

SMART GRID TRANSACTIONS VIA THE BLOCKCHAIN

A Dissertation

by

SHAIKHA SAAD S A AL-QAHTANI

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Joseph Boutros
Co-Chair of Committee, Robert Balog
Committee Member, Othmane Bouhali
Head of Department, Efstratios N. Pistikopoulos

December 2021

Major Subject: Energy

Copyright 2021 Shaikha Saad S A Al-Qahtani

 ii

ABSTRACT

With more outages in recent times, the energy sector needs to shift to more reliable

electricity grid. Smart grids are the new solution where it is much more reliable and secure than

the traditional electricity grid. The use of smart grid would help with integrating new technologies

to the grid such as the blockchain. The blockchain is a public distributed ledger which stores

transactions in blocks that are chained together by cryptographic hashes. The blockchain is

managed by a peer-to-peer network autonomously without the need of a central entity. The use of

blockchain in smart grids will help in removing the third parties in transactions, which makes it

easier for smaller energy providers to enter the market. Also, the blockchain is immutable due to

how each block is chained together, if you alter a block, it causes a chain effect and changes

subsequent blocks. Thus, it is impossible to hack as other nodes in the network have a copy of the

blockchain and they can easily identity a corrupted blockchain. In this paper, we explore the use

of blockchain in handling smart grid transactions. A smart grid specialized blockchain was

developed in Python. The users can interact with the blockchain by sending HTTP requests over

Postman. Postman is a program for API testing, and it is the main user interface. The blockchain

developed is account based, so the user has to generate an e-Wallet before running transactions on

the blockchain. There are three types of users in the blockchain, a generator, a prosumer, and a

customer. Based on the type, the user can then either generate electricity and sell it over the

blockchain or purchase the electricity then consume it. The users can either run transactions or

mine blocks in the blockchain.

 iii

CONTRIBUTORS AND FUNDING SOURCES

Contributors

 This work was supported by a thesis committee consisting of Professor Joseph Boutros

(chair), Professor Robert Balog (co-chair) and Professor Othmane Bouhali (member). All other

work conducted for the thesis was completed by the student independently.

Funding Sources

None.

 iv

 TABLE OF CONTENTS

ABSTRACT ... ii

CONTRIBUTORS AND FUNDING SOURCES .. iii

TABLE OF CONTENTS ... iv

LIST OF FIGURES ... vi

LIST OF TABLES ... ix

INTRODUCTION .. 1

BLOCKCHAIN IN ENERGY .. 2

A. Impact of the blockchain on the energy sector ... 2

B. Transformation of the market ... 3

C. Basic blockchain architecture in smart grids .. 5

D. How blockchain is used in smart grids ... 5

THE THEORY OF BLOCKCHAIN ... 7

A. Hashing ... 7

B. Chaining blocks .. 11

C. Mining blocks ... 12

D. Blockchain fork .. 13

E. Blockchain transactions .. 13

F. E-wallet .. 18

G. Smart contracts ... 19

H. Blockchain advantages ... 19

THE BLOCKCHAIN SERVER ... 21

A. Postman .. 21

Page

 v

B. Flask ... 22

THE BLOCKCHAIN PROGRAM ... 23

A. Hash algorithm ... 23

B. Proof of work algorithm ... 23

C. Digital signature algorithm ... 25

D. Blockchain class ... 27

E. Main program ... 32

PROCEDURE .. 42

A. Adding new users ... 43

B. Deposit to the wallet ... 44

C. View the wallet ... 45

D. Add transactions to the blockchain ... 45

E. Mine new blocks .. 46

F. Viewing the blockchain .. 48

G. Create new node to join the blockchain server ... 48

H. Updating the blockchain ... 50

I. Checking the blockchain .. 52

CONCLUSION AND PROSPECTIVES .. 53

REFERENCES ... 54

 vi

LIST OF FIGURES

Figure 1. Transformation of the Market with Blockchain (adapted from PWC [3]). 4

Figure 2. The Merkle–Damgård construction using a compression function called compress. 8

Figure 3. The Sponge Construction. ... 9

Figure 4. The length-extension attack. .. 10

Figure 5. Simplified Example of a blockchain. .. 12

Figure 6. Blockchain Fork Mechanism. .. 13

Figure 7. Bitcoin elliptic curve (left), Point addition example (middle), Point doubling example

(right) .. 16

Figure 8. “hash” function in "hash.py". .. 23

Figure 9. “proof-of-work” function in "PoW.py" ... 24

Figure 10. Libraries used in "signatures.py". .. 25

Figure 11. “sign_tx” function in "signatures.py". ... 26

Figure 12. “verify_tx” function in "signatures.py". .. 26

Figure 13. Libraries imported into "Blockchain.py". ... 27

Figure 14. Initializations in "Blockchain.py". .. 28

Figure 15. "new_block” function in "Blockchain.py". ... 28

Figure 16. Example of a block in blockchain in Postman .. 29

Figure 17. “verified_tx” function in "Blockchain.py". ... 30

Figure 18. “password_check” function in "Blockchain.py" ... 31

Figure 19. “check_chain” function in "Blockchain.py" .. 31

Figure 20. “new_node” function in "Blockchain.py" ... 32

Page

 vii

Figure 21. “fork” function in "Blockchain.py" ... 32

Figure 22. Libraries import in "main.py". ... 33

Figure 23. “view_chain” function in "main.py". .. 33

Figure 24. “new_user” function in "main.py" 1/2. ... 34

Figure 25. “new_user” function in "main.py" 2/2. ... 35

Figure 26. “view_wallet” function in "main.py". ... 36

Figure 27. “deposit” function in "main.py". ... 36

Figure 28. “mine” function in "main.py". ... 37

Figure 29. Mining algorithm. .. 38

Figure 30. “add_transaction” function in "main.py". ... 39

Figure 31. “validate_chain” in "main.py". .. 39

Figure 32.“node” function in "main.py". .. 40

Figure 33. “update_chain” function in "main.py". ... 40

Figure 34. Code assigning the port number. ... 41

Figure 35. Starting up the server in the terminal. ... 42

Figure 36. Postman user interface. .. 43

Figure 37. Creating a new user "customer". ... 43

Figure 38. Creating a new user "prosumer" and a new “generator” ... 44

Figure 39. Depositing coins into the wallet. ... 44

Figure 40. The user viewing the wallet. .. 45

Figure 41, Customer sending coins to a prosumer and getting tokens. .. 45

Figure 42. Customer sending coins to a generator and getting tokens. .. 46

Figure 43. Block header. ... 47

 viii

Figure 44. Mining a block ... 47

Figure 45. The blockchain. ... 48

Figure 46. Command for starting up a new node. ... 48

Figure 47. Connecting node 5001 to node 5000 ... 49

Figure 48. Connecting node 5000 to node 5001 ... 49

Figure 49. Mining a block with two nodes connected (hash value begins with two zero hex

digits) .. 50

Figure 50. Minning a block with 3 nodes (left) 4 nodes (right) connected to the blockchain 50

Figure 51. Blockchain on node 5001 (left) and on 5000 (right) ... 51

Figure 52. Chain was replaced in node 5000. ... 51

Figure 53. Blockchain in node 5001 was not changed. .. 51

Figure 54. A corrupt blockchain. .. 52

Figure 55. A valid blockchain. .. 52

 ix

LIST OF TABLES

Table 1. The nodes in blockchain application in smart grids [1] .. 5

Table 2. HTTP response status codes [15] .. 22

Table 3. Difficulty variable conditions ... 24

Page

 1

INTRODUCTION

The energy trends show a huge increase in electricity demand worldwide. The increase in

electricity demand and consumption pushes for newer technology that are more reliable and less

prone to outages. The smart grid is the new enhanced electric grid which includes smart meters

and appliances. The smart grid is more reliable and secure than the legacy electricity grid, as it

provides a two-way communication from the generator to the customers, which ensures that the

electricity has been delivered.

