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Abstract: The effects of soil data sources on the performance of hydrologic model simulations remain
poorly understood compared to the effects of other data inputs. This paper investigated the effects
of different soil datasets in simulating streamflow and sediment yield using the Soil and Water
Assessment Tool (SWAT). Furthermore, potential improvements in watershed simulations were
evaluated by integrating field measured soil parameters (user soil) with global soil datasets. Five soil
datasets, namely user soil, AfSIS (Africa Soil Information Service), Food and Agriculture Organization
(FAO), and two integrated soils (User-AfSIS and User-FAO) produced by assimilating the user soil
with the latter two, were evaluated. The benefits of the user soil in improving streamflow simulations
to better replicate observed flow were greater at daily time steps than monthly. Compared to the
individual AfSIS and FAO soils, their integration with the user soil improved the daily Nash-Sutcliffe
Efficiency (NSE) by 0.19 and 0.17 during model calibration, respectively. Overall, all soils performed
relatively similar with monthly sediment yield simulations, which were improved when it was
integrated with the user soil. Based on selected rainfall events, the watershed response time was less
than 1 h, which suggests that the watershed has a quick runoff response time. This paper showed that
streamflow and sediment yield simulation performances of freely available global soil datasets can be
improved through integration with locally measured soil information. This study demonstrated that
the availability of local soil information is critical for daily hydrologic model simulations, which is
critical for planning effective soil and water management practices at plot and field scales.

Keywords: soil hydrology; hydrological processes; global soil datasets; soil data integration;
AfSIS; FAO

1. Introduction

Land and water management is at a critical junction in the Ethiopian highlands. Traditional land
management practices (e.g., fallowing, shifting cultivation) are becoming less common due to shortage
of arable land [1–5]. This is primarily due to the increased population and the need for more farmlands
and/or animal grazing [6]. Agricultural practices in most parts of the country are rainfed, and water
scarcity is rampant during most of the months while runoff and erosion are common during the short
rainy monsoon period [7]. Since hydrological, climate, and soil data are scarcely available in the region,
land and water management efforts rely on model simulations to understand hydrological processes by
fitting discharge and sediment yield at watershed outlets [8–11]. While some models, such as the Soil
and Water Assessment Tool (SWAT) and Water Erosion Prediction Project (WEPP) provide distributed
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results at Hydrological Response Units (HRUs) and sub-basin levels, most of the available models are
lumped, making their outputs less representative to the spatial variability of hydrologic processes [12].

While data requirements and levels of complexity vary among hydrologic models, climate, soil,
elevation, and land use data are commonly needed inputs [13–15]. The availability of such inputs at
optimum resolution, however, is often a major constraint of hydrologic modeling. This is a major
issue particularly in developing countries where data are scarce and are of poor quality. In this regard,
remote sensing products (e.g., precipitation, land use, digital elevation model) are becoming promising
to fill such data gaps [11,16]. While remote sensing products are reported effective to capture climate
and land use properties, representing soil data parameters using remote sensing remains difficult.
When remotely sensed soil data are available, they are often at coarse spatial resolutions and have
soil properties data only for the top few centimeters. Since soil is a critical medium that governs the
partitioning of precipitation into different water balance components such as runoff, evaporation,
and groundwater recharge, having high-resolution soil data plays an imperative role in improving
understandings of the watershed process and informing soil and water management policies [17,18].

Models contribute significantly to fill information gaps needed for planning and evaluating
the impacts of watershed interventions. Several models have been tested to simulate watershed
hydrological processes, such as streamflow, sediment transport, and nutrient transport in the Ethiopian
highlands, and most of the models were able to capture the process(es) well [7,19]. However, most of
the modeling efforts in the Ethiopian highlands relies on coarse-resolution soil data inputs, mainly
based on the FAO world soil database. The resolution of soil data affects the spatial distribution of
watershed characteristics through changes in soil properties, which thereby affects the prediction
accuracy of model outputs [17,18,20–22].

