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ABSTRACT 

Voice conversion is the task of transforming speech from one speaker to sound as if it was 

produced by another speaker, changing the identity while retaining the linguistic content. 

There are many methods for performing voice conversion, but oftentimes these methods 

have onerous training requirements or fail in instances where one speaker has a nonnative 

accent. To address these issues, this dissertation presents and evaluates a novel “anchor-

based” representation of speech that separates speaker content from speaker identity by 

modeling how speakers form English phonemes. 

We call the proposed method Sparse, Anchor-Based Representation of Speech 

(SABR), and explore methods for optimizing the parameters of this model in native-to-

native and native-to-nonnative voice conversion contexts. We begin the dissertation by 

demonstrating how sparse coding in combination with a compact, phoneme-based 

dictionary can be used to separate speaker identity from content in objective and subjective 

tests. The formulation of the representation then presents several research questions. First, 

we propose a method for improving the synthesis quality by using the sparse coding 

residual in combination with a frequency warping algorithm to convert the residual from 

the source to target speaker’s space, and add it to the target speaker’s estimated spectrum. 

Experimentally, we find that synthesis quality is significantly improved via this transform. 

Second, we propose and evaluate two methods for selecting and optimizing SABR anchors 

in native-to-native and native-to-nonnative voice conversion. We find that synthesis 

quality is significantly improved by the proposed methods, especially in native-to-
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nonnative voice conversion over baseline algorithms. In a detailed analysis of the 

algorithms, we find they focus on phonemes that are difficult for nonnative speakers of 

English or naturally have multiple acoustic states. Following this, we examine methods 

for adding in temporal constraints to SABR via the Fused Lasso. The proposed method 

significantly reduces the inter-frame variance in the sparse codes over other methods that 

incorporate temporal features into sparse coding representations. 

Finally, in a case study, we examine the use of the SABR methods and 

optimizations in the context of a computer aided pronunciation training system for 

building “Golden Speakers”, or ideal models for nonnative speakers of a second language 

to learn correct pronunciation. Under the hypothesis that the optimal “Golden Speaker” 

was the learner’s voice, synthesized with a native accent, we used SABR to build voice 

models for nonnative speakers and evaluated the resulting synthesis in terms of quality, 

identity, and accentedness. We found that even when deployed in the field, the SABR 

method generated synthesis with low accentedness and similar acoustic identity to the 

target speaker, validating the use of the method for building “golden speakers”. 
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1. INTRODUCTION  

Speech is the convolution of two components: a source signal generated by the 

glottis (e.g. “voice box”) and a filter controlled by the articulations of the vocal tract. The 

identity of a speaker is contained in both the source signal (the speaker’s pitch and range) 

as well as their filter (affected by the size and articulations of their vocal tract). Linguistic 

content (what a speaker said) is a combination of these features. Many speech processing 

tasks are interested in separating these components and evaluating them; for example, 

Automatic Speech Recognition (ASR) treats the speaker’s identity effects on the speech 

signal as noise to be ignored, focusing on the linguistic content. Alternatively, speaker 

identification systems use the signal to identify the speaker, but treat the linguistic content 

as less important. 

Voice Conversion (VC) methods are concerned with modifying the speaker 

identity of an utterance while retaining the linguistic content. To change the identity, the 

two major components of the speech signal must be converted from that of the source 

speaker to that of the target speaker. First, the pitch (i.e. fundamental frequency) is 

modified to be in the same range as the target speaker. This is typically achieved through 

log mean and variance scaling [1-3]. However, converting the spectral envelope (i.e. the 

filter) is far more involved. Previous work in spectral conversion used statistical regression 

(i.e. Gaussian Mixture Models) on parallel corpora to learn a mapping between a pair of 

source and target speakers [2]. These methods can successfully convert spectral envelopes 

from a source to target speaker, but due to the statistical nature of the regression, they 

suffer from “over-smoothing” effects, resulting in a “muffling” effect in the synthesized 
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speech. Different methods have been proposed to solve this problem and increase spectral 

detail [4-6], but they require increasing amounts of training data to build a voice 

conversion model. Sparse-coding-based spectral conversion methods have also been 

proposed as a solution to this spectral detail problem [7, 8]. These methods decompose 

speech as a sparse, linear combination of exemplars from a speaker (e.g. speech frames 

from a number of utterances). This decomposition, when combined with aligned 

exemplars from a target speaker, can be used to perform voice conversion. Typically, these 

methods build source and target dictionaries using time-aligned data from the two 

speakers. In practice, it is not always practical to collect parallel utterances from two 

speakers to learn a mapping between two speakers. Furthermore, there are instances where 

one of the speakers may be unable to pronounce parallel utterances in the same manner as 

the other (e.g., when one speaker has a non-native accent), further confounding existing 

VC methods. In these instances, alternative methods for performing voice conversion 

without requiring parallel data, or instances where data collection is limited, would be 

useful. 

One alternative to using aligned utterances to build voice conversion models 

between speakers would be to learn “anchors” of speakers’ voices, representing how a 

speaker forms particular sounds (e.g. phonemes) in the acoustic space. In this dissertation, 

we use this rationale to represent a speaker as a collection of canonical productions of 

different phonemes, where each phoneme represents an anchor for that speaker. Though 

two different speakers will produce different spectral envelopes for the same phoneme, 

they will agree upon the linguistic content of that sound. Additionally, using phoneme-
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oriented anchors allows for more compact speaker representations, resulting in models 

that are less sensitive to limited training data. In a similar manner to other sparse-coding 

methods, we use these anchor-based models to represent their speech relative to these 

anchors, representing each speech frame as a sparse, linear combination of the speaker’s 

anchors. Given different anchor models from two speakers, we show that the learned 

weights possess speaker-independent properties, effectively separating who said an 

utterance (in the form of the anchors) from what was said (in the form of the weights). 

This dissertation concerns the implementation and optimization of an anchor-

based voice conversion system based on the above intuition. This representation 

leverages sparse coding algorithms to represent a source speaker’s spectral envelope as a 

linear combination of their anchors; the learned sparse codes are then used in combination 

with a target speaker’s anchor set to estimate the target speaker’s spectral envelope. In 

addition to proposing an implementation of this system, we also optimize the components 

of the system and evaluate it in both native-to-native and native-to-nonnative voice 

conversion tasks.  

The specific aims of this dissertation are: 

1. Develop a framework for anchor-based voice conversion. We use sparse-coding 

methods to perform spectral envelope conversion as part of a voice conversion 

system. Initially, we will use the centroids of phonemes to build this framework—

one anchor per phoneme. 

2. Use the residual to improve spectral detail. Because of the compact anchor set, the 

converted utterances will lack spectral detail. We propose and develop a method 
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to use the source residual to increase the detail of the target speaker’s spectral 

envelope. 

3. Select optimal anchor sets. A single anchor per phoneme may not represent some 

phonemes adequately (e.g. stops); alternatively, some phoneme anchors may be 

unnecessary or redundant (e.g. affricates or diphthongs). We propose and study 

two different techniques for optimizing the anchor sets—selecting the appropriate 

number of anchors and optimizing the anchors for two different speakers. 

4. Add temporal smoothness constraints to the representation. Adding temporal 

constraints to the objective function will ensure that the sparse codes are 

temporally smooth, increasing the interpretability of the weights and potentially 

improving the voice conversion quality. 

5. Case Study: Use the anchor-based voice conversion to build Golden Speakers. 

Prior work suggests that pronunciation training could be best accomplished by 

training a second-language learner with their own voice without a non-native 

accent. In this aim, we use the anchor-based voice conversion method “in the field” 

a pronunciation-training tool to allow non-native speakers of English to hear their 

voice, but without an accent. 

1.1. Dissertation Outline 

The remainder of this dissertation is organized accordingly. First, it presents an 

overview of speech production and perception, how this relates to voice conversion and 

accent conversion and related literature, and an overview of the proposed voice conversion 

framework which will be used to answer the above research aims. Chapter 3 presents in 
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detail the implementation of a Sparse, Anchor-Based Representation of Speech (SABR), 

and objective and subjective evaluations of its ability to separate voice identity from 

content. These findings were published at the 2015 Interspeech conference [9]. In Chapter 

4, we propose and evaluate a method for using the sparse coding residual and a frequency 

warping method to improve the synthesis quality of SABR. The residual warping method 

was presented at ICASSP 2018 conference [10], expanded into a journal chapter in 2021 

with a more thorough analysis of frequency warping methods and the effects on native-

to-nonnative VC, and submitted to IEEE/ACM Transactions on Audio, Speech, and 

Language Processing in 2021. Chapter 5 presents two methods for optimizing SABR 

anchors for use in native-to-native and native-to-nonnative voice conversion. This chapter 

was submitted to IEEE/ACM Transactions on Audio, Speech, and Language Processing, 

once in 2019 and revised in 2020. The ARS algorithm was published in Interspeech, 2021.  

In Chapter 6, we present a modification to the sparse coding objective function from 

Chapter 3 to include temporal constraints. This chapter was submitted to Interspeech 2019 

and ICASSP 2019. 

In Chapter 7, we perform a case study where we apply the proposed SABR system 

in a Computer-Aided Pronunciation Training (CAPT) system and evaluate the 

performance of SABR using speech collected from nonnative speakers in a pedagogical 

context. This chapter is part of a journal chapter published in the journal Speech 

Communication [11], in which SABR was used to generate synthesis for learners to 

practice their accent; the full chapter comprises a discussion of the application, the signal 

processing backend, and the learning outcomes of participants who used the system. Here, 
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we focus on the signal processing aspect of the CAPT tool and the performance of SABR 

on the voices of the learners who used the tool. Chapter 8, concludes this dissertation with 

a review of the findings and directions for future work. 
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2. BACKGROUND AND RELATED WORK 

2.1. Speech Production 

The Acoustic Theory of Speech Production describes speech acoustics as the 

consequence of four components of the vocal tract [12]. The first component is a sound 

source, which is either a periodic signal generated by the vibration of the glottis (voice 

box) or a turbulent airstream. The second component is the vocal tract filter, which 

generates resonances that modulate the source signal. The third component, energy losses, 

affect the acoustic structure of speech sounds. And the final component, radiative effect, 

arises from the fact that the speech signal radiates from the mouth. The first two 

components are largely responsible for the time-varying components of speech sounds and 

can be in general evaluated independently from each other. For brevity, we will focus on 

these two components in this discussion.  A cross-sectional illustration of a vocal tract 

model (VocalTractLab, [13]) can be seen in Figure 1, with an illustration of the vocal tract 

cavity and common articulators. 

The source of speech production begins at the glottis, or vocal folds, and can either 

release air from the lungs without vibrating (producing turbulent airflow for voiceless 

sounds) or vibrating (producing a periodic signal, perceived as pitch, for voiced 

sounds)[14]. The frequency of this periodic signal, or the pitch, varies over time for 

emphasis or part of speech1. The source signal is then modified by the vocal tract filter. 

This component is called the filter because the cross-sectional shape of the vocal tract 

                                                 

1 While these two classes of source signals do not consider the full variety of source sounds that 

the glottis can produce, they account for the phonetic differences we consider in this work. 
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cavity creates resonant frequencies, amplifying or attenuating different frequencies of the 

source signal from the glottis. Moving the articulatory features of the vocal tract (e.g. the 

jaw, the tongue, the lips) create different resonances, changing the output acoustics. The 

time-varying movement of these articulatory features creates a time-varying filter, 

creating different resonances in the acoustic signal.  

The combination of these two components form the basis of phoneme 

categorization [16]. Phonemes represent the smallest component of speech sounds and 

linguistic content. Phonemes are categorized into two broad categories: vowels, which 

have voicing and unimpeded airflow, and consonants, where the airflow is restricted in 

some manner and voicing can vary [17]. From an articulatory perspective, vowels are 

 

 

Figure 1: Cross section of a vocal tract model to illustrate vocal tract features and 

articulators. 

 The vocal tract cavity is represented by the shaded section. Also shown are 

articulators for the physical vocal tract model VocalTractLab [13], reprinted with 

permission from [15]. 

Velum

Tongue 

Center

Jaw

Tongue 

Body

Tongue 

Tip
Lip 

opening

Lip Protrusion

Hyoid

Source



 

9 

 

categorized by the location of the tongue tip (i.e. how low and how far forward the tongue 

tip is) and the body of the tongue must allow for nonturbulent airflow. Because airflow is 

unimpeded, the vocal tract cavity forms a filter with strong resonances known as formants. 

Perceptually, vowels are distinguished by the frequency locations of the first two or three 

formants [18, 19]. Consonants are categorized by place and manner of articulation. The 

place and manner of articulation refer to the place of the tightest constriction in the vocal 

tract, and the type of constriction. The place of restriction is typically classified according 

to the physiological feature on the hard or soft palate (e.g. roof of the mouth) where the 

narrowest cross-section of the vocal tract cavity occurs. The manner of articulation refers 

to the airflow that results from this cavity. Constants can be either voiced or unvoiced (i.e., 

the glottis can be producing a periodic source signal with a pitch, or turbulent airflow 

which lacks such) [17].  

For the most part, these two features—the source signal and the vocal tract filter—

can be treated independently, and many speech processing tasks try to separate the two 

components for easier analysis. However, both of these components carry an element of 

speaker identity that makes it more difficult to separate identity from content. The pitch, 

or fundamental frequency of the source signal, also affects speaker identity, as different 

speakers have different distributions and ranges of pitch. In practice, simple log-scale 

mean-variance scaling is enough to transform the pitch range of one speaker to that of 

another [3]. Modifying the filter is more complex, as both the linguistic content and 

speaker identity are encoded in the filter. The front cavity hypothesis [18] suggested that 

the front of the vocal tract cavity encodes linguistic content, and the back of the vocal tract 
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cavity contributes mainly speaker identity. However, these two features interact in the 

spectrum in complex, non-trivial manners, and therefore the overall vocal tract filter also 

carries speaker identity. For speech processing tasks which require the modification of the 

identity of a speaker (such as voice conversion) the filter must also be changed to match 

the desired target speaker identity. 

2.2. Speech processing methods 

2.2.1. Analysis and synthesis of speech 

Speech processing methods can be broken into two broad categories of algorithms: 

analysis and synthesis of the speech signal. Analysis is the decomposition of the speech 

signal into its constituent parts—typically a representation of the pitch and spectral 

envelope. These two components correspond to the components in the source-filter 

model—the pitch representing the source signal, and the spectral envelope representing 

the resonances of the vocal tract, which also implicitly represents the vocal tract cavity. 

Analysis methods typically assume that the glottis and vocal tract cavity are fully 

decoupled, meaning that the source signal and the resonances can be treated 

independently. Principally, these methods first estimate the pitch and its harmonics 

(source signal), then estimate the resonances (the spectral envelope). Once these 

components are extracted, further analysis or modification can be performed [20]. 

Synthesis algorithms operate in the opposite direction of analysis algorithms, 

typically simulating the source and filter components to generate speech acoustics. 

Formant synthesizers are the most basic of the acoustic synthesis techniques, consisting 

of individually adjustable filters which simulate resonances in the vocal tract. Different 
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resonance frequencies and bandwidths correspond with different phoneme units and if 

these resonances are updated at short intervals (e.g. 5ms), continuous speech can be 

generated when this filter is driven with a model of the source (e.g. a voiced or unvoiced 

source signal) [19]. Similarly, Linear Prediction Coefficient (LPC) synthesizers use the 

source-filter model to generate speech acoustics, but as opposed to formant synthesizers, 

short frames of speech can be used to estimate LP coefficients. These components have 

been used in the past for VC as they parameterize the spectral envelope with a handful of 

coefficients that can be easily transformed. As with the formant synthesizer, when an LPC 

synthesis filter is excited with an appropriate source signal, intelligible speech can be 

generated [21]. 

Alternatively, some synthesis methods do not directly generate the source and filter 

components to generate realistic synthesis, but still leverage this aspect of speech to 

generate realistic acoustics. Concatenative synthesis uses samples of speech acoustics 

combined with a desired sequence of phonemes to stitch together an arbitrary utterance. 

The database of speech samples can be arbitrarily large and contain very low level (i.e. 

phoneme) or high-level (syllable or word) units, effectively capturing a wide variety of 

intonations. To ensure the speech sounds natural, temporal and pitch scaling of adjacent 

speech samples is necessary. One method for doing this, Pitch Synchronous Overlap and 

Add (PSOLA) [22], finds the parameters for the spectral envelope at each mark in the 

pitch sample. The method is pitch synchronous as it generates a window of acoustics for 

each pitch mark in the source signal. Given a window of the source signal, centered on the 

pitch, and the corresponding filter at the pitch time, the single pitch impulse could be run 
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through the filter and an estimate of the acoustics for that window could be generated. 

Each overlapping window was then added together to generate a full time-domain signal. 

Later synthesis methods, such as STRAIGHT, used more complex representations 

and did not rely on an estimation of the source signal—just an estimate of the 

corresponding pitch frequency, spectral envelope parameters, and a representation of 

“aperiodic components” (i.e. features that cannot be explained by periodic features). 

Recently, vocoders built on deep neural network architectures have shown themselves to 

be even more effective at generating high-quality speech synthesis using spectral envelope 

and pitch parameters [23]. 

2.2.2. Separating speaker identity and content 

Different speech tasks require the separation of speaker-dependent cues (e.g., 

identity) from speaker-independent cues (e.g., linguistic information) from the speech 

signal. In automatic speech recognition (ASR), speaker variability is viewed as unwanted 

noise (i.e. linguistic content); in VC, one seeks to modify speaker-dependent cues while 

retaining the linguistic content of the utterances. Several techniques have been developed 

to remove the influence of speaker identity in speech, but there are two broad categories 

for removing identity from speech. The first is directly transforming the spectrum to 

minimize speaker dependencies using techniques such as vocal tract length normalization 

[24, 25] and speaker adaptation [26]. These methods transform the parameters of a model 

(e.g., an ASR) to be closer to that of a specific speaker, then use the transformed model in 

a speaker-specific task [27, 28]. The second class of methods is to project speech into a 
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latent, linguistic space, where the speaker-specific variations from the speech signal are 

removed. 

One approach to projection is to map acoustics into the articulatory feature space. 

Though speakers have different vocal tract parameters, the articulatory configuration for 

the same linguistic content will be agreed upon between two different speakers, allowing 

for speaker-independent representation [29, 30]. As an example, Frankel et al. [31] trained 

multi-layer perceptrons to estimate phonological articulatory features (e.g. place, manner, 

nasality, etc.) from the cepstrum. When they combined the estimated articulatory features 

with acoustic features, word error rate dropped from 67.7% to 59.7% in a speaker-

independent phoneme classification task. Arora and Livescu [32] used canonical 

correlation analysis (CCA) of simultaneous acoustic and articulatory recordings to capture 

the common factor (i.e. linguistic content) in these two views. The authors learned CCA 

transforms from a group of speakers and used them to extract linguistic features from 

acoustics in a speaker-independent fashion. CCA features improved the accuracy by up to 

23% in a speaker-independent phoneme recognition task. 

An alternative to using articulatory features is to use linguistic information learned 

from speech recognition systems. The Kaldi ASR system [33] uses a 4-layer Deep Neural 

Network (DNN) to classify windows of speech into different subphoneme states (known 

as “senones”). These subphoneme states are similar to the aforementioned articulatory 

configurations, representing a latent space where linguistic content is learned over speaker 

identity. Because the network is trained on many different speakers, it can learn speaker-

independent representations of speech content [34, 35]. 
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2.3. Voice Conversion 

In this section, we discuss standard frameworks of VC systems and a review of 

prior work in VC. We also discuss prior work in Accent Conversion (AC) and its 

relationship with previous VC systems and speech production as a whole. 

2.3.1. Voice conversion systems 

VC methods take an input speaker utterance and modify it such that the speaker 

identity of the utterance is changed while the linguistic content is retained [36]. To do this, 

the two primary components of the speech signal must be transformed to change the 

identity of the source speaker to that of the target speaker: the pitch and the spectral 

envelope. First, the pitch (i.e. source signal) is modified to be in the same range as the 

target speaker. This is typically through log mean and variance scaling [1-3]. Given the 

source and target speakers’ log pitch means and variances 𝜇𝑠, 𝜇𝑡, 𝜎𝑠, and 𝜎𝑡, scaling a 

source speaker’s pitch 𝐹0
𝑆 to the target speaker’s range follows: 

𝐹0
𝑇 = exp(

log(𝐹0
𝑠) − 𝜇𝑠
𝜎𝑠

𝜎𝑡 + 𝜇𝑡) . 

 As stated previously, converting the spectral envelope (i.e. the filter) is more 

involved. Representations of the spectrum tend to have far more features than the pitch 

and this detail is required for the resulting speech to be rich and high quality. Full spectra 

are high-dimensional (for many conversion systems, 512 dimensions or higher) and these 

features are often highly-correlated, making it difficult for statistical conversion methods 

to capture spectral detail [2]. Efforts must be made to retain spectral detail and to capture 

the identity of the target speaker  [5-8, 37, 38]. 
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Figure 2 contains an overview of the components of a voice conversion system. 

This figure illustrates the STRAIGHT vocoder framework [39], but this formulation is 

similar to many other VC systems and toolkits (e.g. WORLD [40]). The STRAIGHT 

framework includes two modules: an analysis module, that separates a speech signal into 

source, filter, and aperiodic parameters, and a synthesis module, that takes these three 

parameters and synthesizes a speech signal from it. In the analysis module, the three 

components STRAIGHT generates are: 

• the pitch (in Hz if voicing is present, 0 if unvoiced) 

• the spectral envelope, without the pitch harmonics 

• and the aperiodicity (AP; the magnitude of spectral energy that cannot be 

explained by periodic components, i.e. the pitch). 

To perform VC, one must convert the three components such that they retain the 

linguistic content of the source speaker, but have the identity of the target speaker. Pitch 

is converted typically using log mean and variance scaling [2, 5], as mentioned previous. 

In practice, aperiodicity (AP) is less important to voice identity, but band scaling is a 

common technique for converting AP from a source to target speaker [41]. 
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2.3.2. Spectral conversion methods 

Because speaker identity and speaker content are tied in the spectral envelope, 

spectral conversion methods in VC typically rely on learning how source and target 

speakers form the same linguistic content (e.g., how they form a particular phoneme), then 

using an encoding of the linguistic content extracted from the source speaker, drive the 

target speaker’s acoustic model [36]. Some VC methods will explicitly learn an encoding 

based on linguistic content (e.g., using phoneme labels [42]), whereas others use time-

aligned, parallel utterances between source and target speakers, relying on the alignment 

to match the spectrum of the source speaker to that of the target speaker [2, 3]. Once this 

 

Figure 2: overview of voice conversion system using STRAIGHT. This dissertation 

focuses on developing a spectral conversion method, shaded in blue. 
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alignment is learned, regression can be used to estimate the target speaker’s spectrum from 

a sample from the source speaker. 

One of the earliest spectral conversion algorithms used vector quantization (VQ) 

to learn a source-target mapping of spectral features. Abe et al. [43] used codebooks 

learned from time-aligned source and target training data to learn a mapping from the 

source speaker’s pitch and spectrum to the target speaker. In perceptual tests, listeners 

identified the synthetic speech as being much more like the target speaker. However, the 

VQ method resulted in discontinuous trajectories in the pitch and spectral parameters, 

resulting in distortions and lower quality synthesis. 

To deal with the discontinuity issues associated with the VQ method, Stylianou et 

al. [2] proposed using a statistical regression algorithm using Gaussian Mixture Models 

(GMMs). This method greatly improved quality of these conversions, allowing for 

smoother parameter trajectories between the GMM mixture centers. Using 3.5 minutes of 

parallel source and target training data, this method outperformed vector quantization 

methods in objective and subjective tests. However, this statistical regression method 

introduced a problem where the spectrum of the target speaker lacked the variance of the 

target—known as “oversmoothing.” One technique for solving this problem was proposed 

by Toda et al. [6], called Maximum Likelihood Parameter Generation. In addition to the 

GMM model, the authors added delta and delta-delta features to the source and target 

datasets to not just perform spectral conversion, but to estimate the trajectory of the target 

spectrum. Combining this with a maximum-likelihood estimation algorithm, the estimated 

trajectory of the target spectra could be used to increase the spectral variance of the method 
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to more closely match the trajectories of the target speaker. However, these solutions 

increased the amount of training data required for high-quality conversions, making it 

difficult to use these conversion methods in “real world” settings. 

While the use of statistical regression is one source of oversmoothing in statistical 

regression, another source is the use of compressed spectral features in GMM conversion.  

Methods which have attempted to solve the oversmoothing issue have focused on using 

full spectra in the conversion process, as opposed to a compressed representation as the 

GMM methods often use. Frequency Warping and Amplitude Scaling (FW+AS) is one 

method for using full spectra in VC [4, 5, 37, 38]. Frequency warps are functions that build 

an invertible transformation of a source spectrum to align it with the energy of a target 

spectrum, and can be thought of as “stretching” or “squashing” the spectrum between two 

frequencies. These methods operate by using frequency warping to adjust the formant 

locations of the source speaker to be closer to the target spectrum. Because frequency 

warps cannot account for all spectral differences between source and target speakers, 

another module is required to match the target speaker’s spectral energy (a so-called 

“Amplitude Scaling” module) is included to adjust the warped source spectrum to be 

closer to the target speaker [4, 5, 37] The net result of these transforms is that all the 

spectral detail is retained, but the distribution of the details can be changed, preserving 

more spectral detail than other conversion methods [44]. Partial Least Squares (PLS) 

methods have also been explored to perform VC on full source spectra, with the same 

motivation to solve the statistical oversmoothing problem. In [45], the authors examined 

the use of a kernel-based Partial Least Squares method to learn projections of the source 
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speaker to the target speaker’s spectrum while using the full spectrum and not compressing 

it. In this method, the authors used a kernel representation of the aligned source and target 

training data to learn a PLS transform on the original source spectrum. In subjective and 

objective tests, the authors found that their proposed PLS method performed significantly 

better than the GMM-based baseline comparison method. 

2.3.3. Exemplar-based voice conversion 

Another technique for solving the GMM oversmoothing issue came with the use 

of Exemplar-Based VC methods. Exemplar-based methods perform VC using sparse 

coding and an exemplar dictionary for both the source and target speakers. In the training 

phase, source and target speaker dictionaries are built from time-aligned source and target 

spectra, 𝐴 and 𝐵. During conversion, the source utterance 𝑋 is decomposed into a set of 

sparse codes 𝐻 (usually via Nonnegative Matrix Factorization; NMF) using the source 

speaker’s exemplar dictionary. Then, an estimate of the target speaker’s utterance 𝑌̂ is 

obtained by multiplying the source speaker’s sparse codes with the target speaker’s 

dictionary [9]. An overview of these methods is shown in Figure 3. These exemplar-based 

methods work well with limited training data [8, 35, 38, 46-52] and are more robust to 

noise [53] than methods such as GMMs. 
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One of the first uses of exemplar-based voice conversion was presented in [8], 

leveraging the use of Nonnegative Matrix Factorization in noisy environments. The 

authors proposed using parallel source and target dictionaries to learn both an encoding of 

a source speaker’s utterance and then to estimate the spectrum of a target speaker. One of 

the motivations for the use of this method was to be able to use full spectrum exemplars 

to perform the synthesis, as opposed to a compressed version of the spectrum as was 

typical in statistical conversion methods. The authors found that their proposed method 

outperformed a GMM-based synthesis method considerably. Aihara et al.[48] proposed a 

technique for performing many-to-many voice conversion by using a multi-speaker 

dictionary to represent unseen source and target speakers. Dictionaries for unseen speakers 

were assembled from linear combinations of speakers in the multi-speaker dictionary. In 

perceptual studies, using this additional data allowed the many-to-many exemplar VC 

method to significantly outperform a one-to-one GMM method in objective and subjective 

experiments.  

