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ABSTRACT

Hearing loss affects a significant portion of the global population. It is widely accepted that the

effective management of hearing loss early in life helps to avoid development delay, and treating

hearing loss later on has a significantly positive effect on quality of life. Conventional hearing

aids function by exclusively amplifying sound to compensate for a patient’s decreased hearing

threshold. However, they do not compensate for the diminished frequency bandwidth that comes

along with sensioneural hearing loss. A collection of hydrodynamically-coupled, damped, driven

harmonic oscillators are used to simulate the basilar membrane displacement response to an audio

signal as a surrogate for directly modeling audio perception. This model, coupled with a high-

dimensional, global, gradient-free optimization technique is used to design filtered audio signals

which improve the frequency bandwidth in the hearing-damaged cochlea. By substituting an orig-

inal simple sinusoidal tone with a complex of frequencies that interfere on the cochlea, we show

that it is possible to improve frequency selectivity in the damaged cochlea using only an audio

filtering technique. This type of process may, in the future, be incorporated with conventional

hearing aid technology to further improve the audibility and intelligibility of audio for those with

mild hearing loss.
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1. INTRODUCTION

Figure 1.1: A diagram of the organ of Corti[1]. Note that the outer hair cells are rooted in the
basilar membrane and their stereocilia extend to the tectorial membrane1.

Over twenty percent of people in the United States over the age of twelve suffer from hearing

loss in at least one ear[2]. Hearing loss by itself is obviously a severe disadvantage by itself, but the

effect is compounded by the fact that hearing loss is often coupled with severe secondary effects

if left untreated. In children, hearing impairment has been linked to developmental delay[3]. This

delay is avoidable if a hearing deficit is detected and treated early on. Hearing impairment also

tends to make it more difficult to pick out speech from background noise. In adults, hearing loss

may lead to feelings of isolation[4] and depression[5].

1Reprinted with permission from J. S. Oghalai, “The cochlear amplifier: augmentation of the traveling wave within
the inner ear,” Current opinion in otolaryngology & head and neck surgery, vol. 12, pp. 431–438, Oct. 2004. Copyright
2004 Wolters Kluwer Health, Inc.
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The most commonly used variety of hearing aid simply amplifies sound to compensate for

the patient’s decreased hearing threshold [6]. Some advanced hearing aids use noise filtering,

audio compression, or selective amplification techniques in an attempt to amplify signal (speech,

music, etc.) independent from background noise[7]. While these approaches do compensate for

a patient’s decreased hearing threshold, they fail to consider any of the frequency-related effects

of diminished cochlea performance. In the course of transducing sound from a pressure wave into

an electrochemical signal, different frequency components of sound are spread to distinct spatial

locations along the cochlea. In a damaged cochlea, certain frequencies may resonate over a larger

portion of the cochlea than normal leading to a decrease in frequency bandwidth and a degraded

ability to discriminate between frequencies. The result is that speech may be more audible than

with an amplification-only hearing aid, but not as intelligible as they would be to a healthy ear.

The entire organ of Corti vibrates up and down when interacting with sound in the form of a

mechanical pressure wave. As the basilar membrane and tectorial membranes are coupled to the

modiolus at different points (see Figure 1.1), a shearing motion between the two membranes occurs

during the course of these vibrations. Outer hair cells are comprised of two major components:

bodies rooted in the basilar membrane, and stereocilia which attach to the tectorial membrane.

A shearing motion between the basilar and tectorial membranes will then, naturally, cause some

deflection of the outer hair cells’ stereocilia. Stereocilia extend and retract from the cell body in

response to deflection in a process known as electromotility[8]. Outer hair cell electromotility

provides an active force which opposes vibrational damping. As the basilar membrane changes in

thickness and mass from its base to its apex, frequencies naturally resonate at different spatial po-

sitions on the cochlea. In effect, the cochlea is able to separate frequency components of an audio

signal into different spatial locations and then separately amplify different frequency components

depending on which outer hair cells are active. From these characteristics, it is logical that this be-

havior is commonly referred to as the cochlear amplifier[1]. Inner hair cells are responsible for the

final transduction of a mechanical signal to an electrochemical signal which is transmitted through

the auditory nerve to the brain. The inner hair cells have a similar composition to outer hair cells,

2



but differ in their location and their function. When stereocilia of the inner hair cells are deflected

by the tectorial membrane, the inner hair cells release neurotransmitters which ultimately trigger

action potentials in the auditory nerve. There does currently exist a model which predicts auditory

nerve action potential activity resulting from an arbitrary sound wave[9]. However, this model does

not currently include any functionality which simulates the response of a deaf or hearing-impaired

cochlea.

