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Abstract
The hydrology of mountainous watersheds in the western United States is sig-

nificantly influenced by snow year-round. It is widely known that topography

affects precipitation; however, the knowledge of how watershed rainfall designa-

tion methods affect streamflow is not well understood for high-relief areas. The

objectives of this study were to assess the predictive capability of the Agricul-

tural Policy/Environmental eXtender (APEX) model to simulate streamflow in a

snowmelt-dominated watershed with high spatial rainfall variability through (a) allo-

cating weather stations to sub-basins based on a conventional Thiessen polygon

method (CM) or a rainfall-elevation–based input (RE) and using an areal average

Parameter-Elevation Regression on Independent Slopes Model (PRISM) rainfall des-

ignation and (b) improving the snowmelt processes in the Price River watershed,

Utah. The updated APEX model with snowmelt parameters significantly improved

spring flood simulation. The RE was the most robust method in snowmelt and sea-

sonal streamflow simulations compared with the CM and PRISM rainfall designa-

tions. Adapting the APEX model to simulate snow-dominant complex terrains will

provide crucial water quantity and quality predictions for reliable environmental and

watershed management assessment.

1 INTRODUCTION

There is a long history of the practical use of distributed

watershed models for water resource assessment (Ogden et al.,

2001; Perrin et al., 2012; Refsgaard, 1997). Watershed mod-

els are used to evaluate the effect of different land man-

agement, climate change, and various streamflow scenar-

Abbreviations: APEX, Agricultural Policy/Environmental eXtender; CDF,

cumulative distribution function; CM, conventional method based on

Thiessen polygons; DEM, digital elevation model; NSE, Nash–Sutcliffe

efficiency; PU, prediction uncertainty; PRISM, parameter-elevation

regression on independent slopes model; PRW, Price River watershed; RE,

rainfall-elevation based input.
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ios affected by contaminants and amendments (Arnold &

Fohrer, 2005; Milly et al., 2005; Saleh & Gallego, 2007;

Shen et al., 2009). Distributed models are helpful for envi-

ronmental decision-makers and planners to better understand

the spatial and temporal variability of hydrologic compo-

nents. These tools can assess environmental issues and nat-

ural resource sustainability and simulate mitigation measures

(Bahremand & De Smedt, 2010; Chung & Lee, 2009; Ref-

sgaard & Abbott, 1990). Reliable forecasting by hydrologic

models relies on accurate spatial and temporal distribution

of input variables and consistent and dependable modeling

approaches and structures (Chaplot, 2005; Worqlul et al.,

2014).
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Precipitation is a primary driver in the hydrologic water-

shed process, such as streamflow, soil erosion, nutrient

dynamics, and crop growth (Arnold et al., 1998; Gassman

et al., 2007; Krysanova et al., 1998). An accurate representa-

tion of precipitation temporal and spatial distribution is essen-

tial. Data scarcity for model input and the hydrologic model’s

representation of watershed precipitation are significant con-

straints causing model uncertainty (Abbaspour et al., 2004;

Bahremand & De Smedt, 2010; Yaduvanshi et al., 2018).

There are multiple rainfall input designation methods applied

in hydrological modeling. Among these methods, the most

common rainfall designation method in hydrological mod-

els is to represent the watershed or subwatershed rainfall

by the nearest rainfall station. Hydrologic models, includ-

ing the Agricultural Policy/Environmental eXtender (APEX)

Williams et al., 1998), the Soil and Water Assessment Tool

(Arnold et al., 1994), and the Hydrologiska Byråns Vattenbal-

ansavdelning (Lindström et al., 1997), have the option to rep-

resent the watershed rainfall by a single proxy station because

of data scarcity. A landscape is heterogeneous with differ-

ent soils, land use, precipitation gradients, and topographies.

As data have become increasingly available, additional meth-

ods of rainfall designation are necessary to capture precipita-

tion more realistically within watersheds that can reflect their

topographies.