 

Figure 3: overview of exemplar-based VC methods. 
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Even for time-aligned, parallel source and target training data, parallel utterances 

typically having different encodings for source and target speakers. Synthesis methods 

which rely on these encodings can be affected by these mismatches, potentially lowering 

synthesis quality or changing speaker identity. One way to constrain these differences is 

to add phoneme information in the dictionary design and objective functions. Aihara et al. 

[47] proposed an “activity mapping” method for exemplar-based VC in which the source 

and target dictionaries were given an additional phonetic label, ensuring that exemplars 

from the source and target were used in coding and synthesis. The authors found that by 

including this constraint, spectral distortion between the estimated target speaker’s 

spectrum and the ground truth was lowered, and listeners significantly preferred synthesis 

from the constrained dictionaries over the unconstrained dictionaries. Similarly, Ding et 

al. [54] proposed adding a Phoneme-Selective Objective Function to an exemplar-based 

VC system, which used a joint L1-L2 group-sparsity penalty to first select a phoneme 

subdictionary to perform sparse coding and VC. Including the constraint significantly 

improved synthesis quality in objective and subjective tests. In [55], Sisman et al. sought 

to avoid the parallel training requirement for exemplar dictionaries, instead learning 

dictionaries based on phonetic features. Differently than prior studies, the authors created 

a joint dictionary of spectral and phonetic posteriorgrams (PPGs), the latter derived from 

a deep-learning-based ASR system. At runtime, the authors extracted PPGs from the 

source speaker’s utterance and performed sparse coding using the target speaker’s PPGs, 

under the assumption that PPGs were speaker independent. This activation matrix was 

then applied to the target speaker’s spectral dictionary with a residual compensation 
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component. The resulting synthesis outperformed a baseline method in subjective and 

objective tests, further demonstrating that including phoneme information in exemplars 

improves synthesis quality over time-aligned training data. 

2.4. Accent Conversion 

Accent conversion (AC) seeks to synthesize speech with the voice quality of a 

nonnative speaker (L2), but the accent of a native speaker (L1). As such, AC is closely 

related to voice conversion. While traditional VC uses regression methods to convert 

prosodic and segmental cues, AC has the additional, difficult task of correcting for 

mispronunciations in the L2 speaker (e.g., phoneme substitutions, additions, and 

deletions) [56, 57]. In some cases, the L2 speaker may not have desired phonemes in their 

inventories, so estimating those phonemes becomes necessary [34, 58, 59]. 

In early work, Yan et al. [60] used an HMM synthesis method to transform vowels 

of three major regional English accents (British, Australian, and General American). The 

authors built statistical distributions of the first three formants of English vowels from the 

three accents and developed an accent synthesis system that would transform the formants 

of one English accent to another. In an ABX test, 78% of Australian-to-British accent 

conversions were perceived as having a British accent, and 71% of the British-to-

American accent conversions were perceived to have an American accent. In both cases, 

changing prosody alone (pitch and duration) led to noticeable changes in perceived accent, 

though not as significantly as formant modifications. Some studies have attempted to 

blend L2 and L1 spectra instead of replacing them entirely. Huckvale and Yanagisawa 

[61] reported improvements in intelligibility for Japanese utterances produced by an 
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English text-to-speech (TTS) after blending their spectral envelope with that of an 

utterance of the same sentence produced by a Japanese TTS. In [62], the authors proposed 

a voice morphing strategy, separating spectral detail (carrying linguistic content) and 

spectral slope (carrying speaker identity). AC was achieved by replacing the spectral detail 

of an L2 speaker with that of a native L1 speaker. In perceptual studies, listeners rated the 

AC utterances as being much more native-sounding, but the morphing technique affected 

the identity of the synthesis. 

Accent Conversion algorithms have also been examined in the articulatory 

domain. In [63], Felps and Gutierrez-Osuna built a joint model of articulatory and acoustic 

data from an L1 and an L2 speaker and used it to identify mispronounced diphones in an 

L2 utterance. These misidentified segments were replaced with other L2 diphone segments 

whose articulatory configuration was similar to the reference L1 articulations. However, 

this method performed poorly when particular L1 diphones were not in the L2 speaker’s 

inventory. To address this issue, Aryal et al. [58] used Gaussian Mixture Models (GMM) 

to build a statistical articulatory synthesizer, which was then able to synthesize phonemes 

not observed in the L2 speaker. The authors normalized the L1 articulatory features into 

the space of the L2 speaker, then drove the GMM with the normalized L1 articulatory 

features. This method significantly reduced the perceived nonnative accents while 

preserving the voice quality of the L2 speaker. 

2.4.1. Accent conversion vs. voice conversion 

Accent conversion is closely related to the problem of voice conversion (VC) [36]. 

Voice conversion transforms utterances from a source speaker to appear as if a (known) 
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target speaker had produced them. To be successful, the conversion should match multiple 

identity cues of the target speaker, including but not limited to vocal tract configurations, 

prosody, pitch range, accent/dialect, and speaking rate. Ideally, the only information 

retained from the source utterance is its linguistic content, i.e., what has been said. Accent 

conversion goes one step further, since it attempts to capture both the linguistic content 

and the pronunciation of the source utterace, and combine it with the voice quality of the 

target speaker (i.e., those aspects associated with the target speaker’s physiology), to 

create a new voice that sounds like the target speaker speaking with the source speaker’s 

pronunciation. Therefore, accent conversion is a more challenging problem than voice 

conversion since ground truth for the output voice (i.e., the L2 learner’s voice with a native 

accent) is not available. 

VC methods are potential ways to avoid collecting articulatory data and still 

perform AC, as an L2 speaker’s model could be driven using L1 speech, resulting in native 

prosody and pronunciation, but with the L2 speaker’s voice identity. However, additional 

modifications would be necessary to account for the segmental differences arising from 

the accent of the L2 target speaker. In [64], Aryal et al proposed an alternative “acoustic 

similarity” source-target alignment for use in a GMM-based voice conversion method. 

Using Vocal Tract Length Normalization (VTLN), they warped the target L2 spectrum to 

the L1 speaker’s space and then paired the L1 and L2 frames using a Mel-Cepstral 

Distortion metric. In perceptual studies, the authors found that using the alternative frame 

pairing combined with voice conversion reduced the accent of the synthesized utterances 

and captured the voice quality of the target speaker. Similarly, Zhao et al. [34, 57] 
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presented another alternative alignment method to account for these differences. As 

opposed to using VTLN to learn source and target frame parings, the authors proposed 

using a Phonetic Posteriorgram (PPG) extracted from the Kaldi ASR system. The PPG 

representation is akin to a latent phonetic space that is used in speech recognition; because 

this recognizer was trained on hundreds of speakers, the representation is presumed to be 

speaker-independent, and two acoustic frames which have similar PPG vectors likely 

share the same phonetic content. The authors used this property of the PPG to pair L1 and 

L2 frames in such a way that minimized the KL-divergence of the L1 and L2 PPG data. 

In perceptual tests, they found that this method had even higher acoustic quality than the 

previous GMM-based AC methods and further reduced the accent present in synthesis. 

Notably, participants were also able to identify the AC utterances as coming from the 

target L2 speaker a significant portion of the time. These results showed that VC-based 

acoustic-only models could be used to perform accent conversion so long as the regression 

method between the L1 and L2 speakers accounted for pronunciation differences. 

However, the substantial amount of training data (300 utterances for GMM, 100 utterances 

for PPG) required to build these acoustic mappings made them infeasible in a computer 

aided pronunciation training context. 

2.5. Other Considerations in Conversion Algorithms 

2.5.1. Frame Pairing Methods 

To train many voice conversion systems, a method for learning training source and 

target pairs is required. However, this is difficult as it is not always possible for two 

speakers to produce identical training utterances, either because of convenience or due to 
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other issues, such as one speaker having an accent. Even in cases where the speakers did 

produce the same training sentences, the utterances may differ in terms of timing and 

rhythm, so techniques are required to build paired source and target training data. One 

technique for aligning two samples with similar content, but different timing, is the 

Dynamic Time Warping (DTW) algorithm [65]. This algorithm uses dynamic 

programming to learn a minimum error alignment between pairs of source and target 

training data. 

In speech, DTW is often used to align two parallel utterances spoken by two 

different speakers [1, 2, 6, 8]. This is done in the spectral domain, as similar phonetic 

content will have similar spectral representations even between two speakers. However, 

this assumption is somewhat strong, and breaks down when the source and target speaker 

have different productions of the same content. This can happen in instances where one 

speaker produces different phonetic content than a native speaker due to a non-native 

accent [34, 66], even when both speakers were asked to produce the same utterance. 

2.5.2. Complexity Considerations 

For VC systems to be used in real-time or in-the-field applications, the complexity 

of these systems must be kept in mind. While Deep Learning and existing exemplar-based 

voice conversion systems have remarkable performance, both types of VC require a 

significant amount of processing power for conversion and synthesis [67, 68]. While many 

DNN systems offload processing onto client-server frameworks[69], such systems are not 

always feasible, especially for systems that require immediate feedback or when stable 

internet connections are not always available [70]. Research into performing many speech 
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processing techniques on limited-resource devices (such as mobile hardware) shows a 

need for lightweight algorithms in a variety of tasks [71-74]. 
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3. SABR: SPARSE, ANCHOR-BASED REPRESENTATION  

OF THE SPEECH SIGNAL* 

3.1. Overview 

In this chapter, we present the primary algorithm of the dissertation: SABR, 

Sparse, Anchor-Based Representation of Speech. We discuss the intuition of the method, 

how to build SABR models, and how to use them in VC. In experiments, we show how 

the SABR method performs in speaker-independent representation and voice conversion 

tasks. The methods in this chapter addresses the first aim of this dissertation and are the 

basis for the following chapters. This chapter was originally presented at Interspeech, 2015 

[9], and has been modified to fit the structure of this dissertation. 

3.2. Introduction 

Many VC methods require parallel data or significant amounts of training data to 

model source and target speakers [1, 6, 34, 75]. In practice, it is not always practical to 

collect significant amounts of training data. Additionally, there are instances where one of 

the speakers may be unable to pronounce parallel utterances in the same manner as the 

other (e.g., when one speaker has a non-native accent). Instead of requiring parallel 

training data and relying on alignment algorithms to ensure a good mapping between the 

source and target speakers, “anchoring” the source and target speaker’s identities by 

modeling how they form phonemes would be a way to alleviate issues with these VC 

                                                 

* Reprinted with permission from “SABR: Sparse, Anchor-Based Representation of Speech” by C. 

Liberatore, S. Aryal, Z. Wang, S. Polsley, and R. Gutierrez-Osuna, 2015. Interspeech 2015, p.608-612, 

Copyright 2015 by International Speech Communication Association. 
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methods. By modeling how a source speaker forms an utterance next to these phoneme 

anchors, an estimate of how the target speaker would form the same utterance could be 

built. 

In this chapter, we present SABR (Sparse, Anchor-Based Representation), an 

analysis technique that builds speaker models and decomposes the speech signal on this 

intuition. Specifically, SABR models speaker’s voices with a set of speaker-dependent 

acoustic anchors and decomposes an utterance as a nonnegative weighted sum of these 

anchors using Lasso regression [76]. As we will show, by selecting the phoneme centroids 

of each speaker as anchors the resulting weights become speaker-independent and can be 

used for VC.  We illustrate the ability of the model to separate speaker and linguistic 

information in two experiments. First, we show that SABR weights outperform 

conventional spectral features (MFCCs) on a speaker-independent phoneme 

discrimination problem.  Second, we show that, by combining SABR weights derived 

from a source speaker with acoustic anchors from a target speaker, our technique can be 

used as a low-resource voice conversion method–one that does not require training a 

specific model for each source-target pair. Both of these experiments motivate the use for 

SABR in voice conversion, and the formulation presents research questions we answer in 

the following chapters. 

The rest of the chapter is organized as follows.  First, we present the SABR model 

and how to use its components for voice conversion and speech recognition applications. 

Then, we describe details on the corpus and acoustic features used to evaluate the model, 

and then we present experimental results on phonetic classification and voice conversion 
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(subjective and objective comparison). The chapter concludes by discussing the 

implications of the results, future improvements to the method and its potential application 

to other speech areas. 

3.3. Method 

3.3.1. Anchor-based representation 

Our proposed method represents the speech signal as a collection of speaker-

dependent acoustic anchors (derived from phonetic labels) and a matrix of interpolation 

weights, one set of weights per acoustic frame. In this fashion, as the weights capture the 

similarity of each acoustic frame to various phonetic anchors, they also capture the 

linguistic content of the utterance, including the effects of coarticulation. Formally, SABR 

represents utterance 𝑋𝑆 as: 

𝑋𝑆 ≅ 𝐴𝑆𝑊𝑆 (1) 

where each column in matrix 𝑋𝑆 represents an analysis window (i.e., a vector of MFCCs), 

𝐴𝑆 is a matrix of anchors for speaker 𝑆, and 𝑊𝑆 is the utterance’s weight matrix. If there 

are 𝑀 acoustic frames in an utterance, 𝑁 acoustic features, and 𝑃  speaker anchors, then 

𝑋𝑆  ∈ ℝ
𝑁 𝑀, 𝐴𝑆 ∈ ℝ

𝑁 𝑃, and 𝑊𝑆 ∈ ℝ
𝑃 𝑀. 

3.3.2. Anchor selection 

Several methods may be used to select the acoustic anchors in 𝐴𝑆, including 

unsupervised (e.g., k-means clustering), supervised learning (e.g., orthogonal least-

squares [77]), or time-aligned source and target utterances (e.g. exemplar-based VC, see 

[8, 46, 50]).  However, for the weight matrix 𝑊 to be speaker-independent the acoustic 

anchors must be consistent across speakers.  For this reason, SABR uses the acoustic 
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centroid for each phoneme in the speaker’s corpus as anchors –one anchor per phoneme, 

resulting in a compact set of parallel anchors for the source and target speaker.  This results 

in the sparse weights capture the linguistic content of the utterance (i.e., which phones 

were produced, when and how) whereas the acoustic anchors capture the identity of the 

speaker (i.e., voice quality and dialect/accent).  Phoneme centroids as anchors also makes 

the decomposition interpretable. Because only phoneme labels are required, source and 

target anchor sets do not need to be trained from parallel utterances. This aspect makes it 

especially attractive for native-to-nonnative conversion, as alignment effects (e.g. 

disfluencies in the nonnative speaker’s training data) are less of an issue for training SABR 

models. 

To ensure that correct training data are used to select anchors, we include a voicing 

constraint on the data used to train SABR anchors. For a given phoneme 𝑘, only training 

data that match the voicing of the phoneme will be considered when computing the 

centroid (e.g. if a vowel centroid is being computed, only spectral frames which have pitch 

present and the correct phoneme label will be considered when computing the centroid). 

We enforce this voicing constraint by also examining the pitch (𝐹0) during the centroid 

computation process. Removing incorrectly-voiced frames results in centroids that more 

accurately reflect low-frequency energy of a phoneme, resulting in improved synthesis 

quality and lower VC error. This can make a significant difference with speakers who may 

have difficulty consistently forming the right voicing for each phoneme, e.g. nonnative 

speakers [78]. 
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3.3.3. Sparse representation 

Given a set of acoustic anchors 𝐴𝑆, obtained from a phonetically transcribed corpus 

for the speaker, and a new utterance 𝑋, we seek to find a set of weights that minimize the 

reconstruction error ‖𝑋 − 𝐴𝑆𝑊‖. A straightforward approach is to use the least-squares 

solution: 

𝐴𝑆
+𝑋𝑆 = 𝑊𝑆 (2) 

where 𝐴𝑠
+is the pseudoinverse of 𝐴𝑆.  This solution, however, does not exploit the sparse 

nature of the speech signal, in which only a few anchors in 𝐴𝑆 may be required to 

accurately reconstruct a given acoustic frame. Moreover, the pseudo-inverse solution 

allows the weight vector to take negative values, which affects the interpretability of the 

solution.  

For these reasons, SABR enforces a sparse non-negative constraint on the solution 

by using Lasso regression [76]: 

min
𝛼
||𝑋 − 𝐴𝑆𝑊||

2
+ 𝜆||𝑊||

1
 𝑠. 𝑡. 0 ≤ 𝑊 ≤ 1 (3) 

where 𝜆 is a parameter that penalizes solutions with large L1 norm. Combined with the 

constraint that all entries in 𝑊 be nonnegative, the 𝜆 penalty term promotes sparsity (i.e., 

most of the entries in 𝑊 are zero). For this dissertation, we use the LARS Lasso solver in 

the SPAMS sparse coding toolbox [79, 80]. 

3.3.4. Voice conversion with SABR 

SABR provides a simple means of performing voice conversion.  Given an 

utterance 𝑋𝑆 from a source speaker, we first derive a set of interpolation weights (𝑊𝑆) 
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relative to the source speaker’s anchors (𝐴𝑆) via eq. (3). Then, given a target speaker with 

acoustic anchors 𝐴𝑇 , the target speaker’s utterance 𝑋𝑇 can be estimated as: 

𝑋𝑇̂ = 𝐴𝑇𝑊𝑆 (4) 

As weights 𝑊𝑆 contain phonetic information, the resulting spectrum is an 

estimation of the utterance said by the source speaker, but with the target speaker’s voice 

quality. An overview of the SABR VC algorithm is shown in Figure 4. 

3.4. Experiment design 

We evaluated SABR on speech from the ARCTIC speech corpus [81] which 

includes phonetic transcriptions for each utterance. We chose the four native English 

speakers in ARCTIC as the basis for our comparison: BDL (male), CLB (female), RMS 

(male), and SLT (female). For each speaker, we used utterances in the “A” set to compute 

the SABR anchors, and utterances in the “B” set for testing purposes. 

 

Figure 4: overview of the SABR voice conversion system. 
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For each utterance, we used STRAIGHT [39] to extract aperiodicity, fundamental 

frequency and spectral envelope, then computed 25 MFCCs (25 filterbanks, 8 KHz cutoff, 

15ms window, 1ms shift) from the STRAIGHT spectral envelope. We assigned each 

frame a phonetic label based on the ARCTIC transcription, then used 𝑀𝐹𝐶𝐶1−24 and their 

deltas as acoustic features, ignoring 𝑀𝐹𝐶𝐶0 as it contains the speech energy.  

3.5. Results 

3.5.1. Sparsity penalty evaluation 

In an initial experiment, we evaluated the average Mel Cepstral Distortion2 (MCD) 

between 100 target utterances and their respective voice-conversions for each combination 

of source and target speakers (12 pairs). As a baseline, we also calculated the within-

speaker reconstruction error. Results are shown in Figure 5. As expected, MCDs are lower 

when reconstructions are within-speaker than between-speakers. Additionally, the MCD 

is minimized at 𝜆 = 0 in the within-speaker case, which indicates that sparsity offers no 

benefits in this case. In contrast, the MCD in the cross-speaker case (i.e., voice conversion) 

is minimized at 𝜆 = 0.025, which suggests that sparsity does improve generalization 

across speakers.  For this reason, the remaining analyses in the chapter were conducted 

using the sparsity penalty 𝜆 = 0.025. 

                                                 

2 Since voice conversions follow the timing of the source speaker, they are time-aligned to the 

target utterance (via dynamic time warping) prior to computing the MCD. 
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3.5.2. Phoneme classification 

In a first set of experiments, we evaluated the extent to which SABR captures 

phonetic information in a speaker-independent manner. For this purpose, we compared 

SABR weights against conventional MFCC features on a phone recognition problem. 

Namely, we built four phoneme classifiers for each of the four ARCTIC speakers: 

• MFCC-W: within-speaker phoneme classifier on MFCC features, ignoring MFCC 

energy. 

• SABR-W: within-speaker classifier on SABR weights (40 weights: ARCTIC phone 

set, excluding pause and silence frames) 

• MFCC-X: cross-speaker classifier on MFCC features, trained on three speakers and 

tested on the fourth speaker 

 

Figure 5: Reconstruction error (MCD) within (solid line) and across speakers 

(dashed line). 

 A minimum MCD exists at 𝛌 = 𝟎. 𝟎𝟐𝟓 in the case of cross-speaker reconstruction 

(i.e., voice conversion).  
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• SABR-X: cross-speaker classifier on SABR weights, also trained on three speakers 

and tested on the fourth speaker 

Within-speaker classifiers were trained using 500 utterances from each speaker’s 

training set and evaluated on test utterances from that same speaker using 8-fold cross-

validation. In turn, cross-speaker classifiers were trained on the same 500 utterances from 

each of three speakers and tested on utterances from the excluded fourth speaker. Results 

are shown in Figure 6. Classification performance for the MFCCs degrades significantly 

when comparing within-speaker (43%) and between-speaker (23.9%), whereas 

classification performance for SABR features remains relatively stable: 36% versus 

34.6%. Moreover, whereas MFCC features outperform SABR features by a large margin 

(43% versus 36.1%) in the case of within-speaker phoneme recognition, in the between-

speaker case SABR features outperform MFCC features by a larger margin (34.6% versus 

23.9%). These results suggest that SABR features are relatively speaker-independent. 

Results on the voice conversion task (discussed next) corroborate this conclusion. 
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3.5.3. Voice conversion performance 

In a second set of experiments, we evaluated the ability of SABR to separate voice-

quality and phonetic information using objective and subjective measures on a voice 

conversion task. For a particular source-target speaker pair, we used eq. (4) to reconstruct 

the STRAIGHT spectral envelope of the target speaker, combined it with the source 

energy (𝑀𝐹𝐶𝐶0) and source pitch contour (scaled to match the range of the target speaker), 

and resynthesized the utterance with STRAIGHT. 

3.5.4. Objective evaluation 

First, we compared SABR against a baseline voice conversion system based on 

Gaussian mixture models (GMM) [2]. To control for model complexity, we limited the 

GMM to 40 mixtures—the same number of SABR anchors. Prior to building the voice 

conversion model, we selected 200 training utterances using a greedy forward-selection 

 

Figure 6: Phoneme classification performance, comparing SABR features against 

MFCC features.  

 Performance for MFCC features degrades significantly from within-speaker to 

cross-speaker tasks, whereas SABR features remain stable and outperform 

MFCCs in the cross-speaker task.  
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method that maximized the entropy of the phonetic transcriptions of the utterances. Using 

these 200 utterances, we then build pairwise GMMs for each pair of source and target 

speakers (12 pairs of speakers) and computed SABR anchors for the four speakers. Results 

are shown in  Table 1; using the 200 carefully-selected training sentences, the GMM 

method outperformed the SABR method on test utterances (an average MCD of 2.26 

versus 2.53, respectively), likely due to the fact that each GMM was optimized for each 

pair of speakers and had additional free parameters (e.g. full diagonal matrices). 

For this reason, we also compared the two voice-conversion models with 

decreasing corpus size: 100, 50, 25, and 20 training utterances selected from the corpus 

using the same greedy forward-selection strategy. Results are also shown in Table 1: 

whereas the GMM performance decreases as the number of training utterances is reduced, 

the SABR performance remains relatively stable, validating one of the aims of the SABR 

method.  

3.5.5. Subjective evaluation 

In a final experiment, we conducted a listening test to compare the voice similarity 

between the SABR voice conversions and the respective source and target speakers. To 

account for the loss of quality due to the sparse nature of SABR synthesis, we 

resynthesized source and target utterances using the speaker’s own phonetic anchors. 

Participants were presented with 48 pairs (source-VC and VC-target) for all 12 possible 

Table 1: Voice conversion performance for SABR and GMM. 

 The top row shows the number of training utterances. Entries are the average MCD. 

Training 20 25 50 100 200 

GMM 2.66 2.59 2.40 2.31 2.26 

SABR 2.59 2.59 2.57 2.56 2.53 
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speaker combinations, randomly ordered, then were asked to (1) determine if the 

utterances were from the same or a different speaker, and (2) rate how confident they were 

in their assessment using a seven-point Likert scale (1: not confident at all, 3: somewhat 

confident, 5: quite a bit confident, and 7: extremely confident). Following prior work [82], 

participants’ responses and confidence ratings were then combined to form a voice 

similarity score (𝑉𝑆𝑆) ranging from -7 (extremely confident they were from different 

speaker) to +7 (extremely confident they were from the same speaker). 

The results of this subjective test are shown in Figure 7. Participants were “quite” 

confident that the converted utterances had the same voice as the target speaker (𝑉𝑆𝑆 =

4.6, 𝑠. 𝑒. = 0.4) and had a different voice from the source speaker (𝑉𝑆𝑆 = −5.9, 𝑠. 𝑒. =

0.3). This suggests that the phonetic anchors in SABR analysis successfully capture the 

speaker’s voice identity.  

 

Figure 7: Voice similarity assessment results for SABR VC. 

 The plot is shown on a 7-point Likert scale, rating voice similarity. 
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3.6. Conclusion 

In this chapter, we presented the presented SABR, an analysis technique that can 

be used to separate voice quality and linguistic contributions to the speech signal.  SABR 

uses sparse regularization to represent speech frames as a linear non-negative combination 

of acoustic anchors.  By using speaker-dependent phoneme centroids as anchors, the 

resulting weights generalize well across speakers.  In particular, our results show that 

SABR weights yield similar phoneme recognition performance in within-speaker and 

between-speaker conditions, and that they outperform conventional MFCCs in the cross-

speaker condition.  

SABR provides a straightforward method for voice conversion: an utterance from 

a source speaker can be converted into one for a target speaker by extracting SABR 

weights relative to the source anchors, and combining them with anchors from the desired 

target speaker. More importantly, voice conversions can be performed without having to 

train a specific model for each pair of source and target speakers.  Indeed, subjective 

listening tests show that SABR voice conversions have the same voice quality as the target 

speaker.  Objective measures also show that SABR is more resilient to small training 

corpora than a baseline GMM voice-conversion technique, validating one of the original 

goals of the representation. 

The SABR method shown here shows promise for building a speaker-independent 

representation for use in VC, but the results suggest multiple directions for improvement. 

In the following chapters, we will discuss the remaining three aims of this dissertation: 
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• Improving synthesis quality: the sparse coding residual in eq. (1) ignores a 

substantial amount of spectral energy (~1.5 dB, see Figure 5) that contains much of 

the spectral detail and affects synthesis quality in voice conversion. In the next chapter, 

we examine ways to use this residual to improve voice conversion synthesis quality 

while still reaching the target speaker’s voice identity. 

• Selecting optimal anchors: Building anchor sets from the centroid of the source and 

target training data may not be optimal. In Chapter 5 we examine optimal ways of 

building SABR anchors using two different optimization methods. 

