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ABSTRACT 

 

     Fine-grained occupancy information plays an essential role for various emerging 

applications in smart homes, such as personalized thermal comfort control and human 

behavior analysis. Existing occupancy sensors, such as passive infrared (PIR) sensors 

generally provide limited coarse information such as motion. However, the detection of 

fine-grained occupancy information such as stationary presence, posture, identification, 

and activity tracking can be enabled with the advance of sensor technologies. Among these, 

infrared sensing is a low-cost, device-free, and privacy-preserving choice that detects the 

fluctuation (PIR sensors) or the thermal profiles (thermopile array sensors) from objects' 

infrared radiation. This work focuses on developing data processing models towards fine-

grained occupancy sensing using the synchronized low-energy electronically chopped PIR 

(SLEEPIR) sensor or the thermopile array sensors. 

The main contributions of this dissertation include: (1) creating and validating the 

mathematical model of the SLEEPIR sensor output towards stationary occupancy 

detection; (2) developing the SLEEPIR detection algorithm using statistical features and 

long-short term memory (LSTM) deep learning; (3) building machine learning framework 

for posture detection and activity tracking using thermopile array sensors; and (4) creating 

convolutional neural network (CNN) models for facing direction detection and 

identification using thermopile array sensors. 
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1. INTRODUCTION 

 

1.1. Background and Motivation 

1.1.1. Fine-grained Occupancy Sensing 

Occupancy sensing technology is rapidly increasing worldwide, especially for 

Heating, Ventilation, and Air Conditioning (HVAC) control [1, 2]. HVAC systems 

represent the largest energy use accounting for approximately 50% of the total energy 

required to operate residential and commercial buildings [3] [4]. While building occupants 

are often dissatisfied with their thermal comfort despite this vast energy consumption. 

Primary causes include the lack of a reliable occupancy presence detection system. For 

example, commercial occupancy sensors rely on passive infrared (PIR) or PIR – ultrasonic 

dual technology sensors as occupancy presence detectors. Nevertheless, false-negative 

detection happens frequently as they only respond to the motion of the occupants. This 

leads to significant comfort loss and low energy efficiency and thus limits their broader 

applications. 

In addition, fine-grained occupancy information such as stationary presence, 

posture, identity, and activity tracking, is crucial for advanced building applications such 

as patient/staff monitoring in hospitals[5], elder monitoring in assisted living facilities [6], 

sleep monitoring, fall detection in residential apartments [7] [8], or personalized 

conditioning in office buildings [9]. For instance, occupancy identification supports the 

room temperature setpoint adjusted based on occupancy preference and activity level[10, 

11]. Furthermore, in-bed postures are critical for sleep quality monitoring [12, 13]. 
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1.1.2. Existing Device-free Fine-grained Occupancy Sensing Systems 

Lots of existing device-free sensing systems have been researched to extract fine-

grained occupancy information, such as PIR sensors [14-20], optical cameras [21-23], 

environmental sensors [24-26], thermal infrared array sensors [27-30], and radio 

frequency (RF) sensors [31-34]. However, different drawbacks exist, such as privacy 

invasion, high power consumption, high computing cost, and low robustness.                                               

PIR sensors have been studied to extract various occupancy information, such as 

non-stationary presence detection [14-17], counting [18], walking direction detection [19, 

20], localization [35-38], sleep movement detection [39], and activity recognition [40-42]. 

However, their incapability for stationary occupancy detection has not ever been 

addressed. 

Optical cameras can provide rich occupancy information. Existing surveillance 

cameras can detect the occupancy presence of an open office [21]. Moreover, occupancy 

activities can be identified by analyzing the posture recorded by the camera [23]. Despite 

the fine-grained occupancy information provided by optical cameras, they require good 

light condition and raise concerns on privacy invasion at the same time. Infrared night 

vision cameras work in a dark environment. However, concerns regarding an invasion of 

privacy still exist as the night vision camera gives high-resolution greyscale images. The 

depth camera is a good alternative for privacy-preserving, while it is costly and also 

sensitive to the ambient light condition [43]. In addition, both night vision and depth 

cameras have high power consumption as their active sensing elements require continuous 

emission of infrared signals. 
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Environmental sensors can detect indoor air qualities such as CO2 concentration, 

which correlates highly to occupancy state. Multiple environmental sensors are usually 

necessary for occupancy detection. For example, light, temperature, and humidity sensors 

are commonly fused with CO2 sensors to detect the occupancy presence in an office room 

[26]. In addition, occupancy presence and counting within a residential home can be 

detected by measuring CO2 and total volatile organic compounds [25]. One major 

drawback of using environmental sensors is that the indoor air quality in response to 

occupancy activity is very slow and also sensitive to factors other than occupancy activity, 

such as the air exchange caused by the ventilation system. 

Extracting channel information from RF signals is another approach for occupancy 

sensing. For example, existing Wi-Fi devices, the most common RF infrastructure in 

buildings, can be used together with occupant-carried mobile devices for occupancy 

detection and counting on a whole building floor [31]. In addition, occupancy activities 

such as standing and sitting can be recognized using the channel state information based 

on two Wi-Fi access points around the desk [32]. On the other hand, research also points 

out that the performance of Wi-Fi-based occupancy sensing is highly dependent on the 

location and orientation of the Wi-Fi device, the floor plan, the furniture set up, and the 

movement of occupants[44]. For example, the occupant needs to be between a pair of Wi-

Fi transmitters to achieve high accuracy of occupancy activity detection [45, 46]. Ultra-

wideband (UWB) is another type of short-range RF technology for wireless 

communication.  It transmits data between devices by sending short nanosecond pulse 

over an ultra-wide range of frequencies(3-10GHz). The UWB sensor has also been 
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leveraged for occupancy counting [33, 47] and motion classification[48]. However, 

similar to Wi-Fi, the performance for occupancy sensing using a UWB sensor is also 

sensitive to its position and the indoor setup. 

Instead of just applying a single sensing mechanism, data from multiple types of 

sensors can be fused to improve the performance and reliability of occupancy detection 

[49-53]. A plug-and-play sensor node is developed for occupancy detection that contains 

single PIR, temperature humidity, VOC, and CO2 sensors [52]. Furthermore, a novel 

sensing prototype is proposed to obtain low-level counting consisting of one PIR, one light,  

one temperature, and three thermal infrared array sensors with different resolutions [50]. 

Environmental sensing and Wi-Fi data can also be fused to improve the performance of 

occupancy counting, and the result shows that the accuracy is increased by more than 3% 

compared to only using environmental sensors [49]. Moreover, the electricity load meter 

data can be fused with the PIR, Wi-Fi, and environmental sensing data for building-level 

occupancy counting [53]. Even though sensor fusion can perform better than single sensor 

technology, their application is restricted by data transmission reliability, computing time, 

power consumption, and retrofit cost. 

1.2. Introduction of Infrared Sensors 

1.2.1. The SLEEPIR Sensor for Stationary and Moving Occupancy Detection 

Our lab has recently invented several chopped PIR sensors that enable the 

stationary presence detection of PIR sensors by adding a long-wave infrared (LWIR) 

chopper: mechanical choppers [54-56] and LC choppers [57-59]. In particular, the 

synchronized low-energy electronically chopped PIR (SLEEPIR) sensor can significantly 
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reduce the power consumption, weight, noise level, and volume compared to the 

mechanical mechanisms[54-56, 60, 61].  

 

Figure 1.1 The working principle of the SLEEPIR sensor module. 

 

Figure 1.1 shows the systematic working principle of the SLEEPIR sensor module. 

An LC shutter is installed in front of an analog PIR sensor (Panasonic AMN34211). The 

microcontroller can generate a two-state (ON-OFF) driving signal to modulate the 

transmission ratio of the LC shutter under the LWIR region (8-12 μm). The transmission 

ratio of the LC shutter is increased when the driving signal has the state 'ON'. The actuation 

period of the driving signal is 8s which contains 4s of 'ON' state and 4s of 'OFF' state. So 

there are two LC state changes during the actuation period, and output signal peaks are 

generated. The frequency of the driving signal actuation period is set as one time per 30 s. 

During the actuation period, the sensor data of SLEEPIR module is sampled at 20Hz and 

sent to a data-saving hub.  
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Figure 1.2 The SLEEPIR sensor module output data within one actuation period 

 

Figure 1.2 shows the plotting of SLEEPIR module data within one actuation period. 

The orange line represents the ON and OFF of the driving signal, and the blue line shows 

the analog output of the SLEEPIR module. Signal peaks Vpeak,r, Vpeak,d are generated during 

the switch time of the driving signal, and the peak-peak voltage Vpp can be calculated, 

which is a critical factor in determining the occupancy status. In addition, all the 8s of data 

in one actuation period are considered as one sample in the experiments. 

During the previous work of the SLEEPIR sensor, a 'modulation' value calculated 

from the Fourier-transform infrared spectroscopy (FTIR) spectrum is proposed to evaluate 

the LC shutter quality. Furthermore, the fabrication of the LC shutter is optimized[59]. 

Preliminary lab experiments have also been performed to validate the ability of stationary 

occupants detection using the SLEEPIR sensor network and a threshold-based 

algorithm[58]. 
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1.2.2. The Thermopile Array Sensors 

The thermopile array sensor detects the object’s surface temperature and produces 

low-resolution thermal images. It is a passive and privacy-preserving sensing technology. 

Figure 1.3 shows the working principal of thermopile and a sample 8×8 output data 

plotting of Grid-EYE sensor with the ‘Jet’ color scale.  

Thermopile has a similar working principle as the thermocouple. The absorbed 

infrared radiation generates a temperature gradient ΔT, and it can be converted to electrical 

signal ΔV through the Seebeck effect of thermocouple thermoelectric material. The 

electrical signal is amplified by connecting thermocouples of micro-level in series. 

 

 

Figure 1.3 Thermopile array sensor working principal 

 

        The thermopile array sensor has been researched for occupancy presence 

detection [62], occupancy counting [28-30, 50] [63], fall detection [64, 65], posture 
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recognition [27, 66], occupancy localization [67-70], activity recognition [71], 

household activity monitoring [72], and personal thermal comfort monitoring[73]. 

Two different models of thermopile array sensor are used in this work: Grid-EYE 

AMG88(Grid-EYE) produced by Panasonic Corp. and MLX90640(MLX) produced by 

Melexis. N.V. Table 1.1 shows the specification of the two types of thermopile array 

sensors. 

Table 1.1 Specification of thermopile array sensors 

Model  Grid-EYE 

 

MLX90640 

 

Resolution 8×8 32×24 

FOV [˚] 60×60 55×35 

Range [˚C] 0 - 80 -40 - 300 

Sensitivity [˚C] 0.25 0.1 

Accuracy [˚C] ±2.5 ±1.0 

Frame rate [Hz] 10 8 

Interface I2C I2C 

Current [mA] 4.5 23 

 

The Grid-EYE sensor has 8×8 pixels with ±2.5ºC temperature accuracy, a field of 

view (FOV) of 60º ×60º. It enables three working modes: working mode, sleep mode, and 

standby mode, with current consumption of 4.5 mA, 0.2 mA, and 0.8 mA, respectively. It 

outputs an 8×8-pixel frame at 10Hz, representing 64 temperature values in ˚C, with a 

sensitivity of 0.25 °C. The Grid-EYE sensor also has an onboard thermistor that can 

provide sensor internal temperature as a reference. The MLX90640 sensor has 32×24 

pixels with ±1.0ºC temperature accuracy. A model with a FOV of 55º ×35º is selected. It 
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outputs 32×24-pixel data with a frame rate of 8Hz and a sensitivity of 0.1 °C. Both Grid-

EYE and MLX sensor data can be read through the I2C interface by microcontrollers. 

1.2.3. The Proposed Sensing Platforms 

1.2.3.1. The Wireless SLEEPIR Sensor System 

Figure 1.4 shows the Bluetooth-enabled SLEEPIR sensor system. It is a wireless 

sensor network with star topology. Up to seven SLEEPIR sensor nodes can communicate 

to a Bluetooth central hub for data saving. Each SLEEPIR sensor node contains two 

SLEEPIR modules and one digital PIR sensor with binary output. Moreover, the SLEEPIR 

sensor node also has a digital temperature sensor (Model: si7021) on board to record the 

changing of the ambient temperature. The hub can be plugged into either PC or Raspberry 

Pi through the USB port for sensor data saving. 

 

Figure 1.4 The Bluetooth enabled wireless SLEEPIR sensor node and data saving 

hub 
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1.2.3.2. The Thermopile Array Sensing Systems 

Type A: This sensor node is developed for face direction detection and activity 

tracking. It integrates Grid-EYE with a time of flight (ToF) VL53L0X distance sensor. 

The VL53L0X distance detector can measure distance up to 2m with a sensitivity of 1 mm. 

It uses an active sensing approach but only consumes a current of 4mA. The type I sensor 

node can send data to the up-level computer through a Bluetooth 4.0 module. The 

sampling frequency is set as 10Hz by considering the highest sampling frequency of Grid-

EYE is 10Hz. Furthermore, both sensors are installed on a rotational platform to track 

indoor occupants. 

Type B: This ceiling-mounted sensor node consists of one Grid-EYE sensor and 

four VL53L0X distance sensors. It is developed for occupancy identification. The 

photographic representation of the sensor prototype is shown in Figure 1.5. The four 

distance sensors are circular distributed around the Grid-EYE sensor with an angle of 25° 

related to the vertical direction. An Arduino Nano board captures the data from all five 

sensors through the I2C interface and sends it to the computer through a Bluetooth module. 

The sampling frequency of the Grid EYE and the VL53L0X sensor is set as 10Hz and 

25Hz, respectively. 

Type C: This is a sensor node developed based on an MLX90640 sensor for in-

bed posture detection. The sensor node consists of an MLX90640 breakout board 

(SparkFun Electronics Inc.) and a Teensy 3.6 microcontroller. The sampling frequency is 

set at 8Hz. Data can be sent to the PC and saved through the serial port. 
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Figure 1.5 The thermopile array sensing systems (Type A, Type B, Type C) 

 

1.3. Data Processing Methods for Occupancy Sensing 

A variety of Data processing methods have been used for occupancy sensing [74, 

75]. Occupancy presence and counting can be considered as classification problems. Thus, 

traditional machine learning classifiers have been widely used, such as support vector 

machine (SVM), Naive Bayesian (NB), K Nearest Number (KNN), Random Forest (RF), 

Decision Tree (DT), and Full connected feed-forward network (NN). DT, KNN, NB, SVM, 

and  NN models are compared for presence detection and counting in the office using 

environmental sensors, and the DT model achieves the highest accuracy in both presence 

detection and counting tasks[76]. NN and SVM models are compared for occupancy 
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counting in a theater using CO2 sensors[77], and both models reach close accuracy of 

around 76%. The specific feature extraction method is required for different occupancy 

sensing objectives or using different sensor devices. And the performance of traditional 

machine learning methods highly depends on the features to be used. 

