Grandke et al., 

2017), polymapR (Bourke et al., 2018), and MAPpoly (Mollinari & Garcia, 2019). 

These advancements have aided in the identification of QTL that account for significant 

amounts of phenotypic variance within a polyploid population. However, the number, 

effect, phenotypic variance explained, and resolution of individual QTL in a bi-parental 

population often obstruct causal gene identification (Zhu et al., 2008).  

Another powerful strategy to discover markers linked to complex traits is to 

perform a Genome-Wide Association Study (GWAS) (Cortes et al., 2021). GWAS is an 

effective method for circumventing many of the limitations of bi-parental linkage 

mapping. It takes advantage of genetic variation that exists among natural or developed 

population utilizing historical recombination and knowledge of population structure 

(Ortiz, 2020). GWAS pinpoints QTLs by analyzing the marker‐trait associations that can 

be attributed to the strength of linkage disequilibrium (LD) between markers and 

functional polymorphisms across a set of diverse germplasm (Zhu et al., 2008). 

One challenge in applying GWAS to polyploid species is how to define 

relatedness between polyploid individuals (i.e., how to generate the kinship matrix, K). 

GWAS can now account for the kinship matrix (K) in potatoes using GWASpoly 

(Rosyara et al., 2016). GWASpoly also considers the allele dosage (AAAA, AAAa, 

AAaa, Aaaa, aaaa). For computational efficiency, Yang et al. (2014) proposed the leave-

one-chromosome-out (LOCO) method. In LOCO method a different covariance matrix 
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is calculated for each chromosome based on the markers from all other chromosomes 

(Yang et al., 2014) and is now implemented in version 2 of GWASPoly.  

Sharma et al. (2018) examined various GWAS models in cultivated potato 

genotypes using the Infinium 8K Potato SNP Array and found that kinship, not 

population structure, is the most important factor in determining the extent of false 

associations. Klaassen et al. (2019) evaluated a panel of 277 varieties using SolSTW 

20K Infinium SNP marker array (Vos et al., 2015) and revealed four QTLs for protein 

content in tetraploid potato. Similarly, Zia et al. (2020) performed a GWAS using 

SolCAP 12K array for various morpho-agronomic traits in a panel of 237 tetraploid 

potato genotypes. Kaiser et al. (2020) used GWAS to identify genetic features associated 

with common scab resistance in the tetraploid population using the Illumina Infinium 

8303 Potato Array. Recently, Yousaf et al. (2021) reported SNPs associated with potato 

stolon traits and root traits.  

Traditional breeding strategies in potato like progeny testing and phenotypic 

recurrent selection are made more efficient by genomic estimated breeding values 

(GEBVs) particularly for low heritability traits. Sood et al. (2020) implemented best 

linear unbiased prediction (BLUP) for the rapid identification of superior individuals for 

tuber yield and late blight resistance in potato. Slater et al. (2014) reported that BLUP 

increased genetic gains for low heritability traits in autotetraploid potato. 

The current study hypothesized that since the Texas A&M University Potato 

Breeding Program’s collection of 214 advanced clones selected over 40 years and 

maintained in vitro (Pandey et al., 2021) has variation in tuber morphology traits, it can 
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be used to identify genomic regions associated with tuber traits and find superior 

individuals to use as parents. Recent marker-dense platforms including the 20K Infinium 

SNP marker array (Vos et al., 2015) and the Illumina 22K V3 Potato Array are expected 

to provide more precise correction for different levels of relatedness in GWAS models, 

as well as help in the identification of genomic regions associated with traits. In this 

study, we aimed to identify QTLs and genes and superior individuals associated with 

tuber shape, eye depth, degree of russeting, tuber number, tuber weight, skin color, and 

flesh color using the Illumina Infinium 22 K V3 Potato Array.  

3.2. Materials and methods 

3.2.1. Plant materials 

The association panel (N = 214) consisted of tetraploid (2n = 4x =48) advanced 

clones and varieties. The collection comprised 31 chipping, 62 russet, 32 yellow-

skinned, 68 red-skinned, and 21 purple-skinned clones. Analysis of population structure 

and discriminant analysis of principal components in the panel displayed three sub-

populations, as reported earlier (Pandey et al., 2021). 

3.2.2. Genotyping 

Genomic DNA was extracted from 50 to 80 mg of fresh young potato leaves 

from tissue culture plantlets using the DNeasy Plant Pro Kit (Qiagen, Valencia, CA, 

USA). Samples were assayed using the Infinium 22 K V3 Potato Array on the Illumina 

iScan (Illumina Inc., San Diego, CA, USA) at Michigan State University. The marker 

dataset was filtered for polymorphism and minor allele frequency as described in Pandey 

et al. (2021). 
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3.2.3. Field experiment and phenotyping 

Three field experiments were conducted in Texas to derive phenotypic data at 

commercial potato grower fields. In 2019, traits were evaluated at Dalhart 

(35°58'15.31"N, 102°44'36.33"W) and in 2020 traits were evaluated in Dalhart and 

Springlake (34°6'43.43"N, 102°19'40.02"W).  In both all environments, entries were 

planted in a 12-hill plot with 2 replications. Seed tubers were planted with 30 cm spacing 

between hills and 70 cm spacing between rows. In Springlake, trials were planted in late 

March to early April and harvested in early July, whereas in Dalhart, trials were planted 

in early May and harvested in early September, with vine desiccation 2–3 weeks before 

harvest. Standard potato production practices were followed during the growing period 

in all years of the Texas A&M potato breeding program 

(https://potato.tamu.edu/reports/). Reference varieties for various market classes 

included in this study were: Russet Norkotah (standard, fresh market russet), Atlantic 

(chipper), Russet Burbank (processing russet), White LaSoda (a white-skinned mutant of 

Red LaSoda selected by the TAMU Program, fresh market white flesh), and Yukon Gold 

Strain (TXYG79, fresh market yellow flesh). The environmental conditions during the 

potato growing season (Figure 3.1) were representative of the subregion (High Plains) 

which is characterized by cold semi-arid climate with a range of temperatures. Rainfall 

was supplemented with with center pivot irrigation for a total of around 475 mm. 

https://potato.tamu.edu/reports/
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Figure 3.1 Precipitation, maximum and minimum temperatures during the 

experiment in 2019 and 2020 at Dalhart and Springlake, TX. Supplemental water 

was provided to the crop via center pivot irrigation. 

 

For the traits assessed visually, the scores were given by replication and were 

representative of all tubers harvested. Tuber shape was determined using a 1 to 5 scale, 

where 1 = round, to 5 = long. Tuber shape was also measured as the ratio of tuber length 

to width (roundness score) and tuber length to thickness (flatness score). Length (mm) of 

the tuber was the distance from the stolon end to the bud end of the tuber, width (mm) 

was measured as the highest dimension at the equatorial area of the tuber, and thickness 

(mm) was measured perpendicularly to width. For each clone, length, width, and 

thickness data were collected from five tubers (113.4 – 170.1 g grading group) per 

replication. These numbers were used to calculate the length-width ratio and width-

thickness ratio. Eye depth was evaluated on a 1–5 scale, where 1 = eyes deeper than 5 

mm, to 5 = eyes not perceivable by touch. The degree of russeting was evaluated on a 1–
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5 scale, where 1=none to 5=heavy russet. Mean tuber number per plant was calculated as 

a total number of tubers harvested per plot per replication divided by plant stand at 60 

DAP (days after planting), mean tuber weight in g was calculated by dividing the total 

tuber yield of the plot divided by the number of tubers.  

Tuber skin and flesh color intensity were evaluated visually on 10 tubers per 

replication according to a 1–5 scale, where 1=light to 5=dark. Objective color 

measurements of the skin and flesh color were obtained from 3 tubers per plot per 

replication with a colorimeter, Konica–Minolta Chroma Meter (CR-400 with 8-mm 

aperture and 0° viewing angle, Konica-Minolta, Inc., Tokyo, Japan) (Konica-Minolta 

2013), using the CIE 1976 L*a*b* color spaces (HunterLab 2008). The instrument was 

calibrated against a standard white reference tile provided by the instrument 

manufacturer. CIE 1976 L*a*b* is a three-dimensional color space where L* (lightness) 

represents the white to black axis, a* represents the red to green axis, and b* represents 

the yellow to blue axis. The colorimeter collected and averaged three readings per tuber, 

and each reading measured 50.3 mm2 (8-mm diameter area) of the surface. Data were 

recorded using Color Data Software CM-S100w SpectraMagic NX (Version 2.8) 

(Konica-Minolta 2014) and later transferred to Microsoft® Excel® (Microsoft Office 

Standard 2013, Microsoft Corp., Redmond, WA) spreadsheets. Also, the color was 

expressed in LCH color space, in which L* = lightness, C is chroma (saturation) and H 

is hue angle. Purple skin tuber pigmentation was scored as a binary trait (Purple/Non-

purple). 
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3.2.4. Statistical analyses 

Phenotypic data of tuber morphology traits were analyzed separately for each of 

the three environments (location-year) and also combined across environments using 

software package META-R (Alvarado et al., 2020). Summary statistics (mean, SE, 

range, LSD, CV) were also generated using standard procedures implemented in META-

R. The phenotypic correlations between pairs of traits were calculated as simple Pearson 

correlations. Broad-sense heritability of a given trait in an individual environment was 

calculated on a genotype mean basis as 

𝐻2 =
𝜎2

𝐺

𝜎2
𝐺 +

𝜎2
𝑒

𝑟

 

where 𝜎2
𝐺 is the genotypic variance, 𝜎2

𝑒 is the error variance, and r is the number of 

replications.  

Broad sense heritability on a genotype mean basis for the combination of all 

environments was calculated as: 

𝐻2 = 𝜎𝐺
2

𝜎𝐺
2  +(𝜎𝐺𝐸

2
/𝑛)+ (𝜎𝑒

2
/𝑟𝑛) 

 

where 𝜎𝐺
2 is the genotypic variance, 𝜎𝐺𝐸

2  is the variance of the interaction of genotype 

and environment, 𝜎𝑒
2 is the variance of the experimental error, 𝑟 is the number of 

replications, and 𝑛 is the number of environments. 

Best linear unbiased estimates (BLUEs) were calculated for each genotype, 

considering the effects of genotypes as fixed. BLUEs used for GWAS for a single 

environment were estimated as: 
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Y
ik = µ + Rep

i + Gen
k + ε

ik 

where Yik is the trait of interest, µ is the mean effect, Repi is the effect of the ith replicate, 

Genk is the effect of the kth genotype, εik is the error associated with the ith replication 

and the kth genotype. 

Narrow sense heritability was calculated using polyBreedR 

(https://github.com/jendelman/polyBreedR) utilizing a two-stage approach described by 

Damesa et al. (2017), using ASReml-R (VSN International, UK) for variance component 

estimation.  To predict the breeding values, the polyBreedR function named 

predict_MME was used to implement mixed model equations (MME). Likewise, BLUEs 

used for GWAS for the combined environment considering genotypes fixed was 

estimated as: 

Yijr = m + Gi + Ej + Rr(E) +GEij + eijr 

where Yijr = trait value for the genotype i in the environment j and rep r, m = grand mean 

of trait, G = genotype, E = environment, R(E) = replication within environment, e = 

random error 

3.2.5. Assessment of linkage disequilibrium 

Linkage disequilibrium was estimated for all SNPs with pairwise correlation 

coefficient (r2) based on allele frequencies (Hill & Robertson, 1968) using LD.plot 

function in GWASpoly (Rosyara et al., 2016). A monotone decreasing, convex spline 

was fit using the R package scam. The appropriate window size to filter the most 

significant markers was determined based on the extent of LD in the panel, visualized 

using the function LD.plot. 

https://github.com/jendelman/polyBreedR
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3.2.6. Genome wide association studies (GWAS) 

Association analysis was performed for tuber traits with 10,116 SNPs using the 

GWASpoly Version 2 package in R (Rosyara et al., 2016). To control population 

structure, the leave-one-chromosome-out (LOCO) method (Yang et al., 2014) was used. 

Additive and dominant genetic models were tested for each trait. A Bonferroni test was 

run for each trait and year to establish a LOD threshold corresponding to a genome-wide 

false-positive rate of 5%. Manhattan plots were produced using GWASpoly. The 

proportion of phenotypic variance explained by significant SNPs was estimated by the 

function fit.QTL in GWASpoly. Contextual sequences of candidate SNPs were used in a 

BLAST search of DM1–3 pseudomolecules (Version 4.03) in the SpudDB database 

(http://solanaceae.plantbiology.msu.edu/) to identify putative candidate genes. 

3.3. Results 

3.3.1. Phenotypic data analysis 

Analysis of variance and other descriptive statistics for the tuber morphology 

traits showed significant variability between the genotypes of the association mapping 

panel (Table 3.1). Frequency distribution of phenotypic data showed that most are not 

normally distributed (Figure 3.2).  

Pearson correlation (r) analysis of combined analysis detected correlations 

between traits (Figure 3.3). Positive correlation was found between visual tuber shape 

and L/W ratio (r = 0.89; P < 0.001), visual tuber shape and russeting (r = 0.78; P < 

0.001) (russet potatoes tend to be oblong to long), L/W and russeting (r = 0.70; P < 

0.001) (similar interpretation but using objective values L/W), visual tuber shape and 



 

121 

 

average tuber weight (r = 0.66; P < 0.001), visual tuber shape and grading at table (r = 

0.27; P < 0.001).  

Negative correlation was found between tuber shape and average tubers per plant 

(r = -0.70; P < 0.001) (plants with more tubers tend to be rounder), L/W and average 

tubers per plant (r = -0.59; P < 0.001), tuber shape and flesh color chroma value (r = -

0.44; P < 0.001), L/W and flesh color chroma value (r = -0.40; P < 0.001), average tuber 

per plant and average tuber weight, average tuber weight and chroma flesh, grading at 

table and chroma flesh color.  

High broad-sense heritability (H2 >0.95) was observed for tuber shape, L/W, 

degree of russeting, and chroma value for flesh color (Table 3.1). In our experiment, 

higher H2 values indicated that genetics contributed to the observed variability. The 

highest narrow sense heritability (h2) of 0.91 was for flesh chroma value and lowest 

(0.33) was for average tuber weight per plant (Table 3.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

122 

 

Table 3.1 Estimates of best linear unbiased estimators, variance components, and 

broad-sense heritability for tuber morphology traits based on 214 clones evaluated 

in three environments (Dalhart 2019, Dalhart 2020, Springlake 2020). 

 

  

Tuber 

Shape L/W 

Russeti

ng 

Eye 

Depth 

Av. 

Tuber 

Weight 

Av. 

Tubers 

per Plant 

Av. 

tuber 

wt per plant 

Grading 

at Table 

Flesh 

Chroma 

  (1-5) (ratio) (1-5) (1-5) (g) (no.) (g) (1-5) (value) 

Grand 

Mean DAL 2019 2.7  1.4 1.9 4.0 113.1 8 804.2 3.5 19.6 

 DAL 2020 2.7 1.4 2.1 4.0 126.2 8 931.8 3.7 17.7 

 SPR 2020 2.4 1.4 1.9 4.0 87.8 9 650.8 3.6 17.1 

 Overall 2.6 1.4 2.0 4.0 108.9 8 792.2 3.6 18.1 

           

Range DAL 2019 1-5 0.8-2.7 1-4.5 3.2-4.8 6-713 1-31 13-5664 1.0-4.6 11-52 

 DAL 2020 1-5 0.8-2.8 1-4.6 3.0-4.6 9-405 2-22 108-3102 2.5-4.6 8-46 

 SPR 2020 1-5 0.9-2.8 1-4.6 3.5-5.0 9-240 2-30 42-1302 2.0-4.5 7-36 

 Overall 1-5 0.8-2.8 1-4.6 3.0-5.0 6-713 1-31 13-56664 1.0-4.6 7-52 

           

LSD DAL 2019 0.5 0.2 0.3 0.2 59.6 5.9 754.5 0.5 4.4 

 DAL 2020 0.5 0.2 0.3 0.1 46.1 3.9 517.0 0.4 3.1 

 SPR 2020 0.5 0.3 0.2 0.1 27.3 4.6 309.3 0.4 3.7 

 Overall 0.6 0.2 0.3 0.2 38.4 3.4 314.5 0.4 2.4 

           

CV DAL 2019 9.0 8.3 6.5 2.8 28.6 36.0 45.7 7.6 10.9 

 DAL 2020 9.3 8.8 6.2 1.8 19.7 24.1 27.8 4.9 8.7 

 SPR 2020 11.3 12.1 5.1 1.3 15.7 27.3 23.9 5.4 11.0 

 Overall 9.8 9.4 5.9 2.0 22.8 29.3 34.6 6.0 10.3 

           

H2 DAL 2019 0.98 0.95 0.99 0.90 0.83 0.72 0.58 0.82 0.96 

 DAL 2020 0.98 0.94 0.99 0.93 0.87 0.79 0.57 0.82 0.98 

 SPR 2020 0.98 0.90 0.99 0.98 0.93 0.79 0.72 0.82 0.96 

 Overall 0.97 0.98 0.99 0.70 0.89 0.78 0.59 0.64 0.98 

 

h2 Overall 0.78 0.75 0.82 0.46 0.58 0.45 0.33 0.43 0.91 

           
Genotypic 

Variance DAL 2019 1.8 0.1 1.7 0.1 2570.4 10.7 92747 0.2 51.5 

 DAL 2020 1.5 0.1 2.1 0.0 2139.2 7.3 44468 0.1 48.6 

 SPR 2020 1.7 0.1 1.9 0.1 1445.2 10.0 31584 0.1 41.4 

 Overall 1.6 0.1 1.9 0.0 1780.3 6.5 30433 0.1 47.7 

           
Residual 

Variance DAL 2019 0.1 0.0 0.0 0.0 1049.9 8.3 134935 0.1 4.6 

 DAL 2020 0.1 0.0 0.0 0.0 617.4 3.9 67303.9 0.0 2.4 

 SPR 2020 0.1 0.0 0.0 0.0 189.5 5.3 24258.9 0.0 3.6 

 Overall 0.1 0.0 0.0 0.0 616.4 5.8 75241.9 0.0 3.5 

           
GenxLoc 

Variance  0.1 0.0 0.0 0.0 313.0 2.9 26359.5 0.1 0.5 
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Table 3.2 Mean values (BLUEs) of potatoes belonging to various market classes for 

tuber morphological traits. 
Market 

Class 

Tuber 

Shape 

L/W Russeting Eye 

Depth 

Av. 

Tuber 

Weight 

Av. 

Tubers 

Per 

Plant 

Av. 

Tuber 

Weight 

Per 

Plant 

Grading 

at table 

Flesh 

Chroma 

Market 

Class 

(1-5) (ratio) (1-5) (1-5) (g) (no.) (g) (1-5) (value) 

Russet 4.0a 1.7a 3.8a 3.9c 151a 5d 816b 3.7a 13.2e 

Purple 2.4b 1.4b 1.0c 4.0a 76c 9b 653c 3.5bc 21.0b 

Chip 1.8c 1.1c 1.1b 4.0bc 117b 7c 892a 3.6b 15.3d 

Yellow 1.7c 1.1c 1.0c 4.0ab 78c 10a 768b 3.4c 27.2a 

Red 1.7c 1.1c 1.0c 3.9c 83c 10a 801b 3.5b 19.6c 

Values followed by the same letter (within each column) were not significantly different 

based on Students t test (P < 0.05) 
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(a)     (b)    (c) 

 

(d)     (e)    (f) 

 

(g)     (h)    (i) 

 

Figure 3.2 Distribution of (a) tuber shape, (b) L/W, (c) flesh chroma  value, (d) 

russeting, (e) eye depth, (f) average weight of a tuber,  (g)  average tuber number 

per plant, (h) average tuber weight per plant, and (i) grading at table in combined 

environment. 
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Figure 3.3 The bivariate scatter plots with a fitted line for the traits combined 

across all environments are displayed on the bottom of the diagonal. On the top of 

the diagonal are the value of the correlation plus the significance level as stars. 

Each significance level is associated to a symbol : p < 0.001 = ***; p < 0.01 = ** and 

p < 0.05 = *. 

 

3.3.2. Linkage disequilibrium (LD) 

Genome‐wide LD is quite low (Figure 3.4). From the shape of the curve, a 5-10 

Mb window seems appropriate to filter the most significant marker in the output. 
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Figure 3.4 Genome-wide LD decay (in Mb) in potato using LD.plot function in 

GWASpoly (Rosyara et al., 2016). A monotone decreasing, convex spline was fit 

using R package scam. 

 

3.3.3. GWAS Analysis 

The inflation of the -log10(p) was examined using a quantile-quantile plot (Q–Q 

plots) of the observed vs. expected values under the null hypothesis, which follows a 

uniform distribution. Manhattan plots showed the significance threshold for each locus 

along with the location of SNPs corresponding to tuber shape (Figure 3.5), L/W (Figure 

3.6), eye depth (Figure 3.7), degree of russeting (Figure 3.8), grading at table (Figure 

3.9), intensity (chroma) of flesh color (Figure 3.10) and purple skin color (Figure 3.11). 

A QTL defined by three significant SNPs on chromosome 10 at 48 Mb was identified for 

tuber shape in the additive and dominant models (Table 3.4). A significant SNP 

(solcap_snp_c2_25485) at position of 48.73 Mbp explained 6% and 

solcap_snp_c2_25522 at a position of 48.61Mbp explained 4% of the tuber shape 
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variation. QTLs maps to the genome super scaffold PGSC0003DMB000000385 which 

annotates as a ribosomal protein S6 kinase. The QTLs for L/W on chromosome 10 

explained 6% of the variation whereas each QTL on chromosomes 1 and 5 explained 4% 

and on chromosome 9 explained 3%. QTLs for eye depth were found on chromosomes 

3, 5 and 10. QTLs on chromosomes 1 and 12 for degree of russeting explained 10% of 

the trait variance. A QTL for grading at table score was identified on chromosome 4. 

QTLs for intensity (chroma) of flesh color were detected on chromosome 1 and 3.  The 

SNP (PotVar0120627) explained 26% of the trait variance. This marker was mapped in 

super scaffold PGSC0003DMG400010169 where beta-carotene hydroxylase is located. 

Likewise, QTLs for purple skin color were detected on chromosomes 1, 3 and 11 and 

explained 11%, 14%, and 25% of the trait variance. 
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(a) 

 

(b) 

 

Figure 3.5 Q–Q plots (a) and corresponding Manhattan plot (b) of observed versus 

expected -log10 (P values) for tuber shape using the additive and dominant model 

in three combined environments. The Bonferroni threshold is at 5.31 for the 

additive, 4.96 for 1-dom-alt and 5.09 for the 1-dom-ref model. 
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(a) 

 

(b) 

       

Figure 3.6 Q–Q plots (a) and corresponding Manhattan plot (b) of observed versus 

expected -log10 (P values) for length width ration (L/W) using the additive and 

dominant model in three combined environments. The Bonferroni threshold is at 

5.31 for the additive, 4.96 for 1-dom-alt and 5.09 for the 1-dom-ref model. 
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(a) 

 

(b) 

 

Figure 3.7 Q–Q plots (a) and corresponding Manhattan plot (b) of observed versus 

expected -log10 (P values) for eye depth using the additive and dominant model in 

three combined environments. The Bonferroni threshold is at 5.31 for the additive, 

4.96 for 1-dom-alt and 5.09 for the 1-dom-ref model. 
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(a) 

 

(b) 

 

Figure 3.8 Q–Q plots (a) and corresponding Manhattan plot (b) of observed versus 

expected -log10 (P values) for degree of russeting using the additive and dominant 

model in three combined environments. The Bonferroni threshold is at 5.31 for the 

additive, 4.96 for 1-dom-alt and 5.09 for the 1-dom-ref model. 
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(a) 

 

(b) 

 

Figure 3.9 Q–Q plots (a) and corresponding Manhattan plot (b) of observed versus 

expected -log10 (P values) for grading at table using the additive and dominant 

model in three combined environments. The Bonferroni threshold is at 5.31 for the 

additive, 4.96 for 1 dom alt and 5.09 for the 1-dom-ref model. 
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(a) 

 

(b) 

 

Figure 3.10 Q–Q plots (a) and corresponding Manhattan plot (b) of observed versus 

expected -log10 (P values) for intensity (chroma) of flesh color (c_flesh) using the 

additive and dominant model in three combined environments. The Bonferroni 

threshold is at 5.31 for the additive, 4.96 for 1-dom-alt and 5.09 for the 1-dom-ref 

model. 
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(a) 

 

(b) 

 

Figure 3.11 Q–Q plots (a) and corresponding Manhattan plot (b) of observed versus 

expected -log10 (P values) for purple skin color using the additive and dominant 

model in three combined environments. The Bonferroni threshold is at 5.31 for the 

additive, 4.96 for 1-dom-alt and 5.09 for the 1-dom-ref model. 
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Table 3.3 Significant SNPs associated with tuber morphology traits in tetraploid 

advanced potato clones. 
Trait Model Threshold Marker Chrom Position Score Effect R2 