Several rainfall designation methods within the APEX

model have been tested previously (Sirisena et al., 2018; Tuo

et al., 2016). The conventional method based on Thiessen

polygons (CM) usage is common to watershed hydrologic

models. With the CM, the rainfall station closest to the

watershed center is assigned with the representative rain-

fall for the area. For this study, the APEX model was used

to evaluate the effect of the CM and rainfall elevation-

based (RE) precipitation allocation on streamflow simula-

tion and output uncertainty. The third designation relies

on the average rainfall estimation from the topographically

corrected Parameter-Elevation Regressions on Independent

Slopes Model (PRISM) (Daly et al., 1994). The PRISM data

were developed from gauged data and interpolated by incor-

porating elevation and landscape position. Even though there

are multiple spatial interpolations of precipitation data, such

as kriging, these methods require dense gauging stations to

develop the variogram model (Ly et al., 2011). The accu-

racy of these interpolation methods skills relies on the num-

ber of stations where data are available. In this study, because

there are a limited number of precipitation gauging stations,

the conventional method was compared with elevation-based

(RE) precipitation allocation (Saleh & Gallego, 2007; Spa-

davecchia & Williams, 2009) and PRISM data.

The study was applied in the Price River watershed (PRW)

located in the mountainous central part of Utah in the west-

ern United States. In this part of the United States, seasonal

snowpack is a natural water tower (Li et al., 2017). The study

Core Ideas
∙ Rainfall designation methods were evaluated for

streamflow simulation in a mountain watershed.

∙ Snowmelt simulation in APEX was revised to

adjust the timing of snowmelt.

∙ APEX performed better with the elevation-based

rainfall designation method than other methods.

was applied to evaluate the effect of rainfall input designation

on streamflow simulation using the APEX model. The APEX

model has been used as a semi-distributed biophysical model

and has proven an effective tool for simulating the hydrologic

process in diverse agro-climatic zones (Assefa et al., 2018;

Golmohammadi et al., 2014; Medvedev et al., 2015; Tuppad

et al., 2010). The specific objectives of this study were (a) to

evaluate the current APEX model’s precipitation input desig-

nation, which uses a CM approach to a rainfall elevation-based

(RE) precipitation technique and PRISM to improve precip-

itation designation in APEX, and (b) to improve the simula-

tion of snowmelt processes by refining conditions to trigger

snowmelt in the PRW.

2 MATERIALS AND METHODS

2.1 Watershed description

The PRW is located in the central part of Utah, spanning

between Carbon, Emery, Utah, Wasatch, Sanpete, and Duch-

esne counties within the Wasatch Range, a south-central

segment of the Rocky Mountains. The watershed covers

∼4,540 km2 as extracted from a 30-m resolution digital ele-

vation model (DEM). The watershed has a complex topogra-

phy, with elevation ranging from 1,409 to 3,182 m above mean

sea level and an average slope of 19%. Figure 1a–d shows the

watershed location, rainfall gauging stations distribution, and

elevation profile from northwest to southeast and southwest

to northeast cross-sections.

2.2 Climate and streamflow data

The gauged climate data were obtained from a national

database developed from ground station–based climate data

for the 12-digit watersheds (White et al., 2017). The data were

processed from 40,000 weather stations across the United

States in which missing data were filled using Shepard’s

inverse distance weighting (Shepard, 1968). Inverse distance

weights were applied to the nearest five stations on a daily
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F I G U R E 1 The Price River watershed (PRW). (a) The United States and Utah, where the PRW is located. (b) Elevation profile of cross-section

from northwest to southeast. (c) Cross-section from southwest to northeast. (d) Price watershed river network with 30-m digital elevation model as

background and rainfall gauging stations distribution, (e) soil map, and (f) land use map

basis because there are missing data among the surround-

ing stations as well. The climate data come from a stan-

dard network of stations equipped with Alter shields (wind-

shields) for reducing wind-induced under-catch. There are 38

ground rainfall observation stations inside or within prox-

imity of the watershed (Figure 1d). Fourteen stations have

continuous daily-recorded data for ≥75% of the time during

the study period (2000–2015). The annual average rainfall

exceeds 800 mm at high elevations but drops to 300 mm in

the downstream lowland area (Figure 1).
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F I G U R E 2 Rainfall-elevation–based (RE) relationship in the