The Hidden Markov Model (HMM) takes the occupancy state as a Markov chain 

with hidden states, and a future state can be predicted based on the current state. It has 

been proposed to be an effective method for occupancy presence detection and counting 

based on different sensing devices such as PIR sensors [14], smart meters [78], or 

environmental sensors [79]. However, a long-time uncontrolled dataset is required to get 

a reliable HMM model. 

The computer vision domain contains lots of models for data processing data using 

cameras [80, 81], which has also been applied for occupancy sensing. For example, object 

detection algorithms can also work for occupant counting by detecting the number of 

human subjects in the FOV[82]. HOG is a traditional method for object detection [83]; it 

is used with an NN classifier for presence detection using combined data from optical and 

thermal cameras [22]. Moreover, the Haar-like feature, classical face detection features, is 

used for head detection and determining the walking direction of occupants [84]. 

Latest computer vision algorithms rely on deep learning models for object 

detection. For example, YOLO is a lightweight model for fast object detection, which 

could be directly used for occupancy counting.[85]. Instead of using existing models, a 

customized CNN model is also proposed[21]. On the other hand, deep learning models 

generally need a large dataset, while it may not be available for every objective. Then pre-
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trained models such as AlexNet[86], ResNet[87], R-CNN[88] can be used as feature 

extractors and fine-tuned for the specific problem. 

Deep learning techniques can also be used with other sensing devices other than 

optical cameras[89]. For example, a CDBLSTM network is proposed for occupancy 

counting using environmental sensors[24]. Furthermore, A CNN model is proposed for 

occupancy metabolic rate estimation using depth camera data [23]. Finally, an 

Autoencoder Long-term Recurrent Convolutional Network (AE-LRCN) model is 

proposed for occupancy activity detection using Wi-Fi CSI data[90]. 

1.4. Data Processing Methods using Infrared Sensors 

Since the PIR sensor cannot sense stationary occupants and may frequently cause 

false detection, a common approach is introducing a prediction algorithm. The hidden 

Markov model(HMM), a probability-based method, can reduce false occupancy detection 

[14]. Furthermore, a handcrafted feature-based machine learning model is trained based 

on historical motion sensor data to predict occupancy patterns and improve occupancy 

detection accuracy[17]. In addition, different machine learning classifiers and sequential 

models are compared using motion data collected by residential thermostats[15]. These 

prediction models largely improve the accuracy of occupancy detection. However, the 

model only works when a relatively fixed occupancy pattern can be identified, which may 

require a large training dataset. In contrast to the previous work in which the PIR sensor 

is used as a digital sensor with binary output, features can also be extracted from the analog 

output of the PIR sensor. For example, a linear regression model has been proposed using 

data from a single analog PIR sensor for occupancy detection in a meeting room[18]. In 
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summary, the aforementioned research improves PIR sensing performance by increasing 

the sensor number and applying advanced detection algorithms. However, the limitation 

of the PIR sensor in stationary occupancy detection remains.  

On the other hand, a few methods have been applied to identify stationary 

occupants using a chopped PIR sensor. For example, the fixed thresholding method is 

applied to the peak-to peak output of the mechanical chopped PIR sensor Vpp to classify 

the ‘occupied’ and ‘unoccupied’ conditions and to determine the FOV for stationary 

detection [54, 55]. Furthermore, handcrafted feature-based machine learning has been 

applied to a 10-hour presence detection with 99.12% using the SLEEPIR sensor[56, 58]. 

Machine learning techniques are popular data processing methods among 

thermopile array sensors. Handcrafted features and machine learning classification 

methods such as SVM, RF, and NN have been applied and compared to a single Grid-

EYE sensor for counting[63] walking direction detection[91] and activity detection[65, 

92]. Deep learning models such as CNN have been applied for yoga posture detection 

using three Grid-EYE sensors[66]. In addition, a few background removal and denoising 

methods have been proposed for presence detection and traffic monitoring using the MLX 

sensor[93, 94].  

1.5. The Objective of This Dissertation 

Two types of infrared sensing technologies, the SLEEPIR sensor, and the 

thermopile array sensor, have been applied for fine-grained occupancy sensing objectives 

such as true presence detection, posture detection, facing direction detection, and 
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occupancy identification. In addition, data processing models based on handcrafted 

features, traditional machine learning, and deep learning are proposed. 

In Chapter 2, a mathematical model is proposed to predict SLEEPIR output for 

stationary occupancy detection under changing ambient temperature. The unoccupied 

Vpp,u is found to be proportional to the temperature difference of sensor and background 

4 4

, ( )pp u floor sensorV K T T= − . The linearity is validated, and the coefficient KBB is characterized 

using a blackbody radiation source. The LC shutters’ performance for stationary 

occupancy detection is evaluated by performing the occupant experiments to obtain ΔVpp 

at different distances. The sensor noise is analyzed, and the LC shutters can be classified 

as ‘Good’,’Fair’, and ‘Poor’ based on metric ΔVpp@1.5m. Moreover, KBB is highly 

correlated with the ΔVpp@1.5m value, so it can help reduce the time of LC shutter 

classification vastly. Finally, SLEEPIR sensor nodes are prepared with ‘Good’ LC shutters 

to enable the maximum FOV of stationary occupancy detection. 

In Chapter 3, datasets for occupancy presence detection using SLEEPIR sensor 

nodes are collected in a lab room and a room in a residential apartment. In addition, two 

edge cases experiments are also performed, including changing the room temperature and 

lying on a bed. Finally, different occupancy presence detection algorithms are proposed 

and compared. StateS, Stat. ML, LSTM, and Stat.LSTM algorithms are proposed. The 

different occupancy presence detection algorithms are compared by reporting their daily 

occupancy detection accuracy. The result shows that both LSTM and Stat. LSTM reaches 

reliable high accuracy >96.0% for both the lab room and residential apartment. Moreover, 

the Stat. LSTM model does not require the data from a digital PIR sensor.  Furthermore, 
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the result of the edge case experiment indicates that the proposed model is a reliable 

occupancy presence detection method. 

In Chapter 4, feature extraction methods are proposed for fall detection and in-bed 

posture detection. The fall detection relies on an 8×8 pixel Grid-EYE sensor and a distance 

sensor. Experimental studies include three non-fall activities – standing, sitting, and 

stooping, and two fall actions – forward falling and sideway falling to simulate elderly 

daily activities. Different handcrafted feature sets for the SVM-based machine learning 

algorithm are analyzed, and their impact on fall detection accuracy is evaluated and 

compared empirically with an overall accuracy above 90% achieved. The preprocessing 

method and feature extraction approach based on the HOG (HOG+PCA) is compared to 

the handcrafted feature for the in-bed posture detection. The user study shows that a total 

of 9 in-bed postures can be successfully classified with 5-fold cross-validation-accuracy 

over 99.8%. The cross-user-validation is also performed to evaluate the robustness of 

posture classification models. The HOG features show significantly higher accuracy than 

handcrafted features.  

In Chapter 5, a pre-trained CNN model is proposed as a feature extractor for facing 

direction detection. A customized CNN is proposed to fuse the data from two types of 

sensors for occupancy identification. The CNN-based feature extraction demonstrates 

more reliable performance for facing direction detection compared to the handcrafted 

features regardless of the detection ranges. A non-intrusive sensor node is prototyped 

based on a thermopile array and four distance sensors for occupancy identification. The 

sensor node is installed near the lab entrance as the realistic setup to get the dataset, and 
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94.4% accuracy is achieved to identify eight different people. The proposed approach also 

shows a higher accuracy and lower power consumption compared to the state-of-the-art. 
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2. SLEEPIR SENSOR MODELING AND CHARACTERIZATION 

2.1. Mathematic Model for Stationary Occupancy Detection 

A mathematical model for stationary occupant detection is developed to describe 

the SLEEPIR module output under different ambient temperatures. The thermal power 

absorbed by the PIR sensor from an object can be calculated as 4 4( )sensor sensorA T T  −  

[95], where A is the geometry factor.  , sensor  are the emissivity of object and sensing 

element, respectively.  is the Stefan-Boltzmann constant. sensorT , T   are the surface 

temperature of the sensor and object. Then the energy received by the SLEEPIR module 

W  can be written as equation (1) 

4 4 4 4( ) ( )floor floor sensor floor sensor human human sensor human sensorW A T T A T T     = − + −     (1) 

Here floorA   and humanA are the geometry factor of the floor surface and the human body;

sensor , floor , human are the emissivity of the sensor, floor surface, and the human body, 

respectively; sensorT , floorT , humanT are the surface temperature of SLEEPIR sensing element, 

floor surface, and the human body, respectively. Thus, the energy received by the 

SLEEPIR model consists of two parts: the energy received by the human body and the 

background, e.g., the floor of the room.  
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Figure 2.1 systematic of SLEEPIR sensor for stationary occupancy detection 

 

The following equation     (2)  can express the output peak voltage generated during 

LC shutter-controlled transmission ratio change.[58]  

'

2 2 1/2 2 2 1/2
( ) ( )

2 (1 ) (1 )

f p

out

T T E

R p A
V t W t

G

 

   
=

+ +
    (2) 

 

Here p  is the perpendicular component of the pyroelectric coefficient; pA   is the 

area of the pyroelectric sensing element;   represents the emissivity of the sensing 

element; T   and E   represents the thermal and electrical constant, respectively.   is the 

modulated frequency that can be d  or r , stands for the two different LC transitions 

(‘ON-OFF’ and ‘OFF-ON’). Moreover ONW  , OFFW  are the energy received by the 

SLEEPIR module when the LC shutter state is ‘ON’ and ‘OFF’. And they can be rewritten 

as _LC onW and _LC offW , where _LC on , _LC off represent the transmission ratio of LC 

shutter under state ‘ON’ and ‘OFF’. Here, the transmission ratios are considered as 
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constants assume room object has a small range of temperature change; also, it can avoid 

the complicated integral on wavelength.  

'
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−
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+ +

    (3) 

 

Then we can get the peak-peak voltage during a full-LC shutter actuation by calculating 

Vpp = Vpeak,d – Vpeak,r. The peak-peak voltage (marked in Figure 1.2) is a key indication 

extracted from the sensor output signal, representing the output of the SLEEPIR module 

for occupancy detection. The peak-peak voltage for ‘occupied’ and ‘unoccupied’ 

situations can be written as  

4 4

, ,

4 4 4 4

,

( )

[ ( ) ( )]

pp u PIR LC Pos u floor sensor

pp o PIR LC Pos floor sensor human human sensor

V K K K T T

V K K K T T K T T





= −

= − + −
(4) 

 

It contains four coefficients: PIRK LCK PosK  humanK and the detailed expressions are 

shown in equation (5). Here, PIRK only depends on the properties of PIR sensor. Since we 

use an off-the-shell PIR sensor from Panasonic Inc., it can be considered as a constant. 

Then LCK only depends on the fabrication of LC shutter. PosK  only depends on the setup 

position of the SLEEPIR sensor. humanK depends on the body shape, posture, and position 

of the human in the FOV. 
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  (5) 

 

The energy received by the human body is hard to measure during experiments 

since humanT and humanA can be highly sensitive to body shape, cloth, and posture. If we 

consider the unoccupied situation, the equation can be rewritten as an equation  

4 4

, ( )pp u floor sensorV K T T= − , where ,PIR LC Pos uK K K K= is a constant for specific LC shutter 

and fixed sensor node setup. Moreover, the peak-peak voltage of SLEEPIR module output 

signal is linearly proportional to the difference between the fourth power of the floor 

temperature and sensor temperature.  

We determine 𝛥Vpp = |Vpp,o – Vpp,u| as a metrics for stationary occupancy detection, 

and it can be represented as the following equation 

4 4 4 4

, ,[( )( ) ( )]pp PIR LC Pos o Pos u floor sensor human human sensorV K K K K T T K T T = − − + −  (6) 

We can find that a high LCK  value is desired for SLEEPIR sensor to work as a presence 

detector as it will generate larger 𝛥Vpp. 

2.2. Experimental Characterization of Sensing Model 

A blackbody radiation source (Model: Process Sensors BBS500) is placed 1cm 

close to the SLEEPIR module to cover its whole field of view (FOV). (Figure 2.2 (a)). 
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During this setup, we can consider the floorT to be the temperature of the blackbody bbT . 

Then 
4 4= -  BB sensorT T T can be calculated. Figure 2.2 (b) shows the plotting of sensor 

temperature sensorT  and the Vpp recording of the SLEEPIR module. The blackbody is set to 

different temperatures, and for each LC shutter and each temperature, 15 minutes of data 

is collected. For every LC shutter, the data collected is used to calculate the blackbody 

coefficient BBK by fitting the data to a linear equation. Here, ,BB PIR LC Pos uK K K K = .  

Based on equation (4) 

 

 

Figure 2.2 (a) Blackbody experiment (b) Sample output of SLEEPIR sensor Vpp 

Tsensor 
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Figure 2.3 shows the plotting of temperature difference T and output Vpp of eight 

LC shutters. Here the LC shutters are named by their major fabrication parameters(M: 

mass ratio, D: cell gap, C: cooling rate). We find that the R2 values are generally higher 

than 0.95, which validates the linear relationship with our proposed sensing model 

4 4

, ( )pp u BB BB sensorV K T T= − . Furthermore, different LC shutters can have very different BBK  

values. For example, LC shutter M80D22C100_1 has a high BBK  value 0.450, and the 

BBK  value of LC shutter M80D22C100_6 is only 0.268. This BBK  value calculated from 

the blackbody experiment can help determine the quality of LC shutters. This is illustrated 

in section ‘LC shutter classification’. 

 

 

Figure 2.3 Experimental characteristic of the mathematical model 
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2.3. Classify LC Shutters 

2.3.1. Sensor Noise 

The noise signal of the sensor is a crucial factor that affects the sensor performance. 

The output of SLEEPIR will not be precisely the same even under the same sensor and 

background temperature. For example, Figure 2.2(b) shows that the Vpp value still 

oscillates between about 1.1V to 1.2V even when the sensor temperature remains around 

23.2°C.  This noise can be caused by hardware components such as the LC driving circuit 

and analog-digital conversion (ADC) circuits, so a better understanding of the noise level 

is desired. The data collected from the blackbody experiments are used to evaluate the 

sensor noise level. Two metrics are designed, (1) Vpp,u.std  (2) ∆Vpp,i,u.  

During the blackbody experiments, data is recorded for 15 minutes at every 

temperature per LC shutter.  Vpp,u.std  is defined as the standard deviation of the Vpp within 

the 15 minutes time. Figure 2.4 shows the plotting of Vpp,u.std  vs  KBB, and we can find no 

apparent difference between the sensor noise Vpp,u.std   of different LC shutters. Moreover, 

the Vpp,u.std  value is generally smaller than 0.05V. 
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Figure 2.4 SLEEPIR Sensor noise: different LC shutter under same Tsensor, TBB 

 

∆Vpp,i,u. is defined as ( 1) ( )pp ppV i V i+ −  the difference between two continuously 

measured peak-peak values. Therefore, for every LC shutter, a series of ∆Vpp,i,u.  can be 

calculated per temperature. Then for every temperature, these values can be combined to 

represent the distribution of sensor noise. To be more specific, Figure 2.5 shows the 

cumulative distribution function (CDF) plotting of sensor signal noise level under 

different blackbody temperatures (23°C, 24°C, 25°C, 26°C). It indicates that more than 

90% of the signal noise data is smaller than 0.05V and more than 99% of the signal noise 

data is smaller than 0.1V. So to avoid false detection caused by the sensor noise, the ΔVpp 

value of the occupant experiment needs to be larger than 0.1V. 
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Figure 2.5  SLEEPIR Sensor noise: different TBB 

 

2.3.2. Determine Detection Range of SLEEPIR Sensor ΔVpp 

The lab occupant experiment is used to validate and evaluate the performance of 

the LC shutter as not every LC shutter manufactured is sufficiently good for a presence 

detector. It is performed in a lab with a room temperature of around 22˚C. During the 

experiments, the occupant sits stationary on a chair facing the sensor node Figure 2.6(a)). 