Power grids nowadays are based on multiple sources such as the sun, the wind, and fossil

fuels. It is difficult to integrate all of the newer greener sources of energy into the legacy electric

grid. The need for integrating the energy coming from renewable sources pushes for technologies

like the smart grid to replace the legacy electric gird. Besides classifying the energy nature, the

smart grid itself involves other complex transactions such as advanced metering, managing electric

vehicles charging, trading of decentralized energy, and the monitoring and control of the cyber-

physical network.

The use of blockchain to handle the smart grid transactions would be investigated in this

thesis. A blockchain is a shared, encrypted record that is maintained by a network of computers.

These computers verify transactions, like the transfer of cryptocurrency between two individual

users. The blockchain record is a tree of blocks linked via a cryptographic hash function. A leaf

block cannot be modified without changing all previous blocks. The blockchain is an efficient

technique to conduct, verify, and record smart grid transactions such as those between consumers

and generators. The blockchain guarantees the integrity of registered transactions and their non-

repudiation. The use of blockchain in smart grids would ensure a faster and easier integration of

new electricity providers.

 2

BLOCKCHAIN IN ENERGY

The use of smart grid technology has been on the rise recently in the energy sector. The

reasons for the switch to smart grid is that it is far more reliable and secure than the legacy electric

grid. It allows for two-way communication from the generator to the consumer and vice versa. In

addition, the smart grid allows for an easier and faster integration of renewable energy sources to

the grid. Furthermore, the energy sector is looking into blockchain platforms to run the transactions

done in the smart grid. The blockchain is a public ledger which records all of the transactions in

the network. It provides a reliable decentralized solution in energy trade. It ensures that the

electricity would be provided to the customer after the payment has been placed, as the blockchain

seamlessly record all transactions without having a central entity controlling those transactions.

Blockchain is mostly known for being used in cryptocurrencies, like the Bitcoin, but there is

another version used in energy applications known as Ethereum. One of the most noteworthy

implementations of the blockchain in energy trading using Ethereum is in the Brooklyn microgrid

launched by LO3Energy alongside ConsenSys, which is a blockchain company [2].

A. Impact of the blockchain on the energy sector

Blockchain technologies will surely affect the business models of the current energy sector and

the trading sector associated to it. The blockchain can be applied to a large number of cases and

its impact on the energy sector is summarized as found in the literature [3]:

• Payments: The blockchain can realize automated billing for customers and distributed

generators. Micro payments, pay-as-you-go transactions, and pre-paid meters are simpler

to make via the blockchain.

• Sales and marketing: The blockchain combined to machine learning can customize energy

products to fit customers’ needs and habits.

 3

• Green trading: Blockchains systems are currently being developed for green certificates

trading.

• Automation: The blockchain leads to decentralized energy systems and microgrids. P2P

operations will go through the blockchain. This may affect the revenue of traditional

operators.

• Smart grid applications and data transfer: The blockchain can play the role of the Internet

for the energy grid. Data communications involve smart meters, advanced sensors, network

monitoring equipment, control and energy management systems, smart home energy

controllers and building monitoring systems.

• Grid management: The Blockchain could assist in the management of decentralized

networks. As a result, blockchains might affect the tariffs for network use.

• Security and identity management: Because it is based on cryptography, the blockchain

could safeguard privacy, data confidentiality, and identity management.

• Sharing of resources: Sharing resources between users in blockchain could be used for

charging stations of electrical vehicles, and for data sharing.

• Competition: Introducing blockchain to the smart grid would help smaller establishments

starting up in energy trade making a fairer competition as opposed to having market

monopoly where one entity controls the grid, and this could reduce energy tariffs.

• Transparency: As the blockchain is immutable and completely transparent, it helps with

improving audits and compliance to regulations.

B. Transformation of the market

 Implementing blockchain trading platforms in the energy sector could potentially change

the energy market structure. Figure 1 shows the transformation of the market with blockchain

 4

based on a consulting agency pwc [3]. The figure shows that a central bank, energy retailers, meter

operators and traders are no longer needed when a blockchain trading platform is implemented.

As the blockchain would handle all energy transaction without needing all those entities. This

would encourage new energy establishments to join the energy market. However, such huge shift

in the energy market is not easy, as there are challenges that comes with implementing it. First,

bank transactions happen in the order of seconds, while transactions in blockchain are in the order

of minutes. The blockchain is slower mainly due to using such huge computing power and memory

to render a block to be added in the blockchain. So, at the moment, a conventional bank transaction

is faster than a blockchain transaction. Thus, it would be hard to change the current energy market

structure at a short period of time, but it is possible to change a part of it.

Generators

Network
operator

Energy
Retailer

RES

Traders

Storage

Meter
Operator Bank

Industrial
consumer

Residential
consumer

Generators

Network
operator

RES Storage

Blockchain

Industrial
customer

Residential
customer

Trading Platform

Electricity

Payments

Data

Current Market Structure Blockchain Market Structure

Figure 1. Transformation of the Market with Blockchain (adapted from PWC [3]).

 5

C. Basic blockchain architecture in smart grids

The basic blockchain architecture in the case of smart grids consists of nodes connected on

a peer-to-peer network. Anybody can be a node in the blockchain. The nodes can either be a

generator node where they generate and sell electricity, or a customer node who would purchase

and use the electricity. Also, there could be a node who acts as both a customer and a generator

known as a prosumer. Finally, a distribution node where all transactions are verified and routed

[1]. All of the actions of nodes and examples are shown in table 1. This way, the smart grid

transactions would be secure, and it would allow for small generators to enter the energy market.

Table 1. The nodes in blockchain application in smart grids [1]

Nodes Action Example

Generators Generate and sell electricity Power Plants

Customers Purchase and use electricity Buildings

Prosumers Generate, sell, purchase, and
use electricity

Buildings with power
generations

Distribution Point Verify and route transactions Step down transformer at
every node

D. How blockchain is used in smart grids

The blockchain in smart grids is implemented by the following process; A generator node

would generate a token along with the electricity generated. The generator node would sell the

electricity over the network looking for a customer node. The system would check that the

electricity is available and allocate the sold electricity before publishing the sell order. The

customer node would purchase the token. The system would check the customer’s balance before

the purchase order is published. Then a smart contract is generated for that specific sell and

 6

purchase order, connecting the generator to the customer by a transaction which would be added

to the blockchain. This ensures a reliable transfer of electricity where both sides have been

validated before the transaction has been made. Once the customer receives the allocated

electricity that was specified in that transaction the token is then transferred to an address which

cannot be recovered so it cannot be used again. This is known as “burning” the token in blockchain

[1].

Transactions are then verified by the distribution point nodes also known as miners in the

network. The miners check the generator and customer accounts, and traceback whether the

customer is the rightful owner of that specific token. Also, the miner would verify whether the

generator has the allocated electricity to provide to the customer. Once all has been verified by the

miner then the block of transactions is added to the blockchain and sent to all of the nodes to the

network confirming that the smart contract has been executed [1].