Tuber shape additive 5.31 solcap_snp_c2_25485 10 48737840 6.2 -0.38 0.04 

Tuber shape 1-dom-alt 4.96 solcap_snp_c2_25485 10 48737840 8.7 -1.14 0.06 

Tuber shape 1-dom-ref 5.09 solcap_snp_c2_25522 10 48617457 6.6 0.98 0.04 

LW ratio additive 5.31 PotVar0024712 5 2963647 5.6 0.10 0.03 

LW ratio additive 5.31 solcap_snp_c1_1124 5 51698153 5.7 0.09 0.04 

LW ratio additive 5.31 solcap_snp_c2_25522 10 48617457 6.1 0.10 0.04 

LW ratio 1-dom-alt 4.96 solcap_snp_c1_14093 1 73743526 6.7 -0.34 0.04 

LW ratio 1-dom-alt 4.96 PotVar0011392 9 2113876 5.1 -0.16 0.03 

LW ratio 1-dom-alt 4.96 solcap_snp_c2_25485 10 48737840 8.9 -0.31 0.06 

LW ratio 1-dom-ref 5.09 solcap_snp_c1_3597 9 2081425 5.1 0.16 0.03 

LW ratio 1-dom-ref 5.09 solcap_snp_c2_25522 10 48617457 8.2 0.29 0.05 

         
Eye depth additive 5.31 PotVar0033968 5 43920348 5.6 0.12 0.03 

Eye depth additive 5.31 solcap_snp_c2_25510 10 48679881 6.2 -0.07 0.04 

Eye depth 1-dom-ref 5.09 solcap_snp_c1_4577 3 53162686 5.9 -0.19 0.04 

         
Degree of russeting additive 5.31 solcap_snp_c2_4840 1 83042096 13.6 -0.63 0.10 

Degree of russeting additive 5.31 solcap_snp_c1_8346 4 9523734 6.9 -0.32 0.04 

Degree of russeting additive 5.31 PotVar0015716 4 70761963 5.6 -0.59 0.04 

Degree of russeting additive 5.31 PotVar0109849 5 13342810 6.7 0.76 0.06 

Degree of russeting additive 5.31 solcap_snp_c1_9499 11 34592587 12.8 0.41 0.09 

Degree of russeting additive 5.31 solcap_snp_c2_31247 12 4322254 10.9 0.38 0.08 

Degree of russeting 1-dom-alt 4.96 PotVar0094383 2 31449005 6.3 -0.51 0.05 

Degree of russeting 1-dom-alt 4.96 PotVar0037013 7 55736406 5.8 0.37 0.04 

Degree of russeting 1-dom-alt 4.96 solcap_snp_c2_25485 10 48737840 5.1 -0.70 0.03 

Degree of russeting 1-dom-alt 4.96 solcap_snp_c2_31301 12 4189099 14.2 -0.90 0.10 

Degree of russeting 1-dom-ref 5.09 solcap_snp_c2_4840 1 83042096 9.4 -0.69 0.07 

Degree of russeting 1-dom-ref 5.09 PotVar0109849 5 13342810 9.7 0.93 0.08 

         
c_flesh additive 5.31 PotVar0126039 1 63841740 5.8 -1.68 0.04 

c_flesh additive 5.31 PotVar0120627 3 48550473 17.1 5.66 0.13 

c_flesh 1-dom-alt 4.96 PotVar0120627 3 48550473 28.0 11.52 0.26 

c_flesh 1-dom-ref 5.09 solcap_snp_c2_17552 3 44178120 18.0 -7.39 0.14 

c_flesh 1-dom-ref 5.09 PotVar0056507 3 50884766 10.5 -6.15 0.07 

         
Grading at table additive 5.31 PotVar0073716 4 28848091 6.5 0.23 0.04 

Grading at table 1-dom-ref 5.09 PotVar0073716 4 28848091 6.9 0.27 0.04 

         
Purple tuber additive 5.31 PotVar0043559 1 69871607 6.3 0.13 0.11 

Purple tuber additive 5.31 solcap_snp_c2_52494 3 37495967 5.6 -0.09 0.10 

Purple tuber additive 5.31 PotVar0000760 4 64804249 5.5 -0.18 0.10 

Purple tuber additive 5.31 solcap_snp_c1_14082 11 4327085 5.7 -0.10 0.10 

Purple tuber additive 5.31 PotVar0047229 11 39417891 9.8 -0.29 0.17 

Purple tuber 1-dom-alt 4.97 solcap_snp_c2_49619 1 58072346 6.3 0.22 0.11 

Purple tuber 1-dom-alt 4.97 solcap_snp_c2_38058 3 38756280 7.7 0.23 0.14 

Purple tuber 1-dom-alt 4.97 PotVar0000760 4 64804249 5.6 -0.23 0.10 

Purple tuber 1-dom-alt 4.97 solcap_snp_c2_6185 11 3572445 9.1 0.29 0.16 

Purple tuber 1-dom-alt 4.97 PotVar0047229 11 39417891 10.4 -0.32 0.18 

Purple tuber 1-dom-ref 5.09 PotVar0128389 2 35666972 6.1 -0.38 0.11 

Purple tuber 1-dom-ref 5.09 solcap_snp_c1_11350 3 38435099 6.5 -0.23 0.11 

Purple tuber 1-dom-ref 5.09 solcap_snp_c2_22512 3 54971939 6.5 -0.27 0.11 

Purple tuber 1-dom-ref 5.09 PotVar0000767 4 64803299 5.2 0.21 0.09 

Purple tuber 1-dom-ref 5.09 solcap_snp_c2_55 10 15913000 6.0 -0.37 0.11 

Purple tuber 1-dom-ref 5.09 solcap_snp_c1_14082 11 4327085 14.4 -0.48 0.25 
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3.3.4. Breeding values of tuber traits 

In a potato breeding program, estimated breeding values utilizing best linear 

unbiased prediction (BLUP) through pedigree relationships can improve selection 

efficiency and save time and resources required for tuber multiplication and 

phenotyping. Based on the genomic estimated breeding values BLUP/EBVs (Appendix 

B1), clones PTTX05PG07-1W, COTX08365F-3P/P and ATX84378-6Ru were the best 

for long tuber shape and clones COTX10138-15Wpe/Y, NDTX5003-2R and 

ATX91322-2Y/Y were the best for round tuber shape. According to BLUP, clone 

TX08385-2P/YP clone was the best to eliminate russeting and clone AOTX95265-4Ru 

was the best for high degree of russeting. Clone ATX91322-2Y/Y was predicted to have 

the shallowest eye depth. Likewise, clones ATX84706-2Ru, NDTX092238Cs-1P/W and 

Sierra Gold were the best for average tuber weight, average tubers per plant and average 

tuber weight per plant respectively. Clone TX13590-9Ru was predicted to be the best 

while grading at table. 

3.4. Discussion 

Breeding for quality traits in potato requires knowledge of the genetics of tuber 

morphological characteristics. Molecular markers could provide an efficient and 

economical means to identify potatoes with desirable traits earlier in the breeding 

process. Identifying the current allelic variation of the primary genes and using the allele 

that delivers the desired phenotype in breeding programs is crucial. In this study, we 

present the identified SNPs associated with tuber shape, eye depth, degree of russeting, 

tuber number, tuber weight, skin color, and flesh color.  
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There was a significant variation for most evaluated traits. However, the 

frequency distribution of phenotypic data was not normally distributed. A common 

approach for these types of analysis is to carry out a transformation on the data to have a 

normal distribution (Feng et al., 2014). Beside transformations method, generalized 

linear mixed models provides a more flexible approach to evaluating non-normal data 

with random effects (Piepho et al., 2003). 

Strong correlation existed between the traits that display phenotypic variability 

among the genotypes. Prashar et al. (2014) used a 1–4 ‘breeder’s scale’ and more 

‘quantitative LW’ method achieved a correlation coefficient of 0.91 between the two 

scoring methods. Our study found a  correlation of 0.83 between ‘assessed’ tuber shape 

and ‘measured’ (i.e., L/W). The high correlation of both implies that the visual 

evaluation approach may be rapid and useful for shape analysis in potato breeding 

programs. However, to achieve higher accuracies and to perform high-throughput 

analysis digital calipers and digital image-based methods are being explored (Si et al., 

2017; Przybylak et al., 2020). Most of the russet potatoes are long and bulky (Table 3.2), 

so the correlation coefficient of russeting appears to be high with tuber shape and L/W. 

A negative correlation (r= -0.50) was observed between tuber shape and tubers per plant 

which means that if tubers are round there will be many tubers per plant and if tubers are 

elongated there will be few tubers per plant. Thus, the understanding of defined 

characteristics will make a visual and indirect selection in potato breeding programs 

more efficient. 
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High broad-sense heritability achieved for tuber shape, L/W, degree of russeting, 

and chroma value for flesh color traits indicated that primarily genetic factors control 

tuber morphology traits. Love et al. (1997) had observed broad sense heritability above 

0.80 for russeting; our study found it to be 0.99. Moderate broad-sense heritability was 

observed in eye depth, and average tuber weight per plant. These moderate to high 

broad-sense heritability estimates suggested that either traditional selection or genomic 

selection would be able to achieve the genetic gains. 

Likewise, narrow-sense heritability also referred to as “SNP‐based heritability” 

for russeting was highest (h2= 0.82) compared to other traits. For all the traits studied, 

SNP-based heritability estimates were lower than broad-sense heritability estimates. The 

lower heritability estimates can be due to the underrepresentation of significant causal 

loci by markers (Speed et al., 2012). In accordance with Sood et al. (2020), narrow-sense 

heritability was moderate for eye depth, average tuber weight, and average tubers per 

plant in our study. A trait with a high narrow-sense heritability means that most of the 

phenotypic variation is genetically controlled, and that selection will be successful 

(Ozturk & Yildirim, 2014; Ozimati et al., 2019). Hence, narrow-sense heritability, the 

measure of the additive genetic effect, would be extremely useful in a breeding program 

aimed at exploiting continuous genetic gain. 

In this study, the GWAS experiment yielded putative and novel markers/genes 

involved with tuber morphology traits on a representative diversity panel. High‐density 

SNP markers were applied to the panel of 214 clones considering dosages and allele 

interactions. Some of the associations explained larger proportions of phenotypic 
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variation than others. This study provides useful genomic resources in potatoes as well 

as empowers GWAS analyses in the polyploid species. 

We report a significant SNP, solcap_snp_c2_25485 at 48.7 Mb on chromosome 

10 to be associated with tuber shape explaining 6% of the trait variance in the dominant 

model. Solcap_snp_c2_25522 on the same chromosome, explained around 5% of the 

phenotypic variance in the dominant model. Zia et al. (2020) also detected the SNP 

solcap_snp_c2_25485 associated with tuber shape, but  the SNP solcap_snp_c2_25522 

was not.  Previous biparental mapping studies (ŚLiwka et al., 2008; Prashar et al., 2014; 

Hara-Skrzypiec et al., 2018) have also mapped major QTL for tuber shape to the same 

locus on chromosome 10. Ro locus on chromosome 10 has been identified as the major 

locus controlling tuber shape (Van Eck et al., 1994a). GWAS by Sharma et al. (2018) 

reported ‘solcap_snp_c1_8019’ as the most significant association located at 48.9 Mb. In 

addition to the QTLs identified for the tuber shape, we report additional QTLs on 

chromosome 1, 5 and 9 for L/W.  

Li et al. (2005) had identified locus Ro closely linked with a major locus for eye 

depth. In our study also a QTL on chromosome 10 for eye depth co-localized with tuber 

shape. The QTL peak for eye depth identified on chromosome 5 is located near the 

CDF1 gene, an important regulator of maturity in potato (Kloosterman et al., 2013). 

Clark (1933) had discovered that the action of complementary factors resulted in the 

russet skin in tubers, but the number of genes involved were not indicated. Our study 

found that multiple QTLs on chromosomes 1, 2, 4, 5, 7, 10, 11 and 12 govern russeting 

in potato. 



 

140 

 

In most tetraploid potato cultivars, the flesh color varies from white to dark 

yellow due to varying amounts of carotenoids which convey the yellow color. The 

dominant Y-locus is largely responsible for the yellow flesh color of potatoes, and it 

maps to chromosome 3 (Bonierbale et al., 1988; Thorup et al., 2000). Beta-carotene 

hydroxylase (BCH) is the most likely candidate gene responsible for the yellow flesh 

color (Brown et al., 2006; Kloosterman et al., 2010). One isoform 

(PGSC0003DMG400009501) of the BCH gene is located at 44.1 Mbp (Xu et al., 2011). 

In our study, a strong association for flesh color was observed on chromosome 3 at 48.5 

Mb (PotVar0120627) and another significant association at 43.9 Mb (PotVar0070260) 

approximately 0.2 Mb away from the causal gene. The most significant SNPs 

(PotVar0120627 and solcap_snp_c2_17552) explained 26% and 14% of the trait 

variance, respectively.  

The presence of anthocyanins in a limited number of cultivars result in red or 

blue/purple flesh (Bonar et al., 2018). The detection of genomic regions and desirable 

alleles linked to anthocyanin content could be used in potato breeding programs to 

increase bioactive compounds. In our study, QTLs for purple skin color were detected on 

chromosome 1 at 69.8 Mbp and chromosome 11 at 4.3 Mbp. Parra-Galindo et al. (2019) 

detected QTLs associated with cyanidin and delphinidin concentrations, on chromosome 

1 at 50.7 Mbp and chromosome 11 (40 Mbp), respectively. Previous studies showed that 

the potato P locus is required to produce blue/purple anthocyanin pigments and it is 

located on chromosome 11 (De Jong et al., 2004; Jung et al., 2005). 
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GWAS methodology is capable of dissecting some complex genetic traits. 

However, no QTL were detected for yield related traits like average tubers per plant, and 

tubers weight per plant. The reason for this failure was likely. To acquire appropriate 

statistical power, GWAS require much larger sample sizes (Hong & Park, 2012). Also, 

these traits are highly quantitative, GWAS may fall short of uncovering the causative 

loci we seek.  Korte & Farlow (2013) indicated that GWAS has difficulties in detecting 

more subtle or multiple QTL. One potential approach to deal with this issue could be 

refining the phenotype of interest to reduce the number of loci involved in the trait and 

thus increase the detection ability (Benjamin et al., 2012). 

Plant breeding is a continuous genetic improvement process that involves the 

selection and recombination of superior lines. The majority of important traits in potato 

breeding are complex and controlled by several genes. Because estimated breeding 

values (EBVs) only assess the additive genetic effect, BLUP is an appropriate technique 

for complex traits with low heritability (Slater, Cogan, et al., 2014). This study displayed 

the potential advantage of EBVs using BLUP for effective selection for tuber traits in 

potato breeding. For low heritability variables like tuber yield, BLUP calculated 

breeding values outperform phenotypic selection (Sood et al., 2020). Parent selection 

based on BLUPs may ultimately enable new and improved potatoes. 

3.5. Conclusions 

The main purpose of the current study was to find SNPs associated with tuber 

shape, eye depth, degree of russeting, tuber number, tuber weight, skin color, and flesh 

color in potatoes. Besides the rediscovery of a QTL for tuber morphology traits in 
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potatoes, we identified new loci affecting the variation in studied traits. Following 

validation with genotyping technologies such as Kompetitive allele-specific PCR 

(KASP) markers, these markers could be potentially utilized in future potato-breeding 

programs for marker-assisted selection (MAS). The BLUPs for clones could be used to 

develop a selection index for selecting superior individuals across all traits. 
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4. GENOMIC PREDICTION OF CHIPPING QUALITY IN TETRAPLOID POTATO 

4.1. Introduction 

Potato (Solanum tuberosum L.) is the most essential non-grain food on the planet 

and a highly recommended crop in ensuring food security for future generations (FAO, 

2009; Devaux et al., 2014). Potatoes together with rice, wheat, and corn account for half 

of the world's food energy requirements (FAO, 2021). As such, the potato is 

economically importance for growers, processors, packers, and retailers (Ortiz & Mares, 

2017; Wijesinha-Bettoni & Mouillé, 2019). In the U.S., potato consumption was around 

22.4 kg per capita in 2019 (USDA ERS, 2021). Potato outnumbers the next most 

common vegetable in the U.S., tomato, by nearly a factor of two in terms of 

consumption.  

Potatoes are used for fresh consumption, processing, and as seed. Among these, 

processed potato products have evolved as the most important.  As such, most potatoes 

grown in the United States (60%) are intended for the processing industry. Frozen, 

dehydrated, chips and other packaged foods and snacks made from processed potatoes 

are among the best-selling items worldwide (Scott & Kleinwechter, 2017; Scott et al., 

2019; Tul’cheev et al., 2020). Potato chips are the most consumed snack universally due 

to changes in consumer’s lifestyles and food consumption (Liyanage et al., 2021). The 

global potato chip market reached a value of US $31.2 billion in 2020, and the market 

value is expected to rise even more in the coming years, reaching US$43.2 billion by 

2026 (Statista, 2021). 
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Potato breeding programs focus on developing varieties well-suited to specific 

market classes including fresh market, specialty, and processing varieties. Important 

quality traits for processing potatoes include appearance, post-harvest quality, nutritional 

value, flavor properties, and productivity (Nacheva & Pevicharova, 2008). In terms of 

tuber appearance, the industry prefers shallow eyes and a round-oval shape for 

processing chips, whereas long-oval-shaped tubers are favored for processing French 

fries. Greening, cracking, hollow tubers, secondary damage, and rusty spots are 

undesirable traits.  Most processing potatoes have a white flesh. Smooth skin is sought 

for making chips, whereas russet skin is preferred for making French fries. 

The starch, dry matter, reducing sugars, proteins, and vitamin C contents of 

tubers determine their post-harvest quality and nutritional value. Potato tubers contain, 

on average, 80% water and 20% dry matter, with starch accounting for most of the dry 

matter (Stark et al., 2020).  However, these composition numbers vary due to both 

genotype and environment (Zhou et al., 2017). Starch is the most important component 

of dry matter and determines tuber density, also referred to as tuber-specific gravity. For 

processing, high starch and dry matter-rich cultivars are favored because they cook 

faster, have a better texture, higher net weight of the final product, and use less oil while 

frying (Habyarimana et al., 2017). Starch content of 13% or more, solids or dry matter 

content of 20% or more, and specific gravity of 1.080 or more are preferred for most 

processing potatoes (Stark et al., 2020).  

Another important component in potato that determines the quality of processed 

potato is the reducing sugar content (Wiberley-Bradford et al., 2014). During frying, 
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reducing sugars (glucose and fructose) in potato tubers react with free amino acids in a 

nonenzymatic Maillard reaction, resulting in undesirable brown, bitter-tasting products 

(Kumar et al., 2004; Wen et al., 2016). Although heat treatment contributes to the aroma, 

flavor, and color of the fried potatoes, the acrylamide products (when the amino acid 

asparagine is involved) of the Maillard reaction have raised health concerns due to their 

potential toxicity and carcinogenicity (Hogervorst et al., 2010).  For these reasons, 

reducing sugar content in processing potatoes should not exceed 0.2-3.0% of the fresh 

weight (Fiselier & Grob, 2005).  

Internal defects like internal heat necrosis (IHN), vascular browning, Fusarium 

wilt, stem end browning, hollow heart with discoloration, brown center, and internal 

black spot also contribute to browning and reduce chip quality. Consequently, the potato 

processing industry continues the search for strategies to reduce browning. These 

processes are complex, and the reducing sugar accumulation in tubers varies with 

variety, storage temperature, physiological maturity, plant stresses, and tuber age 

(Leonel et al., 2017). At the industrial level, cold storage conditions facilitate long-term 

storage and eliminate issues related to diseases, sprouting, and shrinking (Kleinkopf et 

al., 2003). However, cold temperatures promote the breakdown of starch and the 

accumulation of reducing sugar in potato tubers, a process known as cold-induced 

sweetening (CIS). As a result, developing potato cultivars that can be stored at low 

temperatures without undergoing CIS would be extremely beneficial.  

Breeding programs have made efforts to develop cultivars that generate less 

sugar in cold storage, resulting in a lighter color potato chip. Improvements to date are 
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associated with traits from the Lenape variety which has been a common parent in chip 

crosses since its introduction (Love et al., 1998). Lenape is a parent of popular chipping 

varieties including Atlantic, Trent, Belchip and Snowden. Atlantic (Webb et al., 1978), 

has high yield and high specific gravity (1.085-1.100) but it is sensitive to environmental 

stress. Its major processing weakness is the accumulation of reducing sugars in long-

term storage. Likewise, Snowden, selected in the late 1970s in Wisconsin, is like 

Atlantic except that it chips out of cold (10 °C) storage without reconditioning. 

However, it produces undersized tubers which results in lower yields. It is also 

susceptible to early blight, late blight, and common scab. Lamoka, selected at Cornell 

University, is a cold induced sweetening resistant variety with good chip color and 

resistance to the Golden Cyst Nematode (De Jong et al., 2017). However, Lamoka is 

susceptible to internal tuber defects, and moderately susceptible to early blight, late 

blight, powdery scab, potato virus X and Y. Therefore, it is necessary to breed a new 

potato cultivars with high chip quality, low acrylamide precursor contents, CIS 

resistance, high specific gravity, and high dry matter, and free of diseases and tuber 

defects.  

Reasons that have hindered current potato breeding progress include the complex 

nature of the potato genome (polyploid with polysomic inheritance and highly 

heterozygous), quantitative nature of the most important traits, rapid inbreeding 

depression, and low intensity of selection in early generations (Ghislain & Douches, 

2020). The current selective breeding process takes a long time (10–15 years) to produce 

a new marketable potato cultivar following the initial cross (Halterman et al., 2016). 
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Low multiplication rate delays multilocation field evaluations, and the contamination of 

seed tubers with pathogens and the need to clean them further delays evaluations. 

Another essential aspect that hinders progress in breeding is the slow introduction of 

advanced clones as parents to make new crosses. Speeding up the use of advanced 

parents with high breeding value for the traits of interest would shorten the breeding 

cycle and thus make recurrent selection breeding more effective. 

The recent availability of dense single-nucleotide polymorphism (SNP) array and 

software packages, which can perform linkage and association mapping in autotetraploid 

species, presents opportunities to apply these optimized approaches to cultivated potato. 

An important step in the process of developing new chip varieties that produce light chip 

color is to identify the underlying genetic loci. Quantitative trait loci (QTL) mapping for 

chip color and sugar content have identified several regions in the potato genome which 

contain genes influencing the trait (Li et al., 2008). Several of these QTLs were co-

localized with functional genes for carbohydrate metabolism and transport, including 

vacuolar invertase (Pain-1/VInv) on chromosome 3, apoplastic invertases (Invap-a and 

Invap-b) on chromosomes 10 and 9, and sucrose synthases (Sus3 and Sus4) on 

chromosomes 7 and 12 (Gebhardt et al., 2014). Recently, Byrne et al. (2020) identified a 

major QTL on chromosome 10 for fry color and predicted fry color with moderate 

accuracy using genome-wide markers. Frederick & Bethke (2019) identified nine 

quantitative trait loci (QTL) for stem-end chip defect (SECD) seven of which overlapped 

with QTLs for chip color traits. Other efforts to practically apply the SNP panel have 

focused on Genome-Wide Association Studies (GWAS) to identify marker-trait 
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associations. The SolCAP SNP array was used for Genome-Wide Association Studies 

(GWAS) to identify marker-trait associations for tuber yield and starch content 

(Schönhals et al., 2016), tuber quality and fry color traits (D’hoop et al., 2014), and 

potato chip color and tuber traits (Rak et al., 2017).  

Furthermore, important progress has been made in recent years for rapid genetic 

gain in crops using pedigree or genomic information-based methods such as genomic 

selection (GS) (Crossa et al., 2017). GS uses genome-wide molecular markers and 

historical phenotype data from a breeding program to predict the performance of related 

individuals. The genomic estimated breeding values (GEBVs) allow selections of 

superior parents or better individuals for next-generation advancement to be made more 

quickly than using phenotypes alone (Meuwissen et al., 2001; Crossa et al., 2017). Thus, 

GS enhances genetic gains by shortening the breeding cycle and/or enhancing testing 

efficiency. Habyarimana et al. (2017) demonstrated three GS models using SilicoDArT 

markers and indicated that GS can predict early clonal generations and can select traits 

with low heritability. Endelman et al. (2018), combining genotype and pedigree 

information with phenotype data for economically important traits, concluded that 

genome-wide prediction is feasible in autotetraploid potato. Likewise, genotyping-by-

sequencing developed genomic prediction models were used for starch content and 

chipping quality (Sverrisdóttir et al., 2017), and for dry matter content and chipping 

quality (Sverrisdóttir et al., 2018). The polyBreedR package 

(https://github.com/jendelman/polyBreedR) has been recently designed to facilitate the 

use of genome-wide markers for autotetraploid (4x) species. It follows a two-stage 
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procedure (Damesa et al., 2017) where information on mean estimates and the associated 

variance-covariance matrix is forwarded from the first stage to the second stage to 

predict the breeding values.  

Further, the usage of a selection index can aid in the selection of multiple traits at 

the same time. Using a multiple-trait selection index, it is possible to identify superior 

and inferior genotypes by integrating several attributes (Bernardo, 2020). The best index 

to use depends on the crop and the traits that are important for selection. The sum of 

standardized variables (∑Z) or Z-index (Mendes et al., 2009) is an alternative to other 

indices and has been used in common bean (Lima et al., 2015), upland rice (Ribeiro et 

al., 2016), and quince cultivars (Coutinho et al., 2019) to select superior lines.  

The aim of this study was i) to evaluate how well GS could predict chipping quality in 

tetraploid potatoes, and ii) to generate a selection index for selection of superior 

individuals for important chipping traits together. 

4.2. Materials and Methods 

4.2.1. Plant materials and phenotype data 

Five hundred and forty-nine unique chipping potato clones were evaluated 

between 2017 and 2020 near Dalhart Texas (35°58'15.31"N, 102°44'36.33"W) (Figure 

4.1). These included entries from the National Chip Processing Trial (NCPT) and 

advanced chip selections from the Western, Southwestern Regional, and Texas trials 

contributed by public potato breeding programs in the United States. The NCPT uses a 

two-tier evaluation system, with one plot per location for tier 1 clones and two plots 

(replications) per location for tier 2 clones. Advanced chip selections from the Western, 
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Southwestern Regional, and Texas trials were planted in one to four replications. Plots in 

the NCPT trial contained 15 seed pieces, and advanced chip selections from the Western, 

Southwestern Regional and Texas trials contained 24 seed pieces. Seeds were planted 

with 30 cm spacing between hills and 70 cm spacing between rows. Trials were planted 

in early May and harvested in early September, with vine desiccation 2–3 weeks before 

harvest. Standard potato production practices were followed during the growing period 

in all years (https://potato.tamu.edu/reports/).  

 

Figure 4.1 Number of chipping clone plots tested between 2017 and 2020 in 

Dalhart, TX. 
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Phenotype data for total yield, specific gravity, chip color, and chip quality were 

included in this study. Total yield was based on the weight of all harvested tubers (Mg 

ha-1). Specific gravity was determined by water displacement, using 2–3 kg of tubers per 

plot (Wang et al., 2017). To evaluate fry color, ten tubers from each plot were cut into 

two halves (stem to bud), and a 1.3 mm-thick chip slice was prepared from each tuber. 