Therefore, Vpp during occupied and unoccupied situations , ,,pp u pp oV V can be achieved 

through the occupant experiment. Moreover, for any position, we can calculate ΔVpp, the 

absolute difference between , ,,pp u pp oV V as the metrics to determine its stationary occupancy 

detection performance.  

On the other hand, correcting ΔVpp values at all distances is time-consuming, so a 

single value is desired to represent the stationary occupancy detection performance. Here 

we select the ΔVpp value at 1.5m. The single distance of 1.5m is selected because it is the 
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desired detection distance for the sensor to be used in a 4m × 4m room. Furthermore, the 

desired ΔVpp value should be larger than the sensor noise of SLEEPIR module. Then the 

LC shutters can be classified into three categories based on their ΔVpp@1.5m: 

Good: >0.1V, Fair: [0.05V-0.1V]. Poor: <0.05V. Figure 2.6(b) shows the measured Vpp 

using Good, Fair, and Poor LC shutters for 1.2m,1.5m,1.8m. We can see that the ΔVpp 

value decreases when the distance increases. Also, for good ‘LC’s ΔVpp @1.5m is bigger 

than that of ‘Poor’ LCs and generally larger than 0.1V.  

 

 

Figure 2.6 (a) Occupant experiment (b) Classify LC shutter using ΔVpp @1.5m 
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2.3.3. LC Shutter Classification 

Previously, the ‘Modulation’ calculated from FTIR spectrum and occupant 

experiments is used to identify good LC shutters[56]; however, the occupant experiments 

are time-consuming and require lots of labor. Also, we find that high modulation does not 

always lead to a high ΔVpp value. In addition, ‘Modulation’ is not consistent even with the 

same fabrication parameter. For example, Table 2.1 shows 23 LC shutters included in this 

analysis. Most of them have relatively high modulation values (5-6), and 19 are fabricated 

using the same method(M80D22C100). However, the modulation is not relatively 

consistent (Figure 2.7). 

 

 

Figure 2.7 Modulation and KBB  

 

In summary, modulation may not be the best indicator to compare different LCs. 

Therefore, a more reliable and efficient characterization approach is desired. As the 
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position of SLEEPIR sensor is fixed during the blackbody experiment, the blackbody K 

coefficient KBB only depends on the fabrication of the LC shutter based on our proposed 

sensing model (equation (4)). Here we propose to use KBB as a better standard for 

classifying LC shutters.  

Table 2.1 Specification of LC Shutters 

LC ID LC name 𝜟V
pp 

@1.5m[V] Modulation R
2
 K

BB
 

#
1 M80D22C100_1 0.126 6.58 0.996 0.461 

#
2 M80D22C100_2 0.082 6.48 0.921 0.381 

#
3 M80D22C100_3 0.101 6.42 0.988 0.408 

#
4 M80D22C100_4 0.066 5.73 0.989 0.356 

#
5 M80D22C100_5 0.062 6.22 0.987 0.347 

#
6 M80D22C100_6 0.044 5.73 0.973 0.268 

#
7 M80D22C100_7 0.158 5.62 0.957 0.405 

#
8 M80D22C100_8 0.078 5.33 0.983 0.322 

#
9 M80D22C100_9 0.146 4.57 0.985 0.372 

#
10 M80D22C100_10 0.092 4.92 0.945 0.359 

#
11 M80D22C100_11 0.054 4.76 0.985 0.261 

#
12 M80D22C100_12 0.056 4.88 0.993 0.286 

#
13 M80D22C100_13 0.031 3.07 0.938 0.138 

#
14 M80D22C100_14 0.121 5.37 0.989 0.401 

#
15 M80D22C100_15 0.068 5.04 0.975 0.345 

#
16 M80D22C100_16 0.074 5.32 0.988 0.336 

#
17 M80D22C100_17 0.071 5.18 0.956 0.302 

#
18 M80D22C100_18 0.066 3.49 0.951 0.203 

#
19 M80D22C100_19 0.112 5.93 0.988 0.396 

#
20 M75D22C100_1 0.062 5.89 0.984 0.329 

#
21 M80D22C125_1 0.116 5.61 0.964 0.387 

#
22 M80D22C125_2 0.072 5.80 0.963 0.355 

#
23 M75D22C100_2 0.014 1.92 0.932 0.121 
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The correlation analysis can be used to compare the performance of KBB and 

modulation. Figure 2.8(a) shows the plotting between the ΔVpp @1.5m and KBB, Figure 

2.8(b) shows the plotting between the ΔVpp@1.5m and modulation. The Pearson 

correlation coefficient is calculated, which shows that the KBB coefficient is a better metric 

to determine the quality of an LC shutter as it has a better linear correlation ΔVpp@1.5m. 

This black body method is a more reliable and less time-consuming method to characterize 

LC shutters. Moreover, we can set a standard here that KBB > 0.35 for a ‘Good’ LC shutter 

to reduce the time of occupant experiment significantly 

 

Figure 2.8 (a) ΔVpp@1.5m vs KBB (b) ΔVpp@1.5m vs Modulation 

 

2.3.4. SLEEPIR Sensor Field of View 

As the occupant experiment only measures the sensor performance in one direction, 

we can measure the FOV of a SLEEPIR module by measuring the distance with 

ΔVpp@1.5m > 0.1V at different directions. During the FOV experiment, the occupant will 

sit in eight different directions. Figure 2.9(a) shows the FOV testing result of a SLEEPIR 
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module, and we can find that the FOV of a single SLEEPIR module is an eclipse, so a 

20°C rotational degree is applied to the two SLEEPIR modules to enlarge the FOV of the 

SLEEPIR node during occupancy presence detection experiments (Figure 2.9 (b)). 

 

Figure 2.9(a) FOV of a SLEEPIR module with ‘Good’ LC shutter (b) FOV of a 

SLEEPIR node with two 20˚ rotated SLEEPIR modules 

 

Based on this LC classification method and SLEEPIR sensor node design, three 

SLEEPIR sensor nodes are prototyped with ‘Good’ LC shutters, as shown in Table 2.2 

Table 2.2 Selected SLEEPIR sensor node for occupancy presence detection 

Sensor node LC shutter 

I LC
0
: #1 (Good); LC

1
: #3 (Good) 

II LC
0
: #7 (Good); LC

1
: #9 (Good) 

III LC
0
: #14 (Good); LC

1
:#21 (Good) 
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2.4. Conclusion 

This chapter proposes a mathematical model to predict SLEEPIR sensor output for 

stationary occupancy detection under changing ambient temperature. The unoccupied 

Vpp,u is found to be proportional to the temperature difference of sensor and background 

4 4

, ( )pp u floor sensorV K T T= − . The linearity is validated, and the coefficient KBB is characterized 

using a blackbody radiation source. The LC shutter performance for stationary occupancy 

detection is evaluated by performing the occupant experiments to obtain ΔVpp at different 

distances. The sensor noise is analyzed, and the LC shutters can be classified as 

‘Good’,’Fair’, and ‘Poor’ based on metric ΔVpp@1.5m. Moreover, KBB is highly correlated 

with the ΔVpp@1.5m value, so it can help reduce the time of LC shutter classification 

vastly. Finally, SLEEPIR sensor nodes are prepared with ‘Good’ LC shutters to enable the 

maximum FOV of stationary occupancy detection. 
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3. OCCUPANCY PRESENCE DETECTION USING THE SLEEPIR SENSOR 

3.1. Review of Data Processing Models for Occupancy Sensing using PIR sensor(s) 

Occupancy presence detection reaches 97.3% within a 2.5h period of a single 

office by applying HMM methods on data of a digital PIR[14]. Furthermore, based on the 

digital PIR sensor data from the residential thermostats, 81-98% accuracy is reached for 

presence detection based on handcraft features +  RF and RNN model[15]. Moreover, the 

number of occupants in a meeting room can be estimated with <1 RMSE using an analog 

PIR sensor and statistical regression model[18]. 

Multiple sensors are usually integrated into the same sensor node as a single PIR 

sensor contains limited information. The PIR sensor can work with CO2  and temperature 

sensors for presence detection in offices, and a mean absolute error(MAE) of 2% is 

achieved using a rule-based probability estimation algorithm[52]. A sensor node with four 

analog PIRs is installed on the ceiling to detect eight walking directions. Then more than 

98% accuracy is reached based on peak detection and statistical machine learning 

methods[96]. Furthermore, a CNN model helps to increase the classification accuracy to  

99.5%  [20]  

Due to the single output data dimension of the PIR sensor, a sensor network is 

generally required for fine-grained occupancy objectives. Four digital PIR sensors are 

installed in a meeting room, and up to 98.3% is achieved for occupancy counting using 

the particle filter algorithm[97].  A digital PIR sensor and an electrical meter are installed 

on each desk in an office building, and then 78-87% occupancy counting accuracy is 

reached based on HMM and finite-state machine methods. Office building level 



 

34 

 

occupancy counting can reach 83% accuracy by applying the NN model to fused data of 

Wi-Fi-connected devices and >100 digital PIR sensors. Thirty-one digital PIR and four 

door sensors(magnetic sensors detecting the opening and closing of the doors) are installed 

in an apartment with only one resident for eight months. Then based on customized CNN 

models, four travel patterns and nine activities can be classified with 97.84% and 99.23% 

accuracy, respectively[98] [40].  

3.2. Experiments Setup and Dataset Collection 

The occupancy presence detection experiments are performed in two rooms: a lab 

room and a room in a residential apartment, as shown in Figure 3.1. Both experiment sites 

contain a table and a chair, and the main activity of the occupants is working when they 

stay in the room during the experiment period. The lab room has a surveillance camera to 

record ground truth. For the residential room, the ground truth is manually recorded by the 

occupant. Five different experiment setups are included, as shown in Table 3.1. Dataset 

LAB1, LAB2, and APT1 are uncontrolled daily occupancy detection experiments 

collected from the lab room (LAB1: subjects with T-shirts and LAB2: subjects with coats) 

and the apartment room (APT1).  In addition, the 24 h data is used for algorithm evaluation 

for the lab room dataset, but only data from 10:00 to 0:00 is used for the residential room. 

So, there are 2,880 samples per day in the lab room and 1,680 samples per day in the 

residential apartment room. Moreover, two edge cases are also performed in the lab room. 

For EDGE1 data, the air around the sensor node is actively heated by a heater to simulate 

the fast-changing room temperature.  For EDGE2, the occupant lies on a bed in the lab 

room. 
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Figure 3.1 Optical photo of the experiment sites: lab room, residential room 

 

Table 3.1 Summary of the Dataset  

Name Site/node# No. subjects Setup Size 

LAB1 Lab room/I 2 T-shirt 10 days 

LAB2 Lab room/I 3 Coat 10 days 

EDGE1 Lab room/I 1 Heating 2 days 

EDGE2 Lab room/I 2 Ly down 3 days(90 min) 

APT1 Residential room/II 1 T-shirt 5 days 

 

The samples with the datasets can be separated into three categories: 

‘Unoccupied’, ’Motion’ and ‘Stationary’. The ‘Unoccupied’ samples just mean the 

occupant is not in the room. The ‘Motion’ sample means the digital PIR detects the 

occupant on the SLEEPIR node, and the ‘Stationary’ sample means the occupant is in the 

room but cannot be detected by the PIR sensor.  Figure 3.2 shows the distribution of 
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samples within a day for the dataset collected in the lab and residential homes. We can 

find out that there are generally more ‘Stationary’ samples than ‘Motion’ Samples. 

 

 
Figure 3.2 Distribution of different samples: (a) LAB1 (b) LAB2 (c) APT1 
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Figure 3.3 Plotting of daily SLEEPIR node output (a) lab (b) residential apartment 

 

In addition, the daily maximum and minimum temperatures are listed in Figure 3.4. 

The temperature in the lab is much more stable in the day than that in the residential 

apartment. The max temperature is around 24˚C, and the minimum temperature is around 

22.5 ˚C. On the other hand, the daily maximum temperature of the residential apartment 

room can reach 27 ˚C, and the daily minimum temperature is around 24˚C. Figure 3.3(a) 

and (b) show the typical daily raw sensor data plotting of the lab and residential apartment 

rooms, respectively. 



 

38 

 

 

Figure 3.4 Daily maximum and minimum temperatures of the lab and residential 

room (a) LAB1 (b) LAB2 (c) APT1 

 

 Two edge cases are included in the dataset, lying on the bed, and changing ambient 

temperature. Figure 3.5 shows the setup of the two edge cases. Moreover, Figure 3.6(a) 

shows the raw sensor output during the ambient temperature changing experiment. The 

sensor temperature can be found to increase quickly multiple times within the day. Figure 

3.6(b) shows the sensor output when the occupant is lying on the bed. 
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Figure 3.5 Edge case experiment setup(a) ambient temperature changing (b) lying 

down 

 

 

Figure 3.6 (a) raw sensor data plotting (a) ambient temperature changing (b) lying 

on the bed. 
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3.3. Occupancy Presence Detection Algorithm 

3.3.1. State Switch Detection Algorithm (StateS) 

The core idea of the state switch detection (StateS) algorithm is to detect 

occupancy state change instead of directly detecting occupancy state. We can assume that 

motion can be detected by the onboard digital PIR sensor every time the occupancy state 

changes. Then we can compare samples before and after a motion period. If the occupant 

is still inside the room, the Vpp of the sample before and after a motion period should be 

very close. On the other hand, if the occupant left the room or entered the room, Vpp change 

should be observed. Figure 3.7 shows a sample plotting of this algorithm in which one 

occupant leaves the room and the occupancy state changes from 'occupied' to 'unoccupied'. 

Three periods are marked: stationary, motion, and occupied. The orange line represents 

the raw sensor data of SLEEPIR, and the red line represents the calculated Vpp values. 