 7

THE THEORY OF BLOCKCHAIN

A. Hashing

Hash functions take an input x of a random size and give an output for a fixed size Hash(x).

It is a one-way encryption where it is very easy to hash but mathematically almost impossible to

find the reverse of the hash for that block. Hash functions are deterministic, it will always have the

same hash value for the same input. However, all hash outputs are so random that if you change a

single digit on the input, the hash output for the same hash function would be so different that it

cannot be correlated. Hash functions are used in blockchain as they are not reversible, making the

blockchain secure and not able to traceback.

A.1 Hash functions’ features [5]:

• Collision resistance: it is difficult to find two messages M1 and M2 such that they

would generate the same hash output Hash(M1) = Hash(M2).

• Preimage resistance: it is difficult to find the reverse of the hash function (The

message M1) given only the hash value Hash(M1).

• Second preimage resistance: given a pair of input and output of a hash function

M1 and Hash(M1), it is difficult to find another input M2 that would give the same

output of the previous input Hash(M1) = Hash(M2).

A.2 SHA2

SHA2 stands for Secure Hash Algorithm 2, SHA2 has two main algorithms SHA256 and

SHA512. The numbers 256 and 512 refer to the size of hash output in bits. The hash algorithm

SHA256 is commonly used in blockchain applications because it was first suggested by Satoshi

Nakamoto in his white paper about Bitcoin [7]. SHA2 is a compression-based hash function using

the Merkle–Damgård construction (MD). The algorithm depends on splitting the message input

 8

into same sized blocks with an internal state using a compression function to hash a message as

shown in figure 2 [8].

The message block size is fixed for each function, SHA256 uses blocks of size 512bits

while SHA512 uses blocks of size 1024bits. If the input cannot be split into equal size blocks, then

the algorithm will pad the input. The MD construction pads the input by taking the excess bits to

create the last block, then append 1 bit followed by zero bits. After that it would append encoded

bits at the end which express the length of the input. SHA2 has been proven to be secure as it

resisted vulnerability tests. However, SHA2 uses a similar algorithm as its predecessor SHA1,

which is vulnerable to attacks, so it is believed that SHA2 is bound to fail.

A.3 SHA3

In case SHA2 fails, SHA3 could be used instead. SHA3 differs entirely in the algorithm as

it is a permutation-based sponge hash function. Thus, SHA3 in theory is more secure than SHA2

since it has a different internal algorithm that does not resemble a previous hash function that is

vulnerable. The methodology of a permutation-based sponge hash function begins with XORing

the first message block to an initial predefined value of the internal state. Then the initial internal

state value will be transformed by using a premutation function P. The result of the permutation

will be XORed onto the second message block and so on. This is known as the absorbing phase as

Compress

Message Block 1

H0 Compress

Message Block 2

H1 H2 . . .

Figure 2. The Merkle–Damgård construction using a compression function called
compress.

 9

seen in figure 3 [8]. After that comes the squeezing phase, once all the message blocks have been

injected. P is applied again to extract a block of bits from the state to form the final hash.

	

	

	
	

 The padding in sponge functions is simpler than in compression function-based hashes, it

appends the message with 1 bit and zeros without including the length of the message. The

permutation P should be random without any statistical bias for the sponge construction to be

secure. SHA3 provides a strong permutation algorithm that has no bias, so it is considered the most

secure hash function and it is believed that it won’t fail anytime soon.

A.4 Possible attacks on hash functions:

• Collision attack: The attacker tries to find two messages M1 and M2 such that

they would generate the same hash output Hash(M1) = Hash(M2). Attackers

utilize Birthday Attacks to find such hash collision. Basically, if you have a set

of N messages and hash values, it is possible to produce N*(N-1)/2 potential

collisions by taking each pair of two hashes (in the order of N2). It is known as a

birthday attack because it is based on the birthday paradox; if there were 23

people in a room there is a probability of 1/2 to have two people sharing the same

birthday.

Squeezing phase

P

Message Block 1

P

Message Block 2

H0
. . .

. . .

Absorbing phase

P P

H

Figure 3. The Sponge Construction.

 10

• Preimage attack: The attacker tries to retrieve the original message from the

hash value.

• Second-preimage attack: The attacker starts with a message M1 and tries to find

another message M2 such that Hash(M1)=Hash(M2)

• Length extension attack: The attacker takes the hash result Hash(M) of a

message M without knowing the contents of the message. M is split into two

blocks M1 and M2 after padding. Then the attacker can calculate the

Hash(M1||M2||M3) where M3 is a message chosen by the attacker. This due to the

fact that the hash of M1 concatenated with M2 gives the chaining value after M2

as seen in figure 4. So, you can add more blocks to the message without knowing

the original message. This attack method is the main threat to the Merkle–

Damgård construction. The attacker won’t be able to affect the main features for

hash functions, but this is a security threat that makes SHA2 and all hash

functions based on MD construction vulnerable.

A.5 Hash functions on Python

 Hashlib is a python library that is home to hash functions and functions that treat the hash

digest [9]. The examples below hashes the message “Blockchain2021” using three hash functions,

Compress

Message Block 1

H0 Compress

Message Block 2

H1 H = Hash(M1|| M2)

Compress

Controlled Message
Block 3 H = Hash(M1|| M2|| M3)

Figure 4. The length-extension attack.

 11

SHA256, SHA3_256, and SHA3_512. You can see each function outputs a completely random

and different output. For SHA256 and SHA3_256 the output is 256 bits which is 64 hexadecimal

digits, while SHA3_512 outputs 512 bits (128 hexadecimal digits) as seen in the below results.

• Example of SHA256 in Python:

>>> import hashlib
>>> message = "Blockchain2021"
>>> hash = hashlib.sha256(str(message).encode()).hexdigest()
>>> hash
'7561c90bf9454fb92c49ffcf1d3045c83c579c9d4c3575e68ee38f3256bef673'
>>> len(str(hash))
64

• Example of SHA3_256 in Python:

>>> hash_sha3_256 =hashlib.sha3_256(str(message).encode()).hexdigest()
>>> hash_sha3_256
'fe80c32aeed40ec815e5e74ff3dc309463f23031e1f1049f6376af070c060fa1'
>>> len(str(hash_sha3_256))
64

• Example of SHA3_512 in Python:

>>> hash_sha3_512 =hashlib.sha3_512(str(message).encode()).hexdigest()
>>> hash_sha3_512
'1a17f9f8a0219bd31b5c48d5926a29f7455d6cbb703c95370afc34fb09105a3b18712
bc5a29d452a6422498b692c04f96fdd9dfc02ec7f567933b1d3e2751ee1'
>>> len(str(hash_sha3_512))
128

B. Chaining blocks

A blockchain is a long series of blocks which are added by nodes in the network in a

sequential manner and is secured by hash functions. The block encapsulates a series of

transactions. The block structure can be seen in figure 5. It consists of a block header, the

transactions, a timestamp and other block fields (a nonce number, block version etc.) [6]. Once the

block is full, it is hashed, and a new block would be generated with the hash value of the previous

block, which creates a “Blockchain”. The first ever block in a blockchain is known as the genesis

block, it is hardcoded into the blockchain as there is no previous block to chain it with. The

 12

previous hash value in the genesis block is usually set to zero alongside other parameters that are

required to be calculated or “mined” to chain the block.

C. Mining Blocks

The blockchain is in a decentralized network, where each node contains a copy of the

blockchain. The most important nodes in a blockchain are known as the “miner” nodes because

they validate each block that is chained to the blockchain. The miners would try to compete in

validating the block faster than the other miners in the network (Also known as mining). Mining

uses a lot of computational power and memory, which is the essence of security in blockchain.

