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ABSTRACT 

The annual cycle of surface temperature is altered over time because the annual 

mean surface temperature trend is not constant throughout the year, but instead exhibits 

distinct seasonality. Over the last century, the observed annual Global Mean Surface 

Temperature (GMST) trend peaks in March, however historical simulations by General 

Circulation Models (GCMs) peak a few months earlier. This model to observation 

mismatch has been studied several times in the last 20 years, but the model discrepancy 

is still present in the latest generation of GCMs. This study quantifies the observed 

seasonal trends at individual grid points, and in the form of zonally averaged latitude 

bands, using surface air temperature (SAT) data over land and sea surface temperature 

(SST) for ocean regions for all regions of the globe.  Three ensembles of coupled GCMs 

are compared to observations: the MPI Grand Ensemble, the CMIP5 and CMIP6 multi-

model ensembles. The use of large climate model ensembles enables the quantification 

of forced trends and effects due to natural variability in the seasonality of long-term 

surface temperature trends. Long-term seasonal temperature trends are calculated as the 

annual harmonic of surface temperature trends. The distributions of the simulation 

ensemble members are compared to the observations using the Mahalanobis distance 

statistic. 

The largest mismatch between models and observations stems from the GCMs’ 

gross underestimation of the forced seasonal warming trends that occurs over Northern 

Hemisphere (NH) mid to high latitude regions. Large seasonal warming is observed in 

Southern Hemisphere (SH) mid-latitude SSTs with peak warming in March, thereby 
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reinforcing the observed seasonality in the NH and GMST trends. The observed large 

boreal spring peak warming trend in NH land regions suggests the snow albedo feedback 

could be the primary mechanism that is altering the seasonal cycle of surface 

temperature, according to a conceptual model of energy balance. Using the same 

conceptual model, the simulated seasonality of warming over NH land in GCMs 

suggests that the sea-ice albedo is the dominant forcing mechanism driving changes to 

the seasonal cycle of surface temperatures. 
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NOMENCLATURE 

NH Northern Hemisphere 

SH Southern Hemisphere 

GMST  Global Mean Surface Temperature  

SAT Near-Surface Air Temperature 

SST Sea Surface Temperature 

tas Model Standard Variable: Near-Surface Air Temperature 

ts  Model Standard Variable: Surface Temperature  

GCM General Circulation Model, Global Climate Models 

CMIP Coupled Model Inter-comparison Project 

RMS Root Mean Squared  

EOF  Empirical Orthogonal Function  
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1. INTRODUCTION 

1.1. Background 

Anthropogenic greenhouse gas emissions have raised the annual global mean 

surface temperature by approximately 1.1°C relative to pre-industrial levels. Warming of 

the global mean surface temperature has long-term effects such as sea-ice loss, sea-level 

rise, severe drought, stronger hurricanes, and devastating effects on the biosphere. 

Natural variability of the Earth’s climate can temporarily dampen or amplify warming 

trends observed at the surface. For example, extreme El Niño or La Niña events 

influence seasonal surface temperature and precipitation among the northern mid-

latitudes, and the Pacific Decadal Oscillation can modify hemispheric temperature trends 

over several years. Since the natural range of atmospheric-oceanic variability can be 

large, it may take many decades for the global warming signal to emerge in many 

climate-related phenomena. It is important to identify climate change trends as early as 

possible, both for our understanding of the climate system and to evaluate the fidelity of 

changes simulated by global climate models (GCMs). 

The global mean warming trend is not uniform throughout the year. Previous 

studies have found that some seasons have faster rates of warming on decadal time 

scales. The timing of the annual maximum rate of warming, and its amplitude relative to 

the annual mean rate of warming, affect the timing of seasonal transitions of surface 

temperature. Figure 1.1.1 illustrates the observed and simulated global-scale monthly 

surface temperature trends over the last 130 years. There is a noticeable difference in the 

timing of the largest and smallest temperature trends simulated by climate models 
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compared to what has globally been observed. Not only is the global annual mean 

warming higher in observations than CMIP5 climate models, the amplitude of seasonal 

warming is also larger. 

The timing and magnitude of seasonal warming is not spatially uniform. 

Northern Hemisphere (NH) observations of near-surface air and sea surface temperature 

in the mid and high latitudes exhibit the strongest differential warming signal (Mann and 

Park 1996, Wallace and Osborn 2002, Dwyer et al. 2012, Qian and Zhang 2015). 

Observations show that the fastest warming over land has occurred between late winter 

and early spring (see also Wang et al. 2009, Nigam et al. 2017). Figure 1.1.2 from the 

Nigam et al. 2017 study shows the linear trends of seasonal surface temperature across 

the Northern Hemisphere. Of the four seasons, NH spring has the fastest rate of 

warming, seen in the second of the four panels in Figure 1.1.2.  Seasonal surface 

temperature trends in the Southern Hemisphere show a shift towards later seasons, 

however this shift is relatively smaller and less statistically significant than NH trends 

(Stine et al. 2009, Qian and Zhang 2015). 

Figure 1.1.3, produced by Stine et al. 2009, analyzes the first harmonic of 

monthly surface temperature over 54 years, using both land and ocean data. The regions 

of lag towards earlier seasons on the NH continents are located in the same regions as 

spring peak warming trends shown in figure 1.1.2. Additionally, these same regions 

show a decrease in overall seasonal temperature amplitude (where Gain is negative in 

figure 1.1.3). This is due to the fact that a shift towards earlier seasons in the NH would 

result in a warmer NH winter, thus decreasing the total range of temperature in a given 
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year. The opposite trends can be noted over ocean surfaces; there is an increase in 

seasonal amplitude (gain) and a seasonal phase delay. While climate models generally 

agree with the NH average amplitude trend, they demonstrate phase delays, which is 

opposite of the observed phase trend towards earlier seasonal transitions. The majority of 

climate models simulate a maximum rate of warming that occurs in late fall to early 

winter (Mann and Park 1996, Stine et al. 2009, Nigam et al. 2017).  

Models tend to overestimate the magnitude of seasonal warming in higher 

northern latitudes compared to observations, and underestimate seasonal warming trends 

in lower latitudes (Wallace and Osborn 2002, Dwyer et al. 2012). The phase lead (earlier 

seasons) seen in the NH land average and phase lag (later seasons) seen in the SH ocean 

average may be due to the natural variability that occur in observations (Mann and Park 

1996, Stine and Huybers 2012). The primary driver of phase trends in models is driven 

by the sea-ice albedo effect at higher latitudes, and trends in the lower latitudes are 

driven by changes in surface heat fluxes (Dwyer et al. 2012, Donahoe and Battisti 2013).   
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Figure 1.1.1: Monthly Global Surface Temperature  1  

  
The average monthly surface temperatures for the period 1890-1919 is subtracted from 

those in 1990-2019. This data is plotted for the HadCRUT4.6 (red) and CMIP5 (blue). 
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Figure 1.1.2: Seasonal SAT Linear Trends (Nigam et al., 2017)   2  

  
Figure 1 from Nigam et al. 2017: “The linear trend in seasonal near-surface air 

temperature (SAT) over the northern continents during 1902–2014. The 0.58 resolution 

CRU TS3.23 SAT is analyzed in boreal seasons: winter [December–February (DJF)], 

spring [March–May (MAM)], summer [June–August (JJA), and fall [September–

November (SON)]. Contour interval and shading threshold is 0.18C decade, with warm 

colors showing a positive trend. The fields are shown after nine applications of the nine-

point smoother (smth9) in GrADS. Trends significant at the 95% level are stippled.” 

Reprinted from Nigam et al. 2017.  
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Figure 1.1.3: Lag and Gain Fields (Stine et al., 2009) 3  

  
Figure 1e and 1f from Stine et al. 2009: “Lag and gain fields… 1e: Phase (lag, ), trend 

in days per 54 years and 1f: Amplitude (gain, G), C (kW m-2)-1 per 54 years. Both 

variability and trend maps are plotted on the ‘dense network’ (1954–2007), without land 

and ocean masks applied. Results have been excluded in the tropics, where data 

availability is poor, and where less than 85% of the variance in an average year is 

explained by the yearly component.” Reprinted from Stine et al. 2009. 

 

 

1.2. Motivation and Hypothesis 

A recent analysis of seasonal warming trends that compares climate models to 

observations across all regions of the globe, analyzing surface temperature over both 

land and ocean, does not currently exist. Most previous studies have focused on 

observed temperature trends, while relatively few have combined their analysis with 

climate model output from a multi-model ensemble, such as from the Coupled Model 

Intercomparison Projects (CMIPs). Moreover, the methods to quantify seasonal surface 

temperature trends in previous studies are typically done by linear analyses of the 

standard seasons (DJF, MAM, JJA, SON, see Figure 1.1.2), using EOF analysis, or by 
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analyzing trends in the first Fourier harmonic of monthly temperatures (see Figure 

1.1.3). The research presented in this study uses Fourier analysis of monthly surface 

temperatures, but in a different fashion. Instead of fitting a Fourier series to the monthly 

average temperatures, the Fourier series will be fit to monthly average temperature 

differences between two distinct climatological time periods. By doing the Fourier 

analysis on the temperature differences, the timing and magnitude of the annual 

maximum warming rate can be computed. In other words, it reveals the annual harmonic 

of surface temperature trends.  

This study seeks to determine the robustness of the annual harmonic of observed 

surface warming trends over the last several decades and the extent to which climate 

models reproduce this harmonic. A Fourier analysis of monthly mean surface 

temperature trends will be analyzed globally, locally, and in zonally-averaged latitude 

bands. Sensitivity to the extent of zonal averaging and selection of the land/ocean mask 

is tested and accounted for. Recent versions of existing global observation datasets will 

be analyzed, including the set of 100 surface temperature realizations from 

HadCRUT4.6 (Morice et al. 2012). The purpose of comparing multiple global 

observation datasets is to investigate the sensitivity of seasonal trends to the varying 

analysis schemes used by each dataset. The same methods will be applied to CMIP5 and 

CMIP6, in addition the MPI-GE 100-member grand ensemble (Taylor et al. 2012, 

Eyring et al. 2015, Maher et al. 2019). The analysis of the MPI ensemble members will 

evaluate the robustness of seasonal warming trends to natural variability in a single 

climate model. The comparison of CMIP5 to CMIP6 multi-model output will reveal 
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whether correction of structural deficiencies in the newest generation of climate models 

has led to better agreement with the observed seasonal warming trends. If the 

discrepancy in monthly surface warming trends between climate models and 

observations is determined to be larger than can be explained by natural climate 

variability or analysis scheme error, then, assuming observations are largely correct, 

model structural errors are yielding incompatible seasonal warming trends to what has 

historically been observed.  

The datasets used in the study will be introduced and described in Section 2. The 

analysis methods applied to the data, such as land-sea masking and the Fourier analysis, 

will be outlined in Section 3. Section 4 will discuss a conceptual model for the 

seasonality of annual surface temperature warming. Section 5 will present the global 

analysis of seasonal warming trends with surface air and sea temperature together. In 

Section 6, the seasonal trends will be analyzed across zonal bands for surface air 

temperature and sea surface temperature individually. Section 7 will provide discussion 

of results and conclusions.  
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2. DATA 

2.1. Observations  

All of the observation data in this study are in the form of gridded datasets of 

surface temperature. Grid points over land are from measurements of near-surface 1.5 m 

to 2 m air temperature (abbreviated as SAT), while grid points over the ocean are 

measurements of sea surface temperature (abbreviated SST). Grid points along the 

coastal regions will generally include measurements from both SAT and SST. Tables 2.1 

and 2.2 display all global observation datasets that will be used in this study. Each 

dataset has a unique way of combining discrete SAT and SST measurements into a 

continuous grid that spans the globe. The datasets have varying resolutions, and they 

differ in how they handle regions with sparse or no data, known and potential biases, 

urban heat island effect, and missing or erroneous data. Most of the datasets use the 

Global Historical Climatology Network (GHCN) for land measurements and 

International Comprehensive Ocean-Atmosphere Data Set (ICOADS) for sea 

measurements, but some include additional measurements from other sources. The 

observation datasets in Table 2.1 will be analyzed globally as is, with no land/sea mask 

applied. These data are downloaded from and globally averaged using the KNMI climate 

explorer database (Trouet and van Oldenborgh, 2013). They are only used for the 

globally averaged analysis section (5.1).  