• Adding temporal constraints: The lasso method in eq. (3) computes SABR weights 

on a frame-by-frame basis, without considering any temporal context. Including this 

information could reduce the noise in the SABR encoding (see Figure 8), resulting in 

better speaker representation and higher synthesis quality. In Chapter 6, we propose 

and evaluate temporal constraints for SABR objective function. 
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Figure 8: Example SABR weight matrix with phonetic transcription. 

 The weights capture the word “author” and are interpretable, particularly for 

vowels where the weights closely match the transcription. 

AA
AE
AH
AO

AW
AX
AY

B
CH

D
DH
EH
ER
EY

F
G

HH
IH
IY

JH
K
L

M
N

NG
OW

OY
P
R
S

SH
T

TH
UH

UW
V

W
Y
Z

ZH

ao th er

ao

aw

th

f
er



 

43 

 

4. NATIVE-NONNATIVE VOICE CONVERSION BY RESIDUAL WARPING IN A 

SPARSE, ANCHOR-BASED REPRESENTATION* 

4.1. Overview 

In this chapter, we propose and evaluate a method for using the source speaker’s 

residual in the SABR VC method to improve synthesis quality. The method presented in 

this chapter uses a technique known as “frequency warping” to transform the source 

residual to the target speaker’s space, and uses it in synthesis to improve overall synthesis 

quality. This chapter addresses the second aim of this dissertation. 

The first version of this chapter was presented at ICASSP 2018 [10]. We expanded 

upon this study, examining both native-to-native and native-to-nonnative conversion, as 

well as multiple variants of the proposed transform, and submitted it to IEEE/ACM 

Transactions on Audio, Speech, and Language Processing in 2021. This chapter has been 

modified to reflect the relevant literature and structure of this dissertation. 

4.2. Introduction 

In the previous chapter, we presented a sparse, anchor-based representation of 

speech (SABR) for use in voice conversion. While our experiments showed that the 

representation could be used to perform voice conversion, the synthesis quality was low 

due to the compact nature of the SABR model. This is due to the large sparse residual that 

                                                 

* Reprinted with permission from “Native-Nonnative Voice Conversion by Residual Warping in a 

Sparse, Anchor-Based Representation” by C. Liberatore 2021. IEEE/ACM Transactions on Audio, Speech, 

and Language Processing, Vol. 29, p. 3040-3051, Copyright 2021 by IEEE. Parts also reprinted from “Voice 

conversion through residual warping in a sparse, anchor-based representation of speech” by C. Liberatore, 

G. Zhao, and R. Gutierrez-Osuna 2018. ICASSP 2018, p. 5284-5288, Copyright 2018 by IEEE. 
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occurs during the encoding process—this residual contains a significant amount of energy 

and spectral detail, and discarding it has a detrminental effect on synthesis quality. 

To alleviate this problem, we propose a residual transformation method, 

SABR+Res, that uses linear combinations of frequency warping transforms to convert the 

source residual to be closer to the target speaker. Frequency warping transforms are used 

in instances where there is a desire to retain spectral detail, but the energy of the spectrum 

needs to be redistributed. SABR+Res builds a linear combination of these transforms to 

convert the source residual to be closer to the target speaker. We evaluate the proposed 

transform using four frequency warping functions (piecewise linear [10], bilinear [83], 

dynamic [83, 84], and correlation frequency warping [44]) from which to learn our anchor-

based frequency warps. After determining the optimal frequency warping method for the 

proposed algorithm, we conduct subjective and objective experiments to compare the 

proposed SABR+Res transform against two baseline voice conversion techniques: 

Exemplar-Based Voice Conversion with Residual Compensation (ERC) [51] and 

Weighted Frequency Warping (WFW) [4]. Our objective experiments show that 

SABR+Res using Dynamic Frequency Warping (DFW) provides the lowest VC error. In 

subjective tests, we show that the proposed SABR+Res method both significantly 

improves upon the synthesis quality compared to the basic SABR synthesis, is closer to 

the target speaker identity, and reduces the accentedness of native-to-nonnative synthesis. 

Finally, we also show that listeners prefer the quality of SABR+Res syntheses over WFW 

and ERC. We argue that this robustness in native-to-nonnative conversion is due to the 
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fact that SABR+Res relies on phoeneme-based representation and not time-aligned 

training utterances. 

This chapter is organized as follows. First, we review relevant literature to the 

domain of frequency warping and how it has been applied in voice conversion. Then, we 

discuss the proposed SABR+Res algorithm and details of frequency warping functions. In 

experiments, we evaluate our proposed algorithm against two baseline methods in native-

to-native and native-to-nonnative contexts. We end with a discussion of the results and 

conclusions of the algorithm. 

4.3. Related Work 

In this section, we discuss what frequency warping functions are and how they are 

used in speech processing. Then, we discuss why the properties of frequency warping 

make them useful for VC problems and how they have been applied to VC. Finally, we 

discuss how residuals affect synthesis quality in exemplar-based voice conversion and 

how residuals have been used to increase synthesis quality in these methods. 

Frequency warps are functions that build a transformation of a source spectrum to 

align it with the energy of a target spectrum. These transforms are piecewise and invertible 

and have the effect of “squishing” or “stretching” a segment of the source spectrum to 

align its energy more closely to that of a target spectrum [44, 83]. An example frequency 

warping function is shown in Figure 9, but any invertible function from the source 

spectrum to the target is a valid frequency warp. Frequency warping functions are often 

used to perform Vocal Tract Length Normalization (VTLN) between two speakers [84-

86]. Because of the piecewise linear nature of the transforms, spectral detail is retained 
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and typically these methods retain more spectral detail than statistical conversion methods. 

This property makes them appealing for use in VC where retaining spectral detail is 

desirable [4, 5, 37, 38].  

To alleviate oversmoothing issues arising from GMM methods (especially when 

limited training data is available), Frequency Warping and Amplitude Scaling VC 

methods (FW+AS) were introduced to retain more spectral detail from the source speaker 

during conversion [4, 37]. Erro et al. [5] proposed Weighted Frequency Warping (WFW), 

which used a GMM to estimate a frequency warping function to transform the source 

speaker’s spectrum to match that of the target speaker. During conversion, instead of using 

the conditional probability of the GMM to estimate the target spectral envelope, the 

conditional probability was used to estimate a warping function to transform the source 

spectrum; to ensure that the spectral energies matched the target speaker, an amplitude 

 

Figure 9: an example of a frequency warping function. 

 The source spectrum 𝒇(𝝎) is warped according to 𝝎̃. Each axis illustrates the 

effect of warping on an example source spectrum. Horizontal and vertical sample 

spectra are included to illustrate the change in location of the formants. 
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scaling step brought the spectral energy of the warped source closer to that of the target. 

Their method outperformed a baseline GMM in terms of decreased spectral distortion, and 

listeners rated the syntheses as having higher acoustic quality. Godoy et al. [37] presented 

a similar method, but removed the requirement for parallel utterances, instead building a 

GMM, with each phoneme represented by a mixture. The authors proposed a “phonetic 

GMM”, with a single Gaussian mixture for each phoneme label. For each of these 

Gaussians, the authors computed optimal frequency warping functions between the source 

and target training data. Amplitude scaling terms were then estimated from the residual of 

the warped source and target spectrum. The authors found that listeners preferred their 

method to standard GMM regression, even though it led to higher spectral distortion than 

a traditional GMM-regression method. 

Exemplar-based methods introduce a residual in the encoding process, which can 

affect the synthesis quality of the output. This residual contains a significant amount of 

spectral detail and not accounting for it can reduce synthesis quality. Wu et al. [51] 

proposed a method of encoding this residual called Exemplar Residual Compensation to 

further improve the synthesis quality of exemplar-based methods. Noting that the sparse 

residual lowered the overall synthesis quality, the authors proposed a linear transform 

based on Partial Least Squares to map the source residual to the target residual, and add it 

to the exemplar-based synthesis method. This had the net effect of further improving 

synthesis quality by including spectral details which were discarded at the time of the 

encoding process. The method has the advantage of retaining the spectral detail of the 

source while matching the voice quality of the target. Listeners preferred the synthesis 
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quality of the exemplar-based warping method to a GMM-based warping method. This 

method was used in several other exemplar-based VC methods as a way of mapping 

residuals during the conversion process [35, 38]. 

4.4. Methods 

The proposed improvement to the SABR synthesis method—SABR+Res—

transforms the source residual to be closer to the target speaker, using the SABR anchors 

and weights to learn the transform for each frame in the source residual. Because the aim 

of SABR+Res is to retain spectral detail while bringing the source residual closer to the 

target speaker, we use a class of spectral transforms known as frequency warping 

transforms in this method. These transforms retain spectral detail while adjusting the 

distribution of the energy in the spectrum. 

In this section, we will briefly review the SABR method and the location of the 

source residual and how we use it during synthesis. Following this, we discuss the 

proposed residual transform algorithm, SABR+Res, and how it builds the residual 

transform to be used in synthesis. Then, we discuss frequency warping in the cepstral 

domain and how we select optimal frequency warping functions which are used by 

SABR+Res in the residual transformation. Finally, we will discuss how this algorithm is 

different from other frequency-warping methods used in voice conversion. 

To review, given a cepstral representation of a source utterance 𝑋𝑠, SABR 

decomposes it as: 

𝑋𝑆 = 𝐴𝑆𝑊𝑆 + 𝑅𝑆, (5) 
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where 𝑊𝑠 is a sparse set of weights, 𝐴𝑆 is a set of speaker-dependent phoneme “anchors,” 

and 𝑅𝑆 is the residual term.  For an utterance with 𝑇 frames, 𝑁 spectral features, and 𝐾 

anchors, 𝑋𝑆  ∈ ℝ
𝑁 𝑇, 𝑅𝑆  ∈ ℝ

𝑁 𝑇, 𝐴𝑆 ∈ ℝ
𝑁 𝐾, and 𝑊𝑆 ∈ ℝ

𝐾 𝑇. 

 In the initial version of SABR presented in chapter 3, we discarded the source 

residual during synthesis. However, as this component is a source of significant spectral 

energy and detail, discarding it results in lower synthesis quality. To alleviate this, we 

transform the source residual to be closer to that of the target speaker using a function 

𝐹𝑅(𝑅𝑆) and add it to the estimated target spectrum from eq. (4). Incorporating this into the 

synthesis, the target speaker’s spectral envelope 𝑋̂𝑇 is then estimated as: 

𝑋̂𝑇 = 𝐴𝑇𝑊𝑆 +𝐹𝑅(𝑅𝑆). (6) 

4.4.1. SABR+Res 

There are two components to the SABR+Res algorithm: training the residual 

transform and using it during synthesis. For the training step, we compute an optimal 

frequency warp 𝐹𝑊 on each pair of source and target anchors in 𝐴𝑆 and 𝐴𝑇. For the 𝑘𝑡ℎ 

pair of source and target speaker cepstral anchors 𝐴𝑆
𝑘 and 𝐴𝑇

𝑘 , the optimal frequency warp 

𝐹𝑊
𝑘  is: 

𝐹𝑊
𝑘 = min

𝐹𝑊
|𝑇(𝐹𝑊)𝐴𝑆

𝑘 − 𝐴𝑇
𝑘 |
2

2
 (7) 

where 𝑇(𝐹𝑊) is a function that performs frequency warping on the cepstrum, following 

the warp 𝐹𝑊. The resulting vector 𝐹𝑊
𝑘  is the frequency warp that minimizes the difference 

between two cepstral anchors 𝐴𝑆
𝑘 and 𝐴𝑇

𝑘 . In the following sections, we will discuss how 

to build and optimize the transforms 𝑇(𝐹𝑊). 
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Using the optimal frequency transforms learned from eq. (7), we build a transform 

that warps the source residual 𝑅𝑆 to be closer to that of the target speaker. The proposed 

residual transformation 𝐹𝑅(∙) of the 𝑡𝑡ℎ residual frame 𝑅𝑆
𝑡, given the weights 𝑊𝑆

𝑡 and the 

set of transforms learned from the source and target anchors 𝐹𝑊, is: 

𝐹𝑅(𝑅𝑆
𝑡) = (∑𝑊𝑆

𝑘,𝑡𝑇(𝐹𝑊
𝑘 )

𝐾+1

𝑘=1

)𝑅𝑆
𝑡 , 

(8) 

where 𝑊𝑆
𝑘,𝑡

 is the weight corresponding to the 𝑘𝑡ℎ anchor at frame 𝑡. The resulting 

residual warping function 𝐹𝑅(∙) performs the conversion in eq. (8) for each frame of the 

source residual. An overview of the training and synthesis methods are shown in Figure 

10. 

This method was inspired by the covariance mapping component of GMM 

regression [87]. In contrast with statistical mappings, the proposed method does not 

 

 

(a) (b) 

Figure 10:  Overview of the training and residual warping method. 

 (a) Training the frequency warps and anchor sets. (b) Synthesizing the audio using 

the SABR+Res method. 
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oversmooth the spectrum since each transform 𝑇(𝐹𝑊
𝑘 ) is built from frequency warps, 

which retain spectral detail. Because only a few weights are non-zero because of sparsity 

constraint, spectral detail from the source residual is retained. 

4.4.2. Frequency warps in the cepstral domain 

As stated previously, frequency warps are invertible functions that warp a 

spectrum of a source speaker 𝑆𝑆( )  to be closer to that of a target speaker 𝑆𝑇( ) where 

  represents the normalized frequency. For two discrete-sampled spectra 𝑆𝑆( ) and 

𝑆𝑇( ) with 𝑀 frequency bins, the frequency warp  ̃ that minimizes the difference 

between the source and target spectra can be computed following: 

𝐹𝑊 = min
𝜔̃
|𝑆𝑆( ̃) − 𝑆𝑇( )|2

2. (9) 

Because the frequency warp  ̃ is one-to-one, we can parameterize it as a vector 

𝐹𝑊 ∈ ℛ
𝑀, where each entry corresponds to how an input frequency bin (e.g. a set of 

evenly-spaced normalized frequency bins  = [ 0… 𝑀]
𝑇) is mapped to an output 

frequency bin  ̃ = [ ̃0…  ̃𝑀]
𝑇  (see Figure 9). Different types of frequency warping 

functions (e.g. Bilinear or Dynamic Frequency Warping) have different parameters or 

constraints on  ̃, affecting the shape of the warping function and the output warped 

spectra.  

Pangaschan et al. [83] showed that arbitrary frequency warps 𝐹𝑊 were equivalent 

to linear transforms on cepstral coefficients. This transform requires two steps: first, the 

cepstral coefficients must be projected back into the spectral space, and then the spectrum 
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must be warped according to 𝐹𝑊. For Mel Cepstral (MCEP) coefficients, a transform 𝑇 ∈

ℛ𝑁 𝑁 that performs the frequency warp 𝐹𝑊 on cepstral coefficients can be represented as: 

𝑇(𝐹𝑊) = 𝐶𝑓(𝐹𝑊)𝐶
𝑇, (10) 

where 𝑓 is a function that builds an “index mapping” (following [88])3 of size 𝑀  𝑀 of 

the frequency warp 𝐹𝑊, 𝐶 ∈ ℛ𝑁 𝑀 is the linear Discrete Cosine Transform (DCT) and 𝐶𝑇 

is the inverse DCT. 𝑇(𝐹𝑊) is then a transform of cepstral coefficients according to the 

frequency warp 𝐹𝑊. 

 Assuming 𝑀 spectral coefficients, 𝑁 cepstral coefficients, the DCT matrix 𝐶 is: 

𝐶𝑘,𝑚 = [𝛼𝑘 cos(𝜋𝑘)] 1≤𝑚≤𝑀
0≤𝑘≤𝑁−1

, (11) 

where 𝑎𝑘 is a normalization term that ensures each row sums to 1. 

4.4.3. Optimal frequency warps 

Let 𝑊(Θ) be a function that generates a frequency warp 𝐹𝑊 ∈ ℛ
𝑀. The optimal 

frequency warp 𝐹𝑜𝑝𝑡 between source cepstrum 𝑋𝑆 and target cepstrum 𝑋𝑇 is represented 

by: 

𝐹𝑜𝑝𝑡 = argmin
𝑊(Θ)

|𝑇(𝑊(Θ))𝑋𝑆 − 𝑋𝑇|2
2. (12) 

For a given type of frequency warping function 𝑊(Θ), we consider two methods for 

selecting the optimal warping parameters Θ in eq. (12): grid search and greedy search. In 

grid search methods, combinations of the parameters in Θ are exhaustively tested and the 

                                                 

3 The “index mapping” (IM) matrix has one non-zero entry on each row, and maps each source 

spectral bin to a target spectral bin 
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frequency warp which minimizes eq. (12) is selected as the optimal parameters for that 

warp type. However, in instances where all possible parameters are not searchable, a 

greedy algorithm (e.g. dynamic programming) is used to select the optimal parameters. 

In this chapter, we consider four different types of frequency warping methods, 

which warp the source spectra with different constraints and objective functions. Because 

we are interested in how these perform not just between native speakers, but between 

native and nonnative speakers, we also highlight the strengths and weaknesses of each of 

the warping functions. A summary of the warping functions, the optimization technique 

used to build the warping functions, and the objective functions are shown in Table 2. 

Piecewise linear warping: computed following [5, 84]. This method has two 

parameters: a slope 𝛼 and inflection frequency  0. The warping function linearly warps 

the source spectra to the inflection frequency on the slope, and from the inflection 

frequency to the Nyquist frequency (see Figure 11 (a)). This method has been used to 

generally warp the vocal tract length of a given source speaker to be closer to that of a 

target speaker. 

Bilinear frequency warping: computed following [5, 84]. This warp functions in a 

similar manner to piecewise linear, but is a continuous function. The magnitude of the 

warp is controlled by a parameter 𝛼 (see Figure 11 (b)). Like piecewise linear warping, 

this method is also used to more closely match the vocal tract length of a given target 

speaker. 

Dynamic Frequency Warping (DFW): this method computes the minimum mean 

squared error between two spectra to build a warping function using dynamic 
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programming [83, 84] (see Figure 11 (c)). In the figure, the black line represents a possible 

frequency warp, and the grey section represents the region of possible warping functions 

DFW can learn. Because of few constraints on the frequency warp, this function should 

be more robust to pronunciation differences and disfluencies introduced in nonnative 

speaker models.  

Correlation Frequency Warping (CFW): this method generates a frequency warp 

which maximizes the correlation between the aligned source and target spectra, as opposed 

to minimizing spectral distance [44]. The CFW algorithm computes a sequence of warps 

over 𝑛 segments centered at frequencies 𝑝0…𝑝𝑛−1 (see Figure 11 (d)). In the figure the 

black line represents a possible frequency warp and the grey section represents the region 

of warps that CFW can learn. The algorithm greedily selects successive segments that 

maximize the correlation between the warped source and target spectra. CFW has been 

shown to be effective at improving synthesis quality compared to DFW in native-to-native 

conversion. 

 

Table 2: warping functions and optimization methods. 

Warp type Optimization Objective  

Piecewise linear Grid search on 𝜆,  0 Minimize spectral distortion [84] 

Bilinear Grid search on 𝛼 Minimize spectral distortion [84] 

Dynamic Frequency Greedy Minimize spectral distortion [83] 

Correlation Frequency Greedy Maximize spectral correlation [44] 
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(a) Piecewise linear frequency warping 

 

(b) Bilinear frequency warping 

 

(c) Dynamic frequency warping 

 

(d) Correlation Frequency Warping 

Figure 11: frequency warping functions used in this study. For all figures, the 

source frequency 𝝎 is on the x-axis, and the warped frequency 𝝎̃ is on the y-axis. 

The dotted line represents no transform between the source frequency 𝝎 and the 

target frequency 𝝎̃ for illustration purposes.(a) Piecewise linear frequency 

warping. (b) Bilinear frequency warping. (c) Dynamic frequency warping. (d) 

Correlation frequency warping, with 𝒏 = 𝟒 segments and three inflection 

frequencies.  

4.4.4. Relationship to weighted frequency warping 

In this section, we discuss Weighted Frequency Warping (WFW) [4] –briefly 

discussed in the related work section. As there are similarities to the WFW algorithm and 

SABR+Res, here we discuss more in-depth the differences between the two methods. 

First, in contrast to SABR which uses frequency warping methods to transform the 

residual, WFW directly transforms the source spectrum, using transforms derived from a 

GMM trained on aligned source and target data. The second major difference between 

SABR+Res and WFW is how frequency warps are used to transform spectral information. 
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WFW computes a linear combination of frequency warps using the set of all frequency 

warps resulting in a single frequency warp; in contrast, SABR+Res uses a linear 

combination of transforms, resulting in multiple frequency warps being used 

simultaneously. 

We can illustrate the difference between these transform philosophies by 

implementing a WFW transform relative to SABR notation. For the 𝑡𝑡ℎ source residual 

frame 𝑅𝑆
𝑡, the set of frequency warping functions between each source and target anchor 

𝐹 = [𝐹𝑊
1 , …𝐹𝑊

𝐾], and source weights 𝑊𝑆
𝑡, the WFW residual transform is computed as: 

𝑅𝑇
𝑡̂ = 𝐶𝑇(𝐹𝑊𝑆

𝑡)𝐶𝑇𝑅𝑆
𝑡. (13) 

An illustration of these transformation difference is shown in Figure 12. 

SABR+Res has a similar structure to the corresponding WFW transform; however, in the 

middle frequency bins, SABR+Res distributes the source residual across multiple 

frequency warping paths, while WFW maps it to a single frequency warp. This affects 

synthesis quality when WFW warps residual energy to an incorrect portion of the target 

spectrum (e.g. between two formants) because of the frequency warps learned between 

the source and target anchors (something especially important in native-to-nonnative 

conversion). In contrast, SABR+Res has the flexibility to distribute this energy across 

multiple frequency warps in the event these functions differ significantly.  
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4.5. Experiment design 

4.5.1. Corpus 

To evaluate the proposed residual transform system, we performed a series of 

experiments using speakers from both the CMU ARCTIC speech corpus [20] and the L2-

ARCTIC speech corpus [21]. The L2-ARCTIC speech corpus is a corpus based on the 

prompts of ARCTIC, but with L2 speakers of English from six L1s: Mandarin, Hindi, 

Arabic, Spanish, Korean, and Vietnamese. For objective experiments, we used version 1 

of the L2-ARCTIC speech corpus, which includes 2 speakers—1 male and 1 female—

from all L1s except Vietnamese. In all experiments, the source speakers were American 

English speakers from ARCTIC. Target speakers were either from ARCTIC or L2-

ARCTIC. Including the ARCTIC corpus in the list of target speakers allows for an 

objective L1-L1 baseline where alignment between the source and target speakers is not a 

factor. For ease of notation, we refer to ARCTIC—ARCTIC speaker pairs as A2A, and 

ARCTIC—L2-ARCTIC speaker pairs as A2L2. 

 

(a) 

 

(b) 

Figure 12: Example of SABR+Res and Weighted Frequency Warping (WFW) 

transforms between an L1 source speaker and an L2 target speaker. 

 The transforms are shown in the 40-coefficient Mel frequency scale. (a) 

SABR+Res linear combination of transforms from eq. (8). (b) WFW frequency 

warp from eq. (13). 
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For perceptual experiments, we examined a subset of the A2A and A2L2 pairs to 

make the perceptual experiments tractable. The pairs used in perceptual experiments are 

shown in Table 3 and Table 4. 

4.5.2. Implementation details 

For each speaker in ARCTIC and L2-ARCTIC, we used STRAIGHT [39] with  

1 ms frame steps and 80 ms window size to extract aperiodicity, fundamental frequency, 

and spectral envelope. We then computed a 40-dimension MCEP vector (𝛼 = 0.42, as 

audio was sampled at 16 kHz). We ignored the first coefficient since it contains energy; 

given that we desire the transformed utterance to have L1 prosody, during synthesis, we 

copied the source 𝑀𝐶𝐸𝑃0 coefficient to the target.  

For synthesis, we converted the source pitch to the target pitch range using log 

mean-variance scaling [87]. SABR-converted target envelopes were projected from 

Table 3: A2A perceptual experiment speaker pairs. 

 Speaker gender is shown in parentheses. 

Source Target 

BDL (M) RMS (M) 

BDL (M) CLB (F) 

SLT (F) SLT (F) 

SLT (F) BDL (M) 

  

Table 4: A2L2 perceptual experiment speaker pairs. 

 Speaker gender is shown in parentheses. 

Source speaker Target speaker Target speaker first language 

BDL (M) HKK (M) Korean 

SLT (F) SKA (F) Arabic 

BDL (M) YDCK (F) Mandarin 

SLT (F) EVBS (M) Spanish 



 

59 

 

MCEP back into the STRAIGHT spectrum. Audio was synthesized using the STRAIGHT 

vocoder with the converted spectral envelope, converted pitch, and source aperiodicity. 

To solve for the SABR weights, we used the LARS solver from the SPAMS sparse 

coding toolbox [89], constraining the Lasso weights to 0 ≤ |𝑊|1 ≤ 1. 

4.5.3. Residual warping comparison 

Initially, we evaluate the proposed SABR+Res residual warping system using the 

four different frequency warping functions listed in the methods section in an objective 

experiment. We evaluate these different functions against two other treatments of the 

source residual: 

• SABR+Identity (baseline): the unmodified source residual (i.e., 𝐹𝑅(𝑅𝑠) = 𝑅𝑆). This 

baseline should be perceptually closer to the source speaker than the target speaker. A 

successful source residual transform should have a lower VC error than this baseline 

method. 

• SABR+None (baseline): the SABR conversion using just the source and target anchor 

sets where the source residual is discarded (i.e., 𝐹𝑅(𝑅𝑠) = 𝟎). The performance of this 

transform will act as a baseline for the identity and speaker quality of the synthesis 

without compensating for the residual. 

4.5.4. Baseline voice conversion systems 

We also evaluate the performance of SABR+Res against two comparable baseline 

systems: 

• Weighted Frequency Warping (WFW, baseline): linear combination of frequency 

warps, computed from eq. (13), using DFW as the frequency warping function. 



 

60 

 

• Exemplar Voice Conversion with Residual Compensation (ERC): an exemplar-based 

voice conversion method which uses time-aligned source and target dictionaries and 

Partial Least Squares for residual conversion. We use the same factorization (NNMF) 

and spectral parameters (513-dimensional STRAIGHT spectra) as in the original 

method [51]. 

4.5.5. Objective experiments 

We trained all systems on 20 utterances, following [38]. For SABR models, we 

examined both parallel and nonparallel training sets to evaluate the performance of the 

proposed method with nonparallel training data. Training utterances were selected so as 

to maximize phoneme coverage.  Each voice conversion method was evaluated on 50 

time-aligned test utterances. 

We used Mel-Cepstral Distortion (MCD) as our evaluation criteria. The distortion 

between two cepstrums 𝑋𝑆 and 𝑋𝑇 is computed as: 

𝑀𝐶𝐷(𝑋𝑆, 𝑋𝑇) =
10√2

ln (10)
‖𝑋𝑆 − 𝑋𝑇‖2

2, (14) 

where 𝑋𝑆 and 𝑋𝑇 are vectors of MCEP coefficients [6]. Prior to computing MCD, 

we set energy (𝑀𝐶𝐸𝑃0) to 0 for both vectors. For the baseline ERC method (which used 

full spectra), we converted the full spectrum to MCEP and computed MCD in the same 

fashion. 