Since there are usually a lot of miners on the network trying to mine the same block, a consensus

mechanism needs to be put in place to select which miner will add the block to the blockchain.

There are many consensus mechanisms but the most famous one, used in the bitcoin blockchain,

is known as proof-of-work. Proof-of-work puts in place a very difficult mathematical problem that

involves hashing large numbers to meet a certain criterion. For example, the hash of the block

must have 16 zero bits in the first 16 digits. So, the miner would add a none sense number also

known as the nonce to the block parameters and they would increment the nonce number with

every new guess for the hash value. The nonce number is essentially the proof that the miner

Block n

Hash of
Block (n-1)

Timestamp

Transactions

Hash of block
(n)

. . .

Block n+1

Hash of
Block (n)

Timestamp

Transactions

Hash of block
(n+1)

. . .

Block n+2

Hash of
Block (n+1)

Timestamp

Transactions

Hash of block
(n+2)

. . .

Figure 5. Simplified Example of a blockchain.

 13

worked to mine this block. They would repeat the process until they calculate the block that meets

the criteria and add it to the chain. However, there would be many block candidates so only the

fastest node would add the new block to the chain. The computation of such a nonce number

requires high computing capabilities from the miners, so the winner node would get a reward which

acts as an incentive for the miners. The difficulty of the proof-of-work increases when more miners

join the blockchain, since there is more competition.

D. Blockchain Fork

In the case of two miners finishing a block at the same time, both blocks would be added

to the chain, this is known as a fork in blockchain. However, the next fastest block added to one

of the parallel blocks means that this path would be chosen, and the other block would be

dropped. In other words, the longer chain wins. Figure 6 shows an illustration of how a

blockchain fork is resolved.

E. Blockchain Transactions

 Transactions are the main data in each block. With no transactions, the blockchain would

not hold any value. Each blockchain transaction consists of a sender’s address, receiver’s address,

2) The next node
adds to one of the

blocks
Block N-1 Block N

Block
N+1

Block
N+1

Block
N+2

1) Two blocks mined at the
same time by different nodes

3) The longer chain wins, the extra red block is dropped

Figure 6. Blockchain Fork Mechanism.

 14

and the amount to be transferred between the two parties. Transactions are added to the blocks

once the miner nodes verify the validity of such transaction. Invalid transactions are voided, and

it would not transfer the amount just like a normal credit card transaction. However, credit card

transactions are verified by written signatures, how can we replicate this concept virtually? This is

where the concept of digital signatures comes into play. Digital signatures are important as it

provide nonrepudiation, and it would stop users from spending other users’ money. There are a lot

of digital signature schemes that are more reliable than a written signature. In blockchain, an

asymmetric public key encryption is used where it consists of a public and private key pair. The

private key is used by the sender to sign the transaction while the public key is used by the miner

nodes to verify the transaction.

E.1. RSA Digital Signature Algorithm

 RSA (Rivest–Shamir–Adleman) is an encryption algorithm that is also used for digital

signatures. The blockchain could use RSA as the algorithm to digitally sign the transactions. First,

the sender generates the public and private keys that would be used for his digital signature. Then

the sender would use the private key generated to sign and the public key is public for anyone to

verify the signature.

• Key Generation Steps:

- Select two large prime and distinct numbers p and q

- Calculate n = p*q

- Calculate l=lcm(p-1,q-1)

- Select e, an integer where 1 < e < l and gcd(e, l) = 1

- Determine d where d*e = 1 modulo l

- Public key: n and e. Private key: p, q, l, and d

 15

• Verification Steps:

- Sender signs the transaction T using the private key d by computing s = T^d mod n

- Receiver verifies the signature using the public key e by computing T’= s^e mod n

- If T’ = T then the transaction is valid

The security of RSA algorithm depends on the privacy of p and q and how large are they.

For example, RSA256 is easily breakable because n can be factorized retrieving p and q easily.

Thus, it is recommended to used RSA4096 to ensure it won’t be hackable.

E.2 Elliptic Curves Digital Signature Algorithm

The blockchain could use Elliptic Curve Digital Signature Algorithm (ECDSA) to sign the

transactions done. The ECDSA algorithm makes use of arithmetic operations like point addition

and scalar multiplication to generate the public and private keys. The plot of an Elliptic curve has

the property that a nonvertical line intersecting two non-tangent points will always intersect a third

point on the curve. Thus, the point addition can be defined as finding the third point on the curve

from the “adding” the two points. In ECDSA, the same operation is done but with a large prime

number. The equation of the elliptic curve is y2=x3+ax+b.

Figure 7 (left) shows the plot of the elliptic curve used by bitcoin with a=0 and b=7. Figure

7 (middle) shows the arithmetic operation of point addition in elliptic curves, where P+Q = R. It

is calculated by plotting a line that goes through the points P and Q and finding the third point that

intersects the curve R’. The third point is reflected by the x axis to find the result of the addition

R. Figure 7 (right) shows the arithmetic operation of point doubling in elliptic curves, where P+P

=R. It is calculated by plotting the tangent line on point P and finding the point that intersects that

line with the curve R’. The point R’ is then reflected by the x-axis to find the result of the doubling

 16

R. All these operations are used in order to implement scalar multiplication, adding the point P

to itself x amount of times is equal to x multiplied by P (R = x P).

The application of Elliptic curves on the blockchain depends on the system. A different

elliptic curve equation is used for different applications, choosing a value for the parameters a and

b, as well as a prime modulo of a finite field, and a base point on the curve along with the order of

the base point. The order needs to be a large prime number and that’s how the base point is chosen.

The security of ECDSA relies on having significantly large numbers of the prime modulo, base

point, and the order. Having such large values makes it almost impossible to attack such algorithm

and reverse engineer it to find the original values.

Finally, to use elliptic curves for digital signatures, a private key has to be chosen randomly

between 1 and the order. The public key is then calculated by using scalar multiplication of the

base point by the private key which is given by the equation:

Public Key = Base Point * Private Key

 The equation shows that the number of private keys that could be generated is equal to the

order. The ECDSA has proven to be secure as it resisted testing for vulnerabilities for very large

numbers of the order, prime modulo and the base. The only security flaw is in the protection of the

private key or if a static key was chosen as opposed to a randomly generated number every time a

new transaction is made.

Figure 7. Bitcoin elliptic curve (left), Point addition example (middle), Point doubling example (right)

 17

E.3 Comparing ECDSA and RSA signatures

 With small key size of 256 bits ECDSA is more secure while RSA is easily breakable.

Thus, signing with ECDSA utilizes smaller computational power as opposed to RSA because it

uses smaller key sizes without compromising security. ECDSA is faster at computing the key pair

and at signing messages. RSA holds more storage space as it requires to store large key numbers

while ECDSA consumes less space [10].

E.4 Digital Signatures Implementation on Python

RSA: PyCrypto is a python library which has functions that allows us to digitally sign

messages using RSA [11]. In the example below, RSA 4096 was used as it is very secure, but it

was slow when generating the key.

