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ABSTRACT 

 

Drinking water distribution systems (DWDS) in the United States utilize approximately 

2% of the nation’s total energy (DOE, 2021). The 2014 US Department of Energy (DOE)Report 

states 39.2 billion kWh energy is used in drinking water distribution systems (DWDS) pumping 

and aeration (DOE, 2014). If optimization techniques were implemented and the energy 

consumption were to be reduced by 10%, the saving would equate to 3.14 billion kWh annually 

(Mohsen, 2016). As DWDS continue to face challenges in water scarcity and rising energy cost, 

DWDS have shown an interest in improvement through the application of modern data science 

tools. This study performs a proof of concept on a coupled hydraulic and optimization model 

method to support engineers in optimization analysis.  The joined Water Network Tool for 

Resilience (WNTR) hydraulic model and EPANET supports analyses through minimizing user 

error, automating manual processes, and increase efficiency. The WNTR hydraulic tool coupled 

with optimization algorithms provides hydraulic engineers an invaluable tool. The tool allows 

users unlimited flexibility in the desired algorithm applications and tuning parameters, which 

allows researchers to effectively quantify results and identify the best algorithmic approach
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1. INTRODUCTION 

This research paper focuses on identifying optimization tools and methods to support 

DWDS pump schedules optimization to minimize energy consumption. Researchers estimate 

DWDS pump scheduling energy can be optimized by 10%. DWDS have interest in optimization 

throughout the system due deteriorating infrastructure, decrease availability in natural resources, 

and increasing energy rates.  First, a literature review summarizes the general concept of hydraulic 

modeling, optimization components, optimization methods, and an overview of related studies in 

the last five decades. Studies on DWDS Optimization began in 1970 due to emerging hydraulic 

modeling software tools and have since increased in complexity and frequency. Second, the pump 

schedule optimization methodology is presented. The objective function formula for minimizing 

energy consumption, pump schedule decision variables, and system pressure constraints are 

introduced. The hydraulic and optimization models are coupled through several software’s tools, 

such as Python, Jupyter Notebook, EPANET, and WNTR. A pseudo code is presented to 

demonstrate the process logic and flow. Third, the coupled hydraulic and optimization model tool 

is presented in detail. Last, final concluding remarks on the effort and identified future research 

are presented.    

1.1 Industry Background and Need for Pump Energy Scheduling Optimization  

DWDS and wastewater system in the United Stated utilized approximately 2% of the 

nation’s total energy (DOE, 2021). The 2014 US Department of Energy (DOE)Report states 39.2 

billion kWh energy is used in DWDS pumping and aeration (DOE, 2014). If optimization 

techniques were implemented and the energy consumption were to be reduced by 10%, the saving 

would equate to 3.14 billion kWh annually (Mohsen, 2016). Further, energy savings could be 
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related to equivalent emission rate per kWh generated. The energy saving related to prevent of 

greenhouse gasses (GHG). This study solely focuses on energy optimization, but the relate GDG 

prevention is noteworthy.   

Furthermore, an ongoing challenge in DWDS is the ability to benchmark performance of 

a given pump station. A 2019 study managed by the Water Research Foundation (WRF) and 

advised by the DOE, gathered data from 18 water utilities worldwide to create a standard 

benchmark method (Smith, 2019). The data included 48 pumps stations and 177 pumps. A pump 

performance index (PPI) was presented to normalize pump performance.  PPI included 

efficiency limitation, where total dynamic head (TDH) maximum efficiency is reached at 92% 

and 2.725 kWh/ML/m. Figure 1 shows the performance the real system pump performance. It is 

clear from the figure efficiencies in pump performance can be improved. Several researchers 

estimate DWDS optimization techniques could provide at minimum 10% reduction in annual 

energy costs (Jamieson, Shamir et al. 2007); (Abiodun and Ismail 2013).  

 

Figure 1.1 PPI Water Utilities (Smith, 2019) 
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There is a current gap in existing technologies and application in DWDS. A survey found 

10% of DWDS metered data is utilized regularly, yet 80% of the water utilities expressed an 

interest in utilizing data science applications, such as Machine Learning and Optimization Tools, 

and perform real-time analytics within the next few years (Kadiyala, 2018). The water industry 

has shown an increased interest in smart technologies, which integrates real-time hydraulic 

modeling with “big data” management and IoT. Much of the water sector has not implemented 

“smart” hydraulic modeling technologies, but a few utilities have done so due to the high cost 

and risk associated with limited water supplies. 
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2. LITERATURE REVIEW 

Several operation optimization methods have been studied for DWDS pump operations 

since the 1970s, such as linear programming, nonlinear programming, dynamic programming, 

and meta-heuristic methods. Hydraulic simulation and optimization models coupled could 

provide engineers valuable information for system operations. The following sections provide a 

comprehensive literature review on publications related to minimizing energy consumption and 

related costs through coupled hydraulic and optimization models.  

