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ABSTRACT

This thesis investigates dense Light Detection and Ranging (LiDAR) sensors as a method for

object detection and tracking in stationary infrastructure-like applications. A literature review

of existing works is conducted, with discussion and comparisons for other sensing technologies.

Additional discussions are made for geometric feature-based methods and end-to-end learning

methods for object detection from pointcloud data. Subsequently, theoretical pointcloud spacing

models for multi-beam 360◦ LiDAR sensors are developed, with analysis on placement strategies

and LiDAR configurations. The thesis continues with an implementation of a geometric feature

based object detection method, primarily for vehicles. Several algorithm designs are presented for

pointcloud background removal, clustering, orientation detection, tracking, and filtering. Detection

and tracking metrics are then established to observe the system’s performance on both experimental

and simulation datasets. Two datasets collected with a Velodnye VLP-16 sensor on both a highway

and urban road segment are utilized for experimentation, while scenarios of light traffic and stop-

and-go traffic on a highway are developed in the CARLA simulator to further validate tracking

performance.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

The objective of multi object detection and tracking (MODT) has been studied for a variety of

applications and motivations, such as military defense and surveillance purposes, robotics applica-

tions including autonomous driving, infrastructure use for traffic monitoring, asteroid detection and

tracking, or even in sports tournaments such as ball tracking in soccer and football. Historically,

the sensing technologies enabling object detection and tracking have primarily been computer vi-

sion or RADAR based, upon which vision based technologies are most currently used today [4].

Although these sensing technologies have seen numerous successes in their applications, no in-

dividual sensing modality is without weakness. Hence, it warrants that new sensing technologies

be thoroughly investigated, as their properties may be more advantageous in certain domains or

conditions.

1.1.1 LiDAR Sensors

Early forms of Light Detection and Ranging (LiDAR) sensors were introduced over 60 years

ago, with early detectors being more akin to today’s common household laser based measuring

tool. Their operation relies upon Time of Flight (ToF) principles, where the amount time is mea-

sured between the instance when a pulse of light is shined towards an object, and the instance the

light’s reflection reaches the original source. By assuming minute atmospheric interference, the

distance can be calculated by multiplying the time measured by the speed of light, and halving to

retrieve the one-way distance:

d =
ct

2
(1.1)

There are many different types of LiDAR sensors, and are often separated by both the spatial-

dimensionality they measure in, and pointcloud density that they produced, as illustrated by Fig-

ure 1.1. One-dimensional LiDARs can be envisioned as a simple laser distance measurement

tool, commonly used in home-improvement projects. One dimensional LiDARs capture a single
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Figure 1.1: Different types of LiDAR, separated by dimensionality, and density

point in-space, and are typically only used for range-finding. Two-dimensional LiDARs can be

envisioned as a one-dimensional LiDAR rotating at a controlled and precise angular velocity. By

precisely controlling the yaw angle of the LiDAR through precise motion encoders, distance mea-

surements can be taken in a single plane and represented by Polar coordinates (r, ψ), or Cartesian

coordinates (x, y). Similarly, 3D spinning LiDARs can be envisioned as multiple 2D LiDARs

stacked together vertically at set angles, where each angle represents a scanning channel. Distance

measurements can be represented as spherical coordinates (r, θ, ψ,), or as Cartesian coordinates

(x, y, z). Due to their precise rotation and firing sequences, spinning or mechanical LiDAR sen-

sors have a great degree of determinism in their scanning pattern. In this context, scanning pattern

refers to each laser measurement taken correlating to a particular channel and yaw rotation. Within

the past decade and a half, the 360◦ horizontal scanning version of the sensing technology has

seen rapid industry development. 360◦ LiDAR sensors have multiple beams that scan 360 de-

grees in a panoramic fashion, typically with 16, 32, 64 or 128 beams of lasers. There are also

solid-state LiDARs that exist today, which do not spin mechanically but instead use a microscopic

electro-mechanical sensor array that produces a three-dimensional point cloud. Solid-state Li-

DARs however are not deterministic in their scanning pattern, and are typically random varying

with the sampling time.
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Figure 1.2: Example of LiDAR data taken near Ireland St., College Station TX with a Velodyne
VLP-32c sensor. Here each color represents the channel of the LIDAR sensor.

When referred to today, LiDAR today is often envisioned as the dense version of the sensor,

where three dimensional clouds of objects and background within a vertical and horizontal field of

view. An example of LiDAR data is visualized in Figure 1.2. Companies manufacturing LiDAR

sensors have seen recent significant uptake in industry demand, as the sensing technology has had

numerous applications in robotics and other innovative fields. In fact, due to much speculation of

their widespread adoption, retail and professional investors have taken a hold to market watch over

established and new LiDAR manufacturers that are now being traded publicly [5].

1.1.2 Applications

Dense LiDAR sensors have seen many uses in different fields, ranging from terrestrial, air-

borne, infrastructure, and robotics applications [6]. More narrowly, 360◦ and other similar dense

scanning LiDAR sensors have been vital sensing components for robotics and autonomous driving

companies. Their ability to provide dense clouds of points has seen utilization for robust obstacle

detection, Simultaneous Localization and Mapping (SLAM), object detection and tracking, road

marking detection, signage detection, and other use-cases. Outside robotics, other applications

for dense point-cloud LiDAR sensors include uses for Geographical Information Systems (GIS),
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Table 1.1: Comparison of different sensors

Sensor Type Illumination
Req

Classification
Ability Range Resolution Direct 3D Space

Representation

RADAR Independent Low High Low Yes
LIDAR Independent Medium Medium Medium Yes
Monocular Cameras Dependent High Mixed High No
Stereoscopic Cameras Dependent High Short High Yes
Thermal Cameras Independent High Medium Medium No

sensing in infrastructure based "smart-cities", and uses for security systems.

1.1.2.1 Dynamic vs. Stationary Applications

One method to sub-categorize applications of dense point-cloud LiDAR sensors is to group by

dynamic and stationary applications. Attaching the LiDAR to a moving structure, such as a vehicle

or robot platform, offers the broadest range of utility for the LiDAR sensor when compared to a

fixed mounting location. Applications where LiDARs are fixed in location relative to their scene

are narrower; for example, they may be used for developing 3D models of a building structure,

geology feature, or other similar items. Similarly to dynamic applications, fixed location LiDARs

can also be used for object detection and tracking and have seen prior research in infrastructure

based traffic monitoring.

1.1.3 Other Sensors

It is also important to compare LiDAR sensors against other sensing technologies. The next few

subsections introduce other sensing technologies commonly used, with Table 1.1 summarizing.

1.1.3.1 Cameras

Color monocular cameras, usually referred to as just cameras, are passive sensors that mea-

sure in the visible light spectrum (350–750 µm) and return a two-dimensional image with color

information. Several models of cameras are available commercially off the shelf, and vary in res-

olution, shutter type, shutter speed, and form-factor. Due to the high resolution often provided by
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cameras today, they prove to be excellent in use of object detection and classification under normal

operating conditions. However, they are lighting dependent, and poorly illuminated scenes make

for difficult recognition of objects. Further, it is challenging to translate a 2D pixel value to a point

into 3D space unless the intrinsic and extrinsics of the sensor are estimated accurately.

1.1.3.2 Stereoscopic Cameras

Stereoscopic cameras, or stereo cameras, utilize two separate in-line imaging sensors separated

by a known distance to capture two perspectives of a scene. Because the separation distance is

known, a three dimensional view of the scene can be reconstructed and is usually provided with

the sensor output. However, commercially available stereo cameras are typically limited by the

depth they can measure, and are also subject to the same illumination weaknesses as monocular

cameras.

1.1.3.3 Thermal Cameras

Thermal cameras are much like monocular cameras, but instead passively measure in the

infrared-spectrum and therefore are not subject to illumination conditions like cameras. Objects

that emit heat also emit infrared radiation, which make thermal cameras particularly useful for

detecting living objects. However, the 2D pixel data is still difficult to translate to a 3D point in

space. Additionally, due to requiring a larger sensor array to measure larger wavelengths compared

to normal cameras, thermal cameras are usually lower in sensor resolution.

