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ABSTRACT

The evolution of atmospheric features across multiple spatiotemporal scales combine to influ-

ence the ability for environments to support severe convection and produce damaging winds, hail,

and tornadoes. Determining the nature of these influences can help improve our understanding

and prediction of these severe convective hazards. Such advances are especially pertinent for

the Southeast US whose storm characteristics – namely the prevalence of storms occurring in

high-shear, low-CAPE environments (HSLC), for which predictability is inherently lowered, and

socioeconomic vulnerabilities – compound existing forecast uncertainty. This dissertation sets out

to reduce these uncertainties by examining how variability across three spatiotemporal scales –

climate , synoptic, and storm-scale – contribute to the prevalence and underlying characteristics of

Southeast severe convection. On the climate scale, several atmospheric and Gulf of Mexico SST

patterns are shown to modulate Southeast storm environments in ways that favor the development of

widespread tornado outbreaks. Furthermore, a subset of cool season outbreak patterns contribute

to the development of HSLC conditions, suggesting that their associated CAPE deficits have some

large-scale origin which may lend increased predictability to their associated tornadoes. On the

synoptic scale, storm environments evolving across local sunset are shown to change differently

depending on the amount of CAPE and shear present pre-sunset, contributing to subsequent changes

in storm mode and tornadogenesis frequency. Lastly on the storm-scale, simulations of low-CAPE

supercells occurring during this near-sunset period exhibit storm updrafts which increase in depth,

width, and strength in the presence of a rapidly destabilizing background environment. These

enhancements are primarily attributed to off-hodograph propagation, which act to increase storm-

relative flow beyond what is predicted by the base-state hodograph evolution alone. The sum of

these results serves to advance our physical model and prediction of Southeast US severe storms

and tornadoes.
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1. INTRODUCTION AND BACKGROUND

The focus of CONUS severe convective storms research for the last several decades has remained

largely fixed on the Great Plains and its associated storm characteristics, notably their increased

prevalence during late afternoon hours and warm season months (e.g., Kelly et al. 1978; Brooks

et al. 2003; Anderson-Frey et al. 2016; Anderson-Frey et al. 2017), as well as their prototypical en-

vironments marked by ample wind shear (both low- and deep-layer) and instability (e.g., Rasmussen

and Blanchard 1998; Thompson et al. 2003; Thompson et al. 2013). As a result, our understanding

and prediction of storms in different environments has progressed slower by comparison. This

scientific deficit, however, has given rise to new areas of severe convective storms research in recent

years, including a renewed focus on the southeastern United States.

Long recognized as a secondary area of interest in the US storm and tornado climatologies

(Kelly et al. 1978; Schaefer et al. 1980), the Southeast presents a unique challenge to researchers

and forecasters alike. Numerous studies have noted that the tornado characteristics of this re-

gion represent a departure from those associated with Great Plains severe convection. These

include the increased prevalence of nocturnal and cold season events, as well as non-supercellular

modes (Brooks et al. 2003; Trapp et al. 2005; Ashley et al. 2019). Furthermore, many of these

non-traditional tornadoes occur in environments which, while strongly sheared, lack appreciable

buoyancy – hence their moniker high-shear, low-CAPE (HSLC; Dean and Schneider 2008; Guyer

and Dean 2010; Sherburn and Parker 2014; Sherburn et al. 2016). While studies like Gropp and

Davenport (2018) have characterized the response of high-CAPE storms to the cooling and stabi-

lization of the near-sunset period known as the early evening transition (EET), it remains unclear

how the EET looks for pre-sunset HSLC environments and what impacts this evolution has on the

maintenance of HSLC storm updrafts. These complicating factors result in overall reduced proba-

bility of detection and increased false alarm rates for their associated convective hazards (Brotzge

et al. 2013; Anderson-Frey et al. 2016; Anderson-Frey et al. 2019). Numerous socioeconomic

factors further contribute to this uncertainty and tornado vulnerability, including increased mobile
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home density, high poverty rates, and projected changes in population beyond the suburbs (e.g.

Simmons and Sutter 2007; Ashley et al. 2008; Strader et al. 2017). The sum of these factors make

Southeast storms not only difficult to predict, but particularly dangerous as evidenced by recent

deadly severe weather outbreaks (e.g, CDC 2012; May and Bigham 2012; Knupp et al. 2014).

While substantial inroads have been made by the aforementioned studies in characterizing

Southeast storms and their associated predictability, several questions remain regarding the physical

processes contributing to Southeast storm maintenance and tornadogenesis, particularly during

evening hours and in HSLC environments. For instance, to what extent do large-scale atmospheric

patterns modulate Southeast environments in ways that can favor widespread severe convection and

increased risk for tornadoes? Once these favorable environments are in place, how do they evolve

on smaller spatiotemporal timescales, such as during the EET, and influence the characteristics and

tornadogenesis potential of subsequent storms? Lastly, what factors govern the maintenance and

forcing of low-CAPE storm updrafts occurring during this transitional period, and how do these

compare to the factors relevant to high-CAPE storms?

This dissertation seeks to investigate these differing scales of environmental evolution through

a variety of analysis methods – including advanced statistical methods, utilization of storm reports,

reanalysis data, and near-storm proximity soundings, and high-resolution modeling. Chapter

2 of this analysis will begin on the seasonal/sub-seasonal and regional scales, examining the

numerous broad features that have been shown to influence regional storm environment, including

jet stream/streak strength and positioning (Uccellini and Johnson 1979; Kloth and Davies-Jones

1980; Maddox and Doswell III 1982) , Gulf of Mexico sea surface temperatures (Thompson

et al. 1994; Edwards and Weiss 1996; Molina et al. 2016; Jung and Kirtman 2016), and other

large scale variations in temperature, pressure and moisture as they relate to Southeast tornado

outbreaks. Chapter 3 will examine the near-storm environments of Southeast storms occurring in

the vicinity of the EET, and determine how pre-sunset CAPE and shear values influence subsequent

environmental evolution and the ability for storms to persist into evening hours. Chapter 4 will

incorporate these environmental evolution pathways into an idealized modeling framework towards
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understanding EET impacts on updraft characteristics in HSLC storms. Finally, Chapter 5 will

synthesize the findings from the precedent chapters and propose future avenues for Southeast and

HSLC research.
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2. SOUTHEASTERN U.S. TORNADO OUTBREAK LIKELIHOOD USING DAILY

CLIMATE INDICES*

2.1 Introduction

A multitude of thermodynamic and kinematic factors spanning multiple spatiotemporal scales

influence the formation of tornadoes, such that forecasting them remains challenging. Despite

this complexity, numerous studies over the preceding decades have identified storm environment

characteristics that favor tornadoes and tornado outbreaks. These features range from the synoptic

scale, including the positioning of upper and mid-level troughs, jet streaks, air-mass boundaries,

regional moisture and instability, and low-level jet variability (e.g., Uccellini and Johnson 1979;

Kloth and Davies-Jones 1980; Maddox and Doswell III 1982; Atkins et al. 1999; Thompson and

Edwards 2000; Munoz and Enfield 2011), down to more localized characteristics of the near-storm

environment, such as convective available potential energy (CAPE), storm relative helicity (SRH),

lifting condensation level (LCL), and both deep (0-6 km) and low-level (0-1 km) shear (e.g., Davies

and Johns 1993; Rasmussen and Blanchard 1998; Markowski et al. 1998a; Edwards and Thompson

2000; Thompson et al. 2003; Rasmussen 2003; Thompson et al. 2007).

Though questions still remain regarding how synoptic and mesoscale processes affect regional

storm environments, less is known about global-scale patterns that lead to conducive synop-

tic/regional patterns for tornadoes. A number of recent papers have probed the relationships

between various large-scale circulation and pressure patterns and CONUS tornadoes. Perhaps the

most thoroughly explored of these relationships is with the El Niño Southern Oscillation (ENSO),

which has been known to alter the latitudinal position of the jet stream (Miller 1972; Ropelewski

and Halpert 1986; Smith et al. 1998; Nunn and DeGaetano 2004), thus influencing synoptic weather

patterns and the likelihood of widespread tornadic activity (Schaefer 1986; Johns and Doswell III

1992). Earlier attempts to constrain this ENSO-CONUS tornado relationship yielded varying con-

* Reprinted with permission from "Southeastern U.S. Tornado Outbreak Likelihood Using Daily Climate Indices"
by M. C. Brown and Nowotarski, C. J., 2020. J. Climate, 33(8), 3229-3252., ©2020 by American Meteorological
Society.
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clusions. Several such studies initially cast doubt on whether ENSO phase has any significant impact

on the frequency (Schaefer and Tatom 1999; Marzban and Schaefer 2001) or strength (Agee and

Zurn-Birkhimer 1998; Schaefer and Tatom 1999) of tornadic activity. Knowles and Pielke (2005)

noted increases in the prevalence of strong tornadoes and "large number outbreaks"corresponding

to La Niña conditions (i.e., the cool phase of ENSO). Cook and Schaefer (2008) asserted that

winters with neutral ENSO conditions in tropical Pacific SSTs were associated with larger and

more frequent tornado outbreaks, particularly in contrast with El Niño (warm phase) conditions.

These and other related studies (e.g. Bove 1998, Sankovich et al. 2004) were somewhat limited,

however. Examples include large variability and the presence of non-meteorological biases within

the tornado report database, and limited sample size – both in relation to tornadoes themselves, and

methodological characterization of tornado/outbreak days – potentially limiting the robustness of

these results.

More recent papers have sufficiently addressed these limitations and provided more agreement

on this subject. Allen et al. (2015) identified robust increases in tornado and hail reports across

portions of the Central Plains and Southeast in association with La Niña conditions, and noted a

latitudinal shift in these reports in response to mean seasonal positioning of the jet stream, surface

cyclogenesis, and its associated instability axes. Furthermore, this study demonstrated that the

influence of ENSO on CONUS severe convection extends well into spring months, in contrast to

much of the earlier literature which suggested that any potential ENSO impacts would be isolated

to winter months. Cook et al. (2017) came to similar conclusions regarding the favorability of La

Niña conditions for severe convection, but instead through the lens of tornado outbreaks. The most

recent additions to the literature have further contextualized this relationship by considering ENSO

interactions with other parts of the climate system and in terms of its intrinsic variability. Molina

et al. (2018) considered the interplay between ENSO and Gulf of Mexico (GOM) SSTs – a key

source of moist instability associated with increased hail and tornado counts across portions of the

US during both the warm season (Molina et al. 2016; Jung and Kirtman 2016) and cool season

(Thompson et al. 1994; Edwards and Weiss 1996). In particular, this study found that both the
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frequency and location of significant tornadoes (EF2+ on the enhanced Fujita scale) vary by ENSO

phase and strength, and warm GOM SSTs can enhance tornado probabilities even in ENSO-neutral

phases. Molina and Allen (2019) further solidified this GOM influence by performing trajectory

analysis of parcels participating in tornadic storms and finding that the GOM accounts for over

half of attendant moisture contributions in both spring and winter, though the exact origin and

length of these trajectories exhibit some seasonal dependence. Lastly, Allen et al. (2018) found that

variations in ENSO intensity influence the seasonal peak and temporal onset on CONUS tornadoes.

Other studies have turned to different global patterns to explain variability in CONUS tornadic

activity. Lee et al. (2013) found that warm tropical Pacific SSTs which develop during the transition

between dominant ENSO phases (Trans Niño) are more conducive to spring tornado outbreaks,

though the authors themselves note that the weak statistical strength of this relationship. Both

Thompson and Roundy (2013) and Barrett and Gensini (2013) suggested that certain phases of the

Madden-Julian Oscillation (MJO) modulate large-scale circulations in ways that favor or impede

tornadogenesis during the spring, though the phases they deem favorable vary depending on the

month chosen for analysis. Tippett (2018) agreed that tornado likelihood seems to vary by MJO

phase, but also noted that the exact connection is sensitive to how one defines their MJO and tornado

day metrics. Munoz and Enfield (2011) related the negative Pacific-North American (PNA) phase

to a strengthening of the intra-Americas low-level jet, which subsequently enhances moisture flux

into the Mississippi and Ohio River basins. Elsner et al. (2016) tangentially noted a decrease in

tornadic activity across the Southeast during the positive North Atlantic Oscillation (NAO) phase.

Lastly, some recent studies (Trapp and Hoogewind 2018; Childs et al. 2018) have suggested that

Arctic conditions may influence the frequency of CONUS tornadoes via modifications of North

American jet stream patterns, albeit in opposite seasons – July for the former study, winter the

latter.

Though these studies have provided valuable insights regarding global-scale influence on severe

weather variability, the methodology adopted often limits the applicability of their results. While

several of the papers mentioned above have begun to investigate cool season tornadoes, the focus
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of this literature remains skewed towards warm-season storm environments and their associated

tornadoes. Though the warm season coincides with a peak in tornadic activity across much of the

CONUS, a secondary peak in the winter months has been documented within the southeastern US

(Fike 1993; Guyer et al. 2006). Many of these cool-season storms form in environments that deviate

substantially from the prototypical high-shear, high-CAPE storm environment (Guyer and Dean

2010; Sherburn and Parker 2014; Sherburn et al. 2016). These high-shear, low-CAPE (HSLC)

storms are inherently more difficult to predict (Dean and Schneider 2008; Dean and Schneider 2012;

Anderson-Frey et al. 2019). Hence, studies addressing Southeast US cool season tornadoes are

valuable for increasing our physical understanding of these atypical storms. Furthermore, several

teleconnection patterns and their subsequent environmental responses exhibit substantial seasonal

and intraseasonal variability (e.g., Barnston and Livezey 1987; Thompson and Edwards 2000, and

more recently, Gensini and Marinaro 2016, Allen et al. 2018, Molina et al. 2018). Thus, studies

focused solely on warm-season months – or interpreting cool-season results through the lens of

warm-season teleconnections – may fail to capture physically relevant patterns inherent to the cool

season. The same can be said in terms of geographical location, in that a teleconnection phase

relevant to Great Plains tornadoes may not be important for Southeast tornadoes, and vice versa,

as evidenced by geographical variability in the findings of several of the studies discussed thus far.

This study will attempt to address these concerns by considering teleconnections and their possible

association with Southeast tornadoes across multiple seasons.

Second, several of the aforementioned studies conflate weak and significant tornadoes when

analyzing storm environment in order to alleviate issues stemming from limited sample size,

but proximity sounding studies have shown that the near-storm environments which spawn weak

tornadoes (EF0 and EF1) bear greater semblance to nontornadic storm environments (Thompson

et al. 2003). Therefore, our analyses will focus on the storm characteristics as they relate to outbreaks

of significant tornadoes (EF2 and higher) as defined by the Storm Prediction Center (SPC). With

these factors taken into consideration, the following research questions will be addressed:

1. On what timescale(s) and during which seasons do global teleconnection patterns most
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distinctly correspond with tornado outbreaks in the southeastern US?

2. How are the storms coincident with these patterns temporally and spatially distributed, and

do these distributions differ from climatological averages?

3. How do regional atmospheric conditions evolve during these outbreak patterns, and how are

they physically linked with the teleconnections themselves?

2.2 Data and methods

2.2.1 Teleconnection data and indices

In light of previous research, a number of daily teleconnection indices were chosen to represent

variations of large-scale environmental features (e.g., the polar front jet, Pacific SSTs, etc.). Daily

indices for the Arctic Oscillation (AO), NAO, PNA, Eastern Pacific Oscillation (EPO), and Western

Pacific Oscillation (WPO) were obtained from the Climate Prediction Center (CPC 2012; data

available at ftp://ftp.cpc.ncep.noaa.gov/cwlinks/) and Earth System Research Laboratory (ESRL:

Physical Sciences Division 2019; data available at https://www.esrl.noaa.gov/psd/forecasts/refo

recast2/teleconn/). Daily Gulf of Mexico (GOM) SST anomalies are taken from the NOAA OI

SST V2 High Resolution analysis (Reynolds et al. 2007) and averaged over the Full GOM domain

established by Molina et al. (2016). These SST anomalies were then detrended using least squares

regression, since clustering techniques tend to group together recent SST anomalies due to the

warming trend in the dataset (Molina et al. 2016). Both the raw and detrended SST anomalies

(herein referred to as SSTA and SSTAD, respectively) are analyzed for completeness. Since this

SST record only extends back to September 1981, all of the chosen teleconnection patterns are only

considered from 1982 - 2017 for consistency.

2.2.2 Storm report data

In order to categorize severe convective activity, storm report data were obtained from the SPC

SVRGIS database (Schaefer and Edwards 1999), comprised of tornado, hail, and thunderstorm wind

reports from within the prescribed southeastern US domain (Fig. 2.1a) for the years 1982-2017.
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The reports were filtered following the methodology of Edwards (2010) to remove those reports

potentially influenced by tropical cyclones, for which their associated near-storm environment is

largely controlled by the tropical cyclone itself rather than large-scale atmospheric conditions.

Several limitations and biases pervade the observational records of storm events, including the

increase in reports due to improved technology, new reporting policies, and increased population

(e.g. Verbout et al. 2006, Doswell III et al. 2009; Brooks et al. 2014). To mitigate these problems, a

similar approach to previous teleconnection studies was adopted in which reports are consolidated

into storm days. For the purposes of this study, any day (12Z - 12Z) with 5+ wind or hail reports

or at least 1+ tornado report within the study domain is categorized as a severe convective (SC)

day. Other SC day thresholds were tested, but the chosen definition proved most successful in

removing false positive days (i.e. SC days flagged due to a few isolated wind and/or hail reports)

while still retaining days where large, spatially and temporally coherent groupings of severe reports

occurred. In addition to this SC day definition, days with no tornadoes are considered nontornadic

(NT), days with tornadoes of only F/EF 0 or 1 are considered weakly tornadic (WT), and days

with 1-5 tornadoes of F/EF 2 and above are considered significantly tornadic (ST), and days with

6 or more tornadoes of F/EF 2 and above were considered outbreak days (OB; akin to the violent

tornado days, or VTDs, in Thompson and Roundy 2013). Given these categorizations, with the

assumption that temporal trends in reporting biases are similar for all hazard types, the biases and

trends discussed above should not significantly affect our conclusions.

2.2.3 Self-organizing map (SOM) clustering algorithm

Daily teleconnection indices were gathered at varying lead times of 3 days, 1 week, 2 weeks,

1 month, and 2 months prior to each SC day – chosen somewhat arbitrarily, but with the intent of

covering the spectrum of potentially relevant temporal scales of teleconnection influence. These

time series were then clustered using self-organizing maps (SOMs), via the SOM Matlab Toolbox

(Vesanto et al. 2000). This statistical technique (Kohonen 1995), is essentially a non-linear principal

component analysis, and has been used in recent studies (e.g., Nowotarski and Jensen 2013;

9



Anderson-Frey et al. 2017; Nowotarski and Jones 2018) to objectively classify high dimensional

meteorological data. This technique clusters input data into characteristic nodes, using a grouping

function that preserves the topology of the data. The data (in this case, SC days) grouped into

each node can consequently be used to identify prominent modes of teleconnection variability and

examine how they lead to different storm characteristics, as opposed to averaging or correlation

techniques that might obscure multiple patterns leading to tornadoes or outbreaks.

A 3×3 SOM was created for all seven teleconnection indices (AO, NAO, PNA, EPO, WPO,

SSTA, SSTAD) at each of the five tested lead times across four seasonal periods following the

meteorological season convention | March/April/May (MAM), June/July/August (JJA), Septem-

ber/October/November (SON) | and December/January/February (DJF), for a total of 140 different

SOM configurations. Five additional SOM dimensions were also tested in order to assess the

sensitivity of the results to the SOM geometry. Though these additional SOMs will not be shown

explicitly, their results are discussed later to gauge the robustness of the identified patterns. One

sample SOM output (in this case, AO at a lead time of 60 days, during MAM) is shown for

reference in Appendix Figure B.1. After the SOMs were created, the percentages of nontornadic

(NT), weakly tornadic (WT), significantly tornadic (ST), and outbreak (OB) days matching each

node were computed. The statistical significance of each of these percentages relative to seasonal

averages (from 1982-2017) is tested, taking into account both the percentage of matches and the

size of the SOM node (i.e., the number of days grouped into a node). The z-statistic is calculated

following Barrett and Gensini (2013):

z =
pnode−pclimo√
pnode (1−pnode)

nnode

, (2.1)

where pnode is the storm type percentage within a given node, pclimo is the climatological percentage

for that storm type, and nnode is the number of days grouped into the analyzed node. Student’s t tests

are performed using this z-score with 95% confidence threshold to determine whether the nodal

percentages significantly exceed climatology. This alone, however, is not sufficient to determine
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whether a nodal pattern is a unique predictor for a given storm type. Even if a given storm type

percentage is statistically significant, if the node contains a small number of those storm events

compared to seasonal totals, it has limited value as a predictor. Thus, a second threshold is applied

to isolate only the nodes which account for an above average (> 100%/9 nodes ≈ 11.11%) fraction

of a given type of storm event. Null patterns, defined as patterns whose storm type percentages

are significantly lower than climatology and contain an above average fraction of their null event

type(s), were also considered in order to assess pattern uniqueness. For NT and OB days, null

events are defined as all other event types, whereas the null for WT is NT and the null of ST is both

NT and WT. Subsequent analyses will focus primarily on the nodes and null nodes which pass both

of the outlined criteria.

Nodal kernel density estimations (KDEs) of diurnal and seasonal storm report time and location

are created for each seasonal period, as well as each of the selected nodes. This methodology mirrors

recent literature (i.e. Anderson-Frey et al. 2016; Anderson-Frey et al. 2019) which has opted for

KDEs over traditional two-dimensional binning or histogram approaches, as they provide smoother

transitions between densities and avoid potential sensitivities to bin design. Each data point is

replaced by a Gaussian kernel, and an optimization method is applied to seasonal climatology

to determine the appropriate bandwidths (shown in Table 2.1) for each season, and these are

subsequently applied to their associated nodes. These climatological and nodal distributions

are then overlaid in order to diagnose potential spatiotemporal shifts associated with each node.

Composite anomalies of regional conditions during several patterns are developed using data

from National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis

(NARR; Mesinger et al. 2006). The variables chosen for analysis match those selected in related

literature, including 250-, 500-, and 850-mb winds; 500-mb geopotential heights; 10-m winds;

deep-layer shear (10 m - 500 mb); low-level shear (10 m - 850 mb); 2-m temperature and dewpoint,

and surface pressure; as well as CAPE, SRH, and LCL. These anomalies are computed relative to

SC day seasonal climatology for each analyzed time step (i.e. 12Z anomaly from 12Z climatology),

allowing us to identify synoptic patterns specifically related to outbreak days, while also limiting
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the effect of diurnal variability. Additionally, we will diagnose HSLC conditions by comparing

regional CAPE and shear values to the HSLC metrics presented in Sherburn and Parker (2014),

with surface-based CAPE (SBCAPE) values ≤ 500 J kg−1 and deep-layer shear (used as proxy for

0-6 bulk shear) values > 18 m s−1 corresponding to HSLC conditions.