Pump optimization is dependent on proper design and operation. This study focuses on 

optimal pump operation. Pump design and operation cannot exist independently. A high-level 

review on best practices for pump design and common mistakes can be referenced Appendix A.  

  

2.1 DWDS Hydraulic Simulation 

Hydraulic modeling software performs steady state or extended period calculation 

analyses, where the before of a pressure node is simulated. The system included a network of 

pipes, nodes, pump, values, storage tanks, and reservoirs. Hydraulic models are utilized as tools 

to support DWDS engineers. Two common uses included support for current operations and 

planning future design. Literature studies on pump schedule operations often utilize the 

EPANET simulations. EPANET is widely recognized and utilized open-source hydraulic 

modeling software. The EPANET user interface is shown in Figure 2. Due to computational 

inefficiencies, hydraulic modeling has also been replaced by artificial neural networks (ANN).  

Several other methods have been utilized in literature, such as hydraulic equations, GRA-NET 
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based on gradient method, and newton-Raphson. Several studies do not specify the method 

utilized. Overall, EPANET is most utilized within literature.  

 

Figure 2.1 EPANET User Interface (EPA) 

 

2.2 DWDS Pump Schedule Optimization  

2.2.1 Objective, Decision Variable, & Constraints  

A literature review performed by Mala-Jetmarova (2018) evaluated 128 papers on DWDS 

different optimization objectives from 1977 through 2017. The study identifies DWDS common 

design problems, the general classifications throughout optimization publications, and future 

research studies. DWDS fall within two categories; new or existing systems, where system 

optimization related to strengthening, expansion, and rehabilitation may be beneficial. DWDS 

optimization relates to either system design or operations. The subcomponents to DWDS include 

pipe, valves, tank, and pumps.  
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Figure 3 shows the breakdown of publications focused on design or operation optimization 

models. The categories include Design at 41%, Strengthening at 25%, Operation at 16%, 

Expansion at 9%, and Rehabilitation at 9% of total publications reviewed. The limited studies on 

rehabilitation and expansion may be attributed to strict design constraints often associated with a 

heavily developed and highly populated areas. Optimization models related to operations have 

historically been limited to due to computational power and existing algorithms. A DWDS 

hydraulic operations are non-linear in nature. Nonlinear programming (NLP) methods were rarely 

utilized by water utilities through the 1970s and 1980s due to challenges with computational 

power, but utilization have increased in popularity since the 1990s due technological 

advancements in hardware processing and improved algorithms. 

 

Figure 2.2 DWDS Optimization Application Areas (Mala-Jetmarova, 2018) 

An optimization model is comprised of 1) objective functions, 2) decision variables, and 

3) constraints. Figure 4 shows the breakdown of objectives, constraints, and decision variables per 

the 12 publications reviewed by Mala-Jetmarova (2018). The single objective approach returns 

one optima solution, which provides simplicity to the decision-making process. The multi 
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objective approach returns a set of trade off, or Pareto, solutions, which increase complexity and 

requires post processing. 

 

Figure 2.3 Optimization Model Formulation by:  (a) Number of objectives, (b) number of 

constraints, (c)number of types of decision variables, in an optimization model. (Mala-

Jetmarova, 2018) 

 

2.2.2 DWDS Optimization Methods  

The majority of DWDS optimization studies have focused on stochastics methods, such 

as heuristic and metaheuristic approaches.   A popular type of stochastic approach is the Darwin 

based genetic algorithm. Deterministic methods have been historically utilized less in DWDS 

application but have increased in the recent years due to improvement in computation power. 