The other uncertainty related to soil data for hydrologic simulations in the Ethiopian highlands is
the choice of pedo-transfer functions. Most of these pedo-transfer functions are developed primarily
for temperate regions and estimate soil hydraulic parameters based on soil texture and other easily
measurable soil parameters [11], and there was uncertainty as to how accurately the Pedotransfer
functions represent sub-humid tropical soils. Bayabil et al. [23] investigated the reliability of commonly
used Pedotransfer functions, such as the Saxton and Rawls [24] that have been widely used to generate
soil hydraulic data for the SWAT model. They showed that the Saxton and Rawls [24] pedo-transfer
function can reasonably reproduce hydraulic soil properties in the Ethiopian highlands.

Previous studies on the spatial and physical analysis of soil parameters showed that the average
values of soil properties of the Food and Agriculture Organization (FAO) and African Soil Information
Service (AfSIS) datasets were comparable with field observations although the AfSIS and FAO datasets
fail to capture the spatial variability of certain critical soil parameters such as available water holding
capacity [23]. The soil datasets also differ in the number of horizons along the soil profile. However,
it warrants detailed investigation on how locally measured soils (hereinafter called ‘user soil’) and
globally available soil datasets, such as AfSIS and FAO, affect hydrologic simulations of watershed
processes. This paper, therefore, investigated the effects of using different soil datasets on hydrologic
simulations in a small (113 ha) Anjeni watershed in Ethiopia. The hydrologic simulations were
conducted using the SWAT model. SWAT is a physically based model developed to predict the impact
of land management practices on water, sediment, and nutrient in watersheds with varying soils,
land use, and management conditions [25]. The specific objectives were to evaluate: (i) The effects
of soil data sources on the SWAT model streamflow and sediment yield simulation performance; (ii)
the potential improvements in hydrologic simulations when locally measured user soil data were
integrated with globally available soil datasets (FAO and AfSIS) in the Anjeni watershed.
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2. Materials and Methods

2.1. Study Site

This study was carried out in the Anjeni watershed, a small (113 ha) agricultural watershed,
in the northwestern Ethiopian highlands (Figure 1). The Anjeni watershed was selected for this
study because of the availability of long-term streamflow and sediment concentration records at its
watershed outlet (Figure 1). In Ethiopia, continuous hydro-meteorological monitoring data are rarely
available at a watershed scale to support hydrological process understanding. However, at Anjeni
watershed, streamflow, sediment, and other watershed biophysical data were collected through
the Soil Conservation and Research Program [26–28], which is a collaborative project between the
Ethiopian Ministry of Agriculture and the Swiss Agency for Development and Cooperation (SDC).
The watershed has been serving as a hydrological and erosion monitoring site under this program.
Most of the watershed area (>80%) is covered with soils such as Alisols, Nitisols, and Cambisols that
were developed from basalt and volcanic ash [29]. The bottom part of the watershed has relatively
deeper Alisol soils; the mid and gentle slope parts of the watershed are covered by moderately
deep Nitisols; while the steep slope and upper parts of the watershed have shallow Regosols and
Leptosols [29]. On average, the watershed receives ~1600 mm rainfall. Daily average temperature
ranges between 9 ◦C and 23 ◦C.
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the location of the Anjeni Map in Ethiopia.

2.2. Data Inputs

2.2.1. Hydro-Climatic Data

The SWAT model requires daily climatic data to simulate watershed processes. Daily rainfall
and maximum/minimum temperature data for the period 1984–1994 were used to set up the model.
The rainfall and temperature data were obtained from a weather station near the outlet of the Anjeni
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watershed (Figure 2). The SWAT model also requires solar radiation, wind speed, and relative humidity
data, which were generated from the Climate Forecast System Reanalysis data [30]. The watershed has
a unimodal rainfall pattern and most of the rain occurs during the monsoon rainy season that lasts
between June to September [28].
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Figure 2. Maps of different soil data sources: (a) Food and Agriculture Organization (FAO) soil dataset,
(b) Africa Soil Information Service (AfSIS) soil database, and (c) user soil developed based on 42 filed
sampling points.

2.2.2. Streamflow and Sediment Data

Streamflow and sediment concentration data were monitored at the outlet of the Anjeni watershed.
The streamflow has been measured continuously since 1984 [27]. Sediment concentration was monitored
by grab-sampling 1 L water samples every 10- or 30-min interval. The sampling interval was decided
based on the color change of the stream water. The total sediment load was calculated from sediment
concentration in the water sample and the corresponding flow volume that was generated using the
rating curve of the watershed. Detailed information about runoff and sediment measurements at the
outlet of the Anjeni watershed are presented in Bayabil et al. [26,27].