The HadCRUT4.6 ensemble listed in Table 2.2 will be used in the globally 

averaged analysis in addition to spatial and latitudinal analyses. The HadCRUT4.6 

dataset is an integration of two datasets at 5° latitude-longitude resolution. CRUTEM4 
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(Jones et al., 2012) provides the SAT component, and HadSST3 (Kennedy et al., 2011b-

c) provides SST. CRUTEM points are located over land, along coasts, and on some 

islands. HadSST3 data are over the open ocean, large bodies of water, and coasts. 

Therefore, there are some grid points, specifically islands and coasts, that are a blend of 

SAT and SST. The HadCRUT4.6 ensemble members are generated by sampling various 

error perturbations that represent characteristics of possible measurement bias and bias 

adjustments at each grid point (Morris et al. 2012).  

 

Table 2.1: Globally Averaged Observation Datasets 

Dataset Name Analysis Download date Reference 

HadCRUT.5.1.0.0 median Global mean  04/01/2021 Morice et al. 2021 

HadCRUT.4.6.0.0 median Global mean  04/01/2021 Morice et al. 2012 

HadCRUT.4.6.0.0, filled in with kriging Global mean 04/01/2021 Cowtan and Way 2014 

GISTEMP v4 1200 km Global mean 04/01/2021 Lenssen et al. 2019 

GISTEMP v4 250 km  Global mean 04/01/2021 Zhang et al. 2020 

NOAAGlobalTemp v5 Global mean 04/01/2021 Lenssen et al. 2019 

Table 2.1: Globally Averaged Observation Datasets 

The globally averaged observation datasets used in this study. The data in this table are 

downloaded through the KNMI climate explorer website, already globally averaged. 

 

 

Table 2.2: Gridded Global Observation Ensembles 

Dataset Name Analysis  Download date Reference 

HadCRUT.4.6.0.0  

100 ensemble members  

Global spatial analysis, Global mean, 

zonal mean, land masked, sea masked 

04/01/2021 Morice et al. 2012 

HadSST.3.1.1.0 median Used as a land-sea mask 04/01/2021 Kennedy et al. 2011b-c 

CRUTEM.4.6.0.0 median Used as a land-sea mask 04/01/2021 Jones et al. 2012 

Table 2.2: Gridded Global Observation Ensembles 

The gridded global observation datasets used in this study. The data in this table are 

downloaded directly from the Met office website. All 100 ensemble members of the 

HadCRUT.4.6.0.0 as used in various analyses. The HadSST.3.1.1.0 median and 

CRUTEM.4.6.0.0 median are used to mask out SAT and SST components of the full 

HadCRUT.4.6.0.0 dataset. Each data set is on a 5 latitude by 5 longitude grid. 
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2.2. GCM Output 

Output from three sets of general circulation model (GCM) runs will be analyzed 

in this study: the Max Planck Institute for Meteorology Grand Ensemble (MPI-GE) 

(Maher et al. 2019), the Coupled Model Intercomparison Project version 5 (CMIP5) 

(Taylor et al. 2012), and the Coupled Model Intercomparison Project version 6 (CMIP6) 

(Eyring et al. 2015). CMIP5 and CMIP6 are multi-model ensembles (Table 2.3 and 2.4). 

One ensemble member, the r1i1p1 and the r1i1p1f1, will be used from each individual 

model within the CMIP5 and CMIP6, respectively. The MPI-GE consists of 100 

ensemble members run on a single coupled model (Table 2.5). The MPI-GE ensemble 

members are generated by initializing the historical simulation using output from 

successive years throughout its piControl experiment. Monthly output for the MPI-GE 

and CMIP5 will be from the historical simulations for the years 1890-2005 and from the 

RCP8.5 scenario for 2006 to 2019.  The CMIP6 monthly output will be from the 

historical simulation for 1890-2014 and from the ssp585 scenario for 2015-2019. 

There are two standard climate model variables used in this study: tas and ts. Each 

model ensemble member used in this study contains both variables. The variable tas is 

the 2-meter near-surface air temperature, and ts is the surface temperature (sometimes 

called skin temperature). Both variables are outputted from the atmospheric realm of the 

coupled model over the entire globe. In order to isolate the near-surface air temperature 

over land, tas will be analyzed at grid points containing no ocean. To evaluate sea 

surface temperature over the ocean, ts will be used in grid points containing no land. For 

comparison purposes, tas will also be analyzed on the same ocean grid points as ts. 
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Throughout the study, SAT and tas will be referred to as synonyms, as well SST and ts. 

The only exception is for analysis when no masking is applied to the observations, then 

the model variable tas is used with no masking. 

 

Table 2.3: CMIP5 Model Output  

Modeling Center / Modeling Group  CMIP5 Model Name 

Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau 

of Meteorology (BOM), Australia 

ACCESS1-0 

ACCESS1-3 

Beijing Climate Center (BCC), China Meteorological Administration bcc-csm1-1 

College of Global Change and Earth System Science, Beijing Normal University (BNU) BNU-ESM 

Canadian (Can) Centre for Climate Modelling and Analysis CanESM2 

National Center for Atmospheric Research (NCAR) CCSM4 

Community Earth System Model Contributors (CESM) CESM1-CAM5 

Centro Euro-Mediterraneo per I Cambiamenti Climatici (CMCC) CMCC-CM 

CMCC-CMS 

CMCC-CESM 

Centre National de Recherches Météorologiques (CNRM) / Centre Européen de 

Recherche et Formation Avancée en Calcul Scientifique  

CNRM-CM5 

Commonwealth Scientific and Industrial Research Organization (CSIRO) in 

collaboration with Queensland Climate Change Centre of Excellence  

CSIRO-Mk3.6.0 

EC-EARTH consortium EC-EARTH 

LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences and 

CESS,Tsinghua University 

FGOALS_g2      

FGOALS_s2 

The First Institute of Oceanography (FIO), SOA, China FIO-ESM 

NOAA Geophysical Fluid Dynamics Laboratory (GFDL)  GFDL-CM3 

GFDL-ESM2G 

GFDL-ESM2M 

NASA Goddard Institute for Space Studies (NASA GISS) 

 

  

GISS-E2-H 

GISS-E2-H-CC 

GISS-E2-R 

GISS-E2-R-CC 

National Institute of Meteorological Research/Korea Meteorological Administration HadGEM2-AO 

Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by 

Instituto Nacional de Pesquisas Espaciais) 

HadGEM2-CC 

HadGEM2-ES 

Institute for Numerical Mathematics inmcm4 

Institut Pierre-Simon Laplace (IPSL) IPSL-CM5A-LR 

IPSL-CM5A-MR 

IPSL-CM5B-LR 
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Table 2.3: CMIP5 Model Output Continued 

Modeling Center / Modeling Group  CMIP5 Model Name 

Atmosphere and Ocean Research Institute (The University of Tokyo), National 

Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and 

Technology 

MIROC5 

Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean 

Research Institute (The University of Tokyo), and National Institute for 

Environmental Studies  

MIROC-ESM 

MIROC-ESM-CHEM 

Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology) (MPI) MPI-ESM-LR 

MPI-ESM-MR 

Meteorological Research Institute, Japan MRI-CGCM3 

Norwegian Climate Centre NorESM1-M 

NorESM1-ME 

Table 2.3: CMIP5 Model Output 

The historical + rcp8.5 forcing experiment is used for CMIP5 models. One ensemble 

member from each model is selected; the variant IDs are r1i1p1 for CMIP5. The model 

variables tas (2 meter Near-Surface Air Temperature) and ts (Surface Temperature) will 

be used for each single ensemble member for all models listed. Ensemble members have 

various global grid sizes (not listed here). Data masking, such as land and sea grid 

points, are generated based on the model resolution, then applied before computing 

global and latitudinal averages. 

 

 

Tale 2.4: CMIP6 Model Output  

Modeling Center / Modeling Group  CMIP6 Model Name 

Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau 

of Meteorology (BOM), Australia 

ACCESS-CM2 

ACCESS-ESM1-5 

Alfred Wegener Institute (AWI), Helmholtz Centre for Polar and Marine Research AWI-CM-1-1-MR 

Beijing Climate Center (BCC), China Meteorological Administration BCC-CSM2-MR 

Chinese Academy of Meteorological Sciences (CAMS)  CAMS-CSM1-0 

Chinese Academy of Sciences (CAS) CAS-ESM2-0 

Community Earth System Model Contributors (CESM) - Whole Atmosphere 

Community Climate Model (WACCM) 

CESM2-WACCM 

Community Integrated Earth System Model Contributors  CIESM 

Centro Euro-Mediterraneo per I Cambiamenti Climatici (CMCC) CMCC-CM2-SR5 

CMCC-ESM2 

Canadian (Can) Centre for Climate Modelling and Analysis CanESM5 
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Tale 2.4: CMIP6 Model Output Continued 

Modeling Center / Modeling Group  CMIP6 Model Name 

Energy Exascale Earth System Model (from CESM) E3SM-1-1 

EC-EARTH consortium 

 

 

 

EC-Earth3 

EC-Earth3-CC 

EC-Earth3-Veg 

EC-Earth3-Veg-LR 

LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences and 

CESS,Tsinghua University 

FGOALS-f3-L 

FGOALS-g3 

The First Institute of Oceanography (FIO), SOA, China FIO-ESM-2-0 

NOAA Geophysical Fluid Dynamics Laboratory (GFDL) GFDL-ESM4 

Indian Institute of Tropical Meteorology Pune IITM-ESM 

Institute for Numerical Mathematics INM-CM4-8 

INM-CM5-0 

Institut Pierre-Simon Laplace (IPSL) IPSL-CM6A-LR 

Korea Institute of Ocean Science and Technology, Republic of Korea KIOST-ESM 

Atmosphere and Ocean Research Institute (University of Tokyo), National Institute 

for Environmental Studies, and Japan Agency for Marine-Earth Science & Technology 

MIROC6 

Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology) (MPI) MPI-ESM1-2-HR 

MPI-ESM1-2-LR 

Meteorological Research Institute, Japan MRI-ESM2-0 

Nanjing University of Information Science and Technology Earth System Model v3 NESM3 

Norwegian Climate Centre NorESM2-LM 

NorESM2-MM 

Taiwan Earth System Model TaiESM1 

Table 2.4: CMIP6 Model Output 

The historical + ssp585 forcing experiment is used for CMIP6 models. One ensemble 

member from each model is selected; the variant IDs are r1i1f1p1 for CMIP6. The 

model variables tas (2 meter Near-Surface Air Temperature) and ts (Surface 

Temperature) will be used for each single ensemble member for all models listed. 

Ensemble members have various global grid sizes (not listed here). Data masking, such 

as land and sea grid points, are generated based on the model resolution, then applied 

before computing global and latitudinal averages. 
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Table 2.5: MPI-GE Model Output 

Modeling Center / Modeling Group  Model Name Reference 

Max-Planck-Institut für Meteorologie (Max Planck 

Institute for Meteorology) (MPI) 

MPI Grand Ensemble (MPI-GE) Maher et al., 2019 

Table 2.5: MPI-GE Model Output 

The historical + rcp8.5 forcing experiment is used for the MPI-GE ensemble members. 

There are 100 ensemble members available, each initialized with different years from the 

MPI-GE piControl run. The model variables tas (2 meter Near-Surface Air Temperature) 

and ts (Surface Temperature) will be used for each of the 100 ensemble members. MPI-

GE is on a 1.875 latitude by 1.875 longitude grid. 
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3. ANALYSIS METHODS 

3.1. Data Masking 

There are three types of data masking done in this study. The first method is 

specific to the HadCRUT4.6 dataset and its components. The HadCRUT4.6 dataset 

consists of 100 ensemble members. The second uses the Python library 

“global_land_mask”, which is generated for and applied to all data types in section 6. A 

third level of masking is used in a subsection of section 6, which is the process of 

masking MPI-GE large ensemble dataset to only contain points that are available from 

HadCRUT4.6.  

The HadCRUT4.6 dataset contains some grid points of SAT, some of SST, and 

some of blended temperature value of SAT and SST measurements (Jones et al. 2012). 