Sensioneural hearing loss is commonly caused by some sort of damage to the outer hair

cells[10]. As the location of outer cells along the cochlea dictate which frequencies they respond

to, loss of or damage to these hair cells ultimately degrades the ability for the cochlea to amplify

certain frequencies for transduction by the inner hair cells. Degraded amplification clearly results

in elevated hearing thresholds which makes it more difficult to detect sound, but there are also sev-

eral frequency-related effects which are visible in experiment and simulation that are not treated

by common hearing aids.

Figure 1.2 shows the simulated comparison between the basilar membrane responses for active

and passive cochlea. In the passive cochlea model, all outer hair cell function is suppressed to

represent the behaviour of a dead cochlea lacking any active amplification mechanism. The passive

cochlea’s decreased response amplitude is obviously visible. Two frequency-related effects are also

clearly present. First, the width of the response peak is much more broad in the passive cochlea

response than in the active cochlea response[11]. Decreased peak sharpness results in decreased

frequency selectivity, which may play a major role in speech intelligibility[12]. Second, the tip

of the response peak appears to be shifted toward the base of the basilar membrane. This means

the tone will be perceived as being of higher frequency than it actually is[13]. These frequency-

related effects are even more evident when the audio signal input to the passive cochlea model is

amplified such that the response peak is the same magnitude as that of the active cochlea as seen

in Figure 1.3. This is the type of response expected to be caused by a sinusoidal signal amplified

by a conventional hearing aid. The goal of this work is to devise a signal processing method which

may compensate for these frequency-related consequences.

3
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Figure 1.2: Simulated basilar membrane displacement of both the active and passive cochlea in
response to a 4 kHz sine wave at approximately 40 dB SPL.
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Figure 1.3: Active basilar membrane response compared to amplified passive basilar membrane
response to a 4 kHz sine wave at 40 dB SPL.
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2. THE COCHLEA MODEL

2.1 The Helmholtz Model

In the late nineteenth century, Helmholtz posed a conceptual model to describe the mechanism

by which the cochlea is able to distinguish between frequencies in an audio signal comprised of

many different frequencies[14]. He imagined the structure in the inner ear to be comprised of

tensioned strands with differing natural frequencies having some degree of sympathetic vibration

between the strands similar to the construction of a piano.

This idea can be related to the damped harmonic oscillator:

m
d2x

dt2
+ h

dx

dt
+ kx = f(t) (2.1)

Above, m is the oscillator mass, h is a damping coefficient, k is a spring constant, and f(x)

is a driving force. The damped driven harmonic oscillator of course has a resonance at w0 =√
k/m − h2/4m2. Clearly, the resonant frequency is dependent on the mass, damping coefficient,

and spring constant of the oscillator. If we consider the basilar membrane to be a discretized

collection of oscillators rather than a continuous membrane we have a set of differential equations:

mi
d2xi

dt2
+ hi

dxi

dt
+ kixi = fi(t) i = 1, . . . , N (2.2)

The index i represents a section of the Basilar membrane. So, the coefficients mi and ki repre-

sent the mass and stiffness of a section of basilar membrane while hi represents the viscosity of the

fluid surrounding a section of the basilar membrane and fi(t) represents the driving force transmit-

ted to a section of the basilar membrane. While this model does describe frequency localization on

the cochlea, this model requires some expansion through the addition of several terms which will

make the behaviour of the model more similar to that of a real cochlea.
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2.2 Expanding upon the Helmholtz Model

There are three major factors described by Mammano & Nobili[15] which are missing from

the Helmholtz cochlea model.

