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ABSTRACT

Spatial point processes are statistical models that describe the arrangement of objects that are

randomly distributed in the plane or in space. In recent years, they have received sustained attention

because researchers use them to model objects in ecology, biology, medicine and material science,

to name a few. Inevitably, a goodness-of-fit test is needed to assess the fit of these models and to

justify their choice. In this thesis, I propose a method, consisting of nested Monte Carlo simula-

tions, which removes the bias of the resulting empirical level of the test. As a further contribution

to statistical inference for the spatial point processes in this thesis, I introduce skew-elliptical clus-

ter processes, where the clusters can have an anisotropic structure allowing the choice of a flexible

covariance matrix and incorporating skewness or ellipticity parameters into the structure. Theses

processes help to tackle the challenge arising with non-circular clusters, e.g., induced by a wind

direction in the pattern. In particular, I formulate the construction of skew-elliptical-normal and

skew-elliptical-t cluster processes. For the parameter estimation, I propose the minimum contrast

method using an approximating pair correlation function to circumvent the complicated derivation

of the maximum- or pseudo-likelihood and the computational complexity of the Bayesian approach

or MCMC algorithm. The last contribution in this thesis is in diagnostics and influential measures

for spatial point processes. I describe a method to define influential events of a spatial point pattern

based on a parametric likelihood model or a second-order summary characteristic function if the

likelihood model is difficult to derive. In particular, instead of deleting one observation/event at

a time like in commonly-used approaches in detecting influential events, I add some noise to one

event at a time. The perturbation provides a whole course of change of estimators based on which

I quantify the influence. To visualize influential events, I use hair-plots and disc-plots to display

the influence of each event. Those events with significantly high magnitude of influence can be

considered as influential.
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AGOF adjusted goodness-of-fit
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1. INTRODUCTION AND LITERATURE REVIEW

A spatial point process is a random pattern of points in d-dimensional space where usually

d = 2 or d = 3 in applications. Spatial point processes are useful as statistical models in the

analysis of observed patterns of points, where the points represent the locations of some object of

study, e.g., locations of trees or bird nests (statistical ecology), the positions of stars and galaxies

(astrostatistics), the locations of point-like defects in a silicon crystal wafer (materials science),

petty crimes (social science), the locations of neurons in brain tissue (medical science), the home

addresses of individuals diagnosed with a rare disease (spatial epidemiology), or locations of active

agents of some drugs coupled to antigen sites [Illian et al., 2008]. To evaluate whether a certain

spatial point process deems to be a good fit for a spatial point pattern (SPP), a goodness-of-fit

(GOF) test is needed. Introduced by Ripley [1977] and later widely applied in statistical ecology,

the envelop test - a Monte Carlo test [Barnard, 1963] - is based on computing a summary function

of the SPP, such as Ripley’s K-function [Ripley, 1976], and comparing it with the envelope of the

same functions obtained from several simulations of the null model. Diggle [2003] and Baddeley

et al. [2014] noted that such a test works correctly if the null model is simple or the null model

is a complete spatial randomness. However, it is conservative if the null hypothesis is composite

or the parameters are estimated from the observed SPP. To overcome this shortcoming, I propose

a test in Chapter 2 that adjusts for the bias of the estimated p-value and achieves higher power

through nested Monte Carlo simulations. This Monte Carlo adjusted GOF test has now already

been adopted under the name Dao-Genton test [Dao and Genton, 2014] in the spatial point process

community [Baddeley et al., 2017, 2020]. Chapter 2 of this thesis is a complete re-print of [Dao

and Genton, 2014] with permission being requested from Taylor & Francis Journal. Here, the

correctness of this test is proven and the test itself is evaluated via simulations for an inhibitory,

completely random, and clustered process. Then it is applied to a Phlebocarya filifolia plants

dataset [Illian et al., 2008] to study the propagation mechanism and to a micro-anatomy dataset to

learn about the developmental growth of immature retina cells in rabbits [Diggle, 2003].
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Beyond elaborating the GOF test in this thesis, I also make contributions in statistical inference

for spatial point processes. Chapter 3 is a complete re-print of [Dao and Genton, 2021] with permis-

sion from Copyright Clearance Center’s RightsLink. Here, I introduce the skew-elliptical-normal

cluster processes (CP) and the skew-elliptical-t CP [Dao and Genton, 2021]. Their introduction

is motivated by the challenge in modeling datasets which have clusters of non-circular pattern. In

nature, wind or the slope of a location can cause the positions of the cluster events to be skew-

elliptical distributed. For example, if wind usually blows in a particular direction, it would carry

plant seeds in this direction and plants would propagate according to the assistance of this wind

direction. Hence the shape of that particular forest area would not be circular but non-circular, for

example skewed or elliptical. Although patterns having skew-elliptical clusters occur quite often in

the nature, statistical models for skewed-elliptical CP are not yet common. To tackle this challenge,

I introduce a generalization of the Thomas process (TP) [Thomas, 1949]. The application of TP

is widely seen in the field of spatial point processes because it has the intrinsic statistical ability

to model propagation or clustering in nature. However, the limitation of TP lies in its ability of

modeling only circular clusters. That means characteristics like ellipticity and skewness of clus-

ters cannot be modeled. To obtain more flexibility, I impose a unified skew-elliptical distribution

[Arellano-Valle and Genton, 2010a] on the distribution of the cluster point/event, whereas in the

TP case, the distribution of the cluster event is a bivariate normal distribution with the (circular)

covariance matrix as a diagonal matrix with the diagonal entries σ2
11 = σ2

22 = σ2. The clustered

redwoods dataset representing the locations of 195 Californian red seedlings shows pattern of non-

circular clusters. This dataset was first described and analyzed by Strauss [1975] and later reapplied

in many works in spatial point processes [Diggle, 2003, Illian et al., 2008]. However, according

to my knowledge, modeling this non-circular characteristic has not been addressed in the literature

of spatial point processes. So I apply a skew-elliptical normal CP and a range of skew-elliptical t

CPs to this dataset. The GOF test confirms that an elliptical normal CP among the aforementioned

models provides the best fit and the conclusion supports the visual observation that the clusters are

not circular.
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In the diagnostic data analysis for spatial point processes, I introduce a method in Chapter 4

which defines and visualizes influential points/events of a SPP. For a given estimator, I say that a

point or an event is influential whenever a change of its position in the pattern leads to a radical

change in the estimate or in the estimate of a functional, e.g., second-order summary characteristic

such as F -, G-, K- and pair correlation functions [Diggle, 2003, Illian et al., 2008]. There are

techniques for residual analysis [Baddeley et al., 2005], detecting outliers, criticizing model-based

outliers [Illian et al., 2008], identifying leverage and influential points [Baddeley et al., 2013].

Especially, in the latter work, the authors established measures of leverage and influence for the

dependence of a point process model on covariates by direct analogy with standard techniques for

generalized linear models. The technique developed by Baddeley et al. [2013] requires, however,

the likelihood or composite likelihood to be formally equivalent to a Poisson likelihood and that

terms in the model must be available in closed form. This excludes a wide range of models in-

cluding, for example, Cox processes, Neyman-Scott cluster processes and other models which are

effectively hierarchical or mixed Poisson models.

In this thesis, I introduce a concept of detecting influential events of a SPP, which does not

require the maximum likelihood or pseudo-likelihood in closed form. In particular, I let a second-

order summary characteristic such as F -,G-function [Diggle, 2003, Sec. 4.3], Ripley’sK-function

[Ripley, 1976], and pair correlation function [Illian et al., 2008] to describe the SPP and define a

measure of departure based on the second-order summary characteristic of one’s choice. This

approach allows many more spatial point processes to be studied.

In the setting of generalized linear models, the standard method of identifying influential ob-

servations is to quantify the radical change of the statistical inference when carrying out statistical

analysis without that observation. In my opinion, this “deleting” method is only justified for the

cases underlying the assumption that the observations are independent and identically distributed

(iid). In the field of spatial point processes, Baddeley et al. [2013, 2019] still kept this “delet-

ing” method to study the leverage and influence of the data. However, in the case of dependent

data such as in spatial statistics or spatial point processes, deleting events may not be a sensible

3



practice due to the dependence structure of the events. As noted by Cook and Weisberg [1994],

deleting cases is only a way of introducing small changes in the data and there are others. As in

Genton and Ruiz-Gazen [2010], I introduce some noise to the data by perturbing additively one

event at a time. Unlike deleting a point/event, the perturbing method provides a whole course of

change of estimators or conclusions on GOF due to a set of possible amounts of perturbation. I

adopt and extend the approach by Genton and Ruiz-Gazen [2010] to develop a method to detect

influential events of SPPs. Via perturbing events and defining discrepancy between the perturbed

and observed functionals, I define influential events and use graphical tools such as hair-plots and

disc-plots to visualize them. The method is applied to a Queensland copper cores dataset [Berman,

1986] and to the Swedish pines dataset [Strand, 1972] to study influential events which might yield

radical changes in statistical inference.

Finally, I draw conclusions on the contributions of this thesis and discuss possible future work

directions for each topic in Chapter 5.
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2. A MONTE CARLO-ADJUSTED GOODNESS-OF-FIT TEST FOR PARAMETRIC

MODELS DESCRIBING SPATIAL POINT PATTERNS?

2.1 Chapter Overview

Spatial point processes have received sustained attention in recent years in many disciplines

such as ecology, biology, medicine and material science, to name a few. For example, using spa-

tial point processes, ecologists model the propagation mechanism of forests, biologists model the

developmental growth of immature cells, and pharmacologists model the spatial structure of active

agents of some drugs coupled to antigen sites [Illian et al., 2008]. Inevitably, a goodness-of-fit

(GOF) test is needed to assess the fit of these models. Up to now, GOF tests were dominantly

available for assessing the fits of simple Poisson processes. A large number of testing methods

for assessing homogeneous Poisson processes, otherwise known as complete spatial randomness

(CSR), are referenced and described in Cressie [1993, Sec. 8] and Diggle [2003, Sec. 2]. Notable

examples include a test based on the approximate distribution of the mean of the nearest neighbor

distances [Donnelly, 1978] and quadrat count tests [Diggle, 2003, Sec. 2.5]. For sparsely sampled

point patterns, Besag and Gleaves [1973] and Hines and Hines [1979] developed distance-based

tests, whereas Assunção [1994a] and Assunção and Reis [2000] developed an angle-based test.

When the fitted model is an inhomogeneous Poisson process, Guan [2008] derived a GOF test

with a statistic based on a discrepancy measure function that is constructed from residuals ob-

tained from the fitted model. The test statistic has a limiting standard normal distribution, so the

test can be performed by comparing the test statistic with available critical values. While the afore-

mentioned methods are suitable for Poisson spatial point processes, they do not extend trivially to

the fits of more complicated processes. An exploratory analysis of such data involves a diagnostic

assessment of the residuals that can be handled by the graphical methods of Baddeley et al. [2005]

and Baddeley et al. [2008]. This diagnostic approach, however, does not serve as a formal GOF

?Reprinted with permission being requested from “A Monte Carlo-Adjusted Goodness-of-Fit Test for Parametric
Models Describing Spatial Point Patterns” by Ngoc Anh Dao and Marc G. Genton, 2014. Journal of Computational
and Graphical Statistics, 23:2, pages 497 - 517, Copyright 2021 by Taylor & Francis Academic Journals.
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test. A possible complement is the Monte Carlo GOF test [Ripley, 1988, Diggle, 2003], which is

valid when, for example, the data consist of multiple spatial point patterns. Analogous to train-

ing and validation datasets in regression analysis, one can obtain the parameter estimate for the

null model from one, or from some, pattern(s) and apply the GOF test to the remaining patterns.

This traditional Monte Carlo GOF test and its graphical version, the envelope test, are described in

Sec. 2.2.2.

When the data consist of a single spatial point pattern (SPP), the parameter estimate has to

come from the only pattern available, which suggests the concept of the plug-in Monte Carlo GOF

test (PGOF), which is widely applied in the literature. However, in the general statistical context,

Robins et al. [2000] noted that the p-value resulting from the PGOF test does not necessarily

follow the standard uniform distribution, not even in the asymptotic sense. In particular, in the

context of spatial point processes, Diggle [2003, Sec. 6.2] noted that “Such tests are strictly invalid,

and probably conservative, if parameters have been estimated from the data. To some extent,

this problem can be alleviated if I use a goodness-of-fit statistic which is only loosely related to

the estimation procedure”. Similarly, in the general statistical context, Bayarri and Berger [2000]

suggested that if the distribution of the GOF test statistic is conditioned upon a sufficient statistic,

then this distribution does not depend on the true parameter and therefore the p-value calculated

with respect to this conditional distribution has a standard uniform distribution. However, in the

context of spatial point processes, except for the homogeneous Poisson process, one cannot find

closed forms for sufficient statistics. Hence, the approach motivated by Bayarri and Berger [2000]

cannot be applied. Diggle [2003, p. 10] also noted that “An inherent weakness of the Monte

Carlo approach is its restriction to simple hypotheses[...]. Composite hypotheses can be tested

if pseudo-random sampling is made conditional on the observed values of sufficient statistics for

any unknown parameters, but this is seldom practicable. Note that a goodness-of-fit test which

ignores the effects of estimating parameters will tend to be conservative”. Diggle [2003, p. 10]

noted further that this particular conservativeness does not arise with tests of CSR for mapped data,

because the observed number of events, N , is sufficient for the intensity, λ, and, conditional on
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N , CSR is a simple hypothesis. But ignoring the effect of estimating parameters does affect the

assessment of goodness-of-fit for more general stochastic models. Figure 2.1 shows how far off

the empirical level can be from the nominal level, α = 0.05. The histograms show from left to

right the distributions of the estimated p-values from the PGOF test assessing the fits of Strauss,

CSR, and Thomas processes, which are described in Sec. 2.3.1. CSR is a simple hypothesis; hence,

the distribution of the estimated p-values is standard uniform. However, by letting X denote the

process underlying the observed spatial point pattern defined in Sec. 2.2.1, the Strauss process

(H0 : X ∼ fβ,γ,R, where f denotes the probability density function) and the Thomas process

(H0 : K(X) = Kκ,σ,µ, where K denotes the K-function) are composite hypotheses because there

is no knowledge about the existence or the form of sufficient statistics. The distributions of the

estimated p-values are not standard uniform. The PGOF test is too conservative for these two

processes. It is important to correct for the bias of its empirical level because if the type-II error rate

were pre-specified, the PGOF test would suffer from power loss as noted by Marriott [1979]: The

Monte Carlo test gives a “blurred” critical region, which is not of the usual form. A conventional

significance test would reject H0 if the statistic lays in some well-defined critical region. However,

for the Monte Carlo test, there is a range of values of the statistic over which there is a varying

probability of rejecting H0. This blurring of the critical region leads to a loss of power. This

weakness of the PGOF test still remains when using the envelope test [Ripley, 1977]. If the Monte

Carlo simulation is not made conditional on an observed value of a sufficient statistic, there is an

undesirably high probability that the upper and lower envelopes of the null model would contain

the empirical summary or second-order characteristic function of the observed SPP, which does

not underlie the null model. To overcome the weaknesses with respect to the conservativeness and

power loss of PGOF tests, I propose a test that adjusts for the bias of the empirical level through

nested Monte Carlo simulations to reach the nominal level correctly.

The remainder of this chapter is organized as follows. Sec. 2.2 describes the methodology of the

proposed GOF procedure. Extensive simulation studies demonstrate in Sec. 2.3 that my method

gives more accurate empirical levels than those provided by the existing PGOF test. Sec. 2.4
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Figure 2.1: Distributions of the estimated p-values p̂’s resulting from PGOF tests. The Strauss
processes (left), CSR (center), Thomas processes (right) are defined in Sec. 2.3.1. The nearest
neighbor distance distribution function, G-function, defined in Sec. 2.2.2, is used to compute the
test statistic for the PGOF tests. The horizontal solid lines stand for the probability density function
of the standard uniform distribution.?

provides two data applications, one to a forest dataset to study the propagation mechanism of

Phlebocarya filifolia plants, and the other to micro-anatomy data to learn about the developmental

growth of immature retina cells in rabbits. Finally, Sec. 2.5 discusses two computational techniques

that make the computations more efficient.

2.2 Monte Carlo Goodness-of-fit Tests

2.2.1 Definitions

Hereafter, I adopt the notation given in Baddeley et al. [2005, Sec. 5]. An SPP is a dataset,

X = {x1, . . . , xN}, where the xi’s are unordered locations observed in a bounded region, W of

R2. I let fθ denote the parametric model (a parametric spatial point process) fitted to X , where θ is

an arbitrary finite-dimensional vector of parameters. I assume that fθ(X) is a probability density

function with respect to the unit rate Poisson process on the window W , such that fθ satisfies

the positivity condition: if fθ(X) > 0 and Y ⊂ X, then fθ(Y ) > 0 for any finite point patterns,

?Reprinted with permission being requested from “A Monte Carlo-Adjusted Goodness-of-Fit Test for Parametric
Models Describing Spatial Point Patterns” by Ngoc Anh Dao and Marc G. Genton, 2014. Journal of Computational
and Graphical Statistics, 23:2, pages 497 - 517, Copyright 2021 by Taylor & Francis Academic Journals.
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X, Y ⊂ W . Under this setup, I am interested in testing the null hypothesis:

H0 : X ∼ fθ, (2.1)

where X is the spatial point process from which the observed SPP, X , is generated. The common

p-value for the hypothesis above is p = 1− Pr{t(X) < t(X)} for some test statistic, t(·), i.e., this

definition of the p-value is based on the assumption that a small value of t(X) supports the hull

hypothesis, H0. If the probability density of t(·) is tractable, then a Monte Carlo GOF test is not

necessary because the computation of the p-value is with respect to the probability density of t(·),

and the distribution of the p-value is exactly standard uniform for a known θ, and approximately

standard uniform for an unknown θ under some conditions [Bayarri and Berger, 2000]. When,

however, the probability density of t(·) is analytically unavailable, a Monte Carlo GOF test is an

alternative to the classical methods to estimate the p-value to assess the fit.

2.2.2 A Traditional Monte Carlo Goodness-of-Fit Test

As a basis for assessing (2.1), I first briefly describe the test from Diggle [2003, Sec. 6],

who proposed a test statistic, u, and the pseudo-statistics, ui, using the summary characteristic

G-function, which will be described after introducing the estimated p-value in (2.5):

u =

∫ ∞
0

{
Ĝ(h)−G(h)

}2

dh; ui =

∫ ∞
0

{
Ĝi(h)−Gi(h)

}2

dh, i = 1, . . . , n, (2.2)

where Ĝ(h) is the empirical G-function of the observed SPP, X , Ĝi(h) is the empirical G-function

of the simulated SPP, Xi, i = 1, . . . , n, under (2.1) with θ = θ̂ for some θ̂ not necessarily from the

data, and n is the number of Monte Carlo simulations. Also,

G(h) =
1

n

n∑
i=1

Ĝi(h); Gi(h) =
1

n

{
Ĝ(h) +

n∑
l=1,l 6=i

Ĝl(h)

}
, i = 1, . . . , n. (2.3)

For a graphical depiction of the Monte Carlo GOF test under the plug-in fashion, see the “Plug-
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Figure 2.2: The test statistic, u, and its estimated p-value, p̂, in (2.5) are computed using the
Monte Carlo simulations represented in the “Plug-in” part. dist(s, t) =

∫∞
0
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the squared L2-norm of the difference between the functions s and t. The PGOF test rejects H0 if
p̂ ≤ α, where α is the nominal level. The AGOF test would reject H0 if p̂ ≤ α̂∗, where α̂∗ is the
estimated adjusted level, which is computed in the “Adjusted” step. The Monte Carlo simulation is
applied to each Xi, i = 1, . . . , n, to obtain the estimated p-values p̂1, p̂2, . . . , p̂n, to solve for α̂∗ in
(2.11).?

?Reprinted with permission being requested from “A Monte Carlo-Adjusted Goodness-of-Fit Test for Parametric
Models Describing Spatial Point Patterns” by Ngoc Anh Dao and Marc G. Genton, 2014. Journal of Computational
and Graphical Statistics, 23:2, pages 497 - 517, Copyright 2021 by Taylor & Francis Academic Journals.
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in” part in Figure 2.2. The p-value for the Monte Carlo GOF test in (2.1) is

p = 1− Pr(Uθ̂ < u), (2.4)

where Uθ̂ is the random variable taking ui, i = 1, . . . , n, as realizations. Practically, this p-value

can be estimated from

p̂ = 1− 1 +
∑n

i=1 I(ui < u)

n+ 1
, (2.5)

where I(·) is the indicator function. The PGOF test would reject H0 if p̂ ≤ α. Let P̂ denote the

random variable corresponding to p̂. Its distribution as noted in Sec. 2.1 is not standard uniform,

except for X underlying a CSR.

Analogously, u, ui, i = 1, . . . , n, and p̂ can also be computed using the other summary

characteristic, the F -function, the second-order characteristic, K-, or the inhomogeneous K-

function, for instance. The terminology of the summary characteristic and that of the second-

order characteristic function are adopted from Illian et al. [2008]. The G-function, also known

as the nearest neighbor distance distribution function, is the distribution function of the distance

from an arbitrary event in X to the nearest other event in X , and the F -function, otherwise

known as the empty space function, is the distribution function of the distance from an arbitrary

point in the chosen window, W , to the nearest event in X . Both are estimated empirically using

Ĝ(h) =
∑N

i=1 I(hi ≤ h)/N and F̂ (h) =
∑m

i=1 I(h∗i ≤ h)/m, where h > 0, N ≡ N(X) is

the number of events in X , hi denotes the distance from the ith event in X to the nearest other

event in X , and h∗i is the distance from the ith point of a sample of m selected points in W to the

nearest of N events in X . The theoretical K-function of a stationary spatial point process is de-

fined as K(h) = λ−1E(the number of extra events within distance h of a randomly chosen event),

where h ≥ 0 and λ is the intensity of the process [Bartlett, 1964, Ripley, 1977]. Ripley’s estimator

of the K-function is, for instance, in Cressie [1993, p. 640]. The inhomogeneous K-function as

the K-function for non-stationary processes is introduced by Baddeley et al. [2000].
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The envelope test is a graphical view of the Monte Carlo GOF test. Using the G-function,

for instance, it declares a model as a good fit if the upper envelope U(h) and the lower envelope

L(h) envelop the Ĝ-function of the observed SPP X , where U(h) = maxi=1,...,n Ĝi(h), L(h) =

mini=1,...,n Ĝi(h), with typically n = 100.

To overcome the weaknesses with respect to the conservativeness and the power loss of PGOF

tests, I propose a test that adjusts for the bias of its empirical level through nested Monte Carlo

simulations to reach the nominal level correctly.

2.2.3 The Monte Carlo Adjusted Goodness-of-Fit Test

The motivation for my proposed test arises as follows. To make the PGOF test correctly sized,

i.e., its empirical level, α̂, reaches the nominal level, α, my goal is to find α̂∗ such that

Pr{P̂ < α̂∗} = α, (2.6)

where α̂∗ is an estimate of α∗, which is referred to as the adjusted level. Usually α∗ is unknown,

and α∗ = α only in case of CSR. The decision rule of rejecting H0 if p̂ ≤ α̂∗ yields a correctly

sized test because Pr{Reject (2.1) at level α̂∗| (2.1) is true} = α by (2.6).

My proposed Monte Carlo adjusted GOF (AGOF) test consists of three steps. The first step

is to determine p̂. For that u, u1, . . . , un are computed, based, for instance, on the G-function, as

given in (2.2) with

G(h) =
1

n− 1

n∑
j=2

Ĝj(h); Gi(h) =
1

n− 1

n∑
j=1,j 6=i

Ĝj(h), i = 1, . . . , n. (2.7)

The above G(h) and Gi(h), i = 1, . . . , n, deliberately do not include Ĝ(h) like in (2.3). Thus, the

Gi(h)’s are not contaminated with the observed information through Ĝ(h) but are computed purely

based on patterns generated under H0. Also, I choose the above G(h) =
∑n

j=2 Ĝj(h)/(n − 1) as

opposed to
∑n

j=1 Ĝi(h)/n because the Gi(h)’s are normalized with the constant (n− 1). Simula-

tions using Strauss and Thomas processes with n = 50 in Figure 2.3 demonstrate that, except for
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one case, the empirical levels resulting from the modification in (2.7) are higher than those result-

ing from the traditional GOF test as proposed in (2.3). Only for the case of the Thomas process

using the GOF-G test, the empirical levels resulting from (2.7) are not higher than that from (2.3).

Overall, this modification makes the traditional GOF test become slightly more sensitive, which

can be advantageous for small n. Eventually, the advantage of this modification will diminish as n

increases, in particular for n ≥ 100.

The second step is to find α̂∗. To achieve that, I have to reconstruct the distribution of P̂ via

pseudo-random sampling using a Monte Carlo technique. I claim that the following procedure can

provide the pseudo-values, p̂1, . . . , p̂n for P̂. They are estimates of the unknown plug-in p-values,

p1, . . . , pn, of the following hypotheses

Hi,0 : Xi ∼ fθ, (2.8)

with Xi, i = 1, . . . , n, as the underlying spatial point processes corresponding to the simulated

Xi, i = 1, . . . , n, under (2.1). In Figure 2.2, the AGOF test is illustrated as the extension of the

PGOF test: I apply the PGOF test to each Xi, i.e. I simulate Xi,j , j = 2, . . . , n, under (2.8) with

θ = θ̃i, where θ̃i is the parameter estimate obtained from Xi, which is also Xi,1 in my notation. To

compute p̂1, . . . , p̂n, I define

ui,j =

∫ ∞
0

{
Ĝi,j(h)−Gi,j(h)

}2

dh, i, j = 1, . . . , n,

where

Gi,1(h) =
1

n− 2

n∑
j=3

Ĝi,j(h); Gi,j(h) =
1

n− 2

n∑
l=2,l 6=j

Ĝi,l(h), j = 2, . . . , n.