The motion period (the grey area) can easily be detected by the digital motion 

sensor or the SLEEPIR itself. After that, the no-motion period can be identified before and 

after the motion period (marked by two dashed brown boxes). Then the Vpp difference can 

be calculated, and we can find that the Vpp difference is about 0.24V, which can be used 

to indicate that the occupancy state has changed. Table 3.2 shows the pseudo-code to 

combine Vpp from two SLEEPIR modules and to determine whether the occupancy state 

is changed.  
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Figure 3.7 Example using the state switch detection algorithm 

 

Table 3.2 Pseudo code of using the StateS detection algorithm 

Algorithm: State switch detection   

INPUT: A, B (2x3 matrix), thresholdV  

OUTPUT: State_change(True, False) 

ΔVpp1 = avg(A[0,:]) – avg(B[0,:]) 

ΔVpp2= avg(A[1,:]) – avg(B[1,:]) 

ΔV= abs(ΔVpp1 + ΔVpp2) 

If ΔVpp > Vthrehold: 

     State_change = True 

Else: 

     State_change = False 
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3.3.2. Statistical Features + Machine Learning (Stat.ML) 

The StateS algorithm detects the change of occupancy state instead of directly 

detecting occupancy state. Then a single false detection may cause an accumulative error; 

furthermore, the StateS algorithm only uses the Vpp value from each sample as the input; 

more features may be extracted to improve the detection accuracy with the machine 

learning classification models. The data within each actuation circle of SLEEPIR is single-

dimensional time-series data. Many well-established features can be extracted from 

temporal, statistical, and spectral domains[99, 100]. 

Table 3.3 shows the features extracted in this work. During each actuation circle, 

20 features are extracted from the output of each SLEEPIR module. Then a traditional 

machine learning classifier (NN, SVM, RF) is used to do the occupancy state detection. 

Table 3.3 Features for statistical machine learning 

Feature name 

(dimension) 

Feature name 

(dimension) 

Feature name 

(dimension) 

Mean (1) RMS (1) FFT coefficient (5) 

Variance (1) Kurtosis (1) Entropy (1) 

Standard deviation (1) Skewness (1) Peak positions (5) 

Max value (1) Min value (1) Absolute energy (1) 

 

3.3.3. LSTM based Deep Learning Models: LSTM and Stat. LSTM 

Statistical machine learning only uses features extracted from a circle of data (8s) 

to determine the occupancy state. However, the time-series feature may help to improve 
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detection accuracy. LSTM network is a powerful method to learn time-series features. 

Figure 3.8 compares the model systematic between statistical machine learning and deep 

learning based on the LSTM network. Two types of LSTM networks with different inputs 

are included. The LSTM model uses Vpp, temperature, and motion/digital PIR sensor 

output data as the input, and the Stat. LSTM model uses features listed in Table 3.3 as the 

input.  

 

Figure 3.8 Comparison of Stat.ML, LSTM, and Stat.LSTM models 

Figure 3.9 shows the structure of the two LSTM networks. A max-min 

normalization is performed to convert all features to the range [0,1] before being fed to 

LSTM layers. The LSTM network has two LSTM layers and one fully connected layer 
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with 128 neurons. The sequence length is 100, so we use 50 minutes of data to predict the 

occupancy state. 

 

Figure 3.9 LSTM network structure: LSTM, Stat. LSTM 

 

3.4. Result Analysis  

3.4.1. Performance Comparison on Daily Occupancy Detection  

The different occupancy presence detection algorithms are compared by reporting 

their daily occupancy detection accuracy. Each row in  Table 3.4 shows the comparison 

of detection accuracy of a day using different algorithms. ‘PIR’ and ‘PIR30’ are two kinds 

of baseline algorithms. ‘PIR’ is to use the output of the digital PIR sensor onboard directly 
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as the occupancy state. ‘PIR (30)’ set an offset time of 30 minutes to the output of the 

digital PIR sensor. In other words, once the motion is detected, the 30 minutes after that 

will be considered as ‘Occupied’. 

Table 3.4 Comparison of daily occupancy detection: by dates 

Dataset PIR  PIR(30) StateS Stat.ML LSTM Stat. LSTM 

LAB2/Coat 

Model LAB 

0.7644 0.9545 0.9128 0.8745 0.9732 0.9642 

0.4647 0.9587 0.8719 0.7242 0.9568 0.9632 

0.4671 0.9413 0.8713 0.7845 0.9686 0.9654 

0.4743 0.9218 0.8687 0.7821 0.9652 0.9527 

0.5072 0.9340 0.8801 0.8576 0.9543 0.9532 

LAB1/T-shirt 

Model LAB 

0.7461 0.9751 0.9314 0.9214 0.9776 0.9612 

0.7312 0.9684 0.9517 0.9067 0.9612 0.9632 

0.7816 0.9520 0.9412 0.8547 0.9653 0.9746 

0.8541 0.9155 0.9317 0.8921 0.9337 0.9709 

0.8621 0.8933 0.9123 0.9185 0.9626 0.9713 

Avg. 0.6652 0.9414 0.9073 0.8516 0.9618 0.9639 

APT1 

(Model APT) 

0.7378 0.9547 0.8714 0.8924 0.9746 0.9812 

0.8366 0.9888 0.8217 0.9043 0.9682 0.9732 

Avg. 0.7872 0.9718 0.8465 0.8983 0.9714 0.9772 

 

The deep learning model is first trained using five days from dataset LAB1 and 

five days from dataset LAB2, and this is considered the ‘Model LAB’. Then, the other ten 
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day’s data in LAB1 and LAB2 datasets are used as the training dataset. Finally, for the 

residential dataset APT1, another model, ‘Model APT’, is trained with three days of data. 

The result shows that both LSTM and Stat. LSTM reaches reliable high 

accuracy >96.0% for both the lab room and residential apartment. Moreover, the Stat. 

LSTM model does not require the data from a digital PIR sensor.  Furthermore, the same 

model trained with lab data is evaluated on the edge case dataset. As a result, high accuracy 

is also observed, which indicates that the proposed model is a reliable occupancy presence 

detection method. Table 3.5 shows the daily occupancy accuracy of different testing 

subjects. It shows that the proposed model Stat. LSTM can still reach high accuracy. 

Table 3.5 Comparison of daily occupancy detection: by subjects 

Subject info PIR StateS Stat.ML LSTM Stat.LSTM 

Male 1 T-shirt 0.7645 0.9314 0.9214 0.9776 0.9612 

Coat  0.7816 0.9412 0.8547 0.9653 0.9746 

Male 2 Coat 0.7644 0.9128 0.8745 0.9732 0.9642 

Male 3 T-shirt 0.8721 0.9214 0.8963 0.9532 0.9715 

Female 1 Coat 0.7966 0.8221 0.8825 0.9532 0.9587 

 

 

3.4.2. Performance Comparison on Edge Cases 

The edge cases data set is only used as testing data, and the model trained with the 

lab dataset,’ Model LAB’ , is used to output the result. Table 3.6 shows the detection result 

on edge cases. The proposed Stat. LSTM deep learning model still shows high accuracy 

for the edge cases. 
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Table 3.6 Comparison of performance on edge cases 

Dataset PIR PIR(30) StateS Stat.ML LSTM Stat. LSTM 

EDGE1 

Heating  

0.7845 0.9418 0.9127 0.8623 0.9763 0.9531 

0.8064 0.9148 0.8924 0.8525 0.9814 0.9725 

EDGE2 

Lying down 

0.8943 0.9543 0.9127 0.8716 0.9683 0.9721 

0.9329 0.9329 0.8924 0.8415 0.9614 0.9635 

0.9253 0.8857 0.9215 0.8916 0.9514 0.9721 

 

3.5. Conclusion 

Experiments for occupancy presence detection are performed in a lab room and a 

room in a residential apartment. In addition, two edge cases experiments are also 

performed, including changing the room temperature and lying on a bed. Finally, different 

occupancy presence detection algorithms are proposed and compared. 

The StateS model is an algorithm that only uses the Vpp of SLEEPIR sensor output. 

It detects the occupancy state change by comparing the Vpp level before and after a motion 

period. Stat. Machine learning uses features extracted from every sample of SLEEPIR 

output to train a classification model. The LSTM is a deep learning approach that uses 

time-series features extracted from the sequence of SLEEPIR sensor samples. The feature 

includes Vpp from SLEEPIR modules, temperature reading, and the output of the digital 

PIR sensor. Stat. LSTM is another deep learning model using statistical features instead 

of only Vpp values, and it does not need the data from a digital PIR sensor. 

The daily occupancy detection accuracy using different occupancy presence 

detection algorithms is compared. The results show that both LSTM and Stat. LSTM 
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reached a high accuracy >96.0% for both lab rooms and the residential apartment. 

Moreover, the Stat. LSTM model does not need data from a digital PIR sensor. That is, 

we can eliminate the digital PIR sensor. Furthermore, the same model trained with lab 

data (Model LAB) is evaluated on the edge case dataset. As a result, high accuracy is also 

observed, which indicates that the proposed model is a reliable occupancy presence 

detection method. 

After all, the SLEEPIR sensor is still a sensor node with a single dimension of data 

output. Though it can accurately detect stationary occupancy, its functionality is limited 

by presence detection. Therefore, sensing devices with high dimensions of data output are 

investigated in the following chapters. More specifically, in chapters 4 and 5, data 

processing models are developed using thermopile array sensors for fine-grained 

occupancy sensing, including identification, fall, posture, and facing direction detection. 

 

 



 

4. FALLING AND IN-BED POSTURE DETECTION USING THERMOPILE ARRAY 

SENSOR AND MACHINE LEARNING*†  

4.1. Review of Machine Learning Methods for Occupancy Sensing using 

Thermopile Array  

Room level occupancy counting can be accomplished with 82.56% accuracy by a 

thermopile array sensor with 4×16 pixels[63]. Here, handcrafted features are applied with 

statistical classification models such as KNN, SVM. Moreover, counting can also be 

obtained by installing the sensor node on top and side of the door frame and monitoring 

the walking direction[91, 101]. The Grid-EYE sensor with 8×8 pixels can be mounted on 

the ceiling, and handcrafted features are extracted for different occupancy sensing 

objectives. For example, the SVM classifier can classify occupancy activities such as 

falling, walking, and sitting with 94.8% accuracy[65]. The RF classifier can classify 

falling, walking, sitting, and lying with an F1 score of 0.92 [102]. In addition, the DT 

classifier can identify 12 kitchen activities such as the operation of the oven and 

dishwasher with 79.9% precision and 75.1% recall using the same sensor setup[72]. 

Gaussian and Kalman filters are applied to Grid-EYE sensor data for multiple person(1-

3)localization[68].  Six Grid-EYE sensors can be installed on the ceiling at different 

positions for occupancy counting to cover a large meeting room, and the occupancy 

number is classified into three levels. The softmax regression method is applied to reach 

 

* Part of this chapter is reprinted from “Infrared–ultrasonic sensor fusion for support vector machine–

based fall detection” by Chen, Z. and Wang, Y. 2018. Journal of Intelligent Material Systems and 

Structures 29(9): 2027-2039. with the permission of SAGE Publishing. 
† Part of this chapter is reprinted, with permission, from "Remote Recognition of In-Bed Postures Using a 

Thermopile Array Sensor with Machine Learning." By Chen, Z. and Y. Wang (2021). IEEE SENSORS 

JOURNAL 21(9): 10428-10436. Copyright © 2021 IEEE 
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81.98% accuracy[28]. Handcrafted features can also be extracted from multiple sensors. 

For example, a thermopile array with 4×16 pixels is fused with PIR and ultrasonic distance 

sensor data for sitting, standing and walking detection with 99.4% accuracy[71]. 

4.2.  Case Study: Handcrafted Feature Extraction for Fall Detection 

4.2.1. Experiment Setup 

The sensor platform is set at 0.8m high in front of the user/occupant, as shown in 

Figure 4.1. Since our sensor system can rotate and follow the occupant, the sensor is set 

in front of the subject during our fall detection experiments for convenience. And the 

distance from the sensor to the occupant does affect the detection algorithm. Also, the 

occupant should not be too close to the sensor; otherwise, the motion of the occupant 

cannot be fully recorded. Here, three distances (1.2 m, 1.5 m, 1.8 m) are selected in the 

experiment for evaluating the algorithm performance.  

            The threshold Rth for motion detection (feature NM) is set based on the background 

data. A total of 10 seconds of background data is first recorded before testing (before the 

occupant shows up). Then the maximum RMS (RMS values are calculated based on 

equation between continuous frames is calculated. Rth must be larger than this value to 

avoid false negative detection in activity segmentation. In other words, no activity should 

be segmented when there is no occupant in the FOV. Based on our experiment, we set Rth 

to be 0.6ºC. The thermal images and distance data mapping during the entire testing period 

are continuously recorded, transmitted, and saved. A total of 180 actions have been 

captured for each distance during this experiment. Two kinds of falling activities are 

considered in the experiment, forward falling and sideway falling. In addition to the falling 
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activity – sitting, standing, and stooping are selected as non-falling activities because they 

are commonly used in daily lives and have similar gestures with the falling action. To 

clarify, stooping is defined as stooping down to pick up an item from the ground and 

returning to the standing position.  Figure 4.1 shows the specification of the experiment.  

 

Figure 4.1 Snapshots of fall detection including five activity categories: sitting, 

standing, stooping, forward falling, and sideway falling. Reprinted from [64] ,with 

the permission of SAGE Publishing 

 

Experiments are performed by three young volunteers in their early twenties; for 

each distance, each of them completed 15 times of forward falling, 15 times of sideway 

falling, 10 times of standing and sitting, respectively, and 10 times of stooping. Standing, 

sitting and stooping are all considered as the same category (non-falling) within the SVM 

algorithm. The 180 activities are treated as the training sets to calculate the SVM classifier 

for the continuous test. All the training sets are recorded individually, so a reliable 

classifier can be calculated. These 180 training sets are treated as discrete test databases, 

including 120 as the discrete training set and 60 as the test/validation set. Based on these 

discrete testing data, the reliability of the classifier is verified, and the best combination 

of features is found. 
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Table 4.1 Experimental Specifications of Fall Detection. Reprinted from [64] ,with 

the permission of SAGE Publishing 

Training data Classifiers 

Fall Non-fall 

No. of captured actions for 

each occupant 

Falling (forward) Sitting Standing 

15 10 10 

Falling (sideway) Stooping 

15 10 

No. of occupants 3 

Total No. of the dataset 180 

Environment temperature 24.5ºC 

Distance from the sensor to the occupant 1.2-1.8m 

Sensor setup height 0.8 m 

 

However, in actual application scenario, user’s activities are recorded continuously 

by the sensor fusion platform, and activities can happen one by one; therefore, another 

series of experiments are designed for continuous activity recording, following the order 

of sitting, standing, stooping, sitting, standing, forward falling, return to standing status, 

sitting, standing and sideway falling, as shown in Figure 4.2 
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Figure 4.2 Snapshots of continuous activity data capturing including five activity 

categories: sitting, standing, stooping, forward falling, and sideway falling. 