The first term they describe is the shear viscosity term. This term represents force on an

oscillator due to differing velocity of its neighbors and has the form:

s+i

(
dxi+1

dt
− dxi

dt

)
− s−i

(
dxi−1

dt
− dxi

dt

)
(2.3)

They further consider the simplification si = s+i = s−i meaning that an oscillator to the left of

oscillator i imparts the same force due to a difference in velocity as the oscillator to the right of

oscillator i. This term then becomes:

si

(
2
dxi

dt
− dxi−1

dt
− dxi+1

dt

)
(2.4)

The second term has to do with the connection between oscillators. In the Helmholtz model,

there is no definite connection between oscillators meaning the response will be a stationary wave.

As the basilar membrane is a continuous entity driven from one end, it’s more reasonable to assume

that the response should be a traveling wave. This is conceptually similar to the waveform produced

by shaking one end of a rope. To account for this, Mammano & Nobili add a series of terms

accounting for the hydrodynamic coupling between oscillators:

−
N∑
j=1

Gj
i

d2xi

dt2
(2.5)

This term represents the change in acceleration of oscillator i due to motion of all other oscil-

lators in the system. These other oscillators are indexed with j. The coefficients Gj
i above come

from a matrix of Green’s functions which describe the hydrodynamic properties of the cochlea.

To this point the model only describes the behaviour of the passive cochlea while entirely ne-

glecting the cochlear motor effect which is responsible for the amplification and frequency discrim-
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ination that distinguishes mammalian hearing. This leads to the third and possibly most important

term:

− Ui(yi) (2.6)

The function Ui is an undamping term which accounts for opposition to the damping force

provided by the outer hair cells. Its argument, yi, is the outer hair cell stereocilia displacement.

When driven by a very high amplitude sound wave, the cochlear amplifier in a healthy ear will

saturate and the response of the active and passive cochlea will be nearly the same. To account for

this, the outer hair cell stereocilia displacment argument yi follows a sigmoidal shape. In practice,

Ui takes the form of a constant multiplied by the outer hair cell stereocilia displacement for each

oscillator in the system: Ui(yi) = uiyi. The constant defines the hearing ability of the cochlea. As

there is one constant term ui corresponding with each osccilator, these terms can be set to zero to

model a fully-passive cochlea, or they may be set to model hearing damage over a pre-determined

range of frequencies.

Combining the Helmholtz model in Equation 2.2 with the additional terms in Equations 2.4,

2.5, and 2.6 gives us the final functional form for our model of the basilar membrane dynamics:

N∑
j=1

(
Gj

i +miδ
i
j

) d2xi

dt2
+hi

dxi

dt
+Ui(yi)+si

(
2
dxi

dt
− dxi−1

dt
− dxi+1

dt

)
+kix = −Gias(t) (2.7)

The force term fi(t) has been replaced by the product of a Green’s function (Gi) representing

the hydrodynamic coupling between the stapes and the basilar membrane and the acceleration of

the stapes (as(t)) due to a sound pressure wave. Also note that the combination of the acceleration

terms requires the addition of the Kronecker delta δij which is equal to 1 if i = j and 0 if i ̸= j.

This model was implemented in MATLAB by Mammano & Nobili and is available in its orig-

inal form from their website. For ease of code execution, integration with optimization utilities,

and data analysis, I have ported the original MATLAB model to Python.

7
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Figure 2.1: Signals with different frequencies respond at different locations on the cochlea. Note
that the response amplitude changes with frequency due to nonlinear undamping from the outer
hair cells in the active cochlea.
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Figure 2.2: The passive cochlea response is much broader and lower amplitude than the active
cochlea response. Notice the change in displacement units. Response peaks are also shifted slightly
toward the stapes when compared to the active cochlea responses in Figure 2.1.

8



3. FILTERING AND OPTIMIZATION

The direct goal of this work is to alter an audio signal such that the passive cochlear response

like that seen in Figure 2.2 more closely resembles the response of the active cochlea as in Figure

2.1. Comparing these two figures reveals three striking deficits of the passive cochlea. First is the

decrease in response amplitude. This is commonly treated using conventional hearing aids which

simply amplify the sound. The second is that the response peak is shifted nearer to the stapes.