4.5.6. Subjective evaluation 

We performed two sets of subjective experiments to evaluate the proposed system. 

In the first set of experiments, we examined the efficacy of the proposed method against 
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the two comparison residual methods in synthesis quality, speaker identity, and 

accentedness experiments. In the second set of experiments, we also compare SABR+Res 

against the two baseline voice conversion methods from section 4.5.4. 

4.6. Results 

4.6.1. Objective results 

First, we examined the objective VC performance of the SABR+Res systems and 

the baseline methods. The results of the voice conversion objective tests are shown in 

Table 5. We found that, of the different frequency warping methods tested, the DFW 

function had the lowest MCD for both A2A and A2L2 speaker pairs and in both parallel 

and nonparallel training (𝑝 < 0.05, paired t-test, both A2A and A2L2 pairs). The 

difference in MCD between parallel and nonparallel training was not significant for any 

warping functions or speaker pairs (𝑝 = 0.27, A2A pairs; 𝑝 = 0.06, A2L2 pairs; two-

tailed t-tests), providing evidence that SABR+Res method is not significantly affected by 

a lack of parallel training data. 

Table 5: Objective VC results for the residual warping methods. “Source-target 

testing set” refers to the VC error measured in MCD  (dB) of the time-aligned 

source and target test datasets. Bolded entries show the best SABR+Res warping 

configuration for parallel and nonparallel training.  
   Parallel Training Nonparallel  

Method Residual method Warping function A2A A2L2 A2A A2L2 

SABR SABR+Res PW Linear 5.26 5.29 5.27 5.38 

  Bilinear 5.24 5.30 5.24 5.39 

  DFW 5.09 5.22 5.12 5.31 

  CFW 5.09 5.29 5.13 5.39 

SABR SABR+None None 4.92 4.95 4.95 5.08 

SABR SABR+Identity None 5.56 5.72 5.59 5.84 

Baseline methods     

WFW N/A DFW 4.83 5.64 N/A N/A 

ERC RC N/A 4.78 5.39 N/A N/A 

Source-target testing set 6.35 7.51 6.35 7.51 
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In all cases, SABR+Res lowered the MCD significantly as compared to adding the 

SABR+Identity residual method, providing evidence that the proposed warping function 

transformed the residual to be closer to the target speaker. Notably, DFW and CFW had 

very similar performance for A2A speaker pairs on both parallel and nonparallel training 

utterances, but CFW performed significantly worse on A2L2 speaker pairs, as compared 

with DFW. This is likely due to mispronunciations or other variations in the L2 speaker’s 

training data which affects the performance of the CFW objective function. Piecewise 

linear and bilinear warping functions had no statistically significant difference in A2A or 

A2L2 speaker pairs and in parallel and nonparallel training. The methods also had 

significantly higher VC error as compared to DFW and CFW, confirming our belief that 

their simpler transforms were less capable of matching the target speaker than the other 

warping methods. 

SABR+Res significantly outperformed the baseline WFW and ERC systems for 

A2L2 conversions (𝑝 < 0.01, both cases, two-tailed t-test). However, baseline system 

conversions on A2A speakers performed better than the proposed SABR+Res method. 

This is likely because both the WFW and ERC systems train on parallel source and target 

data and optimize parameters for conversion, whereas the only parameters learned 

between the source and target SABR models are the frequency warps in eq. (8).  

Note that the proposed SABR+Res method had higher VC error than SABR+None 

method—that is the normal SABR without any residual. We believe that this is because 

in sparse coding, the residual is assumed to be uncorrelated with the data represented by 

the dictionary. By removing the residual, the estimated target spectrum has no 
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uncorrelated components and is closer to the ground truth. Incorporating the source 

residual, even transformed to be closer to the target speaker, has the net effect of increasing 

the MCD while also significantly increasing synthesis quality. 

For the remainder of the perceptual studies, we use the DFW frequency warping 

in the SABR+Res method. While it had the lowest MCD of the four frequency warping 

techniques we examined, lower MCD does not always indicate perceptually higher quality 

synthesis. To confirm that DFW was the optimal warping function, we performed a pilot 

perceptual study, asking participants which frequency warping method they preferred. 

Participants (𝑛 = 20) showed a modest preference for the DFW method as compared to 

the other methods (54-65% preference when compared to the other methods). 

4.6.2. Residual effects 

4.6.2.1. Synthesis quality 

We compared the synthesis quality of the three baseline residual warping methods 

using a Mean Opinion Score (MOS) test, asking participants (𝑛 = 20) to rate samples on 

a 5-point scale. For both A2A and A2L2 synthesis directions, participants rated 48 

utterances—12 per speaker pair, and 4 per residual method (SABR, SABR+Res, and 

SABR+Identity). Results are shown in Figure 13. 

In both A2A and A2L2 speaker pairs, SABR+Res significantly improved on the 

baseline SABR+None method (A2A: 3.11, A2L2: 2.64, 𝑝 > 0.01), showing that the 

proposed residual warping method achieves its goal of improving synthesis quality. 

However, the SABR+Identity was rated as the highest quality (A2A: 3.58, A2L2: 3.22, 

𝑝 > 0.01) and higher than the SABR+Res method. This was expected, as the Identity 
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residual transform does not transform source residual, so the maximum amount of spectral 

detail is retained; this lack of transformation will significantly affect the speaker identity 

of the synthesis. 

4.6.2.2. Speaker identity 

In a second perceptual test, we compared how well the three residual methods 

matched the identity of the target speaker using an ABX preference test. We recruited 

(𝑛 = 20) participants and presented them with three utterances: an utterance from a target 

speaker from either A2A or A2L2 speaker pairs (X) and utterances synthesized using two 

of the baseline residual warping conditions (A, B). The order of A and B was 

counterbalanced and each utterance had different linguistic content. Participants were 

asked which utterance—A or B—was closer to X in terms of speaker identity and 

instructed to ignore accent effects. Participants (𝑛 = 20) were presented with 148 sets of 

utterances—48 per pair of methods (24 for A2A conditions and 24 for A2L2 conditions; 

6 per speaker pair) and 4 sets of source and target samples to ensure participants were not 

randomly guessing. The results of this test are shown in Figure 14. 

 

Figure 13: Residual warping method synthesis comparison. 

 Error bars represent 95th percentile confidence intervals. 

1

2

3

4

5

A2A A2L2

M
O

S None

SABR+Res

Identity



 

65 

 

For both A2A and A2L2 speaker pairs, the proposed SABR+Res method was 

significantly preferred over both the SABR and SABR+Identity methods (𝑝 ≫ 0.01, all 

conditions), showing that the method was much closer to the target speaker’s identity than 

either method. SABR+Identity was also significantly preferred over the SABR method, to 

similar degrees as SABR+Res was preferred over SABR (A2A: 72%, A2L2: 65%, 𝑝 ≫

0.01, two-tailed t-test), suggesting that participants associated higher synthesis quality as 

being closer to the target speaker.  

4.6.2.3. Accentedness 

We performed an accentedness test to evaluate how the residual methods affected 

the accentedness of the synthesis. We asked participants (𝑛 = 20) to rate the accentedness 

   

Figure 14: ABX identity test, comparing baseline residual transform methods to 

SABR+Res. 
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of a speaker on a 9-point Likert scale following [90] (1= “no foreign accent”, 9= “very 

strong foreign accent”) on utterances from the 3 baseline SABR methods (only on A2L2 

speaker pairs) as well as utterances from the L1 and L2 speakers. For each condition, 

participants rated 20 utterances for a total of 100 ratings. Results are shown in Figure 15. 

Participants rated the accentedness of the proposed SABR+Res at 1.47, 

significantly lower than that of SABR (1.88, 𝑝 < 0.01, two-tailed t-test) and far closer to 

that of the native L1 speakers (1.1). There was no significant difference between 

SABR+Res and SABR+Ident (1.36, 𝑝 = 0.82, two-tailed t-test), an expected result as 

both of these methods include the residual from the source native speaker in synthesis. 

These results demonstrate that not only does SABR encode the accent of the target 

speaker, the inclusion of the residual warping component further reduces the accentedness 

of the synthesized speech. 

 

Figure 15: Accentedness ratings for the baseline warping methods. 
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4.6.3. Baseline comparison 

4.6.3.1. Synthesis quality 

We performed a Mean Opinion Score (MOS) test to compare the synthesis quality 

of the baseline systems against the proposed SABR+Res method. We asked participants 

(𝑛 = 10) to rate the quality of an utterance on a 5-point scale (1 = “low quality”; 5 = “high 

quality”). Participants rated 124 utterances—40 per synthesis condition (5 per speaker 

pair, for 8 A2A and A2L2 speaker pairs), and 4 unmodified utterances to ensure the 

participants were not randomly guessing. Results are shown in Figure 16. 

Participants rated the SABR+Res methods significantly higher quality than either 

of the baseline methods in A2A and A2L2 speaker pairs (𝑝 > 0.01, all cases, two-tailed 

t-test). There was no statistically significant difference between the A2A and A2L2 

conditions for the SABR+Res synthesis (𝑝 = 0.41, two-tailed t-test). For both baselines, 

the A2L2 speaker pairs were rated as lower quality compared to the A2A pairs (𝑝 > 0.01). 

 

Figure 16: Baseline synthesis quality results (MOS). 
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4.6.3.2. Speaker identity 

In a final perceptual experiment, we performed an XAB speaker identity test to 

determine how well the baseline and proposed methods were able to capture the target 

speaker’s identity. We recruited (𝑛 = 10) participants and presented them with three 

utterances: an utterance from one of the synthesis conditions from either A2A or A2L2 

speaker pairs (X) and utterances from the source or target speaker (A, B). The order of A 

and B was counterbalanced and each utterance had different linguistic content. For each 

synthesis method, we asked participants to perform 48 evaluations—6 per speaker pair 

from both the A2A and A2L2 sets, for a total of 144 utterances. We included in the test a 

set of 4 evaluations where the reference utterance was an unmodified reference from the 

source speaker to identify participants who evaluated the pairs randomly. Results are 

shown in Figure 17.  

Participants correctly identified the identity of SABR+Res synthesis at a higher 

rate than the baseline methods for A2L2 speaker pairs (𝑝 > 0.05, two-tailed t-test) and 

was significantly higher than WFW in both A2A and A2L2 speaker pairs (𝑝 > 0.05, two-

tailed t-test). However, there was no statistically significant difference between 

SABR+Res and ERC for A2A speakers (𝑝 = 0.06, two-tailed t-test). These results further 

demonstrate that the proposed method is more robust to the alignment and 

mispronunciation difficulties in native-to-nonnative voice conversion. 
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4.7. Discussion  

4.7.1. Objective results 

The proposed method had significantly lower VC error than the comparison 

residual methods (SABR+None, SABR+Ident) and the baseline VC methods (WFW, and 

ERC) for native-to-nonnative conversion, demonstrating that it is not affected by the 

mispronunciation and time-alignment issues that affect the baseline algorithms. 

Additionally, there was no statistically significant difference in VC error between parallel 

and nonparallel training for SABR+Res synthesis. Dynamic Frequency Warping (DFW) 

had the lowest VC error for both A2A and A2L2 speaker pairs, however, there was no 

statistically significant difference between any of the three warping functions. 

While the baseline methods outperformed SABR+Res in A2A conversion, this is 

explained by differences in training approaches: the baseline methods train on parallel 

data, whereas the proposed method does not train directly on time-aligned data, instead 

learning warping parameters by phoneme label. Introducing parallel training components 

into SABR+Res (e.g. by training warping functions on time-aligned training data, as 

opposed to just the anchors) would further reduce the VC error to similar levels as WFW 

 

Figure 17: Speaker identity test, comparing SABR+Res to the baseline VC 

methods. 
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and ERC for A2A speakers—however, it would remove one of the advantages of the 

SABR method, namely that it does not require parallel training data. 

The flexibility of the SABR+Res method as compared to the WFW method is 

visible in the spectrum shown in Figure 18; in this figure, the black line represents the 

SABR+Res spectrum and the red line the WFW spectrum. Differences in the SABR+Res 

and WFW are most apparent in the third formant at roughly 2.5 kHz. WFW warps the 

spectrum single warping function, resulting in significant amounts of energy being 

distributed incorrectly, whereas the multiple transforms used by SABR+Res keep the 

resulting spectrum near the ground truth, time-aligned spectrum (represented by the blue 

line). These differences show the advantages of SABR+Res: at frequencies where multiple 

warps are similar, the source residual will be transformed in the same way it would be 

transformed with a single warping function. However, when there are dissimilarities, the 

warping function can distribute the energy among multiple frequencies and lower the 

overall error. This has the added benefit of reducing VC error by not adding spectral detail 

where it does not belong. 
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4.7.2. Subjective results 

The first experiment validated our intuition that the proposed SABR+Res method 

was effective at increasing the synthesis quality of the SABR method while also capturing 

the target speaker’s voice quality, in both native-to-native and native-to-nonnative 

contexts. The combination of these results and the synthesis quality experiment 

demonstrate that SABR+Res both improves upon the synthesis quality of the baseline 

SABR method and significantly improves upon the identity of the speaker. 

The experiments in section 4.6.3 demonstrate that SABR+Res is significantly 

more robust to mispronunciation effects of nonnative speakers over the baseline WFW 

and ERC methods. Participants rated SABR+Res synthesis significantly higher quality in 

both A2A and A2L2 speaker pairs, and participants correctly identified the target speaker 

in A2L2 pairs at significantly higher rates than the baseline methods. These results show 

 

Figure 18: Comparison of SABR+Res transform, WFW transform, and the target 

spectrum. 

 The gray area represents the range of possible energies to which SABR+Res can 

transform the source residual, given the nonzero weights and anchor warps. 
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that the phoneme-based representation of SABR is more robust to disfluencies in L1-L2 

conversion as compared with baseline exemplar-based VC methods, and that the 

SABR+Res residual transformation method generates similar synthesis quality for both 

native-to-native and native-to-nonnative conversion. 

An explanation for the poor performance of the baseline systems on A2L2 speakers 

is that the baseline systems are affected by the time alignment of the source and target 

training data. For the WFW baseline, the synthesis quality did not differ significantly 

between the A2A and A2L2 systems because first step of the WFW algorithm warps the 

source utterance before scaling the amplitude of the warped spectrum, retaining much of 

the spectral detail and, therefore, synthesis quality. However, the second amplitude scaling 

step is where mispronunciations and time alignment issues in the A2L2 speakers affects 

the speaker identity, as this step is unable to correctly adjust the output spectra to match 

the target speaker’s voice identity. 

For the ERC baseline, similar alignment issues affect the A2L2 synthesis quality 

and identity. ERC has two components: a time-aligned source and target dictionary, and a 

residual compensation PLS mapping component, designed to map the source residual to 

the target speaker and increase the spectral detail of the synthesis. Disfluencies and 

mispronunciations in the target speaker’s dictionary introduce distortions and overall 

lower the spectral detail of the synthesis in such a way that the PLS mapping cannot 

resolve it. The PLS mapping relies on the source and target residuals having similar, 

consistent structures—if they do not, as in the case with native-to-nonnative conversion, 

the spectral detail is lost as the mapping can only learn average conversions between the 
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two systems. This is not the case in A2A systems when relatively few disfluencies affect 

both the dictionaries and the residual mapping.  

4.8. Conclusion 

To address the lower synthesis quality that arises from the compact size of SABR’s 

dictionaries, we have proposed and evaluated a method named SABR+Res which 

transformed the source residual to the target speaker using frequency warping functions 

and adding it to the estimated target spectrum. We examined four methods for performing 

frequency warping: Piecewise linear frequency warping, Bilinear frequency warping, 

Dynamic Frequency Warping (DFW), and Correlation Frequency Warping (CFW). We 

also compared the proposed residual warping function against two established voice 

conversion baselines. We tested these systems in parallel and nonparallel training and 

native-to-native and native-to-nonnative conversion contexts. In objective tests, 

SABR+Res using DFW as its frequency warp was determined to have the lowest objective 

VC error and had significantly lower error than the baseline voice conversion methods on 

native-to-nonnative voice conversion.  

Following this, we conducted a series of subjective tests to evaluate the proposed 

residual method in two contexts. First, we evaluated SABR+Res relative to two other 

treatments of the source residual (ignoring the residual and not transforming the source 

residual) in synthesis quality, speaker identity, and accentedness tests. Participants rated 

SABR+Res as having significantly higher synthesis quality over SABR, as being 

significantly closer to the target speaker’s identity, and as having a more native accent in 

native-to-nonnative conversion. In a second set of experiments, we compared SABR+Res 
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against two baseline voice conversion methods. Both synthesis quality and speaker 

identification rates were similar for the baseline methods and SABR+Res on native-to-

nonnative conversion, but in native-to-nonnative conversion, the proposed method 

performed significantly better than the baseline algorithms. These results validate the use 

of the proposed residual warping method to both improve the synthesis quality in native-

to-nonnative voice conversion contexts, all while using an extremely compact dictionary 

(39 atoms, one for each English phoneme). Additionally, the proposed method lowered 

the accentedness of the synthesis as compared to the baseline methods.  

In the following chapters, we use the residual warping method here in the synthesis 

of the SABR method in perceptual studies. We also examine the final two research aims 

related to the SABR method: selecting optimal anchors for voice conversion, especially 

in native to nonnative contexts, and adding temporal constraints to the SABR objective 

function. 
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5. OPTIMIZING ANCHOR SELECTION FOR SABR VOICE CONVERSION IN 

NATIVE AND NONNATIVE CONTEXTS* 

5.1. Overview 

In this chapter, we evaluate two methods for optimizing the anchor sets of the 

SABR method. The first method focuses on minimizing the residual of the source and 

target anchor sets, resulting in anchors that more closely match the source or target 

speaker’s distribution and lower residuals. The second method addresses the issue that 

single anchors were used to represent phonemes, even though phonemes may have 

multiple acoustic states over the course of the production. Both of these methods address 

problems in native to nonnative conversion and we also evaluated them in this context. 

This chapter addresses the third aim of this dissertation. 

The ARS algorithm presented in this chapter was accepted at Interspeech 2021. 

The IRT algorithm will be published at a future venue to be determined. 

5.2. Introduction 

In the prior chapters, we established how to perform sparse, anchor-based voice 

conversion and presented a technique for improving synthesis using the sparse coding 

residual. However, the formulation of the anchors as using a single anchor per phoneme 

is ill-suited for phonemes with known subphoneme states (e.g., stops or affricates). 

Further, in instances where the source speaker and target speaker share different accents, 

                                                 

* Parts of this chapter are reprinted with permission from “An Exemplar Selection Algorithm for 

Native-Nonnative Voice Conversion” by C. Liberatore and R. Gutierrez-Osuna 2021. Interspeech 2021, p. 

841-845, Copyright 2021, International Speech Communication Association. 
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the anchors are learned independently, potentially leading to mismatches in their phonetic 

content. Finally, anchors are selected only in the context of their phoneme label and not 

in the context of the other selected anchors, resulting in larger residuals. These issues 

combine to lower the overall synthesis quality of SABR models and is exacerbated in 

nonnative voice conversion contexts. 

In this chapter, we propose two learning algorithms to address the above 

limitations of SABR. The first, Iterative Retraining (IRT), performs dictionary learning to 

optimize the initial source and target anchors, reducing the residual, as well as the VC 

error. As the name suggests, IRT operates iteratively: it uses the source weights to update 

the target anchors, and then uses the target weights to update the source anchors, back and 

forth. In this fashion, IRT reduces the residual as well as the VC error. The second 

algorithm, Anchor Removal and Selection (ARS), performs clustering and greedily 

removes or splits anchors to reduce the VC error, allowing multiple anchors to represent 

a phoneme or the anchor to be removed entirely. Both algorithms can also be used in 

combination (ARS+IRT), where the output of the ARS exemplar selection algorithm is 

further optimized by the IRT dictionary learning algorithm. We evaluate both optimization 

algorithms using a dataset of speech recordings from native and non-native speakers in 

the ARCTIC [81] and L2-ARCTIC [78] corpora, respectively, and compared them against 

a state-of-the-art exemplar-based VC baseline [51].  

This chapter is organized as follows. First, we review exemplar-selection and 

optimization literature and how accents can influence these decisions. Second, we present 

the two anchor optimization algorithms and discuss how both solve different problems 
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with the SABR algorithms. Then, we present experimental results of the two algorithms 

against a baseline exemplar-based VC algorithm. We end the chapter with a discussion of 

the results and our conclusions. 

5.3. Related Work 

In this section, we review literature relevant to selecting and designing exemplars 

for exemplar-based voice conversion. Additionally, we discuss difficulties that arise from 

selecting exemplars and handling model training in native-to-nonnative contexts. 

Two constraints arise when selecting exemplars for use in VC. First, they should 

be chosen to minimize the residual of the reconstructions. Second, exemplars from the two 

speakers must have similar phonetic content, or the conversions will be distorted or 

unintelligible [46, 91]. SABR ensures that source and target dictionaries share similar 

phonetic content by learning one exemplar per phoneme from labeled training data. This 

results in much more compact dictionaries than other exemplar-based methods [51, 92]. 

However, as fewer exemplars are included in speaker dictionaries, the residual magnitude 

increases. Additionally, as fewer exemplars can represent less of the variance of the data 

set, the resulting synthesis generally has lower quality. Thus, an important task for 

compact VC methods, such as SABR, is to select exemplars to minimize this residual —

and maximize the amount of variance in the data that is explained—while ensuring high-

quality synthesis.  

Several techniques have been used to include phonetic information in the exemplar 

selection process. Aihara et al. [92] proposed a method for building a phoneme-

categorized dictionary, which added a penalty function to the Nonnegative Matrix 



 

78 

 

Factorization (NMF) objective function so that the conversion algorithm was forced to 

select target exemplars from the same phonetic class as the source. They found that 

learning source and target phoneme dictionaries with a cost function that enforced 

phonemic constraints significantly improved synthesis quality in subjective and objective 

experiments. Sisman et al. [55] expanded on this method by appending a phonetic 

posteriorgram (PPG) to the selected exemplar dictionaries to encode additional phonetic 

information. They found that including this phonetic information improved perceptual and 

objective measures of voice conversion. More recently, Ding et al. [91] found that learning 

latent phonemic information in source and target dictionaries can significantly improve 

VC quality in exemplar-based methods. The authors proposed a method to build source 

and target exemplar dictionaries by learning latent clusters in source and target data using 

a hard-clustering algorithm. They found that the selected clusters were associated with 

important phoneme classes, evidence that the proposed method was learning latent 

phonological information contained in the speech signal. These results suggest that 

selecting exemplars in such a way as to retain similar phonetic content will significantly 

improve synthesis quality. 

In related work, Zhao and Gutierrez-Osuna [52] examined two methods to select 

a compact set of exemplars for exemplar-based VC. The first method was a forward 

selection procedure where the exemplars that reduced the VC error most significantly were 

added to the dictionary; the second method was a backwards-elimination procedure where 

the exemplars that contributed the least to the sparse-coding weights were removed. Both 

procedures were able to outperform a baseline method based on time-aligned dictionaries. 
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More importantly, the results showed that it is possible to reduce exemplar dictionaries by 

a factor of five without any significant decrease in VC performance. 

5.4. Methods 

We propose two approaches to optimize the SABR anchor sets 𝐴𝑆 and 𝐴𝑇.  Both 

algorithms begin with initial SABR anchor sets 𝐴𝑆 and 𝐴𝑇, collected from labeled training 

data in the same manner as done in Chapter 3, then optimize them on parallel source and 

target training data. The first approach, Iterative Retraining (IRT), is a dictionary learning 

algorithm that balances two criteria: minimizing the VC error and minimizing the residual 

error on the source and target utterances. The second approach, Anchor Removal and 

Selection (ARS), is a hybrid clustering and exemplar-selection algorithm that adds or 

removes exemplars from the source and target anchor sets to decrease the VC error.  

5.4.1. Iterative Retraining 

Iterative Retraining (IRT) is a dictionary learning method based on the Method of 

Optimal Directions (MOD) [93]. Dictionary learning algorithms are designed to update 

dictionaries in such ways as to minimize the residual error of the representation. Given an 

utterance 𝑋, a source dictionary 𝐴, and an activation matrix 𝑊, MOD computes an update 

Δ𝐴 to the dictionary as: 

Δ𝐴 = (𝑋 − 𝐴𝑊)(𝑊+), (15) 

where ( ∙+) is the Moore-Penrose Pseudoinverse with a regularization parameter, Γ: 

𝑊+ = (𝑊𝑊𝑇 + Γ)
−1
𝑊. (16) 

Optimizing the source and target anchors independently will reduce their residuals 

for encoding the source and target speakers, respectively; however, unconstrained, these 
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updates will not ensure that the anchors are still tuned to be able to perform voice 

conversion. To address this, we add a second update term that also updates anchor sets in 

the direction of reducing the VC error. Let us denote by 𝑅𝑆|𝑇 the residual error when 

representing a source utterance with target weights: 

𝑅𝑆|𝑇 = 𝑋𝑆 −𝐴𝑆𝑊𝑇, (17) 

where 𝑊𝑇 is computed from and 𝐴𝑇 and 𝑋𝑇 using eq. (3). Then, we establish a tradeoff  

between optimizing the anchors to minimize the source residual 𝑅𝑆 in eq. (5) and the VC 

error term in eq. (17) : 

Δ𝐴𝑆
′ = (𝛼𝑅𝑠 + (1 − 𝛼)𝑅𝑆|𝑇)𝑊𝑆

+, (18) 

where 𝛼 is a parameter that balances the two update terms. Source anchors on iteration 𝑡 

are then updated: 

𝐴𝑆
𝑡+1 = 𝐴𝑆

𝑡 + Δ𝐴𝑆
′ . (19) 

Following this, the IRT algorithm iterates, with the source anchors 𝐴𝑆
𝑡  being fixed and the 

target anchors 𝐴𝑇
𝑡+1 being updated in a similar fashion. 

To prevent IRT from overfitting, we split the training data into two non-

overlapping subsets: one subset (𝑋𝑆
(1)

and 𝑋𝑇
(1)

) that is used to update the source anchors, 

and the other subset (𝑋𝑆
(2)

 and 𝑋𝑇
(2)

) that is used to update the target anchors. The algorithm 

then proceeds in an iterative fashion: updating the source anchors based on the target 

weights (using the first subset), and then updating the target anchors using the source 

weights (using the second training subset), following eqs. (17)-(19). The overall procedure 
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is outlined in Algorithm 1. IRT iterates for a set number of iterations and returns the 𝑡-th 

iteration anchor sets 𝐴𝑆
𝑡  and 𝐴𝑇

𝑡 .  