Price River watershed (USGS gauge ID 09314500)

A rainfall–elevation relationship was developed using data

from all weather stations. Figure 2 presents a robust linear

relationship between annual rainfall and elevation, where the

elevation regimes captured 94% of the observed rainfall vari-

ability. The linear function indicates a nearly 2:1 relation-

ship that describes a precipitation lapse rate of 500 mm km–1.

The climate data are available at https://ars-usda.box.com/s/

5xljg6386n3gth4y035m3d2pwah61qtn (White et al., 2017).

The PRISM rainfall dataset is available on the daily time

step and can be obtained from https://prism.oregonstate.edu/

explorer/. The data were produced using the gauged climate

variables, DEM, and other spatial datasets (i.e., coastal prox-

imity, topographic orientation) to generate gridded precipita-

tion estimates at 4-km spatial resolution (Daly et al., 1997;

Radcliffe & Mukundan, 2017). The PRISM data may not be

accurate in regions where weather stations are sparse (Raleigh

& Lundquist, 2012), though the PRISM incorporated terrain

characteristics for improved accuracy.

The streamflow data from 2000 to 2015 were collected

from the USGS stream gauge (ID 09314500) located at the

outlet of the PRW (Figure 1d). The long-term average monthly

streamflow indicated that 65% of the runoff is generated

between January and June.

2.3 Description of the APEX model

The APEX model is a semi-distributed process-based agro-

hydrological model. In the APEX model, a watershed is

divided into sub-basins based on topography. Then each sub-

basin conceptually represents a unique combination of soil,

land use, and slope. The APEX model can simulate a detailed

landscape process on a daily time step, and the output can

be reported on a daily, monthly, or annual basis (Baffaut

et al., 2013). The model evaluates the effect of various field

and watershed management practices (e.g., streamflow, evap-

otranspiration, soil loss, water, quality, etc.) at multiple tem-

poral and spatial scales, including field or watershed scales.

Input data for the APEX model encompasses soil spatial data;

land management practices; landscape information; observed

streamflow; digital elevation modeling; and daily climate time

series data, including rainfall, temperature, wind speed, rela-

tive humidity, and solar radiation.

The current snowmelt routine in the APEX model is based

on the soil layer temperature threshold. The melted snow is

treated the same as rainfall for estimating runoff and hydrol-

ogy with rainfall energy set to zero (Williams et al., 2008). The

APEX model triggers the snowmelt subroutine when the aver-

age air temperature is above 0 °C. In mountainous watersheds

where a significant slope gradient on hillslopes exists, air tem-

perature at high elevations may not be well represented by

weather stations in lower elevations. The warmer daily aver-

age temperature measured at a weather station in the lower

elevation can trigger early snowmelts at high elevation subar-

eas where snow accumulates during the winter.

2.4 Spatial data

The soil map of the watershed was generated by combining

the two soil databases: the State Soil Geographic (16%) and

Soil Survey Geographic (84%). The soil map indicates that the

watershed consists of loamy soil (65.4%), sandy loam (19%),

and loamy sand (9%) (Figure 1e). The land use map collected

from the USGS National Land Cover Database (NLCD2011;

Homer et al., 2015) indicates the primary land use types in

the watershed are shrubland, 59%; evergreen forest, 24%; and

deciduous forest, 11%. The remaining watershed comprises

grassland, urban, open water, and alfalfa (Medicago sativa L.)

(Figure 1f).

2.5 Rainfall input designation

In APEX, rainfall volume in each subarea is represented by

the nearest single rainfall station to the centroid of the subarea

(Galván et al., 2014; Tuo et al., 2016). In a complex topog-

raphy with high topographic gradients and limited ground

rainfall observation stations, the current method of assigning

subarea rainfall using a single proxy rainfall station may not

be accurate if the rainfall station network is relatively more

sparse than subarea sizes.