• Example for signing the message “Blockchain2021” using RSA4096:

>>> from Crypto.Hash import SHA256
>>> from Crypto.PublicKey import RSA
>>> from Crypto.Signature import PKCS1_v1_5
>>> message = b'Blockchain2021'

>>> key = RSA.generate(4096)

>>> with open('private_key.pem', 'wb') as f:
... f.write(key.exportKey('PEM'))
>>> with open('public_key.pem', 'wb') as f:
... f.write(key.publickey().exportKey('PEM'))

>>> hashed_message = SHA256.new(message)
>>> signer = PKCS1_v1_5.new(key)
>>> signature = signer.sign(hashed_message)
Example for verifying the message in RSA4096:
>>> with open('pubkey.pem', 'rb') as f:
... key = RSA.importKey(f.read())

>>> verifier = PKCS1_v1_5.new(key)
>>> if verifier.verify(hashed_message, signature):
... print('the signature is valid!')
... else:
... print('The signature is invalid')
the signature is valid!

 18

ECDSA: PyNaCl is a python library that contains functions that uses Ed25519 algorithm,

which is a special case of elliptic curves called Edwards-curve Digital Signature

Algorithm (EdDSA). This algorithm provides very fast signing with very fast key generation

without compromising the security of the keys.

• Example for signing the message “Blockchain2021” using ECDSA:

>>> import nacl.encoding
>>> import nacl.signing
>>> private_key = nacl.signing.SigningKey.generate()

>>> message = 'Blockchain2021'

>>> signed = private_key.sign(message.encode())

• Example for verifying the message in ECDSA:

>>> public_key = private_key.verify_key

>>> public_key.verify(signed)
b'Blockchain2021'

F. E-wallet

 A blockchain wallet is a digital wallet that gives the user a sense of reliability as they will

have a place to store and manage their money. Blockchains that depend on an account-based model

would require the user to create a wallet before interacting with the blockchain. The wallet would

contain the user’s public and private keys. So, whenever a user would like to transfer any amount

to another user in the blockchain, he would need to know the public key of the other user. The

famous blockchain Ethereum is based on this model, which makes it a reliable blockchain. It’s

reliable because only the user holds the private key that grants him access over control of his

money in the wallet. Not all blockchains will utilize the concept of a wallet, as the Bitcoin

blockchain depends on another model of cash flows [12].

 19

G. Smart Contracts

 A smart contract is like a real-life contract except that it is written in a line of codes stored

in the blockchain. It contains a predetermined agreement between the sender and the receiver to

send a specified amount of money when certain conditions apply. The biggest blockchain platform

that supports smart contracts is the Ethereum blockchain, Bitcoin also supports smart contracts but

with limited capacity. In Ethereum a special programming language Solidity was written

specifically to pass smart contracts in the blockchain. The benefit of a smart contract in the

blockchain over a normal physical contract is removing the third party in contracts. The blockchain

would validate all the conditions in the contract before execution without the need of a central

entity.

H. Blockchain Advantages

H.1 Double spending

The blockchain solves the double spending problem in digital cash without having a central

entity managing it. The double spending issue does not happen when it comes to physical money,

as once the customer pays the seller physical money, he cannot copy that same cash and reuse it

in another transaction. However, this is a huge issue when it comes to digital money. Blockchain

helps avoid such problems by having the nodes verify such transactions and ensuring that the token

bought and sold is burned and not reused.

H.2 Immutability

The blockchain is immutable, as it is almost impossible to change or edit the blockchain.

That is due to the fact that it is in a public distributed ledger. If you change a single block in the

chain, you would need to keep building on that block more fraudulent blocks. However, other

miners in the network would keep adding to the valid blocks. Thus, the nodes who receive the

 20

blockchain can easily identify the fake blocks. The fraudulent block would be on a shorter chain,

since all miners would be faster than a single node sending fake blocks. To be able to fool the

whole network, the node must have the power to change at least 50% plus one blockchain stored

in all nodes simultaneously[1]. Therefore, the network would be completely secure if there are

more honest nodes operating than fraudulent nodes.

H.3 Privacy

Conventional banks keep transactions private by ensuring confidentiality, but the

blockchain is broadcasted to all the nodes in the network. Leaving all transactions shared into the

public, which might bring up the question of whether the blockchain is private or not. Although

the transactions are made public, the addresses of the users who made such transactions are hidden

by digital signatures. To ensure absolute privacy a new pair of the public and private keys should

be generated with each transaction, so the digital signature would change every time leaving no

trace behind. A node on the network will only know the transactions made but would never know

who made those transactions. Making the blockchain even better than banks when it comes to

privacy.

 21

THE BLOCKCHAIN SERVER

A. Postman

 Postman is a platform for API (Application Programming Interface) testing [14]. Postman

was used as an HTTP client to send HTTP requests to interact with the blockchain over a peer-to-

peer network. In postman, you can create a collection of HTTP requests to be tested on the server.

In the blockchain server, only two HTTP request types were used in communicating with the

blockchain; “GET” and “POST” requests.

• GET Request: A GET request is when the user communicates with the server to

retrieve data without changing, deleting, adding, or updating the data in the server.

The GET request input is written in the URL only and it does not require any

additional input. For example, sending a GET request to view the blockchain.

• Post Request: A POST request is when the user posts data on the server. As

opposed to a GET request, a POST request modifies the data in the server. Also,

the request requires additional input to the URL, which would be inside the body

of the POST request. For example, adding a new transaction to the blockchain.

• HTTP responses: An HTTP response is the server responding to the user’s request.

There are universal HTTP response status codes that gives an indication of how the

request interacted with the server. Table 2 shows the HTTP status codes that were

used or encountered when running the blockchain.

 22

Table 2. HTTP response status codes [15]

Types Codes Meaning
Successful Response 200 OK Successful request

201 Created Successful request and a new
resource was created

Client Error Response 400 Bad Request Invalid syntax
404 not found Unrecognized URL

Server Error Response 500 Internal Server error Error in the server
502 Bad Gateway Invalid response

B. Flask

Flask is micro web framework used to build web applications written in python [16]. It is

used to contain the blockchain, thus the blockchain could be used by anyone online using a server.

In python, “app = Flask(__name__)” is written to create our web application. A python decorator

“route ()” is then used to define the URL that triggers the function. Each function would return a

response in HTML format.

 23

THE BLOCKCHAIN PROGRAM

There are 5 python programs written to run the blockchain:

- hash.py
- PoW.py
- signatures.py
- Blockchain.py
- main.py

A. Hash Algorithm

The first python program is “hash.py” is shown in figure 8. It has only one function which

is created to set the hash algorithm to be used in the whole blockchain. The hash algorithm used

in this blockchain is SHA3_256 from the python library hashlib. SHA3_256 was used as opposed

to SHA256 because it is more secure as mentioned in the previous sections about Hash functions.

The string of the input is taken and encoded to put the input in the right format that is expected

from the SHA3_256 function. Then the hash of the function is converted to hexadecimal using

.hexdigest() function which would result in giving us a string with 64 hex digits as opposed to 256

bits.

B. Proof of Work Algorithm

 The second python program is “PoW.py”, which stands for Proof of Work, is shown in

figure 9. This program contains the proof of work algorithm used in the blockchain. First, the

“hash.py” program was called to be implemented in this piece of code. The function

proof_of_work takes five inputs, the first input “difficulty” is used to set the difficulty of our

algorithm and the other four inputs are the block parameters. This algorithm takes the block

Figure 8. “hash” function in "hash.py".

 24

parameters and generates the hash of the block with the condition set by the difficulty parameter.

There are four modes for difficulty in this function shown in table 3. To meet the condition of the

difficulty variable, a nonce number is added to the input of the hash. The nonce is incremented

until the desired condition is met. The output of this function is a list of the hash of the block and

the nonce number.