5.4.2. Anchor Removal and Selection 

The second optimization method, Anchor Removal and Splitting (ARS), addresses 

two issues. First, using single anchors per phoneme may not be enough to represent some 

phonemes classes, such as stops or affricates, which contain several sub-states. Second, 

Algorithm 1: Iterative Retraining 

Inputs:  

𝐴𝑆, 𝐴𝑇: Initial source and target anchor sets 

𝑋𝑆
(1)

, 𝑋𝑇
(1)

: Source-target training data 

𝑋𝑆
(2)

, 𝑋𝑇
(2)

: Target-source training data 

𝛼: Source-target residual weighting constant 

Initialize: 𝑡 = 0,𝑒0 = ∞, 𝐴𝑆
0 = 𝐴𝑆, 𝐴𝑇

0 = 𝐴𝑇 

1. Repeat for t=1..end 

 /* Update the source anchors using the target weights and source residual */ 

2. 𝑊𝑆
(1)
= min

𝑊𝑆
‖𝑋𝑆

(1)
− 𝐴𝑆

𝑡𝑊𝑆
(1)
‖
2

2
+ ‖𝑊𝑆

(1)
‖
1
, 𝑠. 𝑡. ‖𝑊𝑆

(1)
‖
1
≤ 1    

3. 𝑊𝑇
(1)
= min

𝑊𝑇
‖𝑋𝑇

(1)
− 𝐴𝑇

𝑡𝑊𝑇
(1)
‖
2

2
+ ‖𝑊𝑇

(1)
‖
1
 , 𝑠. 𝑡. ‖𝑊𝑇

(1)
‖
1
≤ 1     

4. 𝑅𝑆|𝑇 = 𝑋𝑆
(1)
− 𝐴𝑆

𝑡𝑊𝑇
(1)

 //Target to source, eq. (17) 

5. 𝑅𝑆 = 𝑋𝑆
(1)
− 𝐴𝑆

𝑡𝑊𝑇
(1)

  //Source residual, eq. (5) 

6. ΔA𝑆
′ = 𝛼𝑅𝑆 (𝑊𝑆

(1)
)
+
+ (1 − 𝛼)𝑅𝑆|𝑇 (𝑊𝑆

(1)
)
+
   

7. 𝐴𝑆
𝑡+1 = 𝐴𝑆

𝑡 + Δ𝐴𝑆
′   

 /* Update the target anchors using the source weights and target residual */ 

8. 𝑊𝑆
(2)
= min

𝑊𝑆
‖𝑋𝑆

(2)
− 𝐴𝑆

𝑡+1𝑊𝑆
(2)
‖
2

2
+ ‖𝑊𝑆

(2)
‖
1
, 𝑠. 𝑡. ‖𝑊𝑆

(2)
‖
1
≤ 1     

9. 𝑊𝑇
(2)
= min

𝑊𝑇
‖𝑋𝑇

(2)
− 𝐴𝑇

𝑡𝑊𝑇
(2)
‖
2

2
+ ‖𝑊𝑇

(2)
‖
1
 , 𝑠. 𝑡. ‖𝑊𝑇

(2)
‖
1
≤ 1     

10. 𝑅𝑇|𝑆 = 𝑋𝑇
(2)
− 𝐴𝑇

𝑡𝑊𝑆
(2)
 //Source to target, eq. (17) 

11. 𝑅𝑇 = 𝑋𝑇
(2)
− 𝐴𝑇

𝑡𝑊𝑇
(2)
 //Target residual, eq. (5) 

12. Δ𝐴𝑇
′ = 𝛼𝑅𝑇 (𝑊𝑇 

(2)
)
+
+ (1 − 𝛼)𝑅𝑇|𝑆 (𝑊𝑇

(2)
)
+
   

13. 𝐴𝑇
𝑡+1 = 𝐴𝑇

𝑡 + 𝛥𝐴𝑇  

Return: 𝐴𝑆
𝑡, 𝐴𝑇

𝑡  
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the phoneme inventory of the L2 speaker may be different from that of the L1 speaker and 

will likely include mispronunciations of a phoneme.  As a result, the source-target anchors 

may be mismatched, introducing distortions in the VC synthesis. To address these issues, 

ARS greedily either removes an anchor or “splits” it into sub-anchors, depending on which 

action reduces the VC error. After the operation is performed, the algorithm iterates again 

on the new anchor set, until a termination condition is reached, or the error can no longer 

be reduced. 

As a first step, we compute a binary tree of cluster centroids for each phoneme 

using Ward’s method [94]. These clusters are learned by concatenating time-aligned 

source and target training data: [𝑋𝑆
𝑇 , 𝑋𝑇

𝑇]𝑇. The root node of the binary cluster tree 

corresponds to the initial anchors for each phoneme. During the split operation, a given 

node is replaced with its two child nodes, which represent to two higher-detail clusters in 

that phoneme. The removal operation is less complex; the operation simply removes the 

given anchor from the anchor set and all child nodes from that tree. 

These two operations represent the two choices that the greedy ARS algorithm can 

perform. For each anchor 𝑘, each operation 𝑓 in the set of operations 𝐹 =

{𝑟𝑒𝑚𝑜𝑣𝑒, 𝑠𝑝𝑙𝑖𝑡} is performed, resulting in a temporary anchor sets 𝐴𝑆
𝑘,𝑓
, 𝐴𝑇
𝑘,𝑓

. For each 

anchor-operation pair, the VC error is measured against a validation data set  𝑋𝑆
′  and 𝑋𝑇

′ . 

The temporary anchor with the minimum VC error is used as the input to the next iteration, 

and each anchor is again tested for the split and remove operation. This process loops 

either until the VC error stops improving, or after a set number of iterations is reached. 

The overall procedure is outlined in Algorithm 2. 
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5.5. Experiments 

5.5.1. Corpus 

To evaluate the proposed anchor optimization algorithms, we performed a series 

of experiments using speakers from the CMU ARCTIC speech corpus [81] and the L2-

ARCTIC speech corpus (v 1.0) [78]. L2-ARCTIC is a corpus based on the prompts of the 

ARCTIC database, but with L2 speakers of English from six first languages: Mandarin, 

Hindi, Arabic, Spanish, Korean, and Vietnamese. At the time of these experiments, data 

ALGORITHM 2: ANCHOR REMOVAL AND SPLITTING ALGORITHM 
Inputs: 

𝐴𝑆, 𝐴𝑇: Source and target anchor sets 

𝑋𝑆, 𝑋𝑇: Parallel source and target training data sets 

𝑋𝑆
′ , 𝑋𝑇

′ : Parallel source and target validation data sets 

𝐹: Set of anchor selection functions (removal, splitting) 

Initialize: 𝑡 = 0,𝑒0 = ∞, 𝐴𝑆
0 = 𝐴𝑆, 𝐴𝑇

0 = 𝐴𝑇 

1. 𝐾 = |𝐴𝑆
𝑡 | //Compute the number of anchors 

 
/* For each anchor, perform the removal or split function and compute the 

voice conversion error */ 

2. For each 𝑘 ∈ 𝐾 

3. For each 𝑓 ∈ 𝐹 

 
/* Perform the operation 𝑓 on the anchor 𝑘 for the source and target 

speakers */ 

4. [𝐴𝑆
𝑘,𝑓
, 𝐴𝑇
𝑘,𝑓
] = 𝑓(𝐴𝑠

𝑡 , 𝐴𝑇
𝑡 , 𝑋𝑆, 𝑋𝑇 , 𝑘)  

 /* Compute the voice conversion error on the validation data set */ 

5. 𝑊𝑆 = min
𝑊𝑆
‖𝑋𝑆

′ − 𝐴𝑆
𝑘,𝑓
𝑊𝑆‖2

2
+ ‖𝑊𝑆‖1,        𝑠. 𝑡. ‖𝑊𝑆‖1 ≤ 1  

6. 𝑒𝑘,𝑓
𝑡 = ||𝑋𝑇

′ − 𝐴𝑇
𝑘,𝑓
𝑊𝑆||2

2
  

 // min VC error operation-anchor pair 

7. [𝑘, 𝑓] = min
𝑘,𝑓
([𝑒1,1

𝑡 …𝑒1,|𝐾|
𝑡 …𝑒|𝐹|,1

𝑡 …𝑒|𝐹|,|𝐾|
𝑡  ])  

8. 𝑒𝑡 = 𝑒𝑘,𝑓
𝑡  

 
/* If the operation reduced the VC error, update the anchor sets and iterate 

again */ 

9. 𝑖𝑓(et < 𝑒𝑡−1)  

10. 𝐴𝑆
𝑡+1 = 𝐴𝑆

𝑘,𝑓
  

11. 𝐴𝑇
𝑡+1 = 𝐴𝑇

𝑘,𝑓
 

12. 𝑡 = 𝑡 + 1  

13. Go to line 2 

14. 𝑒𝑙𝑠𝑒 return  

Return: 𝐴𝑆
𝑡, 𝐴𝑇

𝑡  
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from Vietnamese speakers was not available and were therefore not included in these 

experiments. We conducted two types of evaluation: objective and subjective.  For the 

objective evaluations, source speakers were American English speakers from the ARCTIC 

corpus, and target speakers were either from the ARCTIC or L2-ARCTIC corpus. 

Including the ARCTIC corpus in the list of target speakers provided a native-native VC 

baseline where alignment between source and target speakers was not a factor. For the 

subjective experiments, we did not evaluate ARCTIC-ARCTIC pairs, since our goal is to 

perform accent conversion. For ease of notation, we refer to ARCTIC-ARCTIC speaker 

pairs as A2A, and ARCTIC—L2-ARCTIC speaker pairs as A2L2. 

5.5.2. Implementation details 

We used STRAIGHT [39] with 1 ms frame steps and 80 ms window size to extract 

aperiodicity, fundamental frequency, and spectral envelope from each utterances. We then 

computed a 25-dimension MFCC vector (25 filter banks, 25 coefficients). We ignored 

𝑀𝐹𝐶𝐶0 since that contains energy, and we wanted target utterances to have native 

prosody. Instead, at synthesis we copied the source 𝑀𝐹𝐶𝐶0 to resynthesize the target 

utterance. 

To keep the algorithm low-resource, we used 20 parallel, time-aligned utterances 

to train the SABR models and as input to the ARS and IRT algorithms. We performed 

time alignment using the MFCC features and dynamic time warping (DTW) [95]. To 

illustrate the time-alignment difference between native and nonnative speaker pairs, we 

examined the average difference between the computed DTW trajectories for A2A and 

A2L2 speaker pairs (see Table 6). On average, A2A pairs had a 124ms (standard deviation: 



 

85 

 

15ms) alignment difference, whereas A2L2 pairs had a 221ms (standard deviation: 36ms) 

alignment difference.  These results highlight the challenges of using conventional 

exemplar-based VC methods, which require accurate alignment, when the target speakers 

are non-native. 

For synthesis, we converted the pitch of the source utterance to match the pitch 

range of the target speaker using log mean-variance scaling [6]. Then, we synthesized 

audio using the STRAIGHT vocoder with the converted spectral envelope, the converted 

pitch, and the source aperiodicity. To solve for the SABR weights, we used the LARS 

solver from the SPAMS sparse coding toolbox [89], following the method and constraints 

described in Chapter 4.  

5.5.3. Accent-conversion systems 

To evaluate the two proposed optimization algorithms, we considered five 

different accent-conversion systems: 

• SABR: the default SABR anchors—one anchor per phoneme, selected by computing 

the centroid of all frames with that phoneme label 

• IRT: source and target anchors optimized by the IRT algorithm 

• ARS: source and target anchors optimized by the ARS algorithm 

• ARS+IRT: a combination of the ARS and IRT algorithms, where the resulting source 

and target anchor sets from the ARS algorithm are used as initial anchor sets to the 

IRT algorithm. 
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• Baseline: a state-of-the-art exemplar-based method with residual compensation4 [51]. 

Source and target dictionaries were learned from time-aligned data; in this case, the 

dictionaries were constructed from the same training utterances used by the SABR 

anchors and optimization methods (i.e. 20, time-aligned source and target utterances).  

We did not consider other VC methods (e.g., neural network, GMM) as baselines, 

since prior work [10, 38, 50] has established that such methods perform worse than 

exemplar-based methods when limited training data are available. 

5.5.4. Experiments 

Prior to the objective experiments, we performed a cross-validation experiment to 

tune the parameters of the IRT optimization method. In this experiment, we performed 4-

fold cross validation on 80 utterances (20 per split) from the ARCTIC B training set. 

Utterances were selected as to maximize phoneme variability and ensure that SABR has 

                                                 

4 For consistency with the original implementation, the baseline method operated on the full 

STRAIGHT spectra, as opposed to the MFCCs used by the other four methods.  This gave the baseline 

method an advantage in terms of acoustic quality. 

Table 6: Average time alignment differences when aligning source utterances to 

target utterances from speakers with different L1s. 

 Values in parenthesis are the standard deviations of the measurements. 

Native L1 ARCTIC alignment error (ms) 

Hindi 160 (36) 

Arabic 188 (50) 

Spanish 205 (64) 

Korean 214 (53) 

Mandarin 335 (80) 

L2-ARCTIC average 221 (36) 

ARCTIC average 124 (15) 
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samples for each phoneme anchor. The optimal number of iterations and 𝛼 value were 

selected from this initial experiment. 

For the objective experiments, we used all possible pairs of speakers from A2A 

(12 pairs) and A2L2 (40 pairs). Training was done on the 20 utterances from the ARCTIC 

B set, and testing was done on 200 utterances selected from the ARCTIC A set. As the 

ARS algorithm requires a validation set, we divided each 20-utterance split into a 10-

utterance training and a 10-utterance development set. Utterances used in perceptual tests 

were selected from the ARCTIC A set. 

For subjective experiments, we selected four speaker pairs from the A2A set 

(Table 7) and four speaker pairs from the A2L2 set (Table 8) for evaluation. First, we 

performed a Mean Opinion Score (MOS) test on A2A and A2L2 pairs to measure the 

synthesis quality of the proposed systems. Second, we performed an accentedness test on 

only A2L2 speaker pairs to evaluate how the optimization methods affect the accent of the 

synthesis. Following this, we performed an XAB speaker identity test on just A2L2 pairs 

to measure the speaker identity performance of the five systems. Finally, we performed 

an AB preference (ABP) test on A2L2 speakers to determine which methods were 

preferred in a more direct test. 
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We selected two independent objective measures to evaluate the proposed 

algorithms: the VC error, computed from eq. (17), and the Residual magnitude from eq. 

(5), computed in terms of Mel-Cepstral Distortion [6]: 

𝑀𝐶𝐷(𝐶) =
10√2

ln (10)
‖𝐶‖2

2, 
(20) 

where 𝐶 is a vector of MFCCs. Prior to computing MCD, we set energy (𝑀𝐹𝐶𝐶0) to 0. 

For the baseline method (which used full spectra), we convert the full spectra to MFCCs. 

Additionally, as noted by prior research, higher correlations between pairs of 

source and target atoms is an indicator of higher synthesis quality [48, 96]. Thus, we added 

a third objective measure of synthesis quality: the correlation of the source and target 

anchors sets as:  

Table 7: A2A speaker pairs for perceptual experiments. 

 Source and target speakers are both from the ARCTIC corpus. 

Source speaker Target speaker 

BDL (M) RMS (M) 

SLT (F) CLB (F) 

RMS (M) SLT (F) 

CLB (F) BDL (M) 

 

Table 8: Speaker pairs for the A2L2 perceptual experiments. 

 Source speakers are from the ARCTIC corpus, target speakers are from the L2-

ARCTIC corpus. 

Source speaker Target speaker First language 

BDL (M) HKK (M) Korean 

SLT (F) SKA (F) Arabic 

RMS (M) YDCK (F) Mandarin 

CLB (F) EVBS (M) Spanish 
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𝑟(𝑎, 𝑏) =
∑ ∑ (𝑎𝑚𝑛 − 𝑎̅)(𝑏𝑚𝑛 − 𝑏̅)𝑛𝑚

√(∑ ∑ (𝑎𝑚𝑛 − 𝑎̅)2𝑛𝑚 ) (∑ ∑ (𝑏𝑚𝑛 − 𝑏̅)
2

𝑛𝑚 )

 , 
(21) 

where 𝑎, 𝑏 ∈ ℝ𝑚 𝑛 are source and target anchors, 𝑚 is the feature dimension, 𝑛 is the 

number of anchors,  𝑎̅ and 𝑏̅ are the mean of the anchors. We computed the correlation 

coefficients for the source and target anchor sets on all coefficients, except energy 

(𝑀𝐹𝐶𝐶0). For the baseline method (which used full spectra), we converted the source and 

target dictionaries to MFCCs. 

5.6. Results 

5.6.1. Experiment 1: Objective evaluation 

5.6.1.1. Characterizing the Iterative Retraining algorithm 

Prior to evaluating the IRT algorithm’s performance on test data, we examined the 

effect of parameter 𝛼 in eq.  (11), which balances the VC error and the residual error. We 

evaluated the IRT algorithm on all 40 A2L2 speaker pairs.  Figure 19 shows the average 

VC error and residual, iteration by iteration, on the cross-validation dataset5. The VC error 

reaches a minimum in the first few iterations but increases subsequently. In contrast, the 

residual tends to decrease monotonically6. In the remaining analysis, we took the first 

iteration where the change in residual magnitude was below 0.001 dB as the convergence 

iteration. 

                                                 

5 Empirically, we set to Γ = 0.1  regularization term in eq.  (16) 
6 For readability, Figure 19 only shows A2L2 speaker pairs, but A2A pairs reduced the VC error 

and residual following a similar pattern. 
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a) 

 

b) 

 
Figure 19: IRT algorithm by iteration on the training set, averaged over the cross-

validation folds. (a) VC error of A2L2 pairs. (b) Residual magnitude of A2L2 pairs. 
 

Figure 20 shows the relationship between the residual and VC error (at 

convergence iteration) as a function of parameter 𝛼. For both A2A and A2L2 speaker 

pairs, 𝛼 = 0.4 achieved the lowest VC error; however, the MCD at 𝛼 = 0.5 was negligibly 

higher (0.01 dB) with a significant decrease in residual. For 𝛼 ≥ 0.7, the VC error 

diverged as the IRT algorithm was biased towards minimizing the residual and not 

minimizing the VC error. Based on these results, in what follows we set 𝛼 = 0.5 and 

perform IRT until the residual converges (in practice, this occurs at around 20 iterations). 
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5.6.1.2. Characterizing the Anchor Selection and Removal algorithm 

In this experiment, we evaluated the ARS algorithm on all pairs of A2A and A2L2 

speaker pairs. For a set of 20 training utterances, we computed the initial SABR anchors 

using the centroids of the phoneme labels of the training data, then followed the ARS 

algorithm. We evaluated the algorithm from two perspectives: the per-iteration results of 

the metrics from section 5.5.4 and the phonemes the ARS algorithm selected for splitting 

and removal. 

Figure 21 shows the per-iteration results of the ARS algorithm. ARS reduces the 

VC error (Figure 21 (a)) for both speaker pairs, but more for A2L2 pairs because of 

pronunciation differences between the source and target speakers. In contrast, residuals 

decrease similarly for both A2A and A2L2 pairs (Figure 21 (b)).  Evidence of time-

alignment and accent issues are visible in the number of anchors selected (Figure 21 (c)). 

Because A2A pairs are generally not affected by accent or time-alignment issues, the ARS 

algorithm favored the splitting operation, and significantly more splitting operations were 

 

Figure 20: Tradeoff between VC error and residual error for different values of 

parameter α on the cross-validation dataset. 

 “Init” refers to SABR models built from phoneme labels. 
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selected over the removal operation. The A2L2 pairs reach an average of 60 anchors, 

whereas the A2A pairs continue to split and reach an average of 69.8 anchors. 

(a) 

 

(b) 

 

(c) 

 

Figure 21: Performance of the ARS algorithm by iteration in terms of (a) VC error 

delta, (b) source and target residuals, (c) number of source/target anchors. In all 

figures, light gray represents A2A, black represents A2L2, and the x-axis 

represents the ARS iteration.  
 

Figure 22 shows the proportion of ARS decisions by iteration for A2A (a) and 

A2L2 pairs (b). As the ARS algorithm terminates when no further split or remove decision 

can be made, we include the proportion of speaker pairs that had terminated by that 

iteration (the “done” label). The split decision was more heavily favored for A2A pairs 

than for the A2L2 speaker pairs; for A2A speakers, it was selected by more than half of 

all A2A pairs until iteration 48, whereas for A2L2 speakers, the split decision fell below 
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half at iteration 38. This difference is expected and is due to both time-alignment and 

accent differences between the datasets. Alignment and accent differences also affect the 

proportion of A2L2 speakers that terminate before the 60th iteration (83%) in contrast with 

the A2A speakers (55%). 

In a final analysis, we investigated which phonemes in the split operation 

contributed to the greatest reduction in VC error. We computed the total amount the VC 

error decreased when phoneme 𝑘 was split as: 

a) 

 

b) 

 

Figure 22: proportion of ARS decisions by iterations on all pairs of (a) A2A and (b) 

A2L2 speakers. 

 “Done” means for that pair of speakers, the ARS algorithm  
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where Δ𝑒𝑘 is the change in VC error for phoneme 𝑘, 𝑡 is the ARS iteration, 𝑆𝑘
𝑡  is an 

indicator variable that is 1 when phoneme 𝑘 was selected for splitting on iteration 𝑡 and 0 

otherwise. For 𝑒0, we used the VC error of the initial SABR models. Figure 23 shows the 

results of eq. (22) computed for all A2A and A2L2 speaker pairs, (a) shows A2L2 

speakers, grouped by target L1, and (b) shows A2A speakers. The ten phonemes listed in 

Figure 23 (a) contain 50% of the reduction in VC error for A2L2 pairs. This is in contrast 

with the A2A speaker pairs, where the first ten phonemes in Figure 23 (b) represent a 

reduction of only 40% of the VC error and all phonemes are voiced. 

There are a few notable differences between the A2A and A2L2 speaker pairs; 

first, on A2A pairs ARS favored voiced phonemes and vowels more than on A2L2 pairs. 

Second, on A2L2 pairs ARS often split phonemes with known voicing substitution errors 

Δ𝑒𝑘 = ∑𝑆𝑘
𝑡(𝑒𝑡−1 − 𝑒𝑡)

60

𝑡=1

, (22) 

 
a) 

 
b) 

Figure 23: Reduction in VC error for top ten phonemes split by the ARS algorithm.  

 In each figure, the x-axis represents the reduction in VC error from ARS operations 

on phonemes in that class. (a) A2L2 target speakers. (b) A2A target speakers.  
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(e.g. /s/ and /z/, which have common voicing substitution errors in the L2-ARCTIC corpus 

[78]). Finally, on A2L2 pairs, the most-selected phonemes were those where the phoneme 

labels contained multiple states over the production of the phoneme (e.g. diphthongs and 

stops) or had the same articulation, but different voicing. Additionally, fewer remove 

operations were selected by A2A pairs because source and target anchors had fewer time 

alignment and pronunciation differences.  

5.6.1.3. System comparison 

In this section, we compare the performance of the five systems in terms of the 

objective measures: VC error, residual, and correlation between source and target 

dictionaries. A2A results are shown in Table 9, and A2L2 results are shown in Table 10. 

For both A2A and A2L2 pairs, the three optimization methods had significantly 

lower VC error than the original SABR model (A2A and A2L2, 𝑝 ≪ 0.001, paired t-test). 

Notably, there was no significant difference in the VC error of the three proposed 

optimization methods and the baseline model (A2A, 𝑝 ≥ 0.05, A2L2, 𝑝 ≥ 0.35, paired t-

test), a positive result given that the baseline model had dictionaries more than two orders 

of magnitude larger. 

Table 9: A2A objective results summary for anchor optimization methods. Results 

are for all A2A speaker pairs. Numbers in parenthesis are the standard deviations 

for each value. 

Method Dictionary Size VC Error Residual Correlation 

Baseline 3531 (314) 2.46 (0.13) 0.92 (0.04) 0.78 (0.07) 

SABR 39 2.59 (0.13) 1.68 (0.13) 0.81 (0.05) 

IRT 39 2.42 (0.12) 1.05 (0.16) 0.74 (0.09) 

ARS 69.8 (12.7) 2.46 (0.12) 1.46 (0.13) 0.70 (0.10) 

ARS+IRT 69.8 (12.7) 2.39 (0.13) 1.00 (0.08) 0.71 (0.10) 
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All systems showed significantly different performance in terms of residual 

magnitude. Of the proposed optimization methods, ARS+IRT had the lowest residual for 

both A2A and A2L2 pairs (A2A and A2L2, 𝑝 ≪ 0.001, paired t-test). This was for two 

reasons: IRT on its own significantly reduces the residuals as compared to the original 

SABR model, and when combined with the larger anchors sets selected by ARS, IRT 

could reduce the residuals further. Again, notably, ARS+IRT  residuals differed from the 

baseline model by 0.08 dB (A2A) and 0.16 dB (A2L2), even though the ARS+IRT 

dictionary sizes were significantly smaller than that of the baseline. 

In A2A speakers, both the baseline model and the original SABR model had 

significantly higher correlation than the three optimization methods (𝑝 < 0.01, paired t-

test). This contrasts with the A2L2 speaker pairs, in which the baseline and original SABR 

model had the lowest correlations (𝑝 < 0.01, paired t-test). Additionally, in A2A speaker 

pairs, IRT had significantly higher correlations than ARS+IRT (𝑝 < 0.01, paired t-test); 

in A2L2 speaker pairs, ARS+IRT and IRT did not have significant differences in 

correlation (𝑝 = 0.10, paired t-test). For A2A speaker pairs, the baseline and original 

SABR models do not have to contend with pronunciation differences between speakers, 

Table 10: A2L2 objective results summary for anchor optimization methods. 

 Results are for all A2L2 speaker pairs. Numbers in parenthesis are the standard 

deviations for each value. 

Method Dictionary Size VC Error Residual Correlation 

Baseline 4720 (367) 2.74 (0.14) 0.96 (0.04) 0.63 (0.06) 

SABR 39 2.91 (0.12) 1.67 (0.11) 0.61 (0.09) 

IRT 39 2.72 (0.12) 1.24 (0.08) 0.76 (0.07) 

ARS 60.0 (8.5) 2.75 (0.12) 1.51 (0.11) 0.66 (0.08) 

ARS+IRT 60.0 (8.5) 2.71 (0.11) 1.12 (0.10) 0.74 (0.07) 
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and the optimization algorithms optimize the VC error and residuals more than the A2L2 

speaker pairs, which comes at the cost of lower correlations. 

In an additional experiment, we examined how many anchors would ARS need to 

split to match the VC error and residual magnitude of IRT. For this comparison, we only 

used ARS to split each phoneme into multiple anchors, ranging from 2 to 32, on all A2L2 

pairs. The results are shown in Figure 24. ARS has to split each phoneme into 4 clusters 

(or 156 anchors total) in order to achieve similar VC error and residual as IRT. ARS+IRT 

improves upon this, reaching lower VC error and residual magnitude than either method 

or better than the pure clustering condition with 61 anchors. Finally, ARS has to split each 

phoneme into 16 clusters (624 exemplars) in order to achieve a similar residual magnitude 

and VC error as the baseline system, which uses 4720 exemplars on average. 