This effect is simply compensated for by simply shifting the central frequency of the tone to lower

frequency. The third effect is the broadening of the response peak on the passive cochlea. This

effect is the focus of this work.

The idea is to take advantage of how tones interact in the cochlea[16] to mask portions of the

passive cochlear response in order to sharpen the peak and improve the frequency selectivity of a

cochlea with diminished outer hair cell activity.

This chapter will discuss several possibilities for filter design, optimization methods, and sim-

ilarity metrics.

3.1 Construction of a New Audio Signal

The most obvious choice of audio filter following from the concepts introduced earlier is the

addition of signals to the central pure tone:

Sf = a0 sin (2π[f0 +∆f ]t) +
N∑
i=1

ai sin(2πfit+ ϕi) (3.1)

Careful selection of the parameters a0 and ∆f can correct for response amplitude and location,

but we rely on the summation on the right hand side of this equation for shaping the response peak.

This method is unfortunately susceptible to the curse of dimensionality as the number of parame-

ters to optimize grows as 3(N + 1). In addition to this, it is not possible to optimize the frequency

parameters fi independent of the phase parameters ϕi or amplitude parameters ai as frequency,

amplitude, and phase all influence the behaviour of wave additivity. It is worth investigating other

9



methods for signal construction.

3.1.1 Representation of the Audio Signal as a Linear Combination of Basis Functions

It is well known that an arbitrary vector in a vector space can be expressed as the linear combi-

nation of orthonormal basis vectors. From this we can consider that if the optimal waveform exists

it may be constructed with a linear combination of orthonormal basis functions.

This is very similar to the idea of Fourier expansion in which an arbitrary function can be

represented by a linear combination of sines and cosines[17]. In this case, we’d like to represent

a linear combination of sinusoidal waves with arbitrary phase (ϕi in Equation 3.1). A sine wave

of the form sin(2πft+ ϕ) can be represented as a combination of a sine and cosine without phase

terms: a1 sin(2πft) + a2 cos(2πft). An example of this can be seen in Figure 3.1. Constructing

the signal this way allows us to build the matrix of basis functions (B in Equation 3.2) once at

the beginning of the optimization. Constructing a new signal at each iteration of the optimization

only requires a simple dot product between the B matrix and the vector of optimized amplitudes,

a. This form is equivalent to, but computationally cheaper than constructing the signal using the

form in Equation 3.1.

Sf = B · a =



sin(2πf1t)

cos(2πf1t)

sin(2πf2t)

cos(2πf2t)

...

sin(2πfn−1t)

cos(2πfnt)



·



a1

a2

a3

a4
...

an−1

an



(3.2)

Both sine and cosine terms for each frequency are present in the basis set B, so we have

2N variables for which we must find optimal values. For this method to be most successful, the

frequencies present in the optimal signal must be present in the basis set.
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Original
Reconstructed

Figure 3.1: An arbitrary sinusoid reproduced by sine and cosine basis functions. The top signal is
S0 = 2.86 sin(2π20t + π/16) + 3.5 sin(2π18t + π/2) and is represented on the lower half of the
figure by a linear combination of basis functions: Sf = 2.8061 sin(2π20t) + 0.5646 cos(2π20t) +
0.0016 sin(2π18t)+3.4997 cos(2π18t). The reconstructed signal is shifted in this figure for clarity.

3.2 Selecting an Objective Function and Optimization Method

Choosing the best parameters for either of the filters in Equations 3.1 or 3.2 can be written as

an optimization problem with box constraints as in Equation 3.3. Box constraints simply mean

that each member ai of the vector a must be larger than some lower bound l but smaller than some

upper bound u.

minimize ∥A(S0)− P (Sf )∥22

subject to S0 = a0 sin(2πf0t),

Sf = B · a,

l ⪯ a ⪯ u

(3.3)

In the above equation, A(S0) is the active cochlea response to the unfiltered signal, and P (Sf )

11



is the passive cochlea response to the filtered signal. It should be noted that this method may be

applied to the dynamics of any structure in the cochlea. In this specific case, we’re using the dis-

placement of the basilar membrane as a surrogate to evaluate the hearing capability of the cochlea.