2.2.3. Soil Data Sources and Integration Approach

This study evaluated the simulation performance of five soil datasets: Three single sources obtained
from field measurements (user soil), African Soil Information Service (AfSIS) [31], FAO Harmonized
soil datasets [32], and two integrated soils produced by combining the user soil with the latter two.

The user soil dataset used in this study were previously used by Bayabil et al. [23,28]. The user soil
database was developed based on field measurements at 42 locations in the Anjeni watershed by taking
soil samples from the top 30 cm. Field soil measurements consisted of bulk density, infiltration, soil
depth, soil texture, organic carbon content, and pH. Bayabil et al. [28] presented a detailed description
of the soil physical and chemical properties and the measurement techniques used. Point-based soil
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information was used to develop a spatial soil map that covers the entire Anjeni watershed using the
Thiessen polygon method in ArcGIS 10.4. The Thiessen polygon method generates polygons with
one sampling point per polygon and assigns soil property values measured at a sampling point to
the area within each polygon. As a result, 42 unique soil polygons were produced based on the same
number of soil sampling points. The AfSIS data provide soil information at 250 m spatial resolution
and contains most of the soil parameters for six soil layers [31,33], while the FAO dataset is available
at 1 km resolution and has two layers [32]. Figure 2 presents the spatial coverage of AfSIS and FAO
soils for the Anjeni watershed. The watershed is represented by a single soil type in the FAO soil
dataset [32] and with four soil types in the AfSIS soil dataset (Figure 2).

The three soil datasets have different soil physical and hydraulic parameters. Summary of soil
properties at different depths is presented in Table 1. Bayabil et al. [23] reported that the AfSIS and
FAO datasets can provide a diverse estimate of soil parameters but fail to capture the spatial variability
of actual field conditions. Moreover, they showed that user soils and global soils have their advantages
and disadvantages in hydrologic modeling applications. Unlike the global soil databases, the user soil
database has a finer resolution, but soil parameter measurements only for the top 30 cm. Therefore,
two more datasets were created to leverage the finer resolution capabilities of the user soil and multiple
layer information of the global soil datasets. The new soil datasets were created by replacing the top
30 cm soil information of the global datasets (AfSIS and FAO) by the soil parameters from the user
soil. For example, an integration of a soil that has two layers at a certain location in the FAO soil and
a respective soil in the user soil will result in a soil type that has a top layer with information from
the user soil and a second layer with soil information from the FAO soil dataset (Figure 3). The study,
therefore, used these five soil datasets to simulate the SWAT model and evaluate the performance of
the soil datasets to simulate streamflow and sediment yield in a case study in the Anjeni watershed.
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Table 1. Summary of soil physical and hydrologic properties at different depths for the user (1 depth), AfSIS (7 depths), and FAO soil databases (2 depths). ρd, AWC,
and Ks refer to bulk density, available water holding capacity, and hydraulic conductivity, respectively. Clay, Silt, and Sand refer to percentage textural classes.

ρd (g cm−3) AWC (cm3 cm−3) Ks (mm h−1) Clay (%) Silt (%) Sand (%)

Depth
(m) User AfSIS FAO User AfSIS FAO User AfSIS FAO User AfSIS FAO User AfSIS FAO User AfSIS FAO

0.05 1.1 0.1 2.9 44 30 26
0.15 1.1 0.1 2.3 44 30 26
0.20
0.30 1.3 1.1 1.3 0.25 0.1 0.2 1.2 1.6 8.1 41 46 43 34 29 31 25 25 26
0.60 1.1 0.1 0.8 53 25 22
1.00 1.1 1.2 0.1 0.2 0.6 12.4 54 54 24 25 22 21
2.00 1.1 0.1 0.5 55 23 22
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2.2.4. Land Use and Digital Elevation Model

Besides the soil data, land use, and digital elevation model (DEM) are basic spatial data required
by the SWAT model to discretize the watershed and define the Hydrological Response Units (HRUs).
The DEM and land use data were developed under the SCRP project. The DEM data have a spatial
resolution of 2 m, which was helpful to accurately capture the river networks, developed by the Center
for Development and Environment (CDE) at the University of Berne, Switzerland. The land use map
was developed by recording crop type in each plot and fully represents field conditions.