SAT data comes from the CRUTEM4 dataset, and SST data comes from the HadSST3 

dataset. One-hundred ensembles of CRUTEM4 and HadSST3 are created and merged 

together to create the HadCRUT4.6 100 ensemble members merged dataset. Figure 3.1.1 

show the spatial contribution of SAT and SST to the full HadCRUT4.6 dataset; the 

points labeled “Overlap” denote points in which the temperature at that grid box is a 

blend of SAT and SST. The 100 individual members from CRUTEM4 are not available 

for public use. In order to assess the seasonal warming trend of SAT over land, any grid 

points with SST data or a blend of SAT and SST (overlap) data will be excluded (labeled 

“No-HadSST3”). Similarly, to investigate the seasonal warming trend of SST over 

ocean, any points containing SAT individually or SAT data blended with SST will be 

excluded (labeled “No-CRUTEM4”). In other words, the entire HadSST3 spatial 
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coverage will be masked out to assess SAT over land, and the entire CRUTEM4 spatial 

coverage will be masked out to assess SST over ocean. The resulting data that is 

analyzed for SAT and SST is displayed in Figure 3.1.1 as the red region and the blue 

region, respectively.  

The method of using CRUTEM4 and HadSST3 to mask out land and sea grid 

points to the HadCRUT4.6 dataset will be compared to the primary method of land-sea 

masking done in this study, which uses the GLOBE dataset (Global Land One-kilometer 

Base Elevation) (Globe Task Team, 1999). The information provided by the GLOBE 

dataset is accessed using the Python library “global_land_mask” (Karin, 2020). 

Although using CRUTEM4 and HadSST3 as a land-sea mask for observations classifies 

almost all the same points as using GLOBE to create a land-sea mask, the GLOBE 

generated mask will be used for consistency with models, and it is more accurate from a 

geographic standpoint as to what is considered land and what is considered sea. To 

generate a land-sea mask for a gridded surface temperature dataset (either observations 

or model output), each grid box is subdivided into 100 sub-grid boxes. For example, this 

produces sub-grid boxes of 0.5 by 0.5 for the HadCRUT4.6, which is on a 5 by 5 

grid.  Using geographic information from GLOBE, each of the 100 sub-grid boxes is 

marked as land or ocean. For the grid box at the original resolution to be marked as 

100% land, all the sub-grid boxes must be labeled as land. Similarly, if all the sub-grid 

boxes are labeled ocean, then that grid box is considered 100% ocean on the native 

resolution. The notation for a dataset that has been masked to only include 100% land 

grid boxes uses the suffix “_Land”, and when masked to include only 100% ocean 
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points, the suffix is “_Sea”. Figure 3.1.2 demonstrates which of the HadCRUT4.6 grid 

points are added or removed to the collection of grid points classified as land-only and 

sea-only points by using the 100% land and 100% sea masks generated from GLOBE 

compared to using HadSST3 and CRUTEM4 as the land-sea mask. Many of the points 

located on islands that are considered “Overlap” points of SAT and SST are added to the 

realm of 100% ocean (added by HadCRUT4.6_Sea), and points along ice regions are 

removed (subtracted by HadCRUT4.6_Sea). The change in spatial coverage of grid 

points labeled as land-only by the 100% land mask from GLOBE (aka 

HadCRUT4.6_Land) compared to using CRUTEM4 (aka “No-HadSST3”) overlap is 

most noticeable in the mid and high latitude land regions.  

Land-sea masking based on the GLOBE dataset via the Python library will be 

generated for the MPI-GE, and each model dataset in CMIP5 and CMIP6’s unique grid 

resolution in the same sub-grid box partitioning as described above. Shown in Figure 

3.1.3 is the land-sea mask spatial coverage at the MPI-GE spatial resolution (1.875 by 

1.875). The notations “MPI-GE_Land” and “MPI-GE_Sea” represents the grid boxes 

that are considered 100% land or 100% sea based on the MPI-GE’s native resolution.  

Lastly, an additional level of masking will be applied to the MPI-GE; the 

models’ grid boxes will be masked to match only where there is available observation 

data from the HadCRUT4.6 data. This “available observations” mask that is applied to 

the model is time dependent, based on the available observations over time. The suffix 

“_ObsMask” indicates that the available observation mask has been applied, using the 
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spatial coverage of HadCRUT4.6_Land, HadCRUT4.6_Sea, or all available 

HadCRUT4.6 grid points over time.  

 

Figure 3.1.1: HadCRUT4.6, CRUTEM4, and HadSST3  4 

 
Grid boxes with available data in the HadCRUT4.6 dataset from 1945 to 2019. HadSST3 

provides SST, and CRUTEM4 provides SAT values. The spatial coverage of HadSST3 

is of the blue region + the green region. The spatial coverage of CRUTEM4 is of the red 

region + the green region. Therefore, the green region is a blend of SAT and SST and is 

labeled “Overlap”. The red region is labeled “No-HadSST3”, as it is the CRUTEM4 

region minus the overlapping points from HadSST3. The blue region is label “No-

CRUTEM4”, and is the HadSST3 region without any overlapping points from 

CRUTEM4. 

 



 

20 

 

Figure 3.1.2: HadCRUT4.6 Land and Sea Classification 5 

 
Figure 3.1.2: Two methods of land-sea masking are compared. No-HadSST3 denotes 

grid boxes of the HadCRUT4.6 that do not contain SST, and No-CRUTEM4 denotes 

grid boxes that do not contain SAT. A 100% land and 100% ocean mask are created 

specifically for the HadCRUT4.6 grid using the GLOBE geographic dataset. The light 

red and grey grid boxes are what is added and subtracted by the GLOBE 100% land 

points with respect to the No-HadSST3 spatial coverage. The light blue and green grid 

boxes are what is added and subtracted by the GLOBE 100% sea points with respect to 

the No-CRUTEM4 spatial coverage. 
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Figure 3.1.3: MPI-GE Land and Sea Classification Map 6 

 
The spatial coverage of land-only and sea-only data points generated for the MPI-GE 

dataset using GLOBE to classify what points are 100% land and 100% sea. Additionally, 

the HadCRUT4.6_Land are HadCRUT4.6_Sea generated from GLOBE are overlaid on 

top of the MPI-GE grids. This is used when analyzing the model only where 

observations are available. This additional level of masking to the model is denoted by 

the suffix “_ObsMask”. 

 

 

3.2. Data Aggregation and Trend Calculation 

Analysis of trends takes place at individual grid points, aggregated within zonal 

bands, or aggregated over the entire globe. Aggregation and trend calculation proceed as 

follows. First, if land or ocean data only is desired, a land-sea mask as described in 

section 3.1 is applied to the gridded dataset. The available observation mask is also 

applied at this stage to the MPI-GE. Then, all monthly temperature values in a given 

month and zonal band, or globally, are spatially averaged together, taking into account 

the latitudinal dependence of grid box size. Next, two 30-year climatologies are 
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computed from the monthly time series for the zonally averaged region. The 30-year 

climatologies used in this study are 1) 1890-1919, 2) 1945-1974, and 3) 1990-2019. 

Subtracting climatology (1) from (3) results in the monthly mean surface temperature 

trend for each month over 100 years. Similarly, climatology (3) minus (2) results in the 

monthly mean surface temperature trend for each month over 45 years. The resulting 12 

monthly values of decadal surface temperature change follow an annual cycle, with the 

magnitude of temperature change between the two time periods varying by month (see 

the solid red line in figure 1.1.1, reproduced in 3.3.1). 

 

3.3. Fourier Analysis 

The phase and amplitude of the annual cycle of monthly surface temperature 

trends can be computed using a Fourier analysis. A Fourier analysis is the analysis of a 

periodic function into its simple sinusoidal components, whose sum forms a Fourier 

series. To isolate the seasonal cycle, a Fourier series of n=1 will be fitted to the cycle of 

monthly warming trends. The resulting equation is: 

𝛥𝑇 =  𝑎0  +  𝑎1cos 𝑡  +  𝑏1sin 𝑡 + 𝐶 , 

where ΔT is the change in monthly temperature between the two time periods, a0 is the 

mean annual warming between the two time periods, a1 and b1 are the amplitude of the 

annual cycle warming trend in sine and cosine components, and C represents the higher 

order terms that are not quantified on an annual frequency. The components of the 

amplitude of the annual cycle warming trend from the above equation are used to 

calculate the annual amplitude as follows:  
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  𝑟 =  √𝑎1
2 +  𝑏1

2  . 

This amplitude r represents the magnitude of monthly temperature change relative to the 

average annual temperature change (a0) between the two time periods. In other words, it 

is the amplitude of the equation for ΔT and it is seen plotted in figure 3.3.1. The annual 

phase ( ) of monthly temperature trends are calculated from ΔT equation by:  

   = cos−1( 𝑎1/𝑟)      0 >  >   , then,  

  𝑏1 > 0 → 0 <  <       𝑏1 < 0 → 0 <  < − . 

There are 12 data points per year that are used to calculate the equation, so each month 

corresponds to a π/6, or 30°, increment in phase. It is defined as such that a 0 to π/6 

phase angle represents a peak warming month of January (see the x-axis in figure 3.3.1). 

Resolving the annual cycle of surface temperature warming with a Fourier series, instead 

of seasonal linear trends, identifies the timing and magnitude of warming variations 

between the two time periods with respect to an annual cycle in a continuous fashion 

rather than in discrete seasons or months (see an example of this using the data from the 

introduction in figure 3.3.2). 
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Figure 3.3.1: Fourier Analysis Diagram 

 
The average monthly surface temperature for 1990-2019 minus 1890-1919 for 

HadCRUT4.6, along with its resulting Fourier series and individual components. 

 

Figure 3.3.2: Fourier Analysis on Global Mean Trends 7 

 
The average monthly surface temperature for 1990-2019 minus 1890-1919 for 

HadCRUT4.6 and CMIP5 model mean, along with each of their resulting Fourier series.   
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3.4. Use and Interpretation of Ensembles 

The HadCRUT4.6 observation ensemble allows for quantification of structural 

uncertainty due to measurement error and bias, and choice of analysis scheme (Jones et 

al. 2012). It doesn’t necessarily represent uncertainty that comes from the use of 

different sources for SAT or SST data, uncertainty due to incomplete observations, and 

doesn’t cover every possible choice of analysis scheme. The observed record represents 

one of the many possible chains of atmospheric events that could have occurred within 

the bounds of natural climate variability. The spread of the observation ensemble around 

the ensemble mean represents much of the uncertainty in the ability to measure the 

actual temperature trends from the observed temperature record.  

The ensemble spread of the MPI-GE is a measure of natural climate variability of 

the climate model. The ensemble members of the MPI-GE historical simulation are 

initialized by sampling the climate state in various decades throughout its pre-industrial 

control run (Maher et al. 2019). This allows the historical simulation to follow random 

chains of atmospheric events within the bounds of the MPI-GE climate model. The 

CMIP5 and CMIP6 multi-model ensembles sample natural variability from the various 

models that make up the entire ensemble. Additionally, CMIP multi-model ensembles 

sample climate model structural uncertainty due to the many ways these various models 

are constructed to simulate the Earth’s climate system. Using a large ensemble of 

climate model simulations yields a robust estimate of the forced response (ensemble 

mean) and natural variability (ensemble spread) (Lehner et al., 2020). It also enables 
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quantitative estimation of structural uncertainty in the forced response, but does not 

reduce that uncertainty. 

 

3.5. Ensemble Calculations and Statistics  

To calculate an ensemble’s mean annual cycle of surface temperature trends, the 

cosine a1,i and sine b1,i components for each ensemble member i for all ensemble 

members N are averaged together, such as the following: 

𝑎1,𝜇 =
∑ 𝑎1,𝑖

𝑁
𝑖=1

𝑁
  and 𝑏1,𝜇 =

∑ 𝑏1,𝑖
𝑁
𝑖=1

𝑁
. 

This results in a1,μ and b1,μ, which can be used to calculate ensemble mean phase and 

amplitude of temperature trends. To calculate the spread of an ensemble, the following 

root-mean-squared (RMS) Euclidian distance between ensemble members and ensemble 

mean is calculated:  

𝑅𝑀𝑆 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √|𝑎1,𝑖 −  𝑎1,𝜇|
2

+  |𝑏1,𝑖 −  𝑏1,𝜇|
2

  . 

This RMS distance is used in section 5.2. In that section, the MPI-GE model ensemble 

and the HadCRUT4.6 observation ensemble are analyzed spatially on their native grid 

resolutions. Thus, the models and observations are not quantitively compared on a grid-

point by grid-point basis. In sections 5.1, and section 6.1-6.3, the zonal averages of the 

models and observations are compared to one another using Mahalanobis distance.  