2.3 Results

From 1982-2017 in the prescribed domain, there were 4141 SC days. Figure 2.1b shows the

type breakdown of these days for the entire period and each season, both by percentage and number.

The largest number of ST and OB days take place in MAM, as expected, but both the SON and

DJF percentages of ST and OB days are higher than those of MAM. This indicates that though

SC days are less likely in the fall and winter, when they do occur they are more likely to be ST or

OB days. This extension of ST and OB days into fall and winter months beyond the peak of the

Midwest/Great Plains US tornado season is consistent with previous tornado climatology studies

(e.g., Thompson et al. 2012, Smith et al. 2012). Lastly, both the number and percentage of ST

and OB events in JJA are distinctly lower than those of all other seasons, for which reason we will

exclude JJA results from the following discussion.

2.3.1 SOM output

Figure 2.2 shows the MAM outbreak SOM results. Outbreak and associated null patterns are

gathered across all lead times for each teleconnection, and shown in red and blue, respectively.

For all presented patterns, the line thickness corresponds to the extent to which the node’s OB

percentage exceeds its seasonal average (referred to as OB %), and opacity corresponds to the

percentage of OB days grouped into that node (referred to as total %). The average teleconnection

patterns preceding all SC days in a given season are shown for reference (in dotted purple), with ±1

standard deviation shaded in gray.These MAM percentages are provided in Table 2.2 for reference.

Herein, patterns will be identified by their teleconnection and lead time (i.e. AO60).

During MAM months, eight significant OB patterns (red lines in Fig. 2.2) were identified across

six teleconnections. For the AO (Fig. 2.2a), there is a 60 day pattern of sustained large, positive
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indices. For the NAO (Fig. 2.2b), there are two patterns - one at a lead time of 30 days showing a

transition from weak positive to sustained negative values. The second NAO pattern is consistent

with this, showing sustained negative indices seven days out from the SC day. Both the NAO7

and NAO30 patterns differ from the identified null patterns, which show positive NAO values up

through the SC day. The PNA teleconnection (Fig. 2.2c) shows one pattern consisting of prolonged,

moderately negative indices for 60 days. The EPO (Fig. 2.2d) displays an oscillatory OB pattern,

shifting between positive and near-zero values over a span of 14 days. However, similar patterns

(albeit with lower magnitude values) were identified as null nodes, so the uniqueness of EPO14 is

debatable. For the WPO (Fig. 2.2e), there is one OB pattern showing weakly negative values for a

period of seven days. This is contrasted by two null patterns, which contain positive values during

that time frame. No OB patterns exist for SSTA (Fig. 2.2f), but there are several null patterns

displaying prolonged negative anomalies. Lastly for SSTAD (Fig. 2.2g), there are two OB patterns

– one oscillating between negative and positive values across a 60 day period, and a second showing

slightly negative anomalies increasing towards zero seven days prior to the SC day. The null nodes

for SSTAD show generally decreasing trends, though the magnitudes of these anomalies vary. As

with the EPO, the overlap between the SSTAD OB patterns and these null patterns challenge the

usefulness of said OB patterns.

SON nodal output (Fig. 2.3) shows five OB patterns across four teleconnections, with associated

OB percentages provided in Table 2.3. The NAO displays two OB patterns (Fig. 2.3b) - one lasting

60 days consisting of slightly to moderately negative values, increasing to slightly positive values

up through the SC day, and a second with this same pattern but spanning only 30 days. The 60

day NAO null node mirrors these OB patterns, but the others show some overlap. For the WPO

(Fig. 2.3e), there is one OB pattern lasting 60 days, showing initially neutral values increasing

gradually from roughly 60-20 days out, before decreasing for the remainder of the period. The

WPO null nodes generally contrast this OB pattern except during the two weeks prior to the SC day,

where there is substantial overlap. Both SSTA and SSTAD SOM outputs (Fig. 2.3f,g, respectively)

contain an OB pattern consisting of strongly negative anomalies three days prior to the SC day.
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The null nodes for both indices contain mostly neutral to positive anomalies at varying timescales,

except for one node which bears semblance to the OB pattern.

There are 6 OB nodes spanning five teleconnections during the DJF period, as shown in

Figure 2.4, with associated OB percentages provided in Table 2.4. For the AO (Fig. 2.4a), there

exists an OB pattern at a lead time of 30 days, containing strongly positive values which steadily

decline to neutral values. A second, 14 day OB pattern shows somewhat consistent results,

oscillating between neutral and weak positive indices up through the SC day. The AO null nodes

show indices decreasing from neutral values to strongly negative values. The NAO (Fig. 2.4b)

displays one OB pattern of sustained positive values during the 30 days preceding the SC day.

Though the null nodes show varying magnitudes, they all consistently display lower values than

the OB pattern. For the PNA pattern (Fig. 2.4c), the single OB pattern shows positive indices

decreasing to neutral values over 14 days. There is some overlap between PNA null patterns and

this OB pattern, though none of the null nodes show the same shape and magnitude of said pattern.

SSTA output (Fig. 2.4f) shows one OB pattern with mostly neutral anomalies for a period of 30

days, while SSTAD (Fig. 2.4g) has a 14 day OB pattern showing an increase from weakly negative

to weakly positive anomalies. The null nodes for both SSTA and SSTAD mostly exhibit sustained

negative anomalies on their respective timescales.

2.3.2 Temporal report distributions

Next we examine how the storm reports associated with the significant OB nodes are temporally

distributed. Figure 2.5 shows the climatological and nodal distributions of these reports, as well

as the OB and total percentages for each pattern. MAM climatology (light/dark gray shading

in all panels of Fig. 2.5 with associated OB % of 2.93%) shows storm reports throughout the

entire season, with the highest densities spanning April and May. The diurnal range of these report

densities spans 18Z to 03Z (19Z to 02Z at the 90th percentile). The majority of the MAM OB nodes

resemble climatology, particularly at the 90th percentile, but all seven nodes exhibit some diurnal

broadening at various points in the MAM period. NAO7 (Fig. 2.5b) shows the most prominent
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broadening, with a pronounced extension of reports towards 09Z in late May. In terms of seasonal

skew, NAO7 is the only pattern showing a discernible shift in report densities towards later in the

MAM period, while AO60 (Fig. 2.5a) shows a shift towards earlier dates.

The SON climatology (with associated OB % of 3.13%) shows report densities largely confined

to mid-October and November. The diurnal range for the October grouping spans 18Z to 6Z (19Z to

00Z at the 90th percentile), and then broadens to 15Z to the following 11Z (18Z to 05Z at the 90th

percentile) during November. NAO30 and NAO60 (Fig. 2.6a-b, respectively) lack the mid-October

grouping, and instead show some high report densities in early September and October. That said,

all of the SON OB nodes display a primary grouping in the latter half of November, coincident

with prominent diurnal broadening. This broadening extends across nearly the entire SC day for

several of the nodes, which may suggest the prevalence of nocturnal storms which persist into the

following day.

Lastly, the DJF climatology (light/dark gray shading in all panels of Fig. 2.7 with associated

OB % of 4.57%) has a pyramid-like structure with a small grouping of reports in late December

showing a tight diurnal range, which broadens with time into late February. By late February,

report densities span nearly the entire SC day, though the highest densities remain between 18Z and

06Z. The DJF OB nodes exhibit the most nodal variance of the analyzed seasons. AO30, PNA14,

and SSTAD14 (Fig. 2.7b,d, and f, respectively) all resemble climatology, though the latter two

show an extension towards later hours. AO14 and SSTA30 (Fig. 2.7a,e, respectively) show some

skew towards the latter half of January along with diurnal broadening (most prominently in AO14).

NAO30 (Fig. 2.7c) shows a unique pattern, with two secondary groupings in late December and

early January showing broad diurnal ranges, and a primary grouping in late February which spans

the entire SC day.

2.3.3 Spatial report distributions

Next we consider the spatial characteristics of the identified OB nodes. Figure 2.8 shows the

MAM spatial distribution of both climatology and the OB nodes (with the same color scheme as
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Fig. 2.5-2.7). MAM climatology shows report densities stretching across most of the northern

extent of the study domain, with the highest densities located across Arkansas, northern Louisiana

and Mississippi, along with a small grouping across eastern Tennessee and northern Georgia. The

MAM OB nodes are essentially identical to climatology at the 70th percentile, perhaps due to

increased sample size. The higher report density contours exhibit more variability, with NAO7 and

WPO7 (Fig. 2.8b,f, respectively) favoring the east and west portions of the domain, respectively,

but still largely resemble climatological locations.

SON spatial climatology, shown in Figure 2.9 bears semblance to MAM climatology, but its

70th percentile extends southeastward towards the Louisiana Gulf Coast. WPO60 (Fig. 2.9c)

matches this climatology all but perfectly, and NAO30 (Fig. 2.9a) differs only in that its 90th

percentile extends into the eastern portion of the domain. The remaining three nodes (Fig. 2.9b,d-e,

respectively) are not dissimilar from climatology, but all display an extension of their highest report

densities towards the Louisiana coast.

Figure 2.10 shows the DJF spatial climatology, which is positioned further southward of the

other seasonal climatologies, with its highest densities centered on Mississippi and extending

slightly east and west into its neighboring states. All DJF OB nodes except AO30 show their

90th percentile contours extending northward relative to climatology across Arkansas, and also

into western Tennessee for NAO30 and SSTA30 (Fig. 2.10c,e, respectively). In terms of east-west

placement, AO14 (Fig. 2.10a) has the western most skew of the OB nodes, while AO30 (Fig. 2.10b)

is the only node displaying report densities as far east as Georgia and down into the Florida

Panhandle.

2.3.4 Discussion

In the final section of this paper, we examine the environmental conditions associated with the

OB teleconnection patterns identified in order to provide a general physical justification for each

pattern. These analyses will focus on the most unique and robust patterns. In order to make this

determination, we will compare the OB patterns with current literature, as well as consider the
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consistency of these patterns across all tested SOM dimensions.

Beginning with the MAM OB patterns, the NAO results fit within the context of Elsner et al.

(2016) with OB patterns showing sustained negative NAO indices directly preceding the SC day,

and null OB patterns showing opposite patterns. These same OB and null patterns were present, in

some form, in every one of the SOM geometries tested, further solidifying their significance. The

Elsner study hypothesized that a positive NAO and its associated North Atlantic subtropical high

would decrease Southeast tornado likelihood, so conversely a negative NAO could increase tornado

likelihood due to a weaker subtropical high and lower pressure across the Southeast. However,

since this has not been shown explicitly, we will further examine the NAO30 pattern and its positive

to negative NAO transition, thus bridging the gap between the Elsner study and our own. PNA60

agrees with the conclusions of Munoz and Enfield (2011), and its prolonged negative PNA values –

typically associated with La Nina events – also lends support to Allen et al. (2015) and Cook et al.

(2017). Though addressing different teleconnection patterns, these studies relate their findings

to a shift in the jet stream and cyclone track, which through various physical processes favor

deep convection and increase tornado likelihood across the central and southeastern US. Given

the thoroughness of these previous analyses, we will not explicitly examine PNA60 in our study.

EPO14, SSTAD7, and SSTAD60 all show substantial overlap with their associated null nodes,

which could suggest that they are not uniquely associated with outbreaks. Furthermore, these

patterns do not appear in the majority of the other SOM geometries. Despite analyzing different

seasons, the lack of a clear SSTAD signal aligns well with Molina et al. (2018) in that GOM SST

anomalies can provide thermodynamic support, but additional tropical-extratropical interaction

might be necessary for corresponding convection to form. WPO7 is consistent with its null cases,

but several of the other tested SOM dimensions either omit or conflict with this pattern. This leaves

AO60, which appears in nearly all tested SOM dimensions and therefore will be chosen for further

investigation.

The selection of SON OB nodes is much less clear cut, as all of the identified patterns show

varying levels of overlap with their associated null patterns. The transition to slightly positive or
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near-neutral shown in both NAO patterns would not seem distinctly favorable for tornadic activity in

the context of both the Elsner study and our MAM results. That said, similar NAO patterns appear

as predictors of both ST (Appendix Fig. B.2) and OB days in every tested SOM dimension. We

will further analyze NAO60 given its higher OB percentages. Patterns similar to WPO60 appear in

several of the other examined SOM geometries, but these patterns show even more overlap with null

cases. The strongly negative values in both SSTA3 and SSTAD3 disagree with previous literature

– namely EEdwards and Weiss (1996) and Thompson et al. (1994) – and seem counterintuitive

given our current understanding of Gulf of Mexico influence of CONUS severe convective activity.

These cold anomalies are thought to limit the inland transport of low-level moisture and instability

across the Southeast, thus inhibiting thunderstorm activity. Despite this contradiction, patterns

resembling SSTA3 and SSTAD3 show up in every tested SOM configuration, so the regional

conditions associated with these patterns warrant additional investigation. Though SSTA3 also

contains a high OB percentage, we will further analyze SSTAD3, since this quantity has been

utilized in several recent GOM SST severe studies (e.g., Molina et al. 2016; Jung and Kirtman

2016, Molina et al. 2018).

Of the DJF OB nodes, the most inconclusive are PNA14 and SSTA30. The former shows some

overlap with its null nodes, while the latter is neither consistent with nor opposed to the existing

literature, and neither pattern appears in the majority of the tested SOM geometries. Perhaps

the net neutral values in SSTA30 indicate that its associated storms bear weak relation to GOM

SSTs. SSTAD14, however, is consistent with Edwards and Weiss (1996) in that a positive trend in

GOM SSTs is related to an increase in Southeast severe convection, though we are dealing with

SST anomalies and outbreaks. Similar patterns show up in both SSTA and SSTAD OB plots in

several of the other analyzed SOM configurations. AO14 and AO30 echo the findings of Childs

et al. (2018) that the AO is relevant to cold season tornadoes, though the Childs et al. study cites

the positive AO phase as being supportive of tornadic activity. This phase supports warm, moist

Southeast conditions due to an enhanced polar jet which confines continental polar air to northern

latitudes. Though this signal can be seen in the DJF ST patterns (Appendix Fig. B.3), the OB
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patterns instead show a decrease from positive values. In terms of SOM dimension, half of the

tested SOM maps show the AO14 pattern, while the other half show the AO30 pattern. We will

examine the AO30 node further given its initially large, positive AO values in order to provide

additional comparison with the Childs study. Lastly, NAO30 directly contrasts the findings of the

aforementioned Elsner study, which along with agreement between NAO30 and its null patterns,

leads us to further analyze this pattern.

More generally with these OB patterns, we see that AO and NAO are most consistently related

to OB days across the analyzed seasons, with SSTA and SSTAD also showing up frequently.

Interestingly, both of the Pacific patterns (EPO and WPO) show very limited utility in distinguishing

OB days, despite ample literature relating other Pacific-related patterns (namely ENSO) to CONUS

tornado frequency. The closest such relationship we are able to discern comes from the PNA

pattern, which is indirectly correlated with El Nino phases. This is not to draw into question Pacific

influences on CONUS tornadoes, though it might suggest that EPO and WPO are less useful

predictors compared to ENSO. Lastly in regards to temporal scales, we see that AO and NAO are

more often related to Southeast OB days at longer time scales of 30 or 60 days, while the influence

of SSTA/SSTAD is most pronounced on a shorter time scale of 3 days. These differences are likely

explained by both the varying temporal scales of these teleconnections and the proximity of their

primary driver (i.e., the Arctic and North Atlantic, as opposed to the Gulf of Mexico) to the study

domain.

2.3.5 Environmental characteristics

2.3.5.1 MAM

Since the identified OB patterns are either unvarying or bimodal (e.g., values transitioning from

positive to negative), we examine the 00Z anomalies (from 00Z averages) only during relevant

periods. For sustained patterns like MAM AO60, this average is computed over the entire period in

question, while for bimodal patterns such as MAM NAO30 we examine the conditions during the

two dominant phases to highlight potential differences. The 00Z step was chosen as it is the closest
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available time to the mean event times shown in presented temporal density plots (c.f. Fig. 2.5-2.7).

All time steps were analyzed to diagnose possible diurnal variation, but this variation was found

to be negligible. It bears reiterating that the presented anomalies are relative to severe convective

climatology in a given season. We know a priori that severe convection exists on these days, so our

intent is to key on the factors which specifically favor widespread tornado development.

Starting with the MAM OB patterns, the sustained positive values shown in AO60 are con-

sistent with an intensified polar vortex and zonal polar front jet across northern latitudes. This

pattern inhibits the intrusion of continental polar air into southern latitudes, allowing for above

average geopotential heights across the southern CONUS. This is evidenced by 250 mb patterns

in Figure 2.11a, showing negative speed anomalies and easterly mean vector anomalies across

Mexico and GOM, and positive anomalies and westerly vector anomalies across central and north-

ern CONUS (very similar to Fig. 3b in Allen et al. 2015). Moreover, the southeastern region is

located in the right-entrance region of the mean 250-mb jet streak, conducive to synoptic-scale

ascent and destabilization. These patterns are corroborated by 500 mb (Fig. 2.11b) and surface

patterns (Fig. 2.11c) showing positive geopotential height and surface pressure anomalies across the

Southeast. This pattern extends down through the depth of the atmosphere, with mostly southerly

anomaly winds and positive speed anomalies at the 850 mb and 10 m levels throughout much of

the period (not shown). In addition to these spatial anomalies, it is also worth considering the

temporal trends in variables pertinent to the regional storm environment. As such, Figures 2.12

and 2.13 show domain-averaged quantities at 00Z for the duration of each OB pattern, as well as

climatological times series for reference. Figure 2.12 shows 2 m temperature and dewpoint, as

well as approximate LCL height, while Figure 2.13 contains deep-layer shear, SBCAPE, and 0-3

km SRH during each analyzed OB pattern, along with climatological values and aforementioned

HSLC criteria consistent with Sherburn and Parker (2014). Since these values are averaged across

the study domain, and thus could conflate both convective and non-convective environments, they

are not meant to convey the exact environmental state in which storms are developing. Rather,

these values serve to represent general trends during the analyzed periods.
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These pressure and circulation patterns would support increased low-level moist instability

across the Southeast during this period. Though both temperature and dewpoint values remain

largely below climatology (Fig. 2.12a-b, respectively), their respective trends support gradually

increasing CAPE (Fig. 2.13b). Furthermore, these thermodynamic trends immediately prior to the

SC day favor low LCLs - a key distinguishing factor between nontornadic and tornadic supercells

(e.g. Rasmussen and Blanchard 1998; Thompson et al. 2003) that has been shown to impact

the positioning and strengthening of near-surface circulation in supercell environments (Brown

and Nowotarski 2019). This positive trend in CAPE places SC day values beyond the bounds of

HSLC CAPE criteria. Concurrently, deep-layer shear values decrease in magnitude (Fig. 2.13a),

but remain mostly above climatology (and the HSLC shear threshold), as do regional SRH values

(Fig. 2.13c). Though the CAPE values remain close to climatological values, the sustained increases

are likely significant given that numerous studies examining HSLC environments (e.g. Sherburn

et al. 2016) have noted that HSLC events are typically associated with ample shear (as supported

by Fig. 2.13a), and thus CAPE is the key limiting factor.

For NAO30, a shift from positive (t-30 to t-21 days from SC day) to negative values (t-10 to t-0

days from SC day) would indicate a transition from above average to below average geopotential

heights across the eastern US (North Carolina Climate Office 2011), possibly causing a southward

intrusion of Arctic air and displacement of the jet stream closer to the study domain. The latter is

shown in Figure 2.14a-b, displaying negative speed anomalies and easterly mean vector anomalies

across the Southeast, transitioning to positive speed anomalies and westerly anomaly winds. The

500-mb height anomalies shown in Figure 2.14c-d reflect this synoptic shift, with positive height

anomalies and anticyclonic circulation transitioning to negative anomalies and cyclonic circulation

with time, which in turn supports phasing of positive to negative surface pressure anomalies over the

eastern US (Fig. 2.14e-f). As with AO60, thermodynamic trends for this pattern support increased

CAPE (Fig. 2.12b) and decreasing LCLs (Fig. 2.13c), as well as increased shear (Fig. 2.12a). Both

CAPE and shear fall outside their respective HSLC criteria, suggesting a more traditional storm

environment with increased CAPE and shear.
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2.3.5.2 SON

Regarding SON OB patterns, NAO60 displays a shift from negative (t-60 to t-21 days from

SC day) to weakly positive values (t-20 to t-0 days from SC day), signaling a transition from

below average to near or slightly above average geopotential heights across the eastern US. This

pattern would be consistent with a slight northward lifting of Arctic air giving way to warmer

conditions in its wake, which could also act to shift the jet stream northward. This generally

holds true in these analyses, with initially positive speed anomalies and westerly anomaly winds

at 250 mb, giving way to neutral anomalies and weak anticyclonic circulation (Appendix Fig.

B.4a-b). At 500 mb (Appendix Fig. B.4c-d), negative height anomalies persist over most of the

CONUS 60-21 days out from the SC day, but become neutral thereafter. Upper-level synoptic

pattern changes drastically during this pattern, with the predominantly westerly flow across the

southern US turning southwesterly with time. These upper-level patterns and associated anomalies

are magnified several times over for SSTAD3 (Fig. 2.15a-b), with a jet streak extending from Texas

up through the Northeast, along with an intense 500 mb Colorado low. Interestingly, this elongated

jet streak is nearly identical to the jet-level pattern shown in Figure 6a from Sherburn and Parker

(2014) as being associated with Southeast HSLC events. The 500-mb pattern offered in their Figure

6b also is similar to our Figure 2.15b, though the axis of their 500 mb trough is shifted further

eastward.