Deterministic methods include mixed integer linear programming (MILP) and nonlinear 

programming (MINLP). Figure 5 shows the breakdown on optimization model categories used in 

literature related DWDS.  
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Figure 2.4 Optimization Methods by Year (Mala-Jetmarova, 2018) 

Linear programming (LP) has recently increased in popularity for optimizing DWDS pump 

operations. MIP is often utilized to determine optimal schedule and the method has been applied 

for optimal pump operations throughout literature. Throughout literature on DWDS pump 

operational optimization the computation struggles related to MINLP are addressed through an 

approximate MILP solution, where the non-convex constrains, such as pressures throughout a 

system, are approximated through a piecewise linear function. A large potential risk with LP is the 

loss of data through the over simplified linearization of nonlinear hydraulic parameters.  

Nonlinear programming (NLP) methods were rarely utilized by water utilities through the 

1970s and 1980s due to challenges with computational power, but utilization has increased in 

popularity since the 1990s due technological advancements in hardware processing and improved 

algorithms. The method incorporates the realistic characteristic of the variables and promotes 
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greater accuracy in results. A few potential drawbacks associated with NLP include computational 

difficulties associated to the non-convex pressure dataset and discrete pump operation decision, 

where a solution may not be obtained as a system increases in complexity and size.  The application 

of MINLP for pump scheduling does not properly scale with increased timesteps and reaches the 

sizes comparable to real world DWDS (Menke, 2016).  A few popular NLP methods are the 

steepest-ascent or reduced gradient method, Newton-Raphson method, and Levenberg Marquardt 

method. Additional techniques, such as relaxations and substitutions, may increase computational 

efficiency. 

Dynamic Programming (DP) is a popular optimization method for water utilities. The 

approach with DP divides the problem into stages with a decision at each stage. The “shortest 

path” optimization problem follows DP logic. Issues with DP are related the large number of 

calculations and limitations on the size of the system. Notable studies on pump station operation 

optimization with DP have been performed by Lansey et. al (1994), Bene et. al (2013), and Kim 

et al (2015). Recent studies have continued to struggle with the inherent limitation DP places on 

the allowable system size. Bene et al. (2013) applied a modified approach to DP where model is 

split into small pieces and the search space is reduced to increase computational efficiency. Kim 

et al (2015) applied DP and effectively supported a DWDS with 6.3% cost saving to pump 

operations or a 19.2% cost saving using standby pumps.  

 

Heuristic or Meta-Heuristic methods have historically been popular methods for DWDS 

analyses. A heuristic method is an applied problem-solving approach that identifies an 

approximate solution adequate for the required purpose.  A heuristic approach is burdened by a 

large and complex system. Meta-Heuristic genetic algorithms, a subset of Darwinian 
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evolutionary programs, have been used for series of pump on/off decisions to minimize cost. 

Genetic algorithms operators include crossovers and mutations. A generic algorithm utilizes a 

combination of possible solutions, where each the solution is comprised of binary or continuous 

values. Figure 6 illustrated the components of a genetic algorithm.   

 

Figure 2.5 Population, gene, and chromosome (Chuang et al., 2015) 

The set of all given possible solutions is called the generation. The first-generation set is 

comprised of random values. The process of natural selection is applied to arrive to the next 

generation sets. The fitness function and constraints are utilized to determine whether the 

performance of a given combination.  Figure 7 illustrates the logic and progression of a genetic 

algorithm. 

 

Figure 2.6 Genetic Algorithm Flowchart Scheme (Chuang et al., 2015) 
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The primary operators in genetic algorithms are crossover or mutation methods. A 

crossover may incorporate a single point, two-point and k-point, uniform, and ordered method. A 

mutation may incorporate a flip bit, swap, inversion, and scramble method.  

Kelner and Leonard (2003) utilized a genetic algorithm to determine optimal pump operations 

for fixed and variable speed pumps. Oden et al. (2015) utilized a multialgorithm genetically 

adaptive method to minimize search space and concluded the method was suitable for real-time 

controls. In the United Kingdom, a WDS utilized genetic algorithms to support real-time operation 

logic control. Meta-Heuristics struggle with computation efficiency in large water distribution 

(Mala-Jetmarova, 2015).  
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3. METHODOLOGY 

The application of hydraulic simulation models for the pump scheduling optimization 

evaluates the current hydraulic condition of a water utility system and the hydraulic constraints to 

meet the required consumer diurnal demands.  

First, the hydraulic simulation model converges on flow and pressure results and energy is 

calculated.  Second, the optimization model determines a pump schedule combination, and the 

results are uploaded to the hydraulic model (Ormsbee, 2009). The approach develops a loop 

between a DWDS hydraulic simulation model and an optimization model. The network simulator 

solves for the hydraulic constraints and the optimization. The process is illustrated in the Figure 8 

below.  The optimization model solves for the optimal solution given the hydraulic and operational 

conditions.  