 The Mahalanobis distance is a statistic that is used in this study to determine 

whether the observed temperature trends are statistically indistinguishable from the 

distribution of model ensemble member trends. Rather than Euclidean distance, the 
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Mahalanobis distance takes into account covariance of the dimensions of the 

distribution. The following equation is a matrix calculation, in which the diagonal of 

Z(1,2)
2 is the Mahalanobis distance between a datapoint x1 taken from distribution 1, and a 

second distribution 2 of datapoints that have a mean of μ2 and an inverse covariance 

matrix Cov2
-1: 

𝑍(1,2)
2 = (𝑥1 − 𝜇2)′ Cov2

−1 (𝑥1 − 𝜇2), (Sarma and Vardhan, 2019). 

The resulting Mahalanobis distance Z(1,2)
2 will have dimensions equal to the degrees of 

freedom of the distributions 1 and 2. In this study there are two variables, the cosine 

amplitude and sine amplitude (a1 and b1) of the annual cycle of surface temperature 

trends; therefore there is one degree of freedom. The Mahalanobis distance statistic 

follows a chi-squared distribution. To reject the null hypothesis that the datapoint x1 is 

from distribution 2, the Mahalanobis distance Z(1,2)
2 needs to be greater than chi-squared 

value for one degree of freedom. This is converted to a p-value, and tested using three 

significance levels (0.1, 0.01, and 0.001).   

Specifically in this study, the Mahalanobis distance from the HadCRUT4.6 

ensemble datapoints (distribution 1 in the above equation) to the distribution of the 

model ensemble (distribution 2) are calculated.  Graphs in sections 5 and 6 that compare 

models to observations have one asterisk “*” to signify a p-value < 0.1, two asterisks 

“**” to signify a p-value < 0.01, and three asterisks “***” to signify a p-value of < 

0.001.  
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4. CONCEPTUAL MODEL 

4.1. Conceptual Model 

There are many possible drivers of decadal-scale changes to the phase and 

amplitude of the seasonal cycle of surface temperature. Three types of drivers of have 

been identified by previous studies. These are: orbital effects, human-induced climate 

change, and natural climate variability (Figure 4.1). The annual cycle of surface 

temperature is directly modified by orbital changes such as axial precession while the 

other two drivers alter the seasonal cycle through a series of interconnected forcing 

mechanisms. In this section, the mechanisms of those drivers on the timing and spatial 

characteristics of the seasonal warming cycle are considered. 

Axial precession is the cyclical movement of the orientation of earth’s rotational 

axis. It takes about 26,000 years for the earth’s rotational axis to rotate through one full 

cycle. Over the course of the cycle, the timing of the solstices steadily lags relative to the 

orbit’s perihelion. This slow progression of the perihelion affects the timing of 

maximum incoming solar radiation each year, thereby affecting the timing of the annual 

maximum surface temperature (Thompson 1995).  Presently, the perihelion occurs in the 

beginning of July, and the aphelion in the beginning of January. The perihelion and 

aphelion drift forward in time, which causes seasonal minima and maxima to occur later 

than would be defined by the solstices. This places the month of peak warming in 

October (between perihelion and aphelion), and unlike seasonal warming trends driven 

by other forcing mechanisms, the trend in the annual cycle of surface temperature occurs 

in the same month for both hemispheres. The relationship between axial precession and 
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changes to the seasonal cycle of surface temperature is indicated in the top of figure 

4.1.1.  

Thompson (1995) verified that in central England, for the last few centuries, the 

annual phase of surface temperature drifted earlier, as expected from precession. 

However, around the early part of the 20th century towards the beginning of the 

industrial revolution, the phase of the annual cycle no longer drifted according to 

precession of the solstices. Instead, the phase trend began to drift in the opposite 

direction, which Thompson attributed to the rising CO2 levels.  

Anthropogenic emissions of greenhouse gases such as CO2 increase the global 

mean surface temperature by decreasing the outgoing longwave radiation from Earth to 

space. Direct emission of aerosols or their precursors affect the global mean surface 

temperature by decreasing the amount of incoming shortwave radiation to reach the 

surface, causing a relative decrease in temperature. Increased greenhouse gas emissions 

and aerosol emissions primarily alter the global mean surface temperature, but the 

various positive climate feedbacks induced by these emissions are what drives changes 

to the annual cycle of surface temperature (see right-hand side of Figure 4.1.1). 

Two climate feedback mechanisms involving surface albedo are the sea-ice 

feedback and snow feedback. First, an increase in the annual average surface 

temperature would result in less sea-ice and less snow cover annually. An increase in 

annual temperature could be a long term forced trend due to anthropogenic emissions, 

but it could also happen from natural variability. Less area of sea-ice results in more 

ocean surface area exposed, which decreases surface albedo and drives surface air 
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temperatures to be at or above 0 °C. Sea-ice is present year-round, but the change in sea 

ice from preindustrial levels is greatest in early autumn, the annual minimum of sea-ice 

levels. Therefore, sea-ice feedback could moderate the seasonal cycle in two ways. 

Having more ocean area exposed in the autumn would result in a later transition to 

winter. This puts the month of peak warming trend around September for the Northern 

Hemisphere, March for the Southern Hemisphere. Alternatively, but not exclusively, 

having more ocean area exposed year-round could result in in the greatest warming rate 

in mid-winter (January in the Northern Hemisphere, July for the Southern Hemisphere), 

when the temperature contrast between air located over sea ice and air over exposed 

ocean is greatest. The sea-ice albedo feedback primarily alters the seasonal cycle of 

temperature over polar regions in either hemisphere.  

The snow feedback manifests in a similar fashion as sea-ice feedback, 

specifically for land regions in the Northern Hemisphere midlatitudes, but the main 

difference is that snow cover is not changing year-round.  Because the largest trends in 

Northern Hemisphere snow cover decline are in boreal spring, a maximum warming 

trend in March or April is expected in the mid to high latitudes. While the Southern 

Hemisphere sea-ice experiences seasonal variations similar (but opposite) to the 

Northern Hemisphere, there isn’t much capacity for the snow feedback to occur because 

there is a lot less land for snow to accumulate in the SH mid-latitudes. 

An increase in annual global temperature increases the rate of evaporation, which 

then adds more water vapor into the air. Water vapor is a greenhouse gas, thus 

contributing to further increase in temperature. This process is also known as the water 
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vapor feedback loop, a positive feedback between global mean temperature and specific 

humidity. On regional scales, humidity and evapotranspiration are paired together 

because changes in humidity alter the evapotranspiration rate, and vice versa. Increased 

precipitation, together with increased evapotranspiration, imply a moderated seasonal 

temperature cycle (Stine et al. 2009, Nigam et al. 2017). In non-arid areas, 

evapotranspiration is largest in early summer, when vegetation is active, vapor pressure 

deficits are large, and incoming solar energy is large.  An increase in evapotranspiration 

would result in a cooler summer, which translates to a warming peak in winter over land. 

The relationship between global mean temperature, humidity/evapotranspiration, and the 

seasonal cycle of temperature is indicated in Figure 4.1.1.  

Changes in humidity/evapotranspiration can lead to changes in vegetation. An 

increase would result in more vegetation, which would decrease the surface albedo 

because vegetation tends to be darker than bare soil. Changes in vegetation could also 

occur directly from changes in the global mean surface temperature, if the altered 

climate is outside of local plant life’s needs. Reduction in vegetation may release stored 

greenhouse gasses such as CO2, which would contribute to additional global temperature 

increase. An increase in vegetation would amplify the seasonal cycle of absorption of 

solar radiation, thereby producing maximum warming in summer over land, opposite to 

the direct effect of increases in evapotranspiration. 

Changes in vegetation could also release aerosols, such as through biomass 

burning. Modified aerosol concentrations from any cause can indirectly affect regional 

cloud cover, thus affecting the seasonal cycle of surface temperature (see Fig. 4.1.1). 
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These changes in the seasonal cycle due to modified aerosol concentrations, though non-

negligible, would be difficult to trace on a global, decadal-averaged scale.  

 Oscillating modes of atmospheric-oceanic states affect the seasonal cycle of 

surface temperature (Mann and Park 1996, Wang et al. 2009, Stine and Huybers 2012). 

Natural variability and internal variability are terms used to describe the atmospheric-

oceanic circulation patterns that temporally oscillate within the bounds of the earth’s 

climate. Natural variability drives changes in large-scale wind patterns, thereby altering 

regional temperatures by advection. For example, a winter that is regionally warmer due 

to a La Niña would decrease the amplitude of the surface temperature cycle for a given 

year. More than one La Niña or El Niño can happen in a row because ENSO is not 

perfectly periodic. Slight changes in the initial conditions of a model simulation can 

result in a different series of ENSO events. This makes it impossible for climate models 

to replicate the specific sequence of observed natural variability. Seasonal cloud cover 

and precipitation are also affected by oscillating modes of natural variability. Clouds 

alter the regional radiative balance by reflecting shortwave radiation and trapping 

surface longwave radiation, thus affecting the temperature at the surface. The direct and 

indirect pathways for how natural variability can modify the seasonal cycle of surface 

temperature are outlined on the left-hand side of Figure 4.1.1. Globally and zonally 

averaged changes in natural variability and how this affects the seasonal cycle of surface 

temperature are difficult to identify, as these changes may appear in various seasons, 

regions, and magnitudes, depending on the climatic process and corresponding 

teleconnections, and averaging allows locally amplified and reduced warming trends to 
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at least partially cancel. Nonetheless, it is important to note that generally, natural 

variability will affect ocean and land together, and display a similar seasonal signal, 

compared to the land-sea contrast seen by other forcing mechanisms. 

 

Figure 4.1.1: Conceptual Model Diagram 8 

 
The drivers of changes in the annual cycle of surface temperature (rounded rectangles) 

and their forcing mechanisms (ovals).  

 

 

 



 

34 

 

5. GLOBAL ANALYSIS 

5.1. Global Mean Analysis 

The phase and amplitude of monthly global surface temperature trends are 

compared over two different lengths. All observation datasets are included in the global 

average analysis, in addition to all ensemble members of the MPI-GE, and one ensemble 

per model for all the models within the CMIP5 and CMIP6. No masking is applied to 

any of the datasets yet, so all land and sea points are included.  

The purpose of analyzing of the 100-year trend (Figure 5.1.1) is to capture the 

longest available observational record across all datasets. The amplitude of the annual 

cycle of warming over this time period is about 0.05K according to HadCRUT4.6 

ensemble mean. The other observation datasets (outlined in table 2.1), except for one, 

fall within the range of phase and amplitude of the HadCRUT4.6 ensemble spread. All 

the GCMs have a similar mean amplitude as the observed mean amplitude, though the 

spread is large. The multi-model ensembles (CMIPs) have larger range of amplitude than 

the MPI-GE. This indicates there is added uncertainty of the simulated amplitude when 

using a multi-model ensemble. The average month of peak warming for the GCMs 

ranges from early December to early January, which is 1.5 to 2.5 months earlier than the 

observed month of peak warming, late February.  Simulated seasonal temperature trends 

over 100 years are significantly different from what has been recorded and analyzed, 

regardless of choice of observation dataset. 

The 45-year trend (Figure 5.1.2) indicates the robustness of the surface 

temperature trends with respect to using an alternate time period to calculate the decadal 
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trend. The observed amplitude of seasonal warming for the 45-year trend is similar to the 

100-year trend, but the spread across datasets is smaller. The other observation datasets 

veer towards a slightly earlier peak annual warming than is sampled by the 

HadCRUT4.6 ensemble. As for the GCMs, the spread is reduced in the 45-year trend, 

which slightly underestimates the observed monthly warming amplitude. All observation 

datasets, even those with earlier peak seasonal warming than the HadCRUT4.6 

ensemble, are not within the same distribution as simulated by any of the model 

ensembles. The model simulated phase of the 45-year annual warming trend in this 

timespan is 3 to 4 months earlier than the observations and a month earlier than the 100-

year trend.  

 Figure 5.1.3 is based on the same data as in 5.1.1 and 5.1.2, but the phase and 

amplitude components are plotted together on a polar diagram for each of the two 

seasonal trend analyses. The polar diagrams further emphasize the overlap, or lack 

thereof, between models and observations. On this globally averaged scale, there are 

only a few GCM ensemble members that simultaneously overlap the phase and 

amplitude of the observations for the 100-year trend. For the 45-year trend, the distance 

between observed and model monthly warming trends is greater than for the longer time 

period; virtually no models overlap the mean observed trend or the spread of observed 

trend estimates. The righthand side of figure 5.1.3 also demonstrates that, on a global 

scale, the latest generation of climate models (CMIP6) are phase shifted farther away 

from observations than the previous generation (CMIP5). For any of the model 
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ensembles over either timeframe, the observations from any dataset imply statistically 

different distributions than the model ensemble variability.  