Fourteen rainfall stations having missing data <25% of

the time during the study period were selected in the model.

With the CM, the model can only utilize five rainfall stations

closest to individual subareas. In the RE interpolation, the

linear regression model that characterizes how rainfall vol-

ume varies along different elevations (Figure 2) was used to

https://ars-usda.box.com/s/5xljg6386n3gth4y035m3d2pwah61qtn
https://ars-usda.box.com/s/5xljg6386n3gth4y035m3d2pwah61qtn
https://prism.oregonstate.edu/explorer/
https://prism.oregonstate.edu/explorer/
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T A B L E 1 The average rainfall of the different rainfall designation methods across the five rainfall regimes

Elevation regime Conventional method PRISM
Rainfall elevation–based
interpolation Rain gauges

m amsl mm

1,400–1,760 244 236 244 242

1,761–2,120 260 292 355 440

2,121–2,480 464 423 554 –

2,481–2,840 595 552 704 732

2,841–3,200 616 630 837 805

Note. amsl, above mean sea level; PRISM, Parameter-Elevation Regression on Independent Slopes Model.

predict the annual rainfall using the DEM. Next, the predicted

annual rainfall was classified into multiple rainfall regimes.

The classification applied natural breaks (Jenks) (De Smith

et al., 2007; Jenks, 1989). This technique is based on natu-

ral grouping (i.e., creating groups of similar values with the

least within-class sum of squared differences while maximiz-

ing the difference between groups). Finally, a representative

nearby rainfall station was designated per subarea in each rain-

fall regime to represent the spatial rainfall heterogeneity. The

grided PRISM rainfall data were aggregated to area-weighted

averages at the subarea level and then used as input to APEX.

In Table 1, the most notable information is that the distribu-

tion of rainfall across elevation regimes is similar between the

CM and PRISM methods. At the same time, the RE interpo-

lation differs the most from the CM and PRISM rainfall input

designations in high-elevation regimes.

2.6 Snowmelt module in APEX

Snowmelt is an important subcomponent of watershed hydrol-

ogy (Hock, 2003). During the winter season in the PRW, the

river freezes, and snowpack accumulates on the ground. The

accumulated snowpack melts in the spring months, providing

a higher runoff that can result in spring floods. The snowmelt-

driven flow is a dominant hydrologic process that contributes

37% of the annual streamflow to the Price River. In compari-

son, excess rainfall contributes to 19–25% of the annual flow;

the rest is contributed by groundwater return flow.

The most commonly applied snowmelt processes in a

watershed include the temperature index or the degree-day

models (Debele et al., 2010; Hock, 1998, 2003). The temper-

ature index or the degree-day model is based on the empir-

ical relationship between air temperatures and melting rates

(Braithwaite, 1995; Hock, 2003). This procedure is already

incorporated into the APEX model. In APEX, precipitation is

partitioned between rainfall and snowfall. If the average daily

air temperature and soil surface temperature are above 0 °C,

the precipitation is considered as rainfall; otherwise, the pre-

cipitation is considered snowfall and deposited on the land

(Williams et al., 2006). If snow is present for the day, the

APEX model estimates the actual snowmelt amount based on

topsoil temperature and solar radiation rate:

Snowmelt =
√
𝑇mx × SRAD ×

(
1.52 + 0.54 × 𝑓 × 2𝑇soil2+𝑇avg

3

)

where 𝑓 = 𝐴sno
𝐴sno+exp(α×𝐴sno+β)

(1)

where the snowmelt amount is expressed in mm d−1, which

is limited by the amount of snow present in mm of water; Tmx

is the daily maximum temperature in °C; SRAD is daily solar

radiation in MJ m−2 d−1; Tsoil2 is the daily temperature of Soil

Layer 2 in °C; Tavg is the daily average temperature in °C;

and Asno is the age of snowpack in days. The exponents α and

β are the slope and intercept, respectively, that characterize

the timing of snowmelt in the spring season. Default values

for these parameters are α = −2.395 and β = 5.34. Data on

snowpack accumulation and snowmelt volume were unavail-

able in the study watershed. Thus, the exponential coefficients

were refined using streamflow data to characterize snowmelt

process. Based on spring flood data at the watershed outlet,

these parameters were refined to α = −0.0017 and β = 5.26

to simulate optimum timing and magnitude of spring floods.