Given these similarities, we would expect the SON patterns to exhibit HSLC conditions leading

up to their SC days. Starting with NAO60, Figure 2.13d shows generally increasing shear values,

though these values remain well below the HSLC shear threshold through the SC day. Thermo-

dynamically, NAO60 shows steadily decreasing temperatures, (Fig. 2.12d), dewpoints (Fig. 2.12e)

and CAPE values (Fig. 2.13e) for most of its duration, though these variables increase slightly

immediately prior to the SC day. These CAPE values are both below SC climatology and within

the bounds of the HSLC CAPE criteria, with average SC day values of 500 J kg−1. For SSTAD3,

domain-averaged shear values are noticeably higher, exceeding the HSLC shear threshold by the

SC day (Fig. 2.13d). SSTAD3 resembles NAO60 in that its thermodynamic variables increase
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immediately before the SC day, but the magnitudes of these variables are uniformly lower, with

only 300 J kg−1 of SC day CAPE. From these observations, we see that HSLC conditions appear to

be invigorated in our SSTAD3 synoptic regime. The differences between NAO60 and SSTAD3 in

terms of deep-layer shear are relatively straightforward; the upper-level flow of the latter (Fig. 2.14a-

b) is noticeably stronger is association with prominent troughing over the central US. The more

perplexing question, however, remains | what is limiting CAPE in this synoptic regime?

Examining the low-level characteristics of both NAO60 (Appendix Fig. B.4f,h) and SSTAD3

(Fig. 2.15c-d), we see that both exhibit mostly easterly anomaly winds and positive 10 m wind

anomalies across the GOM in association with high pressure across the Carolinas. This forcing

contributes to pronounced negative anomalies in both SSTA3 and SSTAD3 via mechanical mixing

and overturning (such as in Appendix Fig. B.5). As to whether this influences Southeast CAPE

values, near-surface air transported over these waters would be drier (and possibly cooler) relative to

a typical Northern Gulf parcel, especially given that easterly parcel trajectories are likely originating

from the nearby surface ridge. CAPE deficits increase in magnitude for the patterns exhibiting

stronger surface ridging, supporting this argument.

Given the slower response time of overturning and subsequent inland transport, this mechanism

would be most relevant under sustained flow regimes in which air parcels continuously originate

from areas of enhanced mechanical mixing. However, a closer examination of low-level streamlines

in both OB nodes suggest a transition to southerly surface transport immediately preceding the SC

day, likely in response to approaching troughs and associated frontal boundaries. This shift away

from areas of cold, overturned waters would support an influx of heat and moisture into the

Southeast, as evidenced by increasing temperatures and dewpoints, and rapidly decreasing LCLs

(Fig. 2.12d-f). All else held constant, these low-level thermodynamic adjustments would result

in a large increases in surface-based CAPE, but the observed CAPE increases (Fig. 2.13e) still

leave values well below SC climatology. Thus, there must be some secondary limiting factor

aloft partially counteracting these surface influences. It is possible that the aforementioned surface

ridging is associated with subsidence and mid-to-upper level warming, which would act to reduce
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regional CAPE values. Closer examination of the mid-to-upper troposphere (850 - 500 mb)

temperature profiles (Appendix Fig. B.6) immediately prior the SC day reveals a warming trend

throughout the depth of this layer, consistent with subsidence. To this end, the magnitude of this

upper-level heating increases along with the strength of the coincident anticyclonic circulation. In

spite of these upper-level trends, enhanced low-level shear (not shown) and SRH (Fig. 2.13f) in

response to invigorated low-level flow, combined with lower LCLs related to shifting low-level

trajectories (Fig. 2.12f) provide sufficient impetus for widespread severe convection, even with

relatively reduced instability.

2.3.5.3 DJF

Lastly with DJF patterns, AO30 shows a steady decline from strongly positive to near-zero

values, which should correspond to a gradual weakening of an initially strong, zonal polar front

jet, allowing for a slight southward intrusion of Arctic air and a southward jet stream displacement.

This progression is shown in the associated 250- and 500-mb fields with a jet streak expanding

southwestward (albeit with variable speed anomalies), placing the domain broadly in its left entrance

region (Appendix Fig. B.7a-b), along with a transition from positive to neutral 500-mb geopotential

height anomalies (Appendix Fig. B.7c-d). These patterns support positive surface pressure

anomalies which decrease in magnitude with time (Appendix Fig. B.7e-f). CAPE and shear trends

are generally consistent with SC climatology (Fig. 2.13g-h), but climatology itself corresponds to

HSLC conditions. Finally, NAO30 displays sustained positive NAO values, which correspond with

prolonged above average geopotential heights over the eastern US, as demonstrated by anomalous

anticyclonic circulation aloft and associated positive surface pressure anomalies (Appendix Fig.

B.8). These patterns suppress shear across the Southeast, with values plummeting below average

by the SC day (Fig. 2.13g), but result in above average CAPE values (Fig. 2.13h). The net effect of

the synoptic regimes for both DJF OB patterns are decreased LCLs (Fig. 2.12i) and increased SRH

(Fig. 2.13i), both of which favor the development of tornadoes.
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2.4 Summary and conclusions

This study relates numerous climate indices to Southeast tornado outbreak likelihood across

multiple seasons using a self-organizing map technique. Several of the identified outbreak patterns

explicitly agree with or fit into the context of previous literature, particularly in spring months

(MAM), while other patterns either differ from the literature or are altogether new. The physical

implications of these patterns for tornado outbreak likelihood vary slightly by teleconnection, but

are largely consistent with one another and with previous studies. Though the direct influence of

these patterns is often dynamic – particularly the positioning and strength of the jet stream, and

modulation of cyclone tracks – their ramifications are two-fold. Dynamically, these modulations

provide synoptic ascent and a source of shear, while alteration of lower tropospheric flow patterns

causes an influx of Gulf moist instability. For MAM teleconnections, the net result of these factors

is a high-shear, high-CAPE Southeast setup reminiscent of a traditional Great Plains outbreak

environment. For DJF teleconnections, similar increases in CAPE and shear exist, but HSLC

conditions emerge as a result of the season. SON teleconnections are unique, however, in that

their associated synoptic patterns actually contribute to HSLC conditions through a combination

of processes both aloft and at the surface.

As with any study relating atmospheric characteristics across multiple spatiotemporal scales,

there are some factors that must be considered. First, there are inherent limitations when focusing

exclusively on tornado outbreaks, particularly smaller sample size and sensitivity of spatiotemporal

distributions to individual reports. In our study, the former concern is largely addressed by our

statistical significance testing. The latter might be partially offset by the fact that the frequency of

severe reports on outbreak days exceeds that of non-outbreak SC days, but this could also mean

that outbreak reports dominate such distributions.

One other matter is the temporal consistency of the identified OB patterns. In other words, if

we see an OB pattern at a longer time scale, shouldn’t this same pattern also show up on shorter

time scales? Sometimes this is accurate, as with SON NAO30 and NAO60 (c.f. Fig. 2.3b), but

this is not always the case. This could be a matter of statistical significance, as SOMs with smaller
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temporal scales could be overclassifying teleconnection patterns—such as trying to differentiate

between varying magnitudes of positive AO values in MAM, when the most important characteristic

is simply the existence of sustained positive values. This excessive sorting could compromise

the statistical significance of these shorter patterns, even if their underlying physical meaning is

valuable. Alternatively, the existence of longer OB patterns which do not manifest themselves on

smaller time scales could underscore the importance of prolonged synoptic patterns for outbreak

potential. For instance, extended periods of enhanced heat or moisture flux into a region (as

with MAM AO60) or increased shear in response to jet placement (as with MAM NAO30) could

prime the region, thus increasing the likelihood of widespread severe convective activity (and by

extension, tornado outbreaks). This notion of synoptic priming has been offered up in different

contexts, including fire weather (Papadopoulos et al. 2014), MJO convection (Katsumata et al.

2009) and convection initiation in the Southern Great Plains Frye and Mote 2010), so it is possible

that a similar concept could apply to Southeast severe convection as well. Also temporally, the

methodology employed allows for temporal covariance, in which consecutive SC days occurring

within the same synoptic regime cause teleconnection patterns to count multiple times within the

SOM analyses. Though not entirely unphysical, this could lend undue statistical significance to

certain synoptic regimes, particularly for OB cases in which sample size is already limited.

Another key factor is the potential influence of seasonal and intraseasonal variability. Given the

analyzed lead times, particularly 30 and 60 days, several of the presented OB patterns span much of

their respective seasons, or extend into a separate season altogether. As such, there are associated

trends in thermodynamic variables (e.g. temperature, dewpoint, CAPE, LCL) and some dynamic

variables (e.g. deep-layer shear, given jet stream seasonality) that could contribute to the regional

conditions presented. This is especially true for the time series shown in Figures 2.12-2.13 where,

for instance, the gradual decrease in CAPE coinciding with SON NAO60 (blue line in Fig. 2.13)

may be partially related to a progression towards winter months. Keeping with this example,

however, the magnitude of these CAPE values relative to SC climatology for that particular season

does tell us something unique about the conditions associated with that particular teleconnection
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pattern. Taking into account both the trend and magnitude of the analyzed variables is crucial to

leverage these seasonal influences.

Further research is necessary to fully characterize the identified patterns and their contribution to

Southeast tornado outbreak frequency. This includes investigating the environmental characteristics

of the patterns not examined in the final section of discussion—specifically those consistent with

previous literature for comparison with their findings, as well as patterns deemed nonunique due

to overlap with null nodes in order to understand why their connection to outbreak potential is less

distinct. Different classification or machine learning methodologies might also provide additional

insight, as would extending the presented methodology to different regions, time periods, and

climate indices. Furthermore, our SOM methodology could be modified to identify patterns of

multidimensional data (as in Anderson-Frey et al. 2017) conducive to tornado outbreaks, with

the teleconnection patterns corresponding to these patterns being determined subsequently. Other

novel techniques, such as the spectral methods implemented in Childs et al. (2018), may prove

skillful in separating out components of climate-scale, seasonal, and intraseasonal variability

which superimpose themselves on the examined synoptic fields and potentially complicate these

sorts of analyses.

In any case, the results presented here add to a growing body of literature on teleconnections

between global-scale patterns and regional severe weather likelihood. In addition to the intrinsic

value of better understanding the links between the largest and smallest scales, this work may also

prove useful in forecasting applications, such that awareness of regional responses to global-scale

patterns by local forecasters may improve the identification and forecast lead time of potential

severe weather outbreaks.
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Table 2.1: Optimized filtering bandwidths for x and y components of temporal (time of day and time of year,
respectively) and spatial (longitude and latitude, respectively) KDEs. Reprinted from Brown and Nowotarski
(2020), with permission from American Meteorological Society.

Temporal (x) Temporal (y) Spatial (x) Spatial (y)
MAM 1.063 3.367 0.751 0.252
SON 1.698 3.882 0.903 0.364
DJF 1.884 5.181 0.800 0.341

Table 2.2: Nodal percentage of OB days and percentage of total MAM OB days for each of the identified MAM
OB nodes. Reprinted from Brown and Nowotarski (2020), with permission from American Meteorological
Society.

MAM
(OB% = 2.93%) % OB (nodal) % of total OB days

AO60 8.05 17.07
NAO14 6.78 19.51
NAO30 6.02 24.39
PNA60 7.03 21.95
EPO14 6.75 26.83
WPO7 5.91 29.27
SSTA14 5.67 26.83
SSTA60 6.18 26.83

Table 2.3: Same as Table 2.2, but for SON OB nodes. Reprinted from Brown and Nowotarski (2020), with
permission from American Meteorological Society.

SON
(OB% = 3.13%) % OB (nodal) % of total OB days

NAO30 9.09 35.29
NAO60 13.21 41.18
WPO60 8.86 41.18
SSTA3 18.18 21.95
SSTAD3 11.9 29.41

Table 2.4: Same as Table 2.2, but for DJF OB nodes. Reprinted from Brown and Nowotarski (2020), with
permission from American Meteorological Society.

DJF
(OB% = 4.57%) % OB (nodal) % of total OB days

AO14 12.7 36.36
AO30 13.21 31.82
NAO30 14.58 31.82
PNA14 11.11 31.82
SSTA30 13.64 27.27
SSTAD14 11.29 31.82
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Figure 2.1: (a) Prescribed Southeast domain for analysis, and (b) barplot showing percentage and count
of non-tornadic (NT), weakly tornadic (WT), significantly tornadic (ST), and outbreak days for the entire
1982-2017 analysis period, and broken down by season. Reprinted from Brown and Nowotarski (2020), with
permission from American Meteorological Society.
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Figure 2.2: Outbreak node patterns (in red) and null patterns (in blue) associated with MAM period, with
line thickness corresponding to deviation from climatology and line opacity corresponding to percentage
of OB days grouped into each node; the average SC day pattern is shown in dotted purple, with associated
error bounds in light gray. Reprinted from Brown and Nowotarski (2020), with permission from American
Meteorological Society.
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Figure 2.3: Same as Figure 2.2, but for SON period. Reprinted from Brown and Nowotarski (2020), with
permission from American Meteorological Society.
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Figure 2.4: Same as Figure 2.2, but for DJF period. Reprinted from Brown and Nowotarski (2020), with
permission from American Meteorological Society.
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Figure 2.5: Kernel density of storm reports associated with MAM OB nodes by time of day and time of
year, with outer and inner shading/contours representing the 75th and 90th percentiles, respectively; black
shading corresponds to MAM climatology and red contouring corresponds to nodal distributions. Reprinted
from Brown and Nowotarski (2020), with permission from American Meteorological Society.
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Figure 2.6: Same as Figure 2.5, but for SON period. Reprinted from Brown and Nowotarski (2020), with
permission from American Meteorological Society.
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Figure 2.7: Same as Figure 2.5, but for DJF period. Reprinted from Brown and Nowotarski (2020), with
permission from American Meteorological Society.
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Figure 2.8: Spatial kernel density of storm reports associated with MAM OB nodes, with outer and inner
contours representing the 75th and 90th percentiles, respectively; black contouring corresponds to MAM
climatology and red contouring corresponds to nodal distributions. Reprinted from Brown and Nowotarski
(2020), with permission from American Meteorological Society.
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Figure 2.9: Same as Figure 2.8, but for SON period. Reprinted from Brown and Nowotarski (2020), with
permission from American Meteorological Society.
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Figure 2.10: Same as Figure 2.8, but for DJF period. Reprinted from Brown and Nowotarski (2020), with
permission from American Meteorological Society.
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Figure 2.11: Composite anomalies associated with MAM AO60 pattern consisting of (a) 250-mb speed
anomalies in m s−1 and wind anomaly vectors (with node average speed contours 40, 45, and 50 m s−1
shown in black), (b) 500-mb geopotential height anomalies in meters and wind anomaly vectors (with node
average height contours of 5400, 5500, 5600, 5700, and 5800 m), (c) surface pressure anomalies in mb, and
(d) 2-m temperature in K. Reprinted from Brown and Nowotarski (2020), with permission from American
Meteorological Society.
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Figure 2.12: Time series of domain average 2m temperature (in K), 2m dewpoint (in K), and approximate
LCL (in km) during the analyzed OB patterns as well as SC climatology (in solid black). Reprinted from
Brown and Nowotarski (2020), with permission from American Meteorological Society.
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Figure 2.13: Time series of domain average deep-layer (10 m - 500 mb) shear (in m s−1), SBCAPE (in J
kg−1), and 0-3 km SRH (in m2 s−2) during the analyzed OB patterns as well as SC climatology (in solid
black), with the HSLC criteria from Sherburn and Parker (2014) shown by dotted black lines. Reprinted
from Brown and Nowotarski (2020), with permission from American Meteorological Society.
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Figure 2.14: Composite anomalies associated with MAM NAO30 pattern consisting of (a)-(b) 250-mb speed
anomalies in m s−1 and wind anomaly vectors (with node average speed contours of 40 and 45 m s−1 shown
in black), (c)-(d) 500-mb geopotential height anomalies in meters and wind anomaly vectors (with node
average height contours of 5400, 5500, 5600, 5700, and 5800 m), and (e)-(f) surface pressure anomalies in
mb. Reprinted from Brown and Nowotarski (2020), with permission from American Meteorological Society.
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Figure 2.15: Composite anomalies associated with SON SSTAD3 pattern consisting of (a) 250-mb speed
anomalies in m s−1 and wind anomaly vectors (with node average speed contours 40, 45, and 50 m s−1 shown
in black), (b) 500-mb geopotential height anomalies in meters and wind anomaly vectors (with node average
height contours of 5400, 5500, 5600, 5700, and 5800 m), (c) 10 m speed anomalies in m s−1 and wind
anomaly vectors, and (d) surface pressure anomalies in mb. Reprinted from Brown and Nowotarski (2020),
with permission from American Meteorological Society.
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3. THE EARLY EVENING TRANSITION IN SOUTHEASTERN US TORNADO

ENVIRONMENTS*

3.1 Introduction

The hours soon before and after local sunset constitute the early evening transition (EET), a

period during which surface radiational cooling results in increasing static stability and convective

inhibition (CIN). These thermodynamic changes are often accompanied by the onset of nocturnal

low-level jets (NLLJ; Blackadar 1957; Shapiro et al. 2016), which can introduce additional low-

level shear and storm-relative helicity (SRH) into nocturnal storm environments (relative to daytime

environments) and have potential ramifications for storm maintenance and tornadogenesis (e.g.,

Maddox 1993; Markowski et al. 1998b; Parker 2014). These and other related factors have been

offered up as explanation for the peak in near-sunset tornado counts noted in the literature (e.g.,

Kelly et al. 1978; Mead and Thompson 2011). Understanding how these environmental features and

their impact on accompanying convection evolve with time are vitally important for determining the

ability of storms to produce severe hazards through the EET. However, it remains unclear whether

pre-sunset thermodynamic and kinematic characteristics influence the nature of this evolution and

subsequent storm features.

The impact of boundary layer stabilization on near-ground rotation and the maintenance of

intense updrafts has been addressed by the recent literature, largely within the context of supercells

(e.g., Ziegler et al. 2010; Nowotarski et al. 2011; MacIntosh and Parker 2017), or transitions between

supercells and other convective modes (e.g., Billings and Parker 2012; Peters et al. 2017; Geerts

et al. 2017; Gropp and Davenport 2018, Gray and Frame 2019). Whether ingesting near-surface (as

in MacIntosh and Parker 2017) or elevated air parcels (as in Nowotarski et al. 2011), the updrafts of

nocturnal supercells have been shown to persist in spite of increasing environmental near-surface

static stability. This resilience may be due to the upward pressure gradient accelerations caused

* Reprinted with permission from "The Early Evening Transition in Southeastern US Tornado Environments" by
M. C. Brown and Nowotarski, C. J. and Dean, A. R. and Smith, B. T. and Thompson, R. L. and Peters, J. M., 2021.
Wea. Forecasting, 36(4), 1431-1452., ©2021 by American Meteorological Society.

44



in part by updraft rotation (e.g., Rotunno and Klemp 1982; Rotunno and Klemp 1985), which can

act to lift negatively buoyant air (Markowski et al. 2012). Increases in low-level shear and SRH

associated with the NLLJ may enhance upward accelerations in the lower updraft as demonstrated

by the results of Coffer and Parker (2015), which act to increase the participation of near-surface

parcels within updrafts in spite of their reduced buoyancy, as in Davenport and Parker (2015) and

Gray and Frame (2019). These increases in low-level shear (along with deep-layer shear) have also

been shown to increase the magnitude of storm-relative (SR) flow (e.g., Warren et al. 2017; Peters

et al. 2019), which can both facilitate the transition from non-supercellular to supercellular modes

(Peters et al. 2020b) as well as increase updraft width, buoyancy, and vertical velocity (Peters et al.

2019). Thermodynamic explanations for low-level updraft accelerations have also been offered in

studies such as Brown and Nowotarski (2019), which demonstrated that upward buoyancy pressure

accelerations (BPA) can exist in supercells below their level of free convection (LFC) despite the

presence of CIN and negative buoyancy, which could be of importance for nocturnal supercells.

Despite these studies, however, it is not apparent which situations allow these accelerations to

overcome low-level stabilization during the EET, and which do not.

Gropp and Davenport (2018) analyzed Great Plains supercells and their near-storm environ-

ments as they progress through the EET. Using RUC and RAP proximity soundings, the authors

found that large increases in SRH coupled with minimal increases in most unstable (MU)CIN sup-

port intense rotating updrafts, allowing supercells to persist well into the evening hours. This agrees

with previous studies that found a greater risk of nocturnal supercell tornadoes in the presence of

increased SRH (e.g., Davies and Fischer 2009) and reduced low-level static stability (e.g., Mead

and Thompson 2011) associated with local moisture increases. This SRH relationship could again

be a consequence of increased low-level SR flow (Peters et al. 2019, 2020b). Nevertheless, not all

nocturnal tornadoes are supercellular, nor are they confined to the Great Plains. Previous studies

of quasi-linear convective systems (QLCS) and their associated hazards (e.g., Trapp et al. 2005;

Ashley et al. 2019) as well as the nocturnal tornado climatology of Kis and Straka (2010) have

noted a nocturnal maximum in QLCS tornadoes, though the design and precision of their respective
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QLCS classification methods vary. Such studies specifically noted that Southeast (SE) events com-

prise an appreciable fraction of the nocturnal and/or QLCS tornado climatologies. These insights,

combined with both pre-existing and projected vulnerability to SE tornado hazards due to mobile

home density, increased poverty rates, population increases, and expanding exurbia footprints (e.g.,

Simmons and Sutter 2007; Ashley et al. 2008; Strader et al. 2017), have given way to increased

research focus on SE US tornadoes.

The aforementioned body of research has noted several characteristics common to SE storms

and near-storm environments, including a skew towards cool season months and their nocturnal

persistence, characterized by strongly sheared environments with limited buoyancy — termed high-

shear, low-CAPE, or HSLC environments (e.g., Guyer and Dean 2010, Sherburn and Parker 2014,

Sherburn et al. 2016, Anderson-Frey et al. 2019, Brown and Nowotarski 2020). Even the forcing of

relevant atmospheric features like LLJs differ for the Southeast. For instance, Great Plains LLJs are

influenced by the region’s sloped terrain, whose associated thermal wind reversal in evening hours

leads to a geostrophic wind maximum above the surface (e.g., Holton 1967) which can enhance

preexisting NLLJs driven by nocturnal decoupling. This sloping terrain influence is diminished

in the Southeast, and the strength of LLJs is instead perhaps modulated by ageostrophic jet streak

circulations associated with midlatitude cyclones (Uccellini and Johnson 1979). Furthermore,

Southeast LLJs and their attendant moisture transport can be enhanced by flow over the Intra-

Americas Sea (IAS; Rasmusson 1967). Sometimes referred to as the IAS-LLJ, this feature has

been shown to influence precipitation and tornadoes across the Southeast (Munoz and Enfield

2011).