1.1.3.4 RADAR Sensors

Radio Detection and Ranging (RADAR) sensors have been been around for over 80 years,

and have had numerous applications including military, space, robotics, meteorology, and several

others. Their principle operates similarly to active LiDAR sensors, but instead use much larger

radio-waves (0.8-10 cm). An emitter will distribute pulsed radio waves where a receiver captures

any reflected return signals revealing an objects position, speed (due to Doppler shift), and bearing

from the sensor. Due to the longer wavelengths emitted, their range can be great distances de-

pending on the power and antenna array. However, compared to both camera and LiDAR sensors,
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RADARS are much lower in resolution making classification of objects challenging.

1.1.4 Sensor Fusion

As seen, no individual sensing modality is without weakness. One method to reduce perception

weaknesses in a system is by utilizing multiple sensing modalities that can complement each-other.

Several concepts exist for leveraging multiple senor’s outputs to generate robust detections and

tracks. In most sensor fusion methods, precise extrinsic calibrations or parameters that define the

rigid transformations between sensor coordinate frames are required to transform sensor or object

data into a single frame of reference. Two popular concepts for sensor fusion are briefly discussed.

1.1.4.1 Early Fusion

In early sensor fusion, raw sensor data is usually transformed into a single reference frame and

then combined into a higher order state representation. Detection and classification algorithms are

then subsequently computed on the combined sensor data array.

1.1.4.2 Late Fusion

In late fusion methods, individual detection and classification algorithms are developed for

each sensing modality, where detections are later fused and or filtered into a single lower order

representation.

Although their use-cases are many, LiDARs are interesting to research from an object detection

and tracking perspective. They are higher in resolution compared to radio based ranging technolo-

gies (RADAR), and are direct sources for 3D measurements that is not possible with monocular

vision cameras.

1.2 Research Scope

Although LiDARs can be used for many other methods, this thesis investigates LiDAR as a

sensing technology for object detection and tracking, primarily in fixed infrastructure-like appli-

cations. A summary of the objectives and contributions for this work is presented in the following

subsection.
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1.2.1 Objectives and Contributions

The objectives of this work are mostly expository, where methods for LiDAR based object

detection and tracking are both investigated and implemented. Objectives include:

• A literature review of previous works for object detection and tracking using LiDAR sensors;

• A review of current generation dense point-cloud LiDAR sensors;

• Analysis and discussion over LiDAR resolution, frequency, and range as it relates to vehicle

detection;

• Implementation of object detection and tracking algorithms in both simulation and experi-

mentation;

• Defining object detection and tracking metrics to provide meaningful analysis;

• Comparing results obtained via simulation against experimentation to validate algorithm

performance.

1.3 Literature Review and Related Works

Significant interest of dense point-cloud LiDAR technology has produced a number of prior

works for both dynamic and stationary applications. Object detection and tracking remains an area

of active research, with recent interest in develop object detectors using neural networks. Literature

review for LiDAR based MODT has been divided into three categories: (1) Feature based detection

methods, (2) Learning based detection methods, and (3) Multi Object Tracking (MOT) algorithms.

1.3.1 Feature based detection methods

Feature or model based object detection methods utilize programmatic algorithms to remove

background points, and cluster points into representative object detections. Variations in these

methods are primarily in how background points are removed, how points are clustered, and how

meta descriptors such as the centroid location and velocity are estimated.
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Research in 2019 from Sualeh and Kim developed a LiDAR based MODT system primarily

for vehicle detection and tracking using multiple LiDARs equipped on a moving research vehicle.

Their methodology utilizes a ground plane removal technique using a grid based approach, and a

3D cell based method for pointcloud clustering [4]. A minimum area and L-shape fitting algorithm

is then used to estimate detection position and orientation. Similar approaches were taken by [7] for

LiDAR based vehicle detection, though a hierarchical 3D grid model is utilized for both clustering

and separation of foreground points. Convex hulls are then fitted and utilized for rectangle fitting

with orientation.

Moving to works in stationary applications, [8] details methods used for a road side LiDAR ap-

plication for vehicle tracking and speed estimation. Algorithms for background removal are much

simpler in stationary applications, as the background scene does not change little compared to the

dynamic case. Their methodology assumes an impenetrable environment, and therefore the fur-

thest recorded scanning distances over a configurable period of time are classified as background

points. For point cloud clustering, a three parameter Euclidean Clustering algorithm is used on the

3D point-cloud, where then clusters undergo binary classification as vehicle or non-vehicles. Their

methodology tests three different classifying methods, including Support Vector Machine (SVM)

based classifiers, Random Forest classifiers, and rule-base classifiers. Results showed that differ-

ences in the three classifiers performance were nearly indistinguishable, with the authors favoring

the rule-based classification method to avoid false-negative classifications. A 2019 dissertation

by J. Zhao [9] also investigated infrastructure LiDAR applications for both vehicle and pedestrian

detection and tracking. Similarly, their methodology for background filtering assumes a impene-

trable in environment, and generates a table of maximally recorded distances for each beam and

scan angle of the LiDAR. For clustering, they utilize a modified version of the Density Based Spa-

tial Clustering of Applications with Noise (DBSCAN) algorithm that has adaptive parameters for

the minimum number of cluster points and searching radiii. For classification between vehicle and

pedestrian, a backpropagation artificial neural network (BP-ANN) is used with three features: (1)

total number of cluster points, 2D distance from the sensor, and (3) the direction distribution of the
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cluster points.

1.3.2 Learning based detection methods

Learning based methods instead rely upon by training a neural network with a set of annotated

LiDAR data. Typically, data is not pre-processed like feature based methods to remove background

points, which make learning based methods more advantageous in this regard. However, learning

based methods add computational complexity, often requiring significant hardware investment to

run in real-time between sensor updates.

Typically, in object detection for RGB imagery, convolutional neural networks (CNNs) are

trained and then used for inference to produce object detections and classifications. Because CNN

architectures are developed for 2 dimensional images (typically with 3 color channels), they cannot

directly be used on 3D pointcloud data. However, a work-around presented in [10] instead projects

the 3 dimensional LiDAR data into a depth image such that the input to the CNN remains a 2D

image (with depth encoded as color). Subsequently, by using annotated LiDAR frames for vehicles

and other classes, the CNN can be trained to detect objects.

More generally, recent works have been investigating semantic segmentation of LiDAR data,

where every LiDAR point is classified. The number of publications detailing new research over

semantic LiDAR segmentation is increasing significantly, often presented by a moniker for the

network name - e.g. Rangenet++ [11], PointSeg [12], and Polarnet [13]. These works primarily

vary on the type of image projection model used (e.g. spherical, cylindrical, Bird’s Eye View and

others), as well as over the CNN architecture.

Although the proposed research scope does not include new research on Neural network object

detection based methods, they are powerful methods, and should also be considered as a valid

method for MODT.

1.3.3 Multi-Object Tracking methods

Multi-object tracking (MOT) refers to the process in which new object detections are reconciled

into tracked objects. MOT is usually not dependent on what method was utilized to obtain the

9



detection from a sensor, as it instead tracks heuristic features, commonly position and velocity.

Typically, multi-object tracking follows a conventional process where new detections are matched

or associated with existing tracks, and subsequently filtered to reduce noise. During times where

no detections are received, the filter mechanism can instead utilize a motion model for predicting

the the next states of the tracked object. Existing works for LiDAR based have primarily been

similar in methodology for the detection association and filtering processes; methods have utilized

the Join Probabilistic Data Association Filter (JPDAF) coupled with the popular Kalman Filter [4],

[8]. Other methodologies still utilize Kalman filters, but instead use distance based cost functions

with new detections and prior tracks to determine the associations (e.g. the Hungarian Munkres

Algorithm) [9], [14]. Another method for data association is through visual association rather than

cost based or probabilistic matching from position. [8] also included a tracking refinement module

where detections from LiDARs in subsequent frames were score matched by comparing 2D Bird’s

Eye View image projections to correlate the same object detections between frames. Similar visual

score matching concepts have also been used in computer vision based MOT, such as the SORT

method [15]. Visual matching methods for data association are advantageous in that a more direct

sensor reading is matched rather than computed heuristics such as centroid position, which can

often be noisy due to partial readings.
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2. THEORY AND ALGORITHM DESIGN

This chapter focuses on the theoretical aspects of LiDAR sensors and design of algorithms for

multi object detection and tracking in a stationary LiDAR application.