Then, the plug-in p-value ,

pi = 1− Pr(Uθ̃i < ui,1), (2.9)
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Figure 2.3: Empirical level curves resulting from the traditional Monte Carlo GOF tests in
Sec. 2.2.2, represented by the dashed lines going through circles labeled as “Diggle”, and their
modified version through (2.7), represented by the solid lines going through squares labeled as
“Modif”, are shown; the dotted line is the reference 45◦ line. The tests use n = 50 based on
M = 3000 generated patterns of Thomas and Strauss processes.?

?Reprinted with permission being requested from “A Monte Carlo-Adjusted Goodness-of-Fit Test for Parametric
Models Describing Spatial Point Patterns” by Ngoc Anh Dao and Marc G. Genton, 2014. Journal of Computational
and Graphical Statistics, 23:2, pages 497 - 517, Copyright 2021 by Taylor & Francis Academic Journals.
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for (2.8) with Uθ̃i as the random variable corresponding to ui,2, . . . , ui,n can be estimated by

p̂i = 1−
1 +

∑n
j=2 I(ui,j ≤ ui,1)

n
. (2.10)

I claim that the distribution of P̂ is herewith reconstructed via the pseudo-values, p̂1, . . . , p̂n. Now,

I find α̂∗ such that

n∑
i=1

I{p̂i < α̂∗} = αn. (2.11)

Via the quantile function, α̂∗ can be obtained from the α-quantile of p̂1, . . . , p̂n. The third, and also

the last, step is making the conclusion about the fit, i.e. reject H0 if p̂ ≤ α̂∗. The validity of the

AGOF test follows with the proof and pseudo-code given in the online supplementary material.

Proposition 1. Let P̂ denote the random variable corresponding to the estimated plug-in p-value,

p̂, resulting from (2.5), and let α̂∗ be that found in (2.11). Then, I have (2.6). In particular when

the null model is true, the probability of rejecting the null model to the significance level of α̂∗ is

α, i.e., Pr {P̂ < α̂∗} = Pr {Reject H0 at level α̂∗| H0 is true} = α.

Remark 1. The “traditional” Monte Carlo GOF test means that the Monte Carlo GOF test is

applied to: (i) data consisting of at least two datasets; or (ii) data consisting of a single dataset

with the parameter estimate depending only “loosely” on the estimation procedure. The PGOF

test is the Monte Carlo GOF test with a plug-in, i.e., when the test is applied to the data consisting

of a single dataset and the parameter estimate can depend on the estimation procedure. The AGOF

test is the Monte Carlo adjusted GOF test, which is an extension of the PGOF test.

2.3 Simulation Studies

From a process of interest, I generate M = 3000 patterns to compute the size of a PGOF or

AGOF test. As in Sec. 2.2, n gives the number of Monte Carlo simulations within a single Monte

Carlo GOF test. M , however, sets the number of replications of the Monte Carlo GOF tests. I

use various processes to represent four main types of patterns, which are random (independent),

15



inhibitory (regular), clustered (aggregated), and inhomogeneous. To compare fairly my simulation

results with those in Guan [2008], Illian et al. [2008], and Diggle [2003], I generate processes with

patterns having a comparable number of events as described below. However, other simulations

confirm that the performance of the PGOF and AGOF tests are not sensitive to the choice of

specific parameter values. Computational work is done using the spatstat package [Baddeley

and Turner, 2005b] in R [R Core Team, 2014].

2.3.1 Generating Patterns

In my simulation studies, the observation window of all point patterns is the unit square. In

the first three types of patterns, the average number of events of each pattern is 100. First, for

the random pattern, I choose the CSR process with intensity λ = 100. Second, for the inhibitory

pattern, I choose a Strauss process with (β, γ, R) = (200, 0.25, 0.05), where β is the chemical

activity parameter, γ the interaction parameter, R the interaction radius, and the probability den-

sity function f(X) = νβnγs, with ν as the normalizing constant and s as the number of distinct

unordered pairs of events closer than R units apart [Møller and Waagepetersen, 2003]. Third,

for the clustered pattern, I consider a Thomas process as representative of this group. Here, a

CSR with intensity κ is generated to obtain the so-called “parent” points. Each parent point is

replaced by a random cluster of “children” points that are Poisson distributed with intensity µ.

The positions of the children points are distributed about the parent location according to a bivari-

ate Gaussian distribution with covariance σ2I2, where I2 is the 2 × 2 identity matrix [Møller and

Waagepetersen, 2003]. Here the likelihood is intractable, but the theoretical K-function is avail-

able, K(h) = πh2 +κ−1 [1− exp {−h2/(4σ2)}]. For my purposes, I chose a Thomas process with

(κ, σ, µ) = (20, 0.05, 5). Finally, for the inhomogeneous Poisson processes, I adopt the models in

the simulation studies in Guan [2008]. That is, I consider the following intensity functions:

λ(x) = exp(β0 + β1x), (2.12)

λ(x) = exp{β0 + β1 sin(2πx)}, (2.13)
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where β0 is the normalizing constant and β1 specifies the inhomogeneity in the data. For each

intensity function, I consider the cases β1 = −1 and β1 = −2. The bigger the absolute value of

β1, the more inhomogeneous the pattern. Here, β0 is manipulated to obtain µ = 100 and µ = 400

number of events for each combination of β1 and the intensity functions. I refer to the process with

the intensity function (2.12) as linear and (2.13) as sine models.

2.3.2 Parameter Estimation and Performance of GOF Tests

I use various methods to obtain the estimates. For the CSR, the number of events is the estimate

of the intensity parameter. For the Strauss process, I use the maximum profile pseudo-likelihood

(MPPL) estimator [Baddeley and Turner, 2000] to obtain the estimate of R via profilepl and

the maximum pseudo-likelihood (MPL) estimators [Besag, 1978, Berman and Turner, 1992, Bad-

deley and Turner, 2000] to obtain the estimates of β and γ via ppm. For the Thomas process,

I use a minimum contrast method using the K-function (MCM-K) [Diggle, 2003, Sec. 6] via

thomas.estK. For the inhomogeneous Poisson processes, I obtain the maximum likelihood es-

timate for β0 and β1 via ppm.

In the following, GOF-G, -F , -K or -Kin tests denote GOF tests using a G-, F -, K- or Kin-

function to compute the test statistics. If theK-function is used in the estimation procedure, Diggle

[2003, Sec. 6.2] recommended not using it again in computation of the statistic and the pseudo-

statistics in (2.2) and (2.7). Hence, I have just GOF-G and -F tests for the Thomas process, and

also have the GOF-K test for the Strauss and CSR processes. Additionally, for the inhomogeneous

Poisson processes, I also employ the GOF-Kin test, where the Kin-function denotes the inhomo-

geneous K-function, which does not assume stationarity as the G-, F -, and K-functions do. With

respect to the significance level, I choose the common nominal levels α = 0.05, and α = 0.10,

due to Guan [2008]. A GOF test is correctly sized if its empirical level, α̂, reaches the nominal

level, α, correctly according to the usual definition, i.e., the interval (α̂ − 2se, α̂ + 2se), where

se =
√
α̂(1− α̂)/M , contains α.

Table 2.2 presents two facts. First, the PGOF test is correctly sized only for the CSR. In con-

trast, my proposed AGOF test is correctly sized for all processes, except for the AGOF-G test
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applied in the Strauss case. Second, the estimated adjusted level, α̂∗, can serve as an indication for

some patterns, as opposed to randomness, in the data. The AGOF test would provide α̂∗ strongly

deviating from α if the SPP comes from a process that is very different from CSR.

For CSR, as explained in Sec. 2.1, the AGOF test is not needed. Here, the PGOF test coincides

with the traditional Monte Carlo GOF test; thus, α∗ = α. Nevertheless, the simulations in Table 2.2

validate the correctness of my method as α̂AGOF conforms with α̂PGOF, α∗ =
∑M

k=1 α̂k/M and α.

For the Strauss process, the MPPL R̂ of the irregular parameter, R, is a poor estimator, which

strongly affects the estimation of the other two regular parameters, β and γ, which can be obtained

via MPL or approximate maximum likelihood (AML) estimation [Huang and Ogata, 1999]. Due

to the high computational complexity of the latter method, I use the MPL estimators of β and γ.

Simulations show that γ̂ tends to be greater than the true γ = 0.25. In fact, the median of γ̂ is

0.277 and the mean is 0.289. The difficulty in parameter estimation carries on in the estimation of

α∗. However, increasing n from 100 to 150 makes the conclusion of the AGOF test more accurate.

I also conjecture that using the AML instead of the MPL estimators of β and γ would lead to a

correctly sized AGOF-G test for the Strauss process.

Table 2.1 shows that the PGOF-G tests are correctly sized in two cases of the model (2.12)

when β1 = −1 with µ = 100 and µ = 400. This seems to contradict my observation made in

Sec. 2.1 and the finding in the previous paragraph that the PGOF test is correctly sized only for

CSR. My other simulations show that if the pattern and its H0 are not too inhomogeneous as in

the case of (2.12) with β1 = −1, the PGOF test can, but does not have to, be correctly sized as

the G-function of a CSR and of those models can be similar. However, the PGOF-F and -Kin

tests remain incorrectly sized. Table 2.1 shows that the PGOF tests are overall incorrectly sized

and their empirical levels deviate away from the nominal levels in two situations: (i) when the

inhomogeneity factor, |β1|, increases; and (ii) when the intensity function changes from linear,

(2.12), to non-linear, (2.13). In contrast, the AGOF tests are correctly sized throughout. Overall,

the AGOF tests clearly outperform the PGOF tests and do not underperform the test by Guan

[2008]. Here, I did not implement the test of Guan [2008], which was described in Sec. 2.1. The
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empirical levels, α̂Guan, are extracted from t = 0.2 in Guan [2008, Tables 1 and 2].

Table 2.1: For nominal level α, α̂PGOF and α̂AGOF are empirical levels from the PGOF and AGOF
tests using n = 100, M = 3000 replicates. α∗ =

∑M
k=1 α̂

∗
k/M . Linear and sine models and β0 and

β1 are defined in (2.12) and (2.13) in Sec. 2.3.1. Notations -G, -F , and -Kin label computations of
the GOF test statistics using theG-, F -functions, and the inhomogeneousK-function, respectively.
From Guan [2008, Tables 1 and 2], t = 0.2, α̂Guan is extracted. Estimated standard errors multiplied
by 100 are in parentheses.?

α = 0.05 α = 0.10

Model # events β0 −β1 α̂PGOF α∗ α̂AGOF α̂PGOF α∗ α̂AGOF α̂Guan

Linear-G 100 5.06 1 .048 .054 .052 .095 .107 .104 .096

(.390) (.404) (.535) (.557)

Linear-F 100 5.06 1 .032 .077 .055 .072 .139 .102 .096

(.323) (.417) (.473) (.552)

Linear-Kin 100 5.06 1 .034 .072 .063 .077 .138 .109 .096

(.331) (.443) (.486) (.570)

Linear-G 100 5.45 2 .039 .062 .052 .075 .124 .099 .130

(.353) (.405) (.480) (.546)

Linear-F 100 5.45 2 .015 .128 .051 .035 .213 .101 .130

(.112) (.345) (.155) (.469)

Linear-Kin 100 5.45 2 .035 .069 .046 .074 .132 .105 .130

(.333) (.385) (.478) (.560)

Linear-G 400 6.45 1 .051 .049 .052 .094 .107 .099 .094

(.349) (.357) (.478) (.497)

Linear-F 400 6.45 1 .033 .087 .052 .059 .161 .102 .094

(.327) (.408) (.431) (.552)

Linear-Kin 400 6.45 1 .043 .063 .053 .083 .128 .107 .094

(.359) (.409) (.502) (.565)

Linear-G 400 6.85 2 .041 .061 .052 .083 .124 .108 .098

Continued on next page
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Table 2.1 – continued from previous page

α = 0.05 α = 0.10

Model # events β0 −β1 α̂PGOF α∗ α̂AGOF α̂PGOF α∗ α̂AGOF α̂Guan

(.365) (.405) (.503) (.567)

Linear-F 400 6.85 2 .012 .146 .052 .027 .238 .101 .098

(.201) (.405) (.297) (.550)

Linear-Kin 400 6.85 2 .025 .086 .049 .053 .160 .093 .098

(.283) (.395) (.408) (.531)

Sine-G 100 4.37 1 .026 .081 .044 .054 .149 .090 .100

(.288) (.374) (.412) (.523)

Sine-F 100 4.37 1 .004 .176 .045 .012 .272 .100 .100

(.115) (.378) (.204) (.548)

Sine-Kin 100 4.37 1 .023 .076 .044 .056 .145 .096 .100

(.275) (.373) (.420) (.537)

Sine-G 100 3.80 2 .019 .096 .046 .048 .169 .093 .108

(.253) (.382) (.393) (.532)

Sine-F 100 3.80 2 .004 .195 .053 .011 .293 .108 .108

(.115) (.409) (.193) (.567)

Sine-Kin 100 3.80 2 .048 .048 .048 .093 .109 .091 .108

(.393) (.393) (.532) (.527)

Sine-G 400 5.80 1 .029 .076 .049 .058 .142 .094 .082

(.329) (.412) (.447) (.558)

Sine-F 400 5.80 1 .007 .178 .046 .015 .278 .097 .082

(.162) (.400) (.237) (.566)

Sine-Kin 400 5.80 1 .037 .075 .054 .064 .143 .100 .082

(.361) (.432) (.465) (.573)

Continued on next page
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Table 2.1 – continued from previous page

α = 0.05 α = 0.10

Model # events β0 −β1 α̂PGOF α∗ α̂AGOF α̂PGOF α∗ α̂AGOF α̂Guan

Sine-G 400 5.15 2 .028 .093 .057 .063 .166 .106 .114

(.325) (.452) (.476) (.602)

Sine-F 400 5.15 2 .004 .189 .056 .014 .288 .104 .114

(.125) (.428) (.230) (.596)

Sine-Kin 400 5.15 2 .042 .064 .052 .072 .128 .101 .114

(.394) (.435) (.506) (.589)

2.3.3 Effective Simulation Size and Computational Time

Marriott [1979] proposed to consider m/n = α, where m is chosen in a way that if u is among

the m largest values of u1, . . . , un, H0 is rejected. Besag and Diggle [1977] suggested that m = 5

might be a suitable value for the traditional Monte Carlo tests for spatial patterns. Consequently,

n = 100 should be used for α = 0.05 and n = 500 for α = 0.01. Hence, the smaller the α, the

bigger the n. My simulation studies shown in Tables 2.2 and 2.1 are run using n = 100 to compare

fairly the performance of the PGOF and AGOF tests at the nominal level α = 0.05. However,

Table 2.3 shows that except for AGOF-G and -F tests for the Strauss process, the AGOF tests need

only n = 20 to be correctly sized at the α = 0.05 level, and n = 100 to be correctly sized at the

α = 0.01 level. That is, the effective simulation size is reduced by a factor of 5 in the setting of the

AGOF test, except for the AGOF-G and -F tests for processes having parameters being estimated

by the MPPL method, including Strauss processes. For CSR, while Table 2.3 shows that the AGOF

tests just need n = 20, other simulations show that the PGOF tests need n ≥ 100 to be correctly

sized at α = 0.05.

Table 2.4 shows my investigation of the computational time of the PGOF and AGOF tests. The

?Reprinted with permission being requested from “A Monte Carlo-Adjusted Goodness-of-Fit Test for Parametric
Models Describing Spatial Point Patterns” by Ngoc Anh Dao and Marc G. Genton, 2014. Journal of Computational
and Graphical Statistics, 23:2, pages 497 - 517, Copyright 2021 by Taylor & Francis Academic Journals.
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Table 2.2: For nominal level α, α̂PGOF and α̂AGOF are empirical levels from the PGOF and AGOF
tests using n = 100, M = 3000 replicates. α∗ =

∑M
k=1 α̂

∗
k/M . Notations -G, -F , and -K label

computations of the GOF test statistics using the G-, F -, K-functions, respectively. The CSR,
Strauss and Thomas processes are defined in Sec. 2.3.1. Estimated standard errors multiplied by
100 are in parentheses.?

α = 0.05 α = 0.10
Model # events Pattern α̂PGOF α∗ α̂AGOF α̂PGOF α∗ α̂AGOF

CSR-G 100 Random .053 .049 .054 .096 .106 .105
(.410) (.414) (.538) (.560)

CSR-F Random .049 .049 .048 .095 .107 .099
(.396) (.389) (.536) (.545 )

CSR-K Random .051 .048 .050 .093 .099 .091
(.401) (.398) (.529) (.524 )

Strauss-G 100 Inhibitory .026 .141 .068 .044 .233 .125
(.292) (.459) (.374) (.603)

Strauss-F Inhibitory .020 .106 .047 .043 .184 .090
(.226) (.385) (.371) (.522)

Strauss-K Inhibitory .040 .062 .053 .078 .124 .100
(.356) (.410) (.488) (.548)

Thomas-G 100 Clustered .008 .153 .050 .027 .241 .107
(.153) (.374) (.277) (.517)

Thomas-F Clustered .037 .073 .055 .074 .140 .100
(.322) (.388) (.446) (.512 )

?Reprinted with permission being requested from “A Monte Carlo-Adjusted Goodness-of-Fit Test for Parametric
Models Describing Spatial Point Patterns” by Ngoc Anh Dao and Marc G. Genton, 2014. Journal of Computational
and Graphical Statistics, 23:2, pages 497 - 517, Copyright 2021 by Taylor & Francis Academic Journals.
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Table 2.3: The empirical levels α̂AGOF result from AGOF tests using n = 20, 50, 100 to assess
the effective simulation size n to nominal levels α = 0.01, 0.05, 0.10. sine, Strauss, and Thomas
processes are defined in Sec. 2.3.1.?

α = 0.01 α = 0.05 α = 0.10
Model 20 50 100 20 50 100 20 50 100
CSR-G .049 .024 .012 .049 .057 .054 .110 .111 .105
CSR-F .054 .025 .008 .054 .058 .048 .112 .111 .099
CSR-K .056 .023 .009 .056 .058 .049 .109 .111 .091
Sine-G .054 .024 .011 .054 .051 .051 .105 .105 .095
Sine-F .051 .022 .010 .051 .050 .052 .101 .100 .100
Sine-K .048 .020 .011 .048 .051 .049 .100 .105 .094
Strauss-G .076 .026 .015 .076 .065 .068 .101 .123 .125
Strauss-F .069 .036 .010 .069 .079 .047 .133 .133 .090
Strauss-K .051 .017 .010 .051 .051 .053 .109 .101 .100
Thomas-G .053 .024 .012 .053 .046 .050 .099 .100 .092
Thomas-F .053 .023 .011 .053 .057 .049 .106 .110 .100

computation was done on compute nodes that have 8 CPU cores, 32GB of RAM and the CPU

processors clocked at 2.4GHz or faster. For each of the CSR, sine, Strauss and Thomas processes

defined in Sec. 2.3.1, M = 3000 patterns are generated to provide the average computational time

given in seconds. The time is to obtain p̂ from a PGOF test, p̂ and α̂∗ from an AGOF test using G-,

F -, K- or Kin- and pc- or pcin-functions altogether. The pc-function denotes the pair correlation

function pc(h) = K ′(h)/(2πh), [Illian et al., 2009]. The pcin-function results analogously from

the Kin-function.

Correctly sizing the AGOF test does come with a cost as the computational time is always

longer than that of the PGOF test. While the Monte Carlo simulations are of the size n for the

PGOF test, they are of the size n2 for the AGOF test as illustrated in Figure 2.2, which also shows

that the AGOF test is an extension of the PGOF test.
?Reprinted with permission being requested from “A Monte Carlo-Adjusted Goodness-of-Fit Test for Parametric

Models Describing Spatial Point Patterns” by Ngoc Anh Dao and Marc G. Genton, 2014. Journal of Computational
and Graphical Statistics, 23:2, pages 497 - 517, Copyright 2021 by Taylor & Francis Academic Journals.
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Table 2.4: For each of CSR, sine, Strauss and Thomas processes defined in Sec. 2.3.1, M = 3000
patterns are generated to provide the average computational time given in seconds. The time in
seconds is to obtain results from a GOF test using G-, F -, K- or Kin- and pc- or pcin-functions
altogether.?

n = 20 n = 50 n = 100
Model PGOF AGOF PGOF AGOF PGOF AGOF
CSR 2 42 7 227 9 835
Sine 7 87 19 541 36 1,897
Strauss 269 5,138 642 31,907 1,288 121,671
Thomas 2 52 5 313 9 1,076

2.3.4 Statistical Power

In the following, I show that the power of the AGOF test is at least as good as the power of

the PGOF test via a simulation study. I simulate M = 3000 patterns under the sine model in

(2.13), and fit wrongly a Thomas process (null model) to each of the patterns. In my opinion, this

example is realistic because patterns underlying both (2.13) and a Thomas process contain clusters.

In a real scenario, there might be a pattern underlying (2.13) that is incorrectly categorized as a

Thomas process. After fitting a Thomas process to these datasets, I obtained 3000 p̂’s from the

PGOF-G and -F tests. The type-II error rate, β, was set at 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30,

0.35, 0.40. The power was the rejection rate based on α for the PGOF tests and based on α̂∗ for the

AGOF tests. In Figure 2.4, the power curve of the AGOF test is the solid curve going through 9

squares and the one of the PGOF test is the dashed curve going through 9 circles. The power curve

of the AGOF test is clearly higher than the one of the PGOF at all given β.

Remark 2. My simulations show that there can be contradictory conclusions for the GOF-G, - F ,

-K, and -Kin tests based on one spatial pattern although fitting the correct model. Indeed, each

of the G-, F -, K-, and Kin-functions measures completely different things. Thus, disagreement

?Reprinted with permission being requested from “A Monte Carlo-Adjusted Goodness-of-Fit Test for Parametric
Models Describing Spatial Point Patterns” by Ngoc Anh Dao and Marc G. Genton, 2014. Journal of Computational
and Graphical Statistics, 23:2, pages 497 - 517, Copyright 2021 by Taylor & Francis Academic Journals.
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Figure 2.4: Power curves of AGOF-G, -F and PGOF-G, -F tests, using n = 100, are evaluated
based on M = 3000 simulated patterns of the sine model in (2.13) when wrongly fitting a Thomas
process. The power curves of the AGOF tests are the solid curves going through 9 squares, and of
the PGOF tests are the dashed curves going through 9 circles. β denotes the type-II error rate at
0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40.?

among the AGOF tests can occur, but their performances can still be correctly sized.

2.4 Data Applications

2.4.1 Phlebocarya Filifolia Plants

Figure 2.5 (left) displays, in a 22m×22m window, positions of 207 Phlebocarya filifolia plants

that are typically located in scattered positions throughout Western Australia. Illian et al. [2008,

Example 4.19] used this dataset as an example of an homogeneous clustered pattern by demon-

strating the occurrence of aggregation via a large value of the Clark-Evans index and a small value

of the mean-direction index. Illian et al. [2008, Example 7.2] concluded that the Matérn cluster

process provides an acceptable fit via the envelope test with a plug-in as the envelopes using the

G- and F -functions with n = 100 envelop the empirical G- and F -functions, respectively. I would

like to re-evaluate the GOF of a process with an homogeneous clustered pattern with my AGOF-G

?Reprinted with permission being requested from “A Monte Carlo-Adjusted Goodness-of-Fit Test for Parametric
Models Describing Spatial Point Patterns” by Ngoc Anh Dao and Marc G. Genton, 2014. Journal of Computational
and Graphical Statistics, 23:2, pages 497 - 517, Copyright 2021 by Taylor & Francis Academic Journals.
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Figure 2.5: Left: Positions of 207 Phlebocarya filifolia plants in a 22m×22m window at Cooljarlo
near Perth, Australia. Right: Positions of 294 displaced amacrine cells in the retina of a rabbit.
Solid and open circles represent on and off cells, respectively. The observation window for the
data is (0, 1.62)× (0, 1).?

and -F tests.

As clustering is not immediately obvious, I first used the PGOF test to assess the fit of CSR

to detect whether actual modeling is necessary. The PGOF-G, -F , and -K tests yielded estimated

p-values of 0, 0.515, and 0.01, respectively, suggesting that the fit of CSR is disputable. Figure 2.6

shows the empirical G-, F -, and K-function (dash-dotted curves); other references are the func-

tions of a CSR (solid curve) representing a random pattern, of a Thomas process (dashed curve)

representing a clustered pattern, and of a Strauss process (green dotted curve) representing an in-

hibitory pattern. These processes have approximately 200 events. While the left column of plots

shows these functions on their complete domains, the right column shows these functions on a

much smaller domain to scrutinize their behavior for distances shorter than 0.01. While the empir-

ical F -function aligning with the one of the CSR can suggest random behavior in agreement with

the conclusion of the PGOF-F test, the empirical G-function lying above the one of the CSR indi-

?Reprinted with permission being requested from “A Monte Carlo-Adjusted Goodness-of-Fit Test for Parametric
Models Describing Spatial Point Patterns” by Ngoc Anh Dao and Marc G. Genton, 2014. Journal of Computational
and Graphical Statistics, 23:2, pages 497 - 517, Copyright 2021 by Taylor & Francis Academic Journals.
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cates clustering, except for distances shorter than 0.0044. The empirical K-function significantly

signals slight clustering as it lies completely above the one of the CSR, except for distances shorter

than 0.0047. At this distance, the behavior of this dataset and that of the reference processes seem

to be similar because the biggest discrepancy is less than 10−4. While the G- and F -functions

are believed to be “short-sighted” as they describe the distances to nearest neighbors of reference

events or points and say little or nothing about the spatial dependence of the events beyond the near-

est neighbor [Illian et al., 2008, Sec. 4.3.1], the K-function can be an effective summary of spatial

dependence over a wide range of scales [Cressie, 1993, Sec. 8.4.3]. Thus, I ascribe clustering to

this dataset due to the plots of the K-function. I consider a Matérn cluster process [Illian et al.,

2008] and a Thomas process as reasonable models because they are representatives of processes

with homogeneous clustered patterns.