Reprinted from [64] ,with the permission of SAGE Publishing 

 

More specifically, these activities are performed continuously by three 

aforementioned users and repeated twice. That is, there are 6 continuous test segments 

recorded for each distance and are later on used as the test sets. As mentioned previously, 

each test segment contains 10 pre-defined activities, including 8 non-fall activities and 2 

fall activities. At each distance, the aforementioned discrete data sets (180 total) are treated 

as the training sets for the continuous test, which do not include the activity from lying 

status to standing status. Figure 4.3 demonstrates an example of 1 test segment with 10 

continuous activities recorded at 1.5 m.  
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Figure 4.3 An example of 1 test segment containing 10 continuous activities: RMS 

values were calculated based on equation (7). Reprinted from [64] ,with the 

permission of SAGE Publishing 

 

 

4.2.2. Handcrafted Feature Extraction 

A feature set is extracted from each activity, and a fall or non-fall category will be 

further identified through the SVM classifier. Here, the feature set includes four features 

extracted from the Grid-EYE and one feature from the distance sensor:  

(1) NM: The number of consecutive frames where motion is detected, shown in Figure 4.4 
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Figure 4.4 The RMS values between consecutive frames indicating feature NM 

Reprinted from [64] ,with the permission of SAGE Publishing 

 

The root mean square (RMS) between two consecutive frames is calculated based on 

the following equation: 

                                       𝑅𝑀𝑆𝑘 = √
∑ ∑ (𝑇𝑖,𝑗,𝑘+1−𝑇𝑖,𝑗,𝑘)28

𝑗=1
8
𝑖=1

64
                       (7)                                                                                          

Where 𝑇𝑖,𝑗,𝑘 represents the Grid-EYE pixel data at coordinate (i, j) on the kth frame. 

If the RMS is higher than a threshold value 𝑅𝑡ℎ , then a motion is detected; all 

consecutive frames together can be taken as an activity occurring. NM is the total number 

of frames for an activity, as shown in Figure 4.4. Since the data is received at a constant 

frequency, this feature reflects the duration of the activity.  

(2) TM: Peak value of each pixel’s temperature change before and after an activity 

(from the first to the last frame of NM).  
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                  𝑇𝑀 = max[𝑇𝑖,𝑗,𝑘0+𝑁𝑀
− 𝑇𝑖,𝑗,𝑘0

] , 1 ≤ 𝑖 ≤ 8, 1 ≤ 𝑗 ≤ 8.       (8)                                              

Here k0 is the index of the first frame of an activity. This feature tends to be large when a 

fall occurs since a fall is usually associated with a large acceleration. 

(3) TC: Peak temperature change of each pixel between two consecutive frames. 

        𝑇𝑐 = 𝑚𝑎𝑥[max[𝑇𝑖,𝑗,𝑘+1 − 𝑇𝑖,𝑗,𝑘] 1 ≤ 𝑖 ≤ 8, 1 ≤ 𝑗 ≤ 8] 𝑘0 ≤ 𝑘 ≤ 𝑘0 + 𝑁𝑀    (9)                                              

This feature reflects the user's speed in action and tends to be large when a fall occurs. 

(4) DM: Distance between the maximum temperature pixel before and after an activity. 

 

Figure 4.5 Schematic of 8 x 8-pixel thermal image indicating feature DM. Reprinted 

from [64] ,with the permission of SAGE Publishing 

 

 

The feature DM is the Euclidean distance between the positions of the pixel where the 

maximum temperature is observed in 2 frames before the start of NM and 2 frames after 

the end of NM. (Figure 4.5) 

(5) Ddiff : the range sensor data difference between the start and end of an activity.  

                                    𝐷diff = 𝐶 × (𝑈𝑘0+𝑁𝑀
− 𝑈𝑘0

)                                                                      (10)                                              

where 𝑈𝑘 is the distance sensor data of the kth frame. Since the original Ddiff values are 

much larger than other feature values, a coefficient is added to help calculate the classifier. 
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Here the coefficient value C is set as 1/100 to ensure that Ddiff has a similar data range as 

other features. 

Since the sensor data is collected continuously, one activity must be identified 

before features can be extracted from the next activity and applied to classification. In 

other words, the time frame corresponding to the beginning and the end of each activity 

needs to be identified. In this paper, the data sequence is firstly separated based on the 

feature NM, and then the SVM classifier is used to determine if the activity is ‘fall’ or not. 

Figure 4.6 shows the diagram of activity identification at a continuous period. 

 

Figure 4.6 Schematic diagram of the fall detection algorithm. Reprinted from 

[64] ,with the permission of SAGE Publishing 
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Figure 4.7 (a) Activity period with frames containing a single peak (b) Activity 

period with frames containing multiple peaks: RMS values were calculated based 

on equation (1) Reprinted from [64] ,with the permission of SAGE Publishing 

 

4.2.3. Experimental Results 

       To verify the functionality of the fall detection algorithm, two testing methods 

(discrete and continuous) are executed. For discrete testing, 60 out of 180 data sets are 

treated the test data and the remaining 120 data sets are the training sets. Results are listed 

in Figure 4.8, where the accuracy is averaged by ten different selections of test sets. One 

can find out that the feature sets containing features extracted from both the Grid-EYE 

and the range sensor always achieve higher accuracy than these containing features from 

the single sensor. For instance, at a distance of 1.2m, the feature set (TC DM  TM ) reaches 

the highest accuracy of 93.3% when the stand-alone Grid-EYE sensor is applied. However, 

with the assistance of the range sensor, the accuracy is increased to 99.7%. At a distance 

of 1.5m, the feature set (NM TC TM ) reaches the highest accuracy of 94.7% when the stand-

alone Grid-EYE sensor is applied. However, with the assistance of the HC-SR04, only 

two other features TC and TM are required to reach the highest accuracy of 98.7%. At the 
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distance of 1.8m, the detection accuracy becomes lower. It can be caused by the decrease 

of temperature difference between the occupancy body temperature and the ambient 

environmental temperature as well as reliability of the ultrasonic sensor. While we can 

still find out that the highest accuracy 88.7% is reached when the stand-alone Grid-EYE 

sensor is applied. And with the assistance of the HC-SR04, the accuracy is increased to 

91.3%. 

This discrete testing also helps us to find the best feature set. By summarizing the 

accuracy from three distances, we select feature set (TC DM TM) and (TC TM Ddiff) as the 

best combination of features when only data from Grid-EYE sensor is used and when both 

sensors are applied. These two combinations of features will be used for classification in 

continuous experiments. Figure 4.9 illustrates the feature space of these two feature sets. 

Feature sets (NM TC TM Ddiff) and (TC DM TM Ddiff) also have higher accuracy, however, 

since they both require four features, we consider (TC  TM Ddiff) as the best feature set even 

though its accuracy is about 2% lower than that of the above two feature sets. The detection 

result for the continuous testing-based feature set (NM TC TM Ddiff) and (TC DM TM Ddiff) 

are also included. 
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Figure 4.8 Feature analysis for SVM classifier. Reprinted from [64] ,with the 

permission of SAGE Publishing 

 

 

Figure 4.9 Feature space plotting of feature set (TC , DM , TM) and (TC , TM , Ddiff). 

Reprinted from [64] ,with the permission of SAGE Publishing 

 

The second method uses the continuously recorded 18 test segments (six test 

segments at three distances, a total of 180 activities) as the test sets and each activity 

contains a certain number of frames. For each distance, a total of 180 activities obtained 

from the aforementioned discrete test are used as the training sets. Additional 6 continuous 
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testing segments, each containing 10 activities are used as the test sets. Figure 4.10 shows 

testing results of one of the testing segments with 10 testing activity periods (400 frames 

total), where all the 10 activities are identified correctly, and each activity period is marked 

by the red lines. 

 

Figure 4.10 Results of activity identification: RMS values were calculated based on 

equation (7). Reprinted from [64] ,with the permission of SAGE Publishing 

 

Figure 4.10 shows experimental results of activity segmentation, where Falling F 

represents forward falling and Falling S represents sideway falling. All the ‘fall’ activities 

are successfully segmented. 

 

 

Figure 4.11 Accuracy on activity segmentation based on distance. Reprinted from 

[64] ,with the permission of SAGE Publishing 
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For non-fall activities, the overall segmentation accuracy is about 89.6%, and the 

inaccuracy is mainly due to false positive detection caused by stooping as shown in Figure 

4.12, which can be further addressed by analyzing the change of the moving speed (the 

acceleration analysis between each frame) in the next step. 

 

Figure 4.12 Accuracy on segmentation based on activity category. Reprinted from 

[64] ,with the permission of SAGE Publishing 

 

The accuracy analysis of fall detection result based on continuous activity data 

recording is shown in Figure 4.13. By using the stand-alone Grid-EYE sensor, the 

accuracy for fall detection is not so satisfied, as shown in Figure 4.13(a), while a relative 

higher accuracy is reached by integrating the HC-SR04 ultrasonic sensor. Figure 4.13(b) 

shows the fall detection result based on feature set (TC TM Ddiff). The detection accuracy 

on non-fall activities, fall activities and overall activities are plotted separately. At the 

distance 1.2 m and 1.5 m, all the ‘fall’ activities are successfully identified. While false 

negative detection does happen, the accuracy of non-fall activity detection accuracy is 
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about 89.3%, in other words, about 10.7% of non-fall activities are incorrectly detected as 

fall activities. When distance is increased to 1.8m, the false positive detection rate is 

smaller, while at the same time the false positive detection happens and the accuracy to 

detect a ‘fall’ is decreased. The overall accuracy keeps around 90.0%. 

 

Figure 4.13 Continuous testing accuracy based on feature set (a) TC TM Ddiff (b) TC 

DM TM . Reprinted from [64] ,with the permission of SAGE Publishing 

 

Fall detection accuracy based on feature set (NM TC TM Ddiff) and (TC DM TM Ddiff) 

are also included in Figure 4.14(a) and (b). Their true positive rate (detection accuracy on 

fall activities) are similar with that of feature set (TC TM Ddiff). In addition, feature set (NM 

TC TM Ddiff) results in a higher false negative rate at closer distance, that means it tends to 



 

64 

 

detect a ‘non-fall’ activity as a  ‘fall’ activity. While feature set (TC DM TM Ddiff) has a 

higher false negative rate when the distance increases.  And all the results show a rising in 

the false positive rate when the distance increases. In summary, these analyses confirm 

that (TC TM Ddiff) is the best combination of features. 

 

Figure 4.14 Continuous testing accuracy based on feature set (a) NM TC TM Ddiff (b) 

TC DM TM Ddiff. Reprinted from [64] ,with the permission of SAGE Publishing 

 

4.3. Case Study: HOG Feature Extraction for in-Bed Posture Detection 

4.3.1. Experiment Setup 

The Type III thermopile array sensor node is used for in-bed posture detection. 

Two same sensor nodes are installed at two different locations for comparison. As shown 
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in Figure 4.15, one is placed on the top of the bed to simulate the ceiling-mounted 

condition, where the vertical distance between the sensor and the bed is 2.4m. Another 

sensor node attached to a tripod is placed next to the bed to simulate the wall-mounted 

condition. The vertical distance between the wall-mounted sensor node and the bed is 

1.2m, and the sensor has an elevation angle of about -65°. This setting makes the FOV of 

the sensors slightly larger than the bed surface area to ensure the highest resolution of the 

posture images.  

 

Figure 4.15 Experiment setup for in-bed posture detection.© 2021 IEEE. 

Reprinted with permission from [27]. 

 

A total of 12 young subjects (10 males and 2 females, 162 cm – 185 cm high and 

weighted between 48kg and 83kg) are tested in the experiment, following Texas A&M 

University institutional review board (IRB) 2018-1681D. The experiments were 

performed between 1-6 pm from 12/17 -12/22, 2019. One section lasts for 30 minutes for 
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one subject to perform different postures following the description in Figure 4.16(a). The 

total of 9 postures chosen from the most popular American sleep postures [103] include  

(1) soldier (SD), (2) left foetus (LF), (3) right foetus (RF), (4) left log (LL), (5) right log 

(RL), (6) freefaller (FF), (7) starfish (SF), (8) left yearner (LY), and (9) right yearner (RY). 

 

 

Figure 4.16 (a) In bed postures included in the experiment (b) Example plotting of 

different variants in posture ‘Soldier’. © 2021 IEEE. Reprinted with permission 

from [27]. 

 

During the experiment, each subject is asked to naturally perform their postures 

but move their body around to generate variances within the same posture category shown 

in Figure 4.16(a). For instance, Figure 4.16 (b) shows the different images captured for 

the same posture ‘Soldier’. This way, postures containing different variants are recorded 
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to generate a more comprehensive dataset. In other words, the same posture dataset 

contains images with different orientations and locations of the torso and the limbs. The 

experiments were performed on five different days. Each subject maintains each in-bed 

posture for about 60 seconds to get about 480 frames of data. Then for each posture, the 

data is downsampled to 60 frames to generate the dataset. In other words, the dataset totals 

60 (frames) × 9 (postures) × 12 (test subjects) = 6480 frames of data. In addition, we can 

consider the highest pixel value within each thermal image to be the user body temperature 

and the lowest pixel value to be the ambient temperature. Then the user body temperature 

range of this dataset is 29.1°C to 33.7°C, and the ambient temperature range is 19.8°C to 

21.25°C. 

 

4.3.2. HOG Feature Extraction  

A preprocessing of the raw sensor data is needed first for extracting robust HOG 

features. Since both the HOG and hand-crafted features are highly sensitive to the 

orientation and location of the user body, the primary goal of preprocessing is to align the 

user body part to the center of the thermal image, which facilitates robust feature selection. 

The preprocessing contains five steps: interpolation, temperature scaling, binarization, 

noise filtering, as well as rotation and translation.  

 Figure 4.17 shows the result of each step of preprocessing based on a raw thermal 

infrared image of soldier posture. First, the 32×24 raw image (Figure 4.17(a)) is 

interpolated to a 128×96 image (Figure 4.17 (b)). Next, all the temperature values in the 

image are scaled to the range [23 32] ºC using the min-max normalization method (Figure 
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4.17 (c)). This step addresses the impact of the person-to-person body temperature 

difference, and then binarization can be performed based on a fixed threshold value to 

highlight the user body part.  26.5ºC is used as the threshold value, which is selected as it 

returns the best detection accuracy compared with that using other threshold values. A 

filtering step is applied to keep the binary image with the largest connected area as is, 

while that with smaller connected areas is treated as background noise. Figure 4.17 (d) 

shows the result after binarization and filtering. Next, the translation and rotation are 

processed since different users can lie on different positions of the bed with different 

angles even for the same posture. Figure 4.17 (e) shows that the highlighted area can be 

rotated and translated to align the centerline of the bed by considering it as an eclipse and 

calculating its determinant direction and center based on the polar moment of inertia and 

weight center. Finally, for feature extraction, all the pixels with the value ‘1’ of the 

highlighted area (dark red) in the binary image are replaced with their original values in 

the interpolated image, and the rest areas are filled with the threshold value as shown in 

Figure 4.17 (f). 
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Figure 4.17 Data preprocessing for in-bed posture detection. © 2021 IEEE. 

Reprinted with permission from [27]. 

 

 

 

Figure 4.18 HOG feature extraction for in-bed posture detection. © 2021 IEEE. 

Reprinted with permission from [27]. 
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        HOG is a well-known method used in computer vision for object detection [83] by 

calculating the subject’s edge direction (orientations of gradients). The edge directions can 

outline the shape of the user body postures, then their histogram values calculated based 

on the gradient orientations can be used as effective features for posture identification.  

       There are several key parameters in the HOG process that can be tuned to generate 

different feature vectors of the same raw image. 