Regarding predictability, Brown and Nowotarski (2020) demonstrated that climate-scale vari-

ability (e.g., Arctic Oscillation) can modulate SE synoptic patterns in ways that make them more

favorable for tornado outbreaks, and even contribute to the formation of HSLC environments. On

the storm-scale, however, HSLC tornadoes can be more difficult to predict than HSHC tornadoes

(Dean and Schneider 2008; Dean and Schneider 2012; Anderson-Frey et al. 2019), and their in-

creased nocturnal frequency poses enhanced risk to the public (e.g., Ashley et al. 2008). These
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factors provide both scientific and societal impetus to improve our physical understanding of how

HSLC storm environments respond to and evolve across the EET, and what consequences these

changes have for nocturnal tornadogenesis.

While some of these studies have considered diurnal variation in tornado characteristics, none

to our knowledge have specifically examined how the changes in CAPE, shear, SRH, and CIN that

occur during the EET influence the characteristics of subsequent tornadoes. One of the few studies

we are aware of that has directly addressed the predictability of SE tornadoes occurring in the

vicinity of the EET is Bunker et al. (2019), which found that effective-inflow layer quantities are

more skillful nocturnal tornado predictors than fixed-layer quantities. The reason for this added

skill of effective-inflow layer quantities is unclear, however, as is the matter of whether this skill is

retained in low-CAPE environments. In other words, it is possible that the factors that help facilitate

tornadogenesis in low-CAPE environments differ from those relevant in high-CAPE environments.

Understanding how the atmospheric features discussed thus far evolve in time and in different

background environments is crucial to assess the net effect of the EET on tornadogenesis potential.

Based on this knowledge gap, this study addresses the following questions:

1. How do CAPE, shear, SRH, and CIN change during the EET in Southeast storm environments,

and does this evolution depend on the amount of CAPE present before the EET (e.g. high-

CAPE vs. low-CAPE)?

2. If EET evolution is CAPE-dependent, what impact do these differing evolution pathways

have on the frequency and storm mode of subsequent tornadoes?

3. What environmental variables best discriminate between SE tornadic (or significantly tor-

nadic) and nontornadic storms, and does their predictive skill vary as a function of background

CAPE and/or storm mode?

4. Can existing forecast guidance metrics, such as STP, be adapted to better predict SE tornadoes

using these variables?
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Using a tornado event database [originally developed by Smith et al. 2012] spanning 2003 to

2018, we seek to identify SE tornadic events spanning the EET and characterize the CAPE and

deep-layer shear of their near-storm environments prior to the EET. We will then analyze how

these near-storm environments and the characteristics of their attendant convection evolve across

the EET as a function of their CAPE and shear classifications. The next section details the severe

weather report database and environmental data utilized in this study, as well the rationale for

case selection and temporal binning. Section 3 reports on the results of our analyses, including the

temporal characteristics of the SE tornado climatology, the evolution of the near-storm environment

and associated storm and tornado characteristics, and the predictability of these tornadoes using

proximity-sounding derived quantities. Finally, section 4 discusses the implications of these

findings within the broader scope of the literature, as well as future research directions relevant to

the study at hand.

3.2 Data and methods

The storm reports utilized in this study are from the updated version of the dataset originally

developed in Smith et al. (2012), as used in Anderson-Frey et al. (2019), appended with all 2018

events. This tornado event dataset is developed by mapping county tornado segment data onto a 40

× 40 km2 grid, and filtering such that the highest (E)F-scale rating is retained in every given hour

and grid box. Severe wind or hail reports corresponding to grid hours with no tornadoes are used to

characterize nontornadic environments.1 Environmental data are matched with each report using

the closest data grid point from the SPC hourly mesoanalysis grids (Bothwell et al. 2002), the basis

of which are the Rapid Update Cycle (RUC; Benjamin et al. 2004) or Rapid Refresh Model (RAP;

Benjamin et al. 2016), using the same 40-km grid spacing as the grid-hour report filtering described

previously. Furthermore, the models assimilate rawinsonde, profiler, radar, lightning, and other

data (Benjamin et al. 2016, their Table 3). Profiles of temperature, moisture, and wind above the

1Significant wind and hail reports are obtained using conventional definitions for 2003-2012. Wind and hail reports
from 2014-2015 were obtained as part of Thompson et al. 2017, which employs an additional effective bulk shear
criterion of 40 kt. Nontornadic cases are not included for 2013 and 2016-2018. Analyses were recomputed for only
2003-2012 reports to test sensitivity to these varying classifications, and results largely remained unchanged.
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ground were based on the RUC model through April 2012, and the RAP model beginning in May

2012, with data every 25 mb in the vertical. The SHARPpy sounding analysis software (Blumberg

et al. 2017) was used for all parameter calculations for the SPC mesoanalysis sounding profiles

matched to each grid-hour tornado or severe-storm event. As with any model output, this dataset

carries its own limitations and biases, the details of which are discussed extensively in Thompson

et al. (2012) and Anderson-Frey et al. (2016). Limitations relevant to this study — particularly grid

spacing — are discussed in later sections.

Radar data and a convective mode decision tree (Fig. 2 in Smith et al. 2012) are then used to

manually classify convective mode. As noted in previous literature, the majority of resulting modes

such as QLCS and right-moving supercell (RMS) are mutually exclusive, though some overlap is

allowed with classifications such as tropical cyclone (TC). Similar to Brown and Nowotarski (2020),

all reports associated with TCs are removed, as TC tornado environments are beyond the scope of

this study. The remaining storm modes are consolidated into three broad categories — supercell

(including all isolated supercells and supercell in line features), QLCS (including all QLCS, bow

echo, and non-supercellular cell in line structures), and disorganized (all non-supercellular clusters,

cells, and any combinations thereof). Additionally, tornadoes with rating F/EF0-1 are considered

weakly tornadic, and F/EF2+ considered significantly tornadic2. The same domain defined in

Anderson-Frey et al. (2019), consisting of Alabama, Arkansas, Georgia, Kentucky, Louisiana,

Mississippi, and Tennessee, is used for consistency with previous literature.

In order to isolate storm environments likely impacted by the EET, local sunset (SS) time is

computed for each storm report based on its location and time of year, and rounded to the nearest

hour. Each storm report time is similarly rounded, and then arranged into hourly bins relative to its

associated SS. The EET is defined following past studies of this time of day, such as Anderson-Frey

et al. (2019), spanning ± 2 hours off local SS time. The four hours immediately prior to and after

this transition (i.e., SS-6 to SS-3, and SS+3 to SS+6) constitute the pre- and post-transition periods,

respectively. By focusing our analyses on this ± 6-hour window centered on local SS, we can

2These cutoffs are chosen for consistency with numerous other studies in the literature. The suitability of these
cutoffs for the SE tornado climatology is examined in section 4.
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specifically analyze the environmental changes introduced by the EET, and limit potential overlap

of severe convection persisting into subsequent days.

We also seek to classify background CAPE/shear to assess potential influence on environmental

changes across the EET. Numerous classification methods have been implemented in the literature.

For the purposes of this study, we have chosen a blend of two common methods in which a 06-km

bulk wind difference (SHR6) of ≥ 18 m s−1 is used to denote high-shear. Low-shear conditions

are not examined as they correspond to only 10% of all SE tornadoes, consistent with the SHR6

distributions of Thompson et al. (2013). Low-CAPE is defined as an environment with surface-

based (SB)CAPE ≤ 500 J kg−1 as well as MUCAPE ≤ 1000 J kg−1 (as in Sherburn and Parker

2014), while high-CAPE requires mixed-layer (ML)CAPE ≥ 1000 J kg−1 (e.g, the complement

of the method used in Anderson-Frey et al. 2019). This approach gives two mutually exclusive

CAPE/shear categories (HSHC and HSLC) and will assist in determining how aspects of the

near-storm environment relevant to tornadogenesis change as a function of buoyancy.

3.3 Results

3.3.1 Diurnal tornado distributions

The criteria described above yield 9250 severe events spanning 1448 individual days (1200-1200

UTC periods) in our prescribed domain and study period. Limiting our scope to the three periods

defined earlier (pre-transition, EET, and post-transition), there are 7052 severe events spanning 1258

unique EET periods (± 6 h from local SS). Of these reports, 2796 (39.6%) are significant wind

(sigwind), 1105 (15.7%) are significant hail (sighail), 2518 (35.7%) are weak tornadoes (weaktor),

and 633 (9.0%) are significant tornadoes (sigtor). These 3151 tornadoes represent over 70% of all

SE tornado reports, further underscoring the need to understand the environmental changes induced

during the EET.

Before we consider environmental evolution, however, we must examine the temporal distri-

bution of SE tornadoes. Figure 3.1a shows the diurnal cycle of SE tornadoes (in light blue) and

sigtors (in black) during the pre-transition, EET, and post-transition periods (marked in dotted
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black). Tornadoes show a broad bell curve skewed slightly towards pre-SS hours, peaking one hour

prior to sunset. Sigtors peak at this same hour, but show less diurnal variability overall such that

sigtors account for a larger fraction (over 25%) of post-transition tornadoes. Figure 3.1b-d break

down these diurnal tornado distributions further by mode. Unsurprisingly, we see that supercell

tornadoes and sigtors (Fig. 3.1b) — the predominant tornadic mode in the climatology — are nearly

identical to the overall distribution, though sigtors make up an even larger fraction of nocturnal

supercell tornadoes. QLCS tor/sigtors (Fig. 3.1c) are less frequent than supercell tornadoes, but

still constitute an appreciable fraction of the SE tornado climatology. This QLCS subset exhibits

almost no diurnal variation, with tornadoes and sigtors occurring somewhat equally through the

EET. Disorganized tornadoes (Fig. 3.1d) differ entirely in that they are largely confined to daytime

hours and contain no sigtors, as might be expected for this convective mode. Post-EET increases in

non-supercellular tornado counts may be related to the theorized peak in NLLJ intensity roughly

6-hr post-sunset presented in the literature (Shapiro et al. 2016), though this model applies to the

Great Plains NLLJ.

3.3.2 Storm environment evolution

The near-storm environment can change quickly and substantially during the EET. For instance,

afternoon HSHC conditions may transition to evening HSLC conditions as buoyancy decreases in

response to EET cooling and stabilization. Therefore, we must examine these changes and determine

whether they have an impact on the frequency, timing, and convective mode of tornadoes. To do

so, we categorize each severe convective day based on when its associated storm reports occurred;

these temporal groupings include the pre-transition, EET, and post-transition (as defined earlier)

and all combinations thereof, resulting in seven mutually exclusive categories. The category of days

with reports in only the pre- and post-transition periods is excluded from subsequent analyses due to

substantially smaller report counts. By analyzing the remaining categories, we can ascertain what

aspects of the near-storm environment impede or facilitate the maintenance of severe convection

across the EET.
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We will first examine the days in which storms persisted across all three of our defined periods.

Interestingly, only 10% of severe convective days in the SE climatology fall in this category,

emphasizing the unique conditions that are likely necessary for convection to produce severe hazards

through the EET. For each day and period, we classify its general CAPE/shear characteristics and

consider how variables evolve consequently. For instance, if the average pre-transition environment

is HSHC, how do CAPE and shear evolve consequently? Alternatively, if the post-transition

environment is HSHC, how do CAPE and shear evolve earlier to arrive at that environment? This

process is carried out for both environmental classifications, providing a "road map" of how storm

environments can evolve diurnally, as shown in Fig. 3.2. Each figure column corresponds to the

period that is being used to determine the CAPE/shear category (i.e., column 1 graphs are classified

based on the pre-transition environment, and so on as shaded in gray). HSHC and HSLC patterns

are displayed in red and blue, respectively. This means, for example, that a blue line in column

2 represents a pattern corresponding to days in which the EET has average HSLC conditions. A

two-sample t test (at the 95% confidence level) is carried out between the data in each period.

Filled (unfilled) data points indicate when the differences between the HSHC and HSLC patterns

are statistically significant (insignificant). The sample sizes associated with these patterns are

provided in Table 3.1.

HSHC environments show gradual decreases in CAPE throughout the day regardless of which

period is used. HSLC CAPE patterns, however, vary based on the constraining period. When the

pre-transition environment is HSLC (blue line in column 1), CAPE values start low, but increase

gradually during the EET, likely due to increases in moist instability signaled by changes in low-

level equivalent potential temperature (𝜃e, as computed in SHARPpy; Appendix Fig. C.1a) or other

related low-level thermodynamic variables (Appendix Table C.1). When the EET or post-transition

environment is HSLC (blue line in columns 2-3, respectively), CAPE starts at moderate values

during the pre-transition, before decreasing and remaining relatively low. Interestingly, HSLC

CAPE values remain statistically lower than HSHC values the entire day, despite being conditioned

on only one period. Regarding SHR6, both environments exhibit sustained, high values the entire
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day regardless of the constraining period, but HSLC patterns (particularly those based on the pre-

transition and EET) maintain higher overall shear magnitudes than HSHC. If we were to examine

those environments that comprise the middle ground between these classifications (high-shear,

moderate-CAPE), we would see that their associated CAPE/shear values understandably lie in

between the HSHC and HSLC patterns, but the shape of their patterns largely resemble HSHC

patterns.

If we consider the implications of these patterns for storm environment, we see that HSHC

environments remain almost entirely in that environmental category, despite diurnal CAPE de-

creases. In contrast, there are no mean pathways in which an HSLC storm environment persists

from the pre-transition through to the post-transition. Rather, HSLC environments on average are

transient, evolving from or into other environments throughout the day (even all the way from

HSHC conditions). In fact, only four severe convective days in the entire dataset maintain average

HSLC conditions through all three periods. This of course could be influenced by the coarse

spatial resolution of the environmental dataset utilized and the CAPE/shear thresholds employed,

the implications of which are discussed later. However, these insights, combined with the fact that

these HSLC transitions occur primarily near local SS, highlight the unique relationship between

the EET and the formation of HSLC environments.

In order to characterize the low-level accelerations potentially associated with the NLLJ, Fig. 3.3

displays 0-1 km SRH and shear patterns (SRH1 and SHR1, respectively) following the same

approach as Fig. 3.2. As is expected, both of these quantities show relatively similar patterns,

with SRH1/SHR1 values steadily increasing through and past local SS. As with SHR6, HSLC

pre-transition and EET conditions correspond to uniformly higher SRH1/SHR1 values than HSHC

patterns. Though representing a different portion of the atmosphere, effective layer SRH (Eff

SRH) was also considered, and showed similarly favorable SRH trends associated with HSLC

pre-transition conditions (Appendix Fig. C.2a). Interestingly, HSLC pre-transition patterns show a

decrease in SRH1/SHR1 during the EET before rapid post-transition increases, perhaps related to

changes in boundary layer mixing and/or stabilization. Regardless, these observations suggest that

53



at least some portion of these storm environments coincide with the strengthening flow and helicity

associated with an intensifying LLJ, which may play a compensating role in buoyancy-deficient

environments.

Given studies such as Mead and Thompson (2011) and Given studies such as Mead and

Thompson (2011) and Gropp and Davenport (2018) relating CIN to nocturnal supercell mainte-

nance, Fig. 3.4 shows time series of SB, ML, and MUCIN following the same environment-time

classification of Fig. 3.2. Regardless of the period used for classification, HSHC CIN values gener-

ally increase in absolute magnitude with time. The same can be said of several HSLC CIN patterns,

particularly those conditioned on the post-transition environment (column 3 in Fig. 3.4). Though

these patterns are largely indistinct from HSHC post patterns, uniformly lower downdraft CAPE

(DCAPE) values (Appendix Fig. C.3c) may contribute to weaker (e.g., less negatively buoyant)

outflow such that storm updrafts are able to persist despite lower CAPE and increasing CIN. In

contrast to these HSLC Post patterns, CIN patterns associated with pre-transition or EET HSLC

conditions (Fig. 3.4a,b,e,h) exhibit destabilization (or more gradual stabilization) as the evening

progresses, with statistically smaller nighttime CIN magnitudes relative to HSHC patterns. These

decreases in CIN magnitude develop in tandem with increases in low-level lapse rates (Appendix

Fig. C.1b), presumably driven by warm-air advection (or differential advection) often associated

with NLLJs.

Clearly the near-storm environments of SE storms evolve differently as a function of CAPE/shear

characteristics, so it should stand to reason that the frequency and convective modes of their

tornadoes do so too. To test this, we consider both the fraction of storm reports in each period

that are tornadic, as well as the modal breakdown of those tornadoes, following the same period

classification as Figs. 3.2-3.4. Normalizing by climatological fractions in each period3, we diagnose

the percentage change in the frequency and mode of tornadoes, as shown in Fig. 3.5. For instance, if

climatologically 5% of all reports in the pre-transition produce tornadoes, and some subset of those

reports associated with one of our environmental classifications is comprised of 7.5% tornadoes,

3These climatological fractions were computed across all days in which convection persisted across all three periods.
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Fig. 3.5 would display a 50% increase in the fraction of pre-transition storms (for that classification)

that produce tornadoes.

Interestingly, HSHC conditions have a limited influence on tornado fraction, though HSHC

post-transition conditions (red bars in Fig. 3.5c) correspond to slightly increased EET and post-

transition tornado fractions likely due to overall higher CAPE values. HSLC conditions in a given

period lead to decreases in tornado fraction during that period (i.e., pre-transition HSLC bar in

Fig. 3.5a, post-transition HSLC bar in Fig. 3.5c), likely due to their inherently limited instability.

However, pre-transition HSLC conditions progress with large pre- to post-transition swing towards

increased tornado fraction in association with overall higher and increasing SRH1/SHR1 values

(Fig. 3.3a,d) and post-sunset decrease in SBCIN magnitude (Fig. 3.4a). If we condition based on

the high-shear, moderate-CAPE environment discussed earlier (not shown), we see large, uniform

increases in tornado (and sigtor) fraction regardless of the threshold period, which could imply

there exists an ideal combination of the ample instability of HSHC environments and invigorated

low-level dynamic support of HSLC environments.

Regarding mode, HSHC conditions tend to have a small, but generally positive effect on the

prevalence of supercellular tornadoes, particularly when the post-transition has HSHC conditions

(Fig. 3.5f). HSLC conditions in any period, as with tornado fraction, facilitate a decrease in

supercellular tornadoes in that and subsequent periods (Fig. 3.5d-f). Conversely, these HSLC

conditions correspond to an increase in the prevalence of QLCS tornadoes (Fig. 3.5g-i). If we were

to consider raw changes relative to climatology (not shown) rather than normalized changes, we

would see that these shifts in the prevalence of supercell and QLCS tornadoes are nearly equal and

opposite, implying a direct trade-off between these modes as a function of environment. It is worth

noting that the relative magnitudes of the HSHC and HSLC trends may be influenced by differing

sample sizes (also shown in Table 3.1), but these results still highlight the noticeable influence that

the daytime storm environment can have on storm characteristics later that evening.

Given the modal exchanges shown in Fig. 3.5d-i, Figs. 3.6-3.8 present the patterns of Figs. 3.2-

3.4, respectively, separated by mode. Given reduced sample size in portions of this modal subset,
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median values and Mann Whitney tests are substituted for mean values and t tests in order to account

for potential non-normality. Solid lines represent supercell patterns and dashed represent QLCS

patterns, and statistical testing is performed across environments for each mode (e.g., data points on

dotted lines represent statistical differences between HSHC and HSLC QLCS patterns). Figure 3.6a-

i shows that CAPE patterns are generally consistent across mode, with slightly higher CAPE values

for supercells. The same can be said of SHR6 (Fig. 3.6j-l), though the differences between

HSHC and HSLC QLCS patterns is more pronounced than they are for supercells. This latter

point is also true for SRH1/SHR1 (Fig. 3.7), particularly when conditioning on the pre-transition

environment (Fig. 3.7a,d). Also peculiar in Fig. 3.7a is that the HSLC Pre pattern associated

with supercells does not show the monotonic SRH1/SHR1 increase that the QLCS pattern does,

suggesting diminished NLLJ influence and perhaps more influence of cyclone-induced LLJs (as

with the strong synoptically forced HSLC environments in Sherburn et al. 2016). The HSLC

nocturnal destabilization demonstrated in Fig. 3.4 is also apparent in the modal CIN patterns of

Fig. 3.8, though post-transition CIN values are smaller in magnitude for supercells. Altogether,

these modal patterns suggest that increased low-level shear/SRH associated with HSLC conditions

can be primarily attributed to QLCS modes, which draws into question what environmental factors

are compensating for a lack of instability in HSLC supercell environments. Perhaps the subtle

destabilization shown in Figs. 3.6,3.8 coupled with overall high shear values is sufficient to sustain

supercells in HSLC Pre environments.

As noted, however, it is far more likely for severe convection not to persist through all three

periods. Thus, we also consider the evolution of environmental variables as a function of nocturnal

persistence. For instance, do variables like CAPE evolve differently for storms occurring only in

the pre-transition relative to those which persist into subsequent periods? Figure 3.9 shows the

hourly-averaged variables examined in Figs. 3.2-3.4 along with three derived parameters associated

with each temporal period combination. The sample sizes for each temporal category (summed

over each of its constituent periods) are included in Table 3.2. The limiting factor for storms to

persist past that pre-transition appears to be overall smaller values of SRH/SHR variables, as with
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storms occurring solely in the pre-transition period (red lines in Fig. 3.9d-f). Though convection

clearly can form in these environments, the favorable dynamic forcing associated with increased

shear and SRH nay be necessary for storms to survive the rapid CAPE decreases and CIN magnitude

increases of the EET. The same can be said about storms that fail to persist past the EET (orange

and yellow lines in Fig. 3.9d-f), which have noticeably lower EET SRH1/SHR1 values compared

to patterns which persist into the post-transition (green and black lines in Fig. 3.9d-f). These

EET-limited patterns also display more rapid decreases in MLCAPE and increases in MUCIN

magnitude (Fig. 3.9b,i, respectively). Conversely, days in which convection spans all three periods

(black lines) exhibit sustained higher values of shear and SRH paired with more gradual changes

in CAPE and CIN. These differences manifest themselves in the evolution of common derived

metrics, including supercell composite parameter (SCP; Thompson et al. 2012), the original STP

formulation (STP-T03; Thompson et al. 2003) and effective layer STP (STP-E; Thompson et al.

2012), as shown in Fig. 3.9j-l. Of the derived metrics utilized in this study (as summarized later),

STP-T03 shows the largest spread numerically between the different temporal periods for STP

parameters, as does SCP for non-STP parameters.