2.3. SWAT Model Setup

The SWAT model discretization with a threshold area of one hectare provided 37 number of
sub-basins. Three slope classes (i.e., <4, 4–8, >8%) were created for the Hydrologic Response Units
(HRUs) formation. Multiple HRUs were created within a sub-basin. The model setup provided a total
of 465, 201, and 164 HRUs from the User, AfSIS, and FAO soils, respectively.

SWAT has different options to calculate different biophysical processes in a watershed. This study
used the Soil Conservation Service’s curve number (CN) method to estimate surface runoff.
The Penman-Monteith method was used to calculate potential evapotranspiration. The routing
of water in the channels was determined using the variable storage routing method.

The Soil and Water Assessment Tool (SWAT) model is a physically based watershed model with
features that capture the spatial variability of biophysical parameters at Hydrological Response Unit
(HRU) levels, which is the smallest unit in a watershed represented with similar land use, soil type,
and elevation class. Although the model requires daily climate data, it can run at a daily or monthly
timestep. SWAT has been used throughout the world to test various watershed related processes
ranging from commonly used streamflow and sedimentation to nutrient transport, climate change,
best management practices, chemical transport and cycling, and farming practices.

The SWAT model uses the following equation (Equation (1)) to simulate the water balance of a
watershed [34].

SWt = SW0 +
t∑

i=1

(Pi −Ri − ETi −Wi −Qi) (1)

where SWt is final soil water content at time t (mm), SW0 is initial soil water content at time i (mm), t is
time (days), Pi is the amount of precipitation on day i (mm), Ri is the amount of surface runoff on day i
(mm), ETi is the amount of evapotranspiration on day i (mm), Wi is the percolation of water entering
the vadose zone from the soil profile on day i (mm), and Qi is the amount of return flow on day i (mm).

Similarly, SWAT simulates sediment losses from a landscape due to rainfall and runoff using the
Modified Universal Soil Loss Equation (MUSLE) developed by Williams [35], which is a modified
version of the Universal loss Equation. Williams [35] used the following equation (Equation (2)).

SY = 11.8×
(
Ri ×Rpeak ×Ah

)0.56
×K ×C× P× LS×CFRG (2)

where SY is sediment yield (tons/day), Ri is surface runoff volume (mm/ha), Rpeak = peak runoff rate
(m3/s), Ah is area of HRU (ha), and CFRG is coarse fragment factor. Meanwhile, the other parameters
of the equation are based on the description by Wischmeier and Smith [36] and K is soil erodibility
factor (0.013 ton m2 h)/(m3 tons cm), LS is length/slope factor, C is crop cover and management factor,
and P is practice factor.

2.4. Model Calibration, Validation, and Sensitivity Analysis

A total of 12 model parameters were selected for streamflow calibration and validation, while
for sediment calibration, 6 parameters were selected (Table 2). Model parameters considered for
calibration were selected based on literature recommendation [14,37–39].
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Table 2. Selected flow and sediment calibration parameters and their ranges.

Description Value Range

Flow parameters
r__CN2.mgt SCS runoff curve number ±0.15
v__ALPHA_BF.gw Base-flow alpha factor (1/days) 0.0–1.0
a__GW_DELAY.gw Groundwater delay (days) −25–100

a__GWQMN.gw Threshold depth of water in the shallow aquifer required
for return flow to occur (mm) 0.0–1000

a__GW_REVAP.gw Groundwater “revap” coefficient 0.0–0.18
v__ESCO.hru Soil evaporation compensation factor 0.5–1.0

r__SOL_AWC.sol Available water capacity of the soil layer (mm H2O/mm
soil) ±0.1

r__SOL_K.sol Saturated hydraulic conductivity (mm/h) ±0.1
r_SOL_BD Soil bulk density (g/cm3) ±0.2
r_HRU_SLP Average slope steepness (m/m) −0.1–0.15
r__OV_N.hru Manning’s “n” value for overland flow −0.1–0.15
r__SLSUBBSN.hru Average slope length (m) −0.1–0.15
Sediment parameters
v__USLE_P.mgt USLE equation support practices 0–1.0

v__SPCON.bsn
Linear parameter for calculating the maximum amount
of sediment that can be re-entrained during channel
sediment routing.