Table 3. Difficulty variable conditions

Difficulty Condition Example

0 The generated hash output’s first hex digit must be zero 0x0hash

1 The generated hash output’s first two hex digits must be zero 0x00hash

2 The generated hash output’s first three hex digits must be zero 0x000hash

Not set The generated hash output’s first four hex digits must be zero 0x0000hash

Figure 9. “proof-of-work” function in "PoW.py"

 25

C. Digital Signature Algorithm

 The third python program “signatures.py” is shown in figures 10, 11, and 12. It has two

functions, one to sign a transaction and the other to verify the signature of the transaction. First the

library “JSON” is imported as JSON is used to store text and it is mainly used for web applications

communicating with a server. In this blockchain .JSON files are used to store the user’s private

and public keys along with other credentials in an e-Wallet. Then from Pynacl library, nacl libraries

are installed for the signature algorithm. The sign_tx function as seen in figure 11, takes the three

transaction parameters as the input: the sender, receiver, and amount. It appends all the inputs

under a transaction dictionary. Then the function opens the sender’s wallet from a JSON file to

retrieve the private key. Then, the private key is used to sign the transaction. The output of this

function is the signature of the transaction. The verify_tx function as seen in figure 12 takes two

inputs, the public key of the sender and the transaction. First it would extract the signature from

the transaction, and it would use the public key to verify the transaction. The function would return

“False” if the signature is invalid and “True” otherwise.

Figure 10. Libraries used in "signatures.py".

 26

Receiver

sign_tx

Sender

Amount

Sender’s
Wallet

Transaction

Private
Key Digital

Signature

verify_tx

Sender’s
public key

Signed
Transaction

Digital
Signature

Valid
Signature

Invalid
Signature

True

False

Figure 11. “sign_tx” function in "signatures.py".

Figure 12. “verify_tx” function in "signatures.py".

 27

D. Blockchain Class

 The fourth program is “Blockchain.py”, it contains six functions that has all the blockchain

main features. First, the previous python programs were imported into this program as seen in

figure 13.

In the beginning of the blockchain class, all of the lists that would be utilized later on in

the functions are initialized as empty lists as seen in figure 14. The first list self.chain would

contain our blockchain. The second list self.tx would contain the verified transaction to be added

to the list. The third list self.pending_tx would contain the transactions yet to be verified by the

miner of the block. Then the program would check if there exists a previous blockchain, then it

would append it to the empty list self.chain. If a previous blockchain does not exist, then it would

create a new one starting with the genesis block. Given that the genesis block is the first block, it

would be assigned a value of 0 for the nonce and the previous hash. It would also hold no

transactions, and the hash is just the hash of the date and time without including any proof of work.

Finally, the set of nodes is initialized empty, so when nodes connect it would populate this set.

Figure 13. Libraries imported into "Blockchain.py".

 28

 The first function defined in the blockchain class is new_block() as seen in figure 15, it is

for creating a new block to be chained to the blockchain. No input parameters are passed to the

function. The block parameters are defined here, first we have “block” which is the index of the

block. “timestamp” is for printing the time the block was mined. “transactions” would contain all

of the contents from self.tx list. “previous_hash” is the previous block’s “hash” value. In order to

Figure 14. Initializations in "Blockchain.py".

Figure 15. "new_block” function in "Blockchain.py".

 29

fetch the last block, another function was defined as last_block() which when triggered gives the

output of the last block and that is how the previous hash was retrieved. The current “hash” and

“nonce” number is given by passing all the block parameters to the proof of work function with

the difficulty set equal to the number of nodes connected to the blockchain. With more nodes

connected, the chase to adding a block to the blockchain becomes more competitive and thus the

proof of work algorithm gets harder. After filling all the block parameters, the transactions list is

emptied out and the new block generated will be appended to our blockchain list. The output of

this function is the new block, example of a block in the blockchain is seen in figure 16 and 17.

 The next function is to verify the transactions “verified_tx”. The function does not have a

required input as it would check the transactions in the list pending_tx. It will loop all over the

transactions that were pending and check for their validity. There are three conditions that are

being checked before verifying the transaction:

1) Check whether the sender has enough balance to send coins to the receiver.

2) Check if the signature given in the transaction is valid by passing it through the verify_tx

function defined in “signatures.py”.

Figure 16. Example of a block in blockchain in Postman

 30

3) Check whether the receiver has enough tokens to sell to the sender.

If all conditions are met, then the transaction is verified and appended to self.tx which are the

transactions that would be included in the next mined block. The transaction would print the

sender’s and receiver’s public key addresses instead of their names. Additionally, the sender’s

wallet will be modified to add the purchased tokens and subtract the number of coins used, and the

receiver’s wallet will be modified vice versa. The function can be seen in figure 17.

Figure 17. “verified_tx” function in "Blockchain.py".

 31

The password check function seen in figure 18 is used to authenticate the credentials of the

user to access the wallet. It takes four inputs, the user and password that was inputted and the

actual_user and actual_password that was saved in the wallet. The inputted password is then

hashed in order to compare it with the stored password hash in the wallet. This function returns

True if the credentials matched and false otherwise.

The check_chain function as seen in figure 19 is used to check if your chain is valid or if

it had been corrupted. it takes the blockchain as the input and it would loop all over the blocks in

the blockchain to check whether the previous hash of the block matches the hash of the previous

block. It would return False if there was a discrepancy and it would return True otherwise.

 The new_node function as seen in figure 20 is used to add new nodes to our blockchain

network. The input of the function is the address of the node to be added. The address is in the

form of “http://127.0.0.1:{port#}”. The input address would be then parsed using the urlparse()

Figure 18. “password_check” function in "Blockchain.py"

Figure 19. “check_chain” function in "Blockchain.py"

 32

function. In order to extract the address of the node the parsed url is passed by .netloc. Once it is

extracted, the address is added to the nodes set.

 The last function in the Blockchain class is the fork methodology and it is shown in figure

21. No input is required for this function. It checks all of the connected nodes to the blockchain

and compares the length parameter in the list self.chain. If there exists a chain in another node that

is longer than the chain on the current node then the chain would be replaced, and it would return

a “True” output. If the current chain is the longest chain, then nothing would be changed, and the

function would return a “False” output.

E. Main Program

 In “main.py” the previous python programs are imported along with the necessary

libraries as shown in figure 22. In this piece of code, the library Flask is used to set up the

blockchain server. Once a server is set up, the node working on this specific port needs an

address. The node needs an address because once a miner mines a block, it can receive a block

Figure 20. “new_node” function in "Blockchain.py"

Figure 21. “fork” function in "Blockchain.py"

 33

reward “incentive” and it is sent to the miner from the node address. After that the “Blockchain”

class is introduced as “blockchain” and will be used throughout the code.

 All the functions in “main.py” are to set the URL to interact with the blockchain server.

The first function is seen in figure 23. This function sets the URL “/view_chain” as a “GET” HTTP

request. Once the user sends the request, he would be able to view the blockchain in postman. If

the request had no error, it would send back an HTTP response of 200 (OK). Embedded in this

request the blockchain will be saved in a .JSON file so it can be retrieved later once the blockchain

server is terminated.

Figure 22. Libraries import in "main.py".

Figure 23. “view_chain” function in "main.py".