Assuming that the pattern comes from a Matérn cluster process [Møller and Waagepetersen,

2003], an homogeneous Poisson point process with intensity κ is generated to obtain the “par-

ent” points. Each parent point is replaced by a random cluster of “children” points that are

Poisson distributed with intensity µ. The positions of the children points are placed indepen-

dently and uniformly inside a disc of radius R centered at the parent point. Neither likelihood

nor pseudo-likelihood is available, but the K-function is K(h) = πh2 + s(h){h/(2R)}/κ, where

s(h) = 2+(1/π)
{

(8h2 − 4) arccos(h)− 2 arcsin(h) + 4h
√

(1− h2)3 − 6h
√

1− h2
}

for h ≤ 1,

and s(h) = 1 for h > 1. The MCM-K provides the estimate (κ̂, R̂, µ̂) = (132.996/{22m ×

22m}, 3.482m, 1.556). The AGOF-G and -F tests give the p̂’s of 0.054, 0.634 and α̂∗’s of 0.123,

0.449, respectively. The AGOF-G test does not support the fit as p̂ < α̂∗ (0.023 < 0.123).

However, the AGOF-F test supports the good fit of the Matérn cluster model because p̂ > α̂∗

(0.634 > 0.449).

Now, suppose the pattern comes from a Thomas process, where the MCM-K provides the

estimate (κ̂, σ̂, µ̂) = (111.455/{22m× 22m}, 2.099m, 1.857). The AGOF-G and -F tests give p̂’s

of 0.044, 0.761 and α̂∗’s of 0.115, 0.620, respectively. The AGOF-G test does not support the fit

as p̂ < α̂∗ (0.044 < 0.115). However, the AGOF-F supports the fit of the Thomas process because
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Figure 2.6: Study of the summary characteristics based on the G- and F -functions and second-
order characteristic based on the K-function of the Phlebocarya filifolia plants. Left column:
complete domain; Right column: smaller domain. The empirical K-function in dashed curve
indicates slightly clustering.?

?Reprinted with permission being requested from “A Monte Carlo-Adjusted Goodness-of-Fit Test for Parametric
Models Describing Spatial Point Patterns” by Ngoc Anh Dao and Marc G. Genton, 2014. Journal of Computational
and Graphical Statistics, 23:2, pages 497 - 517, Copyright 2021 by Taylor & Francis Academic Journals.
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p̂ > α̂∗ (0.761 > 0.620).

I think that the AGOF-G tests reject the fits of the Matérn cluster and the Thomas processes

because the G-function in Figure 2.6 indicates, on the most part, clustering, but it suggests inhi-

bition on distances, h, less than 0.0044. Thus, I suspect that a fit of any clustered or inhibitory

model would unlikely gain support by the AGOF-G test. Overall, I would support either the fit

of the Matérn cluster or the Thomas process because the AGOF-F test in each case supports the

fit and the plot of the empirical K-function significantly indicates slight clustering. This finding

is in agreement with the conclusion made by Illian et al. [2008, Example 7.2]. One might under-

stand the propagation mechanism of Phlebocarya filifolia plants better: there is indeed clustering,

although just slightly. One might also prefer a Thomas to a Matérn cluster process as the Thomas

process models more “children” points at closer distances to parent points; this characteristic might

be more natural for forest data.

2.4.2 Amacrine Cells

The data displayed in Figure 2.5 (right) show the bivariate pattern of amacrine cells within the

retina of a rabbit. Interest lies in distinguishing between two developmental hypotheses in studying

the retinas of rabbits. The observation window for the data is the rectangle (0, 1.62) × (0, 1)

according to Diggle [2003]. The two types of cells are responses to a light being switched on and

off. The separate layer hypothesis is that the on and off cells are initially formed in two separate

layers that later fuse to form a mature retina. The single layer hypothesis is that the two types of

cells are initially undifferentiated in a single layer and acquire their separate functions at a later

stage. Via a Monte Carlo test of independence, Diggle [2003] failed to reject the on and off cells

being independent processes, supporting the separate layer hypothesis [Diggle, 2003, Sec. 4.7].

To answer whether they would fuse to form a mature retina, one might consider fitting a statistical

model to one and run a GOF test on the other dataset.

Diggle [2003, Sec. 4.7] showed that these processes have very similar second-order properties

including inhibitory behaviors at small distances. Subsequently, a model is fitted to the on cells

only and the off cells are reserved for a GOF assessment. A pairwise interaction point process, i.e.,
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a Markov point process, was chosen due to the inhibitory behavior at small distances, together with

the absence of any obvious longer-range heterogeneity or other form of aggregation. Ripley [1977]

formalized the class of pairwise interaction processes, f(X) = νβn
∏

i

∏
j 6=i d{‖xi− xj‖}, where

ν is the normalizing constant, β reflects the intensity of the process, d(h) is non-negative for all

h > 0 and the product is over all pairs of distinct points in the SPP, X . The parametric model with

the interaction function for amacrine cells is taken from Diggle and Gratton [1984]:

d(h) =


0, h < δ,

{(h− δ)/(ρ− δ)}κ, δ ≤ h ≤ ρ,

1, h > ρ.

The distance from δ to ρ can be interpreted as an interaction distance. The parameters δ, ρ, and κ

are nonnegative, and δ < ρ. The strength of inhibition increases with κ. For κ = 0, the model is a

hard-core process with radius δ, whereas for κ =∞ it has radius ρ.

Diggle [2003, Sec. 7.2] obtained (δ̂, ρ̂, κ̂) = (0.020, 0.12, 4.90) from the on cells via the MPL

estimation. Then, to assess the GOF to the off cells, a traditional GOF-G test and a traditional

GOF-F test were employed. The p-values were reported to be 0.01 and 0.37, respectively. Since

these two tests give opposite conclusions with respect to any commonly used nominal level, Diggle

[2003] was then motivated to obtain different estimates (δ̂, ρ̂, κ̂) = (0.016, 0.12, 1.96) via AML

estimation. Diggle [2003, Figure. 7.7] showed that there is agreement between the F -function of

the off cells and its corresponding envelopes. However, the GOF-G test still shows a poor fit of the

pairwise interaction point process to the off cells. Diggle [2003] did not give a clear evaluation of

the GOF for the amacrine cells data.

I fit the pairwise interaction process to the off cells dataset (training set) and obtained estimates

of δ, ρ via the MPPL, and of κ via the AML or the MPL estimation. Then I ran AGOF-G, -F , and

-K tests. If they concluded a good fit, these parameter estimates were used for the PGOF-G, -F ,

-K tests applied to the on cells data (validation set).
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Via MPPL and AML estimation I obtained the estimates (0.015, 0.11, 3.435) from the off cells

dataset, and (0.026, 0.28, 1.083) from the on cells dataset for (δ, ρ, κ). Due to a very high compu-

tational intensity, I used n = 50 for the AGOF-G, -F , and -K tests, which provided p-values of

0.868, 0.647, 0.092 and α̂∗ = 0.022, 0, 0.091, respectively. All AGOF tests indicated a good fit of

the pairwise interaction process to the off cells dataset because all p̂’s are greater than the corre-

sponding α̂∗’s. Then I used the estimate of the off cells dataset as the parameter for the pairwise

interaction process to fit to the on cells dataset. The PGOF-G, -F , and -K tests provided p-values

of 0.200, 0.519 and 0.340, which indicated a good fit because the p̂’s were greater than α = 0.05.

The AGOF tests drew the same conclusions as the PGOF tests as the p̂’s were greater than the

corresponding α̂∗ = 0.032, 0.061, 0.191.

Via MPPL and MPL estimation, I obtained the estimates (0.015, 0.11, 2.44) from the off cells

dataset, and (0.026, 0.28, 1.062) from the on cells dataset for (δ, ρ, κ). The AGOF-G, -F , and -

K tests provided p̂’s of 0.203, 0.011, 0.478 and α̂∗ = 0.015, 0.052, 0.052 respectively. Only the

AGOF-G and AGOF-K tests indicated a good fit of the pairwise interaction process to the off cells

dataset because only their p̂’s were greater than the corresponding α̂∗’s. I could have stopped here,

but for curiosity I proceeded to run PGOF tests using the estimate of the off cells dataset as the

parameter for the pairwise interaction process to fit to the on cells dataset. The PGOF-G, -F , and

-K test tests provided p-values of 0.685, 0.092 and 0.606, which indicated a good fit because the

p̂’s were greater than α = 0.05. The AGOF tests drew the same conclusions as the PGOF tests as

the p̂’s were greater than the corresponding α̂∗ = 0.050, 0.050, 0.174.

The conclusions of the AGOF-F tests for the fit of the off cells dataset differed, but the con-

clusions of the PGOF and AGOF tests for the fit of the on cells dataset agreed. Since the AML

estimators had better statistical properties [Huang and Ogata, 1999], I relied on the finding using

AML estimates and concluded that the separate layer hypothesis holds [Diggle, 2003, Sec. 4.7],

i.e., these two independent processes later fuse to form a mature retina.
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2.5 Discussion

This chapter discussed a method using nested Monte Carlo simulations to obtain the estimated

adjusted level, α̂∗, corresponding to a prespecified nominal level, α. I rejected the null model if

p̂ ≤ α̂∗, where p̂ is the estimated p-value. The nested Monte Carlo method was, however, com-

putationally intensive, and I now discuss two techniques to improve the computational complexity,

the first of which also estimates α∗ more efficiently.

The first technique uses the idea of interpolation. Due to the computational intensity, I reduce

the number of replications of Monte Carlo simulations, n, and compensate that by estimating the

new ui and ui,j with interpolation techniques, such as kernel density estimation. From the Monte

Carlo simulations in Sec. 2.2, I obtain two sets, S = {u1, . . . , un} and S∗ = {ui,j, i, j = 1, . . . , n}.

Via kernel density estimation, I estimate the new ui’s augmenting S to Saug = {u1, u2, . . . , un,

û1, û2, . . . , ûτ} to obtain a better p̂. Analogously, I estimate uij’s augmenting S∗ to S∗aug =

{u1,2, . . . , u1,n, û1,1, . . . , û1,τ ;u2,2, . . . , u2,n, û2,1, . . . , û2,τ ; . . . ;un,2, . . . , un,n, ûn,1, . . . , ûn,τ} to ob-

tain better p̂1, . . . , p̂n, which leads to estimating a better α̂∗. The reason is that α̂∗ is the α-quantile

of p̂1, . . . , p̂n as formalized in (2.11). Here, the quantities ûi’s and ûi,j’s denote the new estimated

pseudo-statistics, and τ−1 specifies the interpolation factor. Using Taylor expansions, I can show

that the new p̂ is similar to the one in Sec. 2.2 minus a term of order, O(τ−1). Since τ−1 can be

chosen arbitrarily small, this term is negligible and the new p̂ possesses the same properties as dis-

cussed in Sec. 2.2. The simulation studies use CSR, sine, Strauss, and Thomas processes defined

in Sec. 2.3.1 and n = 20 and τ = 100. Table 2.5 demonstrates that interpolation techniques can

make the AGOF tests more accurate as the mean squared errors are smaller in 15 out of 22 studied

cases. The strength of interpolation might be increased or optimized by a different choice of τ .

The second technique considers the characteristics of sequential Monte Carlo p-values. Besag

and Clifford [1991] introduced several ways of calculating exact Monte Carlo p-values by sequen-

tial sampling. Instead of fixing the sample size, n, sampling is continued until a prespecified

number, H , of values larger than the value u of the test statistic, U , has been observed. Let l be

the value of the random sample size, L, at termination. Besag and Clifford [1991] showed that a
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Table 2.5: To nominal level α, the empirical level α̂ = α̂AGOF using τ = 100, n = 20 and
M = 5000 is shown. α∗ =

∑M
k=1 α̂

∗
k/M . MSE is the mean squared error. The “Standard”

columns display empirical levels from the AGOF tests from Sec. 2.2.3. The “Interpolation”
columns display empirical levels from the AGOF tests incorporating interpolation as described in
Sec. 2.5. Notations -G, -F , and -K label computations of the GOF test statistics using the G-, F -,
K-functions, respectively. The CSR, sine, Strauss, Thomas processes are defined in Sec. 2.3.1.?

α = 0.05 α = 0.10
Standard Interpolation Standard Interpolation

α∗ α̂ MSE α∗ α̂ MSE α∗ α̂ MSE α∗ α̂ MSE
CSR-G .029 .051 .103 .025 .046 .254 .077 .110 1.117 0.72 .098 .210
CSR-F .027 .055 .334 .023 .046 .233 .072 .115 2.576 .069 .103 .263
CSR-K .028 .057 .656 .023 .049 .100 .074 .115 2.394 .069 .099 .183
Sine-G .058 .064 2.024 .052 .052 .279 .119 .116 2.765 .121 .103 .287
Sine-F .109 .049 .103 .116 .044 .444 .192 .102 .223 .224 .095 .463
Sine-K .031 .056 .419 .027 .048 .124 .079 .119 3.974 .078 .103 .287
Strauss-G .088 .076 7.005 .086 .066 2.683 .169 .134 12.066 .182 .122 5.323
Strauss-F .062 .062 1.605 .060 .054 .246 .127 .112 1.591 .136 .099 .197
Strauss-K .036 .053 .217 .031 .043 .519 .088 .107 .626 .086 .092 .839
Thomas-G .096 .045 .317 .100 .044 .493 .172 .091 1.048 .196 .092 .745
Thomas-F .046 .051 .107 .044 .043 .545 .106 .105 .399 .115 .094 .485

?Reprinted with permission being requested from “A Monte Carlo-Adjusted Goodness-of-Fit Test for Parametric
Models Describing Spatial Point Patterns” by Ngoc Anh Dao and Marc G. Genton, 2014. Journal of Computational
and Graphical Statistics, 23:2, pages 497 - 517, Copyright 2021 by Taylor & Francis Academic Journals.
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p-value equal to H/l has properties similar to those obtained by sampling with a fixed sample size,

n. With this method, Monte Carlo simulations may become less computationally intensive as they

can terminate much earlier.

Closing up this chapter, I continue to contribute to statistical inference in the next chapter by

introducing a new family of clustered processes.
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3. SKEW-ELLIPTICAL CLUSTER PROCESSES?

3.1 Chapter Overview

The Thomas process (TP) [Thomas, 1949] is very important in the field of spatial point pro-

cesses because it has the intrinsic statistical ability to model propagation or clustering in nature. In

particular, the TP is widely used in astronomy, biology and forestry, to name a few areas. In this

chapter, I introduce a class of skew-elliptical cluster processes, which includes the (traditional) TP

and offers the possibility of modeling the ellipticity, skewness, and, in some situations, information

in the tail of the distribution of the “children” events. These characteristics would otherwise remain

unknown if the (traditional) TP were used to model the data.

The TP is a special case of the Neymann–Scott cluster point process [Neyman and Scott, 1952],

which is a specific type of homogeneous, independent clustering applied to a stationary Poisson

process. Neyman and Scott [1952, 1958] and Neyman et al. [1953] used this process to model

patterns formed by the locations of galaxies in space. Neyman and Scott [1972] gave further

examples of such processes to model the distributions of insect larvae in fields and the geometry

of bombing patterns. Penttinen et al. [1992] and Tanaka et al. [2008] used Neymann–Scott cluster

point processes to model patterns of trees such as pines in natural forests. Similarly, Illian et al.

[2008] used the TP to model 207 Phlebocarya filifolia plants and Diggle [2003, Chap. 6.3] used

the TP to model 62 redwood seedlings.

I now look at how Neymann–Scott cluster point processes and the TP are defined. A Neymann–

Scott cluster point process is constructed by letting unobservable, so-called “parent” events form

a stationary Poisson process with intensity κ. The “children” events in a cluster are random in

number and scattered independently and with identical distribution around each “parent” event.

To construct a TP, a complete spatial randomness (CSR) with intensity κ is generated to obtain

?Reprinted with permission from “Skew-Elliptical Cluster Processes” by Ngoc Anh Dao and Marc G. Genton
in I. Ghosh, N. Balakrishnan, and H. Ng, editors, Advances in Statistics - Theory and Applications: Honoring the
Contributions of Barry C. Arnold in Statistical Science, pages 365-393. Springer, New York, 2021. Copyright 2021
by Copyright Clearance Center’s RightsLink.
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the “parent” events. Each “parent” event is replaced by a random cluster of “children” events, the

number of which is Poisson distributed with intensity µ. The positions of the “children” events

are distributed around the “parent” event according to a bivariate normal distribution with cir-

cular covariance matrix σ2I2, where I2 is the 2 × 2 identity matrix [Thomas, 1949, Møller and

Waagepetersen, 2003]. Stoyan and Stoyan [2006] introduced a generalized TP with small and large

clusters and Tanaka et al. [2008] proposed a generalized Thomas model of type A, in which the

probability density function (pdf) of the distance between the “children” events and their “parent”

event corresponds to a mixture of distances from two Gaussian distributions with two different

dispersion parameters.

Another generalizing work on TP was done by Castelloe [1998] by extending an isotropic bi-

variate normal offspring distribution to the case of a general bivariate normal offspring distribution.

The extended process is no longer isotropic but anisotropic. The pair correlation function (pcf),

a concept borrowed from physics, physical chemistry and statistical mechanics, is also commonly

called a radial distribution function [McQuarrie, 1976, Chap. 13] and it describes how the den-

sity of points changes with the distance from a reference point. For the aforementioned processes,

it is complicated and analytically incomplete. For the estimation, Castelloe [1998] considered a

Bayesian approach. Further studies on extension of TP was done by Møller and Toftaker [2014]

where anisotropic spatial point processes were introduced. There, Cox, shot noise Cox and log

Gaussian Cox processes having elliptical pcf were studied. In this context, the TP was presented as

a limiting case of the Whittle-Matérn shot noise Cox process. Møller and Toftaker [2014] applied

a more sophisticated MCMC algorithm to the anisotropic cluster process proposed by Castelloe

[1998]. However, the estimation still remains complicated and computationally intensive [Møller

and Toftaker, 2014, p. 426].

Unlike Stoyan and Stoyan [2006] and Tanaka et al. [2008], but like Castelloe [1998] I generalize

the TP in my approach not by introducing the pcf first but by presenting the general distribution of

the “children” events. In particular, I impose a unified skew-elliptical (SUE) distribution [Arellano-

Valle and Genton, 2010a] on them. The SUE family is a member of skewed multivariate models
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[Arnold and Beaver, 2000] among which there are some other members with certain characteristics

such as skewed multivariate models related to hidden truncation [Arnold and Beaver, 2002] and

multivariate skew-normal distributions [Azzalini and Dalla Valle, 1996] to name a few. Although

the SUE family includes a wide range of continuous distributions, I focus on only two representa-

tives of this family here. They are the unified skew-normal (SUN) distribution [Arellano-Valle and

Azzalini, 2006] and the extended skew-t (EST) distribution [Arellano-Valle and Genton, 2010b].

The reason for my focus on these two distributions is that, in contrast to other continuous distri-

butions in the SUE family, their probabilistic properties have previously been intensively studied.

With these results I can therefore carry out explicit theoretical derivations for approximation. If the

“children” events are SUN distributed, then the process would be named a skew-elliptical-normal

cluster process (CP). If they are EST distributed, then it would be called a skew-elliptical-t CP.

These two classes of processes together give us skew-elliptical CP. It is obvious that a TP is simply

a special case of the skew-elliptical-normal CP. Due to its circular shape of the “children” clusters

induced by the dispersion matrix σ2I2 of the bivariate normal distribution, a TP can also be called

a circular-normal CP.

The introduction of the skew-elliptical-normal CP and the skew-elliptical-t CP is natural be-

cause datasets sometimes have non-circular patterns which need to be statistically modeled. If

wind or the slope of a location caused the positions of the “children” events to be skew-elliptical

distributed, the circular-normal CP (TP) would apparently be inferior to a skew-elliptical-normal or

skew-elliptical-t CP. Without going into great details about these models, I motivate my approach

by showing graphical representations of “children” events of skew-elliptical-normal CPs in Fig-

ure 3.1 and skew-elliptical-t CPs in Figure 3.2. The spatial point patterns (SPPs) are generated via

R [R Core Team, 2019] using the same seed, 999, and all have κ = 5 and µ = 25. The meanings

of the dispersion parameters, σ1, σ2, and the skewness parameters, α or αY, of the skew-elliptical

CPs are presented in Sections 3.2 and 3.3. In each of the first rows of Figures 3.1 and 3.2, the

patterns of a circular-normal and a circular-t CP (left) have clusters in a circular shape induced by

the isotropic dispersion matrix, σ2I2, of the bivariate normal and t-distributions of the “children”

37



events. The patterns of an elliptical-normal and an elliptical-t CP (middle) have elliptically shaped

clusters with the vertical dispersion double the horizontal one induced by the anisotropic disper-

sion matrix diag(σ2
1, σ

2
2), with σ2 = 2σ1, of the bivariate normal and t-distribution of the “children”

events. Castelloe [1998] dealt with the elliptical-normal CP. The patterns of a skew-normal and a

skew-t CP (right) have clusters which are relocated further away from the diagonal reference line

and skewed toward the upper-right corner. This shape is induced by the isotropic dispersion matrix,

σ2I2, the skewness parameter, α = α(1, 1)T , of the bivariate skew-normal distribution according

to Azzalini and Capitano [1999] and the skewness parameter, αY (Section 3.3), of the bivariate

EST distribution according to Arellano-Valle and Genton [2010b]. The simulated patterns of skew-

elliptical-t CPs with four degrees of freedom (df) in the first row of Figure 3.2 have more dispersed

clusters than do those of the skew-elliptical-normal CPs, in Figure 3.1. This distinction is clearer

in the second rows where the corresponding contour plots of the distribution of the “children”

events are shown. In general, regardless of the df, the “children” events of skew-elliptical-t CPs

are more dispersed than those of skew-elliptical-normal CP. The second rows also show the shapes

of the clusters: circular (left), elliptical (middle), and skewed or squeezed (right), indicating that

the “children” events are not symmetrically distributed around the “parent” event, but have fewer

events in one particular quarter. In this example, the lower left quarter has fewer events, compared

with the number of events in the other three quarters.

The theoretical summary descriptions, in particular pcfs, of the skew-elliptical CP’s, except

for the TP, are all analytical incomplete. As Castelloe [1998] and Møller and Toftaker [2014] I

face the challenge in estimation using the Bayesian approach. However, if I relax the anisotropy

condition to the assumption of isotropy, approximation of the pcf is analytical complete. Then,

I make use of the minimum contrast method (MCM) for estimation because it is computationally

easy, allowing quick exploration of a range of possible models. An estimation via MCM minimizes

the discrepancy between the approximating pcf and the empirical pcf of the process. In my case,

the minimizer of the discrepancy is the estimator of the parameters of the approximating pcf, but

it is also good enough to be considered as the estimator of true parameters.
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Figure 3.1: To generate spatial point patterns (SPPs), κ = 5, µ = 25 and the same random seed
were used. The first row shows a pattern of a circular-normal CP (TP) (left) with “children” events,
Y, being bivariate normal distributed with the isotropic dispersion matrix σ2I2, σ2 = 0.052; one
of an elliptical-normal CP (middle) with Y being bivariate normal distributed with the anisotropic
dispersion matrix with σ2

1 = 0.052, σ2
2 = 0.102 in the diagonal; one of a skew-normal CP (right)

with Y being bivariate skew-normal distributed with the isotropic dispersion matrix σ2I2, σ2 =
.052, and skewness parameter α = 2(1, 1)T . The parameters are described in Section 3.2. The
diagonal line serves as a reference to better identify the difference in the cluster shape of Y. In
the corresponding column, the second row shows the contour plots of the distribution of Y of the
CPs, the SPPs of which are shown in the first row: circular (black), elliptical (blue), skewed (red).
The four contour levels from the most outer to the most inner level correspond to the 95th-, 75th-,
50th- and 10th- percentile of the distribution of Y. The origin in the second row serves as an
unobservable “parent” event. The third row shows the empirical pcf (solid) of the observed SPP
from the corresponding first row, the theoretical pcf (dashed) of each model, and the theoretical
pcf (dotted) of the circular-normal CP (TP) as a reference.?

?Reprinted with permission from “Skew-Elliptical Cluster Processes” by Ngoc Anh Dao and Marc G. Genton
in I. Ghosh, N. Balakrishnan, and H. Ng, editors, Advances in Statistics - Theory and Applications: Honoring the
Contributions of Barry C. Arnold in Statistical Science, pages 365-393. Springer, New York, 2021. Copyright 2021
by Copyright Clearance Center’s RightsLink.
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Figure 3.2: As in Figure 3.1, to generate SPPs of skew-elliptical-t CPs with four df (ν = 4),
κ = 5, µ = 25 and the same random seed were used. The first row shows a pattern of a circular-
t CP (left) with “children” events, Y, being bivariate t-distributed with dispersion matrix σ2I2

with σ2 = 0.052, one of a elliptical-t CP (middle) with σ2
1 = 0.052, σ2

2 = 0.102, and one of a
skew-t CP (right) with τ = 1, σ2 = 0.052, αTY = (α1/

√
1 + α2

1 + α2
2, α2/

√
1 + α2

1 + α2
2) =

(0.7067, 0.7067), where αT = (α1, α2) = (20, 20). The roles of these parameters are described
in Section 3.3. The diagonal line serves as a reference to better identify the difference in the
cluster shape of Y. In the corresponding column, the second row shows the contour plots of
the distribution of Y of the CPs, the SPPs of which are shown in the first row: circular (black),
elliptical (blue), skewed (red). The four contour levels from the most outer to the most inner level
correspond to the 95th-, 75th-, 50th- and 10th- percentile of the distribution of Y. The origin in
the second row serves as an unobservable “parent” event. The third row shows the empirical pcf
(solid) of the observed SPP from the corresponding first row, the theoretical pcf (dashed) of each
model, and the theoretical pcf (dotted) of the circular-normal CP (TP) as a reference.?