2.1 System Requirements

At a high-level, an object detection and tracking system can seek to accomplish the following:

1. Detect 2D or 3D positions and bounding boxes from objects of interest in LiDAR data;

2. Detect an object’s velocity;

3. Classify detections (e.g. noise, pedestrians, vehicles);

4. Filter, and track individual objects state-history;

5. Maintain creation and deletion of tracks as they enter and leave the scene.

More narrowly, a process can be tailored specifically for LiDAR sensors, as presented by Fig-

ure 2.1.

2.2 Fixed Pattern LiDAR Theory

In Section 1.1.1, the concept of a fixed-pattern scanning LiDAR was introduced. This section

intends to cover theoretical point-cloud distribution models for fixed-pattern LiDAR sensors. Fig-

ure 2.2 illustrates how points in the XY plane separate with the azimuth (horizontal) angle taken

Figure 2.1: Flow-Diagram of a geometric-feature based method of object detection and tracking
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against a flat wall at a distance Dp away with a 2D LiDAR scanner. As the the total azimuth angle

nϕ increases counter-clockwise from the x-axis, so does the horizontal spacingAn between points.

The relationship between An, ϕ, and Dp can be governed by the following trigonometric relation:

An = Dp(tannφ− tan(φ(n− 1)) (2.1)

where n ranges from 1 → π
φ

, with ϕ as the angular resolution of the LiDAR. Note that the

azimuth / horizontal resolution is also usually proportional to the angular rotation rate ω of the

LiDAR due to having a fixed total number of points scanned per second:

ϕ ∝ ω (2.2)

This follows that as the LiDAR’s rotation rate increases, the spacing distancesAn also subsequently

increase.

AN AN-1

Dp

φ φ

A1... An ...

x
y

Figure 2.2: Horizontal spacing in XY plane between points for a 2D scan of a flat wall with the
LiDAR sensor positioned Dp away. n ranges from N = 1 to N = π

ϕ
[1]. ©2021 IEEE

With a 3-dimensional LiDAR sensor, point-cloud spacing analysis can be conducted over mul-

tiple beams of the LiDAR in the XZ plane, as illustrated in Figure 2.3 for three channels of the

LiDAR. In this example, the LiDAR is positioned away from some region of interest both ver-

tically and horizontally at Dv, Dh, respectively. Directly underneath the LiDAR lies a conically

shaped blind-spot that varies primarily based on the mounting height and the sensor’s vertical field
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of view. The blind-spot can be characterized as a function of horizontal set-back distance to the

region of interest Dh, and Γ , the lower bound of the vertical field of view:

δmin = Dv −Dh tanΓ (2.3)

Point-cloud spacings (Bk) in the x direction at height δmin, and vertical spacings (Ck) in the z

Dv

Dh

BK

ẟmin

BK-1 Bk...

CK-1

Ck

Z

X

Figure 2.3: Horizontal/Vertical spacing between points in the ZX plane at δmin. The mounting
height Dv, and setback distance Dh from the road affect the spacing [1]. ©2021 IEEE

direction at set-back distance Dh are given by Equations (2.4) and (2.5), respectively. Although

there are several other spacing values that can be computed, spacing values Bk and Ck are useful

when conducting placement designs for a stationary LiDAR in infrastructure applications where

vehicle detection is a priority. Bk can be though of representing the spacing between points on a

vehicles roof, while Ck represents the vertical spacings along the side of a vehicle.

Ck = Dh(tan kγ − tan(γ(k − 1)) (2.4)

Bk =
Dv − δmin

tan kγ − tan(γ(k − 1)
(2.5)

Figures 2.4a and 2.4b illustrate variations on the the spacing value Bk, Ck, and Ak calculated
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(a) Velodyne VLP-16, Dv = 2.2m ω = 10Hz
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(b) OS1-32, Dv = 2.2m ω = 10Hz

Figure 2.4: Ak, Bk, Ck theoretical spacing results. ΣCk + δmin represents the distance from the
ground, ΣBk−Dh represents the horizontal spacing along the lanes, while ΣAk is the longitudinal
spacing along the lane [1]. ©2021 IEEE

with two different LiDAR sensors at a fixed vertical height Dv = 2.2m at different set-back dis-

tances Dh. The Velodyne VLP-16 LiDAR sensor is a 16-channel sensor with a ±15◦ FoV, while

the OS1-32 is a 32-beam LiDAR sensor and can be configured to scan below the horizon up to

−22.5◦. Note that only the channels that are lower than or equal to 0◦ are plotted for the VLP-16,

and the calculated values for Ak are assumed for a LiDAR channel that has a vertical scanning

angle of 0◦. Reviewing the top plots in Figure 2.4a shows that the spread of vertical spacings Ck

increase as the set-back distance Dh increases, which follows intuition. However, as the set-back

distance Dh increases, so does the spacing in the x direction, Bk, as seen by the middle plots. Also

revealed in the middle plots is that as the set-back distance increases, the minimum height δmin that

describes the conical blind spot decreases.

With the spacing values having interdependencies on Dv, Dh, and ω, there are several compet-

ing metrics. The following would like to be accomplished:

• Choose a vertical mounting height Dv such that closest objects in-front of the LiDAR do not
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completely occlude objects that may be behind;

• Choose an appropriate setback distance, such that the spread of vertical spacing’s Ck is

maximal;

• Choose an appropriate setback distance, such that the minimum height δmin is kept at or

below the mid-line of the smallest object to be detected;

• Choose an appropriate setback distance and rotation rate ω, such that the horizontal spacing

Ak is minimized.

With these criteria listed, and from comparing the plots in Figures 2.4a and 2.4b, it can be seen

that below-scanning LiDARs are more favorable due to the full number of beams being available

for scanning objects below it’s mounting height. LiDARs such as the VLP-16 and others that have

a equal vertical field of view about its mid-plane must be instead mounted at shorter heights to

utilize beams that scan above the mid-plane.

2.3 Background Filtering

Background filtering of the LiDAR point cloud aids in cluster extraction for vehicle detection.

Generally, background points are readings from fixed objects in the environment, such as roads,

buildings, and other infrastructure. Some non-stationary objects such as trees, bushes, and other

vegetation (due to wind) can also be considered as background points, though it is more challenging

to programmatically classify as such.

In feature based methods for vehicle detection, background points, such as readings from the

ground plane, are desirable to be filtered out to easily segment vehicle clusters. There have been

multiple methods developed to filter out background points in both dynamic and stationary appli-

cations of LiDAR, with the former having increased complexity.

2.3.1 Ground Plane Segmentation

Ground plane segmentation is the process in which ground readings are identified, usually

to be removed. A common methodology for ground plane segmentation is performed via plane
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regression, where normal coefficients for the plane equation, shown below in Equation (2.6), are

typically fitted via sample census methods [16].

ax+ by + cz + d = 0 (2.6)

Ground plane regression can be both performed in dynamic and stationary LiDAR applica-

tions; however, ground-plane removal does not remove other commonly found background points;

for example, shoulder railings, signage, buildings and other objects are all points that may be

desirable to remove prior to clustering. Hence, unless the detection area is constrained to a flat

road surface without any additional scenery, additional or other filtering methods are required to

remove background points that are not just on the ground plane. A side-by-side comparison of

a pointcloud from a stationary LiDAR sensor in simulation against the estimated foreground is

shown in Figure 2.5

2.3.2 Background Segmentation in Stationary Applications

In a moving LiDAR application, background segmentation must be performed dynamically

to distinguish moving objects from the background. However, with LiDAR measurements taken

within a fixed location, removing both infrastructure and ground points need not change in process

at each time step.