 

Figure 3.1 Optimization & Hydraulic Model Loop (Walksi, 2003) 
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The study incorporates various tools to perform the simulation and optimization loop 

analysis. The tools include Python, Jupyter Notebook, EPANET, and WNTR. The python module 

“Platypus” was selected over existing python libraries “PyGMO”, “Inspyred”, and ”SciPy” due to 

the multi objective capabilities. The study focuses on a single objective, but “platypus” gives the 

option to further extend the analysis. A brief summary on EPANET and WNTR are provided 

below. 

EPANET is a public domain hydraulic simulation software developed by the United States 

Environmental Protection Agency (EPA). The application is intended to support DWDS. “Today, 

engineers and consultants use EPANET to design and size new water infrastructure, retrofit 

existing aging infrastructure, optimize operations of tanks and pumps, reduce energy usage, 

investigate water quality problems, and prepare for emergencies” (EPA, 2021). The study utilized 

EPANET Example 3 available on GitHub online, which has been extensively utilized through 

literature.  

The Water Network Tool for Resilience (WNTR) is an open-source python package for 

hydraulic simulation first released in 2016 by the EPA and the Department of Energy’s Sandia 

National Laboratory. The python package allows for seamless transfer of EPANET input file data 

to Python. The process is illustrated below in Figure 9, where EPANET input data file is uploaded, 

and the hydraulic simulation computed within Python. WNTR is compatible with EPANET 2.2, 

and Python 3.8. Common python tools can be utilized with WNTR, such as Pandas, NumPy, SciPy, 

and Matplotlib. WNTR may be downloaded through GitHub online.  
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Figure 3.2 WNTR Framework (Bunn, 2018) 

 

3.1 DWDS Hydraulic Simulation  

The study utilized EPANET Example 3 available on GitHub online, which has been 

extensively utilized through literature.  Figure 10 shows a schematic of the system. EPANET 

Example 3 included 92 junctions, 2 reservoirs, 3 tanks, 116 pipes, 2 pumps, and 0 valves. Hazen-

Williams (HW) headloss formula was utilized. The analyses were a 24-hour extended period 

simulation (EPS) with a 1-hour timestep.  
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Figure 3.3 EPANET Example 3 Schematic (EPA) 

 

Furthermore, WNTR converts all units to International System (SI). The proper unit for all 

data is provided below:  

• Length = m 

• Diameter = m 

• Water pressure = m (this assumes a fluid density of 1000 kg/m3) 

• Elevation = m 

• Mass = kg 

• Time = s 

• Concentration = kg/m3 

• Demand = m3/s 

• Velocity = m/s 

• Acceleration = g (1 g = 9.81 m/s2) 

• Energy = J 

• Power = W 

• Mass injection = kg/s 

• Volume = m3 
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3.2 DWDS Pump Schedule Optimization 

 

3.2.1 Objective, Decision Variable, & Constraints  

Equation 1 express the objective function to minimize energy in relation to pump 

schedules. expresses energy consumption in kWh and accounts for time duration. Pump energy 

usage directly relates to flow, head, and time duration. Pump energy usage inversely relates to 

the efficiencies.  

min 𝑓(𝑥) = 𝐸𝑇𝑜𝑡𝑎𝑙 (𝑥)     (Eq. 1) 

 

Equation 2 expresses energy consumption in kWh and accounts for time duration. Pump 

energy usage directly relates to flow, head, and time duration. Pump energy usage inversely 

relates to the efficiencies. “The energy use is specific to each operating point of the pump; 

therefore, to determine the total energy use of the pump in a give period, the energy uses that 

occur at each operating point within the period should be summed “(Smith, 2019) as shown in 

the following equation.   

𝐸𝑇𝑜𝑡𝑎𝑙 = ∑ (
𝑄∗𝐻

𝜂𝑝∗𝜂𝑚∗𝜂𝐷
)

𝑁

𝑖=1
∗ 𝑡𝑖      (Eq. 2) 

Where, 

Q = flow,  

H = head, 

𝜂𝑝= pump efficiency %, 

𝜂𝑚= motor efficiency %, 

𝜂𝐷= drive efficiency %, and 

t = simulation time duration.  
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Furthermore, the total combined efficiencies may be expressed as the water-to-wire 

efficiency shown in Equation 3 below.  