?Reprinted with permission from “Skew-Elliptical Cluster Processes” by Ngoc Anh Dao and Marc G. Genton
in I. Ghosh, N. Balakrishnan, and H. Ng, editors, Advances in Statistics - Theory and Applications: Honoring the
Contributions of Barry C. Arnold in Statistical Science, pages 365-393. Springer, New York, 2021. Copyright 2021
by Copyright Clearance Center’s RightsLink.
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This chapter is organized with the following structure. Sections 3.2 and 3.3 present the pcfs

of the skew-elliptical-normal and the corresponding skew-elliptical-t CPs. Some analytical deriva-

tions were carried out with Mathematica [Wolfram Research, 2020]. The intermediate deriva-

tion steps are given in the Appendix. Section 3.4 demonstrates the performance of parameter

estimation via the MCM using the function optim available in R [R Core Team, 2019]. Sec-

tion 3.5 provides a data application of these skew-elliptical CPs on a fraction of the dataset called

fullredwood available in the R-library spatstat [Baddeley and Turner, 2005a, Baddeley

et al., 2015]. Finally, Section 3.6 introduces alternative probability distributions to extend my

work on TP, suggests to generalize a similar clustered spatial point process, and raises a possible

exploration for an adjustment of the MCM.

3.2 Skew-Elliptical-Normal Cluster Processes

3.2.1 Distributions of “Children” Events

Let Y, the random vector representing the position of the “children” event in a cluster, be

bivariate skew-normal distributed with skewness parameter vectorα = (α1, α2)T , location param-

eter −ωδ
√

2/π where δ = α/
√

1 +αTα, dispersion matrix Ω = diag(σ2
1, σ

2
2) with σ1 > 0,

σ2 > 0, and ω = diag(Ω1/2). In short, Y ∼ SN2(−ωδ
√

2/π,Ω,α). In particular, its pdf is

fY(y) = 2φ2(y +ωδ
√

2/π; Ω) Φ{αTω−1(y +ωδ
√

2/π)}, where φ(·), Φ(·) denote the pdf and

cumulative distribution function (cdf) of the univariate standard normal distribution, φ2(·; ) and

Φ2(·; ) the corresponding functions of the bivariate normal distribution and y = (y1, y2)T [Azza-

lini and Dalla Valle, 1996, Arellano-Valle and Azzalini, 2006]. Then E(Y) = 0 and Var(Y) =

Ω − 2
π
ωδδTω [Azzalini and Capitano, 1999, Gupta et al., 2013]. Then Y is also a unified skew-

normal (SUN) random vector [Arellano-Valle and Azzalini, 2006, Azzalini and Capitano, 2014]. It

is important to state here that the SUN distribution has the additive property. In general, the SUN

distribution introduced by Arellano-Valle and Azzalini [2006] generalizes the parametrization of

several variants of the original multivariate skew-normal distribution developed by Azzalini and

Dalla Valle [1996]. To name a few of these variants, there are the closed skew-normal of González-
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Farías et al. [2004], the hierarchical skew-normal of Liseo and Loperfido [2003], the fundamental

skew-normal of Arellano-Valle and Genton [2005], and the multivariate skew-normal of Gupta

et al. [2004].

It is advantageous to use the notation according to Azzalini and Capitano [2014]: Y has distri-

bution denoted by SUN2,1(−ωδ
√

2/π,Ω, δ, 0, 1). For X
d
= Y1−Y2, where Y1 and Y2 are two in-

dependent “children” events within a cluster, due to the additive property, X ∼ SUN2,2 (0, 2Ω,∆, 0, I2)

[Azzalini and Capitano, 2014, Ch. 7], where ∆ = δ/
√

2 (1, −1), i.e., the pdf of X is fX(x) =

4φ2 (x; 2Ω) Φ2(∆Tω−1x/
√

2; I2 −∆T∆). Explicitly,

fX(x) =
exp

(
− σ2

2x
2
1+σ2

1x
2
2

4σ2
1σ

2
2

)
πσ1σ2

Φ2



(
α1x1
σ1

+ α2x2
σ2

) 1

−1


2
√

1 + α2
1 + α2

2

;

2 + α2
1 + α2

2 α2
1 + α2

2

α2
1 + α2

2 2 + α2
1 + α2

2


2(1 + α2

1 + α2
2)


,

where x = (x1, x2)T . Note that the distribution of X shown above is centrally symmetric. The

reason for the symmetry is that Y1 and Y2 are identically distributed. Hence, X = Y1 −Y2 and

−X = Y2 −Y1 = −(Y1 −Y2) have the same distribution.

3.2.2 Approximation of the Pair Correlation Function

The usual way of defining the pcf of an anisotropic spatial point process is g(u,v) = λ(2)(u,v)/[λ(u)λ(v)]

where λ(2)(u,v) is the second-order product density and λ is the intensity function. In my setting,

g is anisotropic but translation invariant, g(u,v) = g(v − u), I obtain

K(r) =

∫
R2

1[‖h‖≤r]g(h)dh,

where r > 0 and 1[‖h‖≤r] is an indicator function. I will then approximate g by gd where the

subscript d stands for distance and where gd will be an isotropic function, i.e., gd(r) with r = ‖h‖.

Then gd(r) = K ′d(r)/(2πr) where K ′d(r) = ∂Kd(r)/∂r.
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For MCM, the most popular choice for theoretical summary description is the second-order

characteristic known as Ripley’s K-function [Ripley, 1976]. The information from Ripley’s K-

function is the expected number of events found within a distance r from an event of interest,

K(r) = E[N{b(o, r)}]/λ, where N denotes the number of events within a disc, b(o, r), of radius

r ≥ 0 at the event of interest o, and λ denotes the global intensity of the process. However,

according to Illian et al. [2008, Chap. 4.3.1], the pcf offers the best statistical way to represent

the distributional information contained in the point patterns. Additionally, the advantage of using

gd here is that while most approximating pcfs gd are analytically complete, their corresponding

Kd-functions are not. I therefore focus on deriving gd and provide Kd only if they are analytically

complete.

Under the relaxed assumption of isotropy, to derive Kd and gd, I calculate the distribution

of the Euclidean distance, or lag, R =
√

(Y1 −Y2)T (Y1 −Y2) =
√

XTX, where the Yi’s

represent two independent “children” events within a cluster. They are independently and identi-

cally distributed bivariate random vectors and R is the random variable representing the lag be-

tween two randomly distributed “children” events in a cluster under the assumption of isotropy.

I first derive its cdf, Fd(r), since Kd(r) = πr2 + Fd(r)/κ [Cressie, 1993]. Then the pcf is

gd(r) = 1 + F ′d(r)/(2πκr) = 1 + fd(r)/(2πκr), where fd(r) is the pdf of R.

I consider the following transformation with R ≥ 0, 0 ≤ Θ ≤ 2π, X = (X1, X2)T ,

X1 = R cos Θ, X2 = R sin Θ, and (3.1)

R =
√

XTX =
√
X2

1 +X2
2 , Θ = arctan(X2/X1).

The determinant of the Jacobian matrix is |∂(r, θ)/∂(x1, x2)| = 1/r. Thus, fR,Θ(r, θ) = rfX1,X2(r cos θ, r sin θ),

fd(r) =
∫ 2π

0
fR,Θ(r, θ)dθ, and Fd(r) =

∫ r
0
fd(t)dt. From (3.1), the joint distribution, fR,Θ(r, θ), is
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derived in (B.1). The pdf of R follows easily and, from gd(r) = 1 + fd(r)/(2πκr), the pcf is

gd(r) = 1 +

∫ 2π

0

exp
(
− σ2

2r
2 cos2 θ+σ2

1r
2 sin2 θ

4σ2
1σ

2
2

)
2π2κσ1σ2

× Φ2



(
α1r cos θ

σ1
+ α2r sin θ

σ2

) 1

−1


2
√

1 + α2
1 + α2

2

;

2 + α2
1 + α2

2 α2
1 + α2

2

α2
1 + α2

2 2 + α2
1 + α2

2


2(1 + α2

1 + α2
2)


dθ. (3.2)

For α 6= 0, the pcf is analytically incomplete since the integration over the analytically incomplete

function, Φ2(·; ), is analytically incomplete. In particular, the pcf becomes analytically complete if

α1 = α2 = 0, i.e., Φ2(·; ) = Φ2

{
(0, 0)T ; I2

}
= 1/4.

3.2.3 The Elliptical-Normal Cluster Process

Now assume that σ1 6= σ2 and α = 0. That is, Y is bivariate normal distributed, i.e., Y ∼

N2(0,Ω). Here, the distribution of the “children” events is elliptical around the “parent” event and

the skewness parameter, α, is not present. Then, from (3.2), the approximating pcf is

gd(r) = 1 +
1

4πκσ1σ2

exp

{
− (σ2

1 + σ2
2)r2

8σ2
1σ

2
2

}
BesselI0

{
(σ2

1 − σ2
2)r2

8σ2
1σ

2
2

}
,

where BesselI0(x) =
∑∞

n=0(x/2)2n/(n!)2 is a modified Bessel function of the first kind. A differ-

ent parametrization, σ1 ≡ σ and σ2 = cσσ with cσ > 0, can be beneficial in parameter estimation

with respect to identifiability because I no longer have two dispersion parameters as above but have

one dispersion and its scaling parameter instead,

gd(r) = 1 +
1

4πκcσσ2
exp

{
− (1 + c2

σ)r2

8c2
σσ

2

}
BesselI0

{
(1− c2

σ)r2

8c2
σσ

2

}
.

Kd of the elliptical-normal CP is not analytically complete. I estimate κ, σ2, and c2
σ using gd via

the MCM.
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As mentioned in Section 3.1, Stoyan and Stoyan [2006] and Tanaka et al. [2008] introduced

different models with more than one dispersion parameters to generalize the (traditional) TP. For

comparison, I provide the pdf of R of my model in (B.2) and (B.3) in the Appendix.

3.2.4 The Circular-Normal Cluster Process

Assume that α = 0 and σ1 = σ2 = σ for the distribution of Y. That is, “children” events

are distributed symmetrically circular around their “parent” event. The corresponding process is

the traditional TP and is isotropic. For completeness, fd(r) = fR(r) is provided in (B.4) in the

Appendix. From (3.2), the true pcf is

g(r) = 1 +
exp{−r2/(4σ2)}

4πκσ2
. (3.3)

The trueK-function can be computed asK(r) =
∫ r

0
2πt g(t) dt = πr2+[1−exp{−r2/(4σ2)}]/κ.

This formula of the K-function has been widely used prior to this work; e.g., it can be found in

Cressie [1993]. To estimate κ and σ2, the MCM can use either the pcf or the K-function.

3.2.5 The Skew-Normal Cluster Process

Let the distribution of Y be a special case of the SUN distribution mentioned earlier in Sec-

tion 3.2.1 with σ1 = σ2 = σ. For a scalar σ > 0 and a bivariate vector δ = α/
√

1 +αTα with

α = (α1, α2)T , assume that Y = −δσ
√

2/π+ δσV0 +σV1, where V0 and V1 are an independent

random variable and vector, respectively. Here, V0 follows the univariate standard normal distri-

bution truncated below 0 with E(V0) =
√

2/π, Var(V0) = 1 − 2/π, and V1 is bivariate normal

distributed, N2(0,Ψ), where

Ψ = I2 − δδT = I2 −ααT/(1 +αTα) =

1 + α2
2 −α1α2

−α1α2 1 + α2
1

 /(1 + α2
1 + α2

2)

is a correlation matrix. Under this setting, according to Arellano-Valle and Azzalini [2006, Sec.

2.1.], Y is bivariate SUN distributed, in particular E(Y) = 0, Var(Y) = σ2(I2 − 2/πδδT ). This
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distribution is purely skewed and does not have any elliptical property. For Y1 and Y2 representing

two independent positions of the “children” events in a cluster, X
d
= Y1 − Y2 has the pdf fX

in Section 3.2.1 with σ1 = σ2 = σ. Since it is centrally symmetric, I approximate it with a

N2

(
0, 2σ2(I2 − 2/πδδT )

)
distribution, i.e., bivariate normal with pdf

fX(x) =
1

2c0

√
π2c1c2 − 4α2

1α
2
2

exp

[
− π{π(c2x

2
1 + c1x

2
2) + 4α1α2x1x2}

2c0(π2c1c2 − 4α2
1α

2
2)

]
,

where c0 = 2σ2/(1 + α2
1 + α2

2), c1 = 1 + α2
1(1 − 2/π) + α2

2, and c2 = 1 + α2
1 + α2

2(1 − 2/π).

The joint distribution, fR,Θ(r, θ), is given in (B.5) in the Appendix. The pcf, g(r), is analytically

complete only in the following two cases. First, assume that α2
1 = α2

2, i.e., (i) α = α(1, 1)T , (ii)

α = α(−1,−1)T , (iii) α = α(1,−1)T , or (iv) α = α(−1, 1)T , for α > 0. Then, fd(r) is given in

(B.6) in the Appendix. Consequently, gd(r) is

gd(r) = 1 +

√
1 + 2α2

4κσ2
√
π{π(1 + 2α2)− 4α2}

exp

[
− {π + 2α2(π − 1)}r2

4σ2{π(1 + 2α2)− 4α2}

]
× BesselI0

[
α2r2

2σ2{π(1 + 2α2)− 4α2}

]
.

Second, suppose that (i) α = (0, α)T or (ii) α = (α, 0)T . Then, fd(r) is given in (B.7) in the

Appendix. Consequently, gd(r) is

gd(r) = 1 +
r(1 + α2)

4πκσ2
√

(1 + α2){1 + α2(1− 2/π)}
exp

[
− r2{1 + α2(1− 1/π)}

4σ2{1 + α2(1− 2/π)}

]
× BesselI0

[
α2r2

4πσ2{1 + α2(1− 2/π)}

]
.

Kd of the above scenarios are analytically incomplete. I estimate κ, σ2, and α2 via MCM using gd.

The complete determination of α results from choosing the optimal α̂ from the above possibilities

such that the cluster shape of simulated SPP can illustrate that of the observed SPP as best as

possible.

Remark 3. So far I have emphasized on presenting CPs having the approximating pcf gd as being
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analytically complete because they are advantageous in MCM. In practice, however, for CP having

only analytically incomplete pcfs or K-functions, the parameter estimation can still be carried out,

for example with a Bayesian approach but the computation is more intensive.

3.3 Skew-Elliptical-t Cluster Processes

3.3.1 General Scenario and Relaxing Independence

Let Y be the bivariate random vector representing the position of a “children” event in a cluster

and let (YT ,Y∗T )T be four-variate extended skew-t (EST) distributed, i.e., EST4(0, diag(Ω,Ω),

(αT ,αT )T , ν, τ) [Arellano-Valle and Genton, 2010b] with a 4 × 4 dispersion matrix diag(Ω,Ω),

four variate shape parameter (αT ,αT )T , ν df, and extension parameter τ ∈ R, where the 2 × 2

matrix Ω = diag(σ2
1, σ

2
2) and the bivariate vector αT = (α1, α2). According to Arellano-Valle

and Genton [2010b, Prop. 3], the marginal distribution of Y is also EST distributed: Y ∼

EST2(0,Ω,αY, ν, τY) where αY = α/
√

1 +αTα is termed as marginal shape parameter and

τY = τ/
√

1 +αTα is termed as marginal extension parameter. Note that (i) αY is not neces-

sary in the setting of skew-elliptical-normal CPs, because there α = αY and (ii) the statistical

characteristic of αY of a skew-t CP is equivalent to that of α of a skew-normal CP. Moreover, for

simplicity I have set the location parameter to zero but it could be adjusted to yield E(Y) = 0 with

the results of Section 2.3 in Arellano-Valle and Genton [2010b]. From Proposition 5 of the same

paper, I derive that X = Y −Y∗ ∼ EST2(0, 2Ω,0, ν, τ/
√

1 + 2αTα).

Although α is neither the shape parameter of the distribution of (YT ,Y∗T )T nor of Y, it is

important in the setting of skew-elliptical-t CPs. First, it contributes to the shape of the distribution

of (YT ,Y∗T )T and of Y; thus I know how the “children” events are distributed and know how the

process is constructed. Second, α, but not αY, appears in the formulas of the pcfs of skew-t CPs;

hence, I can use the theoretical pcf to estimate the parameter α and then compute αY. The task of

αY is to describe the shape of the marginal distribution of Y: the cluster shape of the process.

For independent and identically distributed children Yi,Yj with i 6= j in a cluster, Xtrue
d
=

Yi −Yj is not bivariate EST, unified skew-t, or bivariate t distributed. In fact, its distribution is
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unknown. The only sub-family of the skew-elliptical distributions that has the additive property

is the SUN family [Arellano-Valle and Genton, 2010b,a, González-Farías et al., 2004]. I chose to

approximate the distribution of Xtrue by X, i.e., Xtrue
d
≈ X ∼ EST2(0, 2Ω,0, ν, τ/

√
1 + 2αTα).

Note that the distribution of X loses the information aboutα of the distribution of Y if τ = 0. The

pdf of X is

fX(x) =

T1

{
τ√

1+2αTα

(
ν+2

ν+xTΩ−1x/2

)1/2

; ν + 2

}
2π|2Ω|1/2

(
1 + xTΩ−1x/2

ν

)(ν+2)/2

T1

(
τ√

1+2αTα
; ν

) ,

where T1(·; ν) denotes the cdf of the univariate t-distribution with ν degrees of freedom. The

explicit form of fX(x) is given in (B.8) and under the isotropy assumption, the joint distribution

function, fd,R,Θ(r, θ), is provided in (B.9). If α 6= 0 and σ1 6= σ2, the approximating pcf is

analytically incomplete:

gd(r) = 1 +
1

8π2κσ1σ2T1

{
τ√

1+2(α2
1+α2

2)
; ν

} (3.4)

×

∫ 2π

0

T1

[
τ√

1+2(α2
1+α2

2)

{
ν+2

ν+(r2 cos2 θ/σ2
1+r2 sin2 θ/σ2

2)/2

}1/2

; ν + 2

]
(

1 +
r2 cos2 θ/σ2

1+r2 sin2 θ/σ2
2

2ν

)(ν+2)/2
dθ.

For MCM, I use a sequence of ν. For each value of ν, I estimate the other parameters. Then I

choose the set of estimates and corresponding ν that provide the smallest discrepancy between the

approximating and the empirical pcfs.

3.3.2 The Skew-t Cluster Process

If α 6= 0 and σ1 = σ2, i.e., (YT ,Y∗T )T ∼ EST4(0, σ2I4, (α
T ,αT )T , ν, τ) [Arellano-Valle

and Genton, 2010b] and hence Y ∼ EST2(0, σ2I2,αY, ν, τY) where αY = α/
√

1 +αTα and

τY = τ/
√

1 +αTα, I obtain the following approximating pcf under isotropy assumption from
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(3.4):

gd(r) = 1 +

T1

[
τ√

1+2(α2
1+α2

2)

{
ν+2

ν+r2/(2σ2)

}1/2

; ν + 2

]
4πκσ2 T1

{
τ√

1+2(α2
1+α2

2)
; ν

}(
1 + r2

2νσ2

)(ν+2)/2
.

The previous formula has two parameters, α1 and α2, of the same role: they both contribute to the

skewness of the distribution of Y. A different parametrization, α1 = α and α2 = cαα with cα

being a real constant, can be useful for parameter estimation.

Kd of the skew-t CP is analytically incomplete. For the parameter estimation, I estimate κ, σ2,

α2 and c2
α via MCM using the pcf. Then, I can compute the estimates of αY,1 and αY,2, because

eventually I am interested in knowing the estimate of the skewness parameter of the skew-t CP,

which is αY, not α.

Remark 4. Recall that αY,i = αi/
√

1 + α2
1 + α2

2, i = 1, 2. Thus, they have absolute values less

than 1, i.e. |αY,1| < 1, |αY,2| < 1, although the absolute values of α1 and α2 can be large.

For |αY,1| = |αY,2|, their absolute values can be at most 1/
√

2 ≈ 0.7071. Consequently, only

skew-normal CPs with skewness parameters having absolute values smaller than 1/
√

2 can be

considered to be approximated by a skew-t CP with large df. A demonstration of this statement is

given in Section 3.5.

3.3.3 The Elliptical-t Cluster Process

If τ = 0, α = 0, but σ1 6= σ2, i.e., (YT ,Y∗T )T ∼ tν((0T ,0T )T , diag(Ω,Ω)) where Ω =

diag(σ2
1, σ

2
2), and hence Y ∼ tν(0,Ω) where tν is the multivariate Student t-distribution with ν df,

then the approximating pcf is

gd(r) = 1 +
1

8π2κσ1σ2

∫ 2π

0

(
1 +

r2 cos2 θ/σ2
1 + r2 sin2 θ/σ2

2

2ν

)−(ν+2)/2

dθ.

For ν = 1, g(r) ≡ 1. Only for ν = 2k, where k ∈ N, is g(r) analytically complete. For each even

df, I have to compute the approximating pcf individually since there is no general formula for the
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pcf. Mathematica can compute up to 26 df analytically. For df greater than 6, the formulas of

pcfs are very cumbersome and can take several rows to be displayed. I choose to represent the pcfs

only for ν = 2, 4 and 6 in the following. For ν = 2,

gd(r) = 1 +
2{(σ2

1 + σ2
2)r2 + 8σ2

1σ
2
2}

πκ{(r2 + 4σ2
1)(r2 + 4σ2

2)}3/2
,

ν = 4,

gd(r) = 1 +
16 {512σ4

1σ
4
2 + 64σ2

1σ
2
2(σ2

1 + σ2
2)r2 + (3σ4

1 + 2σ2
1σ

2
2 + 3σ4

2)r4}
πκ{(r2 + 8σ2

1)(r2 + 8σ2
2)}5/2

,

and ν = 6,

gd(r) = 1 +
324

[
{24σ2

1σ
2
2 + (σ2

1 + σ2
2)r2}{1152σ4

1σ
4
2 + 96σ2

1σ
2
2(σ2

1 + σ2
2)r2 + (5σ4

1 − 2σ2
1σ

2
2 + 5σ4

2)r4}
]

πκ{(r2 + 12σ2
1)(r2 + 12σ2

2)}7/2
.

Kd of the elliptical-t CP are analytically incomplete regardless of df. I can estimate κ, σ2
1 = σ2

and c2
σ, where σ2

2 = c2
σσ

2, via MCM using the pcf.

3.3.4 The Circular-t Cluster Process

If τ = 0, α = 0 and σ1 = σ2, i.e., (YT ,Y∗T )T ∼ tν((0T ,0T )T , σ2I4), hence Y ∼ tν(0, σ2I2),

the pcf is

g(r) = 1 +
1

4πκσ2

(
1 +

r2

2νσ2

)−(ν+2)/2

(3.5)

and the K-function is

K(r) = πr2 +
1− {1 + r2/(2σ2ν)}−ν/2

κ
. (3.6)

I can estimate κ and σ2. The results presented in Section 3.4 are from an estimation using the pcf;

however, the K-function could be employed just as well.
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It is important to note that, in this setting, τ = 0, α = 0 and σ1 = σ2, the exact distribution of

X is multivariate Behrens-Fisher [Dickey, 1966] with pdf [Dickey, 1968]:

fX(x) = C B

(
ν + 2

2
,
ν + 2

2

)
F1

(
ν + 2

2
; ν + 1, ν + 1; ν + 2; s1, s2

)
,

where the constant C = Γ(ν + 1)/[πν{Γ(ν/2)}2] for Γ(·) denoting the Gamma-function,

B {(ν + 2)/2, (ν + 2)/2} = {Γ(ν/2)}2/Γ(ν + 2) and F1 is Appell’s hypergeometric function. In

particular [Erdélyi et al., 1953]:

F1 ((ν + 2)/2, ν + 1, ν + 1, ν + 2; s1, s2) =

[B{(ν + 2)/2, (ν + 2)/2}]−1 ×
∫ 1

0

{t(1− t)}ν/2 {(1− ts1)(1− ts2)}−ν−1 dt,

and s1, s2 are the two real roots of the equation s2 + (s − 1)xTx/(2σ2ν) = 0. According to the

transformation in (3.1),

fd(r) =
2Γ(ν + 1) r

ν{Γ(ν/2)}2

∫ 1

0

{t(1− t)}ν/2

{(1− ts1)(1− ts2)}ν+1 dt,

where s1,2 = −r2/(4σ2ν) ±
√
r2/(2σ2ν) + {r2/(4σ2ν)}2. The notation s1,2 denotes s1 and s2.

The pcf, g(r), can be derived from fd(r). However, the computation of fd(r) is computationally

intensive and does not yield any advantage for the parameter estimation, since g(r) remains analyti-

cally incomplete from this approach. This again confirms that using the approximation distribution

of Xtrue is computationally advantageous.

3.3.5 The Case of Orthogonality

If Y1 and Y2 are orthogonal, i.e., E (YT
1 Y2) = 0, and if they are jointly scale mixtures of

bivariate normals, i.e., Yi = V −1/2Zi, i = 1, 2, where the Zi’s are independently and identically

N2(0,Σ) distributed, which are independent of V ∼ G and have a cdf with G(0) = 0, then

X = V −1/2Z with Z ∼ N2(0, 2Σ) is independent of V . In particular, for V ∼ Gamma(ν/2, ν/2),

Yi follows the bivariate Student t-distribution mentioned above with Σ = σ2I2, and the exact pcf
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and K-function are given in (3.5) and (3.6).