(Figure 3). As a result, the snowpack’s maximum number

of days to melt by 99% because the number of snow days

was increased from 20 to 96 d. During 2010–2015, the aver-

age monthly maximum snow accumulation increased from

18.5 mm in January to 41.2 mm in February, and the snow-

pack lasted ≥2 mo. In APEX, the increased volume of snow-

pack and extended duration of the snow-cover period led to a

significant volume of streamflow during March and May.

2.7 APEX model construction and
evaluation

The APEX model was evaluated multiple times with a prede-

fined watershed and river network to calibrate the model for

the different rainfall input scenarios (CM, RE, and PRISM).

The entire watershed was divided into 169 subareas to
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F I G U R E 3 The refinement of the snowmelt scaling factor Snow

accumulation during winter months is sensitive to the scaling factor in

the polymerase chain reaction. The refined scaling factor extends the

duration of snowpack until 99% loss of snow from 20 to 96 d in the

Agricultural Policy/Environmental eXtender simulation

capture the heterogeneity of soil type, land use, weather, and

topographic features. The calibration model parameters con-

trolling the simulated variables were selected from the litera-

ture (Wang et al., 2014). Before model calibration, the mini-

mum and maximum model parameters were determined based

on our understanding of watershed hydrology (Table 2). The

study period was divided into parameter estimation warm-up

period (2000–2004), calibration period (2005–2010), and val-

idation period (2011–2015).

The parameter sensitivity analysis and model calibration

were achieved using the APEX Calibration and UncerTainty

Estimator (Wang & Jeong, 2015), which uses a Dynamically

Dimensioned Search (DDS) algorithm to find the optimal

parameter combination within the specified model param-

eter space. The model’s parameter sensitivity analysis was

achieved by allowing the parameters to change simultane-

ously, followed by estimating the standardized regression

coefficient of the simulated variable (Alfano et al., 2015),

and was simulated 3,000 times for parameter optimization.

The sensitivity analysis provided insights into the contribu-

tion of the model parameter’s influence on the output vari-

able (streamflow). The sensitivity index shows the relative

strength of the parameters that influence the simulated vari-

able (streamflow). The performance of the different rainfall

input methods in the APEX model was evaluated based on

streamflow prediction accuracy, parameter uncertainty, and

output (simulated streamflow) uncertainty. In all simulations,

the current APEX model’s snowmelt routine was revised to

capture the snowmelt contributions to the runoff.

The performance of the simulated streamflow with the dif-

ferent rainfall inputs was evaluated with performance statis-

tics metrics, including percentage bias, which measures the

T A B L E 2 Agricultural Policy/Environmental eXtender model parameters used in model calibration and parameter estimation sensitivity

analyses for the three rainfall input designations

Rainfall input designation, parameter description
(range)a

Conventional Rainfall-elevation based PRISMc

SIb Rank SI Rank SI Rank
PARM92: Runoff volume adjustment (0.1–2.0) 2.76E-04 1 2.76E-04 1 4.05E-01 1

PARM49: Max. canopy rainfall interception

(0.0–15.0)

8.75E-03 2 8.75E-03 2 2.69E-01 2

PARM20: Runoff CN initial abstraction (0.05–0.40) 1.07E-01 3 9.42E-02 3 8.40E-02 4

PARM23: Hargreaves PET equation coeff

(0.0023–0.0032)

8.14E-02 4 8.51E-02 4 9.53E-02 3

PARM40: Groundwater storage threshold (0.001–1.0) 2.93E-01 5 2.93E-01 5 5.25E-02 5