The quantities A(S0) and P (Sf ) are matrices containing values for basilar membrane displacement

as a function of both time and distance along the membrane. The sum of the square difference be-

tween the responses is selected as an objective function as ideally the objective function will be

zero when the responses are the same with increasing penalty as the responses become more dis-

tant.

Gradient descent, stochastic gradient descent, and other popular optimization methods gener-

ally require information about the objective function’s first or second derivative with respect to the

decision variables and/or a large number of function evaluations. As the active response and pas-

sive response are both fairly computationally expensive, performing a large number of objective

function evaluations in the course of optimization is not ideal. Additionally, it may be very difficult

to determine the gradient of the objective function with respect to filter parameters, especially if

the signal is generated as in Equation 3.1. Finally, we cannot make any assumptions about the

objective function’s topology with respect to the filter parameters. This last point rules out the pos-

sibility of using a local search method as these methods are susceptible to getting stuck in saddle

points or local minima, and these methods also cannot guarantee that the found optimal value is

globally optimal unless the objective function is convex[18] with respect to the decision variables.

Based on the above considerations, a gradient-free optimization technique geared toward high-

dimensional optimization problems with expensive objective function evaluation is desirable. With

this type of optimization problem, it may be prudent to consider evaluating a less-expensive sur-

rogate to the objective function. The Metric Stochastic Resopnse Surface (MSRS) response tech-

nique operates much this way[19]. Several points or “nodes” are chosen stochastically throughout

the pre-defined feasible space. The objective function is evaluated at each of these nodes, and the

resulting values form the surface response of the objective function. A radial basis function (RBF)

interpolation scheme is used to predict the behavior of the objective function between nodes to

12



identify locations of new possible minima. When a new suspected minima is identified, a local

optimization may be executed in its vicinity in an effort to improve upon the local minima. Op-

timization terminates if the objective function is acceptably close to the target value, or after a

set number of objective function evaluations. This optimization technique is implemented in the

rbfopt python package[20]. The rbfopt package also implements the Gutmann RBF opti-

mization algorithm[21]. RBFOpt includes other functionality such as the automated selection of

radial basis function (Gaussian, multiquadric, thin plate spline), automatic selection of radial basis

function shape parameter, and functionality to avoid non-optimal local minima by stochastically

re-sampling the optimization space after a set interval.
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4. RESULTS AND CONCLUSIONS

4.1 Results

All results in this section use a 2 kHz sinusoidal tone with an amplitude of 40 dB SPL which

corresponds to approximately 0.0494m/s2 stapes acceleration (see Appendix A.1 for conversion).

An input signal fitting this description is shown in the top half of Figure 4.1. Before being input

to the model, the amplitude must be converted from stapes acceleration in m/s2 to the model

input in β/s. The β unit is a derived unit where 1β corresponds to the length of the cochlea,

approximately 33.5mm. This conversion is described in Appendix A.2. The initial condition of

the model assumes that the stapes is at rest. If the input signal drives an instantaneous change

in stapes acceleration, a severe artifact similar to switch noise or the Gibbs phenomenon appears

in the response. This is sometimes referred to as “spectral splatter” because sizeable responses

are visible in regions of the cochlea that shouldn’t be driven by the input tone[22]. To avoid this

artifact, a gradual ramping function from zero to one is multiplied with the input signal. For

convenience, we use the hyperbolic tangent function because it is the proper shape and simple to

adjust. An amplitude-ramped signal is shown in the bottom half of Figure 4.1. The active response

to this input signal is displayed in Figure 4.2. Signals used for these trials have a duration of

25ms. Although the optimization strategy utilized here is designed to require a minimal number

of objective function evaluations, the computational expense of the objective function does still

have a large impact on the total optimization time. The time required to compute the basilar

membrane response increases substantially as the input signal length increases. Increasing the

length of the input signal also increases the optimization problem’s complexity. The objective

function condenses a fairly large amount of information about the difference between the healthy

cochlea response to the unfiltered signal and the damaged cochlea response to a filtered signal

into a single scalar value. Extending the duration of the input signal means an increasingly large

amount of information is condensed into this value. At this stage, it is sufficient to find a solution

14



that works for a shorter time duration and explore methods to identify a solution for longer input

signals in the future.