(a) Pointcloud with the background and
foreground

(b) Pointcloud with the estimated foreground

Figure 2.5: Example of background removal - points in a red translucent bounding box are true
foreground points
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(a) readings taken without any foreground objects
present

(b) readings taken with foreground object present

Figure 2.6: Two-frames of measurements taken during the max azimuth-channel distance method

2.3.3 Max Azimuth-Channel Distance Method

A common methodology in stationary LiDAR applications is the "Max-Distance" [8] or "Azimuth-

Channel-Distance" [9] method. Here azimuth refers the horizontal scanning angle of the LiDAR,

while channel refers to the beam number. In this procedure, the background is filtered based on

maximally recorded distances for each azimuth angle and channel of the LiDAR. Because objects

in the foreground will have less distance to the background, any points that are less than this max-

imal distance are kept. This process though assumes that the background is in-penetrable, and

though this is generally a safe assumption, objects such as trees, guard rails, and fences may not

meet this assumption due to small variations in the LiDAR’s scanning pattern and or wind.

Figure 2.6 illustrates a scenario of readings of two beams at t0,1. During the first frame t0

distances Pi,j, Pi,j+1 are stored in a I × J matrix (or lookup-table) where I represents the total

number of azimuth angles and J represents the total number of LiDAR channels. Subsequently at

the next time-step t1 beams Pi,j, Pi,j+1 are incident on the vehicle, and their distances will be lesser

than the values stored in the look-up table. Correspondingly, these points from these two beams

are kept as they are assumed to be foreground points.

Note that the following example only sampled for two frames; in an actual implementation,

one would sample for multiple frames to converge on an initial estimate for the max-distance

background matrix.
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With the max azimuth-channel method, the following assumptions are held:

1. The background is impenetrable;

2. LiDAR pointclouds are measured in a fixed-pattern;

3. A background point exists for every beam and azimuth angle of the LiDAR. Alternatively, if

no points are read for a beam and azimuth angle, then any returns from that beam-angle pair

can be assumed to be from the foreground;

4. Dynamic objects move sufficiently during the sampling period.

If these assumptions are violated, then the background filtering method may not work as intended.

2.3.4 Azimuth-Channel Occupancy Map

The next two methods for background removal can be thought of time-based cell occupancy

methods. In the Azimuth-channel occupancy map method, structures from fixed-pattern LiDARs

are leveraged to reduce the total cell count that would be required normally in a 3D representation.

In occupancy map concepts, pointcloud readings are binned into small cells, where multiple

readings in a cell will increase the occupancy count. Because background points are likely to

be occupied for a greater period of time than foreground points, a simple filtering method can

be devised to remove readings of points whose corresponding cells have higher occupancy rates

against the total number frames sampled.

In the azimuth-channel occupancy map, cells are split by azimuth angle, radius, and channel of

the LiDAR. An illustration of measurements taken during three frames is shown in Figure 2.7. The

cells containing blue and red points in Figure 2.7 have been occupied for a greater time compared

to cells with yellow points; in this example one could filter set an occupancy threshold to 66% to

only keep the yellow cells.

2.3.5 3D Voxel Occupancy Map

The 3D Voxel occupancy map is similar to the prior method, except that no assumption is made

for the LiDAR’s scanning pattern. Instead, the world is divided into three-dimensional cells or
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Figure 2.7: Azimuth Channel Occupancy map taken for three measurement frames on two channels
of the LiDAR j = 0, 1

"Voxels". XYZ pointcloud readings are then binned into cells, where similar occupancy thresholds

can be used to determine background points. For example, Figure 2.8 illustrates two-slices along

the z axis of the voxel occupancy map taken during three measurement frames with a LiDAR.

Cells that occupy a large amount of time (e.g. cells with blue and red points) can be filtered by

again setting an occupancy threshold to 66%.

Due to small cell-sizes, occupancy-map methods require significantly more computation time

and memory use. In practice, programmers optimize these methods by choosing hierarchical data

structures such as KD-Trees [17] or OCTREEs [18] which can more efficiently represent sparse

3D Data.

The background method selected for areas without large amounts of vegetation is the Max

Azimuth Channel Distance method due to its computationally low cost. If there are large amounts

of vegetation in the scene, then either the Azimuth Channel 3D voxel occupancy map methods can

be used due having more tolerances the noise in vegetation.

2.4 3D to 2D PointCloud Projections

With the estimated background removed, the next step would be to perform clustering over

foreground points to identify objects. However, prior to clustering, the dimensionality of the point-

cloud data can be reduced by creating 2D projection views which may be more intuitive to cluster
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Figure 2.8: 3D Voxel Occupancy map taken for three measurement frames on two slices of the
occupancy map z = 0, 0.01

on.

2.4.1 Side View Projections

Side-view projections are taken in the Y Z plane, as show in Figure 2.9. In 360◦ LiDARs,

a side-view projection can also be panoramic projections. Side projections can be problematic

though as objects may overlap with one another – for example two vehicles could overlap if they

are in adjacent lanes.

2.4.2 Bird’s Eye View Projection

A top-down (XY ), or Bird’s Eye View (BeV) projection can be though of looking at the point-

cloud from the perspective of a bird flying overhead, as illustrated by Figure 2.9. Unlike the

side-view projection, it is generally safe to assume that moving objects on the ground should not

overlap with one-another traveling in the (XY ) plane.

2.4.3 Image Conversions

In subsequent sections, standard computer vision image operations will be utilized in the clus-

tering and detection processes. To utilize standard image operations found in common program-

ming libraries, the pointcloud projection can be converted into a bitmap image that is scaled where

each pixel correlates to 2D XY position. Equation (2.7) details a combined projection and image
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Figure 2.9: LiDAR Projection views in the XY (upper figure) and YZ (lower figure) planes

translation process from a 3D pointcloud:

I(px, py)m×n ∈ {0, 1}

where:

px = int16((x+ xmin) ∗ scale+ 0.5)

py = int16((y + ymin) ∗ scale+ 0.5)

(2.7)

Hence, even with multiple point pairs (x, y) at different heights z, the bitmap will still remain 1.

It is recommended that a limit xmin ≤ x ≤ xmax , ymin ≤ y ≤ ymax be applied to bound and

preallocate the image dimensions m×n. The image scale can be empirically chosen; through trial

and error, it was found that a scale of 8 to 10 worked best for a 15 × 60 m area [1]. The scaling

factor affects the precision of the data - a scale factor of 10 pixels per meter will have a precision

of ±10cm [1].
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2.5 Clustering

Once the background is removed, and a BeV projection is performed, the next step in the

object detection process is to identify clusters of points such as ones in seen from LiDAR readings

on vehicles in Figure 2.9. The section continues with a survey with clustering methods commonly

used, and criteria developed to select a clustering algorithm.

2.5.1 Survey of Clustering Algorithms

A quick survey of clustering algorithms taken show many different methods, as seen from

clustering algorithms available in the popular python scikit-learn package[2] shown in Figure 2.10.

To aid in selection, a list of criteria is developed for selection:

• Number of clusters need not be known prior to clustering;

• Square / rectangular densities of points are classified as a single cluster, rather than multiple;

• Every point need not be part of a cluster, and instead could be noise in the data;

• Execution time is < 100ms. This time is selected for a LiDAR update rate of 10 Hz.

Table 2.1 summarizes the criteria against the clustering methods shown in Figure 2.10. As can

be seen, the only method (among the surveyed) that meets all of the listed criteria is the Density

Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm [19].

2.5.2 DBSCAN

DBSCAN has been a popular method for clustering LiDAR data [20] [9]. The clustering algo-

rithm contains two tunable parameters ε and ηmin which describes the maximum spacing between

points in a cluster, and minimum points for a cluster to be formed, respectively. Figure 2.11 illus-

trates an example of data that is clustered and the different types of points. In the figure, points that

are colored red are core points, which have more than one connected node by minimum distance

ε. Points that are colored yellow are still cluster points, but are only connected by one node point

up to ε distance away. Lastly, points that are not within ε distance away from any core points, and
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Table 2.1: Comparison of clustering methods available from scikit-learn [2]

Clustering
Method

# of
clusters not
known

Square
densities
clustered as
as one cluster

Execution time
<100 ms

KMeans 7 7 3

Affinity
Propagation 3 7 7

MeanShift 3 3 7

Spectral
Clustering 3 7 7

Ward 3 7 7

Agglomerative
Clustering 3 3 7

DBSCAN 3 3 3

OPTICS 3 3 7

BIRCH 3 7 3

Gaussian
Mixture 3 7 3

Figure 2.10: Survey of Clustering Methods Available from the Python library scikit-learn [2]
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Figure 2.11: Three types of points in the DBSCAN algorithm.[3]

cannot be formed a new cluster with at least ηmin points, are classified as noise points (colored blue

in the figure). DBSCAN’s main advantage is that points that can classified as noise points, which

significantly helps prevent unremoved background points from being a part of a cluster. However,

the LiDAR’s characteristic of returning sparser pointclouds as the radial distances increases makes

it difficult to choose a single ε value. Zhao et. al. proposed a variable ε based on the radial distance

from the LiDAR [20]. For instance, pointcloud readings such as one shown in Figure 2.12 may

have a portion of the object truncated during clustering due to the ε and ηmin settings. Although the

ε parameter can be tuned to achieve better clustering in Figure 2.12, through experimentation in

previous work [1], it was found that a image dilation pre-operation on the image before clustering

yielded better overall clustering results.