0.0001–0.1

v__SPEXP.bsn Exponent parameter for calculating sediment
re-entrained in channel sediment routing 1.0–1.5

v__CH_COV1.rte Channel erodibility factor. −0.05–0.6
v__CH_COV2.rte Channel cover factor. 0–1

v__USLE_C.plant.dat Min value of USLE C factor applicable to the land
cover/plant 0.001–0.5

where qualifiers “a_”, “v_” and “r_” represent absolute increase, replacement, and relative change to the original
parameter values, respectively.

The SWAT model parameters were calibrated using the Sequential Uncertainty Fitting version 2
(SUFI-2) algorithm in the SWAT Calibration Uncertainty Prediction (SWAT-CUP) tool [40,41]. In SUFI-2,
the level of uncertainty for a particular model is evaluated using p-factor and r-factor. The p-factor
informs the percentage of observed data bracketed within the 95 percent prediction uncertainty
(95 PPU) of the model while r-factor estimates the thickness of the 95 PPU. A p-factor close to 1 and
an r-factor close to 0 suggest a reasonable level of model uncertainty [42]. The model was calibrated
using observed streamflow and sediment data for the period 1988–1992 and 1990–1994, respectively.
Model simulation for the period 1984–1987 was used for model warm-up. Daggupati et al. [43]
recommend a model warm-up period of at least three years to properly initiate and balance stocks
within the watershed. The model was validated using independently observed streamflow data for
the period 1993–1994.

The evaluations of the model were conducted using the Nash-Sutcliffe Efficiency (NSE), which is
a normalized statistic that determines the relative magnitude of the residual variance compared to
the measured data variance [44]. An NSE value of 1 refers to a perfect match between observed and
simulated values, and an NSE value between 0 and 1 is considered an acceptable level of model
performance. An NSE value < 0 indicates that the observed mean is a better predictor than the
model [45].

3. Results and Discussion

3.1. Long-Term Observed Rainfall, Discharge and Sediment Yield

Long-term data analysis showed that the Anjeni watershed receives an average annual rainfall of
~1600 mm and a runoff of ~700 mm. The average annual sediment yield was ~26.0 Mg ha−1. Since the
watershed has a unimodal rainfall pattern, most of the streamflow and sediment losses occur during
the rainy monsoon period of June to September (Figure 4). Sediment yield is greater towards the end of
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the rainy season, suggesting a significant contribution of gully erosion once the soils become saturated,
perhaps at the bottom part of the watershed [3,5,46].
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Anjeni watershed.

The average soil loss from the Anjeni watershed is smaller than the average erosion rate that
Hurni (1988) estimated for the Ethiopian highlands (42 Mg ha−1); however, there are comparable
sized watershed such as the Maybar watershed where the soil erosion is far lower at 7.4 Mg ha−1 [47].
Soil losses between 31 Mg ha−1 and 530 Mg ha−1 were reported in Ethiopian watersheds where severe
gully erosion is prevalent [48].
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3.2. Effects of Soil Data Source on Streamflow Simulation

Uncalibrated model simulations from the five soil datasets (i.e., three independent and two
integrated soil datasets) consistently overestimated streamflow at the Anjeni watershed both on daily
and monthly time steps (Figure 5). While daily simulations appear to significantly overestimate peak and
low flows (Figure 5a), the monthly simulations seem to follow the pattern of the observed hydrograph
and capture low flows better (Figure 5b). Yet, the peak flows were significantly overestimated by all
soil datasets even in the monthly simulations (Figure 5b).
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It is a common practice to calibrate model parameters to mimic actual biophysical conditions in
watersheds. Moreover, unsatisfactory model performance with the uncalibrated model parameters
(Figure 5) suggested model calibration to fine-tune model parameters, thereby improving the streamflow
simulation efficiency at the watershed outlet. Ayana et al. [49], without calibration, reported that AfSIS
soils yield only marginal improvements in streamflow simulations compared to coarse resolution
soil data inputs. In this study, the model calibration significantly improved streamflow simulations
in the Anjeni watershed (Figure 6). Model calibration improved overestimation issues of the peak
flows especially for monthly simulations (Figure 6b). Overall, the simulated streamflow hydrographs
replicated the observed hydrographs well both during the calibration and validation periods (Figure 6).
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Compared to the AfSIS and FAO soils, the user soil performed best in simulating the streamflow
at a daily time step, while the AfSIS was the poorest. At daily time steps, the order of performance
in terms of NSE goodness-of-fit evaluation is the user, AfSIS, and FAO soil datasets both during the
calibration and validation periods (Table 3).