Again we ask whether this environmental variability translates to We then ask whether the

environmental variability in Fig. 3.9 influences the prevalence and characteristics of tornadoes

among the analyzed temporal categories. To this end, Fig. 3.10 shows the period-wide tornado

characteristics for the storms contributing to the patterns in Fig. 3.9, following the same color

scheme. These include the fraction of all storms in each period (as indicated in Table 3.2) producing

tornadoes (Fig. 3.10a) and sigtors (Fig. 3.10b), as well as the convective mode (Fig. 3.10c-d) and

environment (Fig. 3.10e-f) of these tornadoes. This means, for example, that the yellow circle in

Fig. 3.10a corresponds to the fraction of storms contributing to the yellow lines in Fig. 3.9 that

produced a tornado. From Fig. 3.10a-b, we see that the highest tor and sigtor percentages occur in

those categories involving the EET and/or the post-transition, possibly related to overall higher 0-1

km shear and SRH values maintained on these days. For storm mode (Fig. 3.10c-d), the majority of

tornadoes occur in supercells, regardless of category or period. Regarding environment, Fig. 3.10e
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shows that the two categories spanning both the EET and post-transition (EET and Post, and All

Periods) have noticeably higher HSHC fractions, consistent with the CAPE patterns presented thus

far. Additionally, the prevalence of HSLC tornadoes gradually increases as the day progresses

(Fig. 3.10f), along with an increase in QLCS tornado percentage, as suggested by the tornado

diurnal cycles in Fig. 3.1. The same general trends hold true for sigtors (not shown), though

understandably an increased skew towards HSHC and supercell classifications exist for this subset

of tornadoes.

3.3.3 Storm environment and tornado predictability

The factors contributing to tornadogenesis in high-CAPE (particularly HSHC) environments

have been thoroughly explored in the literature, but less in low-CAPE environments. As such,

we seek to identify environmental variables that effectively discriminate between tornadic (or

significantly tornadic) and nontornadic storms in HSLC environments and compare them to HSHC

predictors. There are a number of potential physical pathways by which HSLC environments may

be able to sustain robust low-level updrafts and support tornadogenesis. From a thermodynamic

perspective, previous HSLC studies (e.g., Sherburn and Parker 2014; Sherburn et al. 2016) have

demonstrated that increased low-level (e.g., 0-1, 0-3 km) lapse rates help sustain HSLC convection

by invigorating low-level buoyant accelerations, and therefore contribute to their longevity and

ability to develop intense near-surface vortices (Sherburn and Parker 2019). Similar consequences

may result from an accumulation of low-level instability such as 0-3 km CAPE (Sherburn et al.

2016), or less negatively buoyant outflow (e.g., Markowski et al. 2002; Shabbott and Markowski

2006; Brown and Nowotarski 2019). Alternatively, increased low-level shear and SRH in the

presence of a low-level mesocyclone can result in dynamically enhanced vertical accelerations

(e.g., Coffer and Parker 2015; Sherburn and Parker 2019), which dominate the production of intense

low-level vertical velocities in CAPE-deficient storms (Wade and Parker 2021). Also relevant for

low-level updraft maintenance are the storm’s effective inflow characteristics and low-level SR flow

that could influence the thermodynamic and kinematic characteristics of these updrafts.
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The raw variables used to characterize the near-storm environments of the analyzed storms are

shown in Appendix Table C.2.4 A number of preexisting derived metrics were also considered,

including STP-T03, fixed-layer STP as defined in SHARPpy (STP-F; Blumberg et al. 2017), STP-F

appended with an SBCIN scaling term (STP-FCIN), STP-E, and effective layer STP with 0-500 m

SRH (STP500; Coffer et al. 2019). An alternate version of STP500 is also tested (denoted STP500*),

in which the EIL base criteria is loosened such that the metric is only set to zero if the majority

of the EIL lies outside the 0-500 m layer (i.e., effective inflow base, or Eff Base > 250 m). Also

tested were the Craven-Brooks significant severe parameter (Sig-Sev; Craven et al. 2004), energy

helicity index utilizing MLCAPE and SRH3 (EHI; Hart and Korotky 1991), enhanced stretching

potential (ESP; Blumberg et al. 2017), SCP, CIN-scaled SCP (CSCP; Gropp and Davenport 2018),

SHERBE and SHERBS3 (Sherburn and Parker 2014), and theta-E index (TEI) to diagnose potential

instability (Blumberg et al. 2017). It is worth noting that the primary purpose of these non-STP

parameters is not to distinguish between nontornadic and tornadic environments, so comparisons

with STP parameters must be taken with that consideration in mind.

In order to assess the skill of each variable in distinguishing between tor/sigtor and nontor

events, the true skill statistic (TSS; Wilks 2011) is computed over a range of thresholds, following

TSS =
ad−bc

(a+ c)(b+d) (3.1)

where a represents the sum of correct tor/sigtor forecasts, b represents the sum of incorrect

tor/sigtor forecasts, c where a represents the sum of correct tor/sigtor forecasts, b represents the sum

of incorrect tor/sigtor forecasts, c represents the sum of correct nontor forecasts, and d represents

the sum of incorrect nontor forecasts. A more detailed description of this process is shown in

Fig. 3.11. Given that TSS calculations are prone to “hedging” when used to predict too rare of

events (Doswell et al., 1990), categories are only considered if their non-event to event ratio (i.e.,

nontor to tor/sigtor) does not exceed 10:1. Heidke skill scores (Wilks 2011) were also computed,

4Storm-relative (SR) flow for categories including supercells are computed using Bunkers right mover storm motion
vector (Bunkers et al. 2000), whereas QLCS-specific categories use Corfidi downshear vector (Corfidi 2003). SRH,
however, is uniformly computed relative to the Bunkers RM vector.
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and similar predictors were identified, albeit with lower skill scores.

Table 3.3 contains the highest raw and derived-variable TSS magnitudes associated with HSHC

and HSLC tor environments and their predominant modes, and associated variable thresholds.

Bolded values indicate a variable whose maximum TSS value was negative, implying that there

is maximized skill for values less than the provided threshold. In general, HSLC TSS values

are uniformly lower than HSHC values, consistent with previous studies (e.g., Anderson-Frey

et al. 2019) noting the decreased predictability of HSLC tornadoes (relative to HSHC tornadoes).

This lack of predictability is most evident for HSLC QLCS tornadoes. SRH1 shows the most

skill of the tested SHR and SRH quantities across almost all categories, while SB/MLLCL shows

the most consistent skill amongst thermodynamic variables. The remaining HSHC predictors

mostly comprise other low-level dynamic variables, whereas HSLC categories contain a number

of thermodynamic variables including precipitable water (PW) and DCAPE (and perhaps 700-500

hPa lapse rate, LR75, by extension) — consistent with earlier discussion regarding HSLC Post

storm environments (Appendix Fig. C.3). HSLC supercells are specifically predicted by both

SBCAPE and 0-3 km CAPE (3CAPE) as well as Eff Base, while HSLC QLCSs are predicted by

Eff/MLCIN. Regarding derived variables, STP-T03 is the best tornadic discriminator across all

HSHC categories, as well as for HSLC QLCS, with other STP parameters (namely STP-E and

STP500) and SCP also showing consistent skill. Fixed-layer STP quantities, especially STP-FCIN,

are useful HSLC predictors, perhaps due to the HSLC CIN patterns presented earlier (Fig. 3.4).

Table 3.4 contains the same information as Table 3.3, but instead distinguishing between sigtor

and nontor environments. Nearly all categories, regardless of environment, show 0-500 m, 0-1

km, 0-3 km, and effective shear and SRH as valuable sigtor predictors. Deep-layer shear (SHR6)

and 0-1 km SR flow only show predictive strength for HSHC environments, while SBCAPE, Eff

Base, and PW show unique skill across both HSLC categories. In terms of modal patterns, 0-500

m quantities take on greater relative importance for supercells (compared to overall categories)

and increased 0-1 km lapse rate (LR1) shows specific skill for HSLC supercells. Similar to the

tor results, STP-T03 is generally the most skillful derived metric, with STP-F also providing skill
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for HSLC supercells. These results highlight that traditional STP metrics still have forecasting

value for the Southeast, even in HSLC environments. That being said, their most skillful values

are below standard guidance (i.e., STP ∼ 1), as previously noted in Sherburn and Parker (2014).

For both tor and sigtor (particularly HSLC categories), STP500* outscores the original STP500

formulation, possibly due to the fact that while lower Eff Base is a tornadic predictor, this within

itself implies Eff Base values greater than zero. Furthermore, while SHERBE and SHERBS3 have

superior skill discriminating between significant severe and non-severe HSLC environments (their

intended purpose), they do not improve on STP metrics in distinguishing between HSLC tor/sigtor

and nontor environments.

Comparing Tables 3.3 and 3.4, we see a shift from more thermodynamic tor predictors to

more kinematic sigtor predictors, with HSHC sigtor predictors comprised entirely of deep-layer

and low-level shear and SRH quantities. HSLC sigtor categories still maintain some of the

thermodynamic predictors from Table 3.3, such as PW, SBCAPE, and Eff Base, but low-level

shear and SRH quantities have now superseded these variables in predictive skill. Overall, TSS

scores for sigtor predictors are higher than those of the tor predictors, as expected given that the

tor category includes environments of weak (i.e., F/EF0-1) tornadoes, which have been shown to

more strongly resemble nontornadic environments (Thompson et al. 2003). Both the HSHC and

HSLC subsets of QLCS sigtors are not shown since they violate the event ratio criteria discussed

earlier, but they share the same general predictors as the QLCS results in Table 3.3 with a skew

towards SRH quantities (especially SRH3 and Eff SRH). Despite the overall improvements in sigtor

prediction using SRH500 in Coffer et al. (2019), only HSLC supercell shows SRH500 as the highest

ranked SRH variable. Moreover, the original formulation of STP500 only shows enhanced skill in

HSHC environments, and is outperformed by the alternate formulation in every presented tor/sigtor

category. If we consider the thresholds of the presented variables, we see that for both tor and sigtor

environments nearly all shear and SRH quantities show noticeably higher thresholds for HSLC

categories (relative to HSHC categories), again highlighting the importance of low-level dynamic

support for HSLC tornadogenesis. This is particularly intriguing for Eff SRH, given that the low
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CAPE constraint corresponds to shallower EILs and lower equilibrium level heights, which would

act to reduce Eff SRH (all else held constant).

We also considered the TSS results for a given mode and/or environment across each temporal

period (Appendix Tables C.3-C.7), in order to see if the variables relevant to tornadogenesis change

as a function of time (e.g., thermodynamic variables become more relevant as environmental

CAPE decreases). However, the interpretation of these results is made difficult by the diurnal

CAPE and shear trends shown earlier (Figs. 3.2-3.9) and associated changes in environment and

mode (Figs. 3.10c-f). For instance, if we consider the evolution of predictors, they resemble

supercell/HSHC predictors in the pre-transition, but look increasingly like HSLC/QLCS predictors

by the post-transition. Classifying further by time, environment, and mode, though scientifically

interesting, limits sample size such that TSS results become dubious. Therefore, it is best to

only consider the environment-mode combinations presented, with the foreknowledge that they

inherently carry some temporal information.

The final question that remains is whether the prediction of SE tornadoes can be advanced by

way of these TSS results. To this end, we construct a number of new STP parameters for each of

the four categories shown in Table 3.4, as well as QLCS tornado parameters (since no QLCS sigtor

categories met our event ratio criteria). As we are not partitioning our data into separate training

and verification subsets, 5-fold cross validation5 is performed to ensure that the initial TSS results

are not simply a byproduct of this particular dataset, and can instead generalize to other tested

datasets (in this case, subsamples of the original data). This process is accomplished by randomly

sampling 80% of the reports for a given category, computing associated TSS and threshold values,

and constructing the parameter using the most skillful variables. Correlation analysis is performed

on the variables considered for each parameter to ensure they are independent, with the exception

of low-level SRH and deep-layer shear. Note that CAPE variables largely do not appear in these

new parameters as a result of already partitioning between low and high CAPE. If the top ranked

510-fold cross validation was also tested. The resulting variable rankings were virtually identical to those identified
with 5 folds, but the limited size of the testing dataset led to large variability in the performance of the metrics
constructed with these rankings.
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variables change between folds (i.e., a different SRH quantity ranks highest), they are also tested,

and the more skillful variable is retained. These variables are then normalized using optimal

thresholds motivated by the TSS analysis, such that parameter values ≥ 1 represent increased

likelihood of their associated hazard. This parameter is then tested on the remaining 20% of the

reports for each fold to determine its performance metrics. Both the training and testing report

subsets associated with each fold are required to meet the established event ratio criteria.

Following the design of previous STP metrics, such as STP-T03 and STP-E, all deep-layer

shear terms (e.g. SHR6, Eff SHR) in the resultant parameters are capped at a value of 1.56. Also

following the treatment of LCL and CIN terms in previous STP metrics, all thermodynamic terms

are capped at a value of 1 and negative values are set to 0 (unless otherwise stated). The HSHC

parameter is as follows:

STP (HSHC) =
SRH1

250 m2 s−2
× SHR6
27.5 m s−1

× 1500−SBLCL
1000 m

× 1500−DCAPE
750 J kg−1

(3.2)

The HSHC supercell (SC) version of this STP is similar, except the DCAPE term is removed

and the SRH1 and SHR6 thresholds are adjusted to 225 m2s−2 and 30 ms−1, respectively. The

HSLC STP parameter substitutes Eff SHR for SHR6 and adds SBCAPE and PW terms, as follows7:

STP (HSLC) =
SRH1

325 m2 s−2
× Eff SHR
25 ms−1

× SBCAPE
150 J kg−1

× PW
1.4 g kg−1

(3.3)

The HSLC SC STP substitutes SRH500 for SRH1 and replaces SBCAPE with Eff Base,

simplifying as follows 8:

STP (HSLC SC) =
SRH500
200 m2 s−2

× 500−Eff Base
250 m

× PW
1.4 g kg−1

(3.4)

6Note that there is no explicit lower bound for this shear term, since our CAPE/shear classification implicitly sets a
lower bound.

7The SBCAPE term is capped at 2.
8The Eff Base term is set to zero for Eff Base > 250 m, as in our formulation of STP500*.
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The construction of the HSHC and HSLC QLCS tor parameters (HSHC-Q and HSLC-Q,

respectively) was less straightforward, given the inherently decreased predictability of these phe-

nomena, with few variables providing consistently high skill. For HSHC-Q, a simple combination

of SRH1 and and MLLCL proved most skillful, as follows:

HSHC-Q =
SRH1

275 m2 s−2
× 2000−MLLCL

1400 m
(3.5)

HSLC-Q retains the LCL term (with adjusted thresholds), but adds PW and DCAPE9, as

follows:

HSLC-Q =
1600−MLLCL

1000 m
× 1200−DCAPE

800 J kg−1
× PW
1.4 g kg−1

(3.6)

Figure 3.12 shows the performance diagram (Roebber 2009) containing the POD and success

ratio (1-FAR) corresponding to these new metrics, as well as the top pre-existing metrics for each

of the analyzed categories (as shown in Tables 3.3-3.4). Comparisons between the TSS values, area

under curve (AUC) values associated with the receiver operating characteristic (ROC; Mason 1982)

curves, and probability of false detection (POFD) for these metrics are also included. The new

HSHC STP metrics show minimal improvement over STP-T03, which is not entirely surprising

given that most existing STP metrics have been formulated with this sort of environment (e.g.,

ample instability and shear) in mind. HSLC STP shows marked improvement, with both increases

in POD, success ratio and TSS, and decreases in POFD. Both QLCS parameters show increases in

POD (and by extension, TSS), though no appreciable change in success ratio.

3.4 Discussion and conclusions

3.4.1 Summary of results

Now that we have examined the evolution of SE nocturnal storm environments and the pre-

dictability of their tornadoes, we will revisit the questions we set out to address within the context

9All thermodynamic terms in both HSHC-Q and HSLC-Q are capped at a value of 1.
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of the literature. The first of these was simply: how do storm environments evolve across the EET?

When severe convection persists across the EET, its associated environment typically displays a

gradual decrease in CAPE (Fig. 3.2a-i) and an increase in static stability (Fig. 3.4), accompanied by

increases in low-level shear and SRH (Fig. 3.3). However, the shape and magnitude of these trends

can vary as a function of the average CAPE/shear characteristics in the near-storm environment.

When the pre-transition or EET environments exhibit HSLC conditions, associated storm environ-

ments tend to exhibit larger deep-layer shear and low-level shear/SRH values for the remainder of

the day relative to HSHC environments. Furthermore, many of these HSLC environments actually

destabilize as the evening progresses, which along with associated CAPE increases resemble the

evolution detailed in King et al. (2017). These CAPE increases and CIN magnitude decreases

are strongly correlated with increases in low-level 𝜃e and LR1 (Appendix Fig. C.1), respectively,

which underscore the importance of low-level warm air and/or differential advection (as in King

et al. 2017) and steepened low-level lapse rates (as in Sherburn and Parker 2014) for HSLC storm

maintenance. The sum total of these factors likely play a compensatory role given reduced insta-

bility, allowing HSLC convection to persist and produce hazards well into the evening. However,

some of these compensating factors were primarily attributed to QLCS modes (Fig. 3.6-3.8), such

that the factors contributing to HSLC supercell maintenance are less clear.

We also explored how environmental variables evolve when severe convection fails to persist

into and past the EET to determine what factors potentially govern nocturnal storm maintenance.

Days in which severe convection persisted into and through the EET show initially larger shear and

SRH values (Figs. 3.9d-f), as well as slower decreases in CAPE (Figs. 3.9a-c) and slower increases

in CIN magnitude (Figs. 3.9g-i, particularly ML/MUCIN) across the EET. These results share some

similarities with the findings of Gropp and Davenport (2018) (cf. their Fig. 9), suggesting that these

observations regarding nocturnal storm maintenance may hold true in broader sense for different

storm modes and geographical regions.

Our next question asked whether the presented environmental evolution can influence the

prevalence and convective mode of tornadoes. HSLC pre-transition conditions were found to
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initially suppress tornadoes, but increase the prevalence of tornadoes later in the day (Fig. 3.5a),

possibly in response to associated SRH and CIN patterns. With respect to mode, HSHC conditions

generally favor supercellular tornadoes, while HSLC conditions in a given period increasingly favor

the prevalence of QLCS tornadoes later that day (Fig. 3.5d-f). Similar results hold true even when

severe convection fails to persist through the EET, with an uptick in HSLC and QLCS tornadoes

into the evening hours (Fig. 3.10c-f). These findings highlight that CAPE/shear characteristics in

a given period can influence the tornado characteristics not only then, but also during subsequent

periods.

We then examined which near-storm environment variables most effectively discriminate be-

tween tor/sigtor and nontor storm environments. Regardless of environment or mode, low-level

shear/SRH quantities (and by extension, SR flow) are consistently skillful predictors for tor/sigtor

(Tables 3.3-3.4, respectively), as expected. HSLC tornadoes are specifically predicted by moisture-

related variables, including increased PW and decreased DCAPE. The former indicates an increase

in local moisture, which has been shown in studies such as Mead and Thompson (2011) to preclude

the formation of near-surface stable layers via advection of higher 𝜃e air by the LLJ (as in Maddox

1983). This slowed CIN development — perhaps related to the presented destabilization of HSLC

environments (Fig. 3.4a-b) — would facilitate storm maintenance into evening hours (Gropp and

Davenport 2018), thus increasing the likelihood of nocturnal tornadogenesis (Mead and Thompson

2011).

Interpretation of the latter, DCAPE, is less straightforward. Decreased DCAPE may be related

to reduced evaporation (perhaps aided by the local moisture enhancements discussed earlier) and

less negatively buoyant outflow, though we must be careful drawing direct comparison between

the two due to entrainment effects (Gilmore and Wicker 1998). Such a relationship would be

physically plausible, given the favorable influence of less negatively buoyant outflow on supercell

tornadogenesis (e.g., Markowski et al. 2002; Shabbott and Markowski 2006), primarily by making

it easier for near-surface parcels to be dynamically lifted. Furthermore, this prevents outflow from

undercutting low-level circulations and reducing the ability of their associated dynamic pressure
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accelerations to stretch and converge near-surface rotation (Markowski and Richardson 2014; Brown

and Nowotarski 2019). Even for non-supercellular tornadoes, less negatively buoyant outflow

may allow QLCS updrafts to remain upright rather than sloping back over their attendant cold

pools (Rotunno et al. 1988), a crucial ingredient for QLCS tornadogenesis (e.g., Schaumann and

Przybylinski 2012; Williams et al. 2018). That being said, the exact relationship between observed

HSLC cold pool deficits and tornadogenesis remains unclear (McDonald and Weiss 2021). In

addition to the aforementioned variables, HSLC tornadic supercells also exhibit increased LR1

consistent with previous HSLC studies (e.g., Sherburn and Parker 2014; Sherburn et al. 2016),

along with lowered Eff Base and increased SBCAPE and 3CAPE. These findings imply that with

reduced environmental instability, SE tornadogenesis becomes particularly sensitive to low-level

thermodynamic characteristics and the ability for storms to remain more surface-based.

In terms of existing forecasting metrics, STP-T03 shows the highest skill for both tor and

sigtor across nearly every environment-mode combination. This is somewhat surprising, given that

more recent iterations of STP incorporating effective-layer quantities and SRH500 are generally

thought to be improvements upon this original STP formulation. That said, Table 3.4 in Coffer

et al. (2019) indicated that the second lowest skill for STP500 was across the lower MS Valley

(LVM), so this insight is consistent with past work. For HSLC supercells, STP-F and STP-

FCIN are effective predictors, due perhaps to their inclusion of more surface-based quantities

(SBLCL and SBCAPE). Finally, a number of new STP and QLCS tor metrics were also developed.

Admittedly, there is minimal room for such improvement with HSHC categories, since most

STP parameters are designed for prototypical convective environments with appreciable shear and

instability. Noticeable improvements can be made, however, for HSLC/HSLC SC sigtor categories

with the addition of predictors such as PW and Eff Base. Note that these parameters have only been

constructed and evaluated numerically. More in depth analysis, including a 2D spatial assessment

of these new parameters relative to traditional STP parameters and observed storm reports, is

necessary before such parameters can reliably be put into practice. In particular, one needs to

consider that these new parameters are conditioned on the occurrence of storms within specific
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CAPE regimes, and therefore could incur large false alarm rates if applied blindly.

3.4.2 Considerations and limitations

As with any study using near-storm model soundings as a proxy for observations, there are

a number of limitations that must be considered. First is the potential for error in the sounding-

derived data ascribed to each severe convective report. These errors could stem from the underlying

model output, such as the near-surface cool and dry biases of the RUC model, which can lead to

underestimates of CAPE on the order of 100-250 J kg−1 (e.g., Thompson et al. 2003, their Fig.