3.4 Parameter Estimation by Minimum Contrast

Diggle [2003, Sec. 6] defined the minimum contrast method (MCM) using the K-function.

MCM minimizes discrepancy between the theoretical K-function, K(r;θ) ≡ K(r), of the as-

sumed model and the empirical K-function, K̂(r), of the observed pattern. In particular, the dis-

crepancy is defined as D(θ) =
∫ r0

0
w(r)

[
{K̂(r)}cstabil − {K(r;θ)}cstabil

]2

dr, where the constants,

r0 and cstabil, and the weighting function, w(r), are to be chosen. Here, cstabil acts as a variance-

stabilizing transformation, and θ is the vector comprising the parameters of the K-function, K(r),

or of the pcf, g(r). The estimator, θ̂, is the minimizer of D(θ).

In my setting, using the approximating pcf gd(r;θ) and the empirical pcf ĝ(r), I redefine the

discrepancy,

Dd,g(θ) =

∫ r0

0

w(r) [{ĝ(r)}cstabil − {gd(r;θ)}cstabil ]
2
dr. (3.7)

For the data simulation, I want to work with spatial point patterns (SPPs) having approxi-

mately 200 events on a unit square. Consequently, the dispersion parameters σ1, σ2 should not be

larger than 0.10, otherwise the data generation cannot produce enough events, because the clus-

ter dispersion is too large. Additionally, I want the number of “parent” and of “children” events

to be between 10 and 20, so that the parameter estimation can be stable. Thus, I chose κ = 20,

σ1 = σ = 0.04, µ = 10. In Table 3.1, the models of interest are given in the first column

and the parameters are given in the second column. For the elliptical-normal CP, σ2 = 0.08

or cσ = 2 were chosen. For the skew-normal CP, α1 = α2 = α = 2 were chosen. For

elliptical-t CP with ν = 6, σ2 = 0.08 or cσ = 2, and for the skew-t CP with the same df,

α1 = α2 = α = 20, τ = 1 were selected. Thus, the skewness parameter of the skew-t CP is

αTY = (α1/
√

1 + α2
1 + α2

2, α2/
√

1 + α2
1 + α2

2) = (0.7067, 0.7067).

The R-package spatstat computes the empirical pcf with an isotropic-corrected estimator

[Ripley, 1988] and a translation-corrected estimator [Ohser, 1983]. My experience shows that the
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empirical pcf according to the former sometimes has NA (not-available) values, which can stop the

computation of the estimation. Hence, for the parameter estimation in this section as well as for

the data application in Section 3.5, I use the empirical pcf according to the translation-corrected

estimator. The computation was done on compute nodes that have 8 CPU cores, 32GB of RAM

and the CPU processors clocked at 2.4GHz or faster.

Since I generated the SPPs on a unit square, r0 = 0.25 and cstabil = 0.25 were chosen [Diggle,

2003, Chap. 6.1] for the parameter estimation. Additionally, w(r) = 1 was set due to clustered

patterns [Diggle, 2003, Chap. 6.3]. I used the function optim available in R to minimize (3.7).

The logarithms of the starting values needed for the function optim are given in the second

column of Table 3.1 since I estimated the logarithms of κ, σ2, c2
σ, α2. For the parameter estimation,

I just need to estimate α2 since I set α1 = α2 = α, i.e., cα = 1, for the skew-normal and skew-t

CP. Additionally, I set ν = 6 and τ = 1 for a simple computation for the skew-t CP. In practice,

however, the parameter estimation is done differently: one sequence of ν and one of τ are consid-

ered, the parameter estimation is done given a pair of (ν, τ). Among these possible combinations,

a set of values is chosen as a set of estimates when it delivers the smallest discrepancy between

the approximating and the empirical pcf. Table 3.1 provides the average computational time, T̄ ,

in seconds in the third column, and provides information to determine whether or not the choice

of MCM and the function optim make sense in the last three columns. Let Dis2
d,g(θ̂) denote the

average of bilateral discrepancy,

Dis2
d,g(θ̂) =

∫
{ĝ(r)− gd(θ̂, r)}2 + {gd(θ̂, r)− gd(θ, r)}2dr, (3.8)

where the d, g-subscript shows the involvement of the approximating pcf, gd(r), and θ̂ denotes

the estimate. Dis2
d,g(θ̂n) is the average of bilateral discrepancy Dis2

d,g(θ̂n), where θ̂n denotes the

estimate resulting from the assumption of the (true) novel (skew-elliptical) CP. Similarly, Dis2
d,g(θ̂t)

is the average of bilateral discrepancy Dis2
d,g(θ̂t), where θ̂t denotes the estimate resulting from the

assumption of the (wrong) traditional TP. For each of 3000 SPPs, I could compute Dis2
d,g(θ̂n) and
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Table 3.1: 3,000 SPPs were generated from each skew-elliptical CP. The first column provides the
model specification. The second column gives information about the parameters of the model and,
in the second row of each cell in this column, the logarithms of starting values for my estimation
are provided. In the third column, the average computational time in seconds is represented by
T̄ . Dis2

d,g(θ̂n) denotes the average of Dis2
d,g(θ̂n) according to (3.8), where θ̂n denotes the MCM-

estimate from the (true) novel (skew-elliptical) CP. Dis2
d,g(θ̂t) is the average of Dis2

d,g(θ̂t) according
to (3.8), where θ̂t denotes the MCM-estimate from the (wrong) traditional TP. In the sixth column,
% provides the percentage of how often Dis2

d,g(θ̂n) is smaller than Dis2
d,g(θ̂t).?

Parameters/ Starting values T̄ Dis2
d,g(θ̂n) Dis2

d,g(θ̂t) %

Elliptical-normal (κ, σ1, cσ)T = (20, .04, 2)T .164 .029 .031 96.0
log(κ0, σ

2
1,0, c

2
σ,0)T = (0,−4, 3.5)T

Skew-normal (κ, σ, α1 = α2 = α)T = (20, .04, 10)T .177 .176 .179 83.9
log(κ0, σ

2
0, α

2
0)T = (0,−4, 5.5)T

Elliptical-t, df = 6 (κ, σ1, cσ)T = (20, .04, 2)T .115 .035 .038 85.3
log(κ0, σ

2
1,0, c

2
σ,0)T = (0,−4, 3.3)T

Skew-t, df = 6 (κ, σ, α1 = α2 = α)T = (20, .04, 20)T .082 .098 .101 84.7
log(κ0, σ

2
0, α

2
0)T = (0,−5, 5)T

Circular-t, df = 6 (κ, σ)T = (20, .04)T .035 .077 .085 88.1
log(κ0, σ

2
0)T = (0,−4)T

Dis2
d,g(θ̂t). The percentage in the last column shows how often Dis2

d,g(θ̂n) < Dis2
d,g(θ̂t); i.e., if the

correct model is assumed, the MCM using the approximating pcf can provide better estimates than

assuming a TP. It shows that in the most cases Dis2
d,g(θ̂n) < Dis2

d,g(θ̂t). Additional information,

Dis2
d,g(θ̂n) < Dis2

d,g(θ̂t), also supports this statement.

The estimate of the mean number of “children” events, µ, does not come from the MCM di-

rectly, since µ does not appear in the pcf and hence is not involved in the minimization of Dd,g(θ)

in (3.7). The estimator of µ is, in fact, µ̂ = n/κ̂, where n is the number of events of the observed

pattern and κ̂ denotes the estimate of κ and can be obtained via MCM.

The left column of Table 3.2 displays the choice of models and statistical information of the

?Reprinted with permission from “Skew-Elliptical Cluster Processes” by Ngoc Anh Dao and Marc G. Genton
in I. Ghosh, N. Balakrishnan, and H. Ng, editors, Advances in Statistics - Theory and Applications: Honoring the
Contributions of Barry C. Arnold in Statistical Science, pages 365-393. Springer, New York, 2021. Copyright 2021
by Copyright Clearance Center’s RightsLink.
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Table 3.2: The information about the models is given in Table 3.1. std = se ×
√

3000, where std
is the estimate of standard deviation and se is the standard error. 2.5% gives the 2.5-percentile
and 97.5% gives the 97.5-percentile of the distribution of the estimates, respectively. Bias2 =
{E(θ̂) − θ}2, where E(·) denotes the expectation and is approximated by average of the 3000
estimates. MSE = Bias2 + Var(θ̂) where Var(θ̂) is the variance of θ̂ and is approximated by std2.
The four columns under Skew-elliptical Cluster Processes show the estimates and the statistical
properties under the true models and the two columns under Thomas Process provide the ones
under the (traditional) TP, the wrong model.?

Skew-elliptical Cluster Processes Thomas Process
κ̂ σ̂ = σ̂1 σ̂2 α̂ = α̂1 = α̂2 κ̂ σ̂

Elliptical-Normal 21.854 .042 .098 26.485 .052
std 12.686 .013 .077 12.522 .011
2.5% 4.711 .020 .038 9.374 .035
97.5% 52.724 .068 .313 56.785 .077
Bias2 3.436 29 ×10−7 31 ×10−5 42.060 14 ×10−5

MSE 164.366 16 ×10−5 .006 198.867 26 ×10−5

Skew-Normal 23.175 .034 2.355 23.593 .028
std 7.486 .007 4.716 7.611 .004
2.5% 11.255 .023 .066 11.503 .022
97.5% 40.024 .049 10.789 40.912 .037
Bias2 10.081 4× 10−5 20.471 12.907 15× 10−5

MSE 66.125 9× 10−5 42.711 70.831 16× 10−5

Elliptical-t, df = 6 20.470 .046 .094 26.625 .053
std 12.168 .017 .064 13.469 .012
2.5% 4.988 .018 .037 9.126 .035
97.5% 51.158 .084 .268 61.441 .080
Bias2 .221 4× 10−5 19× 10−5 43.897 18× 10−5

MSE 148.270 32× 10−5 431× 10−5 225.319 32× 10−5

Skew-t 19.596 .040 19.245 22.244 .037
std 7.952 .010 8.624 8.399 .007
2.5% 7.174 .027 6.848 9.108 .028
97.5% 7.403 .065 41.041 40.904 .056
Bias2 .163 1× 10−7 297.381 5.035 73× 10−7

MSE 63.403 5× 10−5 371.755 75.584 6× 10−5

Circular-t 22.030 .039 22.820 .039
std 8.446 .006 8.703 .006
2.5% 10.253 .029 10.538 .029
97.5% 41.927 .054 43.340 .053
Bias2 4.119 3 ×10−7 7.952 8×10−7

MSE 75.446 35 ×10−6 83.702 39 ×10−6

?Reprinted with permission from “Skew-Elliptical Cluster Processes” by Ngoc Anh Dao and Marc G. Genton
in I. Ghosh, N. Balakrishnan, and H. Ng, editors, Advances in Statistics - Theory and Applications: Honoring the
Contributions of Barry C. Arnold in Statistical Science, pages 365-393. Springer, New York, 2021. Copyright 2021
by Copyright Clearance Center’s RightsLink.
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Figure 3.3: On the left, the locations of 195 Californian redwood seedlings and saplings in a square
sampling region, 130× 130 feet, are shown. They are displayed in two partitions: circles represent
the clustered redwoods and triangles the inhibitory ones, respectively. In the middle, the empirical
K-function (solid line) of the clustered redwoods and the theoretical one of a CSR of the same
global intensity (dotted line) are shown. Here, the global intensity, λ, over the polygon containing
the circles is approximately 221. On the right, the empirical F -function (dashed line) and G-
function (solid line) are plotted along with the theoretical F - and G-functions of a CSR of 221
events (dotted line). Note that for a CSR, the theoretical F -function ≡ G-function.?

estimates. If the hypothesized model is correctly assumed, the MCM-estimators of κ and σ = σ1

outperform the ones under TP, the wrong model, with respect to MSE. The estimators of cσ or σ2

of elliptical-normal and -t CP, and of α of skew-normal and skew-t CP seem to be very reasonable

since they are relatively unbiased and have tolerable variance. Overall, MCM provided reasonable

estimates with respect to minimizing the discrepancy in (3.7).

3.5 The Clustered Redwoods Dataset

The redwoodfull dataset, available from the library spatstat and representing the lo-

cations of 195 Californian redwood seedlings and saplings in a square sampling region, was first

described and analyzed by Strauss [1975]. Additionally, according to Baddeley and Turner [2005a],

it has never been subjected to a comprehensive analysis. In fact, only a small subset of it, known as

the dataset redwood and consisting of only 62 trees, was analyzed in many works of spatial point

?Reprinted with permission from “Skew-Elliptical Cluster Processes” by Ngoc Anh Dao and Marc G. Genton
in I. Ghosh, N. Balakrishnan, and H. Ng, editors, Advances in Statistics - Theory and Applications: Honoring the
Contributions of Barry C. Arnold in Statistical Science, pages 365-393. Springer, New York, 2021. Copyright 2021
by Copyright Clearance Center’s RightsLink.
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processes, e.g., Diggle [2003]. The redwoodfull dataset appears to be interesting because it

has many clusters that display non-circular shapes. I plotted redwoodfull in Figure 3.3 (left) in

clustered and inhibitory partitions, represented by circles and triangles, respectively. In my opin-

ion, 73 trees represented by triangles cannot be reasonably described by a clustered spatial point

process since they follow an inhibitory pattern. I am interested only in analyzing the clustered red-

woods, especially in finding out which skew-elliptical CPs can best model the process generating

it. Figure 3.3 (middle) shows the empirical K-function (solid line) of the clustered redwoods and,

for reference, the theoretical K-function (dotted line) of a CSR with the same intensity over the

polygon. Here, r is the Euclidean distance from the event of interest. Figure 3.3 (right) displays

the empirical F -function (dashed line), and G-function (solid line). For reference, the theoretical

F - and G-functions of a CSR of the same intensity over the polygon are shown with a dotted line.

Note for CSR, F ≡ G. Two facts indicating clustering are given in the following: (i) the empirical

F -function lies below the theoretical F -function of a CSR and (ii) theK-function progresses above

the theoretical K-function of a CSR. The empirical G-function also suggests clustering although

not as clearly as the empirical F and K functions do. Sometimes it lies below, indicating inhibi-

tion, and sometimes above the reference line (the theoreticalG-function of a CSR) over the domain

of r approximately from 0.01 to 0.05, suggesting clustering. Overall, there are graphical hints that

the redwoods of interest are clustered. I have, however, to investigate statistically whether this is

truly the case. First, I test whether CSR can provide a good fit to the redwoods of interest. For that,

the plug-in goodness-of-fit test using the G- and the F -function [Diggle, 2003, Chapt. 1.7] are

employed and the resulting estimated p-values, p̂, are all 0. Since the p-values are smaller than the

nominal significance level of αGOF = 0.05, I reject that CSR provides a good fit and conclude that

the redwoods of interest are clustered. Second, for the circular-, elliptical-, skew-normal CPs and

the corresponding -t CPs with a certain df, I compute the estimates and the corresponding discrep-

ancy between the empirical pcf and the theoretical one of the underlying model. For elliptical-t

CPs, I choose 2, 6, 10, 20, 26 df for simplicity since their pcfs can be computed analytically with

Mathematica. For skew- and circular-t CPs, I consider all even df up to 30, although I display
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results only for 2, 10, 20, 30 df. The estimates such as κ̂, σ̂2, ĉ2
σ, α̂2 and ĉ2

α are obtained directly

from the MCM (Table 3.3) except the one of µ, the mean of children number per cluster, which is

absent in the pcf and hence irrelevant in this context.

The empirical pcf (solid line, right plot in the first row) in Figure 3.4 takes small values for small

r, increases over the domain 0.001 < r < 0.0123 and decreases for r > 0.0123. This observation

is unlike how the pcf of a cluster process should progress. Illian et al. [2008, Sec. 4.3.1, 4.3.4]

state that for a cluster process, the pcf takes large values for small r and decreases as r increases.

This empirical pcf is indeed problematic at small r and I am aware that “the estimation of the pair

correlation function is more delicate and complicated than that of K due to the serious issues of

bandwidth choice and estimation for small r” [Illian et al., 2008, p. 227, Sec. 4.3.2]. I believe that

using the complete curve of the empirical pcf would produce misleading estimates of κ, σ2, c2
σ, α2

and c2
α. Thus, two estimation possibilities should be investigated. The first data analysis uses the

empirical pcf, ĝ(r), completely. The second data analysis discards the first 28 pairs from 512 pairs

of data (ri, gi), i = 1, . . . , 512, where ri denotes one of 512 grid points representing the domain

of r and gi the value of the empirical pcf at ri. Estimates and the discrepancies, Dis1
g(θ̂) in (3.9),

of the corresponding models from both analyses are listed in Table 3.3. I define the discrepancy

between the empirical and the approximating pcfs at θ̂ as follows

Dis1
g(θ̂) =

∫ r0

0

{ĝ(r)− gd(θ̂, r)}2 dr, (3.9)

where r0 = 0.25 is chosen for analysis of datasets on a unit square.

The first analysis using the empirical pcf completely assigns the smallest discrepancy to a

skew-normal CP. The second analysis using the empirical pcf partially assigns the smallest dis-

crepancy, however, to an elliptical-normal CP. Before the goodness-of-fit (GOF) of these two

models are tested, I want to clarify a point that might appear to be an inconsistency in my cal-

culation. Under the column “Using ĝ(r) partially”, the discrepancies, Dis1
g(θ̂), of the skew-t CPs
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Table 3.3: In the first column, the models applied to the clustered redwoods are shown. The
resulting MCM-estimates are given in the second and third column. Here, ĝ(r) is the empirical pcf.
The discrepancy, Dis1

g(θ̂), between the empirical pcf and the theoretical one of certain underlying
model is defined in (3.9). The smallest discrepancy in each column is displayed boldly.?

CP Using ĝ(r) completely Using ĝ(r) partially
Estimates Dis1

g(θ̂) Estimates Dis1
g(θ̂)

circular-normal κ̂ = 60.910, σ̂ = .022 .04824 κ̂ = 60.082, σ̂ = .018 .007080
elliptical-normal κ̂ = 60.880, σ̂1 = .022, .04823 κ̂ = 53.098, σ̂1 = .009, .004028

σ̂2 = .022 σ̂2 = .030

skew-normal κ̂ = 60.873, σ̂ = .022, .04822 κ̂ = 58.647, σ̂ = .023 .006032
α̂1 = −.185, α̂2 = .185 α̂1 = −20.254, α̂2 = 20.254

circular-t, df=2 κ̂ = 47.182, σ̂ = .0242 .05329 κ̂ = 49.164, σ̂ = .0172 .004481
circular-t, df=10 κ̂ = 57.988, σ̂ = .0223 .04899 κ̂ = 57.754, σ̂ = .0177 .005673
circular-t, df=20 κ̂ = 59.369, σ̂ = .0222 .04857 κ̂ = 58.845, σ̂ = .0178 .006274
circular-t, df=30 κ̂ = 59.852, σ̂ = .0222 .04846 κ̂ = 59.283, σ̂ = .0179 .006513
elliptical-t, df=2 κ̂ = 47.148, σ̂1 = .0242, .05328 κ̂ = 49.158, σ̂1 = .0172, .004481

σ̂2 = .0242 σ̂2 = .0172
elliptical-t, df=10 κ̂ = 57.949, σ̂1 = .0223, .04899 κ̂ = 52.712, σ̂1 = .0095, .004154

σ̂2 = .0223 σ̂2 = .0282
elliptical-t, df=20 κ̂ = 59.042, σ̂1 = .0223, .04862 κ̂ = 52.845, σ̂1 = .0092, .004112

σ̂2 = .0223 σ̂2 = .0292
elliptical-t, df=26 κ̂ = 59.732, σ̂1 = .0222, .04847 κ̂ = 52.959, σ̂1 = .0091, .004078

σ̂2 = .0222 σ̂2 = .0296

skew-t, df=2 κ̂ = 47.174, σ̂ = .0243, .053 κ̂ = 49.180, σ̂ = .0172, .004480
α̂1 = −5.178, α̂2 = 62.388 α̂1 = −12.368, α̂2 = 84.517
(α̂Y,1 = −.083, α̂Y,2 = .996) (α̂Y,1 = −.145, α̂Y,2 = .989)

skew-t, df=10 κ̂ = 57.963, σ̂ = .0224, .049 κ̂ = 57.732, σ̂ = .0177, .005671
α̂1 = −3.356, α̂2 = 49.077 α̂1 = −2.595, α̂2 = 28.391
(α̂Y,1 = −.068, α̂Y,2 = .997) (α̂Y,1 = −.091, α̂Y,2 = .995)

skew-t, df=20 κ̂ = 59.427, σ̂ = .0222, .0486 κ̂ = 58.890, σ̂ = .0178, .006273
α̂1 = −8.095, α̂2 = 51.185 α̂1 = −4.079, α̂2 = 45.750
(α̂Y,1 = −.156, α̂Y,2 = .988) (α̂Y,1 = −.089, α̂Y,2 = .996)

skew-t, df=30 κ̂ = 59.915, σ̂ = .0222, .048 κ̂ = 59.270, σ̂ = .0179, .006519
α̂1 = −8.646, α̂2 = 18.942 α̂1 = −4.048, α̂2 = 45.369
(α̂Y,1 = −.415, α̂Y,2 = .909) (α̂Y,1 = −.089, α̂Y,2 = .996)

?Reprinted with permission from “Skew-Elliptical Cluster Processes” by Ngoc Anh Dao and Marc G. Genton
in I. Ghosh, N. Balakrishnan, and H. Ng, editors, Advances in Statistics - Theory and Applications: Honoring the
Contributions of Barry C. Arnold in Statistical Science, pages 365-393. Springer, New York, 2021. Copyright 2021
by Copyright Clearance Center’s RightsLink.
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do not converge to the one (0.006032) of the skew-normal CP when the df increase. The reason

for it is the absolute values of the skewness parameters of the skew-normal CP are really large

|α1| = |α2| = 20.254, while the absolute values of the skewness parameters of the skew-t CP are

much smaller, |αY,i| < 1, i = 1, 2. On the contrary, under the column “Using ĝ(r) completely”,

the discrepancies, Dis1
g(θ̂), of the skew-t CPs do converge to the one (0.04822) of the skew-normal

CP when the df increase. The reason for it is the absolute values of the skewness parameters of

the skew-normal CP are smaller than 1, in particular |α1| = |α2| = 0.185, and the absolute values

of the skewness parameters of the skew-t CP are also smaller than 1, |αY,i| < 1, i = 1, 2. These

phenomena can serve as demonstrations of a statement in Remark 4.

Now, the adjusted goodness-of-fit (AGOF) test [Dao and Genton, 2014] is applied since the

plug-in GOF test is not appropriate because only one dataset is available. The AGOF test is also

termed as the Dao-Genton test in Baddeley et al. [2015] and is made available in the R-library

spatstat. Diggle [2003, Sec. 6.2.] recommended not to use the GOF test based on the K-

function if the K-function was used for parameter estimation. Since I used the empirical pcf

(originating from theK-function) for the parameter estimation, I could rely on the GOF conclusion

from the AGOF-G or -F test. I expect, however, that the AGOF-G tests would not support the fit

of any CP due to the limited support of the clustering of the empirical G-function. Therefore,

I decided to rely mainly on the conclusion from the AGOF-F test. For the testing, the nominal

significance level is αGOF = 0.05 and α̂∗AGOF denotes the estimated adjusted level [Dao and Genton,

2014]. For completeness, I run AGOF-G tests which rejected all the models to be a good fit.

This is expected due to the limited support of the clustering of the empirical G-function explained

previously. The AGOF-F test, the only test to be relied on, provided (i) p̂ = 0.025 which is greater

than α̂∗AGOF = 0.005 for the skew-normal CP model and (ii) p̂ = 0.035 which is greater than α̂∗AGOF =

0.004 for the elliptical-normal CP model. For the latter model, I used the empirical pcf partially

as described previously for the parameter estimation, but used the empirical pcf completely for

the computation of the p̂-value. The AGOF-F test provided p̂ > α̂∗AGOF for both models. Hence, I

conclude that these models provide a good fit, statistically speaking.
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Now, I examine these models graphically. The right plot (Figure 3.4) shows the empirical pcf

(solid), the approximating pcf of the circular-normal CP (TP) (thin), the theoretical skew-normal

CP (dotted, red) and the approximating elliptical-normal CP (dashed, blue). The two approximat-

ing pcfs of the circular- and the skew-normal are very similar due to the negligible estimate of the

skewness-parameter, α̂ = 0.185. The approximating pcf of the skew-normal CP does not represent

well the empirical pcf, neither at short nor at middle distance, i.e. r < 0.066. The approximating

pcf of the elliptical-normal CP, however, does represent the empirical pcf well from the middle

distance, r > 0.0123. The left plot (Figure 3.4) shows that the simulated events (triangles) of

the skew-normal CP do not mimic the clustered redwoods (circles) well because while the cluster

shape of the clustered redwoods is oblong, that of the simulated data is fairly circular. On the con-

trary, the middle plot shows that the simulated events (triangles) of the elliptical-normal CP have

oblong cluster shape which is similar to the cluster shape of the clustered redwoods. One can see

this more clearly if one turns the simulated data by an angle of approximately 40◦.

Overall, I think that the elliptical-normal CP represents the data better than does the skew-

normal CP. This data application also confirms that the introduction of skew-elliptical CPs is nec-

essary, otherwise the ellipticity of the cluster shape could not be modeled.

3.6 Discussion

There are a few robustness problems in estimation. First, the MCM uses the approximating

instead of the theoretical pcf. The approximating pcf results from isotropy assumption of the CP

to achieve the analytical completeness, easy to be incorporated in MCM. The isotropy leads to a

significant loss of information, and therefore the results of estimates need to be carefully verified.