1)  Cell: at first, the image is divided into different rectangular pixel regions (8×8 in this 

work), and each region is called a cell. For each cell, we can calculate its oriented gradients. 

Then the number of histogram bins is set as 9 to calculate the histogram bin values for 

each cell.  

2) Block: the image is then divided into larger rectangular pixel regions, and each region 

is called a block. Each block contains a group of cells (4×3 cells in this work). The 

histogram values of each block are normalized to increase the feature robustness. The 

block overlap is another important parameter, but we set it as 0 since all thermal images 

have been preprocessed to align with the centerline. Finally, histogram values generated 

from all cells are connected to generate the feature vector. As every thermal image 

contains 16×12 cells after preprocessing and each cell has 9 histogram bin values, a feature 

vector with the size of 1728×1 can be generated for each thermal image frame.    

4.3.2.1. Principal Component Analysis  

The HOG feature vectors contain redundant data, and lots of null values and their 

dimension (1728) are much higher than the raw input data (768). To address this, we use 

PCA to reduce dimensions of HOG feature vectors and thus reduce overfitting and 
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redundancy in the feature set. PCA uses an orthogonal transformation to convert the set of 

possibly correlated features into a set of linearly uncorrelated values known as principal 

components. The first principal component has the largest possible variance, which 

represents the most variability in the dataset. PCA can work as a feature selection method 

that converts the original large feature vector to a short feature vector, including only 

important features. As a feature set of 1728×1 can be extracted from every thermal image 

data frame, the PCA process helps reduce the computing cost. 

4.3.3. Handcrafted Feature Extraction (Baseline) 

To evaluate the proposed HOG feature extraction approach, we use the hand-

crafted feature extraction method as the baseline for comparison. The hand-crafted 

features, developed based on temperature distribution and spatial relationship [104], are 

listed in Table 2. A histogram is calculated based on the temperature value distribution of 

the thermal image after preprocessing (Figure 4.17  (f)). The bar width of this histogram 

is set as 1°C, and the temperature range is set as 27°C - 32°C. Thus, the histogram only 

contains 5 bars, and the values of each bar height are used as features 1 to 5. 

Features 6 to 9 contain 4 properties (mean, variance, skewness, kurtosis) of the 

histogram, respectively. Features 10 to 18 contain the spatial features of the thermal image. 

They can be calculated from the binary image shown in Figure 4.17 (e). Feature 10 

represents the number of pixels with the value of ‘1’ in the binary image (dark red color). 

Feature 11 to 18 represent the number of pixels with a value of ‘1’ of each of the equally 

sized subdivisions (totally eight, separated by the yellow dashed lines in Fig. 3(e)) divided 

by the value of feature 10. The total number of pixels of each image after interpolation is 
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96×128 = 12,288, and thus each subdivision of image has the number of 48×32 =1,536 

pixels.  

Table 4.2 Hand-crafted Features. © 2021 IEEE. Reprinted with permission from 

[27]. 

Feature ID Description 

1-5 Thermal histogram value (27°C - 32°C) 

6 Mean of histogram 

7 Variance of histogram 

8 Skewness of histogram 

9 Kurtosis of histogram 

10 Number of pixel ‘1’ in the binary image 

11 - 18 Number of pixel ‘1’ within each subdivision of 

binary image (8 total), divided by value of feature 10 

 

We use Information gain to identify the best feature subset of hand-crafted features 

The Information gain measures how much ‘information’ a feature provides about the 

classification. The information gain can be used to rank the importance of different 

features [105]. The information gain is given by calculating the reduction between the 

entropy and conditional entropy [106]. 

( , ) ( ) ( )v
v

v F

X
IG X F E X E X

X

= −  

Here vX  is the subset of dataset X  in which feature F  has the value of v , and the entropy 

is given by  
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2( ) ( ) log ( )i i

i

E X p x p x= −  

, where ( )ip x  is the probability of ix  occurring in the dataset X . The feature with higher 

IG values is more important than those with lower values. Then the best feature subset 

with n features can be determined by choosing n of the most important features. In this 

paper, IG is used to evaluate all the hand-crafted features.  

4.3.4. Experimental Results 

4.3.4.1. Classification Models 

It is challenging to select a suitable classifier without first evaluating the datasets. 

So, it is worth testing several popular algorithms on the dataset. A list of classification 

algorithms compared here includes the LR, the Support Vector Machine (SVM), the 

Decision Tree (DT), the Random Forest (RF), the Gradient Boost Decision Tree (GBDT), 

and the multi-layer perceptron (MLP), a traditional feed-forward neural network. Scikit-

learn, a widely used python library of machine learning mainly used for the 

implementation of the algorithms. For the SVM method, both the linear kernel and radial 

basis function (RBF) kernel are tested. Moreover, for the MLP, three types of neuron types 

are tested: logistic, tanh, and rectified linear unit (Relu). 

4.3.4.2. Leave-one-out cross-validation 

The leave-one-out cross-validation method is a standard method to evaluate the 

performance of the classification model. Here the 5-fold leave-one-out cross-validation 

method is used to analyze data collected from the ceiling-mounted sensor node only to 
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compare the performance of different classifiers using the proposed HOG+PCA-based 

feature extraction method. 

The whole data set is separated into 5 subsets, and the accuracy can be calculated 

by using one of the subsets as the testing dataset and the other four subsets as the training 

dataset. This process is repeated five times to get an average accuracy. Here the principal 

component number is selected as 300, and detailed analysis is included in sub-section B 

to get the best number. 

Table 4.3 summarizes the classification accuracies and the training time based on 

5-fold leave-one-out cross-validation. For hand-crafted feature extraction, the RF 

classifier reaches the highest accuracy of 96.3%, and all the MLP classifiers also have 

high accuracies (> 96.0%). In addition, we demonstrate that the hand-crafted feature 

selection (90.0%) does not work well with the LR, the SVM, or the GBDT classifier. 

However, by using the HOG+PCA-based feature extraction approach, most classifiers 

reach high accuracies (> 99.0%). In particular, the MLP with the Relu unit has the highest 

accuracy of 99.8%, while only DT and GBDT have a relatively poorer accuracy, as shown 

in Table 4.3. 

One can conclude that the overall performance of HOG+PCA-based feature 

extraction is better than that of hand-crafted features, and both feature extraction methods 

can reach high accuracies above 96.0%. This means both methods are suitable for 

personalized detection of in-bed posture.   
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Table 4.3 Cross-Validation Accuracy. © 2021 IEEE. Reprinted with permission 

from [27]. 

Classifier Hand-crafted 

[%] 

Training 

time[s] 

HOG+ 

PCA [%] 

Training 

time[s] 

LR 69.9 0.7 99.6 3.7 

DT 86.3 0.4 92.1 1.1 

RF 96.3 5.5 99.4 7.2 

SVM (linear) 74.8 24.1 99.7 7.7 

SVM(RBF) 68.7 51.4 99.5 17.8 

GBDT 85.2 35.5 97.3 61.3 

MLP(Logistic) 96.9 6.7 99.4 0.9 

MLP (tanh) 96.0 8.7 99.6 0.6 

MLP(Relu) 96.2 6.8 99.8 0.9 

 

4.3.4.3. Leave-one-subject-out cross-validation 

     For 5-fold leave-one-out cross-validation, both the training set and the testing set 

contain data from all the users. This helps achieve a higher accuracy as each frame of data 

in the testing dataset may find a similar data frame in the training dataset. However, this 

may not be very practical in real practice as it is challenging to get a training dataset from 

every new user. The leave-one-subject-out cross-validation, also known as the cross-user-

validation, becomes a helpful method to evaluate the robustness of the classification model. 

[107] In other words, data from one of the 12 users serve as the testing set, and the other 

data are used as the training dataset. This step is repeated 12 times by setting each user’s 

data as the testing dataset. The average value is calculated as the accuracy of leave-one-

subject-out cross-validation. Instead of just evaluating the performance of classifying 9 

postures, the dataset is also relabeled as 4 posture types: Front, Left, Right, and Back since 

they are the most commonly used posture category for in-bed posture detection. More 

specifically, ‘Front’ contains soldier and starfish, ‘Left’ contains left log, left fetus, and 
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left yearner, ‘Right’ contains right log, right fetus, and yearner, and ‘Back’ only contains 

the freefall posture. This 4-posture dataset is down-sampled again to keep balanced data 

size within each posture. Furthermore, to reduce the computational cost, the number of 

PCA components for the cross-user-validation is set as 30.  

Table 4.4 9-posture Cross-user-validation accuracy. © 2021 IEEE. Reprinted with 

permission from [27]. 

Classifier Ceiling-mounted [%] Wall-mounted [%] 

LR        83.6 ±  9.5        73.3 ± 12.8 

RF        82.3 ±  9.7        71.4 ± 13.3 

SVM (linear)        84.9 ±10.3        70.7 ± 11.2 

SVM(RBF)        86.0 ±  8.8        76.3 ± 12.4 

MLP (logistic)        85.3 ±  8.3        71.1 ± 12.2 

MLP (tanh)        85.0 ±  9.8        70.2 ± 11.2 

MLP(Relu)        86.2 ±  8.7        71.3 ± 12.4 

 

In addition, the detection accuracy based on hand-crafted feature selection using 

cross-user-validation is not listed in detail. Because the best result (less than 70.0%) is 

vastly lower than that using HOG+PCA-based feature extraction. So only the cross-user-

validation result based on HOG+PCA-based feature extraction is analyzed for both 

mounting types.  

Table 4.4 summarizes the classification result of using 9-posture cross-user-

validation. Overall, the ceiling-mounted approach results in about 10.0% higher accuracy 

than that of the wall-mounted approach using the same data processing method. For the 

ceiling-mounted sensor node, SVM and MLP classifiers have relatively better 

performance in which the MLP with Relu neural unit the highest accuracy of 86.1% with 

8.8% deviation.  
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Table 4.5 4-Posture Cross-User-Validation Accuracy. © 2021 IEEE. Reprinted with 

permission from [27]. 

Classifier Ceiling-mounted [%] Wall-mounted [%] 

LR        88.0 ±  9.2          73.7 ±  8.8 

RF        84.4 ±11.7        72.5 ±10.1 

SVM (linear)        88.5 ±  9.8        71.3 ±  8.4 

SVM(RBF)        89.0 ±  9.8        80.4 ±  8.2 

MLP (logistic)        87.4 ±  9.4        75.7 ±  9.0 

MLP (tanh)        88.2 ±  9.3        73.8 ±  8.1 

MLP(Relu)        88.7 ±  9.4        77.8 ±  8.5 

 

Table 4.5 summarizes the result of 4-posture cross-user-validation accuracy. Both 

the SVM and MLP classifiers still have better performance than the other classifiers, while 

the SVM classifier with RBF kernel achieves the highest accuracy of 89.0% with ±9.8% 

deviation. Compared to the wall-mounted sensor node, the ceiling-mounted sensor node 

increases the accuracy by at least 8.6%. From Table 6, we can find that both the SVM and 

MLP classifiers return the best results. This also matches with the result of 5-fold leave-

one-out cross-validation. The MLP classifier is a NN that contains hundreds of neurons, 

so it tends to have stronger fitting abilities when working as a classifier. Also, the 

outperforming SVM classifier agrees with the research observation by the computer vision 

community that the SVM can achieve better performance than other classifiers when using  

HOG features [83]. 
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Figure 4.19 Confusion matrix for 9 class cross-user validation using MLP(Relu) 

classifier and top sensor data. © 2021 IEEE. Reprinted with permission from [27]. 

 

 

Figure 4.20 Confusion matrix for 4 class cross-user validation using SVM（RBF) 

classifier and top sensor data. © 2021 IEEE. Reprinted with permission from [27]. 

 

Figure 4.19 shows the confusion matrix based on the cross-user- validation for the 

9-posture classification using the MLP(Relu) classifier. The values in the confusion matrix 

are calculated based on the average value of accuracy in the cross-user-validation. The 

‘Freefall’ and ‘starfish’ postures have relatively poorer performance compared to other 

postures. 19.7% of the ‘starfish’ postures are wrongly detected as ‘Freefall’. 17.2% of the 
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‘freefall’ postures are wrongly detected as the ‘starfish’. A possible reason is that ‘starfish’ 

is a horizontal flip of ‘freefall’, and they have similar shape profiles. One significant 

difference between these two postures is that ‘starfish’ should have a much higher 

temperature around the head area than the ‘freefall’ since ‘freefall’ is a face-down posture. 

This can be used as a uniquely effective feature to differentiate the ‘freefall’ from the 

‘starfish’ posture, while reliably identifying the head location during a low-pixel thermal 

image poses another challenge.  

Figure 4.19 shows the confusion matrix for the 4-posture classification using the 

MLP classifier with Relu unit and the SVM classifier with linear kernel, respectively. The 

confusion matrix shows that the left and right postures have relatively higher accuracies 

(> 96.0%) than those of the other postures. Moreover, the front and back postures are more 

likely to be wrongly identified. 

4.3.4.4. Evaluation of different preprocessing methods 

The preprocessing could be a crucial step for further improving the final 

classification accuracy. There are two significant steps in the preprocessing step: 

translation and rotation (RT) and temperature scaling (TS). Table 4.6 compares the 

performance of different combinations of preprocessing and feature extraction methods. 

For each combination, the highest accuracy achieved from cross-user-validation among 

all classifiers is used for further comparison.  

We can find that the RT and the TS can largely improve the robustness of the 

classification model when using the HOG+PCA-based feature extraction. By applying 

both the RT and TS, the cross-user-validation accuracy of 4 postures is increased from 
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60.7% to 88.97%, and the cross-user-validation accuracy of 9 postures is increased from 

58.3% to 86.2% 

Table 4.6 Accuracy using Different Preprocessing Methods. © 2021 IEEE. 

Reprinted with permission from [27]. 

RT TS HOG 4-posture [%] 9-posture [%] 

●  ● 81.3 75.5 

 ● ● 60.7 58.3 

  ● 67.7 61.8 

● ● ● 89.0 86.2 

 

Table 4.7 compares the result in this work with other approaches.  Our proposed 

model achieved a significantly high accuracy (99.5%) for leave one out cross-validation. 

Therefore, here we only compare the work with cross-user validation. We can see that our 

proposed model is still about 8.9% lower compared to 97.9% accuracy from the state-of-

art method using pressure mat. However, a bed with a pressure sensing mat is very costly 

(>$5,000) and requires frequent maintenance, making it unsuitable for widely home and 

long-term use. The proposed thermopile array sensor-based approach provides a low-cost 

alternative (less than $100). Furthermore, the thermopile array sensors have many other 

advantages, such as non-contact passive sensing, non-privacy invasion, plug and play, and 

low power consumption. This makes them more practical for long-term application. 

Table 4.7 Comparison with the state of the art 

Sensor type No. pixel No. of 

Pos. 

Evaluation (cross-user) Acc.[%] Ref. 