5.6.2. Experiment 2: Perceptual evaluation 

5.6.2.1. Mean Opinion Score 

In a first perceptual experiment, we performed a Mean Opinion Score (MOS) test 

to measure the synthesis quality of the five VC systems. For this purpose, we recruited 

 

Figure 24: Comparison of the five systems in terms of VC error and residual error. 

 The black line represents the result of splitting each phoneme into an increasingly 

larger number of clusters (2, 4, 8, 16 and 32). “Init” refers to the initial, SABR-

trained anchor set residual and VC error. 
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participants (𝑛 = 20) on Amazon Mechanical Turk to rate the quality of an utterance on 

a 5-point scale (1 = “low quality”; 5 = “high quality”). We included both A2A an A2L2 

speaker pairs to evaluate how the effects of accent change the synthesis quality of the 

methods. For each speaker pair, we asked participants to rate 25 utterances–5 utterances 

per synthesis method. Following [97], we included eight unmodified utterances from the 

corpora to verify that participants were listening carefully and not randomly guessing. 

Results are shown in Figure 25. 

A2L2 ratings for the proposed optimization methods (IRT: 2.88; ARS: 2.66; 

ARS+IRT: 3.00) were approximately twice as high as those of the baseline system (1.397; 

𝑝 ≪ 0.01, single-tailed t-test), a remarkable result given that they include far fewer 

anchors in their dictionaries (~61 vs. 4720). This pattern continued in the A2A ratings, 

where the optimization methods (IRT: 3.48; ARS: 3.18; ARS+IRT: 3.26) were also 

significantly higher than the baseline (2.20; 𝑝 < 0.01 , single-tailed t-test). IRT and 

ARS+IRT significantly improved the initial SABR synthesis quality for both A2A and 

A2L2 speaker pairs (𝑝 < 0.01, single-tailed t-test). Additionally, the IRT and ARS+IRT 

scores were not significantly different in either synthesis condition (A2A: 𝑝 = 0.20; 

A2L2: 𝑝 = 0.17, single-tailed t-test). In contrast, the ARS algorithm alone did not 

significantly improve upon the original SABR MOS for either set of speaker pairs (A2A, 

                                                 

7 This MOS rating is significantly lower than those reported by the authors of the baseline system. 

We believe this is due to the difficulty in time-aligning native to non-native utterances, which is critical for 

the baseline system.  In contrast, SABR is less affected by these issues as it does not require time-alignment, 

and the two anchor optimization methods have built-in mechanisms to address misalignments. 
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𝑝 = 0.17; A2L2, 𝑝 = 0.13, single-tailed t-test), suggesting that IRT’s reduction of the 

residual significantly contributes to the quality of the synthesis.  

The baseline method had a significantly larger difference in MOS between A2A 

and A2L2 versus the SABR and optimization methods (𝑝 < 0.01, all methods, single-

tailed t-test). There was no significant difference in the change in MOS between SABR, 

IRT, or ARS methods, suggesting that both SABR and the proposed optimization methods 

are more robust against dealing with time-alignment and mispronunciation effects of 

native-to-nonnative voice conversion. While the ratings of ARS+IRT had the lowest 

difference, this is due to the A2A ARS+IRT MOS being lower relative to the A2A IRT 

MOS than the corresponding A2L2 ratings. 

5.6.2.2. Accentedness test 

We performed an accentedness test to evaluate how the residual methods affected 

the accentedness of the synthesis. We asked participants (𝑛 = 21) to rate the accentedness 

of a speaker on a 9-point Likert scale following [90] (1= “no foreign accent”, 9= “very 

 

Figure 25: MOS scores of A2A and A2L2 speaker pairs from the baseline and 

proposed system. Error bars show standard deviation of the ratings. 
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strong foreign accent”) on utterances A2L2 speaker pairs from: the baseline NMF method, 

the SABR method without the optimized anchors, the optimized SABR anchor models, 

and utterances from the L1 and L2 speakers. For each condition, participants rated 20 

utterances for a total of 140 ratings. Results are shown in Figure 26. 

Overall, participants found all of the VC methods to be significantly closer to a 

native accent than a nonnative accent. There was no significant difference in the ratings 

between the SABR and the three optimized anchor sets (𝑝 ≥ 0.14, single-tailed t-test), but 

IRT and ARS+IRT were rated as having significantly lower accent than the baseline 

method (𝑝 < 0.05, single-tailed t-test). Overall, this experiment confirms that the 

optimized anchor sets do not sound more accented, even though they are optimized on 

data from the accented target speaker—in fact, they produce even closer ratings to native 

speakers than the baseline methods. 

 

Figure 26: Accentedness ratings of baseline systems and optimized anchor sets. 
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5.6.2.3. Speaker identity test 

In the next perceptual experiment, we performed an XAB speaker identity test 

comparing synthesis from the baseline method and the three optimization methods (IRT, 

ARS, ARS+IRT). To ensure the perceptual test was tractable, we did not include the 

baseline SABR method, as in the MOS trials the SABR synthesis were rated as 

significantly lower quality than the optimized methods. We recruited (𝑛 = 20) 

participants from Amazon Mechanical Turk and presented them with three utterances: an 

utterance from one of our synthesis methods from the four A2L2 speaker pairs (X), and 

utterances from the source or target speaker (A, B). The order of A and B was counter-

balanced. Following [58], utterances were played in reverse to mask the effects of accent, 

and allow participants to focus on the identity of the speaker. For each speaker pair, we 

asked participants to perform 32 evaluations—8 per synthesis method. As before, we 

included 5 evaluations where the reference utterance was an unmodified reference from 

the source speaker to identify and remove participants who evaluated the pairs randomly. 

Results of the XAB test are shown in Figure 27. 
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There was no statistically significant difference between the baseline system and 

the three optimization methods (𝑝 > 0.05, two-tailed t-test), despite the fact that the 

optimization methods used two orders of magnitude fewer anchors than the baseline 

system. These ABX recognition rates are similar to those reported in related literature [1, 

38]. 

5.6.2.4. Preference tests 

To further distinguish differences in MOS ratings between the three optimization 

algorithms, we performed an additional AB preference test on A2L2 speaker pairs. 

Subjects (𝑛 = 20) were presented with two utterances, each from either ARS, IRT, or 

ARS+IRT, and were asked to determine which utterance was better in terms of acoustic 

quality. We did not include the baseline or base SABR anchor sets in the comparison 

because their MOS ratings were significantly lower than the other optimization methods. 

We used the four source-target speaker pairs listed in Table 10, presenting participants on 

 

Figure 27: XAB speaker identity test ratings of the baseline VC system and 

optimized anchor sets.  
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32 pairs of utterances from each of the three possible comparisons. Both utterances were 

from the same source-target speaker pair. As in the previous tests, we included 5 

unmodified reference utterances to verify that participants were listening carefully and not 

randomly guessing. Results are shown in Figure 28. In all cases, listeners preferred the 

optimization methods that included IRT. IRT was preferred to ARS in 71% of cases (𝑝 <

0.001, single-tailed t-test), and ARS+IRT was preferred to ARS in 68% of cases (𝑝 <

0.001, single-tailed t-test). However, listeners did not show a preference for IRT over 

ARS+IRT (𝑝 = 0.08, single tailed t-test). This suggests that reducing the residual is more 

important to improving synthesis quality than the benefits of a larger anchor set. 

   

Figure 28: AB preference tests of the optimized methods. 
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5.7. Discussion 

In this chapter, we presented two optimization algorithms for a low-resource 

exemplar-based voice conversions system (SABR) used to convert utterances between 

native and non-native speakers. The two optimization algorithms address two issues with 

the original version of SABR. First, having a compact exemplar set increases the 

magnitude of the residual error, which negatively affects synthesis quality. Second, one 

exemplar may not be enough to represent some phoneme classes, so selecting multiple 

exemplars may improve VC performance. The IRT algorithm optimizes anchor sets to 

reduce VC error and the residual error. The ARS algorithm either splits or removes 

anchors if that decision reduces VC error. This allows multiple anchors to represent a 

phoneme, or the anchor to be removed entirely. 

In our experiments, we examined the effect of these algorithms on voice 

conversion in native-to-native (ARCTIC to ARCTIC, A2A) and native-to-nonnative 

(ARCTIC to L2-ARCTIC, A2L2) contexts to highlight the difficulties that time-alignment 

brings to exemplar-based voice conversion. We performed both objective and subjective 

experiments on our proposed algorithms as well as using an exemplar-based voice 

conversion baseline. 

5.7.1. Objective results 

Iterative retraining (IRT) reduced the VC error and residual in both the A2A and 

A2L2 speaker pairs. Time alignment and pronunciation differences between these datasets 

are visible in the difference between the 𝛼 = 0 and Init conditions in Figure 20; for A2A 

pairs, the 𝛼 = 0 case significantly reduces both the VC error and residual, even though in 



 

105 

 

this condition IRT only attempts to reduce the VC error (see eq. (18)). This indicates that 

the optimal direction for updating anchors to account for VC error is also the optimal 

direction to reduce the residual, something which does not occur with A2L2 speaker pairs. 

As shown in Figure 19, more than 90% of the reduction in VC error occurred in the first 

iteration of IRT, suggesting that only a few updates are necessary to significantly reduce 

VC error; only the residual benefits from continued iterations, with a modest tradeoff in 

increasing VC error.  

The anchor removal and splitting algorithm (ARS) focused primarily on the split 

operation. Typically, two types of phonemes were selected by the algorithm to be split for 

A2L2 pairs: those that would benefit from multiple anchors (e.g., stops, diphthongs, and 

affricates) and those that are known to be difficult for the L2 learner. By analyzing the 

split operation in ARS, it is possible to improve the anchors selected by SABR and other 

exemplar-based methods. First, non-continuant phonemes (e.g., stops, affricate, and 

diphthongs) were often selected for splitting.  This suggests that allowing for multiple 

acoustic states (similar to senone states of ASR systems [98, 99]) would improve synthesis 

quality.  Additionally, we found that in both A2A and A2L2 speaker pairs the split 

operation included many fricatives that differed in voicing between the source and target 

speakers (e.g. the source speaker formed /z/ while the target speaker formed /s/).  This 

suggests that including pitch information during training to ensure that the voicing matches 

between source and target data training data may also improve the performance of SABR. 

For other exemplar-based methods which require time-aligned data, discarding parallel 
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source and target data that does not share the same voicing may also improve voice 

conversion performance. 

Both methods reduced the overall VC error by a similar magnitude, but IRT 

significantly reduced the residual when compared to ARS. The joint ARS+IRT method 

had even lower VC error and residuals than either method individually, and comparable 

to that of the baseline method. One advantage to IRT is its flexibility; given any parallel 

source and target data, the algorithm will reduce the residuals of the dictionaries while 

ensuring they remain conditioned for VC. In contrast, ARS was expensive to compute and 

favored splitting phonemes as opposed to removing a phoneme. Additionally, a 

significantly larger dictionary (and correspondingly, more split operations) would be 

required for ARS on its own to match IRT’s residual magnitude and VC error.  

5.7.2. Subjective results 
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(b) 

 
Figure 29: Illustration of time-alignment issues on the baseline system.(a) A2A 

speaker pair (BDL-RMS). (b) A2L2 speaker pair (BDL-HKK). Segment I (the 

word “power”) shows significant time alignment and pronunciation differences 

between A2A and A2L2 speaker pair 

 

A possible explanation for the low MOS ratings of the baseline system is that it 

relied heavily on accurate time alignment between source and target dictionaries. If time-

alignment is not ideal or the speakers differ in pronunciation, the synthesis quality of the 

baseline system would be adversely affected.  The time-alignment issues of the nonnative 

speakers are illustrated in Figure 29, which shows the time-aligned dictionaries of the 

baseline; (a) shows the alignment of BDL (m) and RMS (m), two A2A speaker pairs, and 

(b) shows the alignment of BDL and HKK (m, Korean), two A2L2 speaker pairs. 

Mispronunciation and alignment differences in the A2L2 dictionary is noticeable in 

segment I (the word “power”) and time alignment differences are visible in segment II 

(the word “motive”). The A2A alignment is noticeably better, with fewer long durations 

of the same frames duplicated by dynamic time warping. If any of these duplicated frames 

are selected during the computation of the activation matrix, every single frame will be 

selected; when the target spectrum is then computed as the average of all the 

corresponding frames from the target speaker’s dictionary. Similarly, mispronunciations 
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in the target speaker’s dictionary will be mismatched to the phonetic content of the target 

speaker. Both of these issues result in the synthesized spectrum lacking spectral detail and 

lowering the overall synthesis quality. 

In contrast, SABR and the proposed optimization algorithms are less susceptible 

to the time-alignment issues that affected the baseline system. As a result, the MOS ratings 

were significantly higher for the proposed systems than for the baseline system. The 

combination of using a fewer dictionary entries with the residual warping method (Chapter 

4) allowed SABR synthesis to avoid the issues to which the time-aligned dictionaries of 

the baseline method was susceptible. Additionally, the proposed optimization methods 

were more robust in native to nonnative voice conversion contexts, as the differences in 

MOS ratings of the A2A and A2L2 pairs were lower than that of the baseline. Importantly, 

though the baseline method had nearly two orders of magnitude larger dictionaries than 

SABR or the proposed optimization algorithms, there was no statistically significant 

difference in listeners’ ability to identify the synthesis as coming from the target speaker. 

The anchor optimization algorithms had the secondary effect of lowering the accentedness 

of the unoptimized SABR models and the baseline NMF method, further showing the 

optimization did not negatively affect the ability for the models to perform accent 

conversion. 

Prior literature has noted that in higher correlations between anchor sets is 

associated with higher synthesis quality [35]. However, the A2A SABR anchor set had 

the highest correlations of any of the models, but did not have the highest synthesis quality. 

Instead, a combination of high correlation and low residual are indicators of synthesis 
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quality for SABR methods. As listeners did not show a preference for the IRT or 

ARS+IRT synthesis over ARS in the AB preference tests, this shows that additional 

anchors do not contribute as much synthesis quality as do reductions in the residual 

magnitude. This also suggests that focusing on just one of these components is not enough 

to guarantee both synthesis quality and reaching target speaker identity.  

5.8. Conclusion 

In this chapter, we proposed two methods for optimizing the SABR anchor sets 

(ARS and IRT) and compared each method, and a combination of the two, against the 

unoptimized SABR anchor sets and another baseline exemplar-based voice conversion 

algorithm. We examined these methods in both native-to-native and native-to-nonnative 

voice conversion contexts. In our objective results, we found that the proposed 

optimization methods resulted in objective performance similar to that of a state-of-the-

art baseline voice conversion method while significantly improving upon the initial SABR 

anchor sets. In perceptual studies, the algorithms significantly improved the synthesis 

quality of both native and nonnative speakers. The proposed methods were more robust to 

the effects of native to nonnative conversion than the baseline method. Most notably, the 

proposed optimization methods were able to outperform the baseline method even though 

they had two orders of magnitude fewer exemplars. 

The experimental results of the two proposed methods proposed here suggest ways 

to continue to improve the synthesis quality of exemplar-based VC algorithms. First, the 

results from ARS suggest that matching the voicing of source and target exemplars is 

important to the synthesis quality of exemplar-based VC systems. For SABR, 
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incorporating voicing into anchor selection would improve baseline synthesis quality; for 

systems using time-aligned data (such as the baseline method and the optimization 

methods) discarding source and target frames with different voicing would alleviate these 

issues. Second, increasing the number of anchors in a principled way (e.g., using PPG 

senones to estimate multiple exemplars per phoneme  [55] or incorporating manner of 

articulation constraints as in [46]) provides another route for improving synthesis quality.  

In the following chapter, we address the final aim of this dissertation, which is 

adding temporal constraints to the SABR objective function. 
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6. ADDING TEMPORAL CONSTRAINTS TO SABR VIA THE FUSED LASSO 

6.1. Overview 

In this chapter, we present a technique for including temporal constraints in the 

SABR objective function. This technique is based on the Fused Lasso, a modification of 

the original Lasso that allows for a structured sparsity penalty. We design and test a 

structured sparsity penalty that forces the Lasso to consider temporally adjacent frames 

when computing the SABR weights. This chapter addresses the fourth aim of the 

dissertation, which is to add a temporal constraint to the SABR objective function. This 

chapter will be published at a future venue to be determined. 

6.2. Introduction 

In the previous chapters, the SABR objective function we use to get source speaker 

weights and to perform VC is frame-independent: each spectral frame is computed 

independent of the prior frame and the next frame. However, because speech is temporal 

in nature, treating these frames as independent may be suboptimal. In this chapter, we 

present a modification to the frame-independent SABR objective function, to enforce 

temporal smoothness constraints with two goals in mind. First, we seek to minimize the 

frame-to-frame weight differences by considering adjacent speech frames during the 

encoding process. Second, we wish to reduce the selection of spurious weights that do not 

contribute to the overall quality of the synthesized utterance—akin to removing noise in 

the sparse codes. Our proposed modification, known as the “Fused Lasso” (FL) [100], 

imposes penalties on arbitrary structures within the sparse codes. We then design a 

structured penalty using the FL that penalizes the magnitude difference between adjacent 
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weight frames, forcing the algorithm to choose fewer weights and reduce the variance of 

those weights. 

In two experiments, we compare the performance of the proposed FL method with 

the non-fused Lasso method against two techniques for imposing temporal constraints: 

Nonnegative Spectrogram Deconvolution (NNSD) [8], and Modified Restricted Temporal 

Decomposition (MRTD) [101]. Our results show that the Fused Lasso reduces the number 

of basis vectors selected in an analysis window and increases the smoothness of weights 

when compared to the baseline methods and the unmodified Lasso. In VC tasks, the FL 

method had the lowest VC error and selected the fewest number of basis vectors in an 

analysis window when compared to NNSD and MRTD. These results are encouraging, 

showing the frame-to-frame penalty leads to a reduction in the number of basis vectors 

without loss in synthesis quality.  

The rest of this chapter is organized as follows. First, we review related VC 

methods that incorporate temporal information and contrast them with our proposed 

method. Then, we explain the FL and the associated Generalized Lasso solver, how we 

use it to enforce temporal constraints, and how to use it in VC. Finally, we examine the 

different parameters of the FL method and perform objective and subjective experiments 

on the ARCTIC corpus. We end with a discussion of the results. 

6.3. Related work 

Several methods exist to incorporate temporal information in spectral 

representations. A common way is to include delta features, namely features representing 

the first and second derivatives of the training data, concatenated to the feature vectors. 
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To improve upon the trajectories of GMM systems, Toda et al. [87] used these features, 

combined with a Maximum Likelihood Parameter Generation (MLPG) algorithm, to 

increase the variance of the trajectories. The authors found that the inclusion of this 

method significantly increased the spectral variance of the synthesis, as well as the 

synthesis quality. However, more training data was required to build the MLPG model—

on the order of several hundred utterances.  

In the sparse decomposition domain, several methods have been proposed to 

incorporate temporal information. Wu et al. [8] proposed to use NMF in combination with 

a temporal reconstruction method to perform “temporal deconvolution” and include 

temporal information in the coding process. Exemplars were windowed and the matrix 

factorization was performed on the windowed input data. At runtime, the windowed 

exemplars were summed in a “deconvolution” step. Through perceptual studies, they 

found that the method significantly improved the quality of the synthesis. Virtanen [102] 

included a penalty parameter that enforced temporal sparseness in the NMF 

decomposition. They found that both the temporal sparseness and frame sparseness had to 

be treated separately to achieve optimal performance. Including this temporal constraint 

allowed the source separation algorithm to perform better than other NMF systems on a 

music classification task. 

Similar to sparse coding methods, Temporal Decomposition (TD) [103] is a form 

of speech coding that represents a signal 𝑌 as a linear combination of basis vectors 𝐴 and 

“interpolation functions” Φ. TD chooses 𝐴 and Φ that minimize the residual of 

‖𝑌 − 𝐴Φ‖2. In principle, the algorithm selects temporal inflection points 𝐴 in the 
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spectrogram 𝑌 and linearly interpolates between them over Φ, effectively giving a 

temporally smoothed representation of the signal.  As a result, Φ encodes the duration of 

stationary sounds (e.g. phonemes) whereas 𝐴 encodes the corresponding acoustics.  

Extensions to the TD method include non-negativity [104] and monotonicity constraints 

[101]. Nguyen and Akagi [42] incorporated TD in a VC method by defining phoneme 

boundaries as event functions and converting the basis vectors 𝐴 using Gaussian Mixture 

Models (GMM). The authors found that including the TD marginally improved acoustic 

quality and speaker identification rates over a baseline GMM system.  

Tibshirani et al. [100] proposed the Fused Lasso as a modification to the well-

known Lasso sparse coding technique to include structural information about the 

dictionaries. This was useful in instances where sparse codes of noisy data (such as in 

images) were desired, but there was a priori knowledge about the structure of the data. In 

[105], the authors generalized the penalty in the Fused Lasso to the “Generalized Lasso” 

and demonstrated different techniques for solving the Fused Lasso for different fused 

penalty structures. In this chapter, we use a version of the Generalized Lasso that works 

on smoothing each weight channel individually.  

The proposed method differs from other exemplar-based VC methods that include 

temporal information by explicitly penalizing frame-by-frame encoding changes in the 

objective function [8, 50, 101, 103]. With this objective, the generated sparse codes are 

significantly smoother, and instances where spurious changes can occur (e.g. in plosives 

or fricatives) are reduced. 
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6.4. Methods 

6.4.1. The Fused Lasso for SABR temporal constraints 

To reiterate, the SABR method from Chapter 3 represents an utterance as a sparse 

weighted sum of speaker-dependent phonemic anchors in a frame-independent manner 

[9]. That is, each frame of the input utterance is considered independently from every other 

frame. For a given source utterance with 𝑁 acoustic features (e.g., MFCCs) and 𝑇 frames 

𝑋 ∈ ℛ𝑁 𝑇 and a source anchor set 𝐴𝑆 ∈ ℛ
𝑁 𝐾 of 𝐾 phonemes, SABR uses the Lasso to 

estimate the “weights” 𝑊 ∈ ℛ𝐾 𝑇: 

𝑊 = argmin ||𝑋 − 𝐴𝑠𝑊||
2
+ 𝜆1‖𝑊‖1 𝑠. 𝑡. 0 ≤ 𝑊 ≤ 1. (23) 

Eq. (23) does not include any temporal constraints; this lack of constraints allows 

for frame-to-frame fluctuations in the weights, affecting the interpretability of the weights 

and potentially introducing distortions in synthesis. The Fused Lasso allows us to add 

these constraints to the objective function by including a term that penalizes temporal 

changes in the weights: 

min
𝑾′
‖𝑋 − 𝐴𝑆𝑊‖2

2 + 𝜆1‖𝑊‖1 + 𝜆2∑(𝑤𝑖 − 𝑤𝑖−1)

𝑇

𝑖=2

.  
(24) 

The third term penalizes differences in adjacently indexed weights, but the 

adjacency penalty can be applied to any pair of weights. To enforce temporal smoothness, 

we cannot apply eq. (24) to eq. (23) without including a temporal context in the data 𝑋 

and dictionary 𝐴𝑆. To do this, we modify the SABR components to compute the weights 

over some 𝑘-width window centered on 𝑡, [𝑡 − 𝑘, 𝑡 + 𝑘]: 
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𝑿′ = [𝑋𝑡−𝑘
𝑇 …𝑋𝑡+𝑘

𝑇 ]𝑇 (25) 

𝑾′ = [𝑊𝑡−𝑘
𝑇 …𝑊𝑡+𝑘

𝑇 ]𝑇 (26) 

𝑨𝒔
′ = [

𝐴𝑠 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐴𝑠

] 
(27) 

The spectrum 𝑋 and weights 𝑊 are stacked over the temporal window, such that 

𝑿′ ∈ ℛ(2𝑘+1)𝑁 𝑇 and 𝑾′ ∈ ℛ(2𝑘+1)𝐾 𝑇; the anchors 𝐴𝑆 are diagonally replicated 2𝑘 + 1 

times to match the number of weights, and 𝑨𝒔
′ ∈ ℛ(2𝑘+1)𝑁 x (2𝑘+1)𝐾. This modification 

allows the Fused Lasso to penalize temporal differences in the weights: 

min
𝑾′
‖𝑿′ − 𝑨𝑺

′𝑾′‖2
2 + 𝜆1‖𝑾

′‖1 + 𝜆2 ∑ ‖𝑊𝑓 −𝑊𝑓−1‖1

𝑡+𝑘

𝑓=𝑡−𝑘+1

 (28) 

6.4.2. Solving via the Generalized Lasso 

Tibshirani et al. [105] discussed methods for solving structured penalties such as 

those in eq. (28) via the “Generalized Lasso”. They restructure eq. (28) to have the 

following penalty: 

min
𝑾′
‖𝑿′ − 𝑨𝑺

′𝑾′‖2
2 + 𝜆2‖𝐷𝑾

′‖1 (29) 

The difference between eqs. (28) and (29) is the missing first sparsity term; in 

[105], the authors call eq. (29) the sparse fused lasso, as 𝐷 enforces sparsity only on a 

structure of 𝑊 and not the magnitude. Setting 𝜆1 = 0 in eq. (28), it is equivalent to eq. 

(29) when 𝐷 has the following structure:  
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𝐷 =  

[
 
 
 
 
−𝑰 𝑰 𝟎 … 𝟎
𝟎 −𝑰 𝑰 … 𝟎
⋮ ⋱ ⋮
𝟎 … −𝑰 𝑰 𝟎
𝟎 … 𝟎 −𝑰 𝑰]

 
 
 
 

 

(30) 

where 𝟎 = 0𝐾 𝐾 and 𝑰 = 𝐼𝐾 𝐾. 

With a final row, we can also penalize the magnitude of 𝑊𝑇: 

𝐷𝑙𝑎𝑠𝑠𝑜 = [𝟎…𝟎 𝑰 𝟎…𝟎] (31) 

When eqs. (30) and (31) are combined into a single structure, they penalize the 

temporal structure of the weights as well as the weights at time 𝑡: 

𝐷𝑓𝑢𝑠𝑒𝑑 = [
𝛽𝐷
𝐷𝑙𝑎𝑠𝑠𝑜

] 
(32) 

By including a scaling term 𝛽, similar to [102], we can treat the penalties 𝐷 and 𝐷𝑙𝑎𝑠𝑠𝑜 

separately. 

When 𝐷𝑓𝑢𝑠𝑒𝑑 is invertible, the following substitution Θ = 𝐷𝑓𝑢𝑠𝑒𝑑𝑾′ transforms 

eq. (29) into a Lasso equation on Θ: 

min
𝑾′
‖𝑿′ − 𝑨𝑺

′𝐷𝑓𝑢𝑠𝑒𝑑
−1 Θ‖

2

2
+ 𝜆2‖Θ‖1  𝑠. 𝑡. Θ ≥ 0 (33) 

Because of the way we structured 𝐷𝑓𝑢𝑠𝑒𝑑, it has at most a single index of 1 and -1 per row,  

is full rank, square, and invertible. Using 𝑨𝒔
′𝐷𝑓𝑢𝑠𝑒𝑑

−1  as our basis vectors, we can solve eq. 

(33) using a Lasso solver, and Θ includes the temporally-constrained weights at frame 𝑡, 

𝑊𝑡.  