3). Similar magnitude variability in CAPE calculations can also result from the method used to

lift parcels and compute their 𝜃e upon saturation. For instance, Coffer et al. (2019) noted that

CAPE values computed with NSHARP/SHARPpy — like those used in this study — tend to

be higher than most other computational methods, particularly for high CAPE soundings. Both

sources could introduce uncertainty into the CAPE/shear classification of individual reports, as

well as our characterization of CAPE and CIN evolution. Overestimates of CAPE would lend

confidence to our characterization of low-CAPE environments but bring into question our high-

CAPE classification (and visa versa with underestimates). Though worth consideration, the design

of our two environmental categories helps limit this uncertainty. For instance, if we perturb our

calculated CAPE values by the maximum error bound in the above literature (250 J kg−1), less than

1% of the cases in either category switch classification (e.g, HSHC switching to HSLC, or visa

versa).

There are also potential spatiotemporal errors associated with the mesoanalyses utilized. The

40-km spacing and hourly time step could ascribe inaccurate data to reports occurring near tight

gradients (e.g., baroclinic zones), and also smooth out relevant small scale features like the narrow

bands of moist instability shown in King et al. (2017) to be important for sustaining HSLC

convection. For studies like this compositing environments across large report samples, the net

impact of the discussed biases may ultimately be small (e.g., Thompson et al. 2003; Thompson

et al. 2012), but it is important to understand that the statistic robustness afforded by larger datasets
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does not always translate to practical relevance for forecasting, as noted in Anderson-Frey et al.

(2016).

From a methodology standpoint, there is a great deal of subjectivity when applying fixed

CAPE/shear environmental thresholds. Though physically motivated, the HSHC/HSLC definitions

developed herein (and in the literature) are somewhat arbitrary constructs used to isolate and

analyze unique subsets of the storm climatology. Both represent only portions of a much broader

CAPE/shear parameter space in which Southeast severe convection and tornadoes can exist (e.g.,

Anderson-Frey et al. 2019, their Fig. 2a), as demonstrated by the uniformly favorable impact of

high-shear, moderate-CAPE conditions for tor/sigtor prevalence noted in Section 3b. Furthermore,

the CAPE values which qualify as "high" or "low" vary by (and even within) geographical regions

(Thompson et al., 2013). Also worth consideration is our EF2+ cutoff for significant tornadoes.

Though largely consistent with previous observational tornado studies, its utility for the SE tornado

climatology is debatable. Thompson et al. (2017), particularly their Fig. 14, demonstrated that

low-level rotational velocities are approximately 10 kt lower in MS/AL for the same EF-scale ratings

compared to the Great Plains, perhaps due to the relative lack of potential damage indicators in

much of the Great Plains, with some accompanying potential for tornadoes to be under-rated by the

EF-scale (away from urban areas). As such, a stricter significant tornado criteria of EF3+ might

be warranted for the SE to help avoid the conflation of some weak and significant tornadoes. For

instance, roughly 93% of the QLCS sigtors identified by our original criteria have an EF-2 rating.

This helps to explain their inherent lack of predictability, but it also suggests that QLCS tornadoes

may be a less impactful portion of the overall SE tornado climatology than commonly thought,

particularly given the aforementioned potential for biases in damage ratings in this region.

3.4.3 Future work

There are numerous avenues for future research that would build upon and contextualize the

results presented in this study. For instance, it might prove useful to repeat similar analyses for other

geographical regions in order to gauge the uniqueness of our SE results, and help advance a unified
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theory regarding the storm maintenance and tornadogenesis potential of storms persisting across the

EET. Breaking the presented analyses down by season may also reveal additional findings, given the

seasonal variability of SE storm environments shown in Anderson-Frey et al. (2019). Furthermore,

numerical simulations could help determine the net impact of the increased low-level SRH and

nocturnal destabilization on low-level updraft forcing in HSLC storm environments in spite of

overall limited buoyancy. Paired with the base-state substitution (BSS) technique of Davenport

et al. (2019), such simulations could provide storm-scale insight into how environmental evolution

across the EET influences the dynamical processes relevant for HSLC tornadogenesis.
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Table 3.1: Storm report counts for days with severe convection across all three temporal periods, broken
down by environmental classification; total counts are provided along with counts attributed to supercell (SC)
and QLCS modes. Reprinted from Brown et al. (2021), with permission from American Meteorological
Society.

Table 3.2: Storm report counts for each mutually exclusive temporal category (e.g., Pre, EET, Post, and
combinations thereof) in each of their associated periods. Reprinted from Brown et al. (2021), with
permission from American Meteorological Society.
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Table 3.3: Environmental (top portion) and derived (bottom portion) tor predictors ranked by maximum TSS
magnitude (with associated variable threshold shown in parentheses); bolded values indicate a maximum
TSS value whose sign was negative. The variables (and their associated units) are as follows - shear/SR-
flow quantities (m s−1), SRH quantities (m2 s−2), CAPE/CIN quantities (J kg−1), lapse rates (K km−1),
LCL/LFC/Eff Base quantities (meters AGL), PW (inches), RH (%), and derived variables (dimensionless).
Reprinted from Brown et al. (2021), with permission from American Meteorological Society.

Table 3.4: As in Table 3.3, but for sigtor predictors. Reprinted from Brown et al. (2021), with permission
from American Meteorological Society.
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Figure 3.2: Time series of average (a)-(c) SBCAPE (in J kg−1), (d)-(f) MLCAPE (in J kg−1), (g)-(i) MUCAPE
(in J kg−1), and (j)-(l) 0-6 km shear (in m s−1) based on environment in the pre-transition (Pre, column 1),
early evening transition (EET, column 2), and post-transition (Post, column 3). Gray shading corresponds
with the period on which each pattern is predicated, and red and blue lines correspond to HSHC and HSLC
environmental classifications, respectively; black dotted lines mark thresholds corresponding to our CAPE
classification scheme. Filled (unfilled) data points represent statistically significant (insignificant) differences
between HSHC and HSLC patterns in each period, following two-sample t tests (at the 95% confidence level).
Reprinted from Brown et al. (2021), with permission from American Meteorological Society.
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Figure 3.3: Time series of average (a)-(c) SRH1 (in m2 s−2) and (d)-(f) SHR1 (in m s−1), with the same
line/color scheme as Fig. 3.2. Reprinted from Brown et al. (2021), with permission from American
Meteorological Society.
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Figure 3.4: Time series of average (a)-(c) SBCIN, (d)-(f) MLCIN, and (g)-(i) MUCIN (all in J kg−1), with
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Figure 3.6: Time series of median (a)-(c) SBCAPE (in J kg−1), (d)-(f) MLCAPE (in J kg−1), (g)-(i) MUCAPE
(in J kg−1), and (j)-(l) 0-6 km shear (in m s−1), with the same time classification and color scheme as Fig. 3.2,
but now broken down by convective mode (solid lines for supercell, or SC, patterns and dotted lines for QLCS
patterns). Filled (unfilled) data points represent statistically significant (insignificant) differences between
modal HSHC and HSLC patterns in each period, following Mann-Whitney U tests (at the 95% confidence
level). Reprinted from Brown et al. (2021), with permission from American Meteorological Society.
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Figure 3.7: Time series of median (a)-(c) SRH1 (in m2 s−2) and (d)-(f) SHR1 (in m s−1), with the same
line/color scheme as Fig. 3.6. Reprinted from Brown et al. (2021), with permission from American
Meteorological Society.
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Figure 3.8: Time series of median (a)-(c) SBCIN, (d)-(f) MLCIN, and (g)-(i) MUCIN (all in J kg−1), with
the same line/color scheme as Fig. 3.6. Reprinted from Brown et al. (2021), with permission from American
Meteorological Society.
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Figure 3.9: Time series of average hourly (a)-(c) SB/ML/MUCAPE (in J kg−1), (d) 0-6 km SHR (in m s−1),
(e) 0-1 km SRH (in m2 s−2), (f) 0-1 km SHR (in m s−1), (g)-(i) SB/ML/MUCIN (in J kg−1), (j)-(k) SCP,
STP-T03, and STP-E (all unitless), respectively, corresponding to each of the analyzed temporal categories.
A 2-hr moving average is applied to smooth the hourly mean data. Reprinted from Brown et al. (2021), with
permission from American Meteorological Society.
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Figure 3.10: Breakdown of (a)-(b) tornado and significant tornado report percentages, as well as the fraction
of those tornadoes that were (c) supercellular, (d), QLCS, (e) HSHC, or (f) HSLC in each of the temporal
categories in Fig. 3.9; the overall report counts associated with each temporal category (and associated
periods) can be found in Table 3.1. Reprinted from Brown et al. (2021), with permission from American
Meteorological Society.
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probability of detection (POD) and success ratio are those associated with the maximum TSS values for
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detection (POFD) for the presented metrics. Reprinted from Brown et al. (2021), with permission from
American Meteorological Society.
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4. IMPACTS OF THE EARLY EVENING TRANSITION ON UPDRAFT FORCING AND

EVOLUTION IN IDEALIZED SIMULATIONS OF HIGH-SHEAR, LOW-CAPE

SUPERCELLS

4.1 Introduction

Supercell updrafts support some of the strongest vertical velocities realized in the atmosphere

(Lehmiller et al. 2001), giving way to a plethora of severe hazards posing risk to life and property. As

our understanding of how the environmental characteristics of supercell thunderstorms dictate the

maintenance and forcing of their updrafts continues to progress, so should our ability to accurately

predict these hazards. Decades of observational and modeling efforts have identified factors which

contribute to both low- and mid-level accelerations in supercell updrafts. Some are related to

characteristics of the ambient wind profiles - such as deep-layer shear (e.g., Weisman and Klemp

1982; Weisman and Klemp 1984; Rasmussen and Blanchard 1998; Thompson et al. 2003; Warren

et al. 2017; Peters et al. 2019), low-level shear magnitude (e.g., Coffer and Parker 2015; Peters

et al. 2019) and direction (e.g., Esterheld and Giuliano 2008; Guarriello et al. 2018), storm-relative

helicity (SRH; e.g., Davies-Jones 1984; Rasmussen 2003; Markowski et al. 2003; Coffer et al.

2019), and storm-relative (SR) flow (e.g., Warren et al. 2017; Peters et al. 2020b). Other factors

are related to thermodynamic characteristics of the near-storm environment - including convective

available potential energy (CAPE; e.g., Weisman and Klemp 1982; Rasmussen and Blanchard

1998; Thompson et al. 2003), convective inhibition (CIN; e.g., Mead and Thompson 2011; Gropp

and Davenport 2018), and lifting condensation level (LCL; e.g., Rasmussen and Blanchard 1998;

Thompson et al. 2003; Craven et al. 2004). When combined into metrics like the significant tornado

parameter (STP; Thompson et al. 2003; Thompson et al. 2012), these variables can help us predict

whether supercells will persist and if they are capable of producing tornadoes.

However, the parameter space relevant to supercell maintenance and tornadogenesis potential

is not uniform across all geographical regions. Though most supercells occur in environments with
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ample instability (e.g., Thompson et al. 2013), climatological studies have indicated the ability for

supercells (and other convective modes) to form and produce severe hazards in environments with

limited instability (e.g., Dean and Schneider 2008; Guyer and Dean 2010; Sherburn and Parker

2014). These environments are often accompanied by increases in deep-layer shear, hence their

being termed high-shear, low-CAPE (HSLC). Though not confined to one region, these HSLC

storms (particularly those producing tornadoes) constitute an important subset of the southeastern

US storm climatology (Sherburn and Parker 2014) and pose a unique forecasting challenge (Dean

and Schneider 2008; Dean and Schneider 2012; Anderson-Frey et al. 2019). On larger scales,

Southeast HSLC storms have been shown to occur in moist, strongly forced synoptic regimes (e.g.,

Guyer et al. 2006; Sherburn et al. 2016) which, in some circumstances, can interact with nearby

features (e.g. Gulf of Mexico) to invigorate regional HSLC conditions (Brown and Nowotarski

2020). On the regional scale, destabilization in association with increased low-level (0-1, 0-3 km)

lapse rates and release of potential instability, as well as increased low-level shear/SRH have been

shown to play a crucial role in sustaining HSLC convection and its ability to produce severe hazards

(Sherburn and Parker 2014; Sherburn et al. 2016; King et al. 2017; Brown et al. 2021). Recent

modeling studies such as Sherburn and Parker (2019) have clarified the contribution of these

factors to HSLC supercell updraft accelerations, with increased low-level lapse rates providing

stronger initial buoyant forcing for supercell updrafts, while shear contributes to low and mid-

level rotation via tilting of horizontal vorticity by these updrafts. The latter dictates the nonlinear

dynamic pressure accelerations characteristic of supercell updrafts (NDPA; Rotunno and Klemp

1982; Rotunno and Klemp 1985), which the simulations of Wade and Parker (2021) have shown to

dominate the forcing of low-CAPE supercell updrafts.

While the severe storms literature discussed thus far has provided valuable insight, the vast

majority of these studies rely on singular realizations of the near-storm environment – data re-

trieved from observations or reanalyses used as time-invariant base states to initialize numerical

models, with the characteristics of subsequent convection being attributed to this artificially steady

environment. In reality, however, near-storm environments evolve with time, actively influencing
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the characteristics of their attendant convection (and vice versa, in some circumstances). This

is particularly true during the hours surrounding local sunset, a period referred to as the early

evening transition (EET) often marked by increasing static stability and CIN, as well as the onset

of nocturnal low-level jets (NLLJ; Blackadar 1957; Shapiro et al. 2016). Supercell updrafts have

been shown to persist in spite of boundary layer stabilization (Ziegler et al. 2010; Nowotarski et al.

2011; MacIntosh and Parker 2017), owing to the NDPA effects discussed earlier. These effects may

be augmented, particularly in the lower portions of updrafts, by increases in low-level shear and

SRH associated with the NLLJ as demonstrated in Coffer and Parker (2015). These increases in

low-level shear also increase the magnitude of SR flow (e.g., Warren et al. 2017; Peters et al. 2019;

Peters et al. 2020b), contributing to wider and less diluted updrafts. It remains to be seen, however,

how the sum of these near-sunset factors influence the temporal evolution of storm updrafts. Ex-

plicitly examining the response of supercellular updrafts to these numerous environmental changes

is crucial to understanding how storms are able to persist across the EET and continue producing

severe hazards.

To this end, Gropp and Davenport (2018) utilized radar data and RUC/RAP proximity soundings

to examine the evolution of Great Plains supercells as a function of near-storm environmental

evolution across the EET. The authors found that the persistence of supercell updrafts past sunset

was related to large increases in SRH coupled with minimal increases in most unstable (MU)CIN,

consistent with previous studies examining nocturnal supercell tornadoes (e.g., Davies and Fischer

2009; Mead and Thompson 2011). Brown et al. (2021) extended this approach to the Southeast

storm climatology, examining how the near-storm environment and subsequent storm characteristics

evolve through the EET, and whether this evolution changes as a function of pre-transition CAPE

and shear (e.g., high-shear, high-CAPE, or HSHC, vs. HSLC). That study found that HSLC storms

lasting through the EET exhibit similar CIN trends as Gropp and Davenport (2018), but post-sunset

SRH increases are largely attributed to non-supercellular modes. HSLC supercells, on the other

hand, coincide with higher pre-transition SRH values (relative to HSHC supercells) that decrease

into the EET, paired with increases in CAPE similar to the rapid destabilization of HSLC storms
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shown in King et al. (2017). Ample moisture and lower values of downdraft CAPE (DCAPE) are

also present in HSLC environments, consistent with the abundantly moist HSLC environments of

Sherburn et al. (2016). This moisture may act to inhibit low-level stabilization (as in Mead and

Thompson 2011) and limit the development of excessively cold outflow that can be detrimental to

updraft maintenance and alignment, and subsequent tornadogenesis (e.g., Markowski et al. 2002;

Brown and Nowotarski 2019).

Presumably, these features collectively modulate the low and mid-level updraft accelerations of

HSLC supercells in such a way that allows them to persist despite minimal instability. These could

include an optimal trade-off of low-level buoyant and dynamic accelerations during the described

CAPE/SRH changes, increased updraft width and buoyancy associated with initially higher SRH

values (following the SR flow arguments presented earlier), or less negatively buoyant outflow due

to ample environmental moisture and reduced evaporative cooling. The exact nature and relative

importance of these compensating factors is unclear, however, and serves as the impetus for this

study. Using the continuous base state substitution (BSS) technique (Davenport and Parker 2015;

Davenport et al. 2019), we will model the response of idealized supercell thunderstorm updrafts

to the HSHC and HSLC environmental evolution pathways identified in Brown et al. (2021),

establishing a theoretical model of how low-CAPE supercell updrafts respond to and survive the

EET. With this goal in mind, our study sets out to address the following questions:

1. As storm environments realistically evolve across the EET for various pre-transition values

of CAPE and shear, how do the characteristics of supercell updrafts – including strength,

vertical extent, and width – change, and can these characteristics be related to the relative

magnitudes of dynamic and buoyant accelerations contributing to these updrafts?

2. Are these changes in updraft accelerations related to other storm attributes that may evolve

independent of the prescribed base states, such as storm propagation or SR flow?

The next section details the model configuration and BSS methodology implemented in this

study, as well as the soundings that serve as the evolving base states for our simulations. Section 3
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reports on the results of these simulations, including evolution of updraft structure and forcing, and

other relevant storm features. Finally, section 4 discusses the broader implications of these findings

for our understanding of HSLC storm dynamics, and presents relevant directions for future HSLC

research.

4.2 Data and methods

4.2.1 Model configuration

This simulations for this study are carried out using CM1 version 20.2 (Cloud Model 1; Bryan

and Fritsch 2002). Horizontal grid spacing is 500 m, with a stretched vertical grid spacing of 50-m

below 4 km, increasing to 500–m spacing above 15 km. Though this resolution cannot resolve

tornado-scale vortices, it is sufficient for resolving the storm updraft features that constitute the

focus of this study. The model domain is 175 × 175 km in the horizontal, and spans vertical depth

of 20 km. Sub-grid scale turbulence is parameterized with 1.5-order closure (Deardorff 1980).

The NSSL double-moment microphysics scheme of (Mansell et al. 2010) was used, with both

graupel and hail densities predicted and an initial cloud condensation nuclei (CCN) concentration

of 2E9 cm−3, following previous HSLC modeling studies (Sherburn and Parker 2019; Wade and

Parker 2021). The Coriolis force, radiation, and surface fluxes of heat, moisture, and momentum

are not included in these simulations. A free-slip lower boundary condition is employed. Wade

and Parker (2021) discuss the implications of this choice for low-CAPE convection. Convection

is initiated using the updraft nudging technique of Naylor and Gilmore (2012), with a horizontal

nudging radius of 10 km and a 1 km vertical radius centered at z = 1.5 km AGL. In order to generate

convection in our low-CAPE environments, a slightly higher maximum nudging magnitude of 15

m s−1 is employed. This nudging is imposed for the first 900 s of model integration, and then

gradually diminished until it ceases at 1200 s.

4.2.2 Base state design

The base states used to initialize the simulations presented herein are derived using the pre-

transition to EET supercell environmental evolution presented in Brown et al. (2021) (solid lines
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in their Figs. 6-8)1. Specifically, we are focusing on evolution conditioned on the pre-transition

environment (HSHC or HSLC). The thermodynamic profiles and hodographs contributing to those

patterns were interpolated onto regularly-spaced vertical grids and composited. For hodographs,

wind profiles were rotated to align their storm motion vector (as approximated by Bunkers right-

mover, or RM; Bunkers et al. 2000) with a common reference angle before compositing and then

rotated back by the average storm motion direction across all composited cases. The HSLC Pre

CAPE values were not sufficient to sustain quasi-steady updrafts in CM1 – a limitation noted in

previous HSLC modeling efforts such as Wade and Parker (2021). Composite soundings across

all environments were modified, using a combination of subtle mid-level cooling and low-level

warming/moistening, in order to uniformly increase CAPE by ∼500 J kg−1, such that the relative

differences between HSHC and HSLC patterns remain unchanged. CAPE was increased in such a

way that any changes in other thermodynamic quantities, such as 0-3 km CAPE and effective layer

quantities, were uniform across environments. This change does compromise the stricter HSLC

classification implemented in Brown et al. (2021), but remains within the broader definition of "low

CAPE" found in the HSLC literature (i.e., MLCAPE less than 1000 J kg−1; Anderson-Frey et al.

2019). Stratospheric data (i.e., data above 15 km) are approximated following the methodology of

Coffer and Parker (2015).

The resultant soundings/hodographs are shown in Figure 4.1. Associated thermodynamic

and dynamic parameters are displayed in Tables 4.1-4.2, respectively, for reference. The HSHC

composite profiles display the gradual cooling and near-surface stabilization (Fig. 4.1a,c) and

early LLJ onset (Fig. 4.1b,d) normally associated with the EET. In contrast, the HSLC composites

show a more moist low-level thermodynamic profile with limited near-surface stabilization paired

with mid-level cooling (Fig. 4.1a,c), allowing for increases in base-state CAPE values. The HSLC

hodographs, though similar in character to the HSHC hodographs, are longer, with greater low-level

1The decision to only model environmental evolution across two temporal periods, as opposed to a full pre- to
post-transition evolution spanning approximately 9-12 hours, was made for both realism and efficiency. Imposing 9-12
hours of environmental evolution in 3-4 hours of model integration for a single storm would be unphysical, and running
a simulation for 9+ hours would be computationally expensive. Instead, we opted for a more realistic pre-transition to
EET evolution which could realistically occur in the 4 hour window chosen for model integration.
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curvature (Fig. 4.1b,d) resulting in higher SRH values, though these values decrease slightly with

time.

4.2.3 Base state substitution

The continuous BSS method of Davenport et al. (2019) is implemented to gradually introduce

the temporally evolving thermodynamic and wind profiles described above. Each simulation is

integrated for a total of four hours, with a constant model integration time step of 1 second. The

first 1.5 hours (5400 s) are used for storms to initiate and develop a quasi-steady updraft, as well

as allow any remnant numerical effects of the updraft nudging to dissipate. Afterwards, the base

state is continually nudged from the original pre-transition base state (BSS1) towards two new base

states corresponding to the soundings described above - a linear combination of the Pre and EET

soundings (BSS2), and then EET (BSS3). The two new base states are realized at 9000 and 12600

s into model integration, respectively. This process is carried out for both the HSHC and HSLC

environmental pathways, along with two additional HSLC simulations varying the thermodynamic

and wind profiles separately (i.e., holding the thermodynamic profile constant at pre-transition

values and allowing the wind profile to evolve, and vice versa) in order to assess their separate

impacts on HSLC storm updraft characteristics. The HSLC simulation with wind evolution only is

herein referred to as HSLC-W, and the simulation with thermodynamic evolution only as HSLC-T.