PARM15 Runoff CN residue adjustment (0.0–0.3) 3.62E-02 6 3.82E-02 6 3.15E-02 6

PARM17: Soil evaporation-plant cover factor

(0.0–0.5)

2.99E-02 7 2.30E-02 8 2.77E-02 7

PARM91: Flood evaporation limit (0.001–1.0) 5.74E-01 8 5.74E-01 7 2.32E-02 8

PARM50: Rainfall interception coefficient (0.05–0.3) 1.36E-03 9 1.36E-03 10 1.03E-02 10

PARM90: Subsurface flow factor (1.0–10.0) 2.36E-02 10 2.36E-02 9 1.13E-02 9

PARM25: Rainfall intensity effect on Curve Number

(0.0–2.0)

3.29E-03 11 3.72E-03 11 2.79E-03 11

PARM16: Extends CN retention parameter (1.0–1.5) 1.78E-03 12 2.00E-03 12 1.05E-03 12

PARM61: Soil water upward flow limit (0.05–0.95) 9.46E-03 13 9.46E-03 13 1.00E-03 13

PARM5: Soil water lower limit top 0.5 m (0.0–1.0) 4.29E-04 14 2.76E-04 14 4.92E-04 14

PARM12: Soil evaporation coefficient (1.5–2.5) 2.79E-04 15 1.60E-04 15 2.26E-04 15

aThe model parameter range represents the possible minimum and maximum value of the parameter adopted from the APEX User Manual (Steglich & Williams, 2008).

CN, curve number. bSensitivity index. cParameter-Elevation Regression on Independent Slopes Model.
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average tendency of the simulated values to be larger or

smaller than those observed; R2; and the Nash–Sutcliffe effi-

ciency (NSE). The NSE is a normalized statistic that deter-

mines the relative magnitude of the residual variance com-

pared with the measured data variance (Nash & Sutcliffe,

1970). The NSE indicates how well the simulated data cap-

ture the pattern of the observed data. The value of NSE = 1

indicates a 1:1 match of the model simulation to the observed

data; NSE < 0 demonstrates that the observed data mean is a

better predictor of the measured variance than the model.

2.8 Output and parameter estimation
uncertainty

The optimal model parameter estimation distribution sets and

their respective simulated streamflow estimated values were

used to evaluate their parameter values and output uncertainty

levels. The behavioral parameter sets of the CM, RE, and

PRISM rainfall inputs were identified by applying a thresh-

old value of 15% from the optimal NSE values. The different

rainfall input model parameter estimates were used to gen-

erate cumulative distribution functions (CDFs) to evaluate

the uncertainty of the optimal model parameter values. The

understanding of model parameter value uncertainty ranges

was used to narrow the parameter calibration ranges and

reduce the model output uncertainty.

The model output uncertainty was compared (Her &

Chaubey, 2015) per method of rainfall input designation. The

uncertainty of the output values was measured by the percent-

age of data bracketed by 95% predicted uncertainty (PU) and

the average thickness of the 95% PU over dry and wet periods.

The 95% PU was calculated as the 2.5 and 97.5% level of the

behavioral parameter’s cumulative distribution, which is 15%

of the optimal solution.

3 RESULTS AND DISCUSSION

3.1 Effects of rainfall designations on
model performance

The strong association between annual rainfall and eleva-

tion relationship reveals the significant effect of topographic

relief affecting the watershed’s rainfall pattern with an R2 of

.94 (Figure 2). This demonstrates that the topographic relief

affects the rainfall pattern by obstructing the moist airstreams

and can create a combination of orographic and convective

rainfall (Spreen, 1947).

The performance of the PRISM data was compared with

the gauged-ground rainfall data stationed within the PRISM

grid (point-to-grid comparison) (Worqlul et al., 2014).