To extract 𝑊𝑡 from Θ, we leverage the structure of 𝑾′ and 𝐷𝑓𝑢𝑠𝑒𝑑 and extract it 

directly from a partitioning of Θ: 
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Θ = [
𝛽𝐷
𝐷𝑙𝑎𝑠𝑠𝑜

]𝑾′ 
(34) 

Θ = [
𝛽𝐷𝑾′

𝟎…𝟎 𝑊𝑡 𝟎…𝟎
] . 

(35) 

This extracted 𝑊𝑡 contains the SABR weights, centered on frame 𝑡, smoothed with the 

Fused Lasso temporal constrains. These weights can be used as the source weights in the 

SABR VC algorithm presented in Chapter 3. 

6.5. Experiments 

6.5.1. Experiment Design 

6.5.1.1. Corpus 

To validate the effectiveness of the approach, we performed a series of 

experiments using the ARCTIC speech corpus [81].  We used STRAIGHT [39] with 

default settings (1ms frame steps, 80 ms window sizes) to extract aperiodicity, 

fundamental frequency and spectral envelope, then computed a 24-dimension MFCC 

vector (25 filterbanks, 24 coefficients after ignoring 𝑀𝐹𝐶𝐶0 (energy), 8 KHz cutoff) from 

the spectral envelope. We assigned each acoustic frame a phonetic label based on the 

ARCTIC transcription. In these experiments, we built SABR models by selecting 25 

utterances from the ARCTIC “A” set that maximized the entropy of the phoneme labels. 

For the objective experiments, we used 200 utterances from the ARCTIC “B” set as our 

test data. 

In a set of preliminary experiments, we determined optimal 𝜆2 and 𝛽 (penalties in 

eqs. (32) and (33)) using Pattern Search on different window sizes. Empirically, we found 

that 𝜆2 was roughly proportional to 0.09𝑘, where k was the window size of eq. (25), and 
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𝛽 ≅ 10/𝜆2. We used Least Angle Regression (LARS) [80, 89] to solve eq. (33), with the 

constraint of 0 ≤ |𝑊𝑡|1 ≤ 1. 

6.5.1.2. Comparison methods 

We compared the proposed Fused Lasso method (SABR-FL) against the original 

SABR method and two baseline methods that incorporate temporal information into the 

VC objective, either explicitly (e.g. through the design of the dictionary) or implicitly (e.g. 

in the formulation of the objective function). The four methods we compared were: 

• SABR-FL:  the proposed Fused Lasso SABR method. Weights were computed 

according to eq. (33), the source weights 𝑊𝑡 extracted from Θ, and target spectra 

computed using eq. (4). 

• SABR: the original SABR method. Weights were computed using eq. (3) and target 

spectra are computed using eq. (4). 

• Nonnegative Spectrogram Deconvolution (NNSD): This method [8] explicitly 

includes temporal information by including previous and future frames in each 

dictionary entry. Following this method, we built a dictionary of 25 ms (5ms steps) 

and performed decomposition using the centered window. For comparison, we used 

the same number of atoms as SABR anchors: one per phoneme; the entries correspond 

to the SABR centroids, but including the 25ms window. We synthesized the target 

spectra using the windowed anchors, following the NNSD method. Weights were 

computed using Least Angle Regression on the windowed data, using the windowed 

dictionary. 
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• Modified Restricted Temporal Decomposition (MRTD): MRTD [101] implicitly 

enforces temporal constraints by calculating the points where the spectrum has the 

highest-magnitude changes and then interpolating between these points. MRTD 

follows the TD algorithm, except with the constraints on the interpolation functions at 

each timeframe 𝑡 of |Φt|1 = 1, |Φ𝑡|0 = 2, and monotonicity constraints on Φ. VC 

was performed by using SABR decomposition and conversion (eqs. (3) and (4)) on the 

learned basis vectors, similar to the training method presented in [42]. 

6.5.1.3. Measures of temporal smoothness 

Given that our proposed SABR-FL method provides temporal constraints, we used 

the following two metrics to measure the smoothness of the weights: 

Number of anchors: The total number of nonzero weights selected in a window 

𝑚, centered on time 𝑡: 

𝑛(𝑊; 𝑡,𝑚) = ‖∑ 𝑊𝑓
𝑡+𝑚

𝑓=𝑡−𝑚
‖
0

 (36) 

Weight smoothness: the sum of the standard deviation of the frame-by-frame 

deltas of each weight channel: 

𝑠(𝑊) = 𝑡𝑟(𝜎Δ𝑊).  (37) 

The rationale behind these measures is as follows: the number of selected anchors 

𝑛 will decrease if spurious, short-duration segments of weights are removed, whereas s 

will decrease if the frame-by-frame weight deltas is lowered. 
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6.5.2. Objective experiments 

In an objective experiment, we examined the smoothing effects of the proposed 

SABR-FL method and the two baseline methods across all 12 ARCTIC speaker pairs by 

computing the two smoothness measures (eqs. (36), (37)); we also computed the VC error 

for each method. While we examined a variety of smoothing windows from 10ms to 40ms, 

the SABR-FL VC error was minimized at 20ms (𝑘 = 10 in eqs. (25)-(27)); this error was 

slightly lower than the SABR baseline (SABR-FL: 2.52 dB; SABR: 2.55 dB). For the 

number of anchors measure eq. (36), we used 𝑛 = 40𝑚𝑠 windows. Results are shown in 

Table 11. 

The proposed method reduced the VC error by 0.03 dB, but also significantly 

reduced the number of anchors and increased the frame-to-frame smoothness of the 

weights. On average, SABR-FL selected 6.06 basis vectors, 26% fewer than the original 

SABR method (8.21) and the two baseline methods (MRTD: 8.21; NNSD: 8.07). SABR-

FL also had frame-to-frame smoothness similar to that of the MRTD and NNSD methods, 

having 62% lower frame-to-frame variance in the weights as compared to the SABR 

baseline.  

Table 11: Summary of objective measures for the Fused Lasso and baselines. 
MCD is a measure of the VC error between time-aligned source and target 

utterances; 𝒏 and  𝒔 are those in eqs. (36) and (37), respectively. 

 SABR-FL MRTD NNSD SABR 

MCD (dB) 2.52 2.55 2.55 2.52 

n 6.06 8.21 8.07 8.21 

𝑠 0.21 0.20 0.25 0.56 
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6.5.3. Subjective experiments  

To determine the perceptual effect of the smoothed representation, we performed 

two AB preference tests using 𝑛 = 31 participants from Amazon Mechanical Turk [97, 

106]. In this test, we asked participants to determine which utterance they preferred, 

comparing the proposed SABR-FL method against the original SABR and the two 

baselines. One utterance was from SABR-FL and the other utterance was from one of the 

other three methods. Pitch was converted using log-mean pitch scaling [8]. Utterances 

were synthesized using STRAIGHT [39]. 

Results are shown in Figure 30, along with the 95% confidence interval computed 

from a t-Test. FL was preferred over both MRTD (68.8% ± 4.9%; 𝑝 ≪ 0.01, single-tailed 

t-test) and NNSD (57.0% ± 6.0%; 𝑝 < 0.05, single-tailed t-test); however, there was no 

significant difference between the SABR and FL methods (46.5% ± 5.4%; 𝑝 = 0.21, 

single-tailed t-test). 

(a) 

 

(b) 

 

(c) 

 

Figure 30: Preference comparison for the proposed Fused Lasso method.  
All values are shown with T-Test 95% confidence intervals. 
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6.6. Discussion 

Our experimental results show that the proposed Fused Lasso method can 

significantly reduce the number of basis vectors selected in an analysis window with 

modest decreases in VC error and increases in synthesis quality compared to other 

methods that introduce temporal constraints. Though perceptual experiments show little 

difference between the baseline SABR and the proposed Fused Lasso method, the 

smoothness induced by the Fused Lasso is substantial—26% fewer anchors are selected 

in a 40 ms analysis window, and the frame-to-frame variance of the weights is reduced 

62%. While both MRTD and NNSD reduced the frame-to-frame variance, they still 

selected just as many basis vectors as the unsmoothed SABR method. Only the proposed 

SABR-FL reduced both measures and did not degrade the audio quality when compared 

to the original SABR method. This suggests that the inclusion of these temporal 

constraints alone may not be enough to significantly improve the quality of VC utterances; 

however, the fewer selected anchors and smoother frame-to-frame weights may present 

future avenues for improving VC quality. 

To illustrate the effects of SABR-FL on the weights, a segment of audio (the word 

“author”, spoken by ARCTIC speaker BDL) and the corresponding weights for the 

original SABR are shown in Figure 31. When compared with the Lasso weights in Figure 

31(b), the Fused Lasso weights in Figure 31(c) have smoother trajectories in the vowel 

segments. There are also fewer anchors being selected to represent /TH/ and those weights 

are smoother than the baseline method. 
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6.7. Conclusion 

In this chapter, we derived a method from the Fused Lasso to enforce temporal 

smoothness in a sparse coding method for VC. We then experimentally tested this method 

with a frame-to-frame weight penalty function. Our results show that by penalizing weight 

differences, the number of weights selected as well as the frame-by-frame changes can be 

significantly reduced. Importantly, in perceptual experiments, we found that the increased 

smoothness did not degrade the acoustic quality compared with the original SABR 

method. Some of the original applications for the Fused Lasso included denoising; as 

Figure 31 shows, SABR-FL operates in a similar manner here, removing weights that can 

be better attributed to “noise” for the purposes of VC. This change in the sparse encoding 

(a) 

 

(b) 

 

(c) 

 

 

Figure 31: Effect of the Fused Lasso on the sparse representation. 

 (a) The waveform of the word “author”, as spoken by BDL. (b) Relevant weights 

computed by the original SABR method for the selected audio segment. Dashed red 

lines represent /AO/, solid blue lines are /TH/, and dashed black lines are /ER/. (c) 

The corresponding weights from the proposed SABR-FL. 



 

125 

 

occurred without significant change in subjective or objective measures in VC quality. 

The Fused Lasso objective potentially allows for more complex temporal penalties and 

structures, which could operate as a direction for further improvement. We discuss these 

potential improvements and changes in Chapter 8. 
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7. BUILDING GOLDEN SPEAKERS WITH SABR* 

7.1. Overview 

In this chapter, we present a case study on using SABR for a computer aided 

pronunciation training (CAPT) tool called “Golden Speaker Builder”, an accent training 

tool for nonnative speakers of English. The Golden Speaker Builder uses SABR to 

synthesize speech of a nonnative learner’s voice, but with a native accent, for use in self-

imitation for pronunciation training. We discuss the signal processing backend used to 

build SABR models and use perceptual studies to evaluate the synthesis used in the tool. 

This chapter is a modified version of [107], submitted to Speech Communication in 2019.  

7.2. Introduction 

Many second language (L2) speakers of English have difficulty acquiring native 

pronunciation, despite being fluent in English. Pronunciation training has been shown to 

help nonnative speakers acquire native pronunciation [108]. Several studies have 

suggested that learners who practice with voices most similar to their own is more 

effective in pronunciation training [109-111], the rationale being that listeners would be 

able to remove voice-related differences and allow learners to focused on accent-specific 

differences. Probst et al. [111] proposed that so-called “Golden Speakers” would be the 

ideal voice for learners to practice with. Their research indicated that foreign language 

learners imitating a voice similar to their own would more likely acquire native 

                                                 

* Repreinted with permission from “Golden speaker builder–An interactive tool for pronunciation 

training” by S. Ding, C. Liberatore, S. Sonsaat, I. Lučić, A. Silpachai; G. Zhao; E. Chukharev-Hudilainen, 

Evgeny; J. Levis, R. Gutierrez-Osuna, 2019. Speech Communication, Vol. 115, p. 51-66, Copyright 2019 

by International Speech Communication Association. 
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pronunciation. However, finding optimal “golden speaker” teachers for each individual 

learner is onerous and infeasible in practice. 

Accent conversion algorithms which synthesize the voice of a nonnative speaker, 

but with a native accent, offer an ideal solution to generating synthetic “Golden Speakers”. 

When combined with Computer-Aided Pronunciation Training (CAPT) programs, these 

synthetic “Golden Speakers” could be a method for solving the personalized instruction 

problem [112, 113].  As many CAPT systems do not adjust the practice voice for listeners, 

forcing them to listen and practice with a single, unmatched voice [109], a system that 

allows for personalized voices may provide learners an even better practice environment.  

To address these limitations in CAPT tools, we built the Golden Speaker Builder 

(GSB), a CAPT program which builds personalized Golden Speaker for learners: their 

own voice, but with a native accent. GSB allows for users to build incrementally and 

interactively, selecting different source accents for which to build their personalized 

accent training model. We use the SABR voice conversion system presented in the 

previous chapters, where the source speaker is a native L1 speaker of North American 

English, and the Golden Speaker Builder interface builds models of the L2 learner and 

synthesizes speech accordingly. The resulting synthesis has the prosody of the native L1 

speaker, but the identity of the target L2 learner. This chapter describes the use of an accent 

conversion system based on the SABR framework and an evaluation of the synthesized 

L2 speaker voices in subjective tests. The SABR system presented in this dissertation is 

ideal for CAPT, as it requires both small amounts of training data and models how source 

and target speakers form English phonemes. 
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This chapter is organized as follows. First, we review the use of self-imitation in 

pronunciation training. Then, we discuss the implementation of the Golden Speaker 

Builder as a web application and how the collected data is then processed into SABR 

models for synthesis and use in training. We then perform perceptual studies to evaluate 

how effectively the synthesized Golden Speaker capture the target speaker’s identity. We 

conclude with a discussion of the synthesis and application. 

7.3. Related Work 

Self-imitation for computer-aided pronunciation training has mainly focused on 

prosodic modification of a learner’s voice for use in pronunciation training [114-119]. In 

an early study by Nagano and Ozawa [120], the authors used a voice conversion algorithm 

to resynthesize the L2 learner’s voice with the prosody of a native L1 teacher’s voice. 

They evaluated the voice conversion method for pronunciation training by comparing a 

group of students who mimicked their own voices to a control group of students who were 

trained with a reference English speaker. In a post-training evaluation, the students who 

used their own voice with the prosody adjustment were rated as being more native-like 

than the control group. More recently, Bissiri et al. [116, 117] built an automatic 

pronunciation teaching tool that to teach German lexical stress to Italian speakers. This 

tool extracted the pitch, speaking rate, and intensity from a reference native German 

speaker and copied it to the learner’s speech signals for feedback in pronunciation training. 

The authors compared two groups of students—one who were trained on their own 

resynthesized voice, and another control group who were trained on a reference German 

teacher’s voice. Again, the group using their own voice for accent training were rated as 
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having a more native-like accent than the control group. Additionally, providing feedback 

in the learner’s own voice also had a motivating effect, with several participants asking to 

continue the training, whereas participants in the control group showed no particular 

interest.   

De Meo et al. [118] evaluated the effectiveness of two forms of training (imitation 

and self-imitation) to teach suprasegmental patterns of Italian to Chinese learners.   

Participants in the self-imitation condition heard their own voice–resynthesized to match 

the native model, whereas those in the imitation condition followed traditional imitation 

exercises.  Native listeners were then asked to classify learners’ post-training productions 

as belonging to one of four speech acts: requests, orders, granting, and threats.  

Classification performance was significantly larger for utterances from participants in the 

self-imitation group.  Similar improvements in communicative effectiveness were 

obtained in a later study with Japanese learners of Italian [119]. 

These studies show that the prosodic modification of accents are effective tools 

for teaching pronunciation to L2 learners and the effect is robust across several L1-L2 

combinations. Here, we present the next step of self-imitation in CAPT—the addition of 

segmental modifications—something which the SABR VC system in the GSB tool allows. 

7.4. System description 

We developed Golden Speaker Builder (GSB), an online interactive tool that 

allows L2 learners to build a personalized pronunciation model: their own voice producing 

native-accented speech (i.e. a “golden speaker”). To build their golden speaker, L2 

learners follow three steps. In the first step, the learner records a keyword for each phone 
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(e.g., for phoneme /ʒ/, the learner records the keyword “vision”) under the guidance of an 

instructor to ensure that the utterance has near-native production. After recording each 

keyword, the learner segments the phone using a graphical display of the waveform. In 

the second step, the learner records several sentences, which are used to estimate the 

learner’s pitch statistics. In a final step, the learner selects a native speaker as a source 

model, and GSB resynthesizes the native speaker’s sentences using the recorded phone 

segments and prosody statistics of learner. The process can be completed in less than thirty 

minutes and generates a Golden Speaker voice that produces intelligible speech with the 

voice quality of the L2 learner, and the prosody of the source native speaker normalized 

to the pitch range of the L2 learner. 

The software architecture of GSB is shown in Figure 32. GSB consists of three 

components: a web application, a signal processing back-end, and a middleware to connect 

the signal processing back-end to the web application. The web application provides a 

graphical interface for the learner, responds to the learner’s requests, and stores the 

learner’s data (i.e., login information, speech recordings, and golden speakers) onto a 

database. The signal processing back-end runs the accent conversion algorithms, which 

generates synthesized speech for each Golden Speaker model. Finally, the middleware 

layer provides communication between the web application and the signal processing 

back-end via an asynchronous task queue. In this chapter, we focus on the signal-

processing backend and evaluate the performance of the SABR synthesis in subjective 

tests. 
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7.4.1. Web application 

We implemented the web application using the Django framework8. The web-app 

front-end was written in HTML5 and Javascript, and decorated with Bootstrap9, whereas 

the web-app back-end was written in Python with Django internal modules. User data is 

managed by an SQLite database engine10 on a standard Linux file system. We hosted the 

web application through Nginx11. To follow the workflow described below, we provide 

five functional modules: Login; Record Anchor Set; Edit Anchor Set; Build Golden 

Speaker; and Practice with Golden Speaker. In this chapter, we focus on the Record 

                                                 

8 https://www.djangoproject.com/ 
9 https://getbootstrap.com/ 
10 https://www.sqlite.org/  
11 https://www.nginx.com/ 

 

Figure 32 (a) Overall software architecture. (b) Architecture of the web application 
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Anchor Set module and the associated signal processing backend. The remaining modules 

are discussed in [107]. 

The Record Anchor Set module enables learners to record keywords and prosody 

sentences, later used to build a Golden Speaker model. As shown in Figure 33, the learner 

must record a keyword for each of the 40 phones in American English (CMU phone set12). 

Once a user records a keyword, the interface allows the learner to segment the phone 

segment (or “Anchor”) by highlighting the corresponding region of the speech waveform. 

Separate tabs are used for consonants, vowels, and pitch sentences. Consonants are 

arranged according to their place and manner of articulation, and vowels are arranged 

according to their frontness and height (not shown). This arrangement allows the teacher 

and learner to review the basic organization of speech sounds in English, as the learner 

records the various keywords. 

The “Pitch Sentences” tab includes 30 sentences representative of conversational 

speech (e.g., “What time does the bus leave for the airport?”) that were deliberately 

selected to provide good coverage of various prosodic contexts, and a free-speech exercise 

in which the learner first watches a 3-minute short film13 and then records a 1-2 minute 

audio summary. Recordings for all the keywords and pitch sentences are saved on the file 

system, whereas the segmentation information is saved in the database. In a final step, 

both the recordings and the segmentation information are sent to the signal processing 

back-end. 

                                                 

12 http://www.speech.cs.cmu.edu/cgi-bin/cmudict 
13 “Spellbound” by Ying Wu and Lizzia Xu; available at youtube.com/watch?v=W_B2UZ_ZoxU 

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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We selected one keyword per phoneme to capture an “ideal” example of that 

phoneme or its main characteristic, e.g., the dominant allophone of that phoneme. 

Voiceless aspirated stops are more distinct than unvoiced aspirated stops, and were chosen 

 

Figure 33.  Graphical user interface for recording consonants in American English. 
In the example shown, the learner has already recorded keywords for all the stop 

consonants (highlighted in green), has recorded the phone /𝜽/ (highlighted in blue) and 

is in the process of selecting the appropriate section in the speech waveform shown at 

the bottom of the page. 
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preferentially for that reason. Additionally, final stops were avoided, as well as final 

rhotics and velarized approximants (e.g. “dark L”). The full selection of keywords is 

shown in Table 12. 

7.4.2. Signal processing back-end 

To build Golden Speakers, the signal processing back-end uses the SABR 

technique discussed in previous chapters. In the case of GSB, source speaker anchors (i.e., 

the teacher’s anchors) are precomputed in advance for each of the native speaker voices, 

whereas target anchors are obtained from the learner’s recordings. We built the target 

anchor sets for the learners using the labeled segments in the same manner as the SABR 

models in Chapter 3. Frequency warping functions were computed on pairs of source and 

target anchors and the residual warping method in Chapter 4 was used during synthesis. 

We used STRAIGHT [39]  to extract the spectral envelope and compress it to 25 MFCCS 

(25 Mel-filterbanks, 25 coefficients, 8kHz cutoff). Then, we separate energy (𝑀𝐹𝐶𝐶0) and 

use the remaining coefficients (𝑀𝐹𝐶𝐶1−24) during conversion. After converting these 

coefficients, we append the source 𝑀𝐹𝐶𝐶0 and backproject the MFCCs into the 

Table 12: Golden Speaker Builder keyword selection. 

 The following is a list of keywords used to build anchor sets for L2 learners in the 

GSB application. Phoneme names are shown on the left column in ARPABET 

notation, and the words used to elicit the phoneme on the left. 

AA father CH cheat HH heat NG sing TH think 

AE ash D deep IH if OW oh UH push 

AH us DH this IY east OY toy UW boot 

AO horse EH "s" JH jeep P poke V vote 

AW ouch ER earth K keep R reads W weeds 

AX sofa EY ace L leads S See Y yes 

AY ice F feed M make SH sheep Z zoo 

B boat G gust N no T tea ZH vision 
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STRAIGHT spectrum.  Finally, we transform the pitch to match the target speaker’s pitch 

range using log mean and variance scaling, as done in prior chapters. 

7.5. Experiment design 

7.5.1. Speech corpus 

The speech corpus used for these perceptual listening tests consisted of recordings 

from L1 speakers (the “teacher” voices), L2 speakers (the “learner” voices) and golden 

speaker voices of the L2 speakers using the L1 speakers as models.  For this purpose, first 

we recorded two American English speakers (CBL: male; GMA: female) as teacher 

voices. Each speaker produced 100 utterances from the ARCTIC corpus [121]. To 

generate SABR models for each teacher, we extracted phoneme labels using the Montreal 

forced-aligner [122]. Namely, for each phoneme in the GSB “Record Anchor Set” 

interface (𝑁 = 40), we extracted a single phoneme anchor corresponding to the centroid 

of all frames in the 100 utterances that were labeled with the corresponding phoneme.  

Next, we recruited 18 L2 learners of American English to participate in the 

pronunciation training study. Each L2 learner recorded a set of keywords and prosody 

sentences, from which we built their corresponding SABR models. Then, L2 learners 

practiced with the 24 training utterances and recorded them pre- and post-treatment. Two 

of the L2 learners did not finish the study and another one L2 learner did not record their 

post-test sentences. Consequently, we have speech data from 15 learners (8 males, 7 

females). Of these, we used speech data from 6 learners14 (3 males, 3 females) for the 

                                                 

14 We randomly selected 6 learners from the original set of 15 learners to ensure that perceptual 

study participants could complete the test within a reasonable time. 
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perceptual listening tests reported here. To obtain golden-speaker voices, we paired the 3 

male L2 learners with the male L1 teacher voice (CBL), and the 3 female L2 learners with 

the female L1 teacher voice (GMA). 

7.5.2. Perceptual studies 

For each pair of L1-L2 speakers, we evaluated three types of golden-speaker 

voices: 

• Golden speaker 1 (GS1): These golden-speaker voices used a SABR model for 

the L2 learner where each phoneme anchor was obtained from the corresponding 

keyword segment, as originally segmented by the L2 learner –see Figure 2. 

• Golden speaker 2 (GS2): Out of concern that extracting a phoneme anchor from 

a single keyword would prove too limited, this golden-speaker voice used 

keywords and prosody sentences (forced aligned with Kaldi) to generate SABR 

models for each L2 learner. 

• Pitch transformation (PT): a baseline golden-speaker that only applies a pitch 

transformation [49, 50] to the L1 teacher voice to match the pitch range of the 

learner. 

We conducted the perceptual listening tests on Amazon Mechanical Turk to 

evaluate the non-native voice identity, accentedness, and acoustic quality of the three 

golden-speaker voices. Recordings in each listening test were randomly ordered. We also 

included 12 calibration utterances in each listening test to detect if listeners were cheating 

[51]. If so, we removed their responses from the sample. 
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7.6. Results 

7.6.1. Voice identity 

We evaluated the voice identity of the syntheses using a Voice Similarity Score 

[112, 123] (VSS) test. Namely, participants listened to pairs of utterances and were 

required to (1) decide whether the two utterances were from the same speaker, and (2) 

then rate their confidence in the decision on a 7-point scale, as in [124]. For each utterance 

pair, one was a testing utterance randomly sampled from one of the three golden-speaker 

voices; the other was a reference utterance randomly sampled from either the 

corresponding source or target speaker. The VSS was then computed by collapsing the 

above two fields into a 15-point scale from -7 (definitely different speakers) to +7 

(definitely the same speaker). Thirty listeners rated the VSS of 144 utterance pairs. We 

used 48 pairs for each golden-speaker voice and 8 pairs for each L1-L2 direction (4 AC-

L1, 4 AC-L2). Following Felps et al. [112], we played utterances in reverse to reduce the 

influence of accents in the perception of voice identity. 

Results are shown in Figure 34. For GS1, listeners were very confident that the 

syntheses and the original L1 recordings were from different speakers (-4.06), but were 

not quite sure if the syntheses and the original L2 recordings were from the same speaker 

(0.24). For GS2, listeners were also very confident that the syntheses and the original L1 

recordings are from different speakers (-4.41), and they were confident that the syntheses 

and the original L2 recordings are from the same speaker (2.00). In contrast, listeners rated 

syntheses from pitch transformation as being from the same speaker as the original L1 

recordings (4.46) and as from different speakers than the original L2 recordings (-2.94). 
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In addition, GS2 showed a statistically significant improvement on capturing the L2 

speaker identity over GS1 (𝑝 ≪ 0.05).  

These results indicate that PT syntheses are perceived as being very close to the 

L1 speaker and very different from the L2 learners. By contrast, the two GSB syntheses 

are rated as being very different from the L1 speaker, and close to the identity of L2 

learners, particularly in the case of GS2.  Several factors may explain the relatively lower 

VSS ratings of GS1 and GS2 when compared to the L2 speakers. First, as noted by Munro 

and Derwing [125], playing utterances in reverse does not entirely eliminate the perception 

of accent; listeners may treat the GSB syntheses and original L2 speech as being from 

different speakers. Second, and as we will see in the following sections, the GSB syntheses 

have lower quality than the original L2 speech, further discouraging listeners from 

identifying similarities between them.  

 

 

Figure 34.  Voice identity ratings for the Golden Speaker voices. 