Pressure 

mat 

64×27 4 Training: 7, Testing: 5 97.9 [108]  

128×64 6 Training: 13, Testing: 1  83.0, precision 

83.2, recall 

[106] 

128×64 6 Training: 13, Testing: 1  91.2 [109]  

Thermopile 

array 

32×24 4 Training: 11, Testing: 1  89.0 This 

work 9 86.1 
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4.4. Conclusion 

This chapter proposes traditional machine learning methods such as handcrafted 

and HOG feature extraction for falling and in-bed posture detection. 

A handcrafted feature extraction method is proposed for fall detection, which relies 

on an 8x8 pixel Grid-EYE sensor and a distance sensor. Experimental studies include three 

non-fall activities - standing, sitting, and stooping, and two fall actions – forward falling 

and sideway falling to simulate elderly daily activities. Different feature sets for the SVM-

based machine learning algorithm are analyzed, and their impact on fall detection accuracy 

is evaluated and compared empirically. Overall accuracy above 90% is achieved. 

An in-bed posture detection method has been developed. The preprocessing 

method and feature extraction approach based on the combination of the histogram of 

oriented gradient and the principal component analysis (HOG+PCA) is compared to the 

traditional hand-crafted feature classification. The user study shows that a total of 9 in-

bed postures can be successfully classified with 5-fold cross-validation-accuracy over 

99.8%. The cross-user-validation is also performed to evaluate the robustness of posture 

classification models. The 4-posture classification achieves an accuracy of 89.0% when 

using the SVM classifier, and the 9-posture classification achieves an accuracy of 86.2% 

when using the NN classifier based on 30 principal components features. On the other 

hand, the cross-user-validation using hand-crafted feature extraction is not satisfied 

(<70.0%), which indicates that they are only suitable for the personalized model. 

The results show the traditional machine learning methods can reach high accuracy 

for falling and posture detection, but a unique processing method is required for different 
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objectives. Moreover, the performance is sensitive to the feature extraction step. For 

example, HOG needs to work with specific data preprocessing to extract reliable features.  

 

 

 



 

5. FACING DIRECTION DETECTION AND IDENTIFICATION USING 

THERMOPILE ARRAY SENSOR AND DEEP LEARNING* 

5.1. Review of Deep Learning Methods using Thermopile Array Sensor 

Some deep learning models have recently also been applied to thermopile array 

sensor data. For example, three Grid-EYE sensors are installed on the two walls and the 

ceiling of a gym room to detect 26 different yoga postures[66]. Moreover, a 99.8% 

accuracy is reached using a customized CNN model with three convolutional layers. In 

addition, a deep convolutional encoder-decoder model reaches 98.43% accuracy when 

applying to the MLX90640 sensor data for occupancy counting with adaptive placement 

[30]. 

5.2. Case Study: Pre-Trained CNN for Facing Direction Detection 

5.2.1. Experiment Setup 

The experiment is performed in a specified laboratory area. Each testing 

subject/user sits on a chair that can be easily rotated. Type A thermopile sensor node is set 

in front of the user at the height of 0.75m. Five facing directions are tested in our 

experiment: Left 45º/90º, Right 45º/90º, and Front. The top view of the experimental setup 

schematic and its snapshot are shown in  Figure 5.1(a) and (b), respectively, in which the 

user facing direction is ‘Right’ 45º. The snapshots of the other four tested directions are 

shown in Figure 5.1(c). Three detection distances are tested: 0.6m, 1.2m, and 1.8m. For 

 

* Part of this chapter is reprinted, with permission, from " Unobtrusive Sensor based Occupancy Facing 

Direction Detection and Tracking using Advanced Machine Learning Algorithms." By Chen, Z. ,Y. Wang 

and Liu Han.(2018). IEEE SENSORS JOURNAL 18(15): 6360-6368. Copyright © 2018 IEEE 
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all these three detection distances, the facing direction keeps the same as the torso direction. 

Totally five users participated in this experiment.  

The training datasets and background features are always captured beforehand. 

Data images of each facing direction from each subject are saved for at least five seconds, 

and only the first 50 images of each facing direction from each subject are used in the 

training dataset to make a fair comparison. That is, the training dataset includes a total of 

250 images from each subject.  

     To record testing datasets, a facing direction instruction video is played to the 

subjects simultaneously to provide ground truth. The instruction in the video is designed 

as follows: each subject rotates continuously seven times while keeping at each facing 

direction for four seconds before rotating to the next direction. The order of designed 

directions is ‘Front’, ‘Left 45º’, ‘Left 90º’, ‘Left 45º’, ‘Front’, ‘Right 45º’, ‘Right 90º’ and 

‘Front’. For the first six rotations, the subject only needs to rotate 45º. During the last 

rotation, the user rotates directly from ‘Right 90º’ to the ‘Front’ position.  

       Based on this design, the testing datasets should include 320 images (32 seconds). 

However, the actual recorded testing datasets have about 350 images because the data 

recording always starts before playing the instruction video and ends after the end of the 

instruction video. That is, the first ‘Front’ and the last ‘Front’ contain data longer than 4 

seconds. And thus, in the ideal case, the ground truth reference needs to be modified to be 

consistent with the testing time frame, which is difficult to achieve, as the rotation speed 

of each user is different. In this experiment, we directly extend the ground truth datasets 

from 320 to 350 by aligning the first frame of ‘Left 45º’ and adding ‘Front’ to the 



 

85 

 

beginning and the end, so it has consistent time frames with the testing datasets. This may 

still cause inaccuracy in the detection because there is always a delay before the user starts 

rotating to the specific direction after the user reacts to the instruction video. This delay 

varies between different users. 

 

Figure 5.1 (a) Systematic of testing experiment top view (b) Experiment setup with 

facing direction ‘Right 45º’ (c) Snapshots of experiment setup. © 2018 IEEE. 

Reprinted with permission from [67]. 

 

5.2.2. Data Preprocessing 

This section introduces the preprocessing algorithms to convert a raw 8×8 

temperature image to a 32×32 binary matrix. Furthermore, the step-by-step data 

visualization is shown in fig. 5. More specifically, Figure 5.2(a) and (b) show the 

photographic representation and raw data received by the Grid-EYE sensor. The first step 

of preprocessing (Figure 5.2 (c)) is to subtract the background temperature noises of other 

non-human heat sources (i.e., wall light, computer, HVAC vents etc.) from the raw data. 

The purpose is to identify and focus the subject in the FOV. Then the 8×8 matrix is 

converted to the 32×32 matrix using bilinear interpolation, as shown in Figure 5.2 (d). In 
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the end, binarization with adaptive threshold values is implemented to highlight the main 

body of the subject in the image.  

To obtain the threshold value, the maximum temperature difference of every 

column of the 32 x 32 matrix is first sorted and among which the minimum temperature 

difference is taken as the threshold for binarization. The final effect after binarization is 

shown in Figure 5.2 (e). Binarization can efficiently reduce redundancy information in the 

temperature image. The features will then be extracted based on the image with binary 

data. After preprocessing, two feature extraction methods are used to compare their 

detection accuracy.  

 

Figure 5.2 (a) Optical image (b)Raw data from the Grid-EYE sensor (c) Data after 

background subtraction; (d) Linearly interpolate image to a 32×32 matrix;(e) 

image after Binarization with adaptive threshold values. © 2018 IEEE. Reprinted 

with permission from [67]. 

 

5.2.3. Pre-trained CNN 

This section introduces the CNN-based feature extraction method. In the process 

of a CNN layer, the input is a certain area size (width × height) of the data, and the output 

is the inner product of the input and multiple layers of the filter (with a fixed weight of the 
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neurons). As shown in Fig. 4, the red rectangle stands for a filter, and the 8x8 group of 

yellow circles represents an image. A convolutional operation is performed on the input 

data based on a filter with weights 𝑤1 , 𝑤2 , 𝑤3 , 𝑤4 , and bias 𝑏0 , determined by the 

pretrained model. The blue circle represents the output of the convolution, which is a 

character of the area in the red rectangle. After calculating the local data within a window, 

the data window continues to slide until all data has been calculated. This is considered as 

a single CNN layer. And the green circles represent the character matrix after the original 

data is processed by several layers of CNN.  

   In this experiment, the CNN model [110]. consisting of a seven-layer structure (fig. 

5) is used for recognizing images of characters. The first layer is a convolutional layer 

with no padding, the output of a 28×28×20 matrix. And the input is a 32×32×1 image, that 

is why the raw 8×8 image of Grid-EYE sensor is first converted to a 32×32 binary image 

(fig.5). The second layer is a max-pool layer. The third layer is a convolutional layer. The 

fourth layer is another max-pool layer. The fifth layer is a convolutional layer, and the 

sixth layer is a Rectified Linear Unit (ReLU) layer. The first six layers can produce a 

matrix of 2×2×500 features, a characteristic of deep learning that it constructs. The last 

layer is a fully connected lay that gives the possibility of the 26 categories (letters). Noting 

that the original CNN model was not trained based on thermal image, it cannot work 

automatically as a classifier, so the first six layers are used as the feature extractor and it 

was integrated with the SVM classifier. The produced matrix of 2×2×500 features of each 

thermal image is rearranged to a 1×2000 and saved as a feature set with 2000 dimensions. 
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Figure 5.3 The structure of the CNN model used in this paper. © 2018 IEEE. 

Reprinted with permission from [67]. 

 

5.2.4. Handcrafted Features (Baseline) 

Three Handcrafted features are extracted from the binarized image (fig.3(e)) to be 

used for SVM classification. Each binary image consists of 32 by 32 pixels. Pixels of 1 

are considered as high temperature pixels. Pixels of 0 are considered as low temperature 

pixels. Each binary image is divided into four parts evenly, named the top left, top right, 

bottom left, and bottom right.  

Feature 1: Slope of the high temperature pixels. The middle point of high temperature 

pixels of each row is defined first. The slope is then calculated by connecting the middle 

point with the maximum and minimum horizontal coordinate, as shown in fig. 5(e). 

Feature 2: Area difference between the bottom two parts of the thermal image. That is the 

number of pixel differences between the bottom left and the bottom right.  

Feature 3: Area difference between the top two parts of the thermal image. That is the 

number of pixel differences between the bottom left and the bottom right. Algorithm 1 

shows how the three features are calculated in detail. 
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5.2.5. Experimental Results 

Since three features are included in the handcrafted feature extraction method, the 

performance of different feature combinations is compared. The results are shown in 

Figure 5.4. The detection accuracy by using most feature combinations is above 80.0% 

except the feature set (2,3) at a distance of 0.6m and feature set (1,3) at 1.8m. The average 

accuracy at three detection distances for feature set (1,2), (1,3), (2,3) and (1,2,3) are 81.7%, 

79.3% 80.2% and 82.5%, respectively. Feature set (1,2,3) has the highest accuracy at 0.6m 

and 1.8m, and feature set (1,2) has the highest accuracy at 1.8m. We consider (1,2,3) to 

be the best feature set as it has the highest average accuracy even though it does not 

maintain the highest accuracy at all three detection distances. 

 

Figure 5.4 Feature set analysis on handcrafted features. © 2018 IEEE. Reprinted 

with permission from [67]. 

 

Figure 5.5 compares the detection results using two feature extraction methods at 

three distances: (a) 0.6m (b) 1.2m (c) 1.8m. Results on the left panel are based on 

handcrafted feature set (1,2,3).  Results on the right panel are based on feature extracted 
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by CNN. Experimental results show that by adding a median filter with a window size of 

three, the detection accuracy can be further improved. The results after adding the median 

filter are shown in Figure 5.6. 

 

 

Figure 5.5 Facing direction detection results at distance of (a) 0.6m (b) 1.2m (c) 

1.8m. The left panel shows the detection results based on manually-define features 

and the SVM classifier. The right panel shows the detection results based on the 

CNN feature extraction and the SVM classifier. © 2018 IEEE. Reprinted with 

permission from [67]. 
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Figure 5.6 Facing direction detection results after adding a median filter at distance 

of (a) 0.6m (b) 1.2m (c) 1.8m. The left panel shows the detection results based on 

handcrafted features and the SVM classifier. The right panel shows the detection 

results based on the CNN feature extraction and the SVM classifier. © 2018 IEEE. 

Reprinted with permission from [67]. 

 

     Figure 5.7 summarizes the accuracy of facing direction detection without post-

processing. Compared to handcrafted feature extraction, the average detection accuracy 

of using CNN-based feature extraction is improved by 3.4%, 8.2%, and 12.9%, 

respectively, at a distance of 0.6m, 1.2m, and 1.8m. The post-processing filtering does not 

lead to an obvious accuracy improvement of using CNN-based feature extraction, and the 

average accuracy improvement is only 2.4%. A possible reason is that the accuracy 

without filtering is already high (86.2%, 93.6%, 93.4% at a distance of 0.6m, 1.2m, 1.8m, 

respectively) and relatively close to 100%. However, the extra filtering results in a much 
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more obvious increase for handcrafted feature extraction: an increase of 4.2% (81.2% to 

85.4%), 5.4% (85.2% to 90.6%) and 5.2% (80.4% to 85.6%) at distance of 0.6m, 1.2m 

and 1.8m, respectively. Furthermore, when the distance increases from 1.2m to 1.8m, the 

accuracy using ma handcrafted feature extraction has an obvious decrease (about -5.3%), 

while detection accuracy using CNN-based feature extraction remains a high value > 

95.0%. In summary, the CNN-based feature extraction detection method remains a high 

and reliable accuracy method compared to the handcrafted feature extraction method, 

regardless of its detection distances. A median filter can increase the detection accuracy, 

particularly for detection based on the handcrafted feature extraction method at a further 

distance. 

 

 

Figure 5.7 Facing direction detection accuracy comparison. CNN based feature 

extraction + SVM classifier vs handcrafted feature extraction + SVM classifier vs 

CNN based feature extraction + SVM classifier + median filter vs handcrafted 

features + SVM classifier + median filter. © 2018 IEEE. Reprinted with permission 

from [67]. 
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5.3. Case Study: Customized CNN for Occupancy Identification 

5.3.1. Experiment Setup 

The Type B thermopile array node is installed on the ceiling near a lab entrance 

for occupancy identification, as shown in Figure 5.8. There are two fixed marking points 

on the ground (A and B). Each testing subject follows the same routine to walk in and out 

of the room during the experiment (yellow line in the subplotting figure). By doing this, 

the effect of the walking trajectory on the identification performance can be avoided.  For 

each testing subject, they are asked to walk in and out 40 times each. The data saving is 

manually controlled. Every time, data saving starts first, and then the subject begins to 

walk. The data saving ends when she/he arrives at the target point (B for 'walk in' and A 

for 'walk out'). Eight testing subjects (two female and six male) participated in the 

experiments. Their height and weight information are listed in Table 5.1. 

 

Figure 5.8 Experiment setup of occupancy identification 
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Table 5.1 Personal information of the testing subjects 

User Gender Height[cm] Weight[kg] 

1 M 177 68 

2 M 170 70 

3 M 172 71 

4 M 168 65 

5 F 165 47 

6 F 163 48 

7 M 180 75 

8 M 182 80 

 

Thus, we have a total of 40(times)×2(direction) ×8(subjects) = 640 instances of 

data. Here, an 'instance' of data contains all sensor data from when the subject enters and 

ends when she/he leaves through the entrance/ doorway.  