𝜂𝑤𝑤 =  𝜂𝑝 ∗  𝜂𝑚 ∗ 𝜂𝐷      (Eq. 3) 

The wire-to-water efficiencies are assumed to follow average values shown in Table 1 

(Smith, 2019). EPANET WNTR user manual recommends the water to wire efficiency of 0.75. 

This study utilized the lower value between the two sources at 0.67 for the water-to-water 

efficiency value. 

Table 3.1 Conceptual Calculation of the Efficiencies (Smith, 2019) 

Efficiency Low Medium High 

Pump Efficiency 65 75 85 

Motor Efficiency 95 95 95 

Pump & Motor 62 67 81 

 

The decision variable relates to the pump status (on/off) and combination. The schedule 

vector is passed into the simulation model, the simulation runs, and the pressure results are 

passed the optimization model. The model has 1 hour time steps and total duration of 24 hour or 

1 day. The pump schedule combination considered the possible binary on/off status of each 

pump. Pumps with variable speed drives (VSD) were not considered in this study. Figure 11 

provides an example of the pump scheduling vector.  
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Figure 3.4 Pump Schedule Combinations (Chuang et al., 2015) 

The hydraulic simulation model represents a digital copy of the water distribution system 

field condition, which incorporate most hydraulic constraints:  

• Pipe: Diameter, Length, Roughness Coefficient (Hazen-Williams) 

• Nodes: Elevations  

• Valves: Type, Size, CV Flow Curve  

• Appurtenances (i.e., Valves, Fittings): Friction Losses 

• Source Flow/ Reservoirs 

• Time Varying Base Demands   

• Base Demand and Daily Usage Pattern (Diurnal Patterns): Wholesale, commercial, 

industrial, irrigation, residential  

• Storage Tanks: Volume Size, Dimensions 

• Pumps: Capacity, Flow and Efficiency Curves 

• Pressure Planes/ Hydraulic Zones 

Furthermore, EPANET allows for demand driven (DDA) and pressure driven analyses 

(PDA). The default setting for the program is DDA, where the demands must be delivered 

regardless of pressure conditions. The DDA hydraulic simulations setting was utilized for the 

study. In order to match real conditions, DDA meets the used defined demand conditions and 

acceptable pressures within the system must be maintained. The Texas Commission of 

Environmental Quality (TCEQ) minimum pressure requirements for DWDS is 35 psig per the 
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Title 30 Texas Administration Code (30 TAC) Section 290.444. This study followed the TCEQ 

requirement and incorporated the constraint where pressures must be equal to or greater than 35 

psig and the system demands are met.  

 

3.2.2 Genetic Algorithm Application 

Python libraries were installed through “pip” tool for python. The decision variable for 

the problem is the pump status on/off throughout a 24-hr time horizon, which is represented by 

binary integer values of 1 or 0. This is known as the chromosome representation. The 

chromosomal representations are mapped to the solution through a fitness function. The 

constraint of a problem can be classified as hard and soft constraints.  
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4. ANALYSES & RESULTS 

4.1 Simulation & Optimization Model, Proof of Concept 

The following section outlines the pseudo code for the developed tool to support pump 

scheduling optimization. Appendix B present the python code providing a proof concept. There 

is limited amount of literature on the novel EPANET-WNTR and GA approach. It is 

recommended extend study to contain additional decision variables and be applied to larger 

systems.  

A pseudo code outlining the required intermediate set was developed to support building 

the final python script for models. The pseudo code is provided below.  

a. Hydraulic Model Function  

Note: The key objective is to obtain energy consumption. 

- Obtain Flowrate 

- Obtain Head  

- Calculate Energy  

b. New Pattern Function  

Note: The Key Objective is to pass the new pump schedule to hydraulic model  

- Upload hydraulic file  

- Modify pump schedule 

- Simulate hydraulics (Utilize function above to compute energy) 

- Identify the minimum pressures in system  
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c. Execute Genetic Algorithm 

- Provide data on hydraulic file  

- Identify pump, pump pattern id, and critical nodes 

- Genetic Algorithm will pass new pump schedules 

- Energy is calculated through steps a and b 

 

The final python script product developed is provided in Appendix B.  