2.5.3 Dilation Convolution Operations

A dilation convolution is a standard image morphological transformation technique that ex-

pands the outline of pixels, and tends to fill gaps in spaces. Figure 2.13a-b illustrates the change in

pixel density after a single 3 × 3 dilation kernel of ones. Although the dilation kernel size, value,

and number of operations can vary, [1] found that a single operation of a 3 × 3 dilation kernel of

ones was sufficient.

When using a dilated image for clustering, the bounding boxes for clusters are slightly larger
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Figure 2.12: DSBSCAN Clustering on a undilated BeV LiDAR image with two vehicles. The left
cluster is undesirable due to the sparsity of the data and under-clustering.

than the true bounding box due to the dilation operation expanding the outline. Hence, it is desir-

able to then to search on the original undilated image with the dilated bounding boxes to obtain

the slightly smaller true bounding boxes. Visually, this process can be seen in Figure 2.13, or in

pseudocode in Algorithm 1.

Algorithm 1: Vehicle Detection from LiDAR BeV bitmap [1]. ©2021 IEEE.
Input: Dilation Kernel wk, convolution ops ηd
Data: BeV LIDAR bitmap f(x, y)m×n ∈ {0, 1}
Output: Detections: [Pos. cx, cy, Dimensions w, h]
P ∈ Rmn×2 ← ImgToPts(f(x, y))
for i← 1 to ηd do

f(x, y)← wk ∗ f(x, y);
end
Pg ∈ Rmn×2 ← ImgToPts(f(x, y))
bboxes, clusters← DBSCAN(Pg , ε , nmin)
for i← 1 to len(clusters) do

if Classify(clusters[i]) is vehicle then
// use undilated points
bboxes[i]← RefineBbox(bboxes[i], P)

else
bboxes[i].del()

end
end
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a)

b)

c)

d)

I II

Figure 2.13: Vehicle Detection Process: (a) Bird’s Eye View LiDAR bitmap, (b) Dilated image
with DBSCAN generated bounding boxes, (c) bounding box search on original data, and (d) ori-
ented bounding boxes as the final output [1]. ©2021 IEEE

2.6 Classification

The methodology for classification in this thesis is not extensively studied, in part due to the

large amount of annotation efforts required. Instead, rule-based methods similar to [8] are em-

ployed. Detections are binary classified into vehicle and non-vehicle, based upon the area of the

detection.

2.7 Orientation Detection

After classification occurs between vehicle and non-vehicle, an oriented bounding-box is more

desirable for vehicles as they often change in orientation. To develop an estimation on the orienta-

tion of a vehicle, concepts from [14] for orientation detection are applied. In this work’s approach,

a weighted cost-function is developed based on candidate orientations for the bounding box with

two criteria. Subsequently, the minimal cost orientation is then selected.
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Figure 2.14: Orientation selection process based on candidate bounding boxes: (a) Convex hull
creation with vertex points hi, (b) candidate bounding boxes generated using angles between hi,
and (c) final selection based on cost-minimization of area and edge to vertex distances.

2.7.1 Orientation Cost Function Generation

The selected criteria for orientation cost fitting include:

1. The oriented bounding box area - the smallest area bounding box may be most in-line with

the edges of the vehicle;

2. Distances from the vertices of the ConvexHull that forms the cluster to the edges of the

oriented bounding box - vertices of the polygon may be incident on the oriented bounding

box.

Equal weighting is used between the two criteria. The process for orientation can be seen

visually through Figure 2.14 or algorithmically in Algorithm 2.

2.8 Object Tracking

Object tracking involves the process of spawning new tracks, associating detections with exist-

ing tracks, reconciling previous track history with new detections, and destroying old or lost tracks.

The process flow diagram where detections are stored into tracks is illustrated by Figure 2.16.
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Algorithm 2: Refine Bbox Algorithm
Input: Cluster of Points Pc ∈ Rn×2, bbox ∈ R4×2

Output: Oriented bounding box: [cx, cy, w, h, θ]
Cvtcs ∈ Rv×2 ← ConvexHull(Pc)
θs ← Unique(HullAngles(C))
for si ← 1 to len(s) do

RBbox ∈ R4×2← RotateBBox(θsi, bbox) cost(si)← w1 Area(RBbox)
cost(si) += w2Sum(DistToEdges(RBbox, Cvtcs))

end
ret← θs( argmin(cost) )

Figure 2.15: Example of detections in simulation with oriented bounding boxes

Figure 2.16: Object tracking flow diagram

Figure 2.17: Pair-wise relations between new detections and existing tracks shown by arrows in a
detection area
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2.8.1 Track Association

Because objects may move in many different motions, new object detections need to be asso-

ciated with current tracks in the system to maintain a state-history for an object. Two concepts for

data association between detections and tracks are presented, with the first method implemented

for this work.

2.8.1.1 Single Assignment Methods

In single assignment methods, each detection is hypothesized to correlate up to one track at a

maximum. Note that this does not mean that every detection must correlate to a track, as detections

may also form new tracks instead. Under this hypothesis, it is then desirable to: (1) determine

which detections are to be correlated with existing tracks, (2) which detections are of objects not

yet tracked in the tracking module, and (3) which tracks that are missing a detection.

To accomplish this, a pair-wise cost function is usually formed between all detections and

tracks, as illustrated in Figure 2.17. The pair-wise cost can be based on multiple metrics, including:

• Euclidean distance between the track and detection;

• Feature similarity (e.g. image similarity);

• Velocity similarity;

• Probability based on location (e.g. entrances and exits from the detection area).

In this work, Euclidean distance is selected for generating the pair-wise cost function. Observ-

ing the cost-function in the case where there are equivalent detections and tracks, a matrix relating

each cost for assigning a detection to a track can be formed – such as one seen in Figure 2.18a. As

previously noted, up to one detection can correspond to a track; therefore, the desire is to minimize

the cost matrix in Figure 2.18a such that the total cost of assigning each detection to a track is

minimized. To achieve this, the improved Hungarian algorithm [21] is utilized to optimally pair

tracks with new detections. Note that in Figure 2.18a, choosing to pair Db with T1 has a lower cost

than with pairing of Da; however, the total cost of the system is still minimized with the selection.
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In cases where there are less detections than tracks, such as Figure 2.18b, at least one track

will be missing a detection. In this case, a tracking filter (discussed in the subsequent sections) is

utilized to predict motion of the object at the for the next timestep. Inversely, there may be more

detections than tracks such as the case in Figure 2.18c. Under these conditions, at least one new

track must be formed and is sent to the lifecycle observer (also discussed in subsequent sections).

Lastly, a special case arises when there are equivalent detections and tracks, but the cost for

associating some detection(s) to track(s) may be above a threshold limit. The scenario in which this

may happen is when a object detection from a yet-to-be tracked object is received simultaneously

while a detection for a currently tracked object is missing. It is then not desirable to associate

the new object with an old object, and thus this track and detection must be sent to prediction,

and the lifycycle observer, respectively. This special case is illustrated by Figure 2.18d, while an

algorithmic description for entire the detection to track single-assignment association process is

shown in Algorithm 3.