 34

 The next URL is to set up a wallet for the user “/new_user” as seen in figure 24. The URL

is a “POST” request where the user needs to write additional information to the URL link. The

information written by the user needs to be in. JSON. The additional information required are the

credentials needed to open the user’s wallet later. The credentials are the username, user type and

the password. The username and type are stored in plaintext while the password is hashed first

before storing it in the wallet. There are three types of users in this blockchain, a customer,

generator, and a prosumer. The customer will have no tokens as he has no electricity to generate.

The generator will get 10 tokens initially as he would generate electricity and sell tokens to the

customers. The prosumer would have 5 tokens as the generation capability would be less than the

generator but still, he would be able to sell tokens. Then the private key is randomly generated

using SigningKey.generate() function from the nacl library. Then the public key would be

generated from the private key by using the verify_key function.

Figure 24. “new_user” function in "main.py" 1/2.

 35

 Once all parameters are retrieved the wallet is defined as seen in figure 25. The private and

public key are stored as hexadecimal digits in the wallet. Then the wallet is stored in a .JSON file

named as username.JSON so each user will have a wallet under his name. If a wallet already exists

under that name, then the response to this function would be “wallet already exists”. If not, then

the response would preview the wallet. This POST request returns an HTTP response of 201

(created) as it created a new wallet.

The next URL is /view_wallet as seen in figure 26. This request is set for the user to view

their wallet. It is a “POST” request as the user needs to input additional data to the URL which is

his credentials. The user cannot access his wallet without providing correct credentials, because it

has sensitive data such as the private key. The function password_check from “Blockchain.py” is

used to authenticate the user. If the user wrote the wrong credentials, the response provided in

Figure 25. “new_user” function in "main.py" 2/2.

 36

Postman would be “wrong username or password”. If the credentials were correct, then the user

would view the wallet and it would send an HTTP response of 200 (OK).

 The fourth URL is “/deposit” as seen in figure 27. It is a “POST” request as the user needs

to input his credentials along with the number of coins to be deposited into his account. The wallet

will be updated with new amount and a response of 201 (created) will be returned. In postman the

new wallet would be previewed.

Figure 26. “view_wallet” function in "main.py".

Figure 27. “deposit” function in "main.py".

 37

 The fifth URL is “/mine” as seen in figure 28 and it is for mining block. The HTTP request

type is a “GET” request and the methodology on how it works can be seen in figure 29. Once the

new block have been generated a message is printed on Postman “All transactions have been

verified and a new block has been added to the blockchain” and an HTTP response of 201 (created)

is returned.

The steps for mining a block are:

1) Verify the pending transactions using verified_tx function:

a. Verify the digital signatures using verify_tx function

b. Verify if there is enough balance in the wallet

2) Generate a new coin as a reward for the miner

3) Run the proof of work algorithm on the block using proof_of_work function

4) Generate the new block and append it to the blockchain using new_block function

Figure 28. “mine” function in "main.py".

 38

The sixth URL is “/add_transaction” as seen in figure 30. It is a “POST” request as the

sender needs to input his credentials and the receiver’s name along with the number of coins to

be sent to the receiver. If the credentials are correct then the transaction is signed using sign_tx

function and the transaction is appended to pending_tx list. The response printed in postman

would be a message saying that the transaction will be added once a block is mined and the

transaction has been verified. A response of 201 (created) will be returned.

4) New Block

3) Proof of work

2) Block reward:
New coin generated
for the miner

Postman

http://localhost:{port#}//mine

User “GET”

1) Verify transactions

Verify signatures Verify balance Rejected
transactions

Approved
transactions

Previous
Block

Previous Hash

Block Index

Time stamp

Transactions

Nonce

Hash

Figure 29. Mining algorithm.

 39

 The seventh URL is “/validate_chain” as seen in figure 31. It is a “GET” request and the

functions calls the check_chain function from the Blockchain class. If the check_chain function

returns a True value it would send a response of “The chain is valid”, otherwise it would send “The

chain is corrupt”. A response of 200 (OK) will be returned.

Figure 30. “add_transaction” function in "main.py".

Figure 31. “validate_chain” in "main.py".

 40

 The eighth URL is “/node” as seen in figure 32. This function connects new nodes to the

blockchain server. It is a “POST” request as the user needs to input the node address to be included

in the blockchain. The new node address would be appended in the nodes set and an HTTP 201

(created) response would be returned. If the user did not input a node address, the function would

return 400 (Bad Request) which means the syntax was invalid.

The ninth URL is “/update_chain” as seen in figure 33. This is where the node would check

the longest chain and update his own chain. It is a “GET” request and it calls the fork function

from the Blockchain class. If the fork function returns a True value, it would update the blockchain

and send a response of “chain was replaced”. Otherwise, if the fork returns a False value, it won’t

replace the chain instead it would send a response of “chain is the longest nothing was replaced”.

A response of 200 (OK) will be returned.

Figure 32.“node” function in "main.py".

Figure 33. “update_chain” function in "main.py".

 41

 The piece of code in figure 34 helps to run the server on the assigned port number. On the

terminal, the user can run main.py on port number 5000 by running this command “python main.py

-p 5000” if no port number was defined then the default port number is 5000.

Figure 34. Code assigning the port number.

 42

PROCEDURE

To run the server, you need to open the terminal and write the command “python3 main.py”

as shown in figure 35. Then you need to open Postman to interact with the server. and run the

already set up HTTP requests to the server.

The Postman user interface is shown in figure 36, numbered fields are as follows:

1) Choose the type of the request, in this case whether it is a GET or POST request

2) Enter the URL for the request, in this case there are nine options:

a. http://localhost:{port#}/new_user

b. http://localhost:{port#}/deposit

c. http://localhost:{port#}/view_wallet

d. http://localhost:{port#}/add_transaction

e. http://localhost:{port#}/mine

f. http://localhost:{port#}/view_chain

g. http://localhost:{port#}/node

h. http://localhost:{port#}/update_chain

i. http://localhost:{port#}/validate_chain

3) If it is a POST request enter the additional information in the body of the request

4) Ensure the additional are in JSON format

Figure 35. Starting up the server in the terminal.

 43

5) Send the HTTP request

6) The response is shown in the field below

A. Adding new users

To Create the new users that will be sending transactions over the blockchain, use

/new_user URL on Postman and choose a “POST” request as shown in figures 37and 38. You need

to input the credentials and type of the user (customer, generator, or prosumer) in the body of the

request and ensure it is in JSON format.

1 2

3

4

6

5

Figure 36. Postman user interface.

Figure 37. Creating a new user "customer".

 44

B. Deposit to the wallet

You need to deposit coins into the user’s wallet by using the URL “/deposit” and choosing “POST”

request as shown figure 39. You need to input the credentials and number of coins to be deposited

in the body of the request and ensure it is in JSON format.

Figure 38. Creating a new user "prosumer" and a new “generator”

Figure 39. Depositing coins into the wallet.

 45

C. View the wallet

The user can then view the wallet by using “/view_wallet” and choosing “POST” request as shown

in figure 40. Here the user only needs to input his credentials to be able to view the wallet.

D. Add transactions to the blockchain

 The user can add a transaction by using the URL extension /add_transaction and choose

“POST” as the HTTP request type, as seen in figures 41 and 42. The user needs to specify in the

body the sender(username), receiver, amount to be transferred and his password. The transaction

Figure 40. The user viewing the wallet.

Figure 41, Customer sending coins to a prosumer and getting tokens.

 46

won’t go through until it has been verified by the miner and so if the user views the wallet, no

changes will be done yet.