As discussed in §2.2, the undamping term in the cochlea model can be modified at will to

model different types of hearing damage. The undamping parameter used in the first set of results

is a 25% loss in cochlear amplifier activity between 1900Hz and 2100Hz, and can be seen in

Figure 4.7. The second set of results uses uniform hearing loss which is increases in severity until

no improvement in basilar membrane response can be produced through signal optimization.

4.1.1 Notch Damage

Optimization takes place in two stages. First, a frequency and phase are found such that the

passive response has the same amplitude and peak location as the active response. In this case, the

original frequency and amplitude are f0 = 2kHz and a0 = 40 dB SPL as in Equation 4.1. After

optimization, the selected frequency and phase are fp0 ≈ 1977Hz and ap0 ≈ 50.2 dB SPL as in

Equation 4.2. The result of the first optimization stage is shown in Figure 4.4.

Using the first stage optimization result (Equation 4.2) as a starting point, the signal used in

the second stage of optimization will be constructed as in Equation 4.3. As before, B is a matrix

containing the basis set of signals, and a⃗ are coefficients which are to be optimized.

S0 = a0 sin (2πf0t) (4.1)

Sp0 = ap0 sin (2πfp0t) (4.2)

Sf = Sp0 +B · a⃗ (4.3)

The goal is to narrow the peak of the damaged cochlea response so that it looks more like the

active response peak. There are two considerations that can be made by comparing the two curves

in Figure 4.4. The first is that the left (high-frequency) side of the peak shows more difference than

15



0 5 10 15
1

0

1

Am
pl

itu
de

 [n
or

m
]

0 5 10 15
Time [ms]

0.05

0.00

0.05

St
ap

es
 A

cc
el

er
at

io
n 

[m
/s

2 ]

Figure 4.1: Input audio signal with ramped amplitude. The top half of this figure shows an unmod-
ified sine wave with the amplitude envelope function shown by the dashed line. In the bottom half,
the sine wave has been multiplied with the envelope function. The signal in the bottom half of this
figure may be scaled by a constant to set its amplitude and then it will be ready for use as a model
input.

the right (low-frequency) side. This suggests that we should put more frequencies in the basis set

above the central frequency than below. The second is that frequencies near the central frequency

may provide a larger impact on peak width than those further away. It is also important to include

as few frequencies in the basis set as possible while still achieving a satisfactory result. The number

of optimization values scales as 2n where n is the number of frequencies in the basis set. For these

reasons, the frequency distribution is made up of two geometrically-spaced subdistributions: one

below the central frequency, and one above. Creating these subdistributions separately gives the

freedom to select how many frequencies are added to the basis set on each side of the central

frequency, and what degree of geometric stretching is applied on each side. Figure 4.5 shows a

visualization of the final frequency distribution.
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Figure 4.2: Active response to the signal in Figure 4.1. The top half shows the response in both
space and time, and the bottom half is a spatial plot of the response amplitude as a function of
length along the basilar membrane taken at the red vertical line in the top half.

Although the ℓ2-norm objective function is discussed earlier, the Huber loss function, Equation

4.4 was used for final optimization.

Hδ(a) =


1
2
a2 if a ≤ δ

δ
(
|a| − 1

2
δ
)

otherwise
(4.4)

An example of the Huber function is shown in Figure 4.6. This function is popular in regression

as it is less sensitive to outliers than objective functions using ℓ1 or ℓ2 norms. The Huber function

was applied to each “pixel” in 2D data similar to that shown in Figure 4.2.

The final response result is seen in Figure 4.8. This plot shows a time slice from the 2D

response data in the region of improved peak width indicated by Figure 4.9. The measure of peak

width used here is Q10dB which is the width of the peak at −10 dB with respect to the maximum

17



0 5 10 15 20 25 30 35
Distance from Stapes [mm]

0.0

0.1

0.2

0.3

0.4

0.5

Ba
sil

ar
 M

em
br

an
e 

Di
sp

la
ce

m
en

t [
nm

] Damaged
Healthy

Figure 4.3: Unfiltered damaged cochlea response to the signal in Figure 4.1. The healthy response
is also displayed for comparison.

peak value – about 0.316 times the maximum value. This point is indicated by the horizontal red

line in Figure 4.8. An example of the optimized signal is plotted in Figure 4.10. Of course there is

some temporal delay from signal to response, but the change in signal amplitude and shape from

20ms to 30ms seems to correspond with the improvement in peak width in Figure 4.9. The method

used here is most effective for short time durations, these results do suggest that exploitation of this

phenomenon is feasible to improve frequency selectivity of the damaged cochlea. This technique

may provide more improvement for more realistic, time-varying audio signals such as speech rather

than the artificial sine waves used here.