The results from this section give insight into the robustness of the global trend 

using two different time periods of record. The spatial Fourier analysis in the following 

sections uses the 1945-1974 and 1990-2019 (45-year) trends because it includes better 

spatial data coverage.   

  

Figure 5.1.1: Global Mean Seasonal Warming Trend, Century 9 

 
Amplitude (left) and phase (right) of the Fourier fit to the seasonal warming cycle from 

1890-1919 to 1990-2019. Circles with the black outline are of the observation ensemble 

or model ensemble mean. OBS.: Yellow dots are observation datasets from Table 2.1, 

and red dots HadCRUT4.6 observation ensemble members. Model variable tas without 

masking is used for MPI-GE, CMIP5, and CMIP6. Red asterisks denote whether or not 

the HadCRUT4.6 ensemble is significantly different from the distribution of model 

ensemble members for each model ensemble, and the yellow asterisks are the same 

except the computation includes all the observations (Red and Yellow dots). The largest 

(least significant) p-value of these is shown.  

 

Figure 5.1.2: Global Mean Seasonal Warming Trend, Half Century  10 

 
Amplitude (left) and phase (right) of the Fourier fit to the seasonal warming cycle from 

1945-1974 to 1990-2019. See further descriptive details in Figure 5.1.1’s caption.  
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Figure 5.1.3: Global Mean Seasonal Warming Trends on Polar Plot 11 

 
The left side (a) are the same data from figure 5.1.1 and the right side (b) are the same 

data from figure 5.1.2. The amplitude and phase of the Fourier fit to the seasonal 

warming cycle are represented by r and  on the polar diagram. Circles with the black 

outline are of the observation ensemble or model ensemble mean.  

 

 

5.2. Spatial Global Analysis 

The previous section discussed the overall, global mean monthly surface 

temperature trend. This section investigates the spatial patterns of the monthly surface 

temperature trends across the globe, using the HadCRUT4.6 observation ensemble 

dataset and the MPI-GE gridded model output of surface air temperature (tas). The 

primary method is to analyze the seasonal cycle of surface temperature warming at 

individual grid points, starting with the phase and amplitude of HadCRUT4.6 ensemble 

mean in Figure 5.2.1 and Figure 5.2.2.  
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The most prominent seasonal warming feature is located over large land masses 

in the mid and high latitudes of the Northern Hemisphere (NH). Spanning 40N to 80N, 

located in inland regions of northern North America, Europe, and Asia, the amplitude of 

the monthly warming trend difference is approximately 1 K on average across these land 

regions (Fig 5.2.1). In these regions of high amplitude across NH land, the peak 

warming is primarily in late boreal winter, with some regions in the Asian high latitudes 

and North American mid latitudes reaching a seasonal maximum warming in early 

boreal spring (Fig 5.2.2). This phase of peak warming in NH spring aligns with the 

globally averaged trend displayed in Figure 5.1.2. Oceans in the NH extra-tropics have a 

smaller amplitude of monthly warming than surrounding land. However, there are a few 

local maxima of amplitude in this zone of about 0.5 K, with a phase of early boreal fall, 

which is essentially opposite the phase of observed warming over land.  

In Southern Hemisphere (SH) non-tropical regions, the amplitude of seasonal 

warming is higher over the ocean than over land. There is more ocean surface area in the 

SH and more land area in the NH, so seasonal trends over land surfaces in the SH may 

be influenced (and thus dampened) by the ocean’s seasonal temperatures and trends 

thereof. Regions of strong seasonal warming in the SH ocean peak at a similar time in 

the calendar as NH land.  

Much of the tropics and SH land display little spatial pattern or zonal consistency 

about which season the maximum rate of warming occurs. This is primarily due to the 

data in this region exhibiting a low monthly warming amplitude, which yields highly 

variable and potentially unrepresentative grid point values of phase. The exception is 
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Northern Africa and the Middle Eastern land regions, where the amplitude is larger. The 

relative maximum in monthly warming in these subtropical regions exhibit a peak 

warming in boreal summer.  

Figure 5.2.3 shows root mean squared distance at each grid point between the 

ensemble members and ensemble mean of HadCRUT4.6, which is a measure of the 

structural uncertainty in the HadCRUT analysis. The regions with large seasonality of 

warming amplitude pointed out in the previous paragraphs are co-located with the 

largest ensemble spread (largest RMS distance). However, it is important to note that the 

ensemble spread is at least one order of magnitude smaller than the ensemble mean 

amplitude in all regions of the globe. This is shown in figure 5.2.4 as the ratio of the 

amplitude of the ensemble mean to the ensemble spread. Other than a few scattered 

points, the ratio is greater than 2 almost everywhere, with globally averaged signal to 

noise ratio of approximately 20. This means that the ensemble mean amplitude of 

seasonal warming is consistent across all observation ensemble members and is not 

strongly affected by structural uncertainty.  

The simulated amplitude and phase of seasonal surface temperature trends at 

each grid point of the MPI-GE ensemble mean are shown in figure 5.2.5 and 5.2.6. The 

MPI-GE displays higher amplitude over land than ocean in both hemispheres, with the 

strongest seasonal warming amplitudes at the poles. HadCRUT4 lacks data at very high 

latitudes, however the regions of large amplitude over NH continents do not extend as 

far southward into the mid-latitudes as it does in the observations. The season of peak 

warming in the Arctic according to the MPI-GE is mid-winter, which is a few months 
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sooner than in HadCRUT4.6 middle to high latitudes. In the SH, mid-latitude oceans do 

not exhibit the distinct seasonal warming trend that is featured in the observations. While 

there is a relative maximum over land in Africa and the Middle East, it is displaced 

southward by approximately 10 degrees latitudinally compared to observations. The 

ocean areas, both tropical and non-tropical, have a lot of spatial variability in the phase 

of the seasonal warming trend. This is primarily due to a very small seasonal warming 

amplitude over the ocean. It should be pointed out that this is the spatial plot of near-

surface air temperature (tas model standard variable). In the following sections, after an 

appropriate land/sea mask has been applied, MPI-GE ocean regions will be analyzed 

using surface temperature (ts model standard name), to be more consistent with 

HadCRUT4.6.  

The ensemble spread in MPI-GE is on the same order of magnitude as the 

ensemble mean amplitude (Fig 5.2.7). The highest RMS distance of the model’s 

ensemble members to the ensemble mean is in the high latitudes, particularly on the 

margins of sea ice. Figure 5.2.8 is the ratio of the model mean seasonal warming 

amplitude to the spread of the seasonal warming trends represented by the ensemble 

members. The ratio is less than one in a lot of areas of the globe, primarily due to annual 

warming trends having small or no seasonality in those areas while ensemble variability 

persists. There are a few notable areas where the model mean seasonal warming 

amplitude is greater than the magnitude of simulated natural variability, such as the 

Arctic and Antarctic oceans, regions of the southern tropical Pacific and northern 
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tropical Atlantic, as well as over land in parts of Africa, southern Asia, and western 

United States.  

The spatial Fourier analysis across the globe appears to show a substantial 

climate change signal in many regions. Natural variability estimated with the MPI-GE 

ensemble is around three times smaller than the mean observed seasonal warming trend 

in regions where a strong seasonal trend has been observed (compare figure 5.2.1 and 

5.2.7). 

 In order to reduce the noise from structural uncertainty and natural variability, 

the remaining analysis will aggregate the seasonal warming trends by zonally averaging 

surface temperature across 15-degree latitude bands. The zonal regions of distinct 

seasonal warming trends identified throughout this section range in area coverage size 

from 10 to 40 latitudinally. It is possible to aggregate some regional features together 

into 30 (or more) latitude bands, but 15 latitude bands were chosen so that smaller but 

distinct features were not lost while keeping the region large enough to reduce noise 

from natural variability in the models. Additionally, as has been done in previous 

studies, land and ocean surface temperature will be analyzed separately because the 

observed trends exhibit a substantial land vs. sea contrast, and are likely driven by 

different forcing mechanisms. The zonal aggregation of trends and separation of land 

and sea grid points will enable the identification of systematic differences across land 

and sea and between models and observations, and how these partitioned trends 

contribute to the global annual cycle of surface temperature warming. 
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Figure 5.2.1: HadCRUT4.6 Amplitude 12 

 
Amplitude of the Fourier fit to the seasonal warming cycle in the HadCRUT4.6 

observation ensemble mean from 1945-1974 to 1990-2019. 

Figure 5.2.2: HadCRUT4.6 Phase  13 

 
Phase of Fourier fit to the seasonal warming cycle in the HadCRUT4.6 observation 

ensemble mean from 1945-1974 to 1990-2019. The month of the peak of the Fourier fit 

is indicated by the color. 
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Figure 5.2.3: HadCRUT4.6 Ensemble Spread  14 

 
The root mean squared (RMS) distance between the Fourier fit to the seasonal warming 

cycle of the 100 ensemble members of HadCRUT4.6 and the ensemble mean, using 

monthly temperature trends from 1945-1974 and 1990-2019. 

Figure 5.2.4: HadCRUT4.6 Amplitude to Spread Ratio 15 

 
The ratio of HadCRUT4.6 ensemble mean amplitude (fig 5.2.1) to the RMS distance (fig 

5.2.3). Monthly temperature trends from 1945-1974 and 1990-2019.  
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Figure 5.2.5: MPI-GE Amplitude 16 

 
Amplitude of the Fourier fit to the seasonal warming cycle in the MPI-GE model 

ensemble mean from 1945-1974 to 1990-2019. 

Figure 5.2.6: MPI-GE Phase 17 

 
Phase of the Fourier fit to the seasonal warming cycle in the MPI-GE model ensemble 

mean from 1945-1974 to 1990-2019. The month of the peak of the Fourier fit is 

indicated by the color. 
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Figure 5.2.7: MPI-GE Ensemble Spread 18 

 
The root mean squared (RMS) distance between the Fourier fit to the seasonal warming 

cycle of the 100 ensemble members of MPI-GE and the ensemble mean, using monthly 

temperature trends from 1945-1974 and 1990-2019. 

Figure 5.2.8: MPI-GE Amplitude to Spread Ratio 19 

 
The ratio of MPI-GE ensemble mean amplitude (fig 5.2.5) to the RMS distance (fig 

5.2.7). Monthly temperature trends from 1945-1974 and 1990-2019. 
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6. ZONAL BAND ANALYSIS 

6.1. HadCRUT4.6 

Figure 6.1.1 displays the zonally averaged phase and amplitude of annual surface 

temperature trends for using levels of land and ocean masking. Classifications of the 

data are based on Figure 3.1.1. Grid points with land-based observations, including 

coasts and islands, are labeled “All-CRUTEM4”, while the subset of land points that do 

not have any water-based observations are represented by “No-HadSST3”. Similarly, 

data labeled “All-HadSST3” is the entire spatial coverage HadSST3, which has some 

overlap with CRUTEM4, whereas “No-CRUTEM4” removes any shared grid points 

from the CRUTEM4 dataset so that only water-based observations (SST points) remain. 

Land generally has a higher amplitude of seasonal warming than sea in most 

latitude bands, with the highest amplitudes present in Northern Hemisphere middle to 

high latitudes. Similar to the seasonal warming features identified from figure 5.2.1, the 

highest amplitudes for land-only points are from 45N to 75N (with land-only data not 

present beyond 75°N) and for ocean-only points are from 60N to 90N (Figure 6.1.1). 

There is a relative maximum amplitude of sea surface temperature seasonal warming in 

60S to 45S, as noted in the previous section (5.2).  

The latitude band 75N to 90N contains seasonal cycle variations of the highest 

amplitude of all the latitude bands and surface types. The averages exhibiting the high 

amplitudes all include grid points with at least partial land data, whereas “No-

CRUTEM4”, which contains no SAT data, has a seasonal warming amplitude only half 

as large. A similar feature of higher amplitude at the overlap points can be noted on the 



 

47 

 

high latitude transition from 45S to 90S. This indicates that the regions of blended 

SAT and SST data, typically along coasts, islands, and sea-ice margins at the poles, have 

a different phase and amplitude of seasonal warming than land or ocean. In general, the 

inclusion of coastal (overlap) points dampens the amplitude of seasonal warming at mid-

latitudes, and exaggerates it at high latitudes compared to SAT and SST alone. When 

excluding blended SAT and SST points, SAT over land and SST over ocean most clearly 

exhibit opposite phases of seasonal warming, with reversal across the equator. The 

certainty in the amplitude of observations is higher in the NH than in the SH, noted by 

the spread of the ensemble members for either variable. 