Table 3. Evaluation measures for daily and monthly streamflow simulations using different soil datasets.

Time Setup Soil NSE r2 p-Factor r-Factor PBIAS

Daily

Cal User 0.65 0.73 0.43 0.48 −40
Cal AfSIS 0.45 0.57 0.86 1.07 −49
Cal FAO 0.55 0.68 0.11 0.08 −41
Cal User-AfSIS 0.64 0.72 0.27 0.26 −33
Cal User-FAO 0.72 0.77 0.50 0.51 −31

Val User 0.78 0.77 0.35 0.47 −37
Val AfSIS 0.72 0.73 0.87 0.74 −43
Val FAO 0.71 0.75 0.90 0.98 −21
Val User-AfSIS 0.75 0.79 0.38 0.35 −32
Val User-FAO 0.73 0.77 0.19 0.36 −29

Monthly

Cal User 0.78 0.85 0.78 0.89 −30
Cal AfSIS 0.84 0.88 0.87 0.83 −13
Cal FAO 0.90 0.93 0.90 0.93 −12
Cal User-AfSIS 0.78 0.89 0.77 0.75 −30
Cal User-FAO 0.79 0.89 0.80 0.90 −30

Val User 0.83 0.93 0.83 0.70 −37
Val AfSIS 0.95 0.96 0.92 0.42 −11
Val FAO 0.95 0.95 0.96 0.49 −9
Val User-AfSIS 0.88 0.94 0.67 0.39 −31
Val User-FAO 0.90 0.95 0.79 0.51 −24

Replacing the top 30 cm information of AfSIS and FAO soils by information from the user soil
greatly improved the model’s performance at daily time steps. Model performances of User-AfSIS
and User-FAO datasets were better than their counterpart global soils (AfSIS and FAO) in stimulating
daily streamflow, in which increases in NSE values for User-AfSIS and User-FAO simulations were
0.19 and 0.17 during model calibration, and 0.03 and 0.02% during model validation, respectively
(Table 3). Similarly, reduction in PBIAS due to integration of the user soil with the AfSIS and FAO
soils was 16 and 10% during model calibration, respectively. However, improvements due to soil
data integration were better for the AfSIS soil compared to the FAO soil at daily simulations. Overall,
based on Moriasi et al. [45] model performance scale, daily streamflow simulations have ‘very good’
ratings, except model simulations with the individual AfSIS and FAO soils which resulted in 0.45 and
0.55 NSE values during the model calibration period, respectively (Table 3).

At monthly time step, the user soil when used alone and integrated with the AfSIS and FAO soils
did not improve streamflow simulations compared to the AfSIS and FAO soils (Table 3). The AfSIS
and FAO soils when used independently provided better model performances for monthly streamflow
simulations compared to user soil data both during calibration and validation. This suggests that
the shallow depth in the measured User soil could not capture the relatively longer timestep water
budget simulations. These findings have significant implications on the modeling and land and water
management planning efforts in the region.

For example, for process understanding, which relies on analysis at daily- or sub-daily time steps
in small watersheds, the use of detailed soil data at finer resolutions is warranted; however, for water
balance studies, which is often conducted at monthly or annual scale, use of coarser resolution data
that may have deeper soil profile may provide reasonable estimates. While this study showed that
integrating fine resolution data into coarser global datasets improve model simulation performance
at daily timestep, other studies have reported that the use of finer resolution soil datasets may
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not improve model performance. For example, Ye et al. [50], based on field observed soil data in
a sub-humid watershed in China, reported that fine-resolution soil data inputs did not improve
streamflow simulations at a larger watershed using the SWAT model. Similarly, Morias et al. [21]
observed no significant differences in monthly streamflow prediction of fine and coarse resolution
soil data inputs in their study at three sub-watersheds within the Fort Cobb Reservoir Experimental
watershed in Oklahoma.