E. Mine new blocks

To mine a new block the URL extension is /mine and it is a “GET” request so the user will

not input any additional information as seen in figure 44. The response would be the new mined

block. In “pretty” format you can see the details of the block, all the transactions and the block

reward for mining. Also, you can see the block header information in short format when clicking

on “visualize” as seen in figure 43. There is only one node connected to the blockchain, so the

proof of work algorithm is set to easy. The proof of work sets the hash value to begin with one

zero hexadecimal digit, as seen from the hash of the block. After the block has been mined, the

miner has verified all the transactions when mining, so if the user views the wallet now, there will

be deductions and changes.

Figure 42. Customer sending coins to a generator and getting tokens.

 47

 Figure 43. Block header.

Figure 44. Mining a block

 48

F. Viewing the blockchain

 To view the whole blockchain, the user needs to input the URL extension of /view_chain

and choose “GET”. No additional information required for this request. Figure 45 shows the

response in visualize format. You can see that there exists the genesis block (first block) as it is

hard coded into the blockchain with a previous hash value of zero and nonce value of zero since it

was not mined.

G. Create new node to join the blockchain server

 To create a new a node to join the blockchain server, a new connection needs to be

established. Type the command line “python3 main.py -p 5001” in the terminal as seen in figure

46.

Figure 45. The blockchain.

Figure 46. Command for starting up a new node.

 49

The first node is currently working on the default port 5000, so the new node will work on

port 5001. Then on Postman you input the URL extension /node and choose “POST” as seen in

figure 47. In the body of the request, you type the address of the node to be connected. You must

do it on both nodes, connect node 5000 to 5001 and vice versa. Once a new node joins the network

the proof of work algorithm will increase in difficulty. Figure 48 shows the block header of a block

mined on port 5001, you can see the hash value now has two zero hexadecimal digits in the

beginning as opposed to only one digit when there was only one node. If you add more nodes the

proof of work gets even more difficult as shown in figures 49 and 50.

Figure 48. Connecting node 5000 to node 5001

Figure 47. Connecting node 5001 to node 5000

 50

H. Updating the blockchain

Now if you view the chain on the node that is working on port 5001, it will have a longer

chain with one extra block mined than in the node on port 5000 as seen in figure 51. The blockchain

must be the same on all nodes. So, each node must update the blockchain constantly by looking

through the network and obtaining the longest valid chain. So, the user must send the request

/update_chain on all nodes to unify the blockchain. It is a “GET” request as seen in figures 52 and

53. If the blockchain on the node has been replaced a message is displayed “chain was replaced”

alongside the new blockchain. If the node had the longest blockchain, then it would display “chain

is the longest, nothing was replaced” with the unchanged blockchain.

Figure 49. Mining a block with two nodes connected (hash value begins with two zero hex
digits)

Figure 50. Minning a block with 3 nodes (left) 4 nodes (right) connected to the
blockchain

 51

Figure 51. Blockchain on node 5001 (left) and on 5000 (right)

Figure 52. Chain was replaced in node 5000.

Figure 53. Blockchain in node 5001 was not changed.

 52

I. Checking the blockchain

 To check whether the blockchain is valid or has been corrupted, the user can validate the

chain by using the request /validate_chain and choose “GET”. If the blockchain was not

tampered with, it would return “The chain is valid” as seen in figure 54. If the blockchain was

edited it would return “The chain is corrupted” as seen in figure 55.

Figure 55. A valid blockchain.

Figure 54. A corrupt blockchain.

 53

CONCLUSION AND PROSPECTIVES

The final blockchain is built in Python and Postman is used to communicate with the

blockchain using HTTP requests. The blockchain is an account based blockchain with a

specialized wallet generation for smart grid applications. The hashing algorithm used is SHA3 256

since it is better than SHA2 256 that is used in majority of blockchain applications. The Proof of

work is based on the Bitcoin blockchain, and the proof of work difficulty increases when more

nodes connect to the blockchain. The transactions are digitally signed using special form of elliptic

curves called Edward’s curve which is better than using RSA since it is faster, more efficient, and

consumes less storage.

Challenges in building a blockchain:

• Absence of a universal programming language for blockchain programming

• Smart contracts implementation in blockchain requires studying a new programming

language “Solidity”

• Ensuring that the security of the hash algorithm will not be compromised anytime soon.

• The proof of work consumes a lot of computational power

The proposed Improvements on the blockchain is to include smart contracts using Python

to automate the transactions. Create new improved hash algorithms specialized for the blockchain

to improve its security. Create a new consensus mechanism which won’t consume a lot of

computational power. Look into a heterogenous blockchain where there are different blocks for

different sources of energy. For example, blocks to handle green energy, other blocks to handle

transactions for standard energy and a third type of block coming from nuclear energy.

 54

REFERENCES

[1] A.A.G. Agung and R. Handayani, “Blockchain for smart grid”, Journal of King Saud
University – Computer and Information Sciences, pp. 1-10, Jan. 2020.
Available at https://doi.org/10.1016/j.jksuci.2020.01.002

[2] T. Alladi, V. Chamola, J.J.P.C. Rodrigues, and S.A. Kozlov, “Blockchain in Smart Grids: A
Review on Different Use Cases,” Sensors, vol. 19, no. 22, pp. 1-25, Nov. 2019.

[3] M. Andoni, V. Robu, and D. Flynn, “Blockchain technology in the energy sector: A
systematic review of challenges and opportunities,” Renewable and Sustainable Energy Reviews
(Elsevier), vol. 100, pp. 143-174, Feb. 2019.

[4] E. Rykwalder, O. Leech, D. Cawrey, and M. Shen, “The Math Behind the Bitcoin Protocol,
an Overview,” CoinDesk, Dec. 2020.
Available at https://www.coindesk.com/math-behind-bitcoin.

[5] V.G. Martínez, L. Hernández-Álvarez, and L.H. Encinas, “Analysis of the Cryptographic
Tools for Blockchain and Bitcoin,” Mathematics, vol. 8, pp. 131-144, Jan. 2020.

[6] M. Raikwar, D. Gligoroski, and K. Kralevska, “SoK of Used Cryptography in Blockchain,”
IEEE Access, vol. 7, pp. 148550-148575, Feb. 2020.

[7] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System”, Oct. 2008.

[8] J. Aumasson, Serious Cryptography: A Practical Introduction to Modern Encryption, L.
Chun, 2017.

[9] “hashlib — Secure hashes and message digests“, Python, Jun. 2021.
Available at: https://docs.python.org/3/library/hashlib.html

[10] A. Ali, “Comparison and Evaluation of Digital Signature Schemes Employed In NDN
Network”, International Journal of Embedded systems and Applications(IJESA) Vol.5, No.2,
Jun. 2015.

[11] W. Palant, “Python LanguageGenerating RSA signatures using pycrypto”, RipTutorial, Sep.
2017. Available at https://riptutorial.com/python/example/19025/generating-rsa-signatures-
using-pycrypto

[12] D. Van Flymen, Learn Blockchain by Building One, Oct. 2020.

[13] V. Osetskyi, “What Are Smart Contracts and Their Use Cases in Business“, DZone, Jun.
2018. Available at: https://dzone.com/articles/what-is-smart-contracts-blockchain-and-its-use-
cas-1

[14] H. Rajora, “API Testing with Postman”, Toolsqa, Sep. 2018.

 55

Available at: https://www.toolsqa.com/postman/api-testing-with-postman/

[15] “HTTP response status codes”, MDN Web Doc, May, 2021.
Available at: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

[16] “Flask user’s guid”, PalletesProjects, Jun. 2021.