Algorithm 3: Tracking and Filtering Algorithm
Input: Currently Tracked Objects Tobjs, new Detections Dobjs

Output: Updated Tracks T̂objs, Unssigned Tracks UTobjs, Unassigned Detections UDobjs

UTobjs ← Tobjs

UDobjs ← Dobjs

Ccost ← EuclideanCostCalculator(Tobj, Dobjs)
Ccost ← DropRowColumnsMaxCost(Ccost,MaxCost) /* removes rows and

columns where every element is > max-cost */
Dids, Tids ← LinearSumAssignment(Ccost)/* indices of Linear Sum

Assignment Optimization */
for Did, Tid ∈ Dids, Tids // every detection corresponds to a track
do
T̂ (Tid)← FilterUpdate(D(Did))
del(UTobjs(Tid)) // Delete updated track from unassigned list
del(Dobjs(Did)) // Delete used detection from unassigned list

end
ret← T̂objs, UTobjs, UDobjs
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(a) Equivalent number of detections and tracks.
(b) Number of detections is < than the number of
tracks

(c) Number of tracks are is < than the number of
detections

(d) Equivalent number of detections and tracks, but
the cost between T3−D3 is too high

Figure 2.18: Four cases of detection to track assignments. Values in the table represent the cost to
association each detection to a track. Costs that are highlighted yellow show are for detection-track
pairs that minimize the total assignment cost.
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2.8.1.2 Multiple Assignment Methods

Multiple assignment methods, such as the PDAF or JPDAF algorithms [22], do not constrain

only matching up to one detection to a track. Instead, it may be hypothesized that multiple detec-

tions could correspond to the same track, and subsequently may use multiple detections to update

the history of the track. Although initially non-intuitive, multiple assignment methods are often

more robust in handling cases where multiple partial detections are received for the same object.

Traditionally, these methods improved tracking methods where the sensing technology contained

multiple detections for an object (e.g. RADAR or SONAR). However, the methodology in this

work does not investigate multiple assignment methods, as the clustering and detection process for

LiDAR readings are less at risk for split readings.

2.8.2 Filtering and Motion Models

Detection Filtering in this section refers to the process in which associated measurements are

reconciled with historic track data. Because measurements are often noisy, it would be undesirable

to fully accept new sensor readings, especially if there are priors. Instead, a model of the predicted

motion behaviour can be used to reduce measurement noise. Further, in timesteps where there are

no object measurements (e.g. due to occlusion), the object motion is still able to be predicted.

2.8.2.1 State Space Representations

State space equations of systems describe the evolution of certain properties in a model either

from some input and or time. For instance, and object in a 2D world may have the following

state-space:

X =



x

y

vx

vy


(2.8)
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where x and y are the 2D coordinate position of the object, and vx / vy are the speed of that

object in an inertial frame. Modeling how dynamic systems evolve is an historic area of research

study. More complex system models require advanced computation, and accurate information or

parameters of the system. In general, a linear dynamic system’s continuous time evolution with an

input u(t) is governed by Equation (2.9):

X(t+ 1) = AX(t) +BU(t) (2.9)

Where A describes the state transition matrix from the previous state to the next state, and B re-

lates the control-input’s state (U) to the system state (X). Continuous linear time systems require

a infinitesimally sampling time; however, often measurements are taken in much larger intervals.

Instead, the continuous linear system is discretized in timesteps based on the sensor update fre-

quency, as show in Equation (2.11):

X(k + 1) = AX(k) +BU(k) (2.10)

If the inputs to a system are not known, models can still be developed; however, the control

input U(t) is instead set to zero:

X(k + 1) = AX(k) (2.11)

Without the input known, the only missing information for developing a model is the A matrix.

The next few sections will describe system models that can be used for a moving object when the

control input is not known.

2.8.2.2 Constant Velocity Models

The constant velocity model for an object in an inertial frame can be expressed as a set of linear

equations with a sampling time dt:
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xk+1 = xk + vxdt (2.12)

yk+1 = yk + vydt (2.13)

vx,k+1 = vx,k (2.14)

vy,k+1 = vy,k (2.15)

Or in a state-space matrix form:

Xk+1 =



1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1





x

y

vx

vy


k

(2.16)

As the name implies, constant velocity models assume that an object is traveling at a constant

velocity. If objects rapidly change in velocity, this modeling decision may no longer hold.

2.8.2.3 Constant Acceleration Models

The constant acceleration model instead assumes that objects are traveling at a fixed accelera-

tion. Velocity can change through this model - though only at fixed rates. Similarly, the constant

acceleration model for an object in an inertial frame can be expressed as a set of linear equations:
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xk+1 = xk + vxdt+
1

2
ax,kdt

2 (2.17)

yk+1 = yk + vydt+
1

2
ay,kdt

2 (2.18)

vx,k+1 = vx,k + ax,kdt (2.19)

vy,k+1 = vy,k + ay,kdt (2.20)

ax,k+1 = ax,k (2.21)

ay,k+1 = ay,k (2.22)

Or in a state-space matrix form:

Xk+1 =



1 0 dt 0 0.5dt2 0

0 1 0 dt 0 0.5dt2

0 0 1 0 dt 0

0 0 0 1 0 dt

0 0 0 0 1 0

0 0 0 0 0 1





x

y

vx

vy

ax

ay


k

(2.23)

Both constant velocity and constant acceleration models were tested in simulation; the constant

acceleration model improve simulations where vehicles had more changes in velocity.

2.8.2.4 Kalman Filters

Kalman filters [23] are useful filtering algorithms that can combine a linear state-space model

(which may have uncertainty) of a system with measurements taken (which may be noisy) to form

a filtered output of an objects state. A large amount of existing literature can be found on theory for

Kalman filters, and instead this section will describe only the measurement models and estimation

methods used for process noise and measurement uncertainty.

The measurement matrix H relates a measurement to the corresponding state-space of the
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system. E.g., X̂ = Hz where z are the raw measurements, and x̂ is the measured state. Often mea-

surements correspond non-linearly with the system’s state, however, detections can be represented

by 2D centroid positions (x, y) for which the measurement corresponds exactly to the state-space

models developed.

For the 4-state constant velocity the model, the measurement matrix H is given by:

Hcv =

1 0 0 0

0 1 0 0

 (2.24)

While in the 6-state constant acceleration model, the measurement matrix H is given by:

Hca =

1 0 0 0 0

0 1 0 0 0

 (2.25)

The Kalman filter also utilizes an estimated noise matrix for sensor readings. Values were

selected based on position errors collected in simulation for raw detection values:

R =

0.3 0

0 0.3

 (2.26)

Also exists is the process noise covariance matrix Q, which describes the overall noise and

covariances in the system model. A common method for selecting the process noise is through

trial-and-error. Another method for choosing a process noise matrix can be developed based on

the sensor update rate [24]:

Q = σ



dt6

36
dt5

12
dt4

6
dt3

6

dt5

12
dt4

4
dt3

2
dt2

2

dt4

6
dt3

2
dt2 dt

dt3

6
dt2

2
dt 1


(2.27)

where σ is a tunable variance parameter, currently set to 0.1.
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2.9 Track Lifecycle Management

Track lifeycle management refers to the process of creating new tracks from detections, and

deleting old tracks. A track usually contains additional information besides the state-space model.

For instance, a track object could contain the following:

• State of the object’s model;

• Prior states of the object’s model;

• Bounding-box history of the object’s model;

• Total count of times the object received a detection;

• Total count of times the object did not receive a detection;

• Consecutive count of times the object did not receive a detection.

With additional information for tracks in the tracking module, creation and deletion criteria

can be developed. For instance, typically a track is deleted if the total number of times it has be

consecutively invisible is above a threshold. Likewise, a track could publish a confidence value

based on the number of times the object has received a detection.

In the implementation of the life-cycle module, tracks are deleted if they have been consecu-

tively invisible for more than 5 frames, or if they are approaching the edge of the detection area.

2.10 Algorithm Implementation

All algorithms are implemented in the Python programming language for use in simulation 1.

For experimentation, a separate code base was developed in prior work [1] that used a mixture of

C++ and Python.

1Available through GitHub https://github.com/amirx96/stationary-lidar-object-tracking
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3. EXPERIMENT METHODOLOGY AND METRICS EVALUATED

This chapter covers experimental designs, both in simulation and experimentation, as well as

the metrics evaluated for object detection and tracking.