Figure 6.1.2 demonstrates the sensitivity to the choice of land-sea masking 

methodology. The differences in spatial coverage and the details of their generation are 

explained in section 3.1. At the latitude band 60N to 75N, the use of the GLOBE mask 

(denoted HadCRUT4.6_Land and HadCRUT4.6_Sea, described in section 3.1) reduces 

the seasonal warming amplitude for ocean points and increases it for land points. In 

general, both choices of land-sea masking yield the same phase of seasonal warming to 

within a month, except for SST at high latitude bands. 
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Figure 6.1.1: HadCRUT4.6, CRUTEM4, and HADSST3 20 

 
Amplitude (left) and phase (right) of the Fourier fit to the seasonal warming cycle from 

1945-1974 to 1990-2019. Vertical lines corresponding to the same-colored dot are the 

ensemble mean of observation ensemble. Land, including coasts and islands is labeled 

“All-CRUTEM4”, while land points that do not have any overlapping HadSST3 grid 

points are represented by “No-HadSST3”. Similarly, data labeled “All-HadSST3” is the 

entire spatial coverage HadSST3, which has some overlap with CRUTEM4, whereas 

“No-CRUTEM4” removes any overlapping points from the CRUTEM4 dataset. Figure 

3.1.1 maps the spatial coverage of these HadCRUT4.6 datasets.  
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Figure 6.1.2: HadCRUT4.6 Land and Sea  21 

 
Amplitude (left) and phase (right) of the Fourier fit to the seasonal warming cycle from 

1945-1974 to 1990-2019. Vertical lines corresponding to the same-colored dot are the 

ensemble mean of observation ensemble. “No-CRUTEM4” denotes regions from the 

HadCRUT4.6 dataset that only contain SST grid points, and “No-HadSST3” is from 

regions that only contain SAT grid points. HadCRUT4.6_Land is the HadCRUT4.6 

dataset only using grid points of 100% land according to the GLOBE dataset, and 

HadCRUT4.6_Sea is the HadCRUT4.6 dataset only using grid points of 100% ocean 

according to the GLOBE dataset. Figure 3.1.2 outlines the differences between these two 

types of land and sea masks. 

 

 

6.2. MPI-GE 

Figure 6.2.1 compares the use of the standard model variable tas (near surface air 

temperature) and ts (temperature of the surface) over ocean regions in order to assess if 

using one variable or the other reveals different results. Other than slight differences at 
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the highest latitude band, in general, ts and tas behave similarly in each latitude band. 

Therefore, the variable ts, using 100% sea grid points according the mask outlined in 

section 3.1, will be used for the remainder of the SST analyses, though the tas model 

variable could have alternatively been used in place of ts.  

Figure 6.2.2 compares the amplitude (left-side) and phase (right-side) of the 

monthly sea surface temperature (SST) trends for the MPI-GE model ensemble, the 

MPI-GE model ensemble using the same grid as available observations, and 

HadCRUT4.6 observation ensemble. Between 60N and 60S, the SST amplitude is 

comparable between models and observations, with the HadCRUT4.6 amplitude tending 

to be larger. The NH mid-latitude SST seasonal warming peaks in mid boreal autumn 

according to HadCRUT4.6 ensemble, however the MPI-GE simulates a large spread of 

potential peak SST warming months, with the ensemble mean in late boreal summer. In 

the SH between 75S and 45S, observed SSTs exhibit peak warming in June, while the 

month of peak warming according the MPI-GE ensemble mean is in August. In these 

midlatitude regions for both hemispheres, the HadCRUT4.6 SST ensemble mean 

seasonal warming signal is statistically different from that of the MPI-GE, even when 

the MPI-GE is masked to only include grid boxes with available observations.  

The MPI-GE overestimates the seasonal warming signal at high latitudes (above 

60N and below 60S). The high amplitude in the MPI-GE high latitudes is also 

apparent in figure 5.2.5, as well as figure 6.2.1. In the northern high latitudes, this 

overestimation of seasonal warming amplitude, as well as the offset of seasonal warming 

phase compared to the observations, results in the MPI-GE ensemble not capturing the 
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observed phase and amplitude, made apparent by the p-values for these latitudes. This 

indicates the MPI-GE could be incorrectly simulating the seasonal warming trend over 

open ocean at high latitudes; however, it could alternatively be due to the model variable 

ts (or tas) not accurately capturing the seasonal warming cycle in sea surface temperature 

due to the presence of sea-ice in some months. Compared to the MPI-GE without 

masking, the use of the available observation mask reduces the amplitude of the SST 

seasonal trend, and increases the variability in phase. It doesn’t affect the statistical 

difference between models and observations at northern high latitudes, but does offer 

some mitigation to the observation-model difference at the southern high latitudes, 

where observations are sparse and potentially less reliable. 

Lastly, tropical latitudes exhibit small seasonal warming amplitudes, which 

corresponds to incoherent phase values in these regions. This is true for both models and 

observations. Simulated and observed seasonal warming are more comparable in these 

latitude bands, and are statistically indistinguishable at 15S to 0 and 15N to 30N. 

There is a small but distinct observed peak warming that occurs in August from 0 to 

15N but is not present in the MPI-GE ensemble. 

The phase and amplitude of seasonal warming trends for the MPI-GE for land-

only points of tas (SAT) is compared to the ocean-only points of ts (SST) in figure 6.2.3. 

Between 60S and 60N, surface temperature trends over land have higher seasonal 

amplitude than over ocean, which is consistent with observations. Poleward of 60N, 

MPI-GE_Land tas amplitude is equal to or less than MPI-GE_Sea ts, whereas the 

HadCRUT4.6 shows the amplitude over land is higher than sea in all latitude bands 
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where land-only data is present, including the high latitudes above 60N (compare figure 

6.2.3 to figure 6.1.2). In all latitude bands, the month of simulated peak warming over 

land and over sea occurs within three months of each other, contrary to the tendency for 

phase over land and sea to be opposite of each other in observations (Fig. 6.1.2).  

Figure 6.2.4 compares the phase and amplitude of near-surface air temperature 

(SAT) trends over land for HadCRUT4.6 observation ensemble, the complete MPI-GE 

ensemble zonally averaged gridded data, and MPI-GE ensemble using grid points only 

with available observations. In zonal bands from 15N to 75N, the MPI-GE 

underestimates the amplitude of the seasonal warming trend over land compared to 

observations. In other regions with available observations, modeled and observed 

amplitudes are comparable. Throughout latitude bands 0 to 45N, the MPI-GE month of 

peak warming is 1 to 5 months out of phase with the observations, even when using 

model grid points that contain available observations. Elsewhere, the MPI-GE has large 

spread in the phase of peak warming. Though this large spread of phase includes some 

overlap values with the observed phase of peak warming, the overall observed SAT 

seasonal warming signal is statistically different from the MPI-GE. The exceptions are in 

zonal bands that lack observed grid points containing 100% land surface, and in the 

Antarctic. In the 60N to 75N band, the available observation mask brings the 

simulated seasonal warming amplitude closer to observations, but does not shift the 

phase of seasonal warming to lessen the statistical difference.  
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Figure 6.2.1: MPI-GE Sea Variables22 

 
Amplitude (left) and phase (right) of the Fourier fit to the seasonal warming cycle from 

1945-1974 to 1990-2019. Vertical lines corresponding to the same-colored dot are the 

ensemble mean of the observation or model ensemble. MPI-GE tas model variable from 

sea-only grid points, and MPI-GE ts model variable from sea-only grid points.  
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Figure 6.2.2:  MPI-GE vs. HadCRUT4.6 SST  23 

 
Amplitude (left) and phase (right) of the Fourier fit to the seasonal warming cycle from 

1945-1974 to 1990-2019. Vertical lines corresponding to the same-colored dot are the 

ensemble mean of the observation or model ensemble. MPI-GE ts model variable from 

sea-only grid points, MPI-GE ts using HadCRUT4.6 sea-only grid points as a mask, and 

HadCRUT4.6 with sea-only grid points. Asterisks denote whether or not the 

HadCRUT4.6 ensemble is significantly different from the distribution of model 

ensemble members at each latitude band.  
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Figure 6.2.3: MPI-GE Land and Sea 24 

 
Amplitude (left) and phase (right) of the Fourier fit to the seasonal warming cycle from 

1945-1974 to 1990-2019. Vertical lines corresponding to the same-colored dot are the 

ensemble mean of the model ensemble. MPI-GE tas model variable from land-only grid 

points, and MPI-GE ts model variable with sea-only grid points. 
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Figure 6.2.4: MPI-GE vs. HadCRUT4.6 SAT Land 25 

 
Amplitude (left) and phase (right) of the Fourier fit to the seasonal warming cycle from 

1945-1974 to 1990-2019. Vertical lines corresponding to the same-colored dot are the 

ensemble mean of the observation or model ensemble. MPI-GE tas model variable from 

land-only grid points, MPI-GE tas using HadCRUT4.6 land-only grid points as a mask, 

and HadCRUT4.6 with land-only grid points. Asterisks denote whether or not the 

HadCRUT4.6 ensemble is significantly different from the distribution of model 

ensemble members at each latitude band.  

 

 

6.3. CMIP5 and CMIP6 

Figure 6.3.1 is of the amplitude and phase of the near-surface air temperature 

(SAT) monthly trends over land for all zonal bands, for the observation ensemble and 

model ensembles. In general, the CMIP5, CMIP6 and MPI-GE amplitude of SAT are 

consistent with each other across latitude bands. In the Northern Hemisphere, 
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HadCRUT4.6 has a larger amplitude of seasonal warming between the two time periods 

than the GCMs. The MPI-GE, CMIP5, and CMIP6 are similarly poor at replicating the 

amplitude and phase observed in the Northern Hemisphere. This mismatch in seasonal 

SAT warming signal between models and observations is statistically significant across 

the Northern Hemisphere, noted by the asterisks in figure 6.3.1. In the Southern 

hemisphere, the phase and amplitude of SAT seasonal trends in zonal bands have higher 

observational uncertainty, particularly in the timing of the peak warming month. In most 

cases throughout the Southern Hemisphere, the observed seasonal SAT trend and 

associated uncertainty is statistically indistinguishable from the model ensembles.  

The amplitude and phase of sea surface temperature (SST) monthly trends over 

ocean for all zonal bands, for observations and models, is plotted in figure 6.3.2. The 

amplitudes of seasonal warming modeled by the MPI-GE, CMIP5, and CMIP6 are 

generally similar to one another across latitude bands, and they all overestimate the 

observed amplitude at high latitudes in both hemispheres. In the Northern Hemisphere 

north of 60N, the simulated phase of SST seasonal warming occurs in mid-winter, 

however the observed phase is in mid-summer. Southward from 60N to 30N, the 

observed phase of seasonal warming is in mid-fall. For these mid to high latitudes in the 

Northern Hemisphere, the observed monthly sea surface temperature trend is 

significantly different than the mean and variability of SST trends simulated by GCMs. 

The same can be said about significance of observed SST trends versus the simulations 

in SH midlatitude zonal bands. However, except for the distinct zonal band 0 to 15N, 
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most of the tropical temperature trends have little seasonality and the observations are 

undifferentiated from the GCMs.  

Figures 6.3.4 through 6.3.9 are of the same data as figure 6.3.1, but for each 15-

degree zonal band, the phase and amplitude of surface air temperature (SAT) seasonal 

trends are plotted on polar diagrams. The data on figures 6.3.10 through 6.3.15 are the 

same as are in figure 6.3.2, though similar to the SAT figures, the phase and amplitude 

of sea surface temperature (SST) seasonal warming trends are plotted on polar diagrams. 

For all figures 6.3.4 to 6.3.15, the same corresponding 15-degree latitude bands for the 

Northern Hemisphere and Southern Hemispheres are plotted side by side. These figures 

and the following discussion demonstrate the relationship between phase and amplitude 

of the monthly temperature trends and allow for a closer look at covariate distributions 

of the model ensembles compared to the observation ensemble. 

Figure 6.3.5 (left-hand side) shows the phase and amplitude of SAT seasonal 

temperature trends from 60N to 75N over land. HadCRUT4.6 observation ensemble 

members have a seasonal warming amplitude of 0.8 to 1.2 K, with a peak rate of 

warming that occurs in late February. The ensemble means from the GCMs simulate 

peak warming 1.5 to 2.5 months earlier, and the seasonal amplitudes are only half as 

large as the observations. There are no GCMs that simultaneously simulate the observed 

phase and amplitude of surface air temperature trends over land in this latitude band. 