The Anjeni watershed has a very quick response time after storm events due to its short time
of concentration; mostly less than one-hour even during dry months (Figure 7). This suggests that
soil and water management planning that primarily intend to reduce runoff and sediment loss, and
improve moisture availability for crop production, should rely on daily or sub-daily model simulations.
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In the Anjeni watershed, monthly simulations are less promising for soil and water management
planning purposes that are aimed to alleviate drought impacts on crop productivity. Since monthly
simulations aggregate the daily hydrologic processes, it masks the daily variations of the water
budget components (e.g., soil moisture, runoff). However, it requires balancing the intended uses of
model outputs and scale of data resolution requirements (e.g., soil data) since data collection is costly,
time-consuming, and at times impractical to cover large areas [23]. For example, [18] highlighted
that the preparation of fine resolution soil data for model calibration requires greater efforts and
suggested that the benefits of fine-resolution data should be weighed against the resources needed.
Moreover, having high-resolution data may also increase the computational needs especially in larger
watersheds [18,22]. For example, although Anjeni is a relatively small watershed (113 ha), the user soil
resulted in almost three times the number of HRUs (465) compared to the FAO soil (164), while the
AfSIS soil had 201 HRUs. This suggested that as the watershed size and data resolution increases,
the number of HRUs will considerably increase, thereby requiring substantial computational resources
and time to make simulations.
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3.3. Effects of Soil Data Source on Sediment Yield Simulation

Similar to the streamflow simulation, the uncalibrated SWAT model could not effectively simulate
sediment yield. The uncalibrated model substantially underestimated the peak sediment yield
compared to the observed sediment yield. However, model calibration improved the sediment yield
simulation (Figure 8). The NSE value for the sediment yield simulations with the different soil datasets
varied between 0.72 and 0.77 (Table 4). Based on NSE values, all soil datasets performed similarly.
According to Moriasi et al. [45], sediment yield simulations by the AfSIS soil dataset were ‘good’ while
the user soil when integrated with the AfSIS soil provided a ‘very good’ model performance with NSE
values of 0.77 (Table 4).
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Table 4. Summary of Soil and Water Assessment Tool (SWAT) model performance in simulating
monthly sediment yield using different soil datasets at the outlet of the Anjeni watershed.

Soil Type NSE r2 p-Factor r-Factor PBIAS

User 0.72 0.72 0.38 0.45 5.0
AfSIS 0.74 0.75 0.27 0.20 13.5
FAO 0.72 0.72 0.31 0.46 10.2

User & AfSIS 0.77 0.77 0.44 0.50 4.8
User & FAO 0.74 0.74 0.38 0.46 5.3

The user soil when used alone or integrated with the AfSIS and FAO soils provided better p-factor
values (~0.26), which represents the percentage of data points bracketed within the 95PPU of the
model simulations [42]. In contrast, the AfSIS and FAO soils provided lower p-factor values of 0.17
and 0.12 each. Although unsatisfactory p-values, the sediment yield simulations provided smaller
r-factor values, which suggest a small level of model uncertainty. Abbaspour [42] suggested that a
higher p-factor and smaller r-factor values suggest a smaller level of model uncertainty.

Regardless of the studied soil datasets, the sediment yield simulations were consistently
underestimated compared to the observed sediment yield data. The average annual simulated
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sediment yield for the period 1990-1993 for the user, AfSIS, and FAO soils were 16.4, 18.2, and
15.8 Mg ha−1, respectively; while for the same period, the average annual observed sediment yield
was 26.1 Mg ha−1. Underestimation of sediment yield simulation by the SWAT model was also
reported in a similar sized Maybar watershed in the northern Ethiopian highlands [51]. The SWAT
model’s consistent underestimation of peak sediment yield may be related to its limitations to account
soil erosion from gullies. Field observations confirmed that active gully erosion exists in the Anjeni
watershed and its contribution to total soil loss was found significant, especially once the soils become
saturated [3,10,46]. Nyssen et al. [52] reported that gullying is among the dominant erosion processes
in most areas in the Ethiopian highlands.