4.2.4 Updraft identification

Updraft identification is performed similar to the methodology of Nowotarski et al. (2020),

where the 95th percentile of vertical velocities greater than 0.1 m s−1 at each vertical level are used

to approximate the extent of the storm updraft core. These statistical updraft thresholds are saved for

each model output timestep, and averaged both temporally and across the two primary simulations

(HSHC and HSLC) to give a fixed w-profile to identify and compare characteristics of simulated

updrafts across all four modeled storms. This updraft threshold profile (and its constituent HSHC

and HSLC profiles) are included in Figure 4.2 for reference. An additional filter is applied to

remove small transient updraft objects, such that only large and spatially coherent updraft volumes
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are retained. This delineation is based on a subjective minimum threshold for adjacent updraft

points. Multiple thresholds were tested, and a minimum of 15 updraft points was sufficient to

isolate primary updrafts at 500 m horizontal grid resolution. This corresponds to a updraft with

an effective radius of ∼1 km. Updraft outlines displayed in later figures correspond to this filtered

updraft identification.

4.3 Results

4.3.1 Overview of simulations

All four simulations produce discrete storms that persist and maintain supercell-like charac-

teristics throughout all four hours of model integration. Figures 4.3-4.4 display the evolution of

the modeled reflectivity and cold pool/near-surface buoyancy fields, respectively. HSHC storms

largely match the supercell archetype established by Lemon and Doswell III (1979), displaying a

horseshoe-shaped low-level updraft straddling a well-defined hook echo and forward-flank reflec-

tivity gradient (Fig. 4.3a-c). The reflectivity field and updraft cycle and contract midway through

the simulation, but expand once again at later time steps. The attendant HSHC cold pools (Fig.

4.4a-c) are initially expansive and negatively buoyant, but weaken and shrink in time coinciding

with reflectivity/updraft changes described earlier. In contrast, the HSLC simulation shows an

initially more compact reflectivity structure which gradually grows upscale with time (Fig. 4.3d-f).

Though this north-south elongated reflectivity structure appears increasingly quasi-linear, the storm

maintains a single robust updraft at the southern end of the structure consistent with supercellular

characteristics, with this updraft growing wider with time. Additionally, the HSLC simulation con-

tains a weaker and smaller cold pool in comparison to the HSHC storm (Fig 4.4d-f). The HSLC-W

and HSLC-T simulations are largely similar to the HSLC simulation in terms of their reflectivity

field evolution (Fig. 4.3g-i, j-l, respectively), but HSLC-T exhibits a markedly weaker cold pool

(Fig. 4.4 j-l), more positively buoyant inflow, and a wider low-level updraft than HSLC-W.
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4.3.2 Updraft structure

Next we examine how the vertical structure and accelerations of the modeled storm updrafts

evolve with their associated base states, beginning with time-height profiles of maximum w within

these updrafts (Fig. 4.5). Also included is the height at which the updraft acceleration profile

(dwdz ) minimizes to give a rough approximation of the upper extent of the modeled updraft cores.

The HSHC simulation updrafts (Fig. 4.5a) develop deep, robust updrafts (w well above 50 m

s−1) maximizing in the upper troposphere (≥10 km AGL), but with velocities exceeding 40 m s−1

extending as low as 2-3 km AGL. As time progresses, this updraft weakens (particularly below

4 km) with some intermittent restrengthening aloft before ultimately diminishing by the end of

model integration. All of the HSLC updrafts (Fig. 4.5b-d) are substantially more shallow than the

HSHC updraft, with their associated velocity maxima mostly confined to heights of 2-4 km AGL.

This is not surprising given the differences in HSHC and HSLC updraft profiles in Figure 4.2,

and corroborates previous modeling and observational studies examining the vertical structure of

low-CAPE supercells (e.g., Davies 2006; Murphy and Knupp 2013; Wade and Parker 2021). Both

the HSLC and HSLC-T simulations (Fig. 4.5b,d, respectively) exhibit a weak, transient low-level

updraft between BSS1 and BSS2 that rapidly deepens and intensifies up through and past BSS3,

though the HSLC-T updraft reaches higher maximum values and remains largely below 6 km AGL.

HSLC-W (Fig. 4.5c) never develops a strong updraft comparable to the other HSLC simulations,

with the upper extent of its updraft remaining below 3-4 km for the entirety of the simulation.

We also wish to characterize the width of the storm updrafts. Figure 4.6 displays time-height

plots of effective updraft radius (Reff), as approximated by the number of updraft grid points

identified with the criteria discussed earlier2. Also included on these plots is base-state SR flow

magnitude relative to modeled storm motion (i.e., base-state wind profiles with modeled storm

motion subtracted off). Studies like Peters et al. (2019) demonstrated that increased SR flow in

a given environment contributes to larger inflow, which in turn leads to wider and more buoyant

2This method is susceptible to over-counting of updraft grid points when more than one updraft feature is identified.
However, the benefit of our updraft filtering method is that it generally identifies a single dominant updraft core. In the
limited instances where more than one updraft area is identified, these updrafts tend to coalesce soon afterwards.
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updrafts that are increasingly resistant to entrainment-driven dilution. Furthermore, SR flow with

the effective inflow layer (EIL; Thompson et al. 2007) correlates with updraft width and maximum

vertical velocity throughout the depth of the storm (Peters et al. 2020b). For reference, Figure 4.7

shows 0-2, 2-4, and 4-6 km AGL layer averages of the SR flow field shown in Fig. 4.6.

The HSHC modeled updraft width (Fig. 4.6a) is the most steady of the simulations, with

consistently narrower updrafts (Reff < 2 km) near the surface and increasingly wider updrafts at

higher elevations. There is some updraft contraction below 4 km and expansion above 4 km in

the last hour of model integration, but these changes are subtle compared to the changes in other

simulations. Similarly, HSHC SR flow patterns (Fig. 4.7a) show largely indistinct patterns in each

analyzed layer, except for a late decrease in 0-2 km SR flow and increase in 4-6 km SR flow perhaps

responsible for the slight changes in updraft width described previously. The HSLC simulations

show much more temporal heterogeneity in both their updraft width and SR flow evolution. All

three HSLC simulations display moderate updraft widths (Reff ∼3-4 km) in the lowest 6 km during

1-2.5 hours (i.e., prior to BSS2) with some transient increases aloft (Fig. 4.6b-d). This coincides

with gradual increases in 0-2 km SR flow, and gradual decreases in SR flow above 2 km (Fig.

4.7b-d). After BSS2, however, these simulations diverge, with HSLC and HSLC-T displaying

sustained increases in 0-2 km SR flow paired with an uptick in 2-4 and 4-6 km SR flow after BSS3

(Fig. 4.7b,d). These SR flow trends correspond with rapidly increasing updraft width (particularly

above 2 km) in the final hour of model integration (Fig. 4.6b,d). In contrast, HSLC-W shows

slower increases in 0-2 km SR flow and continued decreases in 2-4 and 4-6 km SR flow (Fig. 4.7c).

Though its associated updrafts show some slight widening after BSS3 (Fig. 4.6c), this widened

updraft never reaches the size or vertical extent of those seen at the end of the HSLC and HSLC-T

simulations. In fact, the width and vertical extent of the HSLC-related simulations appear to scale

by the magnitude of their 0-2 km SR flow, consistent with the physical arguments of Peters et al.

(2019). It is worth noting that these changes in SR flow are not a direct consequence of changes in

the base-state winds. As these HSLC updrafts strengthen and grow, there are also likely changes in

storm motion that modulate SR flow at different levels. This possibility will be addressed in later
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sections.

4.3.3 Updraft forcing

In addition to intensity, vertical extent and width, we also wish to characterize the accelerations

contributing to the modeled storm updrafts. Previous studies examining low-CAPE storms, such

as McCaul Jr and Weisman (1996) and Murphy and Knupp (2013), have noted that buoyant

contributions to updraft speed in these storms are reduced relative to high-CAPE storms. Instead,

low-level dynamic accelerations have been shown to play a sizeable role in determining the strength

of low-CAPE supercellular updrafts (e.g., Wade and Parker 2021). However, it is unclear how

temporal changes in the near-storm environment may affect these dynamic and buoyant accelerations

and their relative contributions to updraft intensity. As such, we consider how buoyant and dynamic

accelerations evolve with the imposed model base states and influence updraft characteristics.

In order to assess these updraft accelerations, we begin with the vertical momentum equation,

which once we make the Boussinesq approximation and neglect frictional effects reduces to the

following:

Dw
Dt

= −𝛼0
𝜕p′

𝜕z
+B, (4.1)

where w is vertical velocity, 𝛼0 is a specific volume constant, p′ is a perturbation pressure,

and B is buoyancy. The first term on the right hand side of Eqn. 4.1 is the vertical perturbation

pressure gradient acceleration (VPPGA) and the second term reprsents acceleration due to buoyancy.

Following a similar approach as Rotunno and Klemp (1982) and Rotunno and Klemp (1985),

the perturbation pressure field can be decomposed into its constituent parts – buoyancy (p′B),

linear dynamic (p′DL
), and nonlinear dynamic (p′DNL

) pressure perturbations. Substituting these

perturbation pressures into Eqn. 4.1 gives:

Dw
Dt

= B−𝛼0
𝜕p′B
𝜕z︸       ︷︷       ︸

BEff

−𝛼0
𝜕p′DL

𝜕z
−𝛼0

𝜕p′DNL

𝜕z︸                  ︷︷                  ︸
ACCD

. (4.2)

95



Buoyancy and the buoyant VPPGA can be grouped into a single acceleration know as effective

buoyancy (BEff). Additionally, the linear and nonlinear dynamic VPPGA are grouped into a net

dynamic acceleration (ACCD). In the case of supercells, the nonlinear dynamic VPPGA often

exceeds the linear VPPGA within its updraft core, though linear forcing can be large on the flanks

of this updraft and have a substantial influence on its propagation (e.g., Rotunno and Klemp 1982;

Davies-Jones 2002). Pressure decomposition is computed inline with CM1, and the associated

accelerations are output at every model time step.

Figure 4.8 shows the profiles of BEff, ACCD, and total forcing (the sum of BEff and ACCD)

averaged within the storm updraft during the period ± 30 minutes from each BSS time (BSS1,

BSS2, and BSS3). Vertical profiles of wmax averaged over the same time periods are included in

Figure 4.9, for reference. For the HSHC simulations (Fig. 4.8a-c), the ACCD profiles maximize

near the surface and diminish with height. BEff remains entirely positive and maximizes around

4-5 km AGL. These features lead to a total updraft acceleration profile dominated by ACCD below

1 km, but increasingly influenced by BEff above 1 km. These low-level ACCD and mid-level BEff

maxima decrease with time, leading to a gradually weakening (though still robust) wmax profile

(Fig. 4.9a-c).

The HSLC simulations (Fig. 4.8d-l) show similar initial near-surface maxima in ACCD, but

these ACCD values increase more rapidly with time in HSLC (Fig. 4.8d-f) and HSLC-T (Fig.

4.8j-l), similar to the SR flow evolution in Fig. 4.7b,d. Interestingly, despite increasing CAPE

values in their associated base states, both HSLC and HSLC-W (and also HSLC-T) display very

small BEff values throughout the depth of their updrafts, though their mid-level BEff values become

slightly positive by BSS3 whereas HSLC-W mid-level BEff (Fig. 4.8g-i) becomes slightly negative.

Regardless, the lack of a prominent BEff maximum aloft like that in the HSHC simulation allows

total mid-level updraft accelerations in the HSLC simulations to become negative, with the height

of these minima increasing with time. Given that this height increases more dramatically in HSLC

and HSLC-T, it is likely that it at least partially dictates the vertical extent of these HSLC storm

updrafts (as in Fig. 4.5b-d). This assertion is also supported by the deepening HSLC and HSLC-T
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wmax profiles in Fig. 4.9d-f, g-i, respectively. Perhaps most importantly, the uniformly small HSLC

BEff values mean that ACCD dominates updraft accelerations in these simulations, consistent with

previous low-CAPE modeling studies (McCaul Jr and Weisman 1996; Sherburn and Parker 2019;

Wade and Parker 2021).

4.3.4 Updraft propagation

The HSLC updraft characteristics presented thus far tell a coherent physical story. Gradually

increasing low-level SR flow widens and strengthens updraft cores, consistent with the physical

arguments of Peters et al. (2019). Given the near-sunset timing of these storms, their updraft

characteristics and the increasing contribution of ACCD to its low-level accelerations, one might

assume that the HSLC environmental evolution coincide with the onset of a NLLJ. Such a feature

would introduce additional SRH and stronger low-level dynamic updraft forcing, as in Coffer and

Parker 2015). Recall, however, that the HSLC base-state hodograph evolution shows a decrease in

shear/SRH at all heights through the EET, so the aforementioned updraft characteristics appear to

be at odds with their underlying environmental evolution.

Calculations of SR-flow and SRH often depend on assumptions about storm motion in relation

to the environmental wind profile. Given the contradictions described above, our modeled storm

motion may deviate from estimates of storm motion like Bunkers RM. In order to assess this,

Figure 4.10 shows the evolution of Bunkers RM, modeled storm motion3, and the 0-6 km mean

wind vectors in each simulation. The HSHC simulation (Fig. 4.10a) maintains storm motion with

a slightly smaller u-component but generally close to Bunkers RM, as may be expected. Early in

the BSS implementation, the HSLC simulations (Fig. 4.10b-d) exhibit storm motions to the left of

Bunkers RM, closer to 0-6 km mean wind. As time progresses, these HSLC storm motion vectors

move towards Bunkers RM, but HSLC and HSLC-T (Fig. 4.10b,d, respectively) show further

deviation during the final hour of model integration right of Bunkers RM.

The question that follows is: how do these variations in modeled storm motion influence the

3Storm motion is approximated following the movement of the 2-5 km UH maximum, with some subjective
adjustment in the rare instances where the UH maximum moves sporadically (e.g., when updrafts are weak and
transient).
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SRH experienced by these updrafts? As noted in Coniglio and Parker (2020) (their Fig. 11),

off-hodograph propagation can to alter the SR flow (and SRH, by extension) in a given near-storm

environment, though the sign and magnitude of this change may differ depending on the depth

of SR flow/SRH being considered. Furthermore, the subtle lengthening of the modeled HSLC

and HSLC-T storm motion vectors with time (Fig. 4.10b,d, respectively) likely contributes to

increased SR flow as well. To answer this question, SRH is recomputed using our modeled storm

motion evolution in place of Bunkers RM as used in the original calculations, both of which are

shown in Figure 4.11. For the HSHC simulation (Fig. 4.11a), there are differences between SRH

calculations depending on the storm motion vector used, with systematic under-representations as

large as 100 m2 s−2 when using Bunkers RM. That being said, the difference between Bunkers

and model-derived SRH become lesser in layers extending above 1 km. Despite these differences

in magnitude, the trend of HSHC SRH is consistent regardless of the storm motion vector used

for calculation – meaning the differences between Bunkers and modeled SRH are relatively steady

with time. For the HSLC-related simulations (Fig. 4.11b-d), SRH computed in layers of 0-1 km

and deeper are slightly below Bunker RM SRH early in simulations, but increase steadily with time

and exceed Bunkers RM SRH past the 3-h mark (contrary to their decreasing Bunkers-based SRH

values). Similar to Figure 4.7, the HSLC and HSLC-T simulations (Fig. 4.11b-d) exhibit the largest

departures from Bunkers RM SRH by the end of the simulations, consistent with their exceedingly

deviant storm motion in Figure 4.10.

Though the storm motion and associated SRH patterns presented in Figures 4.10-4.11 likely

explain the HSLC updraft characteristics presented thus far, there are two other factors worth

considering that may add valuable context to these results. The first of these is the role of linear

forcing in the propagation of the modeled HSLC storms. This forcing is the primary cause of lateral

updraft propagation in the presence of curved hodographs (e.g., Rotunno and Klemp (1982); Klemp

1987), and the magnitude of this propagation component increases with larger initial shear/SRH

values and stronger updrafts (Weisman and Rotunno 2000; Davies-Jones 2002). Given that all of

the HSLC simulations exhibit storm motion that deviates rightward with time, it is possible that
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the overall higher shear/SRH values associated with these environments support a stronger linear

forcing component relative to the HSHC simulation.

To this end, Figure 4.12 displays the 0-3 km and 0-6 km averaged maximum linear dynamic

pressure accelerations (LDPA) during the period ± 30 minutes from each BSS time4. Both the

0-3 and 0-6 km HSHC maximum LDPA decreases with time, whereas the HSLC simulations show

LDPA maxima that either remain generally constant or increase with time. These increases are most

pronounced in the HSLC and HSLC-T simulations, and their larger LDPA maxima are realized at

lower levels even with appreciable vertical velocities extending above 3 km (as in Fig. 4.5b,d).

Physically, LDPA can be characterized as follows:

LDPA ∝ 𝜕

𝜕z
(®S ·▽hw), (4.3)

where ®S is the vertical wind shear vector and second term represents the horizontal gradient

of vertical velocity. Given the shear magnitude is decreasing at all heights in the HSLC base

state (Table 4.2) and shear orientation only changes slightly (not shown), this suggests the primary

driver of these later increases in LDPA are changes in updraft intensity in the final hour of model

integration – though again, the initially large shear/SRH may drive lateral updraft propagation

earlier in HSLC simulations.

The second consideration worth examining is whether the widening and strengthening of HSLC

and HSLC-W updrafts with time is simply related to their increasing CAPE values. McCaul Jr and

Weisman (2001) noted the vertical distribution of buoyancy modulates storm updraft intensity more

strongly in low-CAPE environments, suggesting that destabilization of these HSLC environments

(particularly at low levels) may strongly influence their associated updraft characteristics. In order

to address this matter, we need to relate our maximum modeled updraft speeds to our base-state

CAPE evolution. One common expression used to relate these factors is as follows:

wmax =
√
2×CAPE. (4.4)

4This is computed in a 25 × 25 km box centered on the 2-5 km UH maximum used to track each simulated storm.
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However, this is often viewed as the "thermodynamic limit" of updraft speed which most storms

fail to realize due to the effects of mixing and entrainment on the peripheries of storm updrafts. As

such, Peters et al. (2020a) set out to a derive a more accurate formula to predict maximum supercell

updraft velocities by using entrainment CAPE (ECAPE) to factor in the updraft-diluting properties

that the previous expression failed to capture. Figure 4.13 shows analytic curves for predicted wmax

as a function of base state derived MUCAPE and ECAPE relative to modeledwmax values. Modeled

updraft speeds lying closer to the ECAPE-derived wmax curve indicate updrafts experiencing more

entrainment and dilution compared to those nearer to the MUCAPE curve. Furthermore, changes

in modeled updraft speed as a function of CAPE parallel to these analytic expressions suggest

modulation of updraft primarily driven by CAPE increases, whereas more abrupt changes in this

w-CAPE parameter space may be related to external factors (e.g., changes in dynamic forcing).

All of the HSLC simulations show a ∼ 5 m s−1 increase in updraft speed to a value of 25

m s−1 in the 30 minutes prior to the beginning of BSS implementation, related to initially high

shear and SRH values and subtle lengthening of storm motion vectors (white and light pink dots

in Fig. 4.10b-d). HSLC-T updraft speeds (Fig. 4.13b) remain at this 25 m s−1 mark for the

majority of the simulation, before increasing once again to ∼ 30 m s−1 between 3-3.5-h. In contrast,

HSLC and HLSC-T updraft speeds (Fig. 4.13a,c, respectively) immediately begin to increase away

from the ECAPE curve, presumably owing to increased SR flow and updraft width shown in Figs.

4.6-4.7b,d. These increases remain relatively parallel to the ECAPE and MUCAPE curves until

substantial jumps during the final hour of model integration. The ∼ 20 m s−1 gap in between the

final HSLC/HSLC-T and HSLC-W updraft speeds can be attributed to the rapid destabilization in

the former. More specifically, 15 m s−1 or 75% of this difference is likely caused by off-hodograph

propagation, given that changes in ECAPE/MUCAPE between hours 3-4 at most account for 5 m

s−1 of w increases (following the analytic w-CAPE curves).
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4.3.5 Summary and conclusions

Though our understanding of low-CAPE supercell updraft forcing and maintenance has grown

considerably in recent years, the response of these updrafts to the near-storm environmental changes

associated with the EET have been left largely unaddressed. Using base state substitution to impose

the EET environmental pathways established in Brown et al. (2021), this study set out to determine

how supercellular updrafts evolve into the evening given varying pre-sunset CAPE and shear values.

In doing so, we reached the following conclusions:

• HSHC storms develop initially deep, robust updrafts which gradually weaken through the

imposed EET evolution, likely due to its decreasing CAPE and increasing CIN magnitude.

In contrast, HSLC storms develop initially more shallow updrafts (confined below ∼4-5 km

AGL), which gradually increase in depth, width, and strength with time in tandem with

increasing CAPE, despite decreases in background shear/SRH.

• HSLC storms exhibit sustained lateral updraft propagation through the EET, with storm

motion vector turning towards and/or right of Bunkers RM by the end of model integration.

This deviant motion – which is largest for simulations with a destabilizing background

environment – leads to enhanced SR flow and SRH, particularly in the lowest 2 km, which

exceeds what is predicted by the base-state hodograph evolution alone.

• In addition to updraft width, these prolonged increases in SR flow and SRH contribute to

HSLC updrafts whose forcing is dominated by dynamic pressure accelerations throughout

its vertical extent, consistent with previous characterizations of low-CAPE updrafts. This

differs from HSHC updrafts, which are more dynamically forced at low levels, yet buoyantly

forced aloft.

• The primary impact of rapid destabilization on HSLC updraft enhancement is related to off-

hodograph propagation and its subsequent SR flow influences, rather than the direct impact

of increasing CAPE.
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These results highlight several important and interconnected characteristics of HSLC supercell

updrafts during the EET, the first of which is off-hodograph propagation. As described earlier, initial

off-hodograph propagation is likely related to high pre-transition shear/SRH base-state values,

while later deviations are related to updraft strengthening. This deviant motion suggests that

sounding-derived attributes related to storm motion may be insufficient to fully characterize the

propagation and storm-relative properties of low-CAPE storms, particularly those occurring in

a rapidly evolving background environment. To this point, the second vital characteristic is the

role that rapid destabilization plays in the development of strong vertical velocities in these HSLC

storms, as suggested previously by King et al. (2017). In addition to the direct updraft enhancement

related to increasing CAPE, its impact on updraft strength sets off a causal chain by which stronger

updrafts obtain a larger lateral propagation component (via increased linear dynamic forcing),

thus increasing SR flow and SRH as described above and further strengthening the low to mid-

level updraft. Furthermore, this destabilization increases the vertical extent of HSLC updrafts,

which (though not explicitly shown) puts the updrafts in contact with stronger steering flow aloft,

potentially exacerbating its off-hodograph propagation. Altogether, rapid stabilization and its

dynamic consequences may be a necessary feature for HSLC supercell updrafts to strengthen

through the EET.