SAT trends over land in the 45 to 60 zonal band in figure 6.3.6 are similar to those in 

figure 6.3.5 for the Northern Hemisphere; both of which reveal statistical differences 

between models and observations. As for the Southern Hemisphere, there aren’t enough 
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land-exclusive grid points in these adjacent latitude bands in order to conclusively 

compare observations to models (Figure 6.3.5 and 6.3.6 right-hand side). This is also 

true for the arctic regions plotted in figure 6.3.4, the left-hand side (north) has no data, 

and the right-hand side (south) has approximately one observation grid point.  

The left and right side of figure 6.3.7 (30N to 45N (left) and 45S to 30S 

(right)), have a similar phase in their seasonal warming trends, but with weaker 

amplitude in the Southern Hemisphere. For both hemispheres, the observed maximum 

rate of SAT warming over land occurs in very early spring, whereas the GCMs have a 

peak warming mid to late summer. The discrepancy in seasonal temperature trends in the 

NH latitude band are statistically significant, however they aren’t nearly as significant 

(or at all) in this adjacent SH band.  

The tropical zonal bands 15 to 30 (Figure 6.3.8) and 0 to 15 (Figure 6.3.9) in 

both hemispheres have smaller observed SAT seasonal warming amplitude than the mid- 

and high- latitude bands. In the Northern Hemisphere tropical zonal bands, the simulated 

SAT seasonal warming signal does not match the pattern of seasonal warming in the 

observations, and this mismatch is statistically significant. In the Southern Hemisphere, 

from the equator to 45S (Figure 6.3.6 to 6.3.9), the observed seasonal warming signal is 

generally not statistically distinguishable from simulations. The amplitude of seasonal 

warming of SAT in these bands are so small there may not be a distinct seasonal 

warming signal present in the observations or GCMs. 

Sea surface temperatures in in the tropical zonal bands 0 to 15 (Figure 6.3.10) 

and 15 to 30 (Figure 6.3.11) have low amplitude of seasonal warming, which results in 
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a wide range of phase. Both observations and models exhibit this seasonal warming 

behavior (or lack thereof) on these zonal bands. The exception is 0 to 15N, in which 

the mean observed phase is in mid-August, with an SST amplitude of about 0.1K (left-

hand side, figure 6.3.10). None of the GCMs simulate this anomalous warming, and it is 

statistically significant according to a p-value of less than 0.001 from the Mahalanobis 

statistic.  

The left-hand sides of Figure 6.3.12 (30 to 45) and 6.3.13 (45 to 60) exhibit 

similar results to one another; there is an observed seasonal warming amplitude of 

around 0.15K in early fall for the Northern mid latitudes. All the models simulate a 

comparable ensemble mean seasonal amplitude to observations, along with a maximum 

rate typically one to two months earlier. This mismatch in phase between models and 

observations is significant in the zonal band 30N to 45N for all simulations and in 

45N to 60N for MPI-GE and CMIP5. On the right-hand side of these figures, the peak 

warming in SH mid latitude SSTs occurs in June (austral winter). Models, however, 

distinctly exhibit a maximum rate of warming in February for zonal band 45S to 30S 

and in August for 60S to 45S. This suggests the distribution of model natural 

variability does not represent the observed phase, and this is confirmed by the significant 

p-value from the Mahalanobis distance at these latitude bands. 

Figure 6.3.14 and figure 6.3.15 are of the SST seasonal trends for the latitude 

band 60 to 75 and 75 to 90, respectively, for both hemispheres. The GCMs over-

estimate the observed amplitude in both hemispheres, and the CMIP ensembles exhibit 

higher amplitudes than the MPI-GE. The observed Northern Hemisphere peak warming 
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is in the opposite season of that simulated by the GCMs for the high latitudes, and this is 

statistically significant. The phase simulated by the GCMs in the Southern Hemisphere 

high latitudes is more variable, therefore the observations are not found to be statistically 

indistinguishable from simulations across each model ensemble. 

 

Figure 6.3.1: Models vs. Observations SAT Land  26 

Amplitude (left) and phase (right) of the Fourier fit to the seasonal warming cycle from 

1945-1974 to 1990-2019. Vertical lines corresponding to the same-colored dot are the 

ensemble mean of the observation or model ensemble. Data are of SAT over land-only 

grid points for each dataset. Asterisks denote whether or not the HadCRUT4.6 ensemble 

is significantly different from the distribution of model ensemble members for each 

model ensemble at each latitude band.  
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Figure 6.3.2: Models vs. Observations SST 27 

Amplitude (left) and phase (right) of the Fourier fit to the seasonal warming cycle from 

1945-1974 to 1990-2019. Vertical lines corresponding to the same-colored dot are the 

ensemble mean of the observation or model ensemble. Data are of SST over sea-only 

grid points for each dataset. Asterisks denote whether or not the HadCRUT4.6 ensemble 

is significantly different from the distribution of model ensemble members for each 

model ensemble at each latitude band.  
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Figure 6.3.3: Models vs. Observations Combined Surface Temperature 28 

Amplitude (left) and phase (right) of the Fourier fit to the seasonal warming cycle from 

1945-1974 to 1990-2019. Vertical lines corresponding to the same-colored dot are the 

ensemble mean of the observation or model ensemble. Each dataset uses all available 

grid points without masking. The variable tas is used for models. Asterisks denote 

whether or not the HadCRUT4.6 ensemble is significantly different from the distribution 

of model ensemble members for each model ensemble at each latitude band. 
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Figure 6.3.4: Polar Plot, SAT 75 to 90 29 

 
SAT (model tas) over land-only grid points for each dataset. Averaged across grid-points 

in the zonal band 75 to 90 latitude, displayed for both hemispheres. The amplitude and 

phase of the Fourier fit to the seasonal warming cycle are represented by r and  on the 

polar diagram. Circles with the black outline are of the observation ensemble or model 

ensemble mean. The Southern Hemisphere polar plot is rotated by 180 to compare 

boreal and austral seasons. Grey line drawn at 0.1K amplitude for reference of scale. 

Figure 6.3.5: Polar Plot, SAT 60 to 75  30 

 
SAT (model tas) over land-only grid points for each dataset. Averaged across grid-points 

in the zonal band 60 to 75 latitude, displayed for both hemispheres. See Fig 6.3.4’s 

caption for a more detailed figure description.  
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Figure 6.3.6: Polar Plot, SAT 45 to 60  31 

 
SAT (model tas) over land-only grid points for each dataset. Averaged across grid-points 

in the zonal band 45 to 60 latitude displayed for both hemispheres. The amplitude and 

phase of the Fourier fit to the seasonal warming cycle are represented by r and  on the 

polar diagram. Circles with the black outline are of the observation ensemble or model 

ensemble mean. The Southern Hemisphere polar plot is rotated by 180 to compare 

boreal and austral seasons. Grey line drawn at 0.1K amplitude for reference of scale. 

Figure 6.3.7: Polar Plot, SAT 30 to 45  32 

 
SAT (model tas) over land-only grid points for each dataset. Averaged across grid-points 

in the zonal band 30 to 45 latitude, displayed for both hemispheres. See Fig 6.3.6’s 

caption for a more detailed figure description. 
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Figure 6.3.8: Polar Plot, SAT 15 to 30  33 

 
SAT (model tas) over land-only grid points for each dataset. Averaged across grid-points 

in the zonal band 15 to 30 latitude, displayed for both hemispheres. The amplitude and 

phase of the Fourier fit to the seasonal warming cycle are represented by r and  on the 

polar diagram. Circles with the black outline are of the observation ensemble or model 

ensemble mean. The Southern Hemisphere polar plot is rotated by 180 to compare 

boreal and austral seasons. Grey line drawn at 0.1K amplitude for reference of scale. 

Figure 6.3.9: Polar Plot, SAT 0 to 15  34 

 
SAT (model tas) over land-only grid points for each dataset. Averaged across grid-points 

in the zonal band 0 to 15 latitude, displayed for both hemispheres. See Fig 6.3.8’s 

caption for a more detailed figure description. 
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Figure 6.3.10: Polar Plot, SST 0 to 15 35 

 
SST (model ts) over sea-only grid points for each dataset. Averaged across grid-points in 

the zonal band 0 to 15 latitude, displayed for both hemispheres. The amplitude and 

phase of the Fourier fit to the seasonal warming cycle are represented by r and  on the 

polar diagram. Circles with the black outline are of the observation ensemble or model 

ensemble mean. The Southern Hemisphere polar plot is rotated by 180 to compare 

boreal and austral seasons. Grey line drawn at 0.1K amplitude for reference of scale. 

Figure 6.3.11: Polar Plot, SST 15 to 30  36 

 
SST (model ts) over sea-only grid points for each dataset. Averaged across grid-points in 

the zonal band 15 to 30 latitude, displayed for both hemispheres. See Fig 6.3.10’s 

caption for a more detailed figure description. 
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Figure 6.3.12: Polar Plot, SST 30 to 45  37 

 
SST (model ts) over sea-only grid points for each dataset. Averaged across grid-points in 

the zonal band 30 to 45 latitude, displayed for both hemispheres. The amplitude and 

phase of the Fourier fit to the seasonal warming cycle are represented by r and  on the 

polar diagram. Circles with the black outline are of the observation ensemble or model 

ensemble mean. The Southern Hemisphere polar plot is rotated by 180 to compare 

boreal and austral seasons. Grey line drawn at 0.1K amplitude for reference of scale.  

Figure 6.3.13: Polar Plot, SST 45 to 60  38 

 
SST (model ts) over sea-only grid points for each dataset. Averaged across grid-points in 

the zonal band 45 to 60 latitude, displayed for both hemispheres. See Fig 6.3.12’s 

caption for a more detailed figure description. 
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Figure 6.3.14: Polar Plot, SST 60 to 75  39 

 
SST (model ts) over sea-only grid points for each dataset. Averaged across grid-points in 

the zonal band 60 to 75 latitude, displayed for both hemispheres. The amplitude and 

phase of the Fourier fit to the seasonal warming cycle are represented by r and  on the 

polar diagram. Circles with the black outline are of the observation ensemble or model 

ensemble mean. The Southern Hemisphere polar plot is rotated by 180 to compare 

boreal and austral seasons. Grey line drawn at 0.1K amplitude for reference of scale.  

Figure 6.3.15: Polar Plot, SST 75 to 90  40 

 
SST (model ts) over sea-only grid points for each dataset. Averaged across grid-points in 

the zonal band 75 to 90 latitude, displayed for both hemispheres. See Fig 6.3.14’s 

caption for a more detailed figure description.



 

 

7. CONCLUSIONS 

7.1. Results and Discussion 

Observed seasonal warming trends and the notable inconsistencies with GCMs’ 

seasonal warming trends have been identified by previous studies (Mann and Park 1996, 

Wallace and Osborne 2002, Stine et al. 2009, Dwyer et. al 2012, Qian and Zhang 2015, 

etc.). The study presented in this paper expands on previous studies by performing a 

comprehensive analysis of seasonal temperature trends on a global scale. Specifically, 

the phase and amplitude of the annual cycle of monthly temperature trends are quantified 

in a global average, on the spatial grids of the datasets, and in zonally averaged latitude 

bands. The trends are analyzed both collectively and separately for near-surface air 

temperature (SAT) over land and sea surface temperature (SST) over ocean regions.  

If a climate model ensemble is accurately simulating the natural variability 

and/or the forced response recorded in historical seasonal warming trends, the mean of 

the observation ensemble seasonal warming (the best estimate of the observed trend 

given structural uncertainty) should be statistically indistinguishable from members of 

the climate model ensemble and/or the climate model ensemble mean. Discrepancies 

may indicate a deficiency in the models’ representation of observed natural climate 

variability and/or forced response due to climate change in the region identified as 

mismatched. It is important to look to the conceptual model to understand what physical 

mechanisms are potentially responsible for the observed trends to identify what aspects 

of the climate models may need improvement. 
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The observed global average surface temperature trend between 1945-1974 and 

1990-2019 results in a seasonal warming maximum relative to the average annual trend 

of about 0.05K. The mean (forced) response of the global climate model ensembles 

slightly underestimates this value, but includes a wide range of simulated variability. 