Chip slices were then rinsed in water and blot-dried on a paper towel to remove extra 

starch. Slices were fried in vegetable oil at 182 °C for 80 seconds or until bubbling 

ceased. The color of the chip (chips without internal defects) was scored using the Snack 

Food Association (SFA) scale (1 to 5; 1 = light, 5 = dark). Chip quality was scored using 

the SFA scale but focusing on the overall level of browning (including browning due to 

chip defects). The phenotypic dataset was analyzed using polyBreedR 

(https://github.com/jendelman/polyBreedR), considering partially replicated designs 

with incomplete blocks. The phenotypic correlations between pairs of traits were 

calculated as simple Pearson correlations. 

4.2.2. Genotyping 

Most of the clones in this dataset were genotyped with the Infinium 22 K V3 

Potato Array on the Illumina iScan (Illumina Inc., San Diego, CA, USA), but some were 

genotyped with V2. V3 of the array contained 126 clones genotyped with 6,966 markers, 

and the V2 array consisted of 832 clones genotyped with 9,975 markers. The 

merge_impute function in the polyBreedR was used to merge the two datasets, and 

missing values were imputed by best linear unbiased prediction (BLUP). The imputation 
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process generated fractional values of dosage compatible with an estimation of the G 

matrix for predicting additive values using polyBreedR function G_mat. 

4.2.3. Two‐stage analysis of multi-environment trials 

The two-stage procedure, as described by Damesa et al. (2017), was 

implemented in the polyBreedR package using ASReml-R (R 3.6.3 software), where 

information on mean estimates and the associated variance-covariance matrix were 

forwarded from the first stage to the second stage to predict the breeding values. In stage 

1, the data for each environment x trait combination was analyzed independently with a 

linear mixed model. In the model, blocking was a fixed effect and factorial covariate. 

The plot-based broad-sense heritability for each environment x trait combination and the 

best linear unbiased estimates (BLUEs) for individual x trait combination were obtained. 

In stage 2, the function Stage2_prep  removed the clones without marker data from stage 

1 and returned a variance-covariance matrix called Omega, which must be saved as a 

variable in the global environment for ASReml-R. When used in conjunction with a 

random effect with covariance proportional to G, the stage 2 function provided an 

automatic random genetic effect with an identity (I) variance-covariance matrix, which 

describes non-additive effects. Genomic narrow-sense heritability, defined as the 

proportion of variance for the additive effects were estimated. 

4.2.4. Genomic prediction by BLUP (gBLUP) 

To predict the breeding values, the polyBreedR function predict_MME was used 

to implement mixed model equations (MME). Inversion of the MME coefficient matrix 

enabled the computation of the reliability (r2) of the BLUPs, which is the expected 
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squared correlation between the true and predicted values. Reliability is an alternative to 

cross-validation (CV) for assessing genomic prediction accuracy. To estimate accuracy 

by cross-validation, the correlation between the predicted and observed values for the 

cross-validation group was divided by the square root of the narrow-sense h2. 

4.2.5. Standardized multiple selection index 

The standardized multiple selection index was calculated based primarily on the 

standardization of the BLUPs for all clones, using the following estimator: 

𝑧𝑖 = (ȳ𝑖 − �̄�)/σ   

where 𝑧𝑖  is the standardized average, ȳ𝑖 is the average of line i, 𝑦 ̄ is the overall average, 

and  σ is the standard deviation. 

The index was calculated considering chip quality, specific gravity, yield, and 

chip color  according to the following expression: 

MIS= (-3) * 𝑍𝐶ℎ𝑖𝑝 𝑞𝑢𝑎𝑙𝑖𝑡𝑦  +  (2) * 𝑍𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑎𝑣𝑖𝑡𝑦   +  (2) * 𝑍𝑌𝑖𝑒𝑙𝑑    +   (-1) * 𝑍𝐶ℎ𝑖𝑝 𝑐𝑜𝑙𝑜𝑟  

where MIS is the multiple index selection, 𝑍𝐶ℎ𝑖𝑝 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 is the standardized average for 

chip quality, 𝑍𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 is the standardized average for specific gravity, 𝑍𝑌𝑖𝑒𝑙𝑑 is 

the standardized average for yield and 𝑍𝐶ℎ𝑖𝑝 𝑐𝑜𝑙𝑜𝑟 is the standardized average for chip 

color.  

The subjective economic weightage for each trait Z score was provided in the 

parenthesis.  The highest weightage of value 3 was provided to chip quality as it is the 

most relevant trait to the industry. Chip quality trait includes both chip color and defects 

score. The weightage of value 2 was provided for specific gravity as it is directly 

correlated to starch content and amount of oil used during frying. The weightage of 
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value 2 was assigned for yield because it is the measure of profitability for growers. 

Chips made from some of the yellow-fleshed cultivars may be of equal preference to 

those prepared from white-fleshed potatoes. Therefore, lowest weightage of value 1 was 

given for chip color. Negative signs were used to flip the scales so high z values indicate 

better score. For example, negative weight was used for chip quality because the original 

chip quality score was on a 1-5 scale were 1 was the best. To be able to interpret the MIS 

in the context of z score distribution, MIS was also converted into a z value (ZMIS). The 

top 5% clones of the z distribution were identified as potential parents or candidates to 

be advanced because they had the best combined breeding values.  

4.3. Results 

4.3.1. Phenotype and genotype data 

Typically, in breeding trials, many clones are tested in one year and then 

dropped. However, the repetitions across years should be enough to estimate genotype x 

year interactions. We found that 81 clones tested in DAL17 were also tested in other 

years. Likewise, 114 clones in DAL18, 106 clones in DAL19, and 84 clones in DAL20 

were common across environments. After merging and imputing V2, V3 and TAMU 

genotyped chipping clones, 14,401 markers were retained. The 384 clones which had 

both genotypic and phenotypic data were used for further analysis. Fractional values of 

dosage were obtained by the imputation process (Figure 4.2). These values are 

compatible with an estimation of the G matrix for predicting additive values, using 

polyBreedR function G_mat. The typical, unimodal, zero-mean distribution of G matrix 

coefficients for a homogeneous population is shown in Figure 4.3. The broad-sense 



 

168 

 

heritability for each env x trait combination is shown in Figure 4.4. For chip color, the 

highest broad-sense heritability of 0.77 was obtained in DAL19, and the lowest broad-

sense heritability of 0.32 was obtained in DAL18. Likewise, broad-sense heritability of 

0.59 was achieved for both chip quality and specific gravity in DAL19 and DAL18, 

respectively. Similarly, for yield, the broad sense heritability ranged from 0.43 in 

DAL17 to 0.61 in DAL20. Pearson correlation (r) analysis was done for all the traits to 

identify the relationship between them. A significant correlation was found between chip 

color and chip quality (r = 0.39; P < 0.001), and between specific gravity and yield (r = 

0.29; P < 0.01) (Figure 4.5). 

 

 

Figure 4.2 Fractional values of dosage obtained from 384 clones with the 

imputation of 14,401 markers compatible with an estimation of the G matrix.  

 



 

169 

 

 

Figure 4.3 Distribution of G matrix coefficients obtained using 384 clones and 

14,401 markers. 

 

 

Figure 4.4 Plot based H2 using 384 unique clones for the Dalhart environment from 

2017 to 2020 
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Figure 4.5 Bivariate scatter plots with a fitted line for the Dalhart chipping traits 

are displayed on the bottom of the diagonal. On the top of the diagonal are the 

value of the correlation plus the significance level as stars. Each significance level is 

associated to a symbol: p < 0.001 = *** and p < 0.01 = **. The distribution of each 

chipping trait is shown on the diagonal. 

 

4.3.2. Genomic prediction by BLUP (gBLUP) 

Breeding values for fried chip color, chip quality, specific gravity, and total yield 

were predicted using the mixed model equations (MME) (Appendix C1). The top-

performing clone for fry chip color was W14NYQ9-2 with BLUP 0.80 and a reliability 

score of 0.69. COTX12235-2W was predicted to have the best chip quality with BLUP 

2.13 and a reliability score of 0.63. ATTX10333-1W/Y was predicted to be superior for 

specific gravity with BLUP 1.083 and a reliability score of 0.70. NYQ29-1 was 

predicted to be superior for total yield with BLUP 68.5 and a reliability score of 0.4. The 

reliability range plotted against the number of close relationships for each clone, 
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quantified by the 95th percentile of its G coefficients (G95), is shown in Figure 4.7. The 

individuals that had a lot of close relatives were predicted with higher reliability. The 

number of phenotype measurements (i.e., plots) for each clone also contributed to the 

accuracy (Figure 4.7) 

a.        b. 

.  

c.       d. 

    

Figure 4.6 Comparison of the predicted additive (y-axis) and clonal values (x-axis) 

for fry chip color (a) chip quality (b), specific gravity (c), and total yield (d). The 

slope of the regression line (blue) represented the additive proportion of the clonal 

value in comparison with the line with a slope equal to 1 (red).  
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a.        b.    

    

c.       d. 

  

Figure 4.7 Expected squared correlation between the true and predicted values 

known as reliability (y-axis) plotted against the number of close relationships for 

each clone, quantified by the 95th percentile of its G coefficients (G95) (x-axis) for 

fry chip color (a), chip quality (b), specific gravity (c), and total yield (d). 

 

4.3.3. Cross-validation 

To illustrate cross-validation, we masked phenotypes for the clones in the 2020 

Texas preliminary yield trial. Figure 4.8 compares the reliability of the predicted 

additive values with (y-axis) and without (x-axis) phenotypes of the DAL20 group 

(black line = slope of 1). The reliability was substantially higher for the DAL20 clones 

when their phenotype data are included. For the rest of the population, there was a slight 
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advantage to including the DAL20 phenotypes. The accuracy by cross-validation was 

estimated to be 0.62. 

 

Figure 4.8 Comparison of the reliability of the predicted additive values with 

phenotypes for the DAL20 group (y-axis) and without (x-axis) phenotypes for the 

DAL20 group (black line = slope of 1) 

 

4.3.4. Two‐stage analysis of multi-environment trials 

Genomic narrow-sense heritability, defined as the proportion of variance for the 

additive effects, was estimated at 0.52, 0.17, 0.40, and 0.11 for chip color, chip quality, 

specific gravity, and yield, respectively. Non-additive genetic effects and genotype x 

year interaction effects were negligible for chip color. However, the estimated genotype 

x year interaction effect for chip quality was 0.32. Likewise, for specific gravity the 

proportion of non-additive genetic effects and genotype x year interaction effects were 

0.09 and 0.08, respectively. Similarly, for yield, the proportion of non-additive genetic 

effects and genotype x year interaction effects were 0.08 and 0.41 respectively. The 
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benefit of including Omega, which accounts for the micro and macro-environmental 

variation in each of the estimates in the analysis, was reflected in a lower Akaike 

information criterion (AIC) compared to a model without it 

((https://github.com/jendelman/polyBreedR). The AIC was lowered by 24, 25, 56, and 

19 for chip color, chip quality, specific gravity, and yield, respectively. Comparison of 

the predicted additive and clonal values showed that the slope of the regression line 

(blue) is less than 1 (shown in red) for specific gravity and yield (Figure 4.6c and 4.6d). 

However, the regression line for chip color and chip quality is almost equal to one, 

which implied that the proportion of non-additive genetic effects for these traits were 

negligible (Figure 4.6a and 4.6b). 

4.3.5. Standardized multiple selection index 

Selection indexes are important in the processes of breeding and selecting 

superior chipping cultivars. The results for the standardized multiple selection index 

(Appendix C2) allowed the identification of chipping clones with high chip quality, 

yield, specific gravity, and light-colored chips. It can be observed that clones with 

standardized multiple selection index (z) > 2 are in the top 5%. Most of the clones within 

the top 5% (NYR102-3, NYR102-7, NY169, NYN24-2, NYR102-8, NYP116-6, 

NYP108-6) were bred at Cornell University. Three clones (NDTX1246-3W, 

NDTX113030C-3W, NDTX1246-5W/Y) selected by the Texas potato program were 

also found to be among the best chipping clones. 
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4.4. Discussion 

Genomic selection can accelerate breeding for a range of traits, including those 

with complex genetic regulation. To increase GS accuracy, the breeding program’s 

historical data can be effectively used (Atanda et al., 2021). Proper biometric procedures 

are needed to combine all this historical information while accounting for micro- and 

macro-environmental variation. The polyBreedR package uses a fully efficient, two-

stage procedure (Damesa et al., 2017) that requires some entries to be replicated in each 

environment. In this study, using the chipping quality data of tetraploid potato, the 

genotype estimate for each clone and environment combination was determined in stage 

one by assuming independent effects, and genomic covariance matrices were used in 

stage two.  

GS can be incorporated into potato breeding, particularly in early clonal 

generations, to predict and select for all traits, but traits difficult or expensive to measure 

and those with low heritability could benefit the most from GS. GS could overcome the 

need for evaluating many plants per clone over several locations and years. The 

heritability indicates that the environment plays a large role for fry chip color. It ranged 

from 0.32 to 0.77 in different env x trait combinations. Trait heritability is affected by 

changes in allelic frequencies, introduction of new alleles (Latta, 2010), or changes in 

genetic influence caused by altered genetic backgrounds or environmental factors 

(Chandler et al., 2017) or error. Broad-sense heritability of 0.59 for specific gravity was 

observed in our study. However, Slater et al. (2014) estimated the heritability of specific 
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gravity to be 0.74. Temperature fluctuations between years affects specific gravity and 

the Dalhart location is prone to year-to-year environmental variation. 

The partial replication over years allowed for explicit modeling of a residual 

genetic effect in addition to the additive, dominance, and epistatic random effects. We 

found that more of the genetic variances were additive for fry chip color (52%), chip 

quality (17%), and specific gravity (40%). Specific gravity is an important component of 

chipping quality. Endelman et al. (2018) reported add itive genetic variance was 20% for 

specific gravity. Based on diallel studies, Tai (1976) reported significant specific 

combining ability (SCA) /general combining ability (GCA) of 0.60 for specific gravity. 

Lynch et al. (1992) found the high GCA effects and non-significant SCA effects for 

specific gravity and suggested that mainly additive genetic factors account for the 

genetic variation. Wang et al. (2017) also showed relatively little genotype × 

environment interaction for the specific gravity. Thus, specific gravity as a proxy for dry 

matter content can be used for selecting chip processing potatoes. 

Breeding values can now be predicted by regressing phenotypic values on all 

available markers, thanks to the advent of higher-density single-nucleotide 

polymorphisms (SNPs) spanning the entire genome of many plants (Crossa et al., 2017). 

The option of molecular marker platform has a big impact on GS applicability. Our 

study is based on the SNP arrays. SNP chips provide high-quality SNPs, but the cost per 

sample is significantly higher. It can be costly for small breeding programs since 

genomic selection often necessitates extensive population genotyping. On the other 

hand, genotyping by sequencing (GBS) offers many markers, but there can be a lot of 
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missing data (Elbasyoni et al., 2018). In potato, Endelman et al. (2018) used the SNP 

array, whereas Sverrisdóttir et al. (2017, 2018) and Byrne et al. (2020) utilized GBS to 

identify SNPs for genomic prediction models. Marker density, a major concern for using 

GS, has been studied in some crops like wheat (Crossa et al., 2014; Elbasyoni et al., 

2018) and pea (Tayeh et al., 2015) but has yielded mixed results. Since not all SNP sites 

influence traits, selecting the most effective markers for genomic prediction will likely 

improve prediction accuracy.  

The reliability of genomic predictions is the expected squared correlation 

between the true and predicted values and indicates the proportion of the genetic 

variance that is explained (de Roos et al., 2009). Reliable prediction of complex quality 

traits will be essential to attain the objective of successful chip potato breeding. 

Reliability (r2) of the BLUPs is an alternative to cross-validation for assessing genomic 

prediction accuracy. In this study, we aimed to predict chipping quality with relatively 

high accuracy. Predictions were made for chipping quality traits like fry color, chip 

quality, and specific gravity using the mixed model equations. The mean reliability of 

the BLUPs obtained were 0.75, 0.43, 0.61 and 0.33 for chip color, chip quality, specific 

gravity, and total yield, respectively. For chip color, the reliability ranged from 0.49-

0.97. Sverrisdóttir et al. (2018) had obtained cross-validated prediction correlations of 

0.39–0.79 for chipping quality. Similarly, the reliability for the chip quality, specific 

gravity and total yield ranged from 0.25-0.77, 0.38-0.87 and 0.13-0.58, respectively. 

Since these predictions utilized phenotypic data for the selected candidates, the number 

of phenotype measurements (i.e., plots) for each clone also contributed to accuracy 
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(Figure 4.7). The GS strategy's superiority is determined not only by the ability to 

predict an individual's genetic merit with greater precision but also by the ability to 

shorten the breeding period and maximize genetic gains (Heffner et al., 2011). Breeders 

hope to pass useful traits from parental lines to their progeny by choosing parental lines 

with the highest GEBVs. Taken together, these factors make genomic selection in 

potatoes thoroughly feasible and attractive. 

The use of an index is a useful approach for considering more than one trait in 

the selection process. This strategy has been applied for selection of early soybean 

inbred lines by Gesteira et al. (2018). In potato, Terres et al. (2015) estimated genetic 

gains using different selection index in potato populations. However, no reports were 

found on the use of this tool in the selection of chipping cultivars for chipping quality, 

yield, specific gravity, and chip color. The index was efficient in selecting cultivars for 

multiple traits simultaneously. The New York clones stood out in the evaluation. The 

index can be used to select superior clones to use as parents and ultimately to enhance 

the efficiency of selection in breeding programs. 

4.5. Conclusions 

Genomic selection (GS) leverages historical phenotype data from a breeding 

program to predict the genetic value of related individuals more accurately. Data from a 

subset of highly maintained trials can be used to predict success in an untested 

environment for chipping quality, which is labor-intensive and costly to phenotype. Even 

for limited reference populations and traits with low heritability, the accuracies found 

were motivating. For phenotyped individuals, GS can be used to improve the accuracy of 
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selection. The accuracy of the predictions will allow for a gradual transition to a full-

scale genomic selection program. The selection index obtained will make it possible to 

select superior clones, considering multiple traits together. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

180 

 

4.6. References 

Atanda, S. A., Olsen, M., Burgueño, J., Crossa, J., Dzidzienyo, D., Beyene, Y., Gowda, 

M., Dreher, K., Zhang, X., Prasanna, B. M., Tongoona, P., Danquah, E. Y., 

Olaoye, G., & Robbins, K. R. (2021). Maximizing efficiency of genomic 

selection in CIMMYT’s tropical maize breeding program. Theoretical and 

Applied Genetics, 134(1), 279–294. https://doi.org/10.1007/s00122-020-03696-9 

Bernardo, R. N. (2020). Breeding for quantitative traits in plants (Third edition). 

Stemma Press. 

Byrne, S., Meade, F., Mesiti, F., Griffin, D., Kennedy, C., & Milbourne, D. (2020). 

Genome-wide association and genomic prediction for fry color in potato. 

Agronomy, 10(1), 90. https://doi.org/10.3390/agronomy10010090 

Campos, H., & Ortiz, O. (Eds.). (2020). The Potato Crop: Its Agricultural, Nutritional 

and Social Contribution to Humankind. Springer International Publishing. 

https://doi.org/10.1007/978-3-030-28683-5 

Chandler, C. H., Chari, S., Kowalski, A., Choi, L., Tack, D., DeNieu, M., Pitchers, W., 

Sonnenschein, A., Marvin, L., Hummel, K., Marier, C., Victory, A., Porter, C., 

Mammel, A., Holms, J., Sivaratnam, G., & Dworkin, I. (2017). How well do you 

know your mutation? Complex effects of genetic background on expressivity, 

complementation, and ordering of allelic effects. PLOS Genetics, 13(11), 

e1007075. https://doi.org/10.1371/journal.pgen.1007075 

Coutinho, G., Pio, R., Souza, F. B. M. de, Farias, D. da H., Bruzi, A. T., & Guimarães, 

P. H. S. (2019). Multivariate analysis and selection indices to identify superior 



 

181 

 

quince cultivars for cultivation in the tropics. HortScience, 54(8), 1324–1329. 

https://doi.org/10.21273/HORTSCI14004-19 

Crossa, J., Pérez, P., Hickey, J., Burgueño, J., Ornella, L., Cerón-Rojas, J., Zhang, X., 

Dreisigacker, S., Babu, R., Li, Y., Bonnett, D., & Mathews, K. (2014). Genomic 

prediction in CIMMYT maize and wheat breeding programs. Heredity, 112(1), 

48–60. https://doi.org/10.1038/hdy.2013.16 

Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-López, O., Jarquín, D., de los 

Campos, G., Burgueño, J., González-Camacho, J. M., Pérez-Elizalde, S., Beyene, 

Y., Dreisigacker, S., Singh, R., Zhang, X., Gowda, M., Roorkiwal, M., Rutkoski, 

J., & Varshney, R. K. (2017). Genomic selection in plant breeding: Methods, 

models, and perspectives. Trends in Plant Science, 22(11), 961–975. 

https://doi.org/10.1016/j.tplants.2017.08.011 

Damesa, T. M., Möhring, J., Worku, M., & Piepho, H.-P. (2017). One step at a time: 

Stage-wise analysis of a series of experiments. Agronomy Journal, 109(3), 845–

857. https://doi.org/10.2134/agronj2016.07.0395 

De Jong, W. S., Halseth, D. E., Plaisted, R. L., Wang, X., Perry, K. L., Qu, X., Paddock, 

K. M., Falise, M., Christ, B. J., & Porter, G. A. (2017). Lamoka, a Variety with 

Excellent Chip Color Out of Cold Storage and Resistance to the Golden Cyst 

Nematode. American Journal of Potato Research, 94(2), 148–152. 

https://doi.org/10.1007/s12230-016-9557-x 



 

182 

 

de Roos, A. P. W., Hayes, B. J., & Goddard, M. E. (2009). Reliability of genomic 

predictions across multiple populations. Genetics, 183(4), 1545–1553. 

https://doi.org/10.1534/genetics.109.104935 

Devaux, A., Kromann, P., & Ortiz, O. (2014). Potatoes for sustainable global food 

security. Potato Research, 57(3), 185–199. https://doi.org/10.1007/s11540-014-

9265-1 

D’hoop, B. B., Keizer, P. L. C., Paulo, M. J., Visser, R. G. F., van Eeuwijk, F. A., & van 

Eck, H. J. (2014). Identification of agronomically important QTL in tetraploid 

potato cultivars using a marker–trait association analysis. Theoretical and 

Applied Genetics, 127(3), 731–748. https://doi.org/10.1007/s00122-013-2254-y 

Elbasyoni, I. S., Lorenz, A. J., Guttieri, M., Frels, K., Baenziger, P. S., Poland, J., & 

Akhunov, E. (2018). A comparison between genotyping-by-sequencing and 

array-based scoring of SNPs for genomic prediction accuracy in winter wheat. 

Plant Science, 270, 123–130. https://doi.org/10.1016/j.plantsci.2018.02.019 

Endelman, J. B., Carley, C. A. S., Bethke, P. C., Coombs, J. J., Clough, M. E., Silva, W. 

L. da, Jong, W. S. D., Douches, D. S., Frederick, C. M., Haynes, K. G., Holm, D. 

G., Miller, J. C., Muñoz, P. R., Navarro, F. M., Novy, R. G., Palta, J. P., Porter, 

G. A., Rak, K. T., Sathuvalli, V. R., … Yencho, G. C. (2018). Genetic variance 

partitioning and genome-wide prediction with allele dosage information in 

autotetraploid potato. Genetics, 209(1), 77–87. 

https://doi.org/10.1534/genetics.118.300685 



 

183 

 

FAO. (2009). Why potato? - International year of the potato 2008, Rome. FAO. 

http://www.fao.org/potato-2008/en/aboutiyp/index.html 

FAO. (2021). Dimensions of need—Staple foods: What do people eat?, Rome. FAO. 

http://www.fao.org/3/u8480e/u8480e07.htm 

Fiselier, K., & Grob, K. (2005). Legal limit for reducing sugars in prefabricates targeting 

50 μg/kg acrylamide in French fries. European Food Research and Technology, 

220(5), 451–458. https://doi.org/10.1007/s00217-004-1081-4 

Frederick, C. M., & Bethke, P. C. (2019). Identification of quantitative trait loci for 

stem-end chip defect and potato chip color traits in a ‘Lenape’-derived full-sib 

population. American Journal of Potato Research, 96(6), 564–577. 

https://doi.org/10.1007/s12230-019-09746-3 

Gebhardt, C., Urbany, C., & Stich, B. (2014). Dissection of potato complex traits by 

linkage and association genetics as basis for developing molecular diagnostics in 

breeding programs. In R. Tuberosa, A. Graner, & E. Frison (Eds.), Genomics of 

Plant Genetic Resources: Volume 2. Crop productivity, food security and 

nutritional quality (pp. 47–85). Springer Netherlands. 

https://doi.org/10.1007/978-94-007-7575-6_3 

Ghislain, M., & Douches, D. S. (2020). The genes and genomes of the potato. In H. 