5.3.2. Customized CNN Model 

Figure 5.9 shows the systematic of the identification algorithm. The preprocessing 

is performed first to fuse the data from two types of sensors and generate a modified 

feature image which is used as the input to the CNN model 

(1) Distance sensor data filtering and normalization 

Data from the distance sensor requires a denoising and normalization process. The 

original data from distance sensors only have valid values between 10 to 2000 with unit 
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mm. First, filtering is performed to remain only the valid data, and then the normalization 

is performed to convert the data range to (20,35) using the following equation.  

(2000 )
20

3
n

D
D

−
= +  

Here D is the original measurement data of the range sensor, and Dn is the value after 

normalization. This step converts the data from the distance sensors to a similar range as 

that collected from the Grid-EYE sensor. This helps the model training achieve high 

accuracy. 

(2) Time segmentation 

The CNN model requires an input with a fixed dimension. However, the 

dimensions of the different data instances are different. Thus, time segmentation needs to 

be determined before data can be fed into the CNN model. Here, it is achieved by finding 

the center time index and selecting a preset time length L. The center time index is 

determined by checking the range of valid distance sensor data, and the middle time index 

is considered the center index. For example, if the first valid range sensor data has an index  

T1, and the last valid range sensor data has an index T2, the center time index will be (T1 

+ T2)/2, as shown in Figure 5.9 (a).  A constant value of 60(frames) is selected as the time 

length L, equivalent to data of 2.5s since its sampling frequency is 25Hz. By manually 

checking the plotting of Grid-EYE sensor data (Figure 5.9(b)), this time length is 

sufficiently long to include the data from the whole period where the occupant is within 

the sensor FOV. 
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Figure 5.9 Systematic of data processing pipeline: (a) data preprocessing of  

VL53L0X (b) Grid-EYE data matching (c) modified feature image (d) CNN based 

classification model 
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(3) Reshape the sensor data.  

Since the sampling frequency of the two sensors is different, we need to match the 

thermal data from Grid-EYE (10Hz) with the data from VL53L0 distance sensors(25Hz) 

based on the time index. In other words, each timestamp corresponds to 1×4 data from the 

distance sensors and 8×8 data from the infrared array sensor. Figure 5.9(b) shows the 

plotting of Grid-EYE data at frame number 80 – 120, and we can see that the high-

temperature area moves from the left bottom of the figure to the right top, which indicates 

the movement of the testing subject under the sensor node. 

After that, data from the two types of sensors are reshaped to a 1×68 matrix. Next, 

data from the segmented period are combined to generate a modified data matrix. Each 

line of this data matrix is the sensor data from a timestamp. Finally, a 60×68 feature image 

is generated to be the CNN model's input, as shown in Figure 5.9(c).  

(4) CNN model 

     A CNN model can automatically extract features from the feature image and 

complete the classification, as shown in Figure 5.9(d). However, the CNN model contains 

multiple convolutional layers and fully connected (FC) layers. Therefore, the structure of 

the CNN model needs to be designed and optimized to get both high accuracy and low 

computing cost. The CNN model's performance with different hyperparameters is 

compared, including the number of convolutional layers, FC layers, and filter size. 

5.3.3. Experimental Results 

Two steps are applied to achieve and evaluate the performance of the CNN model. 

The first setup aims to determine the hyperparameters of the CNN model, such as the 
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number of layers and filters. To do so, we separate the whole dataset into two parts, the 

training data, and validation data. Moreover, they are fixed for every set of 

hyperparameters. To be more specific, the first 60 instances of each user are used as the 

training data, and the rest 20 instances are used as the validation dataset. Therefore, the 

training dataset has 480 instances of data, and the validation dataset has 160 instances.  

During the second step, the four-fold cross-validation is used to evaluate the performance 

of the identification model with a specific structure identified in the first step. The total 

dataset is randomly separated into four folds; each folder contains 160 instances of data. 

Three-fold (480 instances of data) is used as training, and one-fold (160 instances of data) 

is used as testing. This process can be repeated four times by using different folds as the 

testing dataset. Finally, the average accuracy is reported as the model accuracy.  

 

Figure 5.10 Hyperparameter tuning of the deep learning model for occupancy 

identification 
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Figure 5.10(a) shows the accuracy comparison of the model with different numbers 

of convolutional layers and filters. The CNN model with one, two, and three convolutional 

layers are included, and for each convolutional layer, we tune the filter's number. The X-

axis listed the filter number of the first convolutional layer. For the other layers, the 

number of the filter doubles that of its previous layer. For example, if the first layer has 

16 filters for a two-layer CNN model, the second layer will have 32 filters. In addition, 

the fully connected layers are fixed as two layers with 256 and 128 neurons. We can find 

that the accuracy of the CNN model with two layers or three layers is significantly higher 

than that of the model with one layer. 

In comparison, the accuracy of the three-layer model is similar to that of the two-

layer model. In addition, for the two-layer model, we can find that the accuracy increases 

when the filter size of the first layer increases from 4 to 16, and then it slightly decreases. 

Thus, we choose a CNN model with two convolutional layers in this work. After 

determining the hyperparameters of convolutional layers, we compare the model with 

different FC layers. Figure 5.10 (b) shows that 2 FC layers with 128 and 64 neurons reach 

the highest accuracy. 

Table 5.2 shows the details of selected hyperparameters, which achieve the highest 

accuracy. It contains two convolutional layers with 3×3 filters and three fully connected 

layers. In addition, there is a max-pooling layer after each convolutional layer. Figure 5.10 

(c) and (d) shows the accuracy and loss vs. epoch number during training using the 

aforementioned CNN structure, respectively. We found that the best configuration of these 
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hyperparameters can reach a training accuracy of 98.1% and a validation accuracy of 

95.0%. 

Table 5.2  Selected hyperparameters 

Layer Hyperparameter Value 

Input Input image size 68 × 60 

1st convolutional Filter size 3 × 3 

Filter number 8 

Max-pooling Filter size 2 × 2 

2nd convolutional Filter number  16 

Filter size 3 × 3 

Max-pooling Filter size 2 × 2 

1st Full connected  No. of neurons 128 

2nd Fully connected  No. of neurons 64 

3rd Fully connected No. of neurons 8 

 

After the hyperparameter of the model is determined, 4-fold cross-validation is 

performed to analyze the model performance further. Figure 5.11 shows the confusion 

matrix of the cross-validation result with 8 users. The accuracy is higher than 90% for all 

users. 
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Figure 5.11 Confusion matrix of occupancy identification 

 

Table 5.3 shows the comparison between state-of-the-art approaches and the result 

in this work. The proposed work has lower power consumption and higher accuracy than 

most other methods. The accuracy is only slightly lower than the approach using three 

ultrasonic sensors on the door frame. However, their power consumption is much higher, 

and the ultrasonic signal is not animal friendly.  
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 Table 5.3 Comparison with the state of the art 

Category Sensing approach No. of 

subjects 

Acc. 

[%] 

FOV Power 

[mW] 

Ref. 

Body shape 

ultrasonic 

distance 

(doorframe) 

1 on top 4 89.7 Doorway 75 [111]  

2 on top 5 90.1 Doorway 150 [112]  

1 on top, 2 on side 20 95.3 Doorway 225 [113]  

RF, Gait 

signature 

UWB (3.1  

4.8GHz) 

8 88.2 Doorway 116 [114]  

15 80.9 3m to user 116 [48]  

Wi-Fi 6 88.3 3m (2 access 

points) 

200 [115]  

4 89.9 200 [116]  

On-object 

sensing 

5 Accelerometers 

on objects, kitchen 

5 96.1 N/A <5 [117]  

Thermal 

signature + 

body shape 

1 Grid-EYE(8×8)+ 

4 distance sensors 

8 94.4 Doorway 

3m x 3m 

100 This 

work 

 

5.4. Conclusions 

This chapter proposes deep learning methods such as pre-trained CNN and 

customized CNN models for facing direction detection and occupancy identification. 

A pre-trained CNN model is applied as a feature extractor for facing direction 

detection. The experiments are performed at three distances, 0.6m, 1.2m, and 1.8m. The 
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CNN-based feature extraction demonstrates more reliable performance for facing 

direction detection compared to the handcrafted features regardless of the detection ranges. 

For example, the average accuracy reaches 89.1%, 95.3%, and 95.1% at the distance of 

0.6m, 1.2m, and 1.8m, respectively.  

A customized CNN model is proposed to fuse the data from two types of sensors 

for occupancy identification.  In addition, a non-intrusive sensor node is prototyped based 

on a thermopile array and four distance sensors. The sensor node is installed near the lab 

entrance as the realistic setup to get the dataset, and 94.4% accuracy is achieved to identify 

eight different people. The proposed approach also shows a higher accuracy and lower 

power consumption compared to the state-of-the-art. 

Deep learning methods can automatically extract features from the raw sensor 

output without applying specific feature extraction methods. Moreover, they are more 

robust than the handcrafted features. 

 



 

6. CONCLUSIONS 

6.1. Contribution 

Two types of infrared sensing technologies, SLEEPIR, and thermopile array have 

been applied for fine-grained occupancy sensing objectives such as presence detection, 

posture detection, facing direction detection, and occupancy identification. In addition, 

data processing models based on handcrafted features, traditional machine learning, and 

deep learning are proposed. 

In Chapter 2, a mathematical model is proposed to predict SLEEPIR output for 

stationary occupancy detection under changing ambient temperature. The unoccupied 

Vpp,u is found to be proportional to the temperature difference of sensor and background 

4 4

, ( )pp u floor sensorV K T T= − . The linearity is validated, and the coefficient KBB is characterized 

using a blackbody radiation source. The LC shutters' performance for stationary 

occupancy detection is evaluated by performing the occupant experiments to obtain ΔVpp 

at different distances. The sensor noise is analyzed, and the LC shutters can be classified 

as ‘Good’,’Fair’, and ‘Poor’ based on metric ΔVpp@1.5m. Moreover, KBB is highly 

correlated with the ΔVpp@1.5m value, so it can help reduce the time of LC shutter 

classification vastly. Finally, SLEEPIR sensor nodes are prepared with ‘Good’ LC shutters 

to enable the maximum FOV of stationary occupancy detection. 

In Chapter 3, datasets for occupancy presence detection using SLEEPIR sensor 

node are collected in a lab room and a room in a residential apartment. In addition, two 

edge cases experiments are also performed, including changing the room temperature and 

lying on a bed. Finally, different occupancy presence detection algorithms are proposed 
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and compared. The LSTM is a deep learning approach that uses time-series features 

extracted from the sequence of SLEEPIR sensor samples. The feature includes Vpp from 

SLEEPIR modules, temperature reading, and the output of the digital PIR sensor. Stat. 

LSTM is another deep learning model using statistical features instead of only Vpp values, 

and it does not need the data from a digital PIR sensor. 

The different occupancy presence detection algorithms are compared by reporting 

their daily occupancy detection accuracy. The result shows that both LSTM and Stat. 

LSTM reaches reliable high accuracy >96.0% for both the lab room and residential 

apartment. Moreover, the Stat. LSTM model does not require the data from a digital PIR 

sensor.  Furthermore, the result of the edge case experiment indicates that the proposed 

model is a reliable occupancy presence detection method. 

In Chapter 4, handcrafted and HOG feature extraction methods are proposed for 

fall detection and in-bed posture detection, respectively. The fall detection relies on an 

8x8 pixel Grid-EYE sensor and a distance sensor. Experimental studies include three non-

fall activities - standing, sitting, and stooping, and two fall actions – forward falling and 

sideway falling to simulate elderly daily activities. Different feature sets for the SVM-

based machine learning algorithm are analyzed, and their impact on fall detection accuracy 

is evaluated and compared empirically. Overall accuracy above 90% is achieved. For the 

in-bed posture detection, the preprocessing method and feature extraction approach based 

on the HOG features and the principal component analysis (HOG+PCA) is compared to 

the traditional hand-crafted feature classification. The user study shows that a total of 9 

in-bed postures can be successfully classified with 5-fold cross-validation-accuracy over 
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99.8%. The cross-user-validation is also performed to evaluate the robustness of posture 

classification models. The HOG features show significantly higher accuracy than 

handcrafted features. The 4-posture classification achieves an accuracy of 89.0% when 

using the SVM classifier, and the 9-posture classification achieves an accuracy of 86.2% 

when using the NN classifier based on 30 principal components features. On the other 

hand, the cross-user-validation using hand-crafted feature extraction is not satisfied 

(<70.0%), which indicates that they are only suitable for the personalized model. 

In Chapter 5, a pre-trained CNN model is proposed as a feature extractor for facing 

direction detection. A customized CNN is proposed to fuse the data from two types of 

sensors for occupancy identification. The facing direction detection experiments are 

performed at three distances, 0.6m, 1.2m, and 1.8m. The CNN-based feature extraction 

demonstrates more reliable performance for facing direction detection compared to the 

handcrafted features regardless of the detection ranges. For example, the average accuracy 

reaches 89.1%, 95.3%, and 95.1% at the distance of 0.6m, 1.2m, and 1.8m, respectively. 

A non-intrusive sensor node is prototyped based on a thermopile array and four distance 

sensors for occupancy identification. The sensor node is installed near the lab entrance as 

the realistic setup to get the dataset, and 94.4% accuracy is achieved to identify eight 

different people. The proposed approach also shows a higher accuracy and lower power 

consumption compared to the state-of-the-art. 

6.2. Future Work 

The SLEEPIR sensor nodes have been tested within the lab and residential 

apartment for weeks. However, the activity and number of the human testing subject 
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involved in the experiment are still limited. In addition, based on the proposed 

mathematical model, the SLEEPIR sensor output is sensitive to the posture and clothing 

of the testing subjects. So future work should include more variances in the dataset.  

Currently, only a single SLEEPIR sensor node is deployed for occupancy detection in a 

single room, and its application is limited to presence detection. A SLEEPIR sensor 

network can be applied to extend the SLEEPIR system for fine-grained occupancy 

objectives such as animal detection and human activity detection[118, 119]. 

The proposed deep learning model has shown high accuracy for occupancy 

identification. However, the variance in the dataset is still limited. For example, only one 

walking path is included in the dataset, and all the users are not carrying items such as a 

bag during the experiments.  Furthermore, the same occupancy may have different 

clothing and shoe heights. The sensitivity of the occupancy identification model needs to 

be analyzed under different scenarios.   

The cross-user validation accuracy is still limited as it is usually hard to have a 

general model for different users. A possible reason is that the feature extracted may highly 

depend on the identity of the testing subject. Therefore, the desired feature extractor 

should extract features only related to the postures instead of identity. Deep learning 

models such as CNN may also cause overfitting due to their strong feature extraction 

capabilities. Domain-adversarial training method can be a solution to improve the cross-

user validation accuracy[120]. For example, an occupancy identification classifier may 

serve as the domain classifier to help extract robust features during deep learning model 

training[121]. In addition, multitask learning could be another method to improve the 
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generalization of models by using the training information related to other tasks[122] 

[123]. For example, a multitask model is trained for motion classification and occupancy 

identification[48]. In-bed posture and identification can be detected together with a deep 

multitask model [124] . 
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