Figure 4 illustrates the comparison of the monthly average

gauged and PRISM rainfall (2000–2015). The PRISM data

captured the measured precipitation well, with a R2 rang-

ing from .75 to .96, which indicated that the PRISM rain-

fall captured 75–96% of the gauged rainfall variability with

an average of 91% and a median of 93%. Similar perfor-

mance of PRISM data was reported in mountainous areas,

including Kandal, Cambodia (Lee et al., 2014); South Korea

(Jeong et al., 2020); and the northwestern corner of Wash-

ington State, United States (Currier et al., 2017). Overall, the

PRISM data are well situated in mountainous terrains because

the data incorporate a conceptual framework that considers

orographic precipitation (Daly et al., 1994).

3.2 Sensitivity analysis

The results of the sensitivity analysis are listed in Table 2,

with the sensitivity index and their respective ranking. The

most sensitive parameters within the three rainfall input des-

ignations were runoff volume adjustment factor (PARM92),

maximum canopy rainfall interception (PARM49), and runoff

curve number initial abstraction (PARM20). It is evident from

the sensitivity ranking that surface runoff processes signifi-

cantly influence streamflow in the main channel. The model

parameters ranking 10–15 were excluded from further cali-

brations due to their negligible influence over the simulated

variable.

3.3 Impact of improved snowmelt
simulation

The simulated streamflow performance, with the original and

revised snowmelt routines, is presented in Table 3. In all cases

of rainfall input designation, the model’s performance statis-

tics indicate improvement with the revised snowmelt routine.

The simulated streamflow without snowmelt improvement

exhibited higher spring flood peaks that occurred in earlier

months when compared with the snowmelt improved output.

These shifts in spring floods influenced both central tenden-

cies and variances negatively. Among the three cases of rain-

fall designation, the RE interpolation yielded the most robust

correlation coefficients (R2: calibration, .83; validation, .64)

in streamflow.

3.4 Streamflow simulations with different
rainfall input designations

The simulated streamflow performances for the calibration

and the validation periods under the CM, RE, and PRISM

rainfall input designations are presented in Table 3. The sim-

ulated performances of the three rainfall input designation
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F I G U R E 4 Correlation between gauged rainfall and Parameter-Elevation Regression on Independent Slopes Model (PRISM) rainfall data in

the Price River watershed (2000–2015)

T A B L E 3 Performance of the original and revised Agricultural Policy/Environmental eXtender (APEX) model snowmelt routine for the

three-rainfall input designations

Rainfall input designation
Conventional
method

Rainfall
elevation-
based PRISM

Original APEX snowmelt

routine

Calibration (2005–2010) PBIAS –17.91 21.85 –5.76

R2 .23 .41 .19

NSE .01 .37 –12

Revised APEX snowmelt

routine

Calibration (2005–2010) PBIAS 2.56 15.60 21.50

R2 .58 .83 .57

NSE .54 .70 .55

Validation (2011–2015) PBIAS 6.15 16.14 19.60

R2 .40 .64 .55

NSE .36 .46 .32

Note. NSE, Nash–Sutcliffe efficiency; PBIAS, percentage bias (a negative value means that the model overestimated streamflow); PRISM, Parameter-Elevation Regression

on Independent Slopes Model.
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F I G U R E 5 Cumulative distribution functions (CDFs) of the most (a, b) and least (c, d) sensitive parameter estimate value ranges for the

behavioral solutions for the conventional Thiessen polygon method, Parameter-Elevation Regression on Independent Slopes Model, and

rainfall-elevation–based rainfall input designations

methods were compared among each other’s results to dis-

cern their significant variability in rainfall distribution due to

topography. The result indicated that the simulations are sta-

tistically significantly different from each other (α= .05), with

the RE and PRISM simulated streamflow being the most sig-

nificantly different. The CM rainfall designation to a subarea

by proximity performed similarly to the PRISM rainfall data.

The RE interpolation was the most accurate in capturing sea-

sonal streamflow trends (high flow or low flow). The CM was

the most robust interpolation for estimating the mean stream-

flow rate.