3.1 Experimentation

For experimentation, two previous datasets from [1] are utilized for primarily for vehicle de-

tection. These datasets, which are also publicly available for other researchers1, were collected

with a VLP-16 sensor, mounted at 2.2 meters high on a portable tripod in two different roads. The

first dataset, named TAMU_01, was collected on a 6 lane urban road segment, though the primary

region of interests covers one travel direction (three lanes). The second dataset, named TAMU_02,

was collected on a 4-lane highway speed segment, with again the primary region of interest cov-

ering one travel direction (two lanes). Quantitative analysis of TAMU_01 and TAMU_02 is made

available through hand annotated LiDAR data of several hundred frames with vehicles in-scene.

An additional and new dataset is also collected in this thesis, named TAMU_03, with an em-

phasis for pedestrian detection, though only qualitative analysis is performed due to the annotation

efforts required. In this dataset, a VLP-32c sensor is instead utilized for data-collection (shown

in Figure 3.1), as pedestrian targets required a higher resolution LiDAR. LiDAR data from pedes-

trians was collected on Ireland street at Texas A&M University in College Station Texas during a

class change when a large volume of foot-traffic was present.

3.2 Simulation

CARLA [25] is a freely available open-source simulator targeted towards researchers interested

in a simulation tool for autonomous driving vehicle applications. Many of the traffic generation

functionalities that is used for autonomous vehicle development can also be used for simulating

traffic vehicles with a fixed LiDAR sensor. With having the ability to query each traffic vehicle

precise location, velocity, and dimensions, the simulator provides for an easier method of ground-

1Available online through https://unmannedlab.github.io/research/Roadside-LiDAR
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Figure 3.1: Experimental Setup for TAMU_03. A VLP-32c is mounted on a heavy-duty tripod,
and connected to a 12v battery source. Ethernet is connected from the LiDAR to a laptop for data
collection
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Figure 3.2: CARLA Simulator Framework Design

truthing and analysis on tracking performance compared to experimentation. The process flow

for generating simulation data can be seen in Figure 3.2. The popular Robotic Operating System

(ROS) is utilized for saving "bagfiles" of datasets, which can later be used for offline analysis.

3.2.1 Experimental Design

At the time of writing, the latest version (0.9.12) of CARLA is selected for use on Ubuntu 20.04

with a Nvidia GTX 1080 Ti. Two simulation datasets are developed with the CARLA simulator.

The first simulation scenario (light traffic) covers a 3-lane highway segment under light traffic,

with a curved road portion in the beginning. The second simulation dataset (stop-and-go) covers

the same highway segment except with stop-and-go traffic instead.

For the simulation procedure, a traffic generation script procedurally spawns CARLA vehicles

in three lanes just outside the LiDAR’s FoV. Traffic then moves towards the LiDAR, as illustrated in

Figure 3.3. Once a vehicle has moved well past the end of the LiDAR’s detection range, the vehicle

is deleted and subsequently a new vehicle is spawned at the original spawn point to maintain a

constant volume of traffic. The amount of traffic can be controlled by changing the number of
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Figure 3.3: Example of traffic generated for a stop-and-got dataset. The LiDAR’s location in this
simulation is shown by a red square.

vehicles that spawn initially. For the stop-and-go traffic scenario, vehicles momentarily stop at a

particular location causing traffic to back up (illustrated later in Figure 4.2).

3.3 Evaluation Methods

In order to quantitatively evaluate object detection and tracking methods, the analysis criteria

must be defined. This analysis considers detection performance (false-positives, false-negatives),

and tracking performance (using position, velocity, and IOU error). In this analysis, some metrics

depend on the experimentation type, and ground-truth source. In simulation, we can easily extract

ground truth data which is the number of moving objects in a scene, and each object’s respective

position, velocity, and heading. Compared to simulation, capturing ground-truth sources for ex-

perimentation have added difficulty. Most quantitative detection analysis resolve precision, recall,

and mean intersection over union (mIOU) based on labeled sensor data. However, by utilizing the

sensor data for labels, this may produce confounding results as the sensor data may not reflect the

actual ground truth. For instance, the sensor Field of View (FoV) and occlusions from objects may

not allow for any sensor readings on objects, and thus the evaluation based on labeled data cannot
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capture this.

Instead, more robust quantitative evaluations utilize labeled data from other sensor sources

with a reliable FoV, such as one presented in [26] where a helicopter captured aerial photography

as ground-truth for detection, position, and velocity performance. Another robust method is one

where a test vehicle equipped Real Time Kinematic (RTK) GPS, which allows for centimeter level

accuracy, is used to evaluate position and velocity estimate from the LiDAR detection system.

3.3.1 Precision

Precision represents the false-positive rate and is the fraction of true-positives over the total

number of detections. The calculation for vehicle precision in an individual single frame can be

given by equation below:

Pvehicles =
TPvehicles

TPvehicles + FPvehicles
(3.1)

3.3.2 Recall

Recall represents the false-negative rate and is the fraction of correct vehicle detections over

the true number of vehicles and any false negatives in a frame. The calculation for vehicle recall

in an individual single frame can be given by equation below.

Rvehicles =
TPvehicles

TPvehicles + FNvehicles
(3.2)

3.3.3 Velocity Error

Velocity error is the hypothesized vehicle velocity over the ground-truth velocity. This metric

is directly available for comparison in simulation, and is not available in experimentation. Velocity

error can by analyzed component-wise 2-dimensionally, or as a magnitude:
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ve|x(t) = v̄x(t)− vx(t) (3.3)

ve|y(t) = v̄y(t)− vy(t) (3.4)

Ve(t) =
√
ve|x(t)2 + ve|y(t)2 (3.5)

3.3.4 Position Error

Position error represents the distance error between the hypothesized area centroid and the true

labeled area centroid of the object. In the case of simulation experimentation, position error is

between the hypothesized centroid position and true centroid position of the object. Likewise, po-

sition error can be defined both in terms of components and magnitude, as shown in Equations (3.6)

to (3.8).

δx(t) = x̄(t)− x(t) (3.6)

δy(t) = ȳ(t)− y(t) (3.7)

∆(t) =
√
δx(t)2 + δx(t)2 (3.8)

3.3.5 Intersection Over Union

Intersection over union represents the area intersection between a hypothesized bounding box,

and the ground-truth bounding box for a detection, divided by the area union of the two bound-

ing boxes. Mathematically, it is represented by Equation (3.9) below. A visual example is also

provided in Figure 3.4.

IOU(H,G) =
H

⋂
G

H
⋃
G

(3.9)
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Figure 3.4: Example calculation of Area Intersection over Union: The IOU between the hypothesis
and ground-truth in this example is 79.8%
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4. RESULTS

The following chapter will cover results obtained in simulation and experimentation, according

to the methodology developed in Section 3.3.

4.1 Experimentation

In experimentation, tracking results are derived from datasets previously published [1]. Pre-

cision, recall, and mean Intersection over Union are calculated against annotated LiDAR data.

Table 4.1 details the experimental results for TAMU_01, and TAMU_02. For the pedestrian detec-

tion dataset (TAMU_03), qualitative analysis is performed in section 4.3.6.

4.2 Simulation

In simulation, precision, recall, velocity error, and position error are calculated against ground-

truth data from the simulator. Results for two scenarios, "light traffic", and "stop-and-go traffic"

are presented in Tables 4.2 and 4.3.

4.3 Discussion of Results

The next few subsections discuss performance of the multi-object detection and tracking sys-

tem developed, and include analysis on impacts to performance. Similar precision and recall de-

tection performances were obtained in both simulation and experimentation, suggesting that the

simulations developed can compare to experimentation.