 

4.2 DWDS Pump Optimization Future Research 

The complexity of DWDS cannot be overstated. The use of data science tools, such as 

simulation models, optimization models, machine learning, and artificial intelligence can support 

DWSW implement sustainable design and operations through the system. Figure 12 shows a 

study identified the following categories for DWDS optimization improvement. Identified 

categories include model inputs, algorithm and solution methodology, search space and 

computation efficiency, and solution post processing.  
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Figure 4.1 Future Research Challenges (Mala-Jetmarova, 2018) 

For example, the majority of literation operation optimization is limited in the number of 

objective function and decision variables. Furthermore, the majority of study model small in 

comparison to real world models. Additionally, studies fail to within the industry. And they fail 

to incorporate Figure 13 shows the breakdown of test DEDW Network Size. The networks 

studied are small in comparison to real cities. The commercial software Bentley Water GEMS 

estimates 1000 pipes are required for every 10,000 population. 
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Figure 4.2 Test DWDS Network Size (Mala-Jetmarova, 2018) 

Literature has a limited number of studied on pump scheduling optimization DWDS. Few 

studies have reviewed the performance of pump control, whether on/off or VSD. Additionally, 

studies on pumps with throttle control vales or bypass control. Throttle control vales can be 

values asset support pumps to operate closed to the design BEP in the case the pump was 

originally over design and sized too large. Figure 14 shows scenarios to consider in pump 

schedule optimization. Pump schedules and throttled valves percent opening may be both 

considered for energy optimization.  

 

Figure 4.3 DWDS Pump Considerations for Optimization (Smith, 2019) 
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Machine learning methods, such as, Artifical Nueral Networks(ANN) have been 

eveloepd to reperesent the hydraulic surrogate model. ANN have the ability  to accurtately 

reprenstne complex and non-linear systems. The reason to use ANN’s is the computation time is 

significationly faster than a hydraulic simualtion. These metamodels do not perform energy or 

mass balance computations, but trained to handle DWDS inputs and genreate outputs as shown 

in Figure 15.  

 

Figure 4.4  Schematic of ANN for DWDS (Abkenar, 2016)  
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5. CONCLUSION 

The application of optimization model for DWDS for pump scheduling has been explored 

for decades, but methods continue to face various challenges in feasible solutions for large 

complex systems. The 2016 release of WNTR allowed hydraulic engineers to perform analyses 

in conjunction with Python and Python processing tool. The joined WNTR hydraulic model and 

EPANET supports analyses through minimizing user error, automating manual processes, and 

increase efficiency. The WNTR hydraulic tool coupled with optimization algorithms provides 

hydraulic engineers an invaluable tool. The tool allows users unlimited flexibility in the desired 

algorithm applications and tuning parameters, which allows researchers to effectively quantify 

results and identify the best algorithmic approaches.  
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 APPENDIX A  

 

Pump sizing and scheduling play a large role in the energy optimization of water utilities. 

Historically, the key objective in pump selection was to meet consumer demands and limited to 

readily available, “on the shelf”, pre-manufactured equipment with low “front-end” cost (Karassik, 

2008). The information age has promoted greater communication between the engineer and 

manufacturer and improved the pump selection process, yet aged infrastructure remains in the 

field.  

A hydraulic model with seasonal demand scenarios can be utilized to determine if the pumps are 

designed properly and the system can obtain higher levels of efficiency. Pumps incorrectly sized 

in the design process have little margin for increased optimization. Oversizing pumps is a 

common error in the pump selection process. The projected future maximum consumer demands 

are overestimated, and the minimum consumer demands are often overlooked. It is critical to 

incorporate the minimum consumer demands. Projected consumer demand is often based on 

census data and population studies. The pump’s operational flexibility must be considered, where 

pump performance is evaluated at the projected maximum and minimum consumer demands 

through the estimated pump life expectancy.  

In addition to optimal efficiency, a pump sized incorrectly will encounter mechanical problems. 

Common consequences are pump cavitation, internal recirculation, poor flow control, excessive 

maintenance, and frequent bearing replacement. In situations where the pump has been sized 

inaccurately, a life cycle cost (LCC) assessment must be conducted to evaluate if replacement or 

rehabilitation make economic sense. The water industry has access to extensive support tools for 
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pump selection and LCC, which include resources developed for municipalities. The United 

States Department of Energy (DOE) and the Hydraulic Institute (HI) partnership offer free 

resources and tools online, such as the HI “Pump Unit Energy Saving Measures” spreadsheet.  
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