Second, there is sensitivity towards starting values of the empirical pcf under isotropy assump-

tion. It is usually poorly estimated at a short distance, i.e., r close to 0. I encountered this problem

in my data application: the empirical pcf does not decrease throughout although it should be strictly

decreasing since the assumed model is clustered [Illian et al., 2008, Sec. 4.3.4]. It even increases

over a short domain close to 0. Using the complete curve of the empirical pcf might produce

misleading estimates, but at the same time, ignoring the poorly estimated part of the empirical pcf
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Figure 3.4: The 122 clustered redwoods (circles) are displayed in the upper left polygon of the left
and middle plots. There, in the lower right polygon, the left plot shows the simulated events (tri-
angles) of the skew-normal CP with parameters κ = 60.873, σ = 0.022, α1 = −0.185, α2 =
0.185, µ = 3.632 and similarly, the middle plot shows the simulated events (triangles) of the
elliptical-normal CP with parameters κ = 53.098, σ1 = 0.009, σ2 = 0.030, µ = 4.163. The
right plot shows the empirical pcf (solid), the theoretical pcf of the circular-normal CP (TP) (thin),
the approximating pcf of skew-normal CP (dotted, red) and the approximating pcf of elliptical-
normal CP (dashed, blue). The theoretical pcf of TP and the approximating pcf of skew-normal
are very similar due to the negligible estimate, α̂ = 0.185. Here, these two pcfs overlay each other.
For the simulations, the random seed, 999, as in Figure 3.1 was used.?

might cause overfitting. It may be possible to come up with a cut-off point from which data of the

pcf can be used.

Third, the more parameters the model has, the more sensitive the estimation can become with

respect to the starting values. In general, it is usually difficult to estimate high-dimensional pa-

rameters. One can try to improve the robustness by estimating certain parameters at a time. For

example, assuming a few parameters, say θ1, are given, one estimates the remaining parameters,

say θ2, where θT = (θT1 ,θ
T
2 ). Then, I plug in the estimates θ2 = θ̂2 in the pcf and estimate θ1.

The estimation continues until the discrepancy (3.9) goes below a pre-set limit. According to my

limited estimation studies, parameters such as cα or α could be treated as θ1, and κ, cσ or σ could

be treated together as θ2.

?Reprinted with permission from “Skew-Elliptical Cluster Processes” by Ngoc Anh Dao and Marc G. Genton
in I. Ghosh, N. Balakrishnan, and H. Ng, editors, Advances in Statistics - Theory and Applications: Honoring the
Contributions of Barry C. Arnold in Statistical Science, pages 365-393. Springer, New York, 2021. Copyright 2021
by Copyright Clearance Center’s RightsLink.
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A possible extension of generalizing the TP is to consider enlarging the choice of the distri-

bution that is imposable on Y, which is the location of a “children” event in a cluster. Besides

the SUN and EST classes, there may be other distributions of the unified skew-elliptical families.

One of the requirements for the distribution of Y is that it has the additive property because the

distribution of X has to be established where X
d
= Y1 − Y2 and Yi, i = 1, 2, representing two

independent positions of the “children” events in a cluster.

In this chapter, I generalized the TP to some extent. However, I can shift the focus to the Matérn

process, the role of which is very similar to that of the TP in the field of spatial point processes.

Both are special cases of the Neymann–Scott cluster point process. A Matérn process is constructed

similar to a TP except that the positions of the “children” events are distributed independently and

uniformly inside a disc with the “parent” event as the center. Similar to this work, it is possible

to establish some variations of the Matérn process with respect to the circular, elliptical and skew

properties of the distribution of “children” events.

Closing up this chapter and my contribution to statistical inference for spatial point processes

in this thesis, I will spend my attention on deriving a method to identify influential events of a SPP

in the next chapter.
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4. VISUALIZING INFLUENTIAL EVENTS IN SPATIAL POINT PATTERNS

4.1 Chapter Overview

In the field of spatial point patterns (SPPs), it is now possible to carry out accurate statistical in-

ference, in particular fitting complex statistical models [Møller and Waagepetersen, 2003, Diggle,

2003, Illian et al., 2008, Dao and Genton, 2021]. Goodness-of-fit (GOF) tests for an homogeneous

spatial Poisson process, or otherwise known as complete spatial randomness (CSR), are envelope

tests or quadrat count tests [Diggle, 2003]. For testing GOF of inhomogeneous spatial Poisson pro-

cesses, Guan [2008] developed a GOF test with a statistic based on a discrepancy constructed from

residuals obtained from the fitted model. For many other intricate parametric models, the enve-

lope test validates GOF when observing several SPPs [Diggle, 2003] and the Monte Carlo-adjusted

GOF test [Dao and Genton, 2014] can be employed when observing only a single SPP. There are

techniques for residual analysis [Baddeley et al., 2005], detecting outliers, criticizing model-based

outliers [Illian et al., 2008], identifying leverage and influential points [Baddeley et al., 2013].

Especially, in the latter work, the authors established measures of leverage and influence for the

dependence of a point process model on covariates by direct analogy with standard techniques

for generalized linear models. These concepts are suitable for Poisson point processes fitted by

maximum likelihood [Rathbun and Cressie, 1994, Kutoyants, 1998], or by robust M -estimators

[Assunção, 1994b, Assunção and Guttorp, 1999] and to Gibbs point processes fitted by maximum

pseudo-likelihood [Baddeley and Turner, 2000]. A recent work on studying leverage and influence

diagnostics for Gibbs spatial processes [Baddeley et al., 2019] introduced graphical tools and a new

diagnostic analogous to the effect measure difference in fit, also known as DFFIT, in the regression

[Belsley et al., 1980].

The technique developed by Baddeley et al. [2013] requires, however, the likelihood or com-

posite likelihood to be formally equivalent to a Poisson likelihood and that term in the model must

be available in closed form. This excludes a wide range of models including, for example, Cox
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processes, Neyman-Scott cluster processes and other models which are effectively hierarchical or

mixed Poisson models.

In this chapter, I introduce a concept of detecting influential events of a SPP, which does not

require the maximum likelihood or pseudo-likelihood in closed form. In particular, I let a second-

order summary characteristic such as F -,G-function [Diggle, 2003, Sec. 4.3], Ripley’sK-function

[Ripley, 1976], and pair correlation function [Illian et al., 2008] to describe the SPP and define a

measure of departure based on the second-order summary characteristic of one’s choice. This

approach allows many more spatial point processes to be studied.

In the setting of generalized linear models, the standard method of identifying influential ob-

servations is to quantify the radical change of the statistical inference when carrying out statistical

analysis without that observation. I would call this approach a “deleting” method. In my opinion,

this is only justified for the cases underlying the assumption that the observations are independent

and identically distributed (iid). In the field of spatial point processes, Baddeley et al. [2013, 2019]

still kept this “deleting” method to study the leverage and influence of the data. However, in the

case of dependent data such as in spatial statistics or spatial point processes, I think that deleting

event(s) does not seem as a sensible practice due to the dependence structure of the events. As

noted by Cook and Weisberg [1994], deleting cases is only a way of introducing small changes in

the data and there are others. As in Genton and Ruiz-Gazen [2010], I introduce some noise to the

data by perturbing additively one event at a time. I call this a perturbing method. There are two

advantages using it. First, deleting events might be questionable, if, for example, events represent

plants, galaxies, or sites in cells, to name a few. Second, unlike deleting an observation/event, the

perturbing method provides a whole course of change of estimators or conclusions on GOF due to

a set of possible amounts of perturbation.

I adopt the approach by Genton and Ruiz-Gazen [2010] to develop a method to detect influ-

ential events. Via perturbing events and defining discrepancy between the perturbed and observed

functionals, I define influential event and use graphical tools such as hair-plots and disc-plots to

visualize them.
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The remainder of this chapter is organized as follows. Section 4.2 describes the methodology

to define and visualize the influential and local influential event. Simulation studies demonstrate

in Section 4.3 that my method can detect and visualize the influential events well and the method

seems not to suffer from edge effect. Section 4.4 provides two data applications. One application

is the southern half of the Queensland copper cores dataset. The other application is the Swedish

pines dataset. The detected influential events are compared with the ones which were detected by

other works. Finally, Section 4.5 discusses an alternative discrepancy to define influential events.

This discrepancy can take the relevant domain or range of the K-function into account.

4.2 Perturbation Method

4.2.1 Setting

Hereafter, I adopt the notation given in Baddeley et al. [2005, Sec. 5]. A SPP is a dataset,

X = {x1, . . . ,xn}, where the xi’s are unordered locations observed in a bounded region, W, of

R2. I let fθ denote the parametric model (a parametric spatial point process) fitted to X, where θ is

an arbitrary finite-dimensional vector of parameters. I assume that fθ(X) is a probability density

function with respect to the unit rate Poisson process on the window W, such that fθ satisfies

the positivity condition: if fθ(X) > 0 and Y ⊂ X, then fθ(Y) > 0 for any finite point patterns,

X,Y ⊂ W. Under this setup, I am interested in identifying influential events of X under the

following parametric assumption:

H0 : X ∼ fθ, (4.1)

or under the following nonparametric assumption:

H0 : X ∼ fnon, (4.2)

where X is the spatial point process from which the observed SPP, X, is generated and fnon is a

statistical model which is not a maximum likelihood, pseudo-likelihood, pseudo-profile-likehood
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in closed form

4.2.2 Perturbation

In the following, I assume the SPP is on a unit square. Let X = {x1, . . . ,xn} denote the SPP of

interest and xi = (xi1, xi2)> represent the xy-coordinates of the event xi. I perturb the location of

one event at a time to find the most radical change in the inference. For an event xi, its perturbation

is regulated by an angle γ, 0 ≤ γ < 2π, and by a radius ζ , 0 ≤ ζ ≤
√

2.

The function T(xi; γ, ζ) = [xi,1 + ζ cos(γ), xi,2 + ζ sin(γ)]> regulates the perturbation of the

event xi. Let X(i, γ, ζ) = X\{xi} ∪T(xi; ζ, γ).

4.2.3 Hair-functions, Hair-plots, Disc-plots

Like in Genton and Ruiz-Gazen [2010], the concepts of hair-plot and disc-plot will be applied

here to the setting of SPPs.

4.2.3.1 Parametric Models

For the parametric model in (4.1), I introduce two discrepancies which can individually or

mutually be considered to identify influential events. The first discrepancy is

D̂i(ζj, γm) =

∫ [
K̂i,j,m(h)−Kθ̂(h)

]2

dh, (4.3)

where K̂i,j,m(h), i = 1, . . . , n, j = 1, . . . , S,m = 1, . . . ,M , is the empirical K-function of the

perturbed spatial pattern X(i, ζj, γm), ζ1 = 0, . . . , ζj, . . . , ζS =
√

2, γ1 = 0, . . . , γm, . . . , γM = 2π

andKθ̂(h) = Kθ(h)|θ=θ̂ whereKθ(h) is the theoreticalK-function derived from the hypothesized

model in (4.1) and θ̂ is the plug-in estimate computed from the observed pattern X under (4.1). If

the K-function is not analytically complete, an approximating K-function, K̃, can be used instead

of the true K-function.

The discrepancy in (4.3) measures the departure of the empirical K-function of the perturbed

pattern and the theoreticalK-function underH0 at the plug-in estimate θ̂ from the observed (unper-

turbed) pattern. Intentionally, I do not consider the quantity
∫ [

Kθ̂i,j,m
(h)− K̂(h)

]2

dh where
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Kθ̂i,j,m
(h) is the K-function of the hypothesized model at θ = θ̂i,j,m which is computed from the

perturbed spatial pattern X(i, ζj, γm). In my opinion, the perturbation can destroy the parametric

structure of the observed pattern. Hence using Kθ̂i,j,m
is not reasonable.

For the introduced discrepancy (4.3), the definition of the hair-functions are established as

follows. Any or both hair-functions can be applied to identify influential events:

Hairmean
i (ζ) =

1

M

M∑
m=1

D̂i(ζ, γm)

D̂(0, 0)
− 1, or (4.4)

Hairmax
i (ζ) = max

m=1,...,M

D̂i(ζ, γm)

D̂(0, 0)
− 1, where (4.5)

D̂(0, 0) =

∫ [
K̂(h)−Kθ̂(h)

]2

dh. (4.6)

where K̂(h) is the empirical K-function of the originally observed spatial pattern. An event is

declared as influential if its corresponding Ai is an outlier among other squared areas under the

curve (SAUC):

Amean
i (ζ) =

∫
[Hairmean

i (ζ)]2 dζ, or (4.7)

Amax
i (ζ) =

∫
[Hairmax

i (ζ)]2 dζ. (4.8)

Note that SAUC quantifies the influence of an event in this context.

The second discrepancy can be viewed as a parametric discrepancy:

D̂par,i(ζj, γm) =

∫ [
Kθ̂i,j,m

(h)−Kθ̂(h)
]2

dh. (4.9)

It measures how sensitive the hypothesized model can become towards perturbation.
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The hair-functions can be defined for the parametric discrepancy as follows,

Hairmean
par,i (ζ) =

1

M

M∑
m=1

D̂par,i(ζ, γm), or (4.10)

Hairmax
par,i(ζ) = max

m=1,...,M
D̂par,i(ζ, γm). (4.11)

For identifying influential events, the corresponding SAUC can be defined as in (4.7) and (4.8), in

particular

Amean
par,i (ζ) =

∫ [
Hairmean

par,i (ζ)
]2 dζ, or (4.12)

Amax
par,i(ζ) =

∫ [
Hairmax

par,i(ζ)
]2 dζ. (4.13)

For parametric models, I list below the theoreticalK-functions of the CSR and the Thomas process

as examples for my simulations studies. The theoretical K-function of CSR is

Kθ(h) = πh2,

where θ = 0 in this case.

For a clustered pattern, I consider a Thomas process as a representative of this group. Here,

a CSR with intensity κ is generated to obtain the so-called “parent” points. Each parent point is

replaced by a random cluster of “children” points that are Poisson distributed with intensity κ. The

positions of the children points are distributed about the parent location according to a bivariate

Gaussian distribution with covariance σ2I2, where I2 is the 2 × 2 identity matrix [Møller and

Waagepetersen, 2003]. Then

Kθ(h) = πh2 + κ−1[1− exp−h2/(4σ2)]

is the theoretical K-function of a Thomas process, where θ = (κ, σ)>
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4.2.3.2 No Model Assumption

For the nonparametric model in (4.2), I introduce the third discrepancy which can be viewed

as a nonparametric discrepancy:

D̂non,i(ζj, γm) =

∫ [
K̂i,j,m(h)− K̂(h)

]2

dh, (4.14)

where K̂i,j,m(h) is the empirical K-function of X(i, ζj, γm). This discrepancy is of advantage if

one does not want to make a parametric assumption but still want to identify influential events.

The hair functions can be defined for the parametric discrepancy as follows,

Hairmean
non,i(ζ) =

1

M

M∑
m=1

D̂non,i(ζ, γm), or (4.15)

Hairmax
non,i(ζ) = max

m=1,...,M
D̂non,i(ζ, γm). (4.16)

For identifying influential events, I define the corresponding SAUC as follows

Amean
non,i(ζ) =

∫ [
Hairmean

non,i(ζ)
]2 dζ, or (4.17)

Amax
non,i(ζ) =

∫ [
Hairmax

non,i(ζ)
]2 dζ. (4.18)

The hair-functions, Hairmean
i (ζ), Hairmax

i (ζ), Hairmean
par,i (ζ), Hairmax

par,i(ζ), Hairmean
non,i(ζ) and Hairmax

non,i(ζ),

can be visualized in hair-plots. For each event i, i = 1, . . . , n, the SAUCs (influence) such as

Amean
i , Amax

i , Amean
par,i , Amax

par,i, A
mean
non,i and Amax

non,i can be computed and displayed in disc-plots. The radii

of the discs are proportional to these quantities in a disc-plot. Based on the boxplot of these n

SAUCs, I declare the events to be influential if their SAUCs are outliers according to the boxplot.

4.2.4 Local Influence

Like in Genton and Ruiz-Gazen [2010], the concept of local influence can be applied to SPPs.

Let τmean
i denote the local influence from the average approach, correspondingly τmax

i the local
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influence from the maximum approach. The local influence quantifies the rate of change of

Hairmean
i (ζ) in (4.4), correspondingly Hairmax

i (ζ) in (4.5), at ζ = 0. In particular,

τmean
i =

∂

∂ζ
Hairmean

i (ζ)|ζ=0, (4.19)

τmax
i =

∂

∂ζ
Hairmax

i (ζ)|ζ=0. (4.20)

Here τmean
i , or respectively τmax

i , quantifies the rate of change from the hair-function, Hairmean
i (ζ)

or respectively Hairmax
i (ζ), due to a very small perturbation around the event i.

Then τmean
par,i , τmax

par,i and τmean
non,i , τ

max
non,i can be defined as similarly as above.

For each event i, i = 1, . . . , n, the local influence such as τmean
i , τmax

i , τmean
par,i , τmax

par,i, τ
mean
non,i and

τmax
non,i can be computed and displayed in disc-plots. The radii of the discs are proportional to the

local influence in a disc-plot. Based on the boxplot of these local influences, I declare the events

to be locally influential if their local influence are outliers according to the boxplot.

These hair-plots and disc-plots are shown in Section 4.3.

4.3 Simulations

Figure 4.1 displays three simulated patterns on the unit square from a CSR, Thomas process

and a process mixing the previous two. The hair-functions, the SAUC, the local influence, and

the resulting influential events will be computed based on the discrepancy in (4.3), the parametric

discrepancy in (4.9) and the nonparametric discrepancy in (4.14).

The domain of γ was chosen as (0, 1/120, 2/120, . . . , 119/120)>×2π with M = 120. At each

γm, m = 1, . . . ,M = 120, a domain of ζ-values is (ζ1 = 0, . . . , ζS =
√

2) with S = 50 applied in

Sec. 4.2.2.

The simulation results for the three simulated patterns can be found in Tables 4.2, 4.3, 4.4.

The overlapped influential events resulting from the mean and the maximum approaches based on

a specific discrepancy in either (4.3), (4.9), or (4.14) are displayed in bold numbers. The size of

the overlap will change if I used more perturbations arisen from combinations from finer grids

for γ and ζ . Data from more perturbations definitely help to quantify the SAUC more precisely.
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Colors Percentile Bandwidths
purple C25 := (Hair37.5; Hair62.5)
magenta C50 := (Hair25; Hair75)\C25

pink C75 := (Hair12.5; Hair87.5)\C50

orange C95 := (Hair2.5; Hair97.5)\C75

brown C100 := (Hair1; Hair100)\C95

black median hair-function
red, dashed influential hair-function

Table 4.1: Color labels of the hair-functions according their SAUCs to form the bandwidths

The overlap size would not necessarily increase because the mean and the maximum approaches

describe different characteristics of the datasets.

In the following, the hair-plots display the hair-functions in different colors. The colors label

the different ranges of percentiles of the hair-functions. The hair-plots have a vertical dashed line

at
√

2/2 as a reference. The introduction of this reference line is to assist the visualization because

the influence is usually higher in the interval [0,
√

2/2) than in the interval [
√

2/2,
√

2).

From Table 4.1, the percentile bandwidth of C25 includes the hair-functions which rank 37.5th

to the 62.5th hair-function. The hair-function of C25 are shown in purple. Then C50 includes the

hair-functions which rank 25th to 75th excluding C25. Similarly, C50, C75, C95, C100 are defined.

To assist the readability I gather a list of definitions of the hair-functions, their influences, their

local influences and their equation numbers in Table 4.7.

4.3.1 Complete Spatial Randomness

A CSR SPP of 100 events, in Figure 4.1a, was generated. The p-value from the GOF-K test is

0.60 [Diggle, 2003, Dao and Genton, 2014]. The influential events are reported in Table 4.2.

I apply the GOF-K test from Diggle [2003] to verify whether the simulated SPP represents the

attributes of the CSR process specified above well. The estimated p-value from the GOF-K test is

p̂ = 0.60. Since p̂ > α, where α = 0.05, I do not reject the hypothesis that the SPP represents the

CSR process well.
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(a) CSR (b) Thomas process (c) CSR mixing with Thomas

Figure 4.1: Studying a pattern of a CSR, a Thomas process, and the mixing of the previous two
processes in Sec. 4.3.1, 4.3.2 and 4.3.3

The influential events are displayed in Tables 4.2. The visualization is shown via hair-plots and

disc-plots which follow hereafter.

4.3.1.1 Hair-plots and Disc-plots

In the first row of Figure 4.2, the hair-functions are plotted. For the left, the definitions of

Hairmean
i (ζ) are in (4.4), for the right Hairmax

i (ζ) in (4.5) based on the discrepancy in (4.3). In the

second row, the radii of the discs are proportional to the Amean
i and Amax

i . Influential events are

displayed in triangles, their corresponding discs are red and the area inside the disc is shaded.

The parametric discrepancy in (4.9) is not applicable for this case becauseKθ̂i,j,m
(h) = Kθ̂(h) =

πh2.

Without any model assumption and using the discrepancy in (4.14), Figure 4.3 shows in the first

row the hair-functions Hairmean
par,i (ζ) defined in (4.15) on the left and Hairmax

par,i(ζ) defined in (4.16) on

the right.

4.3.1.2 Local Influences and Disc-plots

In Figure 4.4, on the left, local influence according to τmean
i from (4.19) and on the right, local

influence according to τmax
i from (4.20) are displayed.

In Figure 4.5, on the left, local influence according to τmean
non,i from (4.19) and on the right, local
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Figure 4.2: The CSR pattern is defined in Sec. 4.3.1. Hair-functions are Hairmean
i (ζ) defined in

(4.4) for the left and Hairmax
i (ζ) in (4.5) for the right. The colors of the hair-functions are explained

in Table 4.1 and in the legend. In the second row, the radii of the discs are proportional to the Amean
i

in (4.7) and Amax
i in (4.8). Influential events are displayed in triangles, their corresponding discs

are red and the area inside the disc is shaded. These influential events are shown in Table 4.2.
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Figure 4.3: The CSR pattern is defined in Sec. 4.3.1. Hair-functions are Hairmean
non,i(ζ) defined in

(4.15) for the left and Hairmax
non,i(ζ) (4.16) for the right. The colors of the hair-functions are explained

in Table 4.1 and in the legend. In the second row, the radii of the discs are proportional to the Amean
non,i

from (4.17) andAmax
non,i from (4.18). Influential events are displayed in triangles, their corresponding

discs are red and the area inside the disc is shaded. These influential events are shown in Table 4.2.
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Fig. 4.2 Fig. 4.3 Fig. 4.4 Fig. 4.5
Amean
i Amax

i Amean
non,i Amax

non,i τmean
i τmax

i τmean
non,i τmax

non,i

22
25 25
30

36
41 41 41

49
62

65
73 73 73 73
76 76

94 94
96 96 96

99 99 99

Table 4.2: Identifying influential events of the CSR process from Sec. 4.3.1. The overlapped
influential events are displayed in bold numbers. They are from the mean and the maximum
approaches based on a specific discrepancy in either (4.3) for Amean

i , Amax
i , τmean

i and τmax
i or (4.14)

for Amean
non,i, A

max
non,i, τ

mean
non,i and τmax

non,i.

influence according to τmax
non,i in (4.20) are displayed.

The mean and the maximum approach provide an overlap of the influential events 41 and 73 for

Amean
i and Amax

i based on the discrepancy in (4.3) and 73, 96, and 99 for Amean
non,i and Amax

non,i based on

the discrepancy in (4.14). The event 73 which is located at the upper left corner exhibit the biggest

influence in all influence types. While the quantity Amax
i seems to suffer from edge effect as the

discs are bigger at the margins of the Figure 4.2, Amax
non,i does not seem to suffer from edge effect.

For this simulation case, the influential events according to the local influences like τmean
i , τmax

i ,

τmean
non,i and τmax

non,i do not have much in common with the ones according to the influence Amean
i , Amax

i ,

Amean
non,i and Amax

non,i. While the quantity τmax
i seems to suffer slightly from edge effect as the discs are

bigger at the left edge of the Figure 4.3, τmax
non,i does not seem to suffer from an edge effect at all.
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Figure 4.4: The CSR pattern is defined in Sec. 4.3.1. The radii of the discs are proportional to
τmean
i defined in (4.19) for the left and τmax

i in (4.20) for the right. These quantities are the rates of
change at ζ = 0 of Hairmean

i (ζ) from (4.4) and Hairmax
i (ζ) from (4.5), respectively.

Figure 4.5: The CSR pattern is defined in Sec. 4.3.1. The radii of the discs are proportional
to τmean

non,i defined in (4.19) for the left and τmax
non,i in (4.20) for the right. These quantities are the

rates of change at ζ = 0 of Hairmean
non,i(ζ) from (4.15) and Hairmax

non,i(ζ) from (4.16), respectively. The
discrepancy in (4.14) is applied here.
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4.3.2 Thomas Process

A SPP of 100 events is generated with κ = 10, σ = 0.03, µ = 10, in Figure 4.1b. I apply

the AGOF-K test from Dao and Genton [2014] to verify whether the simulated SPP represents the

attributes of the Thomas process specified above well. The estimated p-value from the AGOF-K

test is p̂ = 0.977 and the adjusted α-level is α̂∗ = 0.26 at the nominal significance level α = 0.05.

Since p̂ > α̂∗, I do not reject the hypothesis that the SPP represents the Thomas process well.

The influential events are reported in Table 4.3. The visualization is shown via hair-plots and

disc-plots which follow hereafter.