Campos & O. Ortiz (Eds.), The Potato Crop: Its Agricultural, Nutritional and 

Social Contribution to Humankind (pp. 139–162). Springer International 

Publishing. https://doi.org/10.1007/978-3-030-28683-5_5 



 

184 

 

Habyarimana, E., Parisi, B., & Mandolino, G. (2017). Genomic prediction for yields, 

processing and nutritional quality traits in cultivated potato (Solanum tuberosum 

L.). Plant Breeding, 136(2), 245–252. https://doi.org/10.1111/pbr.12461 

Halterman, D., Guenthner, J., Collinge, S., Butler, N., & Douches, D. (2016). Biotech 

potatoes in the 21st century: 20 years since the first biotech potato. American 

Journal of Potato Research, 93(1), 1–20. https://doi.org/10.1007/s12230-015-

9485-1 

Heffner, E. L., Jannink, J.-L., & Sorrells, M. E. (2011). Genomic selection accuracy 

using multifamily prediction models in a wheat breeding program. The Plant 

Genome, 4(1). https://doi.org/10.3835/plantgenome2010.12.0029 

Hogervorst, J. G. F., Baars, B.-J., Schouten, L. J., Konings, E. J. M., Goldbohm, R. A., 

& Brandt, P. A. van den. (2010). The carcinogenicity of dietary acrylamide 

intake: A comparative discussion of epidemiological and experimental animal 

research. Critical Reviews in Toxicology, 40(6), 485–512. 

https://doi.org/10.3109/10408440903524254 

Kleinkopf, G. E., Oberg, N. A., & Olsen, N. L. (2003). Sprout inhibition in storage: 

Current status, new chemistries and natural compounds. American Journal of 

Potato Research, 80(5), 317–327. https://doi.org/10.1007/BF02854316 

Kumar, D., Singh, B. P., & Kumar, P. (2004). An overview of the factors affecting sugar 

content of potatoes. Annals of Applied Biology, 145(3), 247–256. 

https://doi.org/10.1111/j.1744-7348.2004.tb00380.x 



 

185 

 

Latta, R. G. (Ed.). (2010). Natural selection, variation, adaptation, and evolution: A 

primer of interrelated concepts. International Journal of Plant Sciences, 171(9), 

930–944. https://doi.org/10.1086/656220 

Leonel, M., do Carmo, E. L., Fernandes, A. M., Soratto, R. P., Ebúrneo, J. A. M., 

Garcia, É. L., & dos Santos, T. P. R. (2017). Chemical composition of potato 

tubers: The effect of cultivars and growth conditions. Journal of Food Science 

and Technology, 54(8), 2372–2378. https://doi.org/10.1007/s13197-017-2677-6 

Li, L., Paulo, M.-J., Strahwald, J., Lübeck, J., Hofferbert, H.-R., Tacke, E., Junghans, H., 

Wunder, J., Draffehn, A., van Eeuwijk, F., & Gebhardt, C. (2008). Natural DNA 

variation at candidate loci is associated with potato chip color, tuber starch 

content, yield and starch yield. Theoretical and Applied Genetics, 116(8), 1167–

1181. https://doi.org/10.1007/s00122-008-0746-y 

Lima, D. C., Abreu, Â. de F. B., Ferreira, R. A. D. C., & Ramalho, M. A. P. (2015). 

Breeding common bean populations for traits using selection index. Scientia 

Agricola, 72, 132–137. https://doi.org/10.1590/0103-9016-2014-0130 

Liyanage, D. W. K., Yevtushenko, D. P., Konschuh, M., Bizimungu, B., & Lu, Z.-X. 

(2021). Processing strategies to decrease acrylamide formation, reducing sugars 

and free asparagine content in potato chips from three commercial cultivars. 

Food Control, 119, 107452. https://doi.org/10.1016/j.foodcont.2020.107452 

Love, S. L., Pavek, J. J., Thompson-Johns, A., & Bohl, W. (1998). Breeding progress for 

potato chip quality in North American cultivars. American Journal of Potato 

Research, 75(1), 27–36. https://doi.org/10.1007/BF02883514 



 

186 

 

Lynch, D. R., Tai, G. C. C., & Coffin, R. H. (1992). Genetic components of potato chip 

quality evaluated in three environments and under various storage regimes. 

Canadian Journal of Plant Science, 72(2), 535–543. 

https://doi.org/10.4141/cjps92-067 

Mendes, F. F., Ramalho, M. A. P., & Abreu, Â. de F. B. (2009). Selection index for 

choosing segregating populations of common bean. Pesquisa Agropecuária 

Brasileira, 44, 1312–1318. https://doi.org/10.1590/S0100-204X2009001000015 

Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic 

value using genome-wide dense marker maps. Genetics, 157(4), 1819–1829. 

https://doi.org/10.1093/genetics/157.4.1819 

Nacheva, E., & Pevicharova, G. (2008). Potato breeding lines for processing. Genetics 

and Breeding, 37, 77–84. 

Ortiz, O., & Mares, V. (2017). The historical, social, and economic importance of the 

potato crop. In S. Kumar Chakrabarti, C. Xie, & J. Kumar Tiwari (Eds.), The 

Potato Genome (pp. 1–10). Springer International Publishing. 

https://doi.org/10.1007/978-3-319-66135-3_1 

Rak, K., Bethke, P. C., & Palta, J. P. (2017). QTL mapping of potato chip color and 

tuber traits within an autotetraploid family. Molecular Breeding, 37(2), 15. 

https://doi.org/10.1007/s11032-017-0619-7 

Ribeiro, D. C., de Lima, I. P., Mendes, M. P., & Oliveira, H. (2016). Selection for 

multiple traits in upland rice progenies using the z index. International Journal of 

Current Research, 08, 5. 



 

187 

 

Schönhals, E. M., Ortega, F., Barandalla, L., Aragones, A., Ruiz de Galarreta, J. I., Liao, 

J.-C., Sanetomo, R., Walkemeier, B., Tacke, E., Ritter, E., & Gebhardt, C. 

(2016). Identification and reproducibility of diagnostic DNA markers for tuber 

starch and yield optimization in a novel association mapping population of potato 

(Solanum tuberosum L.). Theoretical and Applied Genetics, 129, 767–785. 

https://doi.org/10.1007/s00122-016-2665-7 

Scott, G. J., & Kleinwechter, U. (2017). Future scenarios for potato demand, supply and 

trade in South America to 2030. Potato Research, 60(1), 23–45. 

https://doi.org/10.1007/s11540-017-9338-z 

Scott, G. J., Petsakos, A., & Suarez, V. (2019). Not by bread alone: Estimating potato 

demand in india in 2030. Potato Research, 62(3), 281–304. 

https://doi.org/10.1007/s11540-019-9411-x 

Slater, A. T., Cogan, N. O. I., Hayes, B. J., Schultz, L., Dale, M. F. B., Bryan, G. J., & 

Forster, J. W. (2014). Improving breeding efficiency in potato using molecular 

and quantitative genetics. Theoretical and Applied Genetics, 127(11), 2279–

2292. https://doi.org/10.1007/s00122-014-2386-8 

Stark, J. C., Love, S. L., & Knowles, N. R. (2020). Tuber quality. In J. C. Stark, M. 

Thornton, & P. Nolte (Eds.), Potato Production Systems (pp. 479–497). Springer 

International Publishing. https://doi.org/10.1007/978-3-030-39157-7_15 

Statista. (2021). Global market size: Packaged & unpackaged potato chips 2026. 

Statista. https://www.statista.com/statistics/1199637/global-packaged-and-

unpackaged-potato-chips-market-size/ 



 

188 

 

Sverrisdóttir, E., Byrne, S., Sundmark, E. H. R., Johnsen, H. Ø., Kirk, H. G., Asp, T., 

Janss, L., & Nielsen, K. L. (2017). Genomic prediction of starch content and 

chipping quality in tetraploid potato using genotyping-by-sequencing. 

Theoretical and Applied Genetics, 130(10), 2091–2108. 

https://doi.org/10.1007/s00122-017-2944-y 

Sverrisdóttir, E., Sundmark, E. H. R., Johnsen, H. Ø., Kirk, H. G., Asp, T., Janss, L., 

Bryan, G., & Nielsen, K. L. (2018). The value of expanding the training 

population to improve genomic selection models in tetraploid potato. Frontiers in 

Plant Science, 9. https://doi.org/10.3389/fpls.2018.01118 

Tayeh, N., Klein, A., Le Paslier, M.-C., Jacquin, F., Houtin, H., Rond, C., Chabert-

Martinello, M., Magnin-Robert, J.-B., Marget, P., Aubert, G., & Burstin, J. 

(2015). Genomic prediction in pea: Effect of marker density and training 

population size and composition on prediction accuracy. Frontiers in Plant 

Science, 6. https://doi.org/10.3389/fpls.2015.00941 

Terres, L. R., Lenz, E., Castro, C. M., & Pereira, A. S. (2015). Genetic gain estimates 

using different selection index methods in potato hybrid populations. 

Horticultura Brasileira, 33, 305–310. https://doi.org/10.1590/S0102-

053620150000300005 

Tul’cheev, V. V., Zhevora, S. V., Borisov, M. Yu., & Gordienko, N. N. (2020). 

Perspectives for development of Russian and global potato markets. Studies on 

Russian Economic Development, 31(1), 85–89. 

https://doi.org/10.1134/S1075700720010177 



 

189 

 

USDA ERS. (2021). USDA ERS - Food Availability and Consumption. 

https://www.ers.usda.gov/data-products/ag-and-food-statistics-charting-the-

essentials/food-availability-and-consumption/ 

Wang, Y., Snodgrass, L. B., Bethke, P. C., Bussan, A. J., Holm, D. G., Novy, R. G., 

Pavek, M. J., Porter, G. A., Rosen, C. J., Sathuvalli, V., Thompson, A. L., 

Thornton, M. T., & Endelman, J. B. (2017). Reliability of measurement and 

genotype × environment interaction for potato specific gravity. Crop Science, 

57(4), 1966–1972. https://doi.org/10.2135/cropsci2016.12.0976 

Wayumba, B. O., Choi, H. S., & Seok, L. Y. (2019). Selection and evaluation of 21 

potato (Solanum tuberosum) breeding clones for cold chip processing. Foods, 

8(3), 98. https://doi.org/10.3390/foods8030098 

Webb, R. E., Wilson, D. R., Shumaker, J. R., Graves, B., Henninger, M. R., Watts, J., 

Frank, J. A., & Murphy, H. J. (1978). Atlantic: A new potato variety with high 

solids, good processing quality, and resistance to pests. American Potato 

Journal, 55(3), 141–145. https://doi.org/10.1007/BF02852087 

Wen, C., Shi, X., Wang, Z., Gao, W., Jiang, L., Xiao, Q., Liu, X., & Deng, F. (2016). 

Effects of metal ions on formation of acrylamide and 5-hydroxymethylfurfural in 

asparagine–glucose model system. International Journal of Food Science & 

Technology, 51(2), 279–285. https://doi.org/10.1111/ijfs.12966 

Wiberley-Bradford, A. E., Busse, J. S., Jiang, J., & Bethke, P. C. (2014). Sugar 

metabolism, chip color, invertase activity, and gene expression during long-term 

cold storage of potato (Solanum tuberosum) tubers from wild-type and vacuolar 



 

190 

 

invertase silencing lines of Katahdin. BMC Research Notes, 7(1), 801. 

https://doi.org/10.1186/1756-0500-7-801 

Wijesinha-Bettoni, R., & Mouillé, B. (2019). The contribution of potatoes to global food 

security, nutrition and healthy diets. American Journal of Potato Research, 

96(2), 139–149. https://doi.org/10.1007/s12230-018-09697-1 

Zhou, Z., Plauborg, F., Kristensen, K., & Andersen, M. N. (2017). Dry matter 

production, radiation interception and radiation use efficiency of potato in 

response to temperature and nitrogen application regimes. Agricultural and 

Forest Meteorology, 232, 595–605. 

https://doi.org/10.1016/j.agrformet.2016.10.017 

 

 

 

 



191 

 

5. CONCLUSIONS 

This research aimed to assess the genetic diversity, population structure, identify 

genetic variation, and predict the breeding values associated with important phenotypic 

and economic traits. Based on the assessment of genetic diversity in the advanced 

tetraploid clones selected over forty years by the Texas A&M potato program, it can be 

concluded that this collection is highly diverse and provides opportunity to develop new 

and improved varieties with desirable traits. The results indicate moderate to high levels 

of  heterozygosity, low inbreeding, and significant population structure. By obtaining a 

core set, this research has shown how a small-scale breeding program can maintain a 

sub-collection that retains similar genetic diversity as the whole population for long-term 

conservation of genetic resources. This study was able to make the discovery of 

typographic errors and pedigree errors that occurred during handling clonal material in 

the breeding program and/or tissue culture operations. Studies such as this will help 

identify and correct errors in the breeding program. Also, SNP fingerprints and genetic 

distance comparisons from this study can be useful for plant variety protection (PVP), as 

well as for the verification of the identity of clones.  

In most complicated quantitative traits, it appears that many small-effect alleles 

are responsible for controlling the observed variation. The results presented here 

constitute the effort to identify genetic variation associated with tuber shape, eye depth, 

degree of russeting, tuber number, tuber weight, skin color, and flesh color in advanced 

potato clones using genome wide association studies. Besides the rediscovery of a QTL 

for tuber morphology traits in potatoes, we introduce nonredundant markers that are 



 

192 

 

playing important roles in the control of these interesting traits. Since, GWAS require 

much larger sample sizes to acquire appropriate statistical power, we were not able to 

identify QTLs for some of the traits. Instead, in the future, phenotype of interest could be 

refined, or sample size and marker density could be increased. The findings of this 

dissertation research are likely to be valuable in the future design and implementation of 

genomic studies for marker-assisted selection. 

This study shows that GS could be successfully implemented for chipping 

quality, which is labor-intensive and costly to phenotype. The accuracy is encouraging 

even for small reference populations and traits with low heritability. This study 

demonstrates that the index is a useful approach for considering more than one trait in 

the selection process. More research is needed to see how genetic prediction accuracy 

can be improved (expanding the training population, appropriate prediction model, 

higher marker density). The results of genomic diversity, GWAS and GS will be useful 

in improving breeding efficiency in the potato program. 
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APPENDIX A 

 

 

 

A1. Estimation of the number of populations using LnP(D) derived Δk for K from 1 

to 10 using 10,106 SNPs. The maximum of adhoc measure ΔK determined by 

structure harvester was found to be K = 3. The red arrow in the graph indicates the 

clear inflection point.  

Number of populations 
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A2. Model-based clustering using software STRUCTURE showing individual 

genotypes (x-axis) in the population structure of 214 potato clones (K = 3, red, 

green and blue) based on 10,106 SNPs. The y-axis indicates the subpopulation 

membership (relative scale 0-1). Individual potato genotypes are shown in the x-

axis. 
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A3. The lowest Bayesian information criterion (BIC) value was obtained using 

find.clusters function using adegenet R package67 for discriminant analysis of 

principal components (DAPC) analysis using 10K SNPs in the population of 214 

potato clones. 

B
IC
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A4. Cross-validation plot to guide the selection of the number of principal 

component axes (PCA) to retain a Discriminant Analysis of Principal Components 

Analysis using adegenet R package67. The PCA value that maximizes the proportion 

of successful outcomes and minimizes the mean square error (MSE) is 20. 
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a.                                                                                   b. 

 

 

 

 

 

c.                                                                                         d. 

 

                            

 

 

e. 

 

 

 

 

 

A5. Illustration of skin and Flesh color verification from minitubers when the 

naming error was found from phylogenetic analysis. a. AOTX98096-1R correct 

name AOTX98096-1Ru b. ATTX98468-5R/Y correct name ATTX98468-5Ru/Y c. 

ATX96746-1Ru correct name ATTX96746-1R d. COTX04303-3R/Y correct name 

COTX04303-3Ru/Y e. COTX08039-1R/R correct name COTX08039-1P/P 
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A6.  Score plot showing the population structure (first two principal components 

PC1 and PC2) for the observed data set produced with PCAdapt where dots 

correspond to individuals and color indicates sub-populations (ChipRu = Blue, Red 

= Red and RN = Green). 

 



 

199 

 

 

A7. Discriminant analysis of principal components (DAPC) for 43 clones in the core 

set using adegenet R package67. The axes represent the first two linear 

discriminants. Circles represent groups and dots represent individual clones. 

Numbers represent the different groups identified by DAPC analysis (Russet, Red 

and Purple and Chip and ATX91322-2Y/Y –-diploid-). 
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A8. Dendrogram of the core set (43 genotypes) divided into clusters using Ape R 

package70. In the X-axis represents the Nei’s genetic distances between clones. In 

the Y-axis are represented the subpopulations by color in the core set. The color of 

the clones represents the market class (Red = red clones, Purple = purple clones, 

and Yellow = yellow clones; Green = Russet Clones, and; Blue = chipping clones) 

 

 

A9. Population-wide comparison of genetic covariance calculated from markers 

with the additive relationship calculated from pedigree records, for clone Sierra 

Gold using R software82 with one parent (Krantz) genotyped. 
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A10. Population-wide comparison of genetic covariance calculated from markers 

with the additive relationship calculated from pedigree records, for clone 

NDTX4930-5W using R software82 in which one of the parent Western Russet 

seems to be erroneous. 

 

 

A11. Population-wide comparison of genetic covariance calculated from markers 

with the additive relationship calculated from pedigree records, for clone Reveille 

Russet using R software82 in which one of the genotyped parent Bannock seems to 

be erroneous. 
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A12. Heterozygosity and inbreeding coefficient of two hundred fourteen potato 

clones 

Clone Name Heterozygosity Inbreeding coefficient (Fi) 

AOR07781-2 0.60 -0.54 

AORTX09037-1W/Y 0.60 -0.54 

AOTX02136-1Ru 0.59 -0.50 

AOTX03187-1Ru 0.56 -0.44 

AOTX05043-1Ru 0.57 -0.46 

AOTX91861-4R 0.58 -0.47 

AOTX93483-1R  0.59 -0.51 

AOTX95265-2Ru  0.57 -0.46 

AOTX95295-3Ru 0.59 -0.51 

AOTX95309-1W 0.60 -0.53 

AOTX95309-2W 0.59 -0.49 

AOTX96075-1Ru 0.59 -0.50 

AOTX96084-1Ru  0.57 -0.47 

AOTX96208-1Ru 0.58 -0.48 

AOTX96216-1Ru 0.58 -0.49 

AOTX96216-2Ru  0.58 -0.49 

AOTX97213-1Ru 0.57 -0.46 

AOTX98096-1Ru* 0.59 -0.50 

AOTX98137-1Ru 0.59 -0.51 

AOTX98152-3Ru 0.63 -0.59 

AOTX98202-1Ru  0.60 -0.52 

Atlantic_MSU 0.73 -0.85 

Atlantic_TAMU 0.73 -0.85 

ATTX00289-4W 0.61 -0.56 

ATTX00289-5R/Y  0.59 -0.50 

ATTX00289-6Y/Y 0.60 -0.51 

ATTX01178-1R  0.59 -0.51 

ATTX01180-1R/Y  0.58 -0.46 

ATTX03516-2R 0.57 -0.45 

ATTX05175s-1R/Y 0.56 -0.42 

ATTX05186-2R 0.59 -0.52 

ATTX06246-1R 0.58 -0.47 

ATTX07042-3W 0.63 -0.59 

ATTX10265-4R/Y 0.58 -0.47 

ATTX88481-1P/W  0.57 -0.45 

ATTX88654-2P/Y 0.57 -0.44 

ATTX95490-2W 0.59 -0.51 

ATTX961014-1AR/Y 0.57 -0.44 

ATTX961014-1Br/Y 0.59 -0.49 
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Clone Name Heterozygosity Inbreeding coefficient (Fi) 

Sierra RoseTM 0.59 -0.49 

ATTX961014-1R/Y  Chimera 0.58 -0.49 

ATTX98444s-16R/Y 0.59 -0.50 

ATTX98448-6R/Y 0.59 -0.50 

ATTX98453-11Br 0.57 -0.44 

ATTX98453-3R  0.57 -0.46 

ATTX98453-6R  0.60 -0.52 

ATTX98462s-3R/Y 0.59 -0.49 

ATTX98465-1R/Y 0.52 -0.32 

ATTX98466-5R/WR 0.59 -0.49 

ATTX98468-5Ru/Y* 0.57 -0.46 

ATTX98491-4Yrdspl/Y 0.55 -0.40 

ATTX98493-1AR 0.57 -0.46 

ATTX98493-2P/P 0.61 -0.56 

ATTX98500-2P/Y 0.57 -0.46 

ATTX98500-3P/Y 0.56 -0.43 

ATTX98510-1R/Y 0.61 -0.55 

ATTX98514-1R/Y 0.60 -0.54 

ATTX98518-5P/Y  0.60 -0.54 

ATTX99325-1P 0.56 -0.43 

ATX02263-1R/Y 0.59 -0.51 

ATX03496-3Y/Y 0.57 -0.46 

ATX03564-1Y/Y 0.58 -0.46 

ATX05186-1R 0.62 -0.56 

ATX05202s-3W/Y 0.61 -0.54 

ATX06264s-4R/Y_R1 0.59 -0.49 

ATX06264s-4R/Y_R2  0.59 -0.50 

ATX07305S-1Y/Y 0.61 -0.54 

ATX08181-5Y/Y 0.58 -0.48 

ATX84378-6Ru 0.61 -0.55 

ATX84706-2Ru 0.61 -0.56 

ATX85404-8W 0.60 -0.53 

ATX87184-2Ru 0.56 -0.43 

Reveille Russet 0.62 -0.58 

ATX9117-1Ru  0.58 -0.48 

ATX91322-2Y/Y  0.22 0.45 

ATX9202-3Ru 0.60 -0.52 

ATX9312-1Ru 0.59 -0.49 

ATX9332-8Ru 0.59 -0.51 

ATTX96746-1R* 0.60 -0.52 

ATX97147-4Ru 0.62 -0.58 
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Clone Name Heterozygosity Inbreeding coefficient (Fi) 

ATX99013-1Ru 0.59 -0.51 

BTX1544-2W/Y 0.62 -0.58 

BTX1749-1W/Y 0.62 -0.57 

BTX2103-1R/Y 0.57 -0.45 

BTX2332-1R 0.64 -0.64 

CO112-F2-2P/P 0.62 -0.58 

COTX00104-6R 0.57 -0.45 

COTX00104-7R 0.59 -0.49 

COTX01403-4R/Y 0.60 -0.53 

COTX02172-1R 0.58 -0.48 

COTX02293-4R 0.57 -0.46 

COTX03079-1W/W 0.60 -0.52 

COTX03134-1Y/W 0.61 -0.55 

COTX03134-2Y/W 0.60 -0.52 

COTX03187-1W 0.57 -0.46 

COTX04015-3W/Y 0.60 -0.53 

COTX04050s-1P/P 0.61 -0.55 

COTX04193s-2R/Y 0.58 -0.47 

COTX04303-3Ru/Y* 0.59 -0.51 

COTX05095-2Ru/Y 0.57 -0.44 

COTX05211-4R 0.55 -0.41 

COTX05211-5R 0.55 -0.41 

COTX05211-7R 0.58 -0.48 

COTX05249-3W/Y 0.57 -0.44 

COTX05261-1R/Y 0.56 -0.41 

COTX08039-1P/P* 0.56 -0.42 

COTX08063-2Ru 0.59 -0.51 

COTX08121-1Ru 0.60 -0.53 

COTX08121-4Ru 0.58 -0.48 

COTX08258-6Ru 0.60 -0.51 

COTX08322-10Ru 0.57 -0.46 

COTX08365F-3P/P 0.58 -0.46 

COTX09022-3RuRE/Y 0.61 -0.55 

COTX09052-1Ru 0.60 -0.53 

COTX09052-2Ru 0.60 -0.53 

COTX09089-1Ru 0.63 -0.61 

COTX10012-1Wrdspl/Y 0.59 -0.51 

COTX10073s-1W 0.73 -0.87 

COTX10080-2Ru 0.59 -0.50 

COTX10118-1Wre/Y 0.58 -0.48 

COTX10118-4Wpe/Y 0.54 -0.38 
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Clone Name Heterozygosity Inbreeding coefficient (Fi) 

COTX10138-15Wpe/Y 0.54 -0.38 

COTX10138s-7Wpe/Y 0.54 -0.38 

COTX10226-1Wpe/Y 0.54 -0.38 

COTX13215-2Ru 0.62 -0.57 

COTX87601-2Ru 0.61 -0.56 

COTX89044-1Ru  0.61 -0.55 

COTX90046-1W 0.64 -0.64 

COTX90046-5W 0.61 -0.55 

COTX94216-1R 0.75 -0.89 

COTX94218-1R 0.57 -0.45 

JTTX75/2003EH-1Yre/Y 0.58 -0.47 

Krantz 0.63 -0.61 

MWTX2609-2Ru 0.61 -0.56 

MWTX2609-4Ru 0.61 -0.56 

MWTX548-2Ru  0.61 -0.56 

NDTX050169-1R 0.49 -0.25 

NDTX050184s-1R/Y 0.57 -0.44 

NDTX059759-3R/Y Pinto 0.58 -0.47 

NDTX059761-1R/R 0.61 -0.54 

NDTX059775-1W 0.58 -0.48 

NDTX059828-2W 0.56 -0.42 

NDTX059886S-1Y/Y 0.77 -0.94 

NDTX060700C-1W 0.58 -0.48 

NDTX071109C-1W 0.59 -0.49 

NDTX071217CB-1W/Y 0.59 -0.49 

NDTX071258B-1R 0.55 -0.40 

NDTX081451CBs-1Y/Y 0.57 -0.46 

NDTX081618-1P/P 0.62 -0.58 

NDTX081644-CAB-2W 0.57 -0.44 

NDTX081648CB-13W 0.63 -0.59 

NDTX081648CB-1W 0.80 -1.00 

NDTX081648CB-4W 0.62 -0.58 

NDTX091886-3P/P 0.63 -0.60 

NDTX091908AB-2W 0.61 -0.56 

NDTX092237C-2P/W 0.58 -0.48 

NDTX092238Cs-1P/W 0.57 -0.45 

NDTX4271-5R 0.58 -0.48 

NDTX4756-1R/Y 0.61 -0.55 

NDTX4784-7R 0.58 -0.47 

NDTX4828-2R 0.58 -0.48 

NDTX4930-5W 0.61 -0.55 
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Clone Name Heterozygosity Inbreeding coefficient (Fi) 