3.5 Uncertainty analysis

For each rainfall input designation, parameterization uncer-

tainty was evaluated by constructing the CDF for the parame-

ter’s complete and behavioral solutions. The behavioral model

parameters were extracted within the 15% threshold of the

optimal NSE. The analyses indicated 10, 32, and 151 behav-

ioral solutions for the CM, PRISM, and RE rainfall input

designations, respectively. The CDF of the most sensitive

and least sensitive parameters were constructed for the com-

plete and behavioral solutions in Figure 5. The most sensitive

model parameters, including PARM92 and PARM49, indi-

cated a narrow range of optimal solutions. However, the least

sensitive model parameters, such as PARM12 and PARM20,

showed a more comprehensive range of optimal solutions; this

indicates that nearly 100% of the model parameters’ calibra-

tion ranges could provide an optimal solution (Green & Van

Griensven, 2008). Regardless of rainfall input designation,

the CDFs provided considerable uncertainty of optimal solu-

tions of the least sensitive model parameters providing suit-

able fitting model parameter estimates throughout the model

parameter value ranges. In comparison, the most sensitive

model parameters indicated lower estimated uncertainty value

ranges by providing a narrow range of solutions for the three

rainfall designations.

The output uncertainty was evaluated using the simulated

streamflow within 15% of the best fit for the optimal solu-

tion. It was measured with the percentage of simulated flow

bracketed by 95% PU and by the average thickness of the 95%

PU over dry and wet periods (Figure 6). The result indicated

that RE rainfall designation had a higher output uncertainty.

On average, the thickness of the 95% PU was ∼1.36, com-

pared with 0.77 for the CM and 0.99 for the PRISM data. The
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F I G U R E 6 Output uncertainty of the

behavioral solution within 15% of the optimal

solution for the (a) conventional Thiessen polygon

method (CM), (b) rainfall-elevation based (RE)

method, and (c) the Parameter-Elevation

Regression on Independent Slopes Model method.

95 PPU, 95 percent prediction uncertainty

output uncertainty evaluated on dry and wet seasons indicated

that RE rainfall input designation has a higher output uncer-

tainty for both seasons.

A simplistic rainfall representation accommodates small

watershed–scale and field-scale models; however, to capture

elevation gradients with heterogeneous rainfall distributions,

a more rigorous method must be used for an accurate rep-

resentation of precipitation distribution. According to Masih

et al. (2011) and Tuo et al. (2016), a correct watershed repre-

sentation with realistic subarea development, including rain-

fall with the proxy rainfall station(s), needs the optimal tools

and understanding of the method of rainfall input with ele-

vation; otherwise, an ill-posed model structure and insuffi-

cient parameter valuation present further problems. There-

fore, improved prescription of rainfall inputs that consider

spatial variation is crucial.

4 CONCLUSION

The study evaluated the effect of precipitation input data des-

ignation in a high-elevation-gradient watershed on reproduc-

ing observed streamflow using the APEX model. Three sets of

precipitation datasets (i.e., gauge, elevation-corrected gauge,

and PRISM) were tested in the APEX model. Unlike the

conventional approach, whereby each sub-basin is assigned

with the nearest gauging station data to a sub-basin cen-

troid, both the elevation-corrected and PRISM precipitation

data were prescribed to each sub-basin. The model’s perfor-

mance was evaluated by comparing the simulated streamflow

with the observed streamflow using multiple performance

statistics. Additionally, the output and behavioral model

parameter uncertainty was estimated for each input rainfall

data source.
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Traditional rainfall representation in the APEX model is

simplistic, which could work reasonably at a field or water-

shed scale. For a large watershed with a significant elevation

gradient with a heterogeneous rainfall distribution, represent-

ing subarea rainfall with the proxy rainfall station will lead

to overparameterizing the model. Therefore, improved rain-

fall inputs, such as elevation-based rainfall designation and

elevation-corrected rainfall data like PRISM, are crucial. The

study indicated that the model parameter uncertainty is not

highly correlated with the rainfall input; however, the simu-

lated outflow indicated a significant variation based on the

rainfall designation because they provide different rainfall

data at spatial and temporal scales.
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