3.4. Water Budget

Annual precipitation and potential evapotranspiration were 1656 and 1160 mm, respectively.
The simulated water yields with the AfSIS and FAO soil datasets were equal. The user soil, when used
alone or integrated with the other two soils, estimated the highest water yield but the smallest actual
evapotranspiration rates (AET) (Table 5). Smaller AET estimates for the user soil (and its integrated soils)
suggested a more water limiting environment, which is more representative of the actual conditions
in the Anjeni watershed than simulated by the other two soils. The AfSIS soil estimated the highest
surface runoff when used alone and integrated with the user soil (Table 5). Transmission loss (TLoss) and
groundwater revap did not show a significant difference among the soil dataset simulations.

Table 5. Summary of simulated water balance components for different soil types.

Parameter User Soil User-AfSIS User-FAO AfSIS FAO

Water yield 1205.3 1201.1 1200.3 1073.7 1073.7
AET 428.7 432.8 433.7 560.7 560.6

Surf_Q 594.5 680.0 593.0 640.7 554.3
GW_Q 550.5 441.3 540.7 388.4 457.3

Perc 573.4 464.2 563.6 411.1 480.2
Lat_Q 60.3 79.7 66.6 44.7 62.1

where Water yield is average annual water leaving the watershed (mm), AET is actual evapotranspiration (mm),
Surf_Q is surface runoff (mm), GW_Q is Deep aquifer groundwater contribution to streamflow (mm), Perc is water
that percolates past the root zone (mm), and Lat_Q is lateral flow (mm).

3.5. Sensitivity of Model Parameters

The curve number (CN) and soil bulk density (SOL_BD) were the top ranking and most sensitive
model parameters to simulate streamflow using the three individual soils, and two user soil integrated
with AfSIS and FAO soils (Figure 9). Overall, parameter rankings and sensitivity analysis showed
that model parameters related to soil hydraulic properties were significantly sensitive in streamflow
simulation, especially at daily time steps. Observed effects of integrating user soil with coarse
resolution AfSIS and FAO soils were apparent on soil hydraulic parameters, which are known
to affect hydrological processes at daily and sub-daily time steps. In contrast, however, model
parameters related to groundwater showed higher ranking and sensitivity at monthly simulations
since groundwater takes several days to respond. As a result, the ground water ‘revap’ coefficient
(GW_REVAP) and groundwater delay (GW_DELAY) were the most sensitive parameters for monthly
streamflow simulations. Based on field observations, soils in the study watershed are poorly managed
and have compacted topsoil. Since surface runoff generation processes are primarily affected by
hydrological parameters of the topsoil, the presence of such poorly managed top soils led to quick
watershed response time. As such, daily simulations are appropriate to represent the actual hydrological
processes in the watershed and thereby inform policy and management decisions related to soil and
water conservation.
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4. Conclusions

This study showed that the user soil, which has a finer spatial resolution, that better represents
the spatial variability of soil hydrologic properties, improved hydrologic simulations when used
independently or integrated with global soil datasets (AfSIS and FAO), especially at a daily time step.
Moreover, this study showed that the integration of locally measured user soil data with global coarser
resolution soil datasets (AfSIS and FAO) can enhance streamflow simulations, especially at a daily
time step. However, the coarser resolution soil datasets such as the AfSIS and FAO soils could be
effectively used to simulate monthly streamflow. This suggests that such coarse resolution soil datasets
could be applicable for water balance studies in watersheds and sediment yield simulations, which are
often performed at monthly or annual timescales. This study concluded that finer-resolution, locally
collected soil datasets could be optimal for daily hydrologic simulations; however, freely available
global soil datasets can also be integrated with locally measured soil information to achieve better
hydrological simulations at daily time steps than the individual global soil counterparts. Hydrologic
simulations should capture actual biophysical processes such as watershed response time, soil moisture
dynamics, runoff generation, etc., as these factors are critical in soil and water management decision
making. In rainfed farming systems, which are predominant in the study area, a few dry or wet days
may have a significant impact on crop growth, yield, and produce quality. As such, field measured
user soil’s finer resolution that helps daily hydrological processes understanding will play significant
importance in soil and water management decisions.
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