NDTX5003-2R 0.59 -0.49 

NDTX5067-2R  0.58 -0.49 

NDTX5438-11R  0.79 -0.97 

NDTX6773-1W 0.60 -0.52 

NDTX731-1R 0.58 -0.46 

NDTX7590-3R 0.58 -0.48 

NDTX8773-4Ru  0.59 -0.49 

NDTX91068-11R 0.59 -0.49 

PORTX03PG25-2R/R 0.61 -0.55 

PTTX05PG07-1W 0.54 -0.38 

Rio Rojo 0.56 -0.42 

Russet Burbank 0.63 -0.60 

Russet Norkotah 102 0.59 -0.50 

Russet Norkotah 112 0.59 -0.50 

Russet Norkotah 223 0.59 -0.51 

Russet Norkotah 278 0.59 -0.51 

Russet Norkotah 296 0.59 -0.51 

Russet Norkotah  0.59 -0.51 

Stampede Russet 0.62 -0.58 

Tacna 0.62 -0.56 

Tokio 0.56 -0.43 

TX03196-1W 0.59 -0.51 

TX05249-10W 0.62 -0.57 

TX05249-11W 0.62 -0.57 

TX05249-3W 0.64 -0.63 

TX08350-12Ru 0.60 -0.53 

Vanguard Russet 0.63 -0.59 

TX08385-2P/YP 0.63 -0.60 

TX09396-1W 0.66 -0.67 

TX09403-21W 0.63 -0.59 

TX09406s-1P/P 0.61 -0.55 

TX09414-1W 0.61 -0.55 

TX10437-9Pyspl/Y 0.54 -0.37 

TX11454-9Ru/Y 0.60 -0.52 

TX11461-3W  0.60 -0.53 

TX12474-1P/R 0.48 -0.22 

TX12484-4W 0.59 -0.50 

TX13590-9Ru 0.63 -0.59 

TX14611-1R 0.60 -0.53 

TX1475-3W  0.58 -0.49 

Sierra GoldTM 0.62 -0.58 
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Clone Name Heterozygosity Inbreeding coefficient (Fi) 

TX1617-1W/Y 0.64 -0.62 

TX1673-1W/Y  0.62 -0.57 

TX6-1216-1Ru 0.62 -0.59 

TX09403-15W 0.63 -0.59 

TXA549-1Ru 0.63 -0.59 

TXNS106 0.59 -0.51 

TXNS118 0.59 -0.51 

TXNS249 0.59 -0.51 

TXYG79  0.64 -0.62 

UMTX383-3Yrdspl/Y 0.55 -0.40 

White LaSoda 0.63 -0.61 

 

A13. SNPs found under selection on chromosomes 1, 2, 3, 4, 5, 7, 8, and 10 using the 

PCAdapt method at α=0.05 corrected for the genomic inflation factor (λGC=1.20) 

 

snp chr pos pval maf stat nlog10pval 

PotVar0096714 chr01 79.47 0.00 0.06 20.22 3.82 

PotVar0049884 chr01 79.82 0.00 0.06 20.22 3.82 

PotVar0060730 chr01 82.03 0.00 0.06 21.56 4.09 

solcap_snp_c2_21752 chr02 25.05 0.00 0.21 20.23 3.82 

PotVar0038601 chr02 34.81 0.00 0.07 24.82 4.77 

PotVar0128499 chr02 35.67 0.00 0.08 21.48 4.08 

PotVar0055453 chr03 6.78 0.00 0.05 36.96 7.33 

PotVar0021465 chr03 7.33 0.00 0.05 36.96 7.33 

PotVar0021405 chr03 7.34 0.00 0.05 36.96 7.33 

PotVar0120627 chr03 48.55 0.00 0.15 21.79 4.14 

PotVar0015935 chr04 70.87 0.00 0.05 36.86 7.31 

PotVar0091295 chr05 9.84 0.00 0.17 22.21 4.23 

PotVar0092752 chr07 42.06 0.00 0.06 33.56 6.61 

solcap_snp_c2_33489 chr07 45.15 0.00 0.09 27.83 5.40 

solcap_snp_c2_51053 chr08 46.36 0.00 0.29 21.02 3.98 

PotVar0023940 chr08 54.75 0.00 0.23 24.21 4.65 

PotVar0023779 chr08 54.76 0.00 0.22 22.24 4.24 

PotVar0023676 chr08 54.78 0.00 0.22 23.95 4.59 

solcap_snp_c2_16996 chr08 54.84 0.00 0.22 21.65 4.11 

PotVar0004789 chr10 54.88 0.00 0.41 22.75 4.34 

solcap_snp_c1_5001 chr10 55.16 0.00 0.41 21.65 4.11 

solcap_snp_c2_15533 chr10 55.29 0.00 0.39 20.98 3.97 

PotVar0005291 chr10 55.86 0.00 0.24 30.46 5.96 
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snp chr pos pval maf stat nlog10pval 

PotVar0005683 chr10 56.86 0.00 0.25 31.40 6.15 

PotVar0057721 chr10 58.19 0.00 0.28 25.45 4.91 

PotVar0057635 chr10 58.30 0.00 0.25 29.92 5.84 

 

A14. Grouping of core set of potatoes based on Ward.D distance 

 

Clone Name Group 

AOTX02136-1Ru 1 

ATX87184-2Ru 1 

ATX97147-4Ru 1 

COTX05095-2Ru/Y 1 

COTX08063-2Ru 1 

COTX89044-1Ru  1 

TX08350-12Ru 1 

ATTX10265-4R/Y 2 

ATTX98465-1R/Y 2 

ATTX99325-1P 2 

BTX2103-1R/Y 2 

BTX2332-1R 2 

COTX02293-4R 2 

COTX05261-1R/Y 2 

COTX08039-1P/P 2 

JTTX75/2003EH-1Yre/Y 2 

NDTX050169-1R 2 

PTTX05PG07-1W 2 

TX03196-1W 2 

TX10437-9Pyspl/Y 2 

TX12474-1P/R 2 

TX12484-4W 2 

ATX03564-1Y/Y 3 

ATX07305S-1Y/Y 3 

BTX1544-2W/Y 3 

BTX1749-1W/Y 3 

CO112-F2-2P/P 3 

COTX03079-1W/W 3 

COTX03134-2Y/W 3 

COTX04015-3W/Y 3 

COTX09089-1Ru 3 

COTX10080-2Ru 3 
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Clone Name Group 

Krantz 3 

NDTX060700C-1W 3 

NDTX071217CB-1W/Y 3 

NDTX081451CBs-1Y/Y 3 

NDTX081644-CAB-2W 3 

Stampede Russet 3 

Tacna 3 

TX05249-11W 3 

TX1475-3W  3 

TX09403-15W 3 

ATX91322-2Y/Y  4 
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APPENDIX B 

B1. Best linear unbiased prediction (gBLUP) of tuber traits using 214 advanced 

clones from Texas potato program using polyBreedR 

Clone id Tubershape  LW  Russeting  

Eye 

depth  

Avg 

tuber wt  

Avg 
tubers 

per 

plant  

Avg 
tuber wt 

per 

plant  

Grading 

at table  C_Flesh  

 (1-5) ratio (1-5) (1-5) (g) (no.) (g) (1-5) (value) 

AOR07781-2 3.7 1.6 3.4 4.1 144 7 1009 3.8 12 

AORTX09037-1W/Y 1.5 1.2 1.0 4.2 114 9 923 3.7 23 

AOTX02136-1Ru 3.9 1.7 3.8 4.2 151 6 835 3.7 12 

AOTX03187-1Ru 4.1 2.2 1.3 4.3 86 9 728 3.5 12 

AOTX05043-1Ru 3.6 1.6 3.9 4.0 121 5 656 3.6 12 

AOTX91861-4R 1.1 1.1 1.1 3.8 111 9 940 3.7 14 

AOTX93483-1R 2.6 1.2 1.1 4.1 100 9 825 3.6 14 

AOTX95265-2Ru 4.4 1.9 4.2 3.9 145 5 749 3.7 14 

AOTX95295-3Ru 4.5 2.0 4.3 3.8 148 5 759 3.8 13 

AOTX95309-1W 3.3 1.3 2.3 4.0 145 6 812 3.5 15 

AOTX95309-2W* 2.7 1.3 1.0 4.2 105 9 916 3.7 24 

AOTX96075-1Ru 4.4 2.0 4.3 3.8 148 5 758 3.8 13 

AOTX96084-1Ru 4.4 1.9 4.2 3.8 141 5 748 3.7 14 

AOTX96208-1Ru 4.3 1.9 4.2 3.8 144 5 752 3.8 13 

AOTX96216-1Ru 4.4 1.6 4.3 3.9 193 4 847 3.8 13 

AOTX96216-2Ru 4.5 1.6 4.3 4.0 195 5 844 3.8 13 

AOTX97213-1Ru 4.0 1.8 3.8 4.0 132 6 861 3.7 13 

AOTX98096-1Ru* 4.4 2.0 4.3 3.8 147 5 759 3.8 13 

AOTX98137-1Ru 4.5 2.0 4.3 3.8 148 5 759 3.8 13 

AOTX98152-3Ru 4.0 1.5 3.8 4.0 182 7 1115 4.0 12 

AOTX98202-1Ru 4.1 1.7 3.7 4.1 139 7 875 3.8 13 

Atlantic 1.7 1.1 2.1 3.8 126 8 957 3.8 15 

ATTX00289-4W 2.1 1.2 1.1 4.1 124 8 964 3.7 17 

ATTX00289-5R/Y 2.5 1.2 1.0 3.9 109 11 1031 3.5 23 

ATTX00289-6Y/Y 2.0 1.2 1.1 4.2 112 9 894 3.5 31 

ATTX01178-1R 1.1 1.1 1.0 4.0 106 9 888 3.7 15 

ATTX01180-1R/Y 2.6 1.3 1.1 4.0 89 10 828 3.5 29 

ATTX03516-2R 1.5 1.1 1.0 4.0 98 9 807 3.7 18 

ATTX05175s-1R/Y 1.0 1.0 1.0 3.8 51 12 610 3.6 34 

ATTX05186-2R 1.1 1.1 1.0 4.0 56 12 686 3.6 14 

ATTX06246-1R 1.3 1.2 1.1 4.1 67 12 760 3.6 15 

ATTX07042-3W 1.3 1.1 1.4 4.0 114 8 811 3.4 25 

ATTX10265-4R/Y 1.7 1.2 1.0 4.1 77 10 768 3.6 30 

ATTX88481-1P/W 3.5 1.4 1.1 4.2 128 8 921 3.8 15 
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Clone id Tubershape  LW  Russeting  

Eye 

depth  

Avg 

tuber wt  

Avg 
tubers 

per 

plant  

Avg 
tuber wt 

per 

plant  

Grading 

at table  C_Flesh  

 (1-5) ratio (1-5) (1-5) (g) (no.) (g) (1-5) (value) 

ATTX88654-2P/Y 1.2 1.0 1.0 3.8 85 9 685 3.4 31 

ATTX95490-2W 2.3 1.2 1.0 3.9 120 10 1068 3.4 14 

ATTX961014-1AR/Y 2.7 1.3 1.0 4.1 109 9 920 3.8 24 

ATTX961014-1Br/Y 2.7 1.3 1.0 4.2 105 9 912 3.7 24 

ATTX961014-1R/Y Chimera 1.4 1.2 1.0 4.0 86 10 823 3.6 16 

ATTX96746-1R* 2.5 1.3 1.1 4.1 92 8 724 3.5 13 

ATTX98444s-16R/Y 1.3 1.2 1.1 4.0 57 10 587 3.2 23 

ATTX98448-6R/Y 2.5 1.2 1.0 3.9 110 11 1032 3.5 23 

ATTX98453-11Br 1.9 1.1 1.1 3.9 79 11 798 3.6 14 

ATTX98453-3R 1.6 1.1 1.0 3.9 85 11 875 3.6 12 

ATTX98453-6R 1.8 1.2 1.2 4.1 108 8 820 3.6 13 

ATTX98462s-3R/Y 2.7 1.3 1.0 4.2 106 9 916 3.8 24 

ATTX98465-1R/Y 1.1 1.1 1.1 3.5 83 12 932 3.3 33 

ATTX98466-5R/WR 1.4 1.1 1.0 4.0 86 10 822 3.6 15 

ATTX98468-5Ru/Y* 3.9 1.8 4.1 4.1 132 5 648 3.6 12 

ATTX98491-4Yrdspl/Y 1.7 1.1 1.0 3.8 71 10 704 3.4 34 

ATTX98493-1AR 2.0 1.2 1.1 4.0 80 10 803 3.5 27 

ATTX98493-2P/P 1.9 1.3 1.2 4.2 83 10 755 3.6 17 

ATTX98500-2P/Y 1.6 1.2 1.0 4.0 68 9 653 3.4 32 

ATTX98500-3P/Y 2.2 1.4 1.1 4.0 74 8 544 3.0 33 

ATTX98510-1R/Y 1.4 1.1 1.0 3.9 84 10 782 3.5 26 

ATTX98514-1R/Y 1.8 1.2 1.0 4.0 83 7 554 3.4 25 

ATTX98518-5P/Y 3.2 1.7 1.0 4.1 127 8 834 3.5 28 

ATTX99325-1P 3.5 1.4 1.1 4.2 126 8 920 3.8 15 

ATX02263-1R/Y 2.0 1.3 1.0 4.2 70 10 660 3.7 24 

ATX03496-3Y/Y 2.3 1.3 1.1 4.1 89 10 844 3.5 25 

ATX03564-1Y/Y 2.3 1.3 1.0 4.1 88 10 846 3.5 24 

ATX05186-1R 1.2 1.1 0.9 4.0 56 13 699 3.6 14 

ATX05202s-3W/Y 1.0 1.1 1.1 4.2 71 11 748 3.7 27 

ATX06264s-4R/Y 1.8 1.2 1.0 4.1 68 11 701 3.3 30 

ATX07305S-1Y/Y 1.2 1.1 1.1 3.9 57 12 643 3.4 26 

ATX08181-5Y/Y 1.0 1.1 1.1 4.1 47 15 633 3.5 28 

ATX84378-6Ru 4.7 1.6 4.4 4.0 209 4 887 3.9 12 

ATX84706-2Ru 4.2 1.5 3.6 4.2 240 5 1062 4.0 16 

ATX85404-8W 3.3 1.3 2.4 4.0 146 6 814 3.5 15 

ATX87184-2Ru 4.0 1.5 3.7 4.0 175 4 791 3.6 13 

ATX9117-1Ru 3.8 1.6 3.6 4.0 151 5 704 3.4 13 

ATX9130-1Ru 4.6 1.8 3.6 4.3 170 5 873 3.5 13 
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Clone id Tubershape  LW  Russeting  

Eye 

depth  

Avg 

tuber wt  

Avg 
tubers 

per 

plant  

Avg 
tuber wt 

per 

plant  

Grading 

at table  C_Flesh  

 (1-5) ratio (1-5) (1-5) (g) (no.) (g) (1-5) (value) 

ATX91322-2Y/Y 1.0 1.1 1.0 3.3 14 13 290 2.4 45 

ATX9202-3Ru 3.5 1.8 3.8 4.1 111 6 664 3.6 12 

ATX9312-1Ru 4.0 1.8 4.1 3.9 130 5 701 3.5 12 

ATX9332-8Ru 4.0 1.8 3.8 3.9 146 4 701 3.5 11 

ATX97147-4Ru 4.0 1.7 3.9 4.0 134 5 746 3.6 12 

ATX99013-1Ru 4.5 2.0 4.3 3.8 148 5 759 3.8 13 

BTX1544-2W/Y 2.2 1.3 1.3 4.0 105 8 831 3.5 26 

BTX1749-1W/Y 1.7 1.2 1.1 4.2 87 10 857 3.7 29 

BTX2103-1R/Y 1.5 1.1 1.0 3.9 77 10 751 3.6 27 

BTX2332-1R 1.2 1.1 1.0 4.2 110 8 829 3.8 15 

CO112-F2-2P/P 1.8 1.6 1.1 3.9 42 10 420 3.0 18 

COTX00104-6R 2.0 1.2 1.0 4.1 106 8 724 3.4 14 

COTX00104-7R 2.4 1.2 1.0 4.0 109 8 818 3.5 13 

COTX01403-4R/Y 3.3 1.2 1.0 4.0 97 9 823 3.5 28 

COTX02172-1R 2.1 1.2 1.0 4.1 88 9 721 3.7 14 

COTX02293-4R 1.4 1.2 1.0 4.0 88 9 774 3.7 15 

COTX03079-1W/W 2.4 1.2 1.0 4.0 88 11 903 3.6 28 

COTX03134-1Y/W 1.9 1.3 1.1 4.0 55 9 573 2.8 21 

COTX03187-1W 4.4 2.2 1.4 4.3 87 9 725 3.5 13 

COTX04015-3W/Y 2.2 1.3 1.1 4.1 82 9 731 3.3 33 

COTX04050s-1P/P 1.2 1.1 1.1 4.1 73 10 719 3.6 17 

COTX04193s-2R/Y 1.2 1.1 1.0 4.1 69 10 701 3.6 29 

COTX04303-3Ru/Y* 4.5 2.0 4.3 3.8 148 5 759 3.8 13 

COTX05095-2Ru/Y 3.8 1.8 2.4 4.1 117 7 838 3.7 26 

COTX05211-4R 2.0 1.4 1.0 4.0 75 10 690 3.5 15 

COTX05211-5R 2.0 1.4 1.0 4.0 75 10 689 3.5 15 

COTX05211-7R 1.2 1.1 1.0 4.0 78 11 847 3.5 14 

COTX05249-3W/Y 1.1 1.2 1.0 4.0 64 11 688 3.7 26 

COTX05261-1R/Y 3.4 1.5 1.0 4.0 83 10 801 3.5 30 

COTX08039-1P/P* 2.4 1.5 1.0 4.2 72 9 649 3.4 12 

COTX08063-2Ru 3.8 1.9 3.4 4.0 133 5 749 3.6 12 

COTX08121-1Ru 3.9 1.7 3.9 4.1 142 6 806 3.7 12 

COTX08121-4Ru 3.5 1.7 3.8 4.0 122 6 781 3.7 12 

COTX08258-6Ru 3.5 1.6 2.8 4.2 126 8 1016 3.8 12 

COTX08322-10Ru 4.1 1.6 3.9 4.0 168 6 1028 4.0 12 

COTX08365F-3P/P 4.7 2.1 1.1 4.0 70 9 572 3.6 16 

COTX09022-3RuRE/Y 2.4 1.3 3.0 4.0 120 7 839 3.9 26 

COTX09052-1Ru 3.7 1.7 3.7 4.1 105 7 814 3.7 12 
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Clone id Tubershape  LW  Russeting  

Eye 

depth  

Avg 

tuber wt  

Avg 
tubers 

per 

plant  

Avg 
tuber wt 

per 

plant  

Grading 

at table  C_Flesh  

 (1-5) ratio (1-5) (1-5) (g) (no.) (g) (1-5) (value) 

COTX09052-2Ru 3.7 1.8 3.7 4.1 106 7 816 3.7 12 

COTX09089-1Ru 2.4 1.3 3.9 4.0 116 7 824 3.4 15 

COTX10012-1Wrdspl/Y 1.5 1.2 1.1 4.0 94 10 889 3.7 28 

COTX10073s-1W 1.2 1.2 1.1 4.1 72 11 725 3.5 16 

COTX10080-2Ru 3.8 1.7 4.0 4.0 122 7 755 3.8 13 

COTX10118-1Wre/Y 1.1 1.1 1.0 3.9 71 12 774 3.6 25 

COTX10118-4Wpe/Y 1.8 1.2 1.0 4.0 74 12 827 3.7 29 

COTX10138-15Wpe/Y 1.0 1.1 0.9 4.1 67 12 764 3.8 28 

COTX10138-19P/Y 1.9 1.1 1.0 4.0 113 9 811 3.5 28 

COTX10138s-7Wpe/Y 1.3 1.1 0.9 4.0 68 13 823 3.7 29 

COTX10226-1Wpe/Y 1.0 1.0 1.0 3.9 51 11 597 3.6 31 

COTX13215-2Ru 3.0 1.5 2.9 4.1 137 6 821 3.6 14 

COTX87601-2Ru 4.4 1.8 3.9 3.9 160 6 893 3.9 12 

COTX89044-1Ru 3.7 1.8 3.6 4.0 136 5 748 3.5 12 

COTX90046-1W 2.2 1.2 1.2 4.0 110 8 832 3.7 14 

COTX90046-5W 3.1 1.2 1.7 4.0 131 6 853 3.6 15 

COTX94216-1R 1.1 1.1 1.0 4.1 79 11 817 3.7 15 

COTX94218-1R 1.0 1.1 0.9 4.0 72 11 731 3.6 15 

JTTX75/2003EH-1Yre/Y 2.9 1.4 1.5 3.9 94 8 709 3.5 25 

Krantz 3.3 1.3 3.7 4.1 168 6 1023 3.7 16 

MWTX2609-2Ru 4.3 1.9 3.0 4.0 164 6 1007 3.7 10 

MWTX2609-4Ru 4.3 1.9 3.0 4.0 164 6 1009 3.7 10 

MWTX548-2Ru 4.3 1.9 3.0 4.0 163 6 1004 3.7 10 

NDTX050169-1R 1.0 1.1 1.1 4.0 50 14 641 3.6 13 

NDTX050184s-1R/Y 1.1 1.1 1.0 4.0 65 13 784 3.8 25 

NDTX059759-3R/Y Pinto 2.2 1.3 0.9 4.3 74 7 570 3.6 29 

NDTX059761-1R/R 2.5 1.4 1.1 4.0 61 11 620 3.5 16 

NDTX059775-1W 2.1 1.3 1.0 3.9 70 11 756 3.6 25 

NDTX059828-2W 1.1 1.1 0.9 3.9 74 10 741 3.7 15 

NDTX059886S-1Y/Y 1.7 1.2 1.1 4.1 101 9 866 3.6 25 

NDTX060700C-1W 1.3 1.1 1.2 4.2 76 9 710 3.6 16 

NDTX071109C-1W 1.3 1.0 1.0 3.9 137 7 939 3.7 15 

NDTX071217CB-1W/Y 1.6 1.1 1.0 4.0 97 8 754 3.6 27 

NDTX071258B-1R 1.1 1.1 1.1 3.9 67 11 664 3.6 16 

NDTX081451CBs-1Y/Y 1.8 1.3 1.2 4.1 86 11 879 3.7 29 

NDTX081618-1P/P 2.3 1.3 1.0 4.3 87 10 797 3.8 15 

NDTX081644-CAB-2W 1.0 1.1 1.0 4.1 57 9 567 3.4 21 

NDTX081648CB-13W 1.7 1.1 1.2 4.0 107 9 935 3.8 16 
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Clone id Tubershape  LW  Russeting  

Eye 

depth  

Avg 

tuber wt  

Avg 
tubers 

per 

plant  

Avg 
tuber wt 

per 

plant  

Grading 

at table  C_Flesh  

 (1-5) ratio (1-5) (1-5) (g) (no.) (g) (1-5) (value) 

NDTX081648CB-1W 1.5 1.1 1.1 4.0 98 9 844 3.7 16 

NDTX081648CB-4W 1.2 1.1 1.2 4.0 118 8 886 3.6 15 

NDTX091886-3P/P 2.2 1.2 1.0 4.2 75 7 559 3.5 17 

NDTX091908AB-2W 1.6 1.2 1.0 4.1 106 9 916 3.7 15 

NDTX092237C-2P/W 2.4 1.4 1.0 3.7 61 12 685 3.4 23 

NDTX092238Cs-1P/W 1.0 1.1 1.0 4.1 52 16 769 3.6 17 

NDTX4271-5R 1.2 1.1 0.9 4.0 103 9 856 3.7 14 

NDTX4756-1R/Y 1.4 1.1 0.9 3.9 84 10 782 3.5 26 

NDTX4784-7R 1.1 1.1 1.0 4.0 106 9 866 3.7 14 

NDTX4828-2R 1.2 1.1 1.1 4.0 77 10 711 3.6 14 

NDTX4930-5W 3.4 1.2 1.1 4.0 173 6 862 3.6 13 

NDTX5003-2R 1.0 1.0 1.1 3.9 83 11 843 3.7 17 

NDTX5067-2R 1.0 1.0 1.2 3.9 84 11 845 3.7 17 

NDTX5438-11R 2.1 1.2 1.1 4.0 99 9 854 3.6 16 

NDTX6773-1W 1.1 1.1 0.9 3.9 117 8 845 3.7 15 

NDTX731-1R 1.1 1.0 1.0 3.9 99 11 966 3.7 13 

NDTX7590-3R 2.9 1.3 1.0 4.2 103 10 983 3.5 12 

NDTX8773-4Ru 3.2 1.5 4.1 4.1 123 6 685 3.5 17 

NDTX91068-11R 2.4 1.1 1.1 4.1 127 9 1016 3.6 13 

PORTX03PG25-2R/R 4.6 2.1 1.0 4.1 56 9 538 3.7 20 

PTTX05PG07-1W 4.8 2.2 1.0 4.1 60 7 458 3.7 16 

Reveille Russet 3.8 1.6 3.8 4.0 138 6 760 3.7 13 

Rio Rojo 1.5 1.2 1.0 3.9 59 12 620 3.5 16 

Russet Burbank 4.4 2.0 3.2 3.8 112 6 708 3.2 11 

Russet Norkotah 4.5 2.0 4.3 3.8 148 5 758 3.8 13 

Russet Norkotah 102 4.4 2.0 4.3 3.8 147 5 758 3.8 13 

Russet Norkotah 112 4.4 2.0 4.3 3.8 147 5 756 3.8 13 

Russet Norkotah 223 4.4 2.0 4.3 3.8 148 5 758 3.8 13 

Russet Norkotah 278 4.5 2.0 4.3 3.8 148 5 758 3.8 13 

Russet Norkotah 296 4.5 2.0 4.3 3.8 148 5 759 3.8 13 

Sierra GoldTM 2.9 1.3 3.1 4.2 172 8 1205 3.8 25 

Sierra RoseTM 2.7 1.3 1.0 4.2 106 9 914 3.8 24 

Stampede Russet 4.0 1.6 3.8 3.9 156 6 889 4.0 12 

Tacna 1.9 1.3 1.1 4.0 72 7 603 2.8 14 

Tokio 1.1 1.2 1.1 4.0 63 11 626 3.5 31 

TX03196-1W 1.7 1.1 1.0 4.0 107 9 860 3.6 14 

TX05249-10W 1.7 1.1 2.0 4.0 137 7 881 3.7 12 

TX05249-11W 1.6 1.2 1.4 4.3 113 6 729 3.8 16 
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Clone id Tubershape  LW  Russeting  