4.3.2.1 Hair-plots and Disc-plots

In the first row of Figure 4.6, the hair-functions are plotted. For the left, the definitions of

Hairmean
i (ζ) are in (4.4), for the right, Hairmax

i (ζ) in (4.5) based on the discrepancy in (4.3). Here,

Amean
i and Amax

i produce the same sets of influential events, 17, 19, . . . , 24.

In the second row Figure 4.6, the radii of the discs are proportional to the Amean
i and Amax

i .

Influential events are displayed in triangles, their corresponding discs are red and the area inside

the disc is shaded.

In the first row of Figure 4.7, the hair-functions are plotted. For the left, the definitions of

Hairmean
par,i (ζ) are in (4.10), for the right Hairmax

par,i(ζ) in (4.11) based on the discrepancy in (4.9). Here,

Amean
par,i and Amax

par,i lead to disjoint sets of influential events.

Without any model assumption, in the first row of Figure 4.8, the hair-functions are plotted.

For the left, the definitions of Hairmean
non,i(ζ) are in (4.15), for the right Hairmax

non,i(ζ) in (4.16) based

on the discrepancy in (4.14). Amean
non,i produces only a single influential event and Amax

non,i produces no

influential events.

4.3.2.2 Local Influences and Disc-plots

In Figure 4.9, on the left, local influence according to τmean
i from (4.19) and on the right, local

influence according to τmax
i from (4.20) are displayed. On the left, the local influential events are

19, 21, 52, 57 and 58 according to τmean
i . On the right, there is no influential events according to
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Fig. 4.6 Fig. 4.7 Fig. 4.8 Fig. 4.9 Fig. 4.10 Fig. 4.11
Amean
i Amax

i Amean
par,i Amax

par,i Amean
non,i Amax

non,i τmean
i τmax

i τmean
par,i τmax

par,i τmean
non,i τmax

non,i

11
14

17 17 17 17
19 19 19 19
20 20 20
21 21 21
22 22 22
23 23 23
24 24 24

26 26
37 37
38 38

39
51

52 52 52 52 52 52
57 57 57 57 57 57

58 58 58 58 58
64
68
85
89
96 96

Table 4.3: Identifying influential events of the Thomas process from Sec. 4.3.2. The overlapped
influential events are displayed in bold numbers. They are from the mean and the maximum
approaches based on a specific discrepancy in either (4.3) for Amean

i , Amax
i , τmean

i and τmax
i , or

(4.9) for Amean
par,i , Amax

par,i, τ
mean
par,i and τmax

par,i, or (4.14) for Amean
non,i, A

max
non,i, τ

mean
non,i and τmax

non,i.
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Figure 4.6: The Thomas pattern is defined in Sec. 4.3.2. The discrepancy is defined in (4.3).
There are hair-functions Hairmean

i (ζ) and Hairmax
i (ζ) are defined in (4.4) on the left and in (4.5)

on the right. The colors of the hair-functions are explained in Table 4.1 and in the legend. In
the second row, the radii of the discs are proportional to Amean

i and Amax
i . Influential events are

displayed in triangles, their corresponding discs are red and the area inside the disc is shaded.
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Figure 4.7: The Thomas pattern is defined in Sec. 4.3.2. The parametric discrepancy is defined
in (4.9). There are hair-functions Hairmean

par,i (ζ) and Hairmax
par,i(ζ) are defined in (4.10) on the left and

in (4.11) on the right. The colors of the hair-functions are explained in Table 4.1 and in the legend.
In the second row, the radii of the discs are proportional to Amean

par,i and Amax
par,i. Influential events are

displayed in triangles, their corresponding discs are red and the area inside the disc is shaded.
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Figure 4.8: The Thomas pattern is defined in Sec. 4.3.2. The nonparametric discrepancy is defined
in (4.14). There are hair-functions are defined in (4.15) on the left and in (4.16) on the right. The
colors of the hair-functions are explained in Table 4.1 and in the legend. In the second row, the
radii of the discs are proportional to Amean

non,i and Amax
non,i. Influential events are displayed in triangles,

their corresponding discs are red and the area inside the disc is shaded.
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τmax
i .

In Figure 4.10, on the left, local influence according to τmean
par,i from (4.19) and on the right, local

influence according to τmax
par,i from (4.20) are displayed. The two approaches produce a joint set of

influential events: 26, 37, 38, 52, 57 and 58. Beside these influential events, on the left, the local

influential events have 96 as another event according to τmean
i .

In Figure 4.11, on the left, local influence according to τmean
non,i from (4.19) and on the right, local

influence according to τmax
non,i from (4.20) are displayed. The two approaches produce the same set

of influential events: 52, 57 and 58.

In the case of exploring influential events of the Thomas SPP of 100 events, Table 4.3 and

Figures 4.6 to 4.11 show that there are more influential events than in the case of exploring influ-

ential events of the CSR SPP also of 100 events documented in Table 4.2, Figures 4.2 to 4.5 in

Section 4.3.1. I think it is understandable as the clustered structure of the Thomas SPP is more

complicated than the complete randomness in the case of the CSR SPP. In general, the events of a

clustered pattern have more relevance and hence are more influential if they are perturbed because

the perturbation can break down the data structure in a highly dependent data structure but not so

in a complete randomness (CSR) case.

4.3.3 Mixing of Complete Spatial Randomness and Thomas Process

I study a union of two sub-patterns described as follows. A sub-pattern with 59 events from

the window [0; 0.5) × [0; 1] of the CSR SPP studied in the Section 4.3.1 and a sub-pattern with

52 events from the window [0.5; 1] × [0; 1] of the Thomas SPP generated with κ = 10, σ = 0.03,

µ = 10 as studied in the Section 4.3.2. Now, I determine whether the mixed SPP has the CSR

structure. I apply the GOF-K test from Diggle [2003] and the p-value is 0. Hence I reject the

hypothesis that CSR provides a good fit for the mixed SPP. Then I apply the AGOF test from Dao

and Genton [2014] to test the hypothesis that a Thomas process can provide a good fit for the

mixed SPP. The estimated p-value is 0.55 and the adjusted α-level is α̂∗ = 0.22 when α = 0.05 is

considered. I fail to reject the hypothesis that a Thomas process can provide a good fit to the mixed

SPP. In the following, I explore whether there are any influential events existent for this mixed SPP.
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Figure 4.9: The Thomas pattern is defined in Sec. 4.3.2. The radii of the discs are proportional to
τmean
i defined in (4.19) for the left and τmax

i in (4.20) for the right. These quantities are the rates of
change at ζ = 0 of Hairmean

i (ζ) from (4.4) and Hairmax
i (ζ) from (4.5), respectively. The discrepancy

in (4.3) is applied here.

Figure 4.10: The Thomas pattern is defined in Sec. 4.3.2. The radii of the discs are proportional
to τmean

par,i defined in (4.19) for the left and τmax
par,i in (4.20) for the right. These quantities are the

rates of change at ζ = 0 of Hairmean
par,i (ζ) from (4.10) and Hairmax

par,i(ζ) from (4.11), respectively. The
discrepancy in (4.9) is applied here.
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Figure 4.11: The Thomas pattern is defined in Sec. 4.3.2. The radii of the discs are proportional
to τmean

non,i defined in (4.19) for the left and τmax
non,i in (4.20) for the right. These quantities are the

rates of change at ζ = 0 of Hairmean
non,i(ζ) from (4.15) and Hairmax

non,i(ζ) from (4.16), respectively. The
discrepancy in (4.14) is applied here.

The influential events are displayed in Tables 4.4. The visualization is shown via hair-plots and

disc-plots which follow hereafter.

Table 4.4: Identifying influential events of the mixed process from Sec. 4.3.3. The overlapped
influential events are displayed in bold numbers. They are from the mean and the maximum
approaches based on a specific discrepancy in either (4.3) for Amean

i , Amax
i , τmean

i and τmax
i , or

(4.9) for Amean
par,i , Amax

par,i, τ
mean
par,i and τmax

par,i, or (4.14) for Amean
non,i, A

max
non,i, τ

mean
non,i and τmax

non,i.

Fig. 4.12 Fig. 4.13 Fig. 4.14 Fig. 4.15 Fig. 4.16 Fig. 4.17

Amean
i Amax

i Amean
par,i Amax

par,i Amean
non,i Amax

non,i τmean
i τmax

i τmean
par,i τmax

par,i τmean
non,i τmax

non,i

4 4

11 11 11

14

16 16

17 17

Continued on next page
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Table 4.4 – continued from previous page

Fig. 4.12 Fig. 4.13 Fig. 4.14 Fig. 4.15 Fig. 4.16 Fig. 4.17

Amean
i Amax

i Amean
par,i Amax

par,i Amean
non,i Amax

non,i τmean
i τmax

i τmean
par,i τmax

par,i τmean
non,i τmax

non,i

19

20

22 22

23

24

33 33

36 36

39

42 42

43 43 43

51

52

55

57

58 58 58

60 60

62 62

64

66

67 67

68

69 69

71 71 71

Continued on next page
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Table 4.4 – continued from previous page

Fig. 4.12 Fig. 4.13 Fig. 4.14 Fig. 4.15 Fig. 4.16 Fig. 4.17

Amean
i Amax

i Amean
par,i Amax

par,i Amean
non,i Amax

non,i τmean
i τmax

i τmean
par,i τmax

par,i τmean
non,i τmax

non,i

73 73

78 78 78 78 78 78 78 78

79 79

80 80

81 81

82 82 82 82 82 82

83 83 83 83

84 84 84 84 84 84 84

85 85 85 85 85

87 87

89 89 89

90 90 90 90 90 90

91 91

92 92

93 93 93 93

94 94 94 94 94 94 94

95 95

96 96 96

97 97

98 98

99

100 100 100 100 100

Continued on next page
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Table 4.4 – continued from previous page

Fig. 4.12 Fig. 4.13 Fig. 4.14 Fig. 4.15 Fig. 4.16 Fig. 4.17

Amean
i Amax

i Amean
par,i Amax

par,i Amean
non,i Amax

non,i τmean
i τmax

i τmean
par,i τmax

par,i τmean
non,i τmax

non,i

105 105

107 107 107 107

108 108 108 108 108

109 109

110

4.3.3.1 Hair-plots and Disc-plots

In the first row of Figure 4.12, the hair-functions are plotted. For the left, the definitions of

Hairmean
i (ζ) are in (4.4), for the right Hairmax

i (ζ) in (4.5) based on the discrepancy in (4.3). Here,

Amean
i and Amax

i produce the different sets of influential events. However, they share two common

influential events 58 and 94. In the second row Figure 4.12, the radii of the discs are proportional

to the Amean
i and Amax

i . Influential events are displayed in triangles, their corresponding discs are

red and the area inside the disc is shaded.

In the first row of Figure 4.13, the hair-functions are plotted. For the left, the definitions of

Hairmean
par,i (ζ) are in (4.10), for the right Hairmax

par,i(ζ) in (4.11) based on the discrepancy in (4.9). Here,

Amean
par,i and Amax

par,i lead to disjoint sets of influential events.

Without any model assumption, in the first row of Figure 4.14, the hair-functions are plotted.

For the left, the definitions of Hairmean
non,i(ζ) are in (4.15) and for the right, Hairmax

non,i(ζ) in (4.16)

based on the discrepancy in (4.14). Amean
non,i and Amax

non,i produce a large joint set of influential events:

43, 71, . . . , 82, 85, 87, 89, . . . , 98. Beside this set, Amean
non,i produces 84 as another influential event.

4.3.3.2 Local Influences and Disc-plots

In Figure 4.15, on the left, local influence according to τmean
i from (4.19) and on the right, local

influence according to τmax
i from (4.20) are displayed. τmean

i and τmax
i have different sets influential

events. However, they have 4 influential events in common 78, 83, 84 and 107. The radii of the

88



Figure 4.12: The pattern of the mixing of the CSR from Sec. 4.3.1 and the Thomas pattern from
Sec. 4.3.2 is defined in Sec. 4.3.3. The discrepancy in (4.3) is applied here. In the first row, there
are hair-functions defined in (4.4) for the left and in (4.5) for the right. The colors of the hair-
functions are explained in Table 4.1 and in the legend. In the second row, the radii of the discs are
proportional to Amean

i and Amax
i . Influential events are displayed in triangles, their corresponding

discs are red and the area inside the disc is shaded.
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Figure 4.13: The pattern of the mixing of the CSR from Sec. 4.3.1 and the Thomas pattern from
Sec. 4.3.2 is defined in Sec. 4.3.3. The parametric discrepancy in (4.9) is applied here. In the
first row, there are hair-functions defined in (4.10) an (4.11). The colors of the hair-functions are
explained in Table 4.1 and in the legend. In the second row, the radii of the discs are proportional
to Amean

par,i and Amax
i . Influential events are displayed in triangles, their corresponding discs are red

and the area inside the disc is shaded.
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Figure 4.14: The pattern of the mixing of the CSR from Sec. 4.3.1 and the Thomas pattern from
Sec. 4.3.2 is defined in Sec. 4.3.3. The nonparametric discrepancy in (4.14) is applied here. In the
first row, there are hair-functions defined in (4.15) for the left and (4.16) for the right. The colors
of the hair-functions are explained in Table 4.1 and in the legend. In the second row, the radii of
the discs are proportional to Amean

non,i and Amax
non,i. Influential events are displayed in triangles, their

corresponding discs are red and the area inside the disc is shaded.
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discs are proportional to the τi’s. Influential events are displayed in triangles, their corresponding

discs are red and the area inside the disc is shaded.

In Figure 4.16, on the left, local influence according to τmean
par,i from (4.19) and on the right, local

influence according to τmax
par,i from (4.20) are displayed. The two approaches produce a large joint set

of influential events. On the right, τmax
par,i produces additionally 66, 76 and 99 as another influential

events.

In Figure 4.17, on the left, local influence according to τmean
non,i from (4.19) and on the right, local

influence according to τmax
non,i from (4.20) are displayed. The two approaches produce a large joint

set of influential events. On the right, τmax
non,i produces additionally 82 as another influential event.

The pattern from Sec. 4.3.3 did not reject the AGOF-K test for a Thomas process. That

means that the Thomas model contributes a more relevant role to the model structure of the mixing

pattern. Subsequently, most scenarios in Sec 4.3.3 studying influential events confirmed that the

majority of influential events come from the Thomas sub-pattern. This validates the conclusion of

AGOF-K test for a Thomas process for this SPP.

I observe that influential events resulting from τmean
i , τmax

i , τmean
par,i , τmax

par,i, τ
mean
non,i and τmax

non,i do not

coincide with the influential events derived from the SAUC’s such as Amean
i , Amax

i , Amean
par,i , Amax

par,i,

Amean
non,i and Amax

non,i. Here, while the latter quantify the influence of those events, the corresponding

τmean
i and τmax

i describe the rates of change in the corresponding SAUC’s.

In the case of exploring influential events of the mixed SPP of 111 events, Table 4.4 and

Figures 4.12 to 4.17 show that there are more influential events than in the case of exploring

influential events for the Thomas SPP of 100 events documented in Table 4.3, Figures 4.6 to 4.11

in Section 4.3.2. I think it is understandable as the mixed structure of a Thomas and a CSR SPPs is

more complicated than the clustered pattern in the case of the Thomas SPP. In general, the events

of a complicated pattern (mixing of two SPPs) have more relevance and hence are more influential

if they get perturbed because the perturbation can change the model assumptions quickly for a

inhomogeneous data structure but not so in a homogeneous (Thomas) case.

Overall, I observe that the nonparametric discrepancy (4.14) facilitates the mean and maximum
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Figure 4.15: The mixed pattern is defined in Sec. 4.3.3. The radii of the discs are proportional to
τmean
i defined in (4.19) for the left and τmax

i in (4.20) for the right. These quantities are the rates of
change at ζ = 0 of Hairmean

i (ζ) from (4.4) and Hairmax
i (ζ) from (4.5), respectively. The discrepancy

in (4.3) is applied here.

approaches to detect a more consistent sets of the influential events, i.e., according to Amean
non,i, A

max
non,i,

τmean
non,i and τmax

non,i.

4.4 Data Applications

Figure 4.18 demonstrates two datasets, copper ores and Swedish pines, which are subjected to

testing my method. Both were studied in the context of influential diagnostics for spatial point

processes in Baddeley et al. [2013] and Baddeley et al. [2019]. With my new approach, I aim at

adding more insights to the datasets.

In the following subsections, the theoretical K-function is not numerically complete. Hence,

I used K̃-function, the approximation of the theoretical K-function for a Gibbs process. The

computation of K̃-function uses the second-order Poisson-saddlepoint approximation [Baddeley

and Nair, 2012].
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Figure 4.16: The mixed pattern is defined in Sec. 4.3.3. The radii of the discs are proportional
to τmean

par,i defined in (4.19) for the left and τmax
par,i in (4.20) for the right. These quantities are the

rates of change at ζ = 0 of Hairmean
par,i (ζ) from (4.10) and Hairmax

par,i(ζ) from (4.11), respectively. The
discrepancy in (4.9) is applied here.

Figure 4.17: The mixed pattern is defined in Sec. 4.3.3. The radii of the discs are proportional
to τmean

non,i defined in (4.19) for the left and τmax
non,i in (4.20) for the right. These quantities are the

rates of change at ζ = 0 of Hairmean
non,i(ζ) from (4.15) and Hairmax

non,i(ζ) from (4.16), respectively. The
discrepancy in (4.14) is applied here.
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(a) Copper ores

(b) Swedish pines

Figure 4.18: Data applications in Sec. 4.4.1 and 4.4.2

4.4.1 Copper Ores

Figure 4.18a shows the southern half of the Queensland copper data introduced and analysed

by Berman [1986] and again studied by Baddeley et al. [2013]. The dataset consists of 57 copper

ore deposits, represented by small black circles, and 90 line segments, shown as white lines, rep-

resenting geological lineaments such as faults from the geological survey of a 35 × 158 km region

in central Queensland, Australia. The copper ores and lineaments are shown on the distance map.

The further the distance of a location to its nearest lineament, the darker (greener) the area. In the

initial works, it was of interest to predict the occurrence of copper ores from the lineament pattern.

The authors employed an often used model: a loglinear model fitted to 57 locations of copper ore

deposits. The covariate of the model is the distance in kilometres from an event to the nearest

lineament. The intensity function is λ(x, y) = exp{β0 + β1d(x, y)}, where d(x, y) is the distance

in kilometres from the location (event) (x, y) to the nearest lineament. I applied this model and

obtained the fitted slope β̂1 = 0.055 km−1 with the asymptotic standard error 0.089 and the 95%

confidence interval [−0.121, 0.227]. I concluded that there is no evidence of dependence on the

lineament. To test for the GOF, I applied the Monte-Carlo AGOF-K test [Dao and Genton, 2014].

With the estimated p-value, p̂ = 0.11, and the adjusted level, α̂∗ = 0.06, at the significance level
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α = 0.05, I do not reject the hypothesis that the model can provide a good fit.

4.4.1.1 Hair-plots and Disc-plots

In the first row of Figure 4.19, the hair-functions are plotted. For the left, the definitions of

Hairmean
i (ζ) are in (4.4), for the right Hairmax

i (ζ) in (4.5) based on the discrepancy in (4.3). Here,

Amean
i and Amax

i produce different sets of influential events. However, the joint set is the set of

influential events, 40 and 41, resulting from Amean
i .

Studying influence on the basis of the parametric discrepancy is not applicable because K̃θ̂i,j,m

is numerically equal to K̃θ̂ in (4.9). Here, K̃ is an approximation to the theoretical K-function of a

Gibbs process. Hence I go on to studying influence on the basis of the nonparametric discrepancy

in (4.14).Without any model assumption, in the first row of Figure 4.20, the hair-functions are

plotted. For the left, the definitions of Hairmean
non,i(ζ) are in (4.15), for the right Hairmax

non,i(ζ) in (4.16)

based on the discrepancy in (4.14). While Amean
non,i produces many influential events, Amax

non,i has a

single influential event, 40, which is also the joint influential event with the mean approach.

The discrepancies in (4.3) and (4.14) produce similar sets of influential events. Mostly, they

overlap 40 and 41. Altogether, one can say, that at least these two events can be considered to be

two influential events for this dataset according to Amean
i , Amax

i , Amean
non,i and Amax

non,i

4.4.1.2 Local Influences and Disc-plots

In Figure 4.21, on the left, local influence according to τmean
i from (4.19) and on the right, local

influence according to τmax
i from (4.20) are displayed. τmean

i and τmax
i produce different sets of

influential events but overlap two events 40 and 41. The radii of the disc-plots correspond to τmean
i

and τmax
i . In the second row, the local influential events in red triangles and the regular events are

displayed on the distance map.

As mentioned above studying influence on the basis of the parametric discrepancy in (4.9) is

not applicable because K̃θ̂i,j,m
is numerically equal to K̃θ̂ in (4.9).

In Figure 4.22, on the left, local influence according to τmean
non,i from (4.19) and on the right, local

influence according to τmax
non,i from (4.20) are displayed. Here, τmean

non,i and τmax
non,i produce very similar
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Figure 4.19: The copper ores dataset is described in Sec. 4.4.1. The discrepancy is from (4.3). In
the first row, the hair-functions, Hairmean

i (ζ), on the left, and Hairmax
i (ζ), on the right are plotted.

The colors of the hair-functions are explained in Table 4.1 and in the legend. In the second row, the
radii of the discs are proportional to τmean

i and τmax
i . In the third row, the positions of the influential

events are marked red on the distance map of the copper ores to their nearest faults.
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Figure 4.20: The copper ores dataset is described in Sec. 4.4.1. The copper ores dataset is
described in Sec. 4.4.1. The discrepancy is from (4.14). In the first row, the hair-functions,
Hairmean

non,i(ζ), on the left, and Hairmax
non,i(ζ), on the right, are plotted. The colors of the hair-functions

are explained in Table 4.1 and in the legend. In the second row, the radii of the discs are propor-
tional to τmean

non,i and τmax
non,i. In the third row, the positions of the influential events are marked red on

the distance map of the copper ores to their nearest faults.
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Fig. 4.19 Fig. 4.20 Fig. 4.21 Fig. 4.22
Amean
i Amax

i Amean
non,i Amax

non,i τmean
i τmax

i τmean
non,i τmax

non,i

1
3

11
12 12

14
15

16
17 17

18
26

40 40 40 40 40 40 40 40
41 41 41 41 41 41 41

45 45 45
47 47 47

48 48 48
49 49

50
51

52 52 52
53 53
54 54
55 55 55
56 56
57 57

Table 4.5: Identifying influential events of the copper ores dataset. The overlapped influential
events are displayed in bold numbers. They are from the mean and the maximum approaches
based on a specific discrepancy in either (4.3) for Amean

i , Amax
i , τmean

i and τmax
i , or (4.14) for Amean

non,i,
Amax

non,i, τ
mean
non,i and τmax

non,i. The underlined events, 12 and 49, are also detected by Baddeley et al.
[2013].
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Figure 4.21: The copper ores dataset is described in Sec. 4.4.1. The radii of the discs are propor-
tional to τmean

i defined in (4.19) for the left and τmax
i in (4.20) for the right. These quantities are

the rates of change at ζ = 0 of Hairmean
i (ζ) from (4.4) and Hairmax

i (ζ) from (4.5), respectively. The
discrepancy in (4.3) is applied here. In the second row, events are displayed on the distance map.
The influential events are marked red.

sets of influential events overlapping five events 40, 41, 45, 47, 48. Additionally, τmean
non,i produces

49 as another influential event. The radii of the disc-plots correspond to τmean
non,i and τmax

non,i. In the

second row, the local influential events are in red triangles and the regular events are displayed on

the distance map.

The discrepancies in (4.3) and (4.14) produce similar sets of influential events. Mostly, they

overlap 40 and 41. Altogether, one can say that at least these two events can be considered to be

two influential events for this dataset according Amean
i , Amax

i , Amean
non,i and Amax

non,i. Possibly, these four

events, 40, 41, 45 and 47, can be considered to be influential events for this dataset according to

Amax
i , Amean

non,i and Amax
non,i.

The influential points resulting from Baddeley et al. [2013, Figure 3] appeared to be located

at the darkest (greenest) area on the distance map, or in other words, they are furthest from their

nearest lineament. The presence of these events tends to raise and their absence tends to lower the

estimate of β1. Baddeley et al. [2013, Figure 3] show that the two largest values of influence occur

at copper deposit, 12 and 49, with largest values of the distance to the nearest lineament. These
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Figure 4.22: The copper ores dataset is described in Sec. 4.4.1. The radii of the discs are propor-
tional to τmean

non,i defined in (4.19) for the left and τmax
non,i in (4.20) for the right. These quantities are the

rates of change at ζ = 0 of Hairmean
non,i(ζ) from (4.15) and Hairmax

non,i(ζ) from (4.16), respectively. The
discrepancy in (4.14) is applied here. In the second row, events are displayed on the distance map.
The influential events are marked red.

two values are located in the peripheral parts of the dataset and hence seem to suffer from edge

effect.

My influence method also detected the event 12 and my local influence method also chose

the event 49 as influential events among other influential events, see Table 4.5. Beyond these

two influential events, I also found many more influential events. In principle, the influential

events from my method tend to be located in the somewhat green areas and at the edge of the dark

green areas on the distance maps, or in other words, their distance to the lineament is not furthest.

It means, however, that their perturbation is relevant to the statistical model. If the influential

event is re-located (perturbed) into the green area, the estimate of β1 can be increased or into the

lighter (whiter) area, the estimate of β1 can be decreased. Here, the lighter areas present fairly

short distance of the location to the nearest lineament. Influential events according to my method

are not affected by the edge effect because the conclusion is drawn from the findings of many

perturbations.

Influential events from my method do not only measure the effect on the estimate of β1 but also
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measure how sensitive this event is for the model, or in different words, how easy it is to affect the

model structure by perturbing this event.