4.1.2 Uniform Damage

The results in this section use a uniformly decreased undamping coefficient to simulate the case

of uniform outer hair cell damage. The undamping coefficients used for these tests are shown in
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Figure 4.4: Result of the first optimization stage. The active and damaged responses now have the
same amplitude, and the peaks are in the same location.

Figure 4.11. Otherwise, the optimization procedure is identical to that in the above section. Opti-

mizations for the uniform hearing damage case started with 40% hearing damage and decreased in

10% increments until the response improvement from optimization is nearly non-existent. Figures

4.12, 4.13, and 4.14 show a summary of the basilar membrane response for a 40%, 50%, and 60%

decrease in undamping coefficient. It is clear from comparing these three figures that the duration

for which this optimization scheme is able to improve the Q10dB response peak width decreases

as the degree of hearing damage increases. This does not indicate that no improvement can be

expected with higher degrees of hearing loss, but that significant changes to the signal genera-

tion technique may be required to see basilar membrane response improvement in these types of

hearing loss.
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Figure 4.5: An example of the frequency distribution used to construct the basis set. The basis
set used for optimization is comprised of 104 frequencies. This plot shows a subset of those
frequencies to visualise their distribution.

4.2 Future Work

While the work presented here does show the feasibility of the concept of improving fre-

quency selectivity in the damaged cochlea by signal processing, there are certainly opportunities

that should be exploited in the future which may give better results.

One possibility is to more fully explore the possibility of modifying the auditory nerve activity

model[9] to predict the behaviour as the passive cochlea. It is certainly possible that the auditory

nerve action potential pulse trains output by this model may serve as a better indicator of audio

perception. It is a distinct possibility that this filtering technique works quite well, but that basilar

membrane displacement as modeled here is not the best surrogate to determine sound perception.

The presented method optimizes only for the amplitude parameters in Equation 3.2 while se-

lecting frequencies for the basis set that seemed to give the best results. It may be possible to
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Figure 4.6: The Huber function plotted for two values of δ along with a quadratic function for
comparison. The Huber function is strongly convex on the interval {−δ, δ} and linear outside this
interval. The location at which the function changes from convex to affine as well as the slope of
the linear section is controlled by choice of δ.

devise a multi-stage optimization technique which has the ability to select these frequencies and

their amplitude parameters. However, this would add decision variables and complexity to an al-

ready large and complex optimization problem. It may make more sense to apply a deep learning

method which may be able to directly generate the optimal signal. Signals generated in the method

I’ve discussed have quite a bit of flexibility, but this method is far from having the power to gen-

erate a completely arbitrary audio signal. Generating an arbitrary audio signal (i.e. optimizing the

signal amplitude at each time point) is not feasible as the type of optimization algorithm may be

unstable or unable to converge with such high dimensionality. Neural networks have the power to

handle high-dimensional problems such as this, and deep learning should be explored as the next

step to progress this work. It may be possible to adapt a network designed for speech synthesis

such as WaveNet[23] to generate the audio signal with a custom loss function which evaluates the
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Figure 4.7: Undamping coefficient constructed to simulate notch-style hearing damage. The un-
damping coefficient is reduced by 25% between 1900Hz and 2100Hz.

passive cochlea model’s response to the generated signal and compares it to the active response.