Eye 

depth  

Avg 

tuber wt  

Avg 
tubers 

per 

plant  

Avg 
tuber wt 

per 

plant  

Grading 

at table  C_Flesh  

 (1-5) ratio (1-5) (1-5) (g) (no.) (g) (1-5) (value) 

TX05249-3W 1.4 1.1 1.4 4.1 131 5 750 3.6 15 

TX08350-12Ru 4.3 1.6 3.1 4.0 162 6 924 3.9 12 

TX08385-2P/YP 2.2 1.1 0.8 4.1 79 9 671 3.5 24 

TX09396-1W 1.5 1.1 1.3 3.9 131 7 818 3.5 16 

TX09403-15W 2.3 1.1 1.2 4.0 145 8 1049 3.5 15 

TX09403-21W 2.3 1.1 1.2 4.0 147 8 1057 3.5 16 

TX09414-1W 2.2 1.2 1.3 4.0 124 6 770 3.5 14 

TX10437-9Pyspl/Y 1.5 1.3 1.0 4.0 69 8 571 2.9 29 

TX11454-9Ru/Y 2.9 1.3 3.7 4.0 143 6 817 3.6 19 

TX11461-2W 1.3 1.1 1.4 4.0 114 9 969 3.6 15 

TX11461-3W 1.9 1.1 1.2 4.0 106 9 941 3.6 15 

TX12474-1P/R 1.1 1.2 1.1 4.1 46 10 481 3.4 21 

TX12484-4W 2.0 1.2 1.2 4.0 96 9 793 3.7 13 

TX13590-9Ru 4.0 1.5 3.9 4.0 181 7 1112 4.0 12 

TX14611-1R 1.0 1.1 1.0 4.1 77 9 646 3.6 16 

TX1475-3W 2.2 1.1 1.3 3.9 149 6 923 3.7 16 

TX1617-1W/Y 3.0 1.4 1.2 4.3 116 7 885 3.6 30 

TX1673-1W/Y 2.3 1.2 1.1 4.1 124 8 966 3.7 18 

TX6-1216-1Ru 4.1 1.6 3.8 3.9 149 5 767 3.7 12 

TXA549-1Ru 4.0 1.6 3.9 4.0 181 7 1112 4.0 12 

TXNS106 4.4 2.0 4.3 3.8 148 5 758 3.8 13 

TXNS118 4.5 2.0 4.3 3.8 148 5 758 3.8 13 

TXNS249 4.4 2.0 4.3 3.8 147 5 758 3.8 13 

TXYG79 2.2 1.2 1.2 4.1 126 7 884 3.6 28 

UMTX383-3Yrdspl/Y 1.8 1.1 1.0 3.8 72 10 704 3.4 34 

Vanguard Russet 4.0 1.7 4.1 4.0 159 7 1069 4.0 12 

White LaSoda 2.3 1.2 1.2 3.8 143 8 1040 3.6 15 
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APPENDIX C 

 

C1. Breeding values and reliability score for fried chip color,  chip quality, specific 

gravity, and total yield 

 

Clone id Chip Color  r2 Chip quality  r2 Specific Gravity  r2 Yield Ton/Ha  r2 

NYR102-3 1.1 0.7 2.3 0.4 1.1 0.6 60.7 0.3 

NYR102-7 1.2 0.7 2.4 0.4 1.1 0.6 61.5 0.3 

NY169 1.2 0.8 2.3 0.5 1.1 0.7 64.1 0.4 

NDTX1246-3W 1.5 0.9 2.4 0.6 1.1 0.8 62.5 0.4 

W13NYP19-2 1.6 0.6 2.5 0.4 1.1 0.6 58.9 0.3 

NYN24-2 1.5 0.6 2.5 0.4 1.1 0.6 57.4 0.3 

NYR102-8 1.1 0.7 2.4 0.4 1.1 0.6 59.6 0.3 

NDTX113030C-3W 1.3 1.0 2.4 0.7 1.1 0.8 56.6 0.5 

NYP116-6 1.1 0.6 2.4 0.4 1.1 0.6 59.3 0.3 

NYP108-6 1.3 0.6 2.5 0.4 1.1 0.6 56.9 0.3 

NDTX1246-5W/Y 2.8 1.0 2.2 0.7 1.1 0.8 63.1 0.5 

MSZ246-1 1.2 0.7 2.6 0.5 1.1 0.7 60.1 0.4 

NYM15-3 1.1 0.7 2.4 0.5 1.1 0.6 57.2 0.4 

NYR105-11 0.9 0.7 2.4 0.5 1.1 0.6 57.9 0.4 

NYQ29-1 1.4 0.9 2.7 0.5 1.1 0.7 68.5 0.4 

NYR101-7 1.0 0.7 2.5 0.4 1.1 0.6 63.4 0.3 

NYQ37-1 1.2 0.8 2.6 0.4 1.1 0.6 60.2 0.3 

NYP119-3 1.4 0.5 2.4 0.3 1.1 0.6 54.0 0.3 

NYP19-2 1.0 0.6 2.5 0.4 1.1 0.6 56.5 0.3 

NDTX14362AB-1W 1.2 1.0 2.1 0.8 1.1 0.9 57.0 0.6 

B3174-4 1.7 0.6 2.7 0.4 1.1 0.5 59.5 0.3 

NDTX12203AB-1W 1.2 1.0 2.1 0.8 1.1 0.9 57.0 0.6 

NDTX1244-3W/Y 2.5 1.0 2.3 0.7 1.1 0.8 63.6 0.5 

ATTX10333-1W/Y 2.3 0.9 2.5 0.5 1.1 0.7 53.9 0.4 

NDTX14475-1W/Y 2.5 0.9 2.4 0.7 1.1 0.8 63.6 0.5 

NYP103-1 1.3 0.6 2.7 0.4 1.1 0.6 57.1 0.3 

WAF13066-2 1.4 0.6 2.5 0.4 1.1 0.6 59.3 0.3 

NDTX1444-5W 1.1 0.9 2.4 0.5 1.1 0.7 60.6 0.4 

AORTX09033-11W 1.2 1.0 2.4 0.7 1.1 0.8 54.2 0.5 

AOR11484-2 1.3 0.7 2.7 0.4 1.1 0.6 59.5 0.3 

NDOR13317CB-2 1.3 0.7 2.8 0.4 1.1 0.6 64.8 0.3 

AORTX09037-5W/Y 1.6 1.0 2.3 0.7 1.1 0.8 59.1 0.5 

W14NYQ29-5 1.0 0.7 2.7 0.4 1.1 0.6 65.1 0.4 

COTX12235-2W 1.2 1.0 2.1 0.6 1.1 0.8 54.6 0.4 
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Clone id Chip Color  r2 Chip quality  r2 Specific Gravity  r2 Yield Ton/Ha  r2 

TX09403-21W 1.3 1.0 2.2 0.6 1.1 0.8 58.1 0.5 

NYP103-22 1.0 0.6 2.6 0.4 1.1 0.6 57.9 0.3 

TX09403-15W 1.3 1.0 2.2 0.6 1.1 0.8 58.1 0.5 

AORTX09037-4W/Y 1.7 1.0 2.5 0.7 1.1 0.8 59.7 0.5 

NDTX1482YB-1W 1.2 0.9 2.4 0.5 1.1 0.7 57.4 0.4 

W15NYR11-8 1.2 0.7 2.6 0.4 1.1 0.6 59.2 0.3 

NYR107-4 1.4 0.7 2.7 0.4 1.1 0.6 58.1 0.4 

Snowden 1.3 1.0 2.6 0.7 1.1 0.8 62.6 0.5 

AF6550-2 1.2 0.7 2.7 0.3 1.1 0.5 58.7 0.3 

W13058-19 1.3 0.6 2.6 0.4 1.1 0.6 56.4 0.3 

AORTX09032-3W 1.2 0.8 2.4 0.5 1.1 0.7 58.6 0.4 

TX12484-3W 1.2 1.0 2.3 0.7 1.1 0.8 55.8 0.3 

NYN25-1 1.4 0.6 2.7 0.4 1.1 0.6 59.2 0.3 

MSW075-2 1.2 0.9 2.4 0.4 1.1 0.4 55.9 0.2 

MSX540-4 1.4 0.9 2.6 0.6 1.1 0.7 55.1 0.4 

NYQ29-2 1.2 0.8 2.7 0.4 1.1 0.6 66.6 0.4 

NYP118-6 1.1 0.6 2.7 0.4 1.1 0.6 58.3 0.3 

CO10073-7W 1.2 1.0 2.3 0.8 1.1 0.9 54.4 0.6 

COTX12428-1W 1.2 1.0 2.3 0.8 1.1 0.9 54.3 0.6 

NYQ38-4 1.2 0.9 2.8 0.4 1.1 0.6 62.1 0.3 

WAF15184-4 1.2 0.7 2.6 0.4 1.1 0.6 58.7 0.3 

NCB3171-7 1.3 0.7 2.7 0.5 1.1 0.7 57.5 0.3 

NYM18-2 1.3 0.6 2.6 0.4 1.1 0.6 54.7 0.3 

NYN16-10 1.3 0.6 2.7 0.4 1.1 0.6 56.8 0.3 

ND124C-1 1.2 0.8 2.8 0.4 1.1 0.6 59.9 0.4 

B2904-2 1.3 0.9 2.6 0.6 1.1 0.7 57.6 0.4 

NDA081453CAB-2C 1.5 0.8 2.6 0.5 1.1 0.7 58.8 0.4 

NY166 1.1 0.9 2.7 0.5 1.1 0.7 56.5 0.4 

Mackinaw 1.2 0.9 2.7 0.5 1.1 0.7 55.2 0.4 

NDOR13320CAB-2 1.5 0.7 2.5 0.4 1.1 0.5 57.0 0.3 

NYN6-2 1.1 0.6 2.7 0.4 1.1 0.6 57.9 0.3 

B3012-1 1.2 0.9 2.7 0.5 1.1 0.7 57.7 0.4 

NYN11-4 1.2 0.7 2.8 0.4 1.1 0.6 61.9 0.4 

NYQ106-13 1.6 0.8 2.8 0.4 1.1 0.6 57.5 0.4 

ATX13134-3W/Y 2.9 0.9 2.5 0.6 1.1 0.7 58.1 0.4 

W12078-77 1.2 0.6 2.5 0.3 1.1 0.5 52.8 0.3 

AORTX09037-1W/Y 2.9 1.0 2.6 0.7 1.1 0.8 65.1 0.5 

W13057-3 1.3 0.5 2.7 0.3 1.1 0.6 56.2 0.3 

MSY041-1 1.2 0.7 2.8 0.4 1.1 0.7 57.6 0.3 

NDTX13280CB-3W 1.2 0.9 2.5 0.6 1.1 0.7 57.3 0.4 

W10659-16 1.1 0.5 2.6 0.3 1.1 0.5 55.1 0.2 
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Clone id Chip Color  r2 Chip quality  r2 Specific Gravity  r2 Yield Ton/Ha  r2 

MSV030-4 1.2 1.0 2.8 0.6 1.1 0.8 55.0 0.4 

W15NYR5-2 1.2 0.8 2.9 0.5 1.1 0.7 64.6 0.4 

ND1336-5 1.6 0.7 2.6 0.3 1.1 0.5 59.6 0.3 

BNC544-2 1.5 0.7 2.8 0.4 1.1 0.7 52.7 0.3 

AF6253-1 1.1 0.7 2.7 0.3 1.1 0.5 58.1 0.2 

NYR5-6 1.2 0.8 2.9 0.5 1.1 0.7 64.6 0.4 

CO12235-3W 1.3 0.9 2.7 0.5 1.1 0.7 56.3 0.4 

Petoskey 1.1 0.9 2.8 0.6 1.1 0.8 55.0 0.4 

TX12484-2W 1.3 1.0 2.5 0.7 1.1 0.8 58.4 0.3 

AF4157-6 1.4 0.9 2.5 0.4 1.1 0.4 55.9 0.2 

MSAFB635-15 1.3 0.9 2.9 0.5 1.1 0.7 64.1 0.4 

W15NYR11-13 1.0 0.7 2.5 0.4 1.1 0.6 60.9 0.3 

NDTX12135-1W 1.3 1.0 2.6 0.6 1.1 0.8 57.0 0.4 

Lamoka 1.2 0.9 2.8 0.7 1.1 0.8 53.4 0.6 

COOR13428-1 1.4 0.6 2.7 0.4 1.1 0.6 58.3 0.3 

W12078-76 1.0 0.8 2.7 0.5 1.1 0.7 51.7 0.3 

W14NYQ9-2 0.8 0.7 3.0 0.4 1.1 0.6 63.1 0.3 

NYR2-2 1.2 0.7 2.7 0.4 1.1 0.6 59.2 0.3 

TX12483-6W 1.6 0.8 2.6 0.5 1.1 0.7 58.7 0.3 

AF6522-1 1.2 0.7 2.8 0.4 1.1 0.6 57.9 0.3 

MSCC009-1 1.7 0.7 2.8 0.4 1.1 0.6 62.2 0.3 

NDAF14477C-2 1.3 0.8 2.9 0.3 1.1 0.5 60.2 0.2 

NYR10-4 1.2 0.7 2.9 0.4 1.1 0.5 63.8 0.3 

AF5960-4 1.5 0.8 2.8 0.3 1.1 0.5 60.3 0.2 

MSAA072-05 1.3 0.6 2.7 0.4 1.1 0.6 51.7 0.3 

B3378-3 2.4 0.7 2.8 0.3 1.1 0.5 60.9 0.3 

AOR09034-3 1.0 0.8 2.8 0.5 1.1 0.7 58.6 0.3 

B3194-1 1.3 0.6 2.5 0.3 1.1 0.5 52.8 0.2 

COOR13270-2 1.3 0.9 2.8 0.6 1.1 0.7 61.6 0.4 

AORTX09144-2W 1.8 0.9 2.6 0.6 1.1 0.8 55.9 0.4 

NYOR14Q9-5 1.1 0.9 2.9 0.5 1.1 0.7 61.0 0.4 

NYR3-5 1.0 0.7 2.9 0.4 1.1 0.6 59.3 0.3 

NYP114-1 1.3 0.6 2.7 0.4 1.1 0.6 53.0 0.3 

BNC742-2 1.4 0.8 2.8 0.4 1.1 0.6 59.4 0.3 

BNC541-5 1.6 0.6 2.9 0.4 1.1 0.6 57.5 0.3 

NYR107-6 1.7 0.7 2.8 0.5 1.1 0.6 56.8 0.4 

NYN44-7 0.8 0.6 2.7 0.4 1.1 0.6 57.3 0.3 

AF6192-3 1.1 0.9 2.7 0.5 1.1 0.7 53.1 0.4 

NYR101-2 1.2 0.7 2.8 0.4 1.1 0.6 60.2 0.3 

BNC726-5 1.3 0.8 3.1 0.4 1.1 0.6 59.2 0.3 

WAF15133-3 1.3 0.9 2.7 0.5 1.1 0.7 53.4 0.4 
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Clone id Chip Color  r2 Chip quality  r2 Specific Gravity  r2 Yield Ton/Ha  r2 

NC733-7 1.3 0.7 2.8 0.3 1.1 0.5 62.0 0.2 

NYOR14Q9-9 1.3 0.8 2.9 0.4 1.1 0.6 61.4 0.3 

CO11023-9W 1.2 1.0 2.5 0.6 1.1 0.8 55.2 0.5 

CO11087-1W 0.9 0.7 2.8 0.5 1.1 0.6 58.8 0.4 

MSX225-2 1.4 0.7 2.8 0.4 1.1 0.6 55.9 0.3 

NYQ23-4 1.1 0.8 2.8 0.4 1.1 0.6 57.0 0.3 

BNC472-3 1.3 0.6 2.8 0.3 1.1 0.5 58.1 0.2 

BNC549-1 1.2 0.9 3.0 0.6 1.1 0.7 52.7 0.4 

AF5563-2 1.4 0.7 2.8 0.5 1.1 0.7 57.1 0.4 

W12082-5 1.5 0.5 2.8 0.3 1.1 0.4 56.0 0.2 

CO02321-4W 1.6 0.9 2.7 0.5 1.1 0.6 57.1 0.3 

WIA14067-1C 0.9 0.6 2.7 0.4 1.1 0.6 53.3 0.3 

CO10076-4W 1.3 1.0 2.6 0.7 1.1 0.8 57.1 0.5 

AC11453-7W 1.5 0.9 2.8 0.5 1.1 0.7 58.6 0.4 

B3305-1 1.6 0.6 2.7 0.3 1.1 0.6 52.3 0.3 

NDTX13224CAB-1W 1.4 0.6 2.9 0.4 1.1 0.6 59.0 0.3 

TX13580-1W 1.4 0.8 2.8 0.5 1.1 0.7 58.7 0.3 

AF5563-5 1.3 0.7 2.8 0.4 1.1 0.6 59.0 0.3 

NDTX13315CB-1W 1.3 0.9 2.8 0.5 1.1 0.7 58.5 0.4 

WAF15204-4 1.1 0.7 2.8 0.4 1.1 0.6 50.9 0.3 

W15200-3 1.0 0.7 2.7 0.4 1.1 0.6 51.1 0.3 

Atlantic 1.3 1.0 3.0 0.7 1.1 0.8 55.6 0.5 

MSCC168-1 1.4 0.7 2.9 0.4 1.1 0.5 60.5 0.3 

NYQ36-6 1.2 0.8 2.8 0.3 1.1 0.5 56.9 0.2 

AF5846-3 1.4 0.6 2.8 0.3 1.1 0.5 59.0 0.2 

AF6037-2 1.2 0.9 3.0 0.4 1.1 0.6 60.1 0.3 

ND13221C-3 1.6 0.8 2.7 0.4 1.1 0.5 57.6 0.3 

NC727-6 1.2 0.7 2.8 0.3 1.1 0.5 57.4 0.2 

AF5429-3 1.0 0.7 3.0 0.4 1.1 0.6 57.0 0.3 

NYORN6-8 1.2 0.8 2.8 0.4 1.1 0.5 56.1 0.3 

NY168 1.3 0.9 3.0 0.4 1.1 0.6 56.6 0.3 

AF6206-5 1.7 0.7 2.8 0.4 1.1 0.6 55.4 0.3 

CO11023-2W 1.4 1.0 2.8 0.6 1.1 0.8 53.8 0.5 

AF5973-3 1.2 0.8 3.0 0.3 1.1 0.5 56.8 0.3 

B3388-3 2.2 0.7 2.8 0.3 1.1 0.5 57.9 0.2 

MSV507-001 1.3 0.6 2.9 0.4 1.1 0.6 55.2 0.3 

AF5933-4 1.3 0.8 3.0 0.4 1.1 0.6 58.4 0.3 

MSAA324-04 1.2 0.9 2.9 0.5 1.1 0.7 53.4 0.4 

ND113307C-3 1.2 0.8 2.8 0.4 1.1 0.6 58.0 0.3 

ATTX07042-3W 2.7 0.9 2.6 0.5 1.1 0.7 57.6 0.3 

MSBB633-18 1.4 0.9 3.0 0.4 1.1 0.6 64.4 0.4 
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Clone id Chip Color  r2 Chip quality  r2 Specific Gravity  r2 Yield Ton/Ha  r2 

AF5975-1 1.4 0.8 2.9 0.3 1.1 0.5 56.3 0.2 

ND13217C-1 1.6 0.8 2.9 0.4 1.1 0.6 57.5 0.3 

ATX13127-1Ru 1.3 0.6 2.8 0.4 1.1 0.6 53.9 0.3 

NDOR1480Y-3 1.0 0.7 2.9 0.4 1.1 0.6 58.6 0.3 

W14187-2 1.1 0.7 3.0 0.4 1.1 0.6 56.5 0.3 

MSZ248-02 1.4 0.7 3.1 0.3 1.1 0.5 62.5 0.3 

AF5938-6 1.2 0.6 2.8 0.4 1.1 0.6 55.5 0.3 

AF5825-3 1.4 0.7 2.9 0.5 1.1 0.7 54.9 0.4 

AF6551-1 1.1 0.7 2.8 0.4 1.1 0.6 53.4 0.4 

CO12293-1W 1.2 0.9 2.7 0.5 1.1 0.7 56.4 0.4 

NYP111-16 1.1 0.6 3.0 0.4 1.1 0.6 55.6 0.3 

ATTX10389-1W 1.3 0.9 2.6 0.4 1.1 0.6 55.0 0.3 

MSX542-2 1.3 0.5 2.9 0.3 1.1 0.5 55.8 0.2 

ND13220C-3 1.3 0.9 2.9 0.5 1.1 0.6 59.9 0.4 

AF6036-1 1.2 0.8 3.0 0.4 1.1 0.6 54.1 0.3 

MSBB038-1 1.2 0.7 2.8 0.4 1.1 0.6 51.6 0.3 

MSBB636-11 1.3 0.8 3.1 0.4 1.1 0.6 64.2 0.3 

COTX13231-5W 1.3 0.9 2.4 0.5 1.1 0.7 51.5 0.4 

MSAFB635-3 1.3 0.9 3.1 0.6 1.1 0.7 63.4 0.4 

TX12484-1W 1.1 0.9 2.7 0.6 1.1 0.8 56.7 0.3 

MSV507-003 1.4 0.7 2.9 0.5 1.1 0.7 51.1 0.4 

WAF15221-2 1.5 0.7 2.9 0.3 1.1 0.5 56.3 0.2 

MSAA309-15 1.2 0.8 3.0 0.5 1.1 0.7 53.7 0.4 

TX14668-3W 1.5 0.9 2.7 0.6 1.1 0.8 57.2 0.3 

AF6520-5 1.3 0.7 2.9 0.4 1.1 0.6 55.7 0.3 

MSBB634-8 1.8 0.7 2.9 0.4 1.1 0.6 56.1 0.3 

CO13232-25W 1.0 0.7 2.8 0.4 1.1 0.6 57.2 0.3 

COTX13230-1W 1.3 1.0 2.5 0.5 1.1 0.7 51.4 0.4 

W13069-5 1.3 0.7 2.8 0.4 1.1 0.6 50.6 0.4 

AF6602-3 1.3 0.7 3.1 0.3 1.1 0.5 55.3 0.3 

CO13232-5W 1.0 0.7 2.8 0.4 1.1 0.6 56.6 0.3 

AF6188-9 1.2 0.9 3.0 0.5 1.1 0.7 54.3 0.4 

AC01144-1W 1.2 0.8 2.6 0.5 1.1 0.7 55.4 0.4 

MSBB018-1 1.3 0.7 3.0 0.3 1.1 0.5 54.6 0.3 

MSZ154-1 1.2 0.6 2.8 0.3 1.1 0.5 54.7 0.2 

MSZ022-16 1.4 0.7 2.9 0.5 1.1 0.7 51.4 0.4 

TX14695-2W 1.2 0.8 2.6 0.5 1.1 0.7 48.4 0.2 

AF6037-3 1.1 0.6 3.2 0.4 1.1 0.6 60.8 0.3 

MSAA513-01 1.2 0.9 2.9 0.5 1.1 0.7 51.0 0.4 

MSAA678-01 1.2 0.9 2.9 0.4 1.1 0.6 54.9 0.3 

MSW501-2 0.9 0.6 2.9 0.3 1.1 0.5 56.1 0.3 
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Clone id Chip Color  r2 Chip quality  r2 Specific Gravity  r2 Yield Ton/Ha  r2 

W15125-4 1.3 0.7 2.9 0.4 1.1 0.5 55.4 0.3 

B3317-1 1.1 0.9 3.0 0.4 1.1 0.6 56.0 0.3 

NC744-4 1.3 0.7 2.9 0.3 1.1 0.5 54.9 0.2 

AF6542-1 1.4 0.7 3.0 0.4 1.1 0.5 51.9 0.3 

W14184-5 1.2 0.7 3.0 0.4 1.1 0.6 56.7 0.3 

ATX11482-3W 1.6 0.7 2.8 0.5 1.1 0.7 56.0 0.3 

MSZ063-2 1.7 0.8 3.1 0.4 1.1 0.7 57.9 0.3 

AF5846-4 1.3 0.6 2.8 0.3 1.1 0.5 57.0 0.3 

MSAA100-1 1.3 0.8 3.0 0.5 1.1 0.6 56.6 0.4 

MSZ013-3 1.8 0.5 3.0 0.3 1.1 0.5 58.6 0.2 

BNC811-9 2.2 0.7 3.1 0.4 1.1 0.5 56.4 0.3 

AF6165-9 1.2 0.7 2.9 0.4 1.1 0.5 54.2 0.3 

AF5677-4 1.4 0.6 2.9 0.4 1.1 0.6 56.5 0.3 

MSBB058-01 1.4 0.8 3.0 0.5 1.1 0.6 51.7 0.4 

MSAA100-01 1.3 0.8 3.0 0.5 1.1 0.6 56.5 0.4 

NDAF14477C-7 1.3 0.8 3.0 0.3 1.1 0.5 54.3 0.3 

MSW044-1 1.7 0.7 2.9 0.4 1.1 0.7 51.9 0.3 

MSV507-073 1.3 0.6 3.0 0.4 1.1 0.6 51.1 0.4 

COTX13231-4W 1.3 0.9 2.5 0.5 1.1 0.7 50.8 0.4 

MSBB058-1 1.4 0.8 2.9 0.5 1.1 0.7 51.6 0.4 

MSCC256-02 1.3 0.8 3.1 0.4 1.1 0.6 54.0 0.3 

MSZ242-09 1.6 0.6 2.9 0.4 1.1 0.6 51.6 0.3 

AF5819-2 1.5 0.6 2.7 0.4 1.1 0.6 57.7 0.3 

AF6531-3 1.3 0.6 2.9 0.3 1.1 0.5 54.4 0.3 

CO13232-11W 1.0 0.7 2.9 0.4 1.1 0.6 56.4 0.3 

COTX13231-1W 1.2 1.0 2.6 0.6 1.1 0.7 52.3 0.4 

NYR1-7 1.0 0.7 2.9 0.4 1.1 0.6 53.5 0.4 

MSX111-3 1.5 0.6 2.8 0.4 1.1 0.6 54.2 0.3 

MSCC376-1 1.2 0.8 2.9 0.5 1.1 0.6 52.2 0.4 

MSBB230-01 1.9 0.9 3.1 0.4 1.1 0.6 58.1 0.3 

MSZ269-18 2.0 0.6 2.9 0.4 1.1 0.5 54.2 0.3 

MSAA217-3 1.3 0.9 3.0 0.5 1.1 0.6 54.3 0.4 

MSX042-3 1.3 0.6 2.9 0.3 1.1 0.5 53.1 0.2 

MSAA076-04 1.4 0.8 2.9 0.5 1.1 0.7 54.9 0.4 

CO11048-8W 1.4 0.6 2.8 0.4 1.1 0.5 54.4 0.3 

MSX472-2 1.3 0.7 2.9 0.4 1.1 0.6 54.3 0.3 

MSAFB619-2 1.5 0.6 2.8 0.4 1.1 0.6 51.8 0.3 

NYORQ6-6 1.0 0.8 3.1 0.4 1.1 0.6 58.0 0.3 

BNC469-7 1.5 0.7 3.0 0.4 1.1 0.6 56.8 0.3 

MSCC248-3 1.5 0.8 3.0 0.4 1.1 0.6 49.7 0.4 

AF6027-2 1.0 0.6 2.8 0.3 1.1 0.6 55.0 0.3 
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Clone id Chip Color  r2 Chip quality  r2 Specific Gravity  r2 Yield Ton/Ha  r2 