 The range is from -7 (definitely different speakers) to +7 (definitely the same 

speaker) 
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7.6.2. Foreign accentedness 

Following Munro and Derwing [125], we used a scaled-rating test to establish the 

degree of accentedness of individual utterances. Twenty-seven listeners rated the foreign 

accentedness (1-No foreign accent, 9-Very strong foreign accent) of 150 utterances. The 

utterances were from either of the three test conditions above, from the source native 

speakers, or from the target foreign speakers. We used 30 utterances for each golden 

speaker voice and the target foreign speakers—5 utterances for each of the 6 learners. For 

the source native speakers, we selected 15 utterances for each of the speakers to ensure a 

class balance in the test. 

Results are summarized in Figure 35 (a). As expected, original utterances from the 

L1 speakers received the lowest ratings of foreign accentedness (1.11), whereas those from 

the L2 learners received highest ratings (7.44). Pitch transformation achieved similar 

ratings as the original L1 utterances (1.17), which is to be expected since pitch-

transformed utterances are identical to L1 utterances except for the pitch range.  Finally, 

the two golden-speaker voices were rated as being significantly less accented than the L2 

utterances but not as much as L1 utterances (GS1: 2.59, GS2: 2.42), with differences 

between GS1 and GS2 being not statistically significant (𝑝 ≫ 0.05). 

In summary, the three golden-speaker voices showed a significant decrease 

(~84%) in foreign accentedness compared to the original L2 speech. However, foreign 

accentedness ratings for GS1 and GS2 were higher than those of the original L1 speech as 

well as from the PT condition. This can be attributed in part to the anchor-building process; 
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although keywords and prosody utterances were recorded under the supervision of the 

teacher, evidence of L2 pronunciation still comes through in the productions.  

7.6.3. Acoustic quality 

We evaluated the acoustic quality of the three golden-speaker voices using a Mean 

Opinion Score (MOS) test. Twenty-eight listeners rated the MOS (1-bad, 5-excellent) of 

150 utterances. We used the same test conditions as in the foreign accentedness test in the 

prior section. 

Results are summarized in Figure 35 (b). As one might expect, listeners rated 

original utterances from L1 speakers and pitch transformation as having the highest 

acoustic quality (L1: 4.66, PT: 4.56). Surprisingly, though, listeners gave the L2 

recordings a much lower MOS (3.44), despite the fact that they were unmodified 

recordings, which indicates the presence of interaction effects between ratings of acoustic 

quality and accentedness. Finally, listeners rated the synthesized golden-speaker voices as 

having lower quality: GSB1 received a 1.77 MOS and GSB2 received a 2.16 MOS. 

Differences between these two syntheses were statistically significant (𝑝 ≪ 0.05), which 

indicates that including pitch utterances in the computation of phonetic anchors was 

beneficial. 

The two GSB syntheses (GS1 and GS2) did not provide as good acoustic quality 

as the Pitch Transformation (1.77 for GS1, 2.16 for GS2, 4.56 for PT), due to distortions 

introduced in the accent-conversion algorithm. We anticipated this result, since the pitch 

transformation technique does not alter the speech spectrogram and distortions are 

minimal, i.e., due to the STRAIGHT vocoding process. In contrast, the GSB spectral 
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conversion algorithms introduce several forms of distortion. First, the conversion takes 

place in the (compressed) MFCC space, so the spectrum must be reconstructed by back-

projecting the converted MFCCs. Additionally, there are minor differences in how the 

GS1 and GS2 models are built, which also impact the conversion quality. Namely, the 

anchor set for the source model is derived from labels obtained by forced-aligning a 

relatively large corpus (100 utterances), whereas the anchor set for the GS1 model is 

derived from manually-labeled keywords (1 keyword per phone), and the anchor set for 

the GS2 model is derived by force-aligning 15 utterances. Thus, the difference in corpus 

size and annotation sources may result in significantly different anchors, affecting the 

synthetic acoustic quality. We discuss the impact of these model differences in the 

following section. 

 

Figure 35. (a) Foreign accentedness ratings. The rating ranges from 1 (no foreign 

accent) to 9 (very strong foreign accent). (b) Mean opinion score (MOS) of acoustic 

quality ratings with 95% confidence interval. The MOS scale is from 1 (bad) to 5 

(excellent). 
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7.7. Discussion  

7.7.1. Analysis of the perceptual studies 

The perceptual study indicate Golden Speaker Builder accomplished our goal of 

building a speaker voice that is suitable for self-imitation pronunciation training: the two 

GSB golden-speakers have the same speaker identities as L2 learners, a near native 

English accent, and reasonable acoustic quality. Although the syntheses based on pitch 

transformation [126, 127] achieve lower foreign accentedness and higher acoustic quality 

than GSB syntheses, pitch transformation fails to capture the L2 learners’ identity, which 

is critical for self-imitation pronunciation training. The increased identity scores and 

acoustic quality of the GS2 utterances (when compared to GS1) also provides a direction 

for improving the GSB syntheses overtime: as additional training data becomes available 

for each learner’s practice sessions with the tool, the original anchor sets can be refined.  

Additionally, we found that a compounding factor in evaluating synthesis results 

is that of the rated acoustic quality. While GS1 and GS2 both had lower MOS than the 

original L1 speech, the original L2 recordings were also rated significantly lower (3.44 

MOS). Since the L1 and L2 speakers were recorded under identical conditions, we suspect 

listeners regarded disfluencies and foreign accents in L2 speech as being of lower acoustic 

quality than native speech.  Post-test feedback from some listeners supports this 

explanation: some were unsure if the low intelligibility was due to the speaker or to the 

overall low acoustic quality. 
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7.7.2. Anchor robustness in the Golden Speaker Builder 

Results show that the GS2 syntheses outperform the GS1 models by a significant 

margin in both acoustic quality and voice similarity measures. In previous chapters, SABR 

had significantly higher synthesis quality than we observe here, but the target speakers 

were from the ARCTIC or L2-ARCTIC corpora. As in prior chapters, we examined the 

correlation between source and target anchors (as higher correlation has been associated 

with higher synthesis quality [92, 128]) to determine if the relationship between 

correlation and synthesis quality can be observed here. We compare the two methods for 

building target anchors (GS1, GS2) against anchors built from ARCTIC speakers. Results 

are shown in Table 13.  

GS2 correlation coefficients are higher than GS1 in all cases, though not as high 

as those obtained when speaker pairs are from ARCTIC. This can partially explain why 

the acoustic quality of SABR-based voice conversion on ARCTIC speakers is higher than 

the values seen for the GSB syntheses. These results provide some directions as to how to 

improve model building for GSB. First, as ARCTIC phoneme labels—and resulting 

SABR models—are built using forced-alignment tools, it may not be desirable to use 

human-annotated phoneme boundaries to build SABR models. This may also impact 

nonstationary phonemes (e.g. stops, affricates, diphthongs) as human-annotated phoneme 

boundaries may differ from those selected by a forced-aligner; the resulting anchor may 

be substantially different than that selected by a human annotator.  
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7.8. Conclusion 

This case study evaluated the use of SABR in a CAPT program to help learners of 

a second language gain a native accent. SABR was used to generate audio samples the 

learners could use to practice their accent. Results showed that GSB systems achieve low 

foreign accentedness while capturing the voice identity of the L2 learner and achieving 

reasonable acoustic quality. 

 

Table 13: correlation coefficients in anchor sets between pairs of speakers in the 

present study (GS1, GS2) and pairs of speakers from ARCTIC. 

 ARCTIC speaker models had higher anchor correlations in all cases than the 

corresponding GSB models, which may account for the significant MOS difference 

between ARCTIC syntheses and those of the GSB models. Additionally, including 

the pitch sentences (GS2) also improved the correlation of the anchor sets. 

 GS1 GS2 ARCTIC 

Stop 0.61 0.828 0.924 

Fricatives 0.599 0.703 0.844 

Affricates 0.381 0.381 0.794 

Nasals 0.922 0.929 0.941 

Liquids 0.853 0.924 0.972 

Glides 0.867 0.922 0.964 

Monophthongs 0.869 0.887 0.946 

Diphthongs 0.814 0.849 0.944 

Overall 0.805 0.86 0.935 
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8. CONCLUSION AND FUTURE WORK 

This dissertation proposed and presented a method for performing voice 

conversion by representing speaker identity as a linear combination of speaker-specific 

“anchors”, which separated speaker identity from content. The first chapter, Chapter 3, 

presented the sparse, anchor-based framework, and evaluated it in subjective and objective 

contexts. Chapters 4 through 6 presented three optimizations to aspects of this proposed 

method. Chapter 7 examined a case study in which SABR was used in a Computer Aided 

Pronunciation Training context to build “Golden Speakers” for nonnative speakers of 

English. This chapter summarizes these findings, notes the contributions, and offers ideas 

for future work. 

8.1. Summary 

In Chapter 3, we presented the initial formulation of the anchor-based voice 

conversion framework SABR: Sparse-Anchor Based Representation of speech. One 

anchor per phoneme in English was used to represent a speaker’s “anchors”, and the Lasso 

was used as the sparse coding method from which to learn a nonnegative, sparse set of 

weights. We demonstrated that this representation could not only separate identity from 

content, but perform voice conversion with limited training data as compared to a 

statistical voice conversion baseline. 

In Chapter 4, we presented a method for using the sparse coding residual to 

significantly improve on the synthesis quality of the SABR utterances by performing 

frequency warping to warp the source residual to be closer to the target speaker. We 

evaluated four frequency warping functions to determine which gave the best objective 
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and subjective errors. We also demonstrated that the proposed residual warping method 

both improved the synthesis quality and captured the target speaker’s identity. In a set of 

baseline experiments, we also showed that the method also outperformed other baseline 

methods in native-to-nonnative VC. 

In Chapter 5, we examined selecting and optimizing SABR anchors to improve 

synthesis quality and phoneme representation. We two proposed algorithms—Iterative 

Retraining (IRT) and Anchor Removal and Selection (ARS)—to solve different problems 

associated with the anchor selection of the original SABR algorithm. The IRT algorithm 

was a novel dictionary learning algorithm that optimized the anchor sets to minimize the 

residual, conditioned on the voice conversion error of the anchor sets. The ARS algorithm 

was meant to address the multiple problems with phoneme-based anchors. First, some 

phonemes that were not adequately represented by a single anchor (e.g. affricates or 

diphthong vowels, as they have multiple acoustic states over their production). Second, 

the “removal” operation would help to optimize anchors for nonnative speakers, as 

mispronunciations could cause there to be no good sample of a phoneme. The ARS 

algorithm would greedily split or remove anchors depending on whether or not they 

reduced the VC error. We found that the proposed optimization methods significantly 

improved the synthesis quality of both native-to-native and native-to-nonnative voice 

conversion contexts, outperforming other baseline voice conversion methods with very 

limited training data (20 utterances). The split and removal decisions of the ARS algorithm 

focused on phonemes with known mispronunciations (for nonnative target speakers) or 

multiple acoustic states (for both native and nonnative target speakers), demonstrating that 
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the intuition of the algorithm was correct: some phonemes need multiple anchors to be 

represented properly, and in the case of native-nonnative conversion, removing some 

anchors can reduce the VC error. The IRT algorithm significantly reduced the residual to 

be closer to that of voice conversion methods with thousands more exemplars. 

In Chapter 6, we proposed a modification to the Lasso to incorporate temporal 

constraints on the SABR voice conversion method. This variant penalized not only the 

magnitude of the sparse codes at a given frame, but the frame-to-frame changes in the 

codes. We found that there was no improvement in synthesis quality, but there was 

significantly less frame-to-frame coding variance and no change in the objective voice 

conversion error. Additionally, the proposed method significantly outperformed other 

methods of incorporating temporal information into an exemplar-based voice conversion 

system. 

Finally, in Chapter 7, we performed a case study in which we evaluated SABR in 

the context of a computer-aided pronunciation training system. This system, called the 

“Golden Speaker Builder”, generated “Golden Speakers” (ideal voices for teaching 

nonnative speakers how to gain native pronunciation) for nonnative learners of English. 

Using SABR, we synthesized the learner’s voice using SABR, resulting in training 

utterances with the learner’s identity but the accent of a native speaker. SABR syntheses 

were rated as being similar to the L2 learner’s voice. 

8.2. Contributions 

This dissertation contains the following main contributions: 
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• Developed a Sparse, Anchor-Based Representation of Speech, and demonstrating that 

the phoneme-based exemplars and the use of the Lasso as a sparse coding method can 

separate speaker identity from content for use in Voice Conversion. This method is 

significantly more compact than other exemplar-based voice conversion systems while 

demonstrating similar performance in terms of synthesis quality and speaker identity. 

• Developed a novel residual warping algorithm to improve the synthesis quality of 

exemplar-based VC methods. Experimentally, we demonstrated that the algorithm had 

better synthesis quality in native-to-nonnative voice conversion when compared to 

baseline VC methods. 

• Developed two novel exemplar optimization algorithms, Anchor Removal and 

Selection and Iterative Retraining. These methods significantly improved synthesis 

quality in native-to-nonnative conversion compared to a baseline exemplar-based 

algorithm. 

• Proposed and evaluated a novel temporal constraint framework using Fused Lasso that 

significantly reduced the temporal variance of the SABR weights without significantly 

changing the VC synthesis quality. 

• Developed a Computer Aided Pronunciation Training system called the “Golden 

Speaker Builder” using the proposed SABR VC algorithm. The synthesis that sounded 

more similar to the speaker identity of a learner than a comparison pitch modification 

method alone. 

• Demonstrated that SABR models can be used to perform Accent Conversion (AC) and 

perform much better than other exemplar-based VC systems on AC tasks. 
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8.3. Future work 

8.3.1. Using SABR Weights for nonparallel alignment 

In Chapter 5, we proposed two anchor optimization algorithms which required 

parallel data to perform training, as we used dynamic time warping (DTW) to align the 

source and target training data. While alternative means of alignment (e.g. PPG) could be 

used, one area of interest with SABR would be to use the SABR weights to perform 

alignment. We can exploit statistical properties of the Lasso to perform such an alignment. 

In [129], Park and Casella presented a Bayesian formulation of the Lasso and solved for 

the posterior distribution of the Lasso sparse codes 𝛽, which follow an exponential 

distribution with variance 𝜎 and mean 𝜆. Applying this distribution to the SABR weights, 

we can compute Kullback-Leibler divergence on pairs of source and target frames in a 

similar manner that PPG alignment techniques do and learn. Because the weights will be 

sensitive to the anchors selected for the source and target speakers, using the posterior 

distribution of the SABR weights to ensure that both the source and target weights have 

similar distributions will be necessary to ensure a good alignment. 

8.3.2. Improving the anchor optimization algorithms 

In the perceptual results of the dictionary learning algorithm, we noted that the 

algorithms significantly improved the synthesis quality of the anchor sets, but it did not 

necessarily improve the speaker identity. This may be because speaker information is 

retained in the SABR weights, and therefore explicitly minimizing the differences between 

the source and target weights could improve the identity of the speakers.  
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8.3.2.1. Adding weight difference penalty to ARS 

To add a weight difference penalty to the ARS algorithm, we can simply add a 

weight difference penalty to the anchor optimization decision to Algorithm 1 from Chapter 

4: 

𝑒𝑘,𝑓
𝑡 = γ1||𝑋𝑇

′ − 𝐴𝑇
𝑘,𝑓
𝑊𝑆||2

2
+ 𝛾2‖𝑊𝑆 −𝑊𝑇‖1 (38) 

The parameters 𝛾1 and 𝛾2 can be used to tune the how much either term contributes to the 

error contribution. The inclusion of the weight penalty term will incentivize the algorithm 

to select anchors that have similar encoding in the source and target speaker domains. 

Because the ARS algorithm is greedy and only uses weights in its decision at each 

iteration, including this penalty is straightforward. To incorporate weight differences in 

the IRT algorithm requires a more complex solution, which we present next. 

8.3.2.2. Weight difference penalty using the Fused Lasso 

With some reworking of the optimization algorithm, the proposed Fused Lasso 

algorithm in Chapter 6 is flexible enough for us to penalize encoding differences in the 

weights, then use those weights in either the ARS or IRT algorithms. 

To use the Fused Lasso to minimize differences in encoding, we must first 

reformulate the SABR weight calculation as a joint encoding: 

min
𝑊
‖[
𝑋𝑆
𝑋𝑇
] − [

𝐴𝑆 0
0 𝐴𝑇

] [
𝑊𝑆
𝑊𝑇
]‖
2

2

+ 𝜆 ‖𝐷 [
𝑊𝑆
𝑊𝑡
]‖
1

 (39) 

Then, we design a penalty structure 𝐷 to penalize both the magnitude of 𝑊 and the 

difference between the weights: 
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𝐷 =  [
𝐼 −𝐼
0 𝐼

] (40) 

As before, we introduce a surrogate variable Θ to retain the Lasso structure of the problem. 

The penalty value becomes: 

Θ = 𝐷 [
𝑊𝑆
𝑊𝑇
] (41) 

And solving for the joint weights is still possible, because 𝐷 is full-rank: 

[
𝑊𝑆
𝑊𝑇
] = 𝐷−1Θ (42) 

Substituting Θ for 𝑊 into (39) and expanding the terms: 

min
𝑊
‖[
𝑋𝑆
𝑋𝑇
] − [

𝐴𝑆 𝐴𝑆
0 𝐴𝑇

] Θ‖
2

2

+ 𝜆‖Θ‖1. (43) 

We note that Θ can then be split into two components: 

min
𝑊
‖[
𝑋𝑆
𝑋𝑇
] − [

𝐴𝑆 𝐴𝑆
0 𝐴𝑇

] [
Θ1
Θ2
]‖
2

2

+ 𝜆‖Θ‖1. (44) 

This equation is now a joint encoding problem of a Lasso form that computes the 

weights for the source and target speakers as well as the difference between the source and 

target encoding. We can expand (44) equation to understand the system of equations being 

evaluated, and in turn, how to use these parameters in coding and decoding: 

𝑋𝑠 ≅ 𝐴𝑆Θ1 + 𝐴𝑆Θ2 = 𝐴𝑆(Θ1 + Θ2) (45) 

𝑋𝑇 ≅ 𝐴𝑇Θ2 
(46) 



 

152 

 

In more plain terms, this shows that after learning the sparse codes Θ, we can interpret that 

the source SABR weights 𝑊𝑆 = Θ1 + Θ2 and the target codes are 𝑊𝑇 = Θ2.  

As such, we have computed weights 𝑊𝑆 and 𝑊𝑇, but with the structured sparsity 

constraints Θ = 𝐷𝑊 directly penalizing the framewise differences between 𝑊𝑆 and 𝑊𝑇.  

8.3.2.3. Adding tuning parameters 

The weight difference penalty (41) and sparsity penalties (See (3) in Chapter 3) 

may benefit from having different tuning constants, 𝛾1 and 𝛾2, for penalizing differences 

and the magnitude of the target weights: 

min
𝑊
‖[
𝑋𝑆
𝑋𝑇
] − [

𝐴𝑆 0
0 𝐴𝑇

] [
𝑊𝑠
𝑊𝑡
]‖
2

2

+ 𝜆 ‖𝐷 [
𝛾1 0
0 𝛾2

] [
𝑊𝑆
𝑊𝑡
]‖
1

 (47) 

Incorporating 𝛾 into (42), the inverse then accounts for the tuning parameter difference: 

min
𝑊
‖[
𝑋𝑆
𝑋𝑇
] − [

𝐴𝑆 𝐴𝑆
0 𝐴𝑇

] [
𝛾1 0
0 𝛾2

]
−1

[
Θ1
Θ2
]‖
2

2

+ 𝜆‖Θ‖1 (48) 

Incorporating that into the original coding equations, we can solve for approximations of 

𝑋𝑆 and 𝑋𝑇: 

𝑋𝑠 ≅ 𝐴𝑆 (
Θ1
𝛾1
+
Θ2
𝛾2
) (49) 

𝑋𝑇 ≅ 𝐴𝑇𝛾2
−1Θ2 

(50) 

The resulting values of 𝑊𝑆 = (
Θ1

𝛾1
+
Θ2

𝛾2
) and 𝑊𝑇 = 𝛾2

−1Θ2 can then be used in the 

dictionary learning algorithms, such as the IRT algorithm. 
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In the Generalized Lasso [105], the authors report on the use of a penalty parameter 

similar to the one presented here. According to the authors, the parameter 𝛾1 (which 

penalizes the difference between the source and target weights) should be 𝛾1 < 0.1𝛾2.  

8.3.2.4. Incorporating frequency warping into iterative retraining 

In the evaluated version of the iterative retaining (IRT) algorithm presented in 

Chapter 5, we did not consider including the warped source or target residuals in the 

training algorithm. Instead, we optimized the source and target anchor sets after excluding 

the warped residual. Incorporating the source-target and target-source warped residuals 

using the method in Chapter 4 during the weight computation step is a natural extension 

to the IRT algorithm. Estimating the weights from the full residual-warped spectra would 

allow IRT algorithm to optimize not just on the anchor sets, but to also account for the 

effects of the residual warping algorithm.   In the context of Accent Conversion (e.g., L1 

to L2 conversion) including the residual in the iterative retraining has a high-level 

similarity to back-translation in machine translation [130-132]. In machine translation, 

including synthetic target sentences translated from source sentences in the training set 

(i.e., back translation) improves overall translation accuracy. Similarly, including 

synthetic target spectra (i.e., estimated target spectra, including the warped source 

residual) in the IRT method would serve to optimize the anchors sets in such a way as to 

account for the residual warping functions during the optimization, and potentially further 

improve synthesis quality. 

One potential challenge to this method, however, is ensuring the source and target 

weights eventually converge. In preliminary evaluations of the IRT algorithm that 
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included the warped source spectra in the weight computation process, the source and 

target weights tended to change non-monotonically, and thus did not show steady 

reduction in either the VC error or residual metrics. Constraining the weights in such a 

way as to ensure monotonicity would be necessary to include the warped residuals in the 

IRT algorithm.   

8.3.3. More complex temporal constraints 

The temporal constraints shown in Chapter 6 take the source and target anchor sets 

and duplicate them over the temporal window we are evaluating. While this allows for 

weight consistency frame-to-frame, it doesn’t account for the fact that some phonemes 

change their acoustic states over their production (e.g. affricates, stops). In Chapter 5, we 

explored adding in multiple anchors per phoneme class, but we did not modify the Lasso 

penalty to be aware of these multiple classes or the temporal relationship between these 

multiple anchors. The Fused Lasso can be extended to account for this, penalizing both 

frame-to-frame weight differences (e.g., difference between the weights for one anchor 𝑘1 

at times 𝑡 and 𝑡 − 1) as well as transitions between two different anchors in successive 

time steps.  

The implementation of this in the Fused Lasso is equivalent to building a network 

of penalties between anchors. Given a penalty network a structure such that edges are the 

penalty magnitude for transitioning between anchors on successive and nodes are the 

anchors themselves. The penalty matrix 𝐷 then has a similar structure to an adjacency 

matrix. 
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In general, we would want penalties between anchors belonging to different 

phoneme class to be higher to discourage the frame-to-frame selection changes, and 

penalties to anchors within the same phoneme class to be lower to encourage selection of 

those samples. To implement this in the Fused Lasso, consider the formulation of the 

Fused Lasso presented in Chapter 6. We modify the anchor sets to include temporal 

anchors over the window [𝑡 − 𝑘, 𝑡 + 𝑘]: 

𝑨𝒔
′ = [

𝐴𝑠
𝑡−𝑘 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐴𝑠

𝑡+𝑘
] (51) 

 

We then modify the penalty structure matrix 𝐷 (32) to penalize not just frame-to-frame 

differences of the same weights, but also transitions between the weights. First, we define 

a structure matrix 𝐶 ∈ ℝ𝐾 (2𝑘+1)𝐾, where 𝐾 are the number of phoneme classes, and 𝑘 

are the number of temporal frames of that phoneme in the source and target anchor sets 

(resulting in 𝐴𝑆
′ ∈ ℝ(2𝑘+1)𝑁 (2𝑘+1)𝐾). 𝐶 is structured such that nonzero entries on the 𝑘𝑡ℎ 

row correspond to the anchors belonging to that phoneme: 

𝐶 = [
[1…1] ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ [1…1]

] (52) 

For illustrative purposes, let us consider the difference between two time frames 𝑡 and 𝑡 +

1, where there is a single anchor per phoneme, with in-phoneme transition penalty 𝛾1 and 

phoneme transition penalty 𝛾2. This results in a penalty with the structure: 
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𝛾1 [
𝐶
−𝐶
]
𝑇

[
𝑊𝑡
𝑊𝑡+𝑘

] + 𝛾2 [
𝐶

−(1 − 𝐶)
]
𝑇

[
𝑊𝑡
𝑊𝑡+𝑘

] (53) 

Which can be simplified to: 

[
𝛾1𝐶 + 𝛾2𝐶

−𝛾1𝐶 − 𝛾2(1 + 𝐶)
]
𝑇

[
𝑊𝑡
𝑊𝑡+𝑘

] (54) 

We can expand this intra and cross-phoneme penalty to an arbitrary number of time 

windows.  

𝐷 = 

[
 
 
 
 
𝛾1𝐶 + 𝛾2𝐶 −𝛾1𝐶 − 𝛾2(1 + 𝐶) 𝟎 … 𝟎

𝟎 𝛾1𝐶 + 𝛾2𝐶 −𝛾1𝐶 − 𝛾2(1 + 𝐶) … 𝟎

⋮ ⋱ ⋮
𝟎 … 𝛾1𝐶 + 𝛾2𝐶 −𝛾1𝐶 − 𝛾2(1 + 𝐶) 𝟎
𝟎 … 𝟎 𝛾1𝐶 + 𝛾2𝐶 −𝛾1𝐶 − 𝛾2(1 + 𝐶)]

 
 
 
 

 (55) 

 

In the Generalized Lasso, the inverse of this structured penalty is included if the 

penalty is full matrix. In this case, the penalty is no longer full rank, but we can 

approximate it using the pseudoinverse: 

min
𝑾′
‖𝑿′ − 𝑨𝑺

′𝐷+Θ‖2
2 + 𝜆2‖Θ‖1  𝑠. 𝑡. Θ ≥ 0 (56) 

This structure would allow for a highly-tunable SABR encoder, allowing for 

senone-like phoneme anchors. However, in this modification, the dictionary used by the 

Lasso solver is 𝐴𝑆
′𝐷+, and because 𝐷 is now significantly larger, the number of atoms in 

the dictionary is also much larger. The complexity of many Lasso solvers is 𝑂(𝑛3), where 

𝑛 is the number of atoms in the dictionary. Including multiple time frames and penalizing 

on transitions between anchors result in significant more computation to solve eq. (56) 
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than the Fused Lasso methods discussed in Chapter 615. Additional optimizations to 

increase the speed of the solver (e.g. incorporating graph structures into LARS, [89, 133, 

134], or incorporating deep learning techniques in the solvers [135], would be required to 

make this solver tractable. 

 

                                                 

15 In initial experiments with this proposed modification, the solver took several minutes to solve a 

single time window of width 5 (2 frames before and after the current frame being encoded), several thousand 

times slower than the Fused Lasso method shown in Chapter 6. Modifications to the LARS solver to “short 

cut” and only examine subsets of the anchor sets could significantly reduce the complexity of the algorithm. 
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