4.4.2 Swedish Pines

Another example shown in Figure 4.18b is the dataset called Swedish pines of Strand [1972].

It gives the locations of 71 pine saplings in a 9.6 × 10 metre survey quadrat. This dataset was

often studied, recently also by Baddeley et al. [2019]. Here, the authors described diagnostic

quantities analogous to the classical regression’s diagnostics of leverage and influence. Since the

pattern appears to be spatially inhomogeneous, the authors used Poisson point process models

for simplicity to demonstrate their implementation of diagnostic quantities. They fitted a Poisson

process to the dataset in which the intensity λ(x, y) at spatial location (x, y) is a log-quadratic

function of the Cartesian coordinates:

λθ(x, y) = exp(θ0 + θ1x+ θ2y + θ3x
2 + θ4xy + θ5y

2).

Baddeley et al. [2019, Figure 4] show that large influential values occur at some data events near

the corners of the survey rectangle. They showed that the fitted model is highly sensitive to the

observed data in the corners of the survey region.

To verify that the Poisson point process suggested by Baddeley et al. [2019] provides a good fit

to the data, I again applied the Monte Carlo AGOF-K test. For p̂ = 0.13, the estimated p-value, and

α̂∗ = 0.08 at the significance level α = 0.05, I fail to reject the hypothesis that the model provides

a good fit to the dataset. These influential quantities were computed based on the discrepancies

from (4.3) and in (4.14). The discrepancy from (4.9) is not applicable because K̃θ̂i,j,m
and K̃θ̂ are

numerically very close, where K̃ is the approximating K-function, hence the discrepancy from

(4.9) will be 0 numerically. The hair-functions and disc-plots are visualized in Figures 4.23 and in

Figure 4.24, respectively. The disc-plots according to the local influence τmean
i in (4.19) and τmax

i

in (4.20) derived from the hair-functions in (4.4), (4.5) and the discrepancy in (4.3) are shown in

Figure 4.25 and from the hair-functions in (4.15), (4.16) and the discrepancy in (4.14) are shown in
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Figure 4.26. While some of the influential or local influential events do appear at the edge, some

also appear in the inner area of the survey region.

4.4.2.1 Hair-plots and Disc-plots

In the first row of Figure 4.23, the hair-functions are plotted. For the left, the definitions of

Hairmean
i (ζ) are in (4.4), for the right Hairmax

i (ζ) in (4.5) based on the discrepancy in (4.3). Here,

Amean
i and Amax

i produce different sets of influential events. However, there is a joint influential

event, 63, at the right upper corner. In the second row, the radii of the discs are proportional to the

Amean
i and Amax

i .

Like in Section 4.4.1.1, studying influence on the basis of the parametric discrepancy is not

applicable because K̃θ̂i,j,m
is numerically equal to K̃θ̂ in (4.9). Hence I go on to studying influence

on the basis of the nonparametric discrepancy in (4.14), i.e., without any model assumption. In the

first row of Figure 4.24, the hair-functions are plotted. For the left, the definitions of Hairmean
non,i(ζ)

are in (4.15), for the right Hairmax
non,i(ζ) in (4.16) based on the discrepancy in (4.14). Here, Amean

i and

Amax
i produce a large joint set of six influential events. They are 1, 9, 16, 21, 25, 56. This is also

the set of influential events produced by Amax
i . In addition to this set, Amean

i also yields three more

influential events: 13, 35, 58. In the second row, the radii of the discs are proportional to the Amean
i

and Amax
i .

4.4.2.2 Local Influences and Disc-plots

In Figure 4.25, on the left, local influence according to τmean
i from (4.19) and on the right, local

influence according to τmax
i from (4.20) are displayed via disc-plots. Here, τmean

i and τmax
i produce

different sets of influential events but overlap one event, 11. The radii of the disc-plots correspond

to τmean
i and τmax

i .

In Figure 4.26, on the left, local influence according to τmean
non,i from (4.19) and on the right, local

influence according to τmax
non,i from (4.20) are displayed. τmean

non,i and τmax
non,i produce very similar sets of

influential events overlapping 5 events 9, 11, 16, 28, 35. Additionally, τmean
non,i produces 21 and τmax

non,i

produces 13 as another influential event. The radii of the disc-plots correspond to τmean
non,i and τmax

non,i.
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Figure 4.23: The Swedish pines dataset is described in Sec. 4.4.2. The discrepancies are defined in
(4.4) on the left and in (4.5) on the right. The colors of the hair-functions are explained in Table 4.1
and in the legend. In the second row, influential events are displayed in red triangles. The radii of
the discs are proportional to Amean

i from (4.7) and Amax
i .
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Figure 4.24: The Swedish pines dataset is described in Sec. 4.4.2. The discrepancies are defined
in (4.15) for the left and in (4.16) for the right. The colors of the hair-functions are explained in
Table 4.1 and in the legend. In the second row, influential events are displayed in red triangles.
The radii of the discs are proportional to Amean

non,i and Amax
non,i.
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Fig. 4.23 Fig. 4.24 Fig. 4.25 Fig. 4.26
Amean
i Amax

i Amean
non,i Amax

non,i τmean
i τmax

i τmean
non,i τmax

non,i

1 1
9 9 9 9

11 11 11 11
13 13 13
16 16 16 16 16

21 21 21 21
22

25 25
28 28

35 35 35 35
37 37

56 56 56
58 58
63 63

Table 4.6: Identifying influential events of the Swedish pines dataset. The overlapped influential
events are displayed in bold numbers. They are from the mean and the maximum approaches based
on a specific discrepancy in either (4.3) for Amean

i , Amax
i , τmean

i and τmax
i , or (4.14) for Amean

non,i, A
max
non,i,

τmean
non,i and τmax

non,i.

In the second row, the local influential events in red triangles and the regular events are displayed

on the distance map.

As Baddeley et al. [2019, Sec. 2.2.2] also studied this dataset, they found almost all peripheral

events have larger or much larger influence values. I’d say that this signals some edge effect. The

influential and local influential events from my method are not usually peripheral but also inside

the spatial point pattern. They do not appear to suffer from edge effect. Since my method draws

conclusion from a range of perturbations, it can avoid edge effect.

The meaning of influence according to Baddeley et al. [2019, Sec. 2.2.2] is to quantify the

magnitude the influential events have on the parameter estimation. The meaning of my method is,

however, to identify the ones which can, via perturbation, break down the model structure most

effectively.
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Figure 4.25: The Swedish pines dataset is described in Sec. 4.4.2. The radii of the discs are
proportional to τmean

i defined in (4.19) for the left and τmax
i in (4.20) for the right. These quantities

are the rates of change at ζ = 0 of Hairmean
i (ζ) from (4.4) and Hairmax

i (ζ) from (4.5), respectively.
The discrepancy in (4.3) is applied here. Here, τmean

i and τmax
i have a joint influential event.

Figure 4.26: The Swedish pines dataset is described in Sec. 4.4.2. The radii of the discs are
proportional to τmean

non,i defined in (4.19) for the left and τmax
non,i in (4.20) for the right. These quantities

are the rates of change at ζ = 0 of Hairmean
non,i(ζ) from (4.15) and Hairmax

non,i(ζ) from (4.16), respectively.
The discrepancy in (4.14) is applied here.
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4.5 Discussion

This chapter introduced a method to quantify the magnitude of influence of an event of a

SPP. The magnitude of influence means in this context the measure of departure referenced to the

observed. The computation of the influence does not necessarily require a maximum, maximum

pseudo- or maximum pseudo-profile-likelihood in closed form, in contrast to Baddeley et al. [2013,

2019]. The computation can alternatively use a second-order summary characteristic function.

This flexibility allows many more spatial point processes to be studied.

I introduced three discrepancy measures, one in (4.3), a parametric one in (4.9) and a nonpara-

metric one in (4.14). I observe that the latter leads to a more consistent finding of the influential

and locally influential events from the mean and maximum approaches: from Amean
i and Amax

i ,

Amean
par,i and Amax

par,i, A
mean
non,i and Amax

non,i, and respectively, τmean
i and τmax

i , τmean
par,i and τmax

par,i and τmean
non,i and

τmax
non,i. The measure of consistence is based on the size of the joint set of the influential events from

the mean and maximum approaches. The size of the joint set of influential events seems to be

bigger if the nonparametric discrepancy in (4.14) is used.

The more complicated the model is the more influential events my method discovers. The size

of influential events increases from studying the CSR SPP in Section 4.3.1, Table 4.2, to studying

the Thomas SPP in Section 4.3.2, Table 4.3, to studying the mixed SPP of the previous two SPPs

in Section 4.3.3, Table 4.4.

In the following, I will discuss a few future work possibilities. The discrepancies defined in

(4.3), (4.9) and (4.14) did not take into account the relevance of certain domain of h on K(h).

To integrate this role into the discrepancy one can consider an approach of the tilting technique

introduced by Choi et al. [2000]. Versus the discrepancy introduced in (4.3), one can call the

below as the tilted discrepancy

D̂i(ζj, γm) =

∫
ω(h)

[
K̂i,j,m(h)−Kθ̂(h)

]2

dh, (4.21)

where ω(h) represents a weighting function. The discrepancy in (4.3) contains ω(h) ≡ 1. Equiva-
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lent quantities like the discrepancies in (4.9) and (4.14) can be defined accordingly as in (4.21). In

general, a non-constant weighting function allows different weights on values of K(h) at certain

range of h which might be more relevant to the question of interest. For example, if h values within

[0, c] are more relevant than within (c, hmax], ω(h) would put more weight on the range [0, c].

A measure of influence can be a discrepancy between the observed and perturbed F -, G-, K-

and pair correlation functions as shown in my work but also potentially between the estimates

of the perturbed and the observed SPP. In particular, the discrepancy can be defined as (θ̂i,γ,ζ −

θ̂)>(θ̂i,γ,ζ − θ̂), where θ̂i,γ,ζ is the estimate of the perturbed and θ̂ of the observed SPP.

4.6 List of Definitions

In Table 4.7, a list of many definitions was compiled to assist the readability.

Definitions Equation number
D̂i(ζj, γm) (4.3)
D̂par,i(ζj, γm) (4.9)
D̂non,i(ζj, γm) (4.14)
Hairmean

i (ζ) (4.4)
Hairmax

i (ζ) (4.5)
Hairmean

par,i (ζ) (4.10)
Hairmax

par,i(ζ) (4.11)
Hairmean

non,i(ζ) (4.15)
Hairmax

non,i(ζ) (4.16)
Amean
i (4.7)

Amax
i (4.8)

Amean
par,i (4.12)

Amax
par,i (4.13)

Amean
non,i (4.17)

Amax
non,i (4.18)

τmean
i (4.19)
τmax
i (4.20)
τmean

par,i (4.19)
τmax

par,i (4.20)
τmean

non,i (4.19)
τmax

non,i (4.20)

Table 4.7: Definitions of the Chapter 4
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5. CONCLUSIONS AND FUTURE WORK DIRECTIONS

This thesis focused on inference and visualization for spatial point processes. Research from

this thesis has important implications in various aspects.

Chapter 2 presented a Monte Carlo-adjusted goodness-of-fit test for parametric models de-

scribing spatial point patterns. This test has been known as the Dao-Genton test [Baddeley et al.,

2017, 2020]. Prior to this test, envelope tests in the field of spatial point processes usually tend

to be conservative. Using the nested, or otherwise termed as two-stage, Monte Carlo simulation,

the Dao-Genton test estimates the adjusted level, α∗, such that Pr{P̂ < α̂∗} = α, where Pr de-

notes probability, P the p-value, α̂∗ an estimate of α∗ and α the nominal significance level, usually

α = 0.05. Normally, α∗ is unknown, and α∗ = α only in case of complete spatial randomness. The

Dao-Genton test allows the GOF test to correctly achieve the pre-specified α. The downside is that

it demands high computational burden. This issue can motivate future works to either reduce the

computational complexity or to derive the asymptotic distribution of α̂∗. For the former possibility,

I proposed an interpolation approach to estimate α∗ faster and showed via a simulation study that

it is beneficial. Another possibility is to apply the sequential Monte Carlo p-values [Besag and

Clifford, 1991]. To circumvent the high burden of computation completely, deriving the asymp-

totic distribution of α̂∗ can become an effective solution because it is computationally simple and it

helps to make a more accurate conclusion of the GOF. I conjecture that the asymptotic distribution

is related to a gamma distribution or a mixture of gamma distributions.

Chapter 3 introduced skew-elliptical cluster processes to model SPPs having non-circular clus-

ters. In particular, I used only two representatives of the unified skew-elliptical distribution [Arellano-

Valle and Genton, 2010a] to describe the non-circular clusters. They are the unified skew-normal

and extended skew-t distributions. This approach leads to establishing skew-normal, elliptical-

normal, skew-t, elliptical-t cluster processes. Prior to the introduction of theses processes, it has

not been widely common to model patterns having non-circular clusters and estimation of the

parameters has not been easy due to the difficulty to derive the maximum-likelihood, or pseudo-
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likelihood. Additionally, the computation can be intensive like in the case of Castelloe [1998] using

a Bayesian approach. Although the challenge of deriving the maximum- and/or pseudo-likelihood

still remains for the new introduced processes, I circumvented this by using the approximation

of a second-order summary characteristic function such as the pair correlation function of these

processes and employed the minimum contrast method [Diggle, 2003] to estimate the parameters.

The upside of this approach is that this estimation is computationally easy. The downside is that

the bias can be large if the initial value is not wisely chosen. Also the approximation of the pair

correlation cannot provide a good estimate as an estimator derived from the true pair correlation

function. Possible future works are to derive a maximum-, pseudo-, or profile likelihood for theses

processes or to derive the true pair correlation function.

In this chapter, I presented CPs with clusters showing either only skew or elliptical shape. From

here, one could further explore an opportunity to come up with a CP with clusters of both skew

and elliptical shape.

A possible extension of generalizing the TP is to consider enlarging the choice of the distribu-

tion that is imposable on the location of a “children” event in a cluster. Besides the SUN and EST

classes, there may be other distributions of the unified skew-elliptical families. One of the require-

ments is the additive property because the distribution of a linear combination of the positions of

two “children” events has to be established.

In this chapter, I attempted to generalize the TP to some extent. For a future work, one could

apply the same approach to the Matérn point process, the role of which is very similar to that of

the TP in the field of spatial point processes. Both are special cases of the Neymann–Scott cluster

point process. A Matérn process is constructed similar to a TP except that the positions of the

“children” events are distributed independently and uniformly inside a disc with the “parent” event

as the center. Similar to this work, it is possible to establish some variations of the Matérn process

with respect to the circular, elliptical and skew properties of the distribution of “children” events.

Then in Chapter 4, I introduced various possible definitions of influential events and visualiza-

tion tools via hair-plots and disc-plots. The approach in this chapter makes possible for any SPP
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underlying a likelihood or just a second-order summary characteristic function, if the likelihood is

undefined, to identify influential events effectively.

I presented a method where the perturbation is carried out via a range of the angle γ and the

radius ζ . In this Chapter, I used equidistant grids for γ and ζ . It is reasonable to expect that the more

γ and ζ values are taken into account into the computation of the influence, the more representative

or accurate the influence quantities are. This can lead to a high computational complexity. A future

work can explore a possibility to determine (i) how many γ and ζ values are needed and/or (ii) what

are the relevant ranges of γ and ζ before starting the computation of the influence quantities.

The discrepancies defined in Chapter 4 did not take into account the relevance of certain do-

main of h on K(h). To integrate this role into the discrepancy I can consider an approach of the

tilting technique introduced by Choi et al. [2000], where a weighting function can tilt the discrep-

ancy towards certain chosen domains of h.

Parallel to the definition of influence presented via discrepancies between the observed and

perturbed second-order summary characteristic functions, especially the pair correlation function

as shown in the chapter, potential definitions of influence in a future work can consider the dot

product or scalar product of the discrepancy between the parameter estimates of the perturbed and

the observed SPP.
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APPENDIX A

CHAPTER 2: A MONTE CARLO-ADJUSTED GOODNESS-OF-FIT TEST FOR

PARAMETRIC MODELS DESCRIBING SPATIAL POINT PATTERNS

A.1 PROOF OF PROPOSITION 1

Let Pi and P̂i denote the random variables corresponding to pi in (9) and p̂i in (10), i =

1, . . . , n, respectively. Since α̂∗ is the solution of the estimating equation (11), I have αn =

E {
∑n

i=1 I(p̂i < α̂∗)} =
∑n

i=1E {I(p̂i < α̂∗)} =
∑n

i=1 Pr(P̂i < α̂∗) and since the P̂i’s are in-

dependent and identically distributed I have
∑n

i=1 Pr(P̂i < α̂∗) = nPr(P̂1 < α̂∗). Thus Pr{P̂1 <

α̂∗} = α. By the strong law of large numbers, P̂1
a.s.−→ P1. Consequently, I have

Pr{P1 < α̂∗} = α. (A.1)

In the following, I will show that the asymptotic distributions of P and P1 are the same.

Let FX denote the cumulative distribution function of a random variable, X . From (9), I have

p1 = 1 − FU
θ̃1

(u1,1) where Uθ̃1 is the random variable corresponding to u1,2, . . . , u1,n. According

to the Taylor expansion,

p1 = 1− FU
θ̃1

(u1,j∗)− F ′U
θ̃1

(u1,j∗) (u1,1 − u1,j∗)︸ ︷︷ ︸
O(n−1)

−F (2)
U
θ̃1

(u1,j∗)
(u1,1 − u1,j∗)2

2
− Remainder,

where u1,j∗ is a value of the set u1,2, . . . , u1,n and is within a neighborhood of u1,1. Since u1,j∗ is

a realization of Uθ̃1 , FU
θ̃1

(u1,j∗) follows the standard uniform distribution. Thus, F ′U
θ̃1

(u1,j∗) = 1

and F (k)
U
θ̃1

(u1,j∗) = 0 for k ≥ 2. That is,

p1 = 1− FU
θ̃1

(u1,j∗)−O(n−1). (A.2)

From (4), p = 1 − FUθ̂(u), where Uθ̂ is the random variable corresponding to u1, . . . , un, I can
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decompose p as a realization of P as follows

p = 1− FUθ̂(ui∗)− F ′Uθ̂(ui∗) (u− ui∗)︸ ︷︷ ︸
O(n−1)

−F (2)
Uθ̂

(ui∗)
(u− ui∗)2

2
− Remainder,

where ui∗ is a value of the set u1, . . . , un and is in a neighborhood of u. Thus, FUθ̂(ui∗) follows a

uniform distribution. Consequently, F ′Uθ̂(ui∗) = 1, F (k)
Uθ̂

(ui∗) = 0 for k ≥ 2, and

p = 1− FUθ̂(ui∗)−O(n−1). (A.3)

From (A.2) and (A.3), the asymptotic distributions of P1 and P are the same. By (A.1), Pr{P <

α̂∗} = α. It is left to show that Pr{P̂ < α̂∗} = α. Now assume either Pr{P̂ < α̂∗} > α or

Pr{P̂ < α̂∗} < α, which leads to either Pr{P < α̂∗+(P− P̂)} > α or Pr{P < α̂∗+(P− P̂)} < α,

i.e. either Pr{P > P̂} = 1 or Pr{P < P̂} = 1, which leads to a contradiction with P̂
a.s.−→ P due to

the strong law of large numbers. Hence, Pr{P̂ < α̂∗} = α.

A.2 PSEUDO-CODE OF THE MONTE CARLO ADJUSTED GOF TEST

From the only observed SPP, X , I obtain the parameter estimate, θ̂, for the true but unknown θ,

and additionally obtain Ĝ(h), F̂ (h), K̂(h), or K̂in(h).

For (i in 1 : n) {

• Generate a SPP, Xi, with θ̂ as the parameter. Estimate θ̃i, compute and store Ĝi(h), F̂i(h),

K̂i(h), or K̂in
i (h). (In my notation, Ĝi(h) ≡ Ĝi,1(h), F̂i(h) ≡ F̂i,1(h), K̂i(h) ≡ K̂i,1(h), or

K̂in
i (h) ≡ K̂in

i,1(h))

• For (j in 2 : n) {

– Generate a SPP, Xi,j , using θ̃i as the parameter. Compute and store Ĝi,j(h), F̂i,j(h),

K̂i,j(h), or K̂in
i,j(h)

} end of the j-loop.

121



• Use all stored quantities Ĝi,j(h), F̂i,j(h), K̂i,j(h), or K̂in
i,j(h), j = 1, . . . , n to compute

Gi,j(h), F i,j(h),Ki,j(h), orK
∗
i,j(h), j = 1, . . . , n. Subsequently, compute ui,1, ui,2, . . . , ui,n

and p̂i in (10) for the hypothesis Hi,0 in (8).

} end of the i-loop

The three steps of the AGOF test described in Sec. 2.3 are as follows:

1st Step Compute u, u1, . . . , un from the stored quantities Ĝ(h), F̂ (h), K̂(h), or K̂in(h); Ĝi(h),

F̂i(h), K̂i(h), or K̂in
i (h), i = 1, . . . , n. Subsequently, compute p̂ in (5).

2nd Step Estimate α̂∗ from the α-quantile of p̂1, . . . , p̂n to fulfill
∑n

i=1 I{p̂i < α̂∗} = αn.

3rd Step Reject H0 if p̂ ≤ α̂∗.
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APPENDIX B

CHAPTER 3: SKEW-ELLIPTICAL CLUSTER PROCESSES

B.1 SKEW-ELLIPTICAL-NORMAL CLUSTER PROCESSES

According to the transformation in (3.1), the joint distribution fR,Θ(r, θ) of (R,Θ) is

fR,Θ(r, θ) =
r exp

(
−σ2

2r
2 cos2 θ+σ2

1r
2 sin2 θ

4σ2
1σ

2
2

)
πσ1σ2

(B.1)

× Φ2



(
α1r cos θ

σ1
+ α2r sin θ

σ2

) 1

−1


2
√

1 + α2
1 + α2

2

;

2 + α2
1 + α2

2 α2
1 + α2

2

α2
1 + α2

2 2 + α2
1 + α2

2


2(1 + α2

1 + α2
2)


.

Elliptical-Normal Cluster Process

fd(r) =
r

2σ1σ2

exp

{
− (σ2

1 + σ2
2)r2

8σ2
1σ

2
2

}
BesselI0

{
(σ2

1 − σ2
2)r2

8σ2
1σ

2
2

}
. (B.2)

For a different parametrization, σ1 ≡ σ and σ2 = cσσ with cσ > 0, the pdf fd(r) can be rewritten

as follows:

fd(r) =
1

2cσσ2
exp

{
− (1 + c2

σ)r2

8c2
σσ

2

}
BesselI0

{
(1− c2

σ)r2

8c2
σσ

2

}
. (B.3)
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Circular-Normal Cluster Process

Here, σ1 = σ2. I provide the pdf of R, fR(r) = fd(r) in the following:

fR(r) =
r

2σ2
exp

(
− r2

4σ2

)
. (B.4)

Skew-Normal Cluster Process

Following the transformation defined in (3.1),

fR,Θ(r, θ) =
r

2c0

√
π2c1c2 − 4α2

1α
2
2

(B.5)

× exp

(
− πr2[π{cos2 θ(c2 − c1) + c1}+ 4α1α2 cos θ sin θ]

2c0(π2c1c2 − 4α2
1α

2
1)

)
,

where c0 = 2σ2/(1 + α2
1 + α2

2), c1 = 1 + α2
1(1 − 2/π) + α2

2, and c2 = 1 + α2
1 + α2

2(1 − 2/π).

The pdf, fd(r), is analytically complete only in the following two cases. First, α2
1 = α2

2, i.e., (i)

αT = α(1, 1), (ii) αT = α(−1,−1), (iii) αT = α(1,−1), or (iv) αT = α(−1, 1), assuming that

α > 0. Consequently, c1 = c2,

fd(r) =
π
√

1 + 2α2r

2σ2
√
π{π(1 + 2α2)− 4α2}

exp

[
− {π + 2α2(π − 1)}r2

4σ2{π(1 + 2α2)− 4α2}

]
× BesselI0

[
α2r2

2σ2{π(1 + 2α2)− 4α2}

]
, (B.6)

where BesselI0(x) =
∑∞

n=0(x/2)2n/(n!)2 is a modified Bessel function of the first kind.

Second, suppose that α = (0, α)T or α = (α, 0)T . Then,

fd(r) =
r(1 + α2)

2σ2
√

(1 + α2){1 + α2(1− 2/π)}
exp

[
− r2{1 + α2(1− 1/π)}

4σ2{1 + α2(1− 2/π)}

]
× BesselI0

[
α2r2

4πσ2{1 + α2(1− 2/π)}

]
. (B.7)
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B.2 SKEW-ELLIPTICAL-t CLUSTER PROCESSES

For x = (x1, x2)T ,

fX(x1, x2) =

T1

[
τ√

1+2(α2
1+α2

2)

{
ν+2

ν+(x21/σ2
1+x22/σ

2
2)/2

}1/2

; ν + 2

]

4πσ1σ2

(
1 +

x21/σ
2
1+x22/σ

2
2

2ν

)(ν+2)/2

T1

{
τ√

1+2(α2
1+α2

2)
; ν

} , (B.8)

where T1(·; ν) denotes the cdf of the univariate t-distribution with ν degrees of freedom. According

to the transformation in (3.1), the joint distribution of (R,Θ) is

fR,Θ(r, θ) (B.9)

=

r T1

[
τ√

1+2(α2
1+α2

2)

{
ν+2

ν+(r2 cos2 θ/σ2
1+r2 sin2 θ/σ2

2)/2

}1/2

; ν + 2

]

4πσ1σ2

(
1 +

r2 cos2 θ/σ2
1+r2 sin2 θ/σ2

2

2ν

)(ν+2)/2

T1

{
τ√

1+2(α2
1+α2

2)
; ν

} .
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