MSCC248-03 1.5 0.8 3.0 0.4 1.1 0.6 49.6 0.4 

AF6241-4 1.5 0.8 2.9 0.5 1.1 0.6 47.8 0.4 

MSAFB614-4 1.6 0.7 3.0 0.5 1.1 0.7 52.7 0.4 

MSCC129-04 1.6 0.8 3.0 0.4 1.1 0.5 48.8 0.3 

MSBB166-01 1.8 0.8 3.0 0.3 1.1 0.5 54.3 0.3 

CO12428-2W 1.3 0.8 2.9 0.4 1.1 0.6 52.8 0.3 

AF6024-1 2.8 0.8 3.0 0.3 1.1 0.5 63.7 0.3 

MSAA328-04 1.3 0.8 2.9 0.4 1.1 0.6 53.6 0.3 

TX09396-1W 1.7 0.8 2.9 0.5 1.1 0.7 51.5 0.4 

MSAFB609-5 1.4 0.9 2.9 0.6 1.1 0.8 51.6 0.5 

AF6031-2 1.6 0.8 3.1 0.3 1.1 0.5 56.9 0.3 

B3306-2 2.9 0.9 3.0 0.4 1.1 0.6 57.2 0.3 

MSW324-1 1.4 0.6 2.9 0.4 1.1 0.5 56.7 0.3 

WAF13076-2 2.2 0.6 3.0 0.4 1.1 0.5 59.8 0.3 

NC475-3 1.3 0.8 3.2 0.3 1.1 0.5 57.9 0.3 

NDTX059828-2W 1.4 0.7 2.6 0.5 1.1 0.7 56.8 0.3 

MSV505-2 1.6 0.6 2.9 0.4 1.1 0.5 50.0 0.3 

MSBB617-2 1.3 0.8 3.0 0.5 1.1 0.6 52.6 0.4 

ND13219C-4 1.3 0.8 3.0 0.4 1.1 0.6 54.0 0.3 

TX05249-10W 1.3 0.8 2.8 0.5 1.1 0.7 55.4 0.3 

MSCC058-1 1.7 0.7 2.9 0.4 1.1 0.6 54.5 0.3 

AF5801-1 1.7 0.5 2.9 0.3 1.1 0.5 55.9 0.2 

MSBB060-01 1.5 0.8 3.0 0.4 1.1 0.6 59.3 0.3 

MSAA076-6 1.4 0.7 3.0 0.5 1.1 0.6 52.4 0.4 

NDTX081648CB-13W 1.5 0.8 2.9 0.5 1.1 0.7 54.3 0.3 

MSBB617-02 1.4 0.8 3.0 0.5 1.1 0.6 52.5 0.4 

NDTX1488-1W/Y 3.1 0.9 2.6 0.3 1.1 0.5 52.4 0.3 

WAF14067-6 1.1 0.8 2.9 0.4 1.1 0.6 53.9 0.3 

NC473-2 1.0 0.7 3.0 0.4 1.1 0.6 58.6 0.3 

AF5583-3 1.3 0.6 3.1 0.3 1.1 0.5 54.5 0.2 

MSBB625-2 1.5 0.8 3.1 0.4 1.1 0.6 55.1 0.3 

AOR13125-9 1.5 0.6 3.0 0.4 1.1 0.6 50.4 0.3 

MSBB625-02 1.5 0.8 3.1 0.4 1.1 0.6 55.1 0.3 

MSZ251-1 1.5 0.6 2.8 0.3 1.1 0.6 51.4 0.3 

MSX277-1 1.2 0.6 2.7 0.4 1.1 0.5 48.9 0.3 

MSCC081-1 1.1 0.7 2.9 0.4 1.1 0.6 49.2 0.3 

AF6237-3 1.0 0.7 2.9 0.4 1.1 0.6 54.9 0.3 

NC470-3 1.3 0.7 3.2 0.4 1.1 0.6 56.6 0.3 

MSAA373-3 2.6 0.8 3.0 0.4 1.1 0.5 56.3 0.3 

MSAA091-01 1.5 0.8 3.1 0.4 1.1 0.6 52.8 0.3 

AF5648-3 1.5 0.6 3.0 0.4 1.1 0.6 52.1 0.3 
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Clone id Chip Color  r2 Chip quality  r2 Specific Gravity  r2 Yield Ton/Ha  r2 

MSAA072-04 1.5 0.8 3.0 0.3 1.1 0.6 53.3 0.3 

MSY156-2 1.5 0.7 3.0 0.5 1.1 0.7 54.8 0.4 

A11516-1C 1.8 0.9 3.1 0.5 1.1 0.7 57.1 0.3 

AF6200-4 1.2 0.9 3.1 0.4 1.1 0.6 54.1 0.4 

AOR13137-2 1.4 0.7 3.0 0.4 1.1 0.5 54.4 0.3 

B3181-7 2.7 0.5 3.1 0.3 1.1 0.5 56.2 0.2 

CO11037-5W 1.3 1.0 2.9 0.6 1.1 0.8 52.3 0.5 

MSCC246-07 1.8 0.8 3.0 0.4 1.1 0.6 50.5 0.3 

MSBB631-04 1.2 0.8 3.1 0.3 1.1 0.5 51.6 0.3 

MSX526-1 1.5 0.6 3.0 0.4 1.1 0.5 52.8 0.3 

MSCC248-02 1.9 0.8 3.1 0.4 1.1 0.5 51.0 0.3 

COTX15425-1Y/Y 2.9 0.8 2.7 0.3 1.1 0.4 55.8 0.2 

MSAA271-05 1.2 0.6 3.1 0.4 1.1 0.6 54.8 0.3 

AC11494-6W 1.4 0.9 3.0 0.5 1.1 0.7 54.4 0.4 

NYL8-12 1.5 0.6 3.2 0.4 1.1 0.6 57.1 0.3 

A13125-3C 1.3 0.7 3.0 0.4 1.1 0.6 52.6 0.2 

MSAA240-06 1.4 0.8 2.9 0.3 1.1 0.5 53.6 0.3 

NC472-1 1.3 0.7 3.2 0.4 1.1 0.6 61.0 0.3 

MSCC266-1 1.2 0.7 3.2 0.4 1.1 0.6 55.1 0.4 

MSAFB618-2 1.6 0.6 3.0 0.4 1.1 0.5 52.3 0.3 

MSBB008-3 1.4 0.8 3.0 0.4 1.1 0.6 53.6 0.4 

MSBB008-03 1.4 0.8 3.0 0.4 1.1 0.6 53.5 0.4 

AF6197-8 0.9 0.7 2.9 0.4 1.1 0.5 50.7 0.3 

MSZ219-14 1.3 0.9 2.9 0.5 1.1 0.5 47.2 0.3 

AF6034-1 1.2 0.8 3.1 0.3 1.1 0.5 55.9 0.3 

AF6236-7 1.5 0.9 3.1 0.5 1.1 0.7 62.1 0.4 

AF6232-1 1.5 0.9 3.1 0.5 1.1 0.7 62.1 0.4 

MSBB618-9 1.3 0.8 3.0 0.4 1.1 0.6 53.2 0.4 

MSBB635-14 1.5 0.7 3.0 0.4 1.1 0.6 60.0 0.3 

ATX13126-5Ru 1.6 0.6 3.0 0.3 1.1 0.6 55.4 0.2 

MSBB618-09 1.3 0.8 3.0 0.4 1.1 0.6 53.1 0.4 

MSAFB609-12 1.1 0.8 3.1 0.5 1.1 0.7 52.7 0.4 

B3183-6 1.9 0.7 3.1 0.5 1.1 0.7 55.4 0.4 

MSBB613-04 1.5 0.8 3.0 0.4 1.1 0.5 50.4 0.3 

AF6603-5 1.5 0.7 3.2 0.5 1.1 0.6 54.1 0.4 

MSZ157-3 1.6 0.6 3.1 0.4 1.1 0.6 57.5 0.3 

MSBB193-1 2.1 0.8 2.9 0.5 1.1 0.6 52.1 0.4 

MSAA725-03 1.1 0.6 3.1 0.3 1.1 0.6 53.7 0.3 

MSBB047-1 1.2 0.7 3.2 0.4 1.1 0.5 50.2 0.3 

AF5819-6 1.7 0.6 2.9 0.4 1.1 0.6 55.1 0.3 

MSBB193-01 2.1 0.8 2.9 0.5 1.1 0.6 52.0 0.4 
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Clone id Chip Color  r2 Chip quality  r2 Specific Gravity  r2 Yield Ton/Ha  r2 

MSAFB626-2 1.7 0.6 3.1 0.4 1.1 0.6 53.5 0.3 

MSCC129-02 1.5 0.8 3.0 0.4 1.1 0.5 48.3 0.3 

NYM7-4 1.5 0.7 3.0 0.4 1.1 0.6 54.7 0.3 

MSAA311-1 1.4 0.8 3.2 0.4 1.1 0.5 52.5 0.3 

AF6200-7 1.3 0.7 3.0 0.4 1.1 0.6 47.0 0.3 

MSX194-3 1.3 0.7 2.9 0.4 1.1 0.6 50.7 0.3 

MSAA038-09Y 1.6 0.9 3.0 0.4 1.1 0.6 53.1 0.3 

MSAFB614-6 1.4 0.7 3.0 0.5 1.1 0.7 48.1 0.4 

MSAFB618-3 1.5 0.6 3.1 0.3 1.1 0.5 50.8 0.3 

MSAFB605-4 1.2 0.9 3.3 0.6 1.1 0.8 54.0 0.5 

MST437-1 1.7 0.5 3.1 0.3 1.1 0.5 55.0 0.2 

BNC537-5 1.8 0.6 3.1 0.3 1.1 0.5 53.9 0.2 

MSAA313-01 1.6 0.8 3.1 0.4 1.1 0.6 51.2 0.3 

MSBB623-12 1.5 0.8 3.1 0.4 1.1 0.6 49.7 0.3 

MSX345-6Y 1.9 0.6 2.9 0.3 1.1 0.5 52.9 0.2 

MSDD085-13 1.6 0.7 3.1 0.5 1.1 0.6 52.2 0.4 

MSV507-128 1.6 0.7 3.2 0.5 1.1 0.7 52.6 0.4 

MSBB067-02 1.2 0.9 3.0 0.5 1.1 0.7 51.3 0.5 

AFC5687-2W 1.4 0.6 3.0 0.4 1.1 0.6 56.2 0.3 

NYORQ2-2 1.2 0.8 3.2 0.4 1.1 0.6 55.2 0.3 

MSAA260-03 1.8 0.9 2.9 0.4 1.1 0.7 48.9 0.3 

COTX14284-2W/Y 2.8 0.7 3.1 0.4 1.1 0.6 62.3 0.3 

MSBB079-2 1.4 0.7 3.0 0.4 1.1 0.5 54.4 0.3 

W14NYQ4-1 1.1 0.7 3.1 0.4 1.1 0.6 50.2 0.3 

CO11074-1W 1.9 0.6 3.1 0.3 1.1 0.5 53.9 0.2 

B3379-6 2.6 0.7 3.0 0.3 1.1 0.5 55.3 0.2 

WAF15195-3 1.4 0.8 3.2 0.4 1.1 0.5 56.5 0.3 

AF6616-1 1.4 0.7 3.1 0.4 1.1 0.6 55.8 0.3 

B3182-1 2.8 0.6 3.2 0.3 1.1 0.5 58.9 0.3 

B3381-2 2.5 0.7 3.1 0.3 1.1 0.5 54.0 0.3 

NYORQ6-3 1.2 0.8 3.2 0.4 1.1 0.6 54.2 0.3 

MSBB610-13 1.3 0.8 3.2 0.4 1.1 0.6 54.5 0.4 

MSBB618-02 1.5 0.8 3.2 0.4 1.1 0.6 51.6 0.3 

MSBB614-10 1.5 0.8 3.2 0.4 1.1 0.6 49.1 0.4 

AF6614-4 2.1 0.7 3.2 0.4 1.1 0.6 53.8 0.3 

MSAFB611-5 1.5 0.6 3.3 0.4 1.1 0.6 52.0 0.3 

AOR12197-4 2.4 0.9 3.4 0.5 1.1 0.7 57.6 0.4 

MSAA498-18 1.6 0.9 3.2 0.4 1.1 0.6 48.6 0.3 

MSBB032-1 1.5 0.7 3.1 0.4 1.1 0.6 53.5 0.3 

AOR13124-6 1.5 0.7 3.3 0.3 1.1 0.5 52.5 0.3 

MSBB626-11 1.5 0.9 3.2 0.5 1.1 0.7 48.8 0.4 
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Clone id Chip Color  r2 Chip quality  r2 Specific Gravity  r2 Yield Ton/Ha  r2 

MSAA252-07 1.5 0.9 3.1 0.4 1.1 0.6 54.0 0.3 

MSAA085-1 2.4 0.7 3.1 0.3 1.1 0.5 53.7 0.3 

MSBB611-03 2.0 0.9 3.2 0.5 1.1 0.7 56.0 0.4 

MSBB131-01 2.8 0.9 3.0 0.4 1.1 0.6 55.4 0.3 

B3381-4 2.9 0.7 3.0 0.4 1.1 0.6 51.7 0.3 

AF6616-4 2.3 0.7 3.2 0.4 1.1 0.6 54.4 0.3 

MSAFB626-8 1.4 0.7 3.4 0.4 1.1 0.6 52.9 0.4 

MSAA036-09 1.4 0.9 3.1 0.5 1.1 0.7 53.4 0.4 

MSBB190-1 1.8 0.7 3.1 0.4 1.1 0.6 51.5 0.3 

MSBB190-2 1.2 0.7 3.3 0.4 1.1 0.6 53.5 0.3 

MSAA556-03Y 2.4 0.5 3.1 0.3 1.1 0.5 54.6 0.3 

MSAA342-11Y 2.7 0.8 3.0 0.4 1.1 0.6 54.7 0.3 

MSV507-012 1.6 0.7 3.3 0.5 1.1 0.7 50.5 0.4 

MSAA241-01 2.0 0.9 3.1 0.5 1.1 0.7 48.0 0.4 

ATX13126-3W 1.7 0.6 3.1 0.4 1.1 0.6 54.5 0.3 

MSAFB610-2 1.6 0.7 3.5 0.5 1.1 0.6 53.7 0.4 

MSAA290-02 2.3 0.8 3.1 0.4 1.1 0.6 50.4 0.3 

NDTX1432Y-2Y/Y 3.0 0.9 3.0 0.5 1.1 0.7 55.7 0.4 

MSAA498-07 1.6 0.6 3.3 0.4 1.1 0.6 49.5 0.3 

MSAFB626-5 1.4 0.6 3.3 0.4 1.1 0.6 51.2 0.3 

TX12474-1P/R 3.7 0.8 2.8 0.5 1.1 0.7 51.3 0.1 

MSAFB610-4 1.6 0.7 3.4 0.5 1.1 0.7 47.0 0.4 

 

 

C2. Standardized multiple selection index from Z score 

 

Clone id  

Chip Color 

(z) 

Chip Quality 

(z) 

Specific gravity  

(z) 

Yield 

(z) 

Multiple index 

selection (MIS)  ZMIS  

NYR102-3 -1.0 -2.4 2.1 1.3 15.0 3.1 

NYR102-7 -0.6 -2.0 2.5 1.5 14.7 3.0 

NY169 -0.7 -2.2 1.0 2.2 14.0 2.9 

NDTX1246-3W 0.1 -2.0 1.2 1.8 12.1 2.5 

W13NYP19-2 0.2 -1.4 2.9 0.8 11.2 2.3 

NYN24-2 0.1 -1.4 3.0 0.4 10.9 2.2 

NYR102-8 -0.9 -1.7 1.5 1.0 10.9 2.2 

NDTX113030C-3W -0.4 -2.0 1.9 0.2 10.6 2.2 

NYP116-6 -0.8 -1.9 1.1 0.9 10.5 2.1 

NYP108-6 -0.5 -1.6 2.1 0.3 10.1 2.1 

NDTX1246-5W/Y 3.1 -2.7 0.6 2.0 10.1 2.1 

MSZ246-1 -0.6 -1.2 1.7 1.2 10.0 2.0 
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Clone id  

Chip Color 
(z) 

Chip Quality 
(z) 

Specific gravity  
(z) 

Yield 
(z) 

Multiple index 
selection (MIS)  ZMIS  

NYM15-3 -0.7 -1.8 1.3 0.4 9.7 2.0 

NYR105-11 -1.4 -1.9 0.7 0.6 9.5 1.9 

NYQ29-1 -0.2 -0.8 0.0 3.4 9.3 1.9 

NYR101-7 -1.1 -1.5 -0.4 2.0 8.9 1.8 

NYQ37-1 -0.6 -1.1 1.2 1.2 8.7 1.8 

NYP119-3 -0.2 -1.8 1.9 -0.4 8.7 1.8 

NYP19-2 -1.1 -1.3 1.6 0.2 8.7 1.8 

NDTX14362AB-1W -0.5 -2.9 -0.7 0.3 8.6 1.8 

B3174-4 0.6 -0.8 2.4 1.0 8.6 1.8 

NDTX12203AB-1W -0.5 -3.0 -0.7 0.3 8.6 1.7 

NDTX1244-3W/Y 2.4 -2.1 0.3 2.1 8.6 1.7 

ATTX10333-1W/Y 2.1 -1.5 3.4 -0.5 8.4 1.7 

NDTX14475-1W/Y 2.4 -2.0 0.2 2.1 8.4 1.7 

NYP103-1 -0.3 -0.8 2.4 0.4 8.1 1.6 

WAF13066-2 -0.1 -1.4 0.9 0.9 7.9 1.6 

NDTX1444-5W -0.8 -1.8 -0.4 1.3 7.9 1.6 

AORTX09033-11W -0.5 -2.0 1.1 -0.4 7.9 1.6 

AOR11484-2 -0.4 -0.5 1.9 1.0 7.7 1.6 

NDOR13317CB-2 -0.4 -0.2 0.8 2.4 7.6 1.5 

AORTX09037-5W/Y 0.3 -2.3 -0.5 0.9 7.4 1.5 

W14NYQ29-5 -1.0 -0.8 -0.5 2.5 7.4 1.5 

COTX12235-2W -0.7 -3.0 -0.9 -0.3 7.3 1.5 

TX09403-21W -0.4 -2.7 -1.3 0.6 7.2 1.5 

NYP103-22 -1.2 -0.9 1.0 0.6 7.2 1.5 

TX09403-15W -0.4 -2.7 -1.4 0.6 7.1 1.5 

AORTX09037-4W/Y 0.5 -1.6 0.4 1.1 7.1 1.4 

NDTX1482YB-1W -0.6 -2.0 -0.2 0.4 7.0 1.4 

W15NYR11-8 -0.5 -1.2 0.5 0.9 7.0 1.4 

NYR107-4 -0.1 -0.6 1.9 0.6 6.9 1.4 

Snowden -0.4 -1.1 -0.2 1.8 6.8 1.4 

AF6550-2 -0.7 -0.8 1.0 0.8 6.6 1.3 

W13058-19 -0.5 -1.2 1.0 0.2 6.5 1.3 

AORTX09032-3W -0.5 -1.7 -0.4 0.8 6.5 1.3 

TX12484-3W -0.7 -2.3 -0.6 0.0 6.4 1.3 

NYN25-1 -0.1 -0.7 1.2 0.9 6.3 1.3 

MSW075-2 -0.7 -1.9 -0.2 0.1 6.3 1.3 

MSX540-4 -0.2 -1.0 1.6 -0.2 6.2 1.3 

NYQ29-2 -0.6 -0.5 -1.0 2.9 6.0 1.2 

NYP118-6 -0.8 -0.7 0.7 0.7 5.8 1.2 

CO10073-7W -0.5 -2.2 -0.4 -0.4 5.6 1.1 
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Clone id  

Chip Color 
(z) 

Chip Quality 
(z) 

Specific gravity  
(z) 

Yield 
(z) 

Multiple index 
selection (MIS)  ZMIS  

COTX12428-1W -0.6 -2.2 -0.4 -0.4 5.6 1.1 

NYQ38-4 -0.7 -0.1 0.5 1.7 5.5 1.1 

WAF15184-4 -0.6 -0.9 0.3 0.8 5.4 1.1 

NCB3171-7 -0.4 -0.7 1.1 0.5 5.4 1.1 

NYM18-2 -0.5 -1.2 1.0 -0.3 5.4 1.1 

NYN16-10 -0.4 -0.5 1.5 0.3 5.3 1.1 

ND124C-1 -0.7 -0.2 0.9 1.1 5.3 1.1 

B2904-2 -0.5 -1.2 0.1 0.5 5.2 1.1 

NDA081453CAB-2C 0.2 -0.9 0.5 0.8 5.1 1.0 

NY166 -0.8 -0.5 1.1 0.2 5.0 1.0 

Mackinaw -0.5 -0.5 1.5 -0.1 4.9 1.0 

NDOR13320CAB-2 0.1 -1.4 0.1 0.3 4.9 1.0 

NYN6-2 -0.9 -0.5 0.7 0.6 4.8 1.0 

B3012-1 -0.5 -0.6 0.6 0.5 4.6 0.9 

NYN11-4 -0.7 -0.3 -0.2 1.6 4.5 0.9 

NYQ106-13 0.2 -0.1 1.8 0.5 4.5 0.9 

ATX13134-3W/Y 3.5 -1.3 1.3 0.6 4.3 0.9 

W12078-77 -0.7 -1.3 0.7 -0.8 4.3 0.9 

AORTX09037-1W/Y 3.3 -1.2 -0.5 2.5 4.3 0.9 

W13057-3 -0.3 -0.8 0.7 0.1 4.2 0.9 

MSY041-1 -0.5 -0.3 1.0 0.5 4.2 0.9 

NDTX13280CB-3W -0.5 -1.4 -0.8 0.4 4.0 0.8 

W10659-16 -0.8 -1.2 0.0 -0.2 4.0 0.8 

MSV030-4 -0.7 -0.4 1.2 -0.2 3.9 0.8 

W15NYR5-2 -0.7 0.3 -0.4 2.4 3.9 0.8 

ND1336-5 0.4 -1.0 -0.3 1.0 3.9 0.8 

BNC544-2 0.1 -0.2 2.6 -0.8 3.9 0.8 

AF6253-1 -0.8 -0.7 -0.1 0.6 3.8 0.8 

NYR5-6 -0.7 0.3 -0.3 2.4 3.8 0.8 

CO12235-3W -0.5 -0.5 0.7 0.1 3.8 0.8 

Petoskey -0.8 -0.3 1.2 -0.2 3.8 0.8 

TX12484-2W -0.4 -1.3 -1.0 0.7 3.8 0.8 

AF4157-6 -0.2 -1.4 -0.4 0.0 3.7 0.8 

MSAFB635-15 -0.3 0.2 -0.3 2.2 3.7 0.8 

W15NYR11-13 -1.0 -1.3 -2.0 1.4 3.7 0.8 

NDTX12135-1W -0.4 -1.0 -0.2 0.3 3.7 0.8 

Lamoka -0.6 -0.4 1.5 -0.6 3.6 0.7 

COOR13428-1 -0.1 -0.8 -0.2 0.7 3.6 0.7 

W12078-76 -1.0 -0.8 1.1 -1.1 3.6 0.7 

W14NYQ9-2 -1.5 0.5 -0.3 2.0 3.6 0.7 
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Clone id  

Chip Color 
(z) 

Chip Quality 
(z) 

Specific gravity  
(z) 

Yield 
(z) 