The observed seasonal maximum warming rate occurs in late February to early March, 

whereas the simulated maximum occurs between late October to mid-December, 

depending on the model ensemble. The model to observation discrepancy in the timing 

and magnitude of maximum seasonal warming is significant to a p-value of <0.01 using 

multiple observation datasets and <0.001 using the HadCRUT4.6 ensemble. 

The maximum observed seasonal warming signal found in the HadCRUT4.6 

ensemble mean spans the Northern Hemisphere (NH) mid to high latitude land regions. 

The amplitude of this feature is around 1 K and occurs between February (mid latitudes) 

and April (high latitudes). The maximum seasonal warming amplitude simulated by the 

MPI-GE ensemble in these regions does not extend as far southward into the mid-

latitudes, and on average occurs a few months earlier than what is observed. There is a 

second feature of high temperature trend seasonality observed in the mid-latitude 

Southern Hemisphere (SH) ocean, collocated with phase of values similar to that of the 

NH land feature and globally averaged observed trend, ranging from February to May. 

This region of observed temperature trend seasonality in the SH is not present in the 

MPI-GE ensemble mean, nor does the model ensemble mean simulate a distinct phase 

and amplitude of warming in the NH ocean. There may be a small maximum rate of 
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annual warming over tropical land regions, specifically over Africa, but MPI-GE 

simulates this maximum warming farther south than observations. 

Figure 7.1.a - 7.1.c summarizes the seasonal warming features discussed in the 

zonal aggregation analysis. Figure 7.1.a is of the SST seasonal trends over ocean, and 

their spatial contribution to the seasonality in the global mean SST trend, Figure 7.1.b is 

of the SAT seasonal trends over land and their spatial contribution to the seasonality in 

the global mean SAT trend, and Figure 7.1.c is the total seasonal surface temperature 

trend averaged across all data points by each latitude band, and represents how the mean 

signal across land and ocean present themselves when considering the seasonal warming 

trend at each latitude band as a whole. 

Figure 7.1.a displays the ensemble means’ seasonal SST trends by latitude. The 

SST warming trends that carry the largest weight in the global mean SST signal are in 

the Southern Hemisphere. From 45°S to 75°S, the observed warming seasonal cycle 

peaks in July, consistent with a sea ice trend mechanism for altering the seasonal cycle.  

Model ensemble means have somewhat larger amplitude and tend to peak 1-2 months 

later, leading to moderate statistical significance differences compared to the observed 

cycle of surface temperature trends. The overestimation of the amplitude is eliminated 

by masking the model to only include grid boxes where there is observation data 

available.  

There is a distinct seasonal warming trend in the observations that peaks in May 

in regions from 45S to 15S. The month of peak warming simulated by GCMs leads the 

observations phase by 2-3 months. The observations are statistically different from all 



 

73 

 

the GCM’s with a p-value of <0.1 to 0.01 for the CMIP ensembles, and <0.01 and 

<0.001 for MPI-GE ensemble distribution. The peak warming in May in observations, 

and in March for models doesn’t directly suggest any mechanisms laid out in the 

conceptual model for sea surface temperatures in the mid-latitudes and tropics of the 

Southern Hemisphere. The mechanism could involve the seasonal cycle of mixing that 

occurs in the ocean temperature profile, or other oceanic processes not explored in this 

thesis.   

The Northern Hemisphere mid to high latitude SST trend has similar seasonality 

in latitudinal temperature trends as those identified in the Southern Hemisphere, but 

opposite in sign (6 months apart). The ocean to land ratio is smaller in the Northern 

Hemisphere, so even high amplitude trends contribute less to the global mean SST 

seasonal warming trend. From 30 to 60N, the annual cycle of temperature trends 

simulated by GCMs peak in August, which is 1-2 months earlier than the observed phase 

for this latitude region. In the NH tropics, from 0 to 15N, the ensemble means of the 

GCM’s have a similar phase of seasonal temperature trends to what is observed in this 

region, which is similar to NH mid-latitudes, but they all underestimate the magnitude of 

warming. 

From 60 to 90N, GCMs peak in mid-winter (December to January), which is 

consistent with the sea-ice albedo feedback’s effect on the seasonal cycle of surface 

temperature. However, observations peak in July on average 60 to 75N, and in May 

about 75N. This is 5-6 months out of phase with GCMs, and it doesn’t directly 

correspond to a forcing mechanism laid out in the conceptual model. This could be a 
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different driver of change to the seasonal cycle, or a combination of multiple forcing 

mechanisms that is causing this significant disagreement between models and 

observations in the NH high latitude SST trends.  

Figure 7.1.b is of the observation and model ensemble means’ seasonal SAT 

trends and their contribution to the seasonality of the global mean SAT trend by latitude 

band. From 30N to 75N, the seasonal cycle of observed temperature trends peaks in 

March, or early boreal spring. This Northern Hemisphere mid to high latitude region has 

the largest seasonal warming amplitude and largest land area coverage, so this observed 

trend is the main contributor to the observed global mean SAT seasonal warming signal. 

This month of peak warming in boreal spring is consistent with the snow feedback 

mechanism as the driver of change to the seasonal cycle of surface temperature, with the 

maximum amplitude located between 45N and 60N. 

The GCM’s do not simulate the observed seasonal warming trend in the Northern 

Hemisphere mid to high latitudes. In regions from 45N to 75N, GCMs consistently 

underestimate the amplitude of observed seasonal warming, and peak a few months 

earlier, in early to middle boreal winter around December to January. Although this 

pattern doesn’t match observations, it follows a seasonal warming pattern expected by 

the sea-ice albedo effect outlined in the conceptual model. Since the models SST trends 

are much larger than their SAT trends in the high latitudes, it’s possible that the sea-ice 

albedo affect is overpowering potential underlying forcing mechanisms originating from 

land. From 15N to 45N, GCM’s have a relatively similar phase and amplitude of SAT 

seasonal warming as they do for SST trends in this region, which have a peak warming 
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in late boreal summer to early fall. As with SST trends, there is not a single, clear 

forcing mechanism that was described in this study’s conceptual model. Given that SAT 

and SST are exhibiting similar seasonal warming trends to one another in GCMs, this 

could be due to changes in the large-scale circulation, such as changes in the Hadley cell 

extent or the jet stream latitude affecting a region’s climate similarly over land and 

ocean simultaneously, rather than distinct land or ocean process. However, this is not the 

case for observed SAT and SST warming trends in this latitude region.  In the region 

15N to 30N, the observed seasonal peak warming is in January, which could imply a 

cooler summer due to increased evapotranspiration; however, a seasonal trend in the 

annual surface temperature cycle in tropical regions isn’t enough to stand alone as 

evidence of this. North of 30N, the snow feedback seems to be the primary driver of 

seasonal warming, which the GCMs all lack or incorrectly simulate.  

All of the observed Northern Hemisphere SAT seasonal warming is statistically 

distinguishable from the GCM ensembles with a p-value of < 0.001. This includes a 

small region of the tropics, 0 to 15N. A small but regionally higher area of SAT 

seasonal warming trend was identified near the Sahel in Africa in the MPI spatial 

Fourier analysis, and the phase of warming in this zonally averaged latitude band (early 

boreal summer) is consistent with the grid point analysis in section 5.2 and inconsistent 

with HadCRUT4 and the CMIP ensembles.  

The ratio of land to ocean area is small in the Southern Hemisphere, and is even 

smaller with respect to observation data availability going back to 1945. The observed 

seasonal warming trend in the zonal band of 30S to 45S peaks in August, or early 
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austral spring, which is similar to the phase in this zonal band in the Northern 

Hemisphere. The forcing mechanism driving this early spring seasonal warming trend is 

unlikely to be the snow feedback, though not impossible, given the limited seasonal 

snow cover in New Zealand, Chile, and Argentina. The CMIP seasonal warming trends 

are not significantly different, and the MPI-GE is only marginally so. 

Figure 7.1.c is of the ensemble means’ seasonal trends by latitude (without any 

land-sea masking), and weighted by their spatial contribution to the seasonality of the 

global mean surface temperature trend. In the Northern Hemisphere, from 30N to 75N, 

the seasonality across all data points resembles the seasonality in the SAT land 

temperature trends (Figure 7.1.b). In the Southern Hemisphere, from 75S to 30S, the 

surface temperature trend’s phase and amplitude prominently exhibit SST seasonality 

(Figure 7.1.a). In other regions, the difference between modeled and observed latitudinal 

seasonal temperature trends are less significant, contribute less weight to the total global 

mean, and are a blend of the phases and amplitudes over land and sea. 

 

7.2. Summary and Conclusion 

 Over the last half century, the observed global seasonal cycle of surface 

temperature trends peaks in March, with an amplitude of 0.05 K. The MPI-GE, CMIP5, 

and CMIP6 simulate a global seasonal warming amplitude comparable to observations, 

but out of phase from observations by a 2 to 5 month lead. The observation-to-model 

mismatch is significant to a p-value of < 0.01 for the CMIP5 ensemble to all observation 

datasets, and < 0.001 for the all the GCM ensembles vs. the HadCRUT4.6 observation 



 

77 

 

ensemble. A similar amplitude, phase, and observation-to-model discrepancy occurs 

over the course of the entire last century as well, implying a robust trend throughout the 

observed temperature record and systematic errors in the seasonality of this trend 

simulated by GCMs. 

 The largest seasonality in surface temperature trends is located from 30N to 

90N. For SAT trends over land, and SST trends over ocean, all of the GCM ensembles 

are significantly different from observations to a p-value of < 0.001. Within this broad 

region, the observed seasonal SAT trends over land regions peak in March, with a 

maximum seasonal amplitude of about 1.0 K. The models are consistent with one 

another but do not have a similarly large amplitude extending as far southward from 

high to mid latitudes as the observations. North of 45N, the modeled SAT trends lead 

observations by a few months, peaking in January, and between 45N and 30N their 

phase lags behind observations. The contribution to the global mean seasonal trend is 

more dispersed across latitudes in GCMs, whereas the largest latitudinal contribution to 

the observed global mean seasonal trend is from non-tropical NH SATs over land.  

The second largest seasonal temperature trends arise from SSTs in 30S to 60S. 

The observed SST trend peaks in late austral fall (Fig 7.1.a), and the combined land-sea 

mean phase is in March (early austral fall) (Fig 7.1.c). This is the same phase (March) as 

the peak warming month associated with large amplitudes over NH land, further 

enforcing the global mean seasonality that peaks around March. The GCMs simulate a 

statistically different SST trend in this region from the observations with a p-value of < 

0.01 in CMIP5 and < 0.001 in the MPI-GE and CMIP6. These mismatched seasonal SST 
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trends from the GCMs tend to peak a few months later than observations from 60S to 

45S, and northward to 30S they peak earlier than observation seasonal SST trends.   

A small but distinct annual phase and amplitude of seasonal surface temperature 

trends have been observed in NH tropical regions from the equator to 30N. This annual 

warming trend is mostly absent from models, so the observations are statistically 

distinguishable from the GCMs’ SAT trends to a p-value of < 0.01. Modeled SST trends 

are also significantly different from observations from the equator to 15N. Because 

there aren’t many forcing mechanisms that would cause a first-harmonic warming trend 

in the tropics, it’s a good place to observe whether or not precession has affected the 

seasonal cycle of surface temperature. The concept model describes that precession 

would induce a maximum seasonal warming between the aphelion (July) and January 

(perihelion) of Earth’s orbit, around October and the same in both Hemispheres. In the 

most tropical latitude bands, 15N to 15S, the combined land-sea temperature trends’ 

time of peak warming in the HadCRUT4.6 is around September. More detailed analyses 

would be needed to verify this speculation, as well as regional and semi-annual cycle 

analyses of temperature and precipitation in these latitude regions.  
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Figure 7.1.1(a-c): Summary of Latitudinal SAT and SST Trends  41 

 
Rectangles are latitudinal ensemble mean phase (color) and amplitude (horizontal 

length) of the seasonal warming trends between 1945-1974 and 1990-2019 for 

HadCRUT4.6, MPI-GE using available observations, the full MPI-GE, CMIP5, and 

CMIP6. The significant p-values from the Mahalanobis distances calculated in sections 

6.2 and 6.3 are noted by the thickness of the green border. For land and sea, (a) and (b) 

the vertical height is scaled by ratio of the area considered 100% land and 100% sea of 

each latitude band to the area of 100% land and 100% sea across the entire globe. For all 

points (c), the vertical height is scaled by the total area in each latitude band with respect 

to the entire area of the globe. The observations account for the missing data points.  
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