There are still numerous aspects of HSLC supercells and their response to changes in near-storm

environments worth exploring. One such aspect is the effect of friction on HSLC storm dynamics.

While studies such as Schenkman et al. (2014) have demonstrated the contribution of frictional

generation to vortexgenesis in traditional high-CAPE environments, Wade and Parker (2021) noted

that inclusion of friction tends to inhibit the formation of tornado-like vortices in low-CAPE storms.

Though tornadogenesis extends beyond the scope of this study, understanding the role of friction

for the maintenance of severe convection remains critical, particularly in the Southeast given more

complex terrain and land cover relative to the Great Plains. Another important caveat for this

study is the use of composite soundings and hodographs for our BSS implementation. Though, on

average, HSLC supercells persisting through the EET exhibit the imposed environmental evolution,
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some storms may in fact experience decreases in CAPE and/or increases in shear or SRH (relative

to Bunkers RM). It is also worth noting here that there are potential sources of error (meaning a

misrepresentation of the convective environment) in the sounding-derived dataset used to determine

this EET evolution, as described in Brown et al. (2021). Regardless, examining the updraft response

to these other environmental pathways would foster a more robust characterization of nocturnal

HSLC updrafts.

Also relevant is the importance of storm mode for HSLC storm maintenance. Quasi-linear

convective systems constitute a large portion of the HSLC climatology (e.g., Smith et al. 2012;

Davis and Parker 2014), and HSLC supercells persisting through the EET and producing severe

convective hazards post-sunset typically grow upscale rather than remaining isolated (e.g., Brown

et al. 2021). As such, similar simulations could be run using the storm initiation approach of

Sherburn and Parker (2019) to develop HSLC supercells embedded within broader linear features.

We could then compare the embedded supercell updraft evolution with that of the isolated HSLC

supercells in this study, further advancing our understanding of the nocturnal persistence of low-

CAPE storms.

Lastly, efforts must continue to sample the environments of low-CAPE storms at high spatiotem-

poral resolution. This can be accomplished in a variety of ways, whether that be the deployment of

an array of probes to collect in-situ atmospheric measurements (as in McDonald and Weiss 2021),

or perhaps the unmanned aerial vehicles (UAVs) to rapidly sample the vertical structure of develop-

ing storm environments (as in Frew et al. 2020). Of particular importance is the how the magnitude

and vertical distribution of buoyancy changes in these environments and ultimately impacts the

mode and longevity of their associated storms. Given the importance of rapid destabilization for

HSLC updrafts, as demonstrated in this and previous studies, these fine-scale observations of how

low-CAPE storm environments evolve will have innumerable benefits for both our physical model

of low-CAPE storms and our ability to forecast their persistence and production of severe convective

hazards past sunset.
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Table 4.1: Sounding-derived CAPE and CIN evolution (in J kg−1) for HSHC and HSLC values corresponding
to the HSHC and HSLC thermodynamic and wind profiles in Figure 4.1.

HSHC HSLC
Pre EET Pre EET

SBCAPE 2501 1750 755 1251
MLCAPE 2530 2057 814 1163
MUCAPE 2583 2123 1044 1490
SBCIN -22 -53 -26 -16
MLCIN -9 -15 -3 -2
MUCIN -5 -15 -3 -3

Table 4.2: Sounding-derived shear (SHR; in m s−1) and SRH (in m2 s−2) values corresponding to the HSHC
and HSLC thermodynamic and wind profiles in Figure 4.1.

HSHC HSLC
Pre EET Pre EET

SHR1 11.8 14.4 19.0 15.4
SHR3 20.1 22.6 24.7 23.7
SHR6 27.3 29.8 32.9 29.3
Eff SHR 18.0 20.1 23.7 22.1
SRH500 108 154 215 136
SRH1 198 255 357 282
SRH3 313 351 438 419
Eff SRH 292 331 425 397
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Figure 4.1: Composite low-level thermodynamic profiles and hodographs for the (a)-(d) HSHC and (e)-
(h) HSLC evolution pathways as identified in Brown et al. (2021). The left panel in each row shows
the thermodynamic profile below 6 km for each base state, with the red line representing environmental
temperature and the green line representing environmental dewpoint temperature, and the blue bracket
representing the depth of the effective inflow layer (EIL; Thompson et al. 2007). The right panel in each row
represents the environmental hodograph, with the red, green, yellow and light blue segments representing
the 0-3, 3-6, 6-9, and 9-12 km AGL layers, respectively. The blue lines bracketing the lower portion of the
hodograph represent the EIL bounds shown in the thermodynamic plot, relative to the Bunker RM storm
motion estimate (denoted with a black circle).
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Figure 4.2: Time-averaged updraft threshold profiles for the HSHC (in red) and HSLC (in blue) simulations,
and the average of the two (in black) used for updraft identification.
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Figure 4.3: Plan views of near-surface reflectivity (shaded), storm updraft at 1 km AGL (black contour), and
the -1 K near-surface potential temperature perturbation (blue dotted contour; used to approximate the cold
pool leading edge) at BSS1, BSS2, and BSS3, corresponding to the (a)-(c) HSHC, (d)-(e) HSLC, (g)-(i)
HSLC-W and (k)-(l) HSLC-T simulations. The x and y units are kilometers from the 2-5 km updraft helicity
maximum (used to track the storms).
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Figure 4.4: Plan views of near-surface buoyancy (shaded), storm updraft at 1 km AGL (black contour), the
20 dBZ near-surface reflectivity contour (green contour), and the -1 K near-surface potential temperature
perturbation (blue dotted contour; used to approximate the cold pool leading edge) at BSS1, BSS2, and
BSS3, corresponding to the (a)-(c) HSHC, (d)-(e) HSLC, (g)-(i) HSLC-W and (k)-(l) HSLC-T simulations.
The x and y units are kilometers from the 2-5 km updraft helicity maximum (used to track the storms).
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Figure 4.5: Time-height profiles of maximum vertical velocity (wmax; in m s−1) within identified updrafts
in the (a) HSHC, (b) HSLC, (c) HSLC-W and (d) HSLC-T simulations. The height at which the updraft
acceleration profile dw

dz is minimized is included (black line) to approximate the upper extent of the updraft
core.
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Figure 4.6: Time-height profiles of effective updraft radius (shaded; in km) and storm-relative flow (con-
toured; in m s−1) with respect to modeled storm motion, corresponding to identified updrafts in the (a)
HSHC, (b) HSLC, (c) HSLC-W and (d) HSLC-T simulations.
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Figure 4.9: Vertical profiles of maximum updraft speed (wmax; in m s−1) ± 30 minutes from each BSS time
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Figure 4.10: Plots of Bunker RM (in purple) and modeled storm motion (in blue) and 0-6 km mean wind (in
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Figure 4.13: Scatter plot of base-state MUCAPE/ECAPE (in J kg−1) and maximum modeled updraft speed
(in m s−1), with same color-timing scheme as Fig. 4.10, for the (a) HSLC, (b) HSLC-W and (c) HSLC-T
simulations. The predicted updraft speeds based on the base-state MUCAPE (blue line) and ECAPE (black
line) values are included for reference. Note, the ECAPE/MUCAPE analytic curves are still included on the
HSLC-W plot for consistency, despite the constant CAPE values maintained in this simulation.
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5. CONCLUSIONS

This work employed a variety of analysis techniques to assess how Southeast US tornado

environments evolve across multiple spatiotemporal scales, and relate this evolution to subsequent

storm characteristics. On the seasonal/sub-seasonal scale, teleconnection patterns were grouped

using self-organizing maps to identify broad patterns of temperature, wind, and other factors

uniquely related to Southeast tornado outbreaks across multiple seasons and lead times. On the

regional scale, the evolution of Southeast near-storm environments and their production of severe

convective hazards across the EET were considered as a function of pre-sunset CAPE and shear

values. Lastly on the storm scale, these environmental pathways were incorporated into idealized

simulations to characterize and compare the response of high and low-CAPE supercell updrafts to

the EET. The primary findings from each of these efforts are described below.

5.1 Seasonal/sub-seasonal scale evolution

Self-organizing maps were able to identify physically relevant teleconnection patterns associ-

ated with Southeast tornado outbreaks. Large-scale modes of variability such as North Atlantic

Oscillation (NAO) were related to outbreaks on longer timescales (∼1-2 months) and across all an-

alyzed seasons, whereas more localized variability like Gulf of Mexico SST anomalies were related

to outbreaks on shorter timescales (≤ 1 week) and specifically in cool season months. Alterations to

overarching synoptic conditions – such as jet stream position and strength, trough/ridge placement,

and changes in low level pressure and flow patterns – occur in tandem with these outbreak patterns.

These alterations lead to a priming of the near-storm environment via increasing SRH, lowering

environmental LCLs, and/or moistening the lower levels of the atmosphere. A subset of the cool

season patterns contribute to the formation of HSLC tornado outbreaks (several of which span local

sunset), meaning their associated large-scale environments act to limit CAPE and invigorate re-

gional shear. This result provides a previously unexplored pathway for possible large-scale origins

of CAPE deficits in widespread HSLC events, and also suggests that HSLC tornado outbreaks have
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more intrinsic predictability than perhaps thought before.

5.2 Regional-scale evolution

The evolution of Southeast storm environments across the EET was found to vary as a function

of pre-transition CAPE and shear values. Environments with HSHC pre-transition environments

exhibit the archetypal near-sunset evolution, characterized by gradually decreasing CAPE, increas-

ing static stability, and increasing shear and SRH associated with the onset of a nocturnal low-level

jet feature. In contrast, HSLC pre-transition environments tend to support overall higher shear

and SRH values compared to HSHC environments (though subsequent trends vary by convective

mode), paired with destabilization into the post-transition period via increasing CAPE and the

removal of CIN. Pre-transition CAPE and shear values also influence the convective mode of sub-

sequent tornadoes, with HSHC conditions favoring supercellular tornadoes while HSLC conditions

favor linear mode tornadoes, particularly during the post-transition. Statistical analyses indicated

that while traditional forecasting metrics such as STP retain skill for predicting HSLC tornadoes,

this prediction can be advanced by incorporating additional thermodynamic information such as

downdraft CAPE and precipitable water.

5.3 Storm-scale evolution

The simulated HSHC storm develops deep, strong updrafts which gradually weaken in response

to the decreasing instability associated with its base-state EET evolution. HSLC storms develop

noticeably shallower updrafts, but these tend to increase in depth, width, and strength with time when

increases in base-state CAPE are present. These changes occur despite decreasing base-state shear

and SRH, which would typically serve to weaken updraft accelerations. The primary explanation

for this counterintuitive result is that the modeled HSLC storms exhibit updraft propagation that

deviates rightward from Bunkers RM storm motion estimates by the end of model integration,

leading to storm-relative flow and SRH values exceeding what is predicted by the base-state

hodograph evolution alone. This deviant motion is supported by initially high shear and SRH pre-

transition values associated with HSLC environments, paired with updraft invigoration in response
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to prescribed destabilization. These factors lead to HSLC updrafts whose forcing is dominated

by dynamic pressure accelerations, in contrast with HSHC updrafts which are influenced heavily

by dynamic accelerations near the surface and buoyancy forcing aloft. These results clarify the

importance of rapid destabilization and off-hodograph propagation for HSLC updrafts, and suggest

that sounding-derived quantities related to storm motion may be insufficient to predict the strength

of HSLC supercell updrafts and whether they can persist through the EET.

5.4 Summary and future work

Altogether, these studies demonstrated that Southeast US environments can vary rapidly across

multiple spatiotemporal scales, thus impacting the strength, persistence, convective mode, and

severe convective hazards associated with their attendant convection. Perhaps more importantly,

the evolution of HSLC environments and the subsequent response of convection was shown to differ

relative to HSHC environments across multiple scales, highlighting the differing physical processes

which govern low-CAPE storm maintenance and forcing. Each phase of this work sheds new light

on these processes and advances our prediction of HSLC convective hazards – whether that be

through anticipating the large-scale patterns which support cool season HSLC tornado outbreaks,

understanding how HSLC environments and associated storms uniquely evolve into the evening,

or clarifying the physical processes which support this nocturnal persistence of HSLC supercell

updrafts.

Moving forward, there are numerous avenues for continued Southeast and HSLC storm re-

search. Given that most severe convective research focuses on events (meaning occurrences of the

hazard being studied) as opposed to non-events, it would be intriguing to consider the failure modes

associated with Southeast storm environments. Within the context of this work, this could mean

considering the large-scale evolution preceding instances of widespread Southeast severe convec-

tion that do not produce tornadoes, or modeling the environmental evolution of Southeast storms

which only persist partway through the EET. Beyond this, high-resolution simulations determining

the degree to which factors like friction or lack of strong cold pools potentially affect the develop-
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ment of tornado-like vortices in low-CAPE environments would provide valuable insight. These

experiments would serve to further clarify what aspects of the results discussed in this dissertation

and within the literature are the key discriminators for their associated phenomena (e.g., tornado

outbreaks, long-lived nocturnal supercell thunderstorms, intense near-surface vortices, etc.).

Observations of Southeast US storms also need to improve. High-resolution observations of

Southeast convection and their near-storm environments are few and far between, due in part to

characteristically fast storm motion, complex terrain and land cover, and prevalence of nocturnal

storm complexes. However, continued efforts to gather dense measurements of Southeast storms –

utilizing arrays of both fixed and mobile sensors, unmanned aerial vehicles (UAVs), mobile Doppler

radars when possible, and other innovative platforms – are necessary to advance our understanding

of Southeast storm dynamics. In particular, three-dimensional wind retrievals would be beneficial

in order to assess the validity of the updraft structures represented in this and other HSLC modeling

studies. Also important are high density observations of Southeast supercell cold pools to clarify

the role they play in storm maintenance and tornadogenesis, especially given the weak nature of

modeled HSLC supercell cold pools. With these novel observations, we can continue to form a

more complete physical model of the dynamics and maintenance of Southeast US storms across

the full CAPE-shear parameter space.
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Figure A.1: Sample 3x3 SOM output, corresponding to MAM AO60. Reprinted from Brown and Nowotarski
(2020), with permission from American Meteorological Society.
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Figure A.2: Significantly tornadic NAO patterns (in red) and null patterns (in blue) associated with SON
period, with same line attributes as Figure 2.2. Reprinted from Brown and Nowotarski (2020), with
permission from American Meteorological Society.
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Figure A.3: Significantly tornadic AO patterns (in red) and null patterns (in blue) associated with DJF period,
with same line attributes as Figure 2.2. Reprinted from Brown and Nowotarski (2020), with permission from
American Meteorological Society.
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Figure A.4: Composite anomalies associated with SON NAO60 pattern consisting of (a)-(b) 250-mb speed
anomalies in m s−1 and wind anomaly vectors (with node average speed contours 40 and 45 m s−1 shown in
black), (c)-(d) 500-mb geopotential height anomalies in meters and wind anomaly vectors (with node average
height contours of 5500, 5600, 5700, and 5800 m), (e)-(f) 10 m speed anomalies in m s−1 and wind anomaly
vectors, and (g)-(h) surface pressure anomalies in mb. Reprinted from Brown and Nowotarski (2020), with
permission from American Meteorological Society.
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Figure A.5: SSTAD daily trend (in K day−1) and 00Z GOM-averaged 10 m wind anomalies (in m s−1)
preceding SC days associated with SSTAD3, with zero lines shown in dotted black, least squares trend line
in gray, and associated statistics displayed in legend (upper right). Reprinted from Brown and Nowotarski
(2020), with permission from American Meteorological Society.
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Figure A.6: Difference between domain-averaged temperature profiles (in K) 3 and 1 days out from SC day
for SC climatology (black), NAO60 (green), SSTAD3 (red), and SSTA3 (blue), with zero line overlaid in
dotted black. Reprinted from Brown and Nowotarski (2020), with permission from American Meteorological
Society.
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Figure A.7: Composite anomalies associated with DJF AO30 pattern consisting of (a)-(b) 250-mb speed
anomalies in m s−1 and wind anomaly vectors (with node average speed contours in black of 40, 45, and
50 m s−1), (c)-(d) 500-mb geopotential height anomalies in meters and wind anomaly vectors (with node
average height contours of 5400, 5500, 5600, 5700, and 5800 m), and (e)-(f) surface pressure anomalies.
Reprinted from Brown and Nowotarski (2020), with permission from American Meteorological Society.
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Figure A.8: Composite anomalies associated with DJF NAO30 pattern consisting of (a) 250-mb speed
anomalies in m s−1 and wind anomaly vectors (with node average speed contours 40, 45, and 50 m s−1
shown in black), (b) 500-mb geopotential height anomalies in meters and wind anomaly vectors (with node
average height contours of 5500, 5600, 5700, and 5800 m), (c) 10 m speed anomalies in m s−1 and wind
anomaly vectors, and (d) surface pressure anomalies in mb. Reprinted from Brown and Nowotarski (2020),
with permission from American Meteorological Society.
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APPENDIX B

CHAPTER 3 APPENDIX

-2000 -1000 0 1000 2000

MLCAPE  (J kg-1)

-15

-10

-5

0

5

10

15

e
  (

K
)

MLCAPE vs. 
e,subLCL

 (Pre to EET)

R = 0.774

-500 -250 0 250 500

SBCIN Magnitude  (J kg -1)

-6

-4

-2

0

2

4

  (
K

 k
m

-1
)

SBCIN Mag. vs. 
0-1 km

 (EET to Post)

R = -0.629

(b)(a)

Figure B.1: Correlations between average (a) Pre to EET changes in MLCAPE (in J kg−1) and average
sub-LCL equivalent potential temperature (𝜃e; in K) and (b) EET to Post changes in SBCIN (in J kg−1) and
0-1 km lapse rate (Γ0−1km in K km−1), during the days contributing to patterns in Figures 3.2-3.4. A linear
regression line and R-value for each correlation is shown for reference. Reprinted from Brown et al. (2021),
with permission from American Meteorological Society.
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Figure B.2: Time series of average effective layer SRH (Eff SRH; in m2 s−2), with the same line/color scheme
as Figures 3.2-3.4. Reprinted from Brown et al. (2021), with permission from American Meteorological
Society.
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Figure B.3: Time series of average downdraft CAPE (DCAPE; in J kg−1), with the same line/color scheme
as Figures 3.2-3.4. Reprinted from Brown et al. (2021), with permission from American Meteorological
Society.
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Table B.1: Correlations of thermodynamic variables with average Pre to EET changes in MLCAPE (Columns
1-2) and EET to Post changes in SBCIN (Columns 3-4) for which R values exceed 0.5 in magnitude, during
the days contributing to patterns in Figures 3.2-3.4. Reprinted from Brown et al. (2021), with permission
from American Meteorological Society.
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Table B.2: Raw sounding-derived variables utilized in TSS analyses, including variable abbreviation and
description. Reprinted from Brown et al. (2021), with permission from American Meteorological Society.

Variable Abbreviation Variable Description 

3CAPE 0-3 km MLCAPE 

DCAPE Downdraft CAPE 

ECAPE Modified entrainment CAPE (following Peters et al. 2020) 

Eff Base Height of the EIL base 

Eff CAPE CAPE calculated with average EIL parcel 

Eff CIN CIN calculated with average EIL parcel 

Eff Depth Depth of the EIL 

Eff SHR MLCAPE contained within the EIL (also known as EBWD) 

Eff SRH Effective storm-relative helicity 

EIL CAPE MLCAPE contained within the EIL 

EIL CIN MLCIN contained within the EIL 

LR500 0-500 m lapse rate  

LR1 0-1 km lapse rate 

LR3 0-3 km lapse rate 

LR75 700-500 hPa lapse rate 

LR85 850-500 hPa lapse rate 

LR Eff Lapse rate within the EIL 

MLCAPE Mixed-layer parcel CAPE  

MLCIN Mixed-layer parcel CIN 

MUCAPE Most-unstable parcel CAPE 

MUCIN Most-unstable parcel CIN 

MLLCL Mixed-layer parcel lifting condensation level 

MLLFC Mixed-layer parcel level of free convection 

MULCL Most-unstable parcel lifting condensation level  

MULFC Most-unstable parcel level of free convection 

PW Precipitable water 

RH SFC Surface relative humidity 

SBCAPE Surface-based parcel CAPE  

SBCIN Surface-based parcel CIN 

SBLCL Surface-based lifting condensation level  

SBLFC Surface-based level of free convection 

SHR500 0-500 m shear vector magnitude 

SHR1 0-1 km shear vector magnitude 

SHR3 0-3 km shear vector magnitude 

SHR6 0-6 km shear vector magnitude 

SHR8 0-8 km shear vector magnitude 

SR500 0-500 m storm-relative flow 

SR1 0-1 km storm-relative flow 

SR3 0-3 km storm-relative flow 

SR Eff Storm-relative flow within the EIL 

SRH500 0-500 m storm-relative helicity 

SRH1 0-1 km storm-relative helicity 

SRH3 0-3 km storm-relative helicity 

 

 

149



Table B.3: Environmental (top portion) and derived (bottom portion) HSHC and HSLC tor predictors in each
examined temporal period, ranked by maximum TSS magnitude (with associated variable threshold shown
in parentheses); bolded values indicate a maximum TSS value whose sign was negative. The variables (and
their associated units) are as follows - shear/SR-flow quantities (m s−1), SRH quantities (m2 s−2), CAPE/CIN
quantities (J kg−1), lapse rates (K km−1), LCL/LFC/Eff Base quantities (meters AGL), PW (inches), RH (%),
and derived variables (dimensionless). Reprinted from Brown et al. (2021), with permission from American
Meteorological Society.

Table B.4: As in Table C.3, but for sigtor predictors. Reprinted from Brown et al. (2021), with permission
from American Meteorological Society.
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Table B.5: As in Table C.3, but for supercell tor predictors. Reprinted from Brown et al. (2021), with
permission from American Meteorological Society.

Table B.6: As in Table C.3, but for supercell sigtor predictors. Reprinted from Brown et al. (2021), with
permission from American Meteorological Society.

Table B.7: As in Table C.3, but for QLCS tor predictors. Reprinted from Brown et al. (2021), with permission
from American Meteorological Society.
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