Multiple index 
selection (MIS)  ZMIS  

NYR2-2 -0.7 -0.6 -0.4 0.9 3.5 0.7 

TX12483-6W 0.3 -0.9 -0.3 0.8 3.5 0.7 

AF6522-1 -0.7 -0.2 0.5 0.6 3.5 0.7 

MSCC009-1 0.5 -0.3 -0.3 1.7 3.4 0.7 

NDAF14477C-2 -0.5 0.1 0.4 1.2 3.4 0.7 

NYR10-4 -0.6 0.0 -0.9 2.2 3.2 0.6 

AF5960-4 0.1 -0.1 0.3 1.2 3.2 0.6 

MSAA072-05 -0.4 -0.5 1.7 -1.1 3.1 0.6 

B3378-3 2.2 -0.4 0.6 1.4 3.0 0.6 

AOR09034-3 -1.0 -0.1 0.1 0.8 3.0 0.6 

B3194-1 -0.5 -1.5 -0.1 -0.8 3.0 0.6 

COOR13270-2 -0.3 -0.2 -0.6 1.6 2.9 0.6 

AORTX09144-2W 0.7 -1.1 0.1 0.0 2.8 0.6 

NYOR14Q9-5 -0.8 0.0 -0.3 1.4 2.8 0.6 

NYR3-5 -1.0 0.0 -0.1 1.0 2.7 0.6 

NYP114-1 -0.3 -0.5 1.1 -0.7 2.7 0.6 

BNC742-2 -0.1 -0.1 0.2 1.0 2.6 0.5 

BNC541-5 0.4 0.2 1.4 0.5 2.6 0.5 

NYR107-6 0.6 -0.3 0.8 0.3 2.6 0.5 

NYN44-7 -1.5 -0.5 -0.6 0.4 2.5 0.5 

AF6192-3 -0.9 -0.7 0.5 -0.7 2.5 0.5 

NYR101-2 -0.6 -0.1 -0.5 1.2 2.5 0.5 

BNC726-5 -0.3 1.0 1.7 0.9 2.4 0.5 

WAF15133-3 -0.3 -0.6 0.7 -0.6 2.4 0.5 

NC733-7 -0.3 -0.3 -1.0 1.7 2.4 0.5 

NYOR14Q9-9 -0.3 0.4 0.1 1.5 2.4 0.5 

CO11023-9W -0.6 -1.3 -0.9 -0.2 2.4 0.5 

CO11087-1W -1.3 -0.2 -0.5 0.8 2.4 0.5 

MSX225-2 -0.1 -0.4 0.5 0.0 2.4 0.5 

NYQ23-4 -0.8 -0.3 0.1 0.3 2.4 0.5 

BNC472-3 -0.3 -0.1 0.3 0.6 2.3 0.5 

BNC549-1 -0.6 0.4 2.2 -0.8 2.3 0.5 

AF5563-2 -0.2 -0.3 0.2 0.4 2.3 0.5 

W12082-5 0.2 -0.2 0.9 0.1 2.3 0.5 

CO02321-4W 0.3 -0.8 -0.3 0.4 2.3 0.5 

WIA14067-1C -1.4 -0.6 0.1 -0.6 2.0 0.4 

CO10076-4W -0.4 -1.1 -1.2 0.4 2.0 0.4 

AC11453-7W 0.1 -0.4 -0.2 0.8 2.0 0.4 

B3305-1 0.3 -0.6 1.1 -0.9 1.9 0.4 

NDTX13224CAB-1W -0.2 0.0 0.0 0.9 1.8 0.4 
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Clone id  

Chip Color 
(z) 

Chip Quality 
(z) 

Specific gravity  
(z) 

Yield 
(z) 

Multiple index 
selection (MIS)  ZMIS  

TX13580-1W -0.2 -0.2 -0.2 0.8 1.8 0.4 

AF5563-5 -0.4 -0.1 -0.3 0.9 1.7 0.4 

NDTX13315CB-1W -0.4 -0.2 -0.3 0.7 1.7 0.4 

WAF15204-4 -0.9 -0.4 0.9 -1.3 1.6 0.3 

W15200-3 -1.0 -0.5 0.7 -1.2 1.5 0.3 

Atlantic -0.4 0.5 1.3 0.0 1.4 0.3 

MSCC168-1 0.0 0.0 -0.6 1.3 1.4 0.3 

NYQ36-6 -0.7 -0.1 -0.1 0.3 1.4 0.3 

AF5846-3 0.0 -0.4 -0.8 0.9 1.3 0.3 

AF6037-2 -0.5 0.5 0.0 1.2 1.3 0.3 

ND13221C-3 0.2 -0.5 -0.5 0.5 1.3 0.3 

NC727-6 -0.7 -0.1 -0.4 0.4 1.2 0.2 

AF5429-3 -1.0 0.6 0.6 0.3 1.2 0.2 

NYORN6-8 -0.6 -0.2 -0.1 0.1 1.2 0.2 

NY168 -0.4 0.4 0.8 0.2 1.1 0.2 

AF6206-5 0.6 -0.2 0.6 -0.1 1.0 0.2 

CO11023-2W -0.1 -0.1 0.8 -0.5 1.0 0.2 

AF5973-3 -0.5 0.6 0.9 0.3 0.9 0.2 

B3388-3 1.8 -0.4 0.1 0.6 0.8 0.2 

MSV507-001 -0.4 0.3 0.7 -0.2 0.8 0.2 

AF5933-4 -0.4 0.4 0.1 0.7 0.7 0.2 

MSAA324-04 -0.6 0.0 0.7 -0.6 0.7 0.1 

ND113307C-3 -0.7 -0.1 -0.8 0.6 0.7 0.1 

ATTX07042-3W 3.0 -1.1 -0.4 0.5 0.6 0.1 

MSBB633-18 0.0 0.4 -1.4 2.3 0.6 0.1 

AF5975-1 -0.2 0.1 0.3 0.1 0.6 0.1 

ND13217C-1 0.2 0.0 0.0 0.5 0.6 0.1 

ATX13127-1Ru -0.5 -0.3 0.1 -0.5 0.6 0.1 

NDOR1480Y-3 -1.0 0.3 -0.6 0.8 0.5 0.1 

W14187-2 -0.8 0.5 0.4 0.2 0.5 0.1 

MSZ248-02 -0.2 1.1 0.0 1.8 0.5 0.1 

AF5938-6 -0.5 -0.1 -0.1 -0.1 0.5 0.1 

AF5825-3 -0.2 0.2 0.7 -0.2 0.5 0.1 

AF6551-1 -0.7 -0.4 -0.1 -0.6 0.5 0.1 

CO12293-1W -0.6 -0.5 -1.0 0.2 0.5 0.1 

NYP111-16 -0.9 0.5 0.5 0.0 0.5 0.1 

ATTX10389-1W -0.3 -0.9 -1.0 -0.2 0.5 0.1 

MSX542-2 -0.3 0.0 0.1 0.0 0.4 0.1 

ND13220C-3 -0.4 0.1 -1.0 1.1 0.4 0.1 

AF6036-1 -0.5 0.6 1.2 -0.4 0.3 0.1 
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Clone id  

Chip Color 
(z) 

Chip Quality 
(z) 

Specific gravity  
(z) 

Yield 
(z) 

Multiple index 
selection (MIS)  ZMIS  

MSBB038-1 -0.7 -0.1 0.8 -1.1 0.3 0.1 

MSBB636-11 -0.4 1.1 -0.7 2.3 0.3 0.1 

COTX13231-5W -0.3 -1.8 -1.7 -1.1 0.3 0.1 

MSAFB635-3 -0.4 1.1 -0.5 2.0 0.2 0.0 

TX12484-1W -0.8 -0.7 -1.6 0.3 0.2 0.0 

MSV507-003 -0.1 0.1 1.3 -1.2 0.1 0.0 

WAF15221-2 0.0 0.1 0.1 0.1 0.0 0.0 

MSAA309-15 -0.7 0.6 1.1 -0.5 0.0 0.0 

TX14668-3W 0.0 -0.7 -1.4 0.4 -0.1 0.0 

AF6520-5 -0.5 0.1 -0.1 0.0 -0.1 0.0 

MSBB634-8 0.8 0.3 0.6 0.1 -0.2 0.0 

CO13232-25W -1.2 -0.3 -1.5 0.4 -0.2 0.0 

COTX13230-1W -0.3 -1.5 -1.3 -1.2 -0.2 0.0 

W13069-5 -0.3 -0.1 0.9 -1.4 -0.2 0.0 

AF6602-3 -0.3 1.0 1.3 -0.1 -0.3 -0.1 

CO13232-5W -1.0 -0.3 -1.3 0.2 -0.3 -0.1 

AF6188-9 -0.6 0.5 0.6 -0.4 -0.3 -0.1 

AC01144-1W -0.5 -1.2 -2.1 -0.1 -0.4 -0.1 

MSBB018-1 -0.4 0.5 0.7 -0.3 -0.5 -0.1 

MSZ154-1 -0.7 -0.4 -0.9 -0.3 -0.5 -0.1 

MSZ022-16 -0.2 0.0 0.8 -1.2 -0.5 -0.1 

TX14695-2W -0.7 -1.0 -0.3 -2.0 -0.6 -0.1 

AF6037-3 -0.7 1.2 -0.3 1.3 -0.7 -0.1 

MSAA513-01 -0.6 0.1 0.8 -1.3 -0.7 -0.1 

MSAA678-01 -0.5 0.0 -0.4 -0.2 -0.7 -0.1 

MSW501-2 -1.3 0.3 -0.6 0.1 -0.7 -0.1 

W15125-4 -0.3 0.3 0.1 -0.1 -0.7 -0.1 

B3317-1 -0.7 0.4 -0.2 0.1 -0.8 -0.2 

NC744-4 -0.3 0.1 -0.3 -0.2 -0.9 -0.2 

AF6542-1 -0.1 0.7 1.6 -1.0 -0.9 -0.2 

W14184-5 -0.7 0.5 -0.4 0.2 -0.9 -0.2 

ATX11482-3W 0.4 -0.3 -0.8 0.1 -0.9 -0.2 

MSZ063-2 0.5 0.9 0.6 0.6 -1.0 -0.2 

AF5846-4 -0.3 -0.4 -1.6 0.3 -1.0 -0.2 

MSAA100-1 -0.4 0.7 0.1 0.2 -1.0 -0.2 

MSZ013-3 0.7 0.8 0.2 0.8 -1.1 -0.2 

BNC811-9 1.7 1.0 1.6 0.2 -1.2 -0.2 

AF6165-9 -0.6 0.3 0.0 -0.4 -1.2 -0.2 

AF5677-4 0.0 0.0 -0.8 0.2 -1.2 -0.2 

MSBB058-01 -0.2 0.4 0.9 -1.1 -1.2 -0.2 
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Clone id  

Chip Color 
(z) 

Chip Quality 
(z) 

Specific gravity  
(z) 

Yield 
(z) 

Multiple index 
selection (MIS)  ZMIS  

MSAA100-01 -0.4 0.7 0.1 0.2 -1.2 -0.2 

NDAF14477C-7 -0.5 0.5 0.3 -0.4 -1.2 -0.2 

MSW044-1 0.5 0.0 0.7 -1.0 -1.2 -0.3 

MSV507-073 -0.4 0.4 1.1 -1.2 -1.3 -0.3 

COTX13231-4W -0.3 -1.4 -1.6 -1.3 -1.3 -0.3 

MSBB058-1 -0.2 0.4 0.9 -1.1 -1.3 -0.3 

MSCC256-02 -0.3 0.9 0.9 -0.5 -1.4 -0.3 

MSZ242-09 0.3 0.2 0.8 -1.1 -1.5 -0.3 

AF5819-2 0.1 -0.7 -2.3 0.5 -1.5 -0.3 

AF6531-3 -0.4 0.2 -0.2 -0.4 -1.5 -0.3 

CO13232-11W -1.0 0.2 -1.2 0.2 -1.5 -0.3 

COTX13231-1W -0.5 -1.1 -1.7 -0.9 -1.6 -0.3 

NYR1-7 -1.2 0.1 -0.7 -0.6 -1.6 -0.3 

MSX111-3 0.0 -0.3 -0.9 -0.4 -1.6 -0.3 

MSCC376-1 -0.6 0.1 0.0 -0.9 -1.7 -0.3 

MSBB230-01 1.1 1.1 0.8 0.6 -1.7 -0.3 

MSZ269-18 1.2 0.3 0.7 -0.4 -1.7 -0.3 

MSAA217-3 -0.3 0.7 0.5 -0.4 -1.7 -0.4 

MSX042-3 -0.3 0.1 -0.2 -0.7 -1.8 -0.4 

MSAA076-04 0.0 0.2 -0.4 -0.2 -1.8 -0.4 

CO11048-8W -0.1 -0.3 -1.0 -0.4 -1.9 -0.4 

MSX472-2 -0.3 0.1 -0.5 -0.4 -1.9 -0.4 

MSAFB619-2 0.2 0.0 0.1 -1.1 -1.9 -0.4 

NYORQ6-6 -1.0 0.9 -0.7 0.6 -1.9 -0.4 

BNC469-7 0.1 0.5 -0.5 0.3 -1.9 -0.4 

MSCC248-3 0.2 0.7 1.9 -1.6 -1.9 -0.4 

AF6027-2 -1.0 -0.1 -1.5 -0.2 -1.9 -0.4 

MSCC248-03 0.2 0.7 1.8 -1.6 -1.9 -0.4 

AF6241-4 0.1 0.3 1.7 -2.1 -1.9 -0.4 

MSAFB614-4 0.3 0.5 0.7 -0.8 -1.9 -0.4 

MSCC129-04 0.2 0.4 1.6 -1.9 -2.0 -0.4 

MSBB166-01 0.8 0.7 0.8 -0.4 -2.0 -0.4 

CO12428-2W -0.4 0.2 -0.1 -0.8 -2.0 -0.4 

AF6024-1 3.1 0.6 -0.7 2.1 -2.1 -0.4 

MSAA328-04 -0.3 0.4 -0.1 -0.6 -2.2 -0.4 

TX09396-1W 0.5 0.3 0.7 -1.1 -2.2 -0.5 

MSAFB609-5 -0.2 0.4 0.4 -1.1 -2.3 -0.5 

AF6031-2 0.5 1.0 0.2 0.3 -2.3 -0.5 

B3306-2 3.5 0.5 0.9 0.4 -2.3 -0.5 

MSW324-1 -0.2 0.3 -1.0 0.3 -2.4 -0.5 
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Clone id  

Chip Color 
(z) 

Chip Quality 
(z) 

Specific gravity  
(z) 

Yield 
(z) 

Multiple index 
selection (MIS)  ZMIS  

WAF13076-2 1.8 0.6 -0.5 1.1 -2.4 -0.5 

NC475-3 -0.4 1.2 -0.2 0.6 -2.4 -0.5 

NDTX059828-2W -0.1 -0.9 -2.9 0.3 -2.4 -0.5 

MSV505-2 0.3 0.1 0.6 -1.5 -2.4 -0.5 

MSBB617-2 -0.3 0.6 0.3 -0.8 -2.5 -0.5 

ND13219C-4 -0.4 0.6 -0.1 -0.5 -2.5 -0.5 

TX05249-10W -0.4 -0.1 -1.5 -0.1 -2.5 -0.5 

MSCC058-1 0.5 0.2 -0.3 -0.3 -2.5 -0.5 

AF5801-1 0.5 0.2 -0.8 0.0 -2.6 -0.5 

MSBB060-01 0.1 0.7 -1.2 1.0 -2.6 -0.5 

MSAA076-6 -0.2 0.8 0.6 -0.9 -2.6 -0.5 

NDTX081648CB-13W 0.2 0.2 -0.6 -0.4 -2.6 -0.5 

MSBB617-02 -0.3 0.6 0.4 -0.9 -2.6 -0.5 

NDTX1488-1W/Y 3.8 -1.2 -0.4 -0.9 -2.7 -0.6 

WAF14067-6 -0.7 0.3 -0.9 -0.5 -2.8 -0.6 

NC473-2 -1.1 0.6 -1.8 0.8 -2.8 -0.6 

AF5583-3 -0.5 0.8 -0.1 -0.3 -2.9 -0.6 

MSBB625-2 0.1 1.1 0.4 -0.2 -2.9 -0.6 

AOR13125-9 0.2 0.6 0.9 -1.4 -3.0 -0.6 

MSBB625-02 0.0 1.1 0.4 -0.2 -3.0 -0.6 

MSZ251-1 0.0 -0.1 -0.6 -1.2 -3.0 -0.6 

MSX277-1 -0.5 -0.6 -0.8 -1.8 -3.0 -0.6 

MSCC081-1 -0.9 0.0 -0.3 -1.7 -3.0 -0.6 

AF6237-3 -1.1 0.3 -1.3 -0.2 -3.1 -0.6 

NC470-3 -0.3 1.2 -0.1 0.2 -3.1 -0.6 

MSAA373-3 2.6 0.5 0.3 0.1 -3.1 -0.6 

MSAA091-01 0.1 1.1 0.9 -0.8 -3.2 -0.6 

AF5648-3 0.2 0.7 0.4 -1.0 -3.3 -0.7 

MSAA072-04 0.1 0.7 0.1 -0.6 -3.3 -0.7 

MSY156-2 0.2 0.7 -0.3 -0.2 -3.3 -0.7 

A11516-1C 0.9 0.9 -0.3 0.4 -3.3 -0.7 

AF6200-4 -0.7 1.1 0.0 -0.4 -3.4 -0.7 

AOR13137-2 -0.1 0.7 -0.4 -0.4 -3.5 -0.7 

B3181-7 2.9 0.8 0.8 0.1 -3.5 -0.7 

CO11037-5W -0.3 0.1 -0.8 -0.9 -3.5 -0.7 

MSCC246-07 0.9 0.7 1.2 -1.4 -3.5 -0.7 

MSBB631-04 -0.7 0.9 0.3 -1.1 -3.5 -0.7 

MSX526-1 0.1 0.6 -0.1 -0.8 -3.5 -0.7 

MSCC248-02 1.0 1.1 1.6 -1.3 -3.6 -0.7 

COTX15425-1Y/Y 3.4 -0.8 -1.3 0.0 -3.6 -0.7 
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Clone id  

Chip Color 
(z) 

Chip Quality 
(z) 

Specific gravity  
(z) 

Yield 
(z) 

Multiple index 
selection (MIS)  ZMIS  

MSAA271-05 -0.6 0.9 -0.5 -0.2 -3.7 -0.7 

AC11494-6W -0.2 0.7 -0.6 -0.4 -3.7 -0.8 

NYL8-12 0.2 1.3 -0.2 0.4 -3.7 -0.8 

A13125-3C -0.3 0.7 -0.1 -0.8 -3.7 -0.8 

MSAA240-06 -0.1 0.2 -1.1 -0.6 -3.8 -0.8 

NC472-1 -0.4 1.2 -1.6 1.4 -3.8 -0.8 

MSCC266-1 -0.7 1.5 0.2 -0.2 -3.8 -0.8 

MSAFB618-2 0.2 0.8 0.3 -0.9 -3.8 -0.8 

MSBB008-3 -0.2 0.6 -0.5 -0.6 -3.8 -0.8 

MSBB008-03 -0.2 0.6 -0.5 -0.6 -3.8 -0.8 

AF6197-8 -1.2 0.0 -1.1 -1.3 -3.8 -0.8 

MSZ219-14 -0.4 0.0 0.2 -2.3 -3.8 -0.8 

AF6034-1 -0.6 1.1 -0.6 0.0 -3.8 -0.8 

AF6236-7 0.1 1.1 -2.0 1.7 -3.9 -0.8 

AF6232-1 0.0 1.1 -2.0 1.7 -3.9 -0.8 

MSBB618-9 -0.4 0.7 -0.4 -0.7 -4.0 -0.8 

MSBB635-14 0.2 0.6 -2.1 1.1 -4.0 -0.8 

ATX13126-5Ru 0.4 0.6 -0.8 -0.1 -4.0 -0.8 

MSBB618-09 -0.3 0.7 -0.4 -0.7 -4.1 -0.8 

MSAFB609-12 -0.8 0.8 -0.5 -0.8 -4.2 -0.9 

B3183-6 1.2 0.9 0.0 -0.1 -4.2 -0.9 

MSBB613-04 0.1 0.5 0.1 -1.4 -4.2 -0.9 

AF6603-5 0.1 1.3 0.2 -0.4 -4.3 -0.9 

MSZ157-3 0.5 0.8 -1.2 0.5 -4.3 -0.9 

MSBB193-1 1.5 0.2 -0.3 -1.0 -4.5 -0.9 

MSAA725-03 -0.9 0.9 -0.9 -0.5 -4.5 -0.9 

MSBB047-1 -0.6 1.2 0.7 -1.5 -4.6 -0.9 

AF5819-6 0.6 0.0 -1.8 -0.2 -4.6 -0.9 

MSBB193-01 1.5 0.2 -0.3 -1.0 -4.6 -0.9 

MSAFB626-2 0.5 1.1 0.2 -0.6 -4.7 -1.0 

MSCC129-02 0.0 0.6 0.5 -2.0 -4.7 -1.0 

NYM7-4 0.0 0.7 -1.1 -0.3 -4.7 -1.0 

MSAA311-1 0.0 1.3 0.4 -0.9 -4.7 -1.0 

AF6200-7 -0.3 0.5 0.5 -2.3 -4.8 -1.0 

MSX194-3 -0.3 0.3 -0.8 -1.4 -4.8 -1.0 

MSAA038-09Y 0.3 0.7 -0.6 -0.7 -4.9 -1.0 

MSAFB614-6 -0.2 0.5 0.2 -2.0 -4.9 -1.0 

MSAFB618-3 0.1 1.0 0.4 -1.3 -4.9 -1.0 

MSAFB605-4 -0.6 1.7 0.2 -0.5 -5.0 -1.0 

MST437-1 0.6 1.1 -0.3 -0.2 -5.1 -1.0 
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Clone id  

Chip Color 
(z) 

Chip Quality 
(z) 

Specific gravity  
(z) 

Yield 
(z) 

Multiple index 
selection (MIS)  ZMIS  

BNC537-5 0.7 0.9 -0.4 -0.5 -5.1 -1.0 

MSAA313-01 0.3 1.1 0.4 -1.2 -5.2 -1.1 

MSBB623-12 0.1 0.8 0.2 -1.6 -5.2 -1.1 

MSX345-6Y 0.9 0.2 -1.1 -0.8 -5.2 -1.1 

MSDD085-13 0.2 1.1 0.1 -0.9 -5.3 -1.1 

MSV507-128 0.4 1.4 0.4 -0.8 -5.4 -1.1 

MSBB067-02 -0.5 0.6 -0.8 -1.2 -5.4 -1.1 

AFC5687-2W 0.0 0.6 -1.9 0.1 -5.4 -1.1 

NYORQ2-2 -0.6 1.2 -1.1 -0.1 -5.4 -1.1 

MSAA260-03 0.9 0.2 -0.1 -1.8 -5.5 -1.1 

COTX14284-2W/Y 3.2 1.2 -1.1 1.7 -5.5 -1.1 

MSBB079-2 -0.2 0.7 -1.4 -0.3 -5.5 -1.1 

W14NYQ4-1 -1.0 1.0 -0.4 -1.5 -5.7 -1.2 

CO11074-1W 1.0 0.8 -0.7 -0.5 -5.7 -1.2 

B3379-6 2.6 0.7 -0.5 -0.1 -5.9 -1.2 

WAF15195-3 0.0 1.3 -1.2 0.2 -5.9 -1.2 

AF6616-1 -0.1 1.1 -1.5 0.0 -6.0 -1.2 

B3182-1 3.2 1.2 -0.5 0.9 -6.0 -1.2 

B3381-2 2.5 1.2 0.4 -0.5 -6.1 -1.2 

NYORQ6-3 -0.5 1.4 -0.9 -0.4 -6.1 -1.2 

MSBB610-13 -0.3 1.4 -0.8 -0.3 -6.1 -1.3 

MSBB618-02 0.1 1.2 -0.2 -1.1 -6.3 -1.3 

MSBB614-10 0.0 1.4 0.5 -1.8 -6.6 -1.3 

AF6614-4 1.5 1.5 0.1 -0.5 -6.7 -1.4 

MSAFB611-5 0.2 1.6 0.1 -1.0 -6.8 -1.4 

AOR12197-4 2.3 2.0 0.3 0.5 -6.8 -1.4 

MSAA498-18 0.3 1.4 0.7 -1.9 -6.9 -1.4 

MSBB032-1 0.1 1.0 -1.3 -0.6 -6.9 -1.4 

AOR13124-6 0.0 1.8 0.1 -0.9 -6.9 -1.4 

MSBB626-11 0.2 1.3 0.4 -1.8 -7.0 -1.4 

MSAA252-07 0.0 1.1 -1.4 -0.5 -7.0 -1.4 

MSAA085-1 2.2 1.0 -0.5 -0.5 -7.2 -1.5 

MSBB611-03 1.2 1.6 -0.7 0.1 -7.3 -1.5 

MSBB131-01 3.2 0.7 -0.9 -0.1 -7.3 -1.5 

B3381-4 3.3 0.6 -0.2 -1.1 -7.8 -1.6 

AF6616-4 2.0 1.4 -0.5 -0.4 -8.0 -1.6 

MSAFB626-8 -0.2 2.1 -0.2 -0.8 -8.1 -1.6 

MSAA036-09 -0.2 1.1 -1.9 -0.6 -8.2 -1.7 

MSBB190-1 0.8 1.1 -1.0 -1.1 -8.3 -1.7 

MSBB190-2 -0.6 1.9 -1.0 -0.6 -8.4 -1.7 
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Chip Color 
(z) 
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(z) 

Specific gravity  
(z) 

Yield 
(z) 

Multiple index 
selection (MIS)  ZMIS  

MSAA556-03Y 2.1 1.1 -1.2 -0.3 -8.4 -1.7 

MSAA342-11Y 2.9 0.4 -2.1 -0.3 -8.7 -1.8 

MSV507-012 0.2 1.7 -0.4 -1.4 -8.8 -1.8 

MSAA241-01 1.2 0.9 -0.5 -2.1 -9.0 -1.8 

ATX13126-3W 0.5 0.9 -2.6 -0.3 -9.0 -1.8 

MSAFB610-2 0.3 2.5 -0.3 -0.5 -9.6 -2.0 

MSAA290-02 1.9 1.1 -0.8 -1.4 -9.7 -2.0 

NDTX1432Y-2Y/Y 3.7 0.5 -2.5 0.0 -10.1 -2.1 

MSAA498-07 0.4 2.0 -0.4 -1.7 -10.5 -2.1 

MSAFB626-5 -0.1 1.8 -1.9 -1.2 -11.5 -2.4 

TX12474-1P/R 5.3 0.0 -2.4 -1.2 -12.2 -2.5 

MSAFB610-4 0.3 2.3 -1.8 -2.3 -15.5 -3.2 

 