Table 4.1: Experimentation results for vehicle tracking derived from datasets in [1] ©2021 IEEE

Dataset
(exp) Precision Recall mIOU # of Vehicles # of frames

TAMU_01 99.5 % 93.9 % 0.59 41 546
TAMU_02 100 % 96.3 0.67 13 549
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Table 4.2: Simulation results for vehicle tracking derived from the CARLA simulation tool

Dataset
(simulation)

Total Expected
Measurements

Total Taken
Measurements

False
Positives

False
Negatives

light_traffic 5090 4,856 109 161
stop_and_go 30085 28,850 383 1618

Table 4.3: Summarized Simulation Results

Dataset
(simulation) Precision Recall mIOU # of Vehicles Detected

vs. Actual
Pos Error
(avg)[m]

Vel Error
(avg)[m/s]

light_traffic 97.6 % 94.6 % 0.69 37 / 37 0.39 6.9
stop_and_go 98.7% 94.6% 0.70 69 / 66 0.32 1.4

4.3.1 Missed Vehicle Detections

In both experimentation and simulation, decent recall rates (> 94%) were achieved, though not

as high as precision. This follows intuition, as the system was more likely to miss detections rather

than falsely identify detections that were not actually present. Analysis on generated video outputs

showed a variety of reasons for missed detections. In simulation, detections were more likely

to be missed due to more accurate ground-truthing methods compared to the annotation method

used in experimentation. Missed detections in simulation could occur from sensor occlusion (e.g.

the LiDAR’s view was obstructed by a closer vehicle). In both simulation and experimentation,

detections were also missed due to sparser readings for some vehicles causing the classification

algorithm to not meet the threshold for a detection. In experimentation, it was also observed that

darker colored vehicles often produced sparser readings due to low reflectiveness of the target.

4.3.2 Extraneous Vehicle Detections

In both experimentation and simulation high precision rates (> 97%) were obtained, supporting

that the developed system overall had a very low rate of false-positive detections. In the case of a

false-positive, this did not always mean that a new and extraneous tracking objects were created.
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Rather, individual frames may have contained an existing track that was not actually in-scene.

This phenomenon primarily occurred during a track’s exit of the detection area, where the Kalman

Filter held the tracked object still in-scene occasionally until the max consecutive invisible count

was reached.

In the stop-and-go scenario in simulation, an inverse effect was also observed. Vehicles exiting

the detection area had low velocities, and in some instances tracks were too preemptively deleted

due to their predicted centroid precision exiting the detection bounds. Because of their preemptive

deletion, this led to new tracks being created for the same previously deleted track. In the stop-

and-go scenario, this happened 3 times where 69 vehicles were estimated to have traveled through

the highway, when only 66 had actually passed through.

Occasionally in experimentation, it was initially observed that noise from the unfiltered back-

ground could actually be large enough to occasionally form detections. These detections were later

filtered out by implementing a rule-base classification system that removed smaller area detections.

4.3.3 Errors in Orientation

Orientation errors in the predicted bounding boxes were quite common in both simulation

and experimentation, and is revealed in part by the mIOU metric (e.g. see Figure 3.4 for the

IOU score with an orientation error). Figure 4.1 below illustrates an example of an erroneous

orientation detection. Because of the cost minimization function, some orientations may have a

minimal cost but still may not represent the desired bounding box. Vehicle 21 in Figure 4.1 had an

incorrect orientation due to the vertices of the convex hull having closer distances to the edges of

the misoriented bounding box.

4.3.4 Errors in centroid position

Position errors of up to 0.4m were observed in simulation. Often, centroid position errors

could be linked to receiving partial detections on the object, causing the detected bounding box

to be smaller and thus changing the calculated centroid. An example of this error can be seen

in Figure 4.2 where Vehicle 6 changes in dimension due to having received a partial detection in
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Figure 4.1: Example of a erroneous orientation for vehicle 21.

subsequent frames.

Comparing the light traffic and stop-and-go scenarios, the velocity of vehicles also appeared

to had some effect on position errors. It can be hypothesized that faster moving objects may have

greater margins for position error due to a fixed sampling and filtering time.

4.3.5 Errors in velocity

Errors in velocity were the largest relative to the other metrics observed. The cause for this

can be associated to high position errors relative to the sampling time. Because the Kalman filter

is incrementally updating estimates for the velocity, undesirable changes in centroid position are

divided by a small sampling time leading to larger velocity errors. Interestingly, the stop-and-go

scenario had a significantly lower velocity error. This may be attributed to instead the smaller

average velocities for vehicles in this scenario.

4.3.6 Discussion on TAMU_03

Although no quantitative metrics were observed for TAMU_03, the detection performance can

be qualitatively observed through Figure 4.3. It was observed that pedestrians were often over-

clustered as one when the separation distances between them were small. This issue can be caused

by: (1) improper tuning of the two parameters in DBSCAN, and or (2) the dilation operation

conglomerating pedestrians from a top-down view into single objects.
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Figure 4.2: Visualization of the tracking algorithm at two different instances in time. Note the
change vehicle 6’s bounding box between timesteps.
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Figure 4.3: Pedestrian detection in TAMU_03. The foreground pointcloud is shown in an isometric
view with overlayed 2D Polygons of detected pedestrians
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5. SUMMARY AND CONCLUSIONS

The following chapter summarizes the methods used for a LiDAR based object detection and

tracking system, results obtained from simulation and experimentation, and presents conclusions

from this thesis. Lastly, future work is presented to aid any future researchers interested on the

limitations and future areas of study for this work.

5.1 Methods Summary

For object detection from LiDAR data, a geometric feature-based approach was taken. This

approach encompassed several stages, including (1) background estimation and removal, (2) point-

cloud projection, (3) clustering, classification, and detection, and (4) tracking and filtering.

For background estimation and removal, three methods were detailed and comparisons were

provided. Subsequently after removing the background, point-cloud projections in a Bird’s Eye

View were used to efficiently cluster the LiDAR data. As a pre-processing step to clustering,

the projected LiDAR data was converted into a bitmap image, and a dilation kernel convolution

was used to fill in the sparsity of the LiDAR returns. Next, the DBSCAN method was selected

among the surveyed clustering methods due to its favorable execution time, and ability to handle

noise points. For classification, a rule-based method for distinguishing between vehicle and non-

vehicle was developed based on the area of the detection’s bounding box. Detection included

orientation refinement processes with a cost minimization function on proposed orientations for

vehicles. Lastly, a single-assignment distance cost matrix was utilized for data association during

tracking with a Kalman Filter used for filtering centroid measurements taken from the detected

bounding-box.

5.2 Results Summary

Results are obtained both in experimentation through existing datasets, and in simulation through

use of the CARLA Simulator. In experimentation, metrics including detection precision, recall,

and mean intersection over union are analyzed. In simulation, additional metrics are analyzed in-
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cluding track position error and velocity error. Results for both experimentation and simulation

indicated high precision (>98%) and slightly worse recall (> 94%), which asserts that LiDAR sen-

sors are indeed useful for object detection as other works have also found. In the tracking results

for simulation, centroid position errors of 0.3−0.4m and high velocities errors of up to 6.9m/s are

observed. Poor performance in these areas may be associated to noisy estimations of the object’s

centroid position in the detection process.

5.3 Conclusions

In conclusion, LiDAR sensors are observed to be a valid sensor choice that can be used for

multi-object detection and tracking of pedestrians, vehicles, and other similarly sized objects. Be-

cause their stand-alone use may be limited in their detection range, they may serve as a comple-

mentary sensor to traditional sensors such as RADARs and or cameras. Their independence for

illumination requirements and direct representation of 3D space can solve short-comings of cam-

eras, and their increased resolution can allow for orientation detection of vehicles when compared

to RADARS. Lastly, the need for other sensing modalities in addition to LiDAR can also be seen

when partial scans of vehicles are obtained either due to sensor occlusion, weak returns from low

reflective targets, and other possible factors. In Section 2.2, discussion on the preference for Li-

DARs that are configured to scan below its sensor mid-plane or horizon was introduced. Below

horizon scanning LiDARs, such as the Ouster OS1-32, are more preferential in infrastructure like

applications compared to LiDARs that also scan above the sensor’s horizon that often incurs waste.

5.4 Future Work

Future work for this thesis can include further developed methods for each of the object detec-

tion and tracking stages shown earlier in Figure 2.1.

For Background Estimation, future work can include:

• Dynamic updates of the background estimates. For instance, background measurements can

be periodically taken if there are few / no objects in scene;

• Threshold tuning for occupancy map filtering methods,.
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For the Clustering and Detection processes, additional work can investigate:

• Additional clustering algorithms that can be efficiently used in 3D Space;

• Refined orientation detection algorithms, with tuned weights and additional cost parameters.

Lastly, for the Tracking and Filtering processes, additional work can be performed on:

• Updating the detection-to-track cost function to incorporate additional features;

• Better motion models for vehicles;

• Tracking and filtering over the object’s bounding boxes.
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