Whichever way forward is chosen, this effort would benefit most by improving the generality of

the signal generation algorithm.
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Figure 4.8: Result of the second optimization stage. This is a single time slice taken at ≈ 15ms.
The top half of this figure shows the Basilar Membrane displacement for a single time slice. The
bottom half is an expansion of the top half to show the peak shape improvement in more detail.
The horizontal red line in both portions of this figure indicate the point at which the Q10dB peak
width is calculated.
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Figure 4.9: Q10dB Peak Width Comparison between the healthy, damaged, and unfiltered damaged
responses. The top shows the peak width as a function of time for the entire signal duration.
Optimization begins at 15ms. The response before 10ms shows the period between the beginning
of the signal and when the response approaches a “steady state” behavior. The bottom shows the
region in which measurable peak width improvement can be seen for a duration of approximately
14ms.
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Figure 4.10: An example of a signal resulting from optimization. This signal was used to generate
the response shown in Figure 4.8. Although the optimization is only carried out over a period
from 15ms to 19ms, the final signal shows a lower intensity from 15ms to the end of the signal at
25ms. This region of lower intensity corresponds to a region of improved peak shape as indicated
by Figure 4.9.
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Figure 4.11: Undamping coefficients used for the uniform hearing damage cases.
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Figure 4.12: Optimization result for 40% uniform hearing damage.
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Figure 4.13: Optimization result for 50% uniform hearing damage.

0 5 10 15 20 25 30
Distance from Stapes [mm]

0.0

0.2

0.4

BM
 D

isp
la

ce
m

en
t [

nm
] Time Slice of Response at 15ms

Healthy
Damaged
Damaged Unfiltered

0 5 10 15 20 25
Time [ms]

0

10

Pe
ak

 W
id

th
 [m

m
] Q10dB Peak Width

Healthy
Damaged
Damaged Unfiltered

Figure 4.14: Optimization result for 60% uniform hearing damage.
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APPENDIX A

UNITS

A.1 Converting dB SPL to stapes acceleration

In the context of hearing-related study, sound intensity is often measured in therms of decibels

sound pressure level or dB SPL. However, the cochlea model in §2.2 accepts the input in terms

of stapes acceleration. Mammano & Nobili give a reference point that 5m/s2 stapes acceleration

is roughly equivalent to 80 dB SPL in the 1 kHz to 2 kHz range[15]. The tympanic membrane

displacement as a function of sound intensity in dB SPL is known[24]. If we assume that the

displacement of the stapes is on the order of the displacement of the tympanic membrane, we can

approximate the magnitude of stapes acceleration as a function of dB SPL and vice verse.

The tympanic membrane displacement (d) is linear with sound intensity in dB SPL, and it is

safe to assume that the stapes acceleration (a) is also linear with input intensity:

SPLin = m1d+ b1 (A.1)

SPLin = m2a+ b2 (A.2)

So

m1d+ b1 = m2a+ b2 (A.3)

When tympanic membrane displacement (d) is zero, the stapes acceleration (a) must also be

zero, so we know that b1 = b2 = b. From fitting a line to the data in [24], we find that m1 = 236.67,

b = 1.1246, and d = 42.2482 at 80 dB SPL. Keeping in mind that a = 5m/s2 at 80 dB SPL, we

can use these values to find m2:

m2 =
236.67 ∗ 42.2482

5
≈ 2000 (A.4)
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Remembering that decibels are a logarithmic unit, we need to use the following relation:

SPLin = 10S/20 (A.5)

The final relationship for converting stapes acceleration in m/s2 to dB SPL is then given in

Equation A.6 where a is the stapes acceleration and S is the sound amplitude in dB SPL.

S = 20 log10(2000a+ 1.1246) (A.6)

We can also solve this equation for a in terms of S so that we may convert from dB SPL to

m/s2:

a =
10S/20 − 1.1246

2000
(A.7)

A.2 Input Conversion Factor

The computation in the Mammano & Nobili cochlea model described in §2.2 employs some

non-standard units. They define the standard unit of distance as their own β unit, where one β is

approximately equal to the length of the human cochlea which they assume to be 33.5mm. The

time unit in the simulation is assumed to be ms. So, the simulation assumes units of β, kg, and ms.

If the stapes acceleration in β/ms is as and dT is the sample interval in ms, then the model

input is taken to be:

I = as × dT (A.8)

The final input is in units of β/ms. To convert the input acceleration from m/s2 to β/ms, a

scaling factor

I[β/ms] = as[m/s2]× dT [ms]

33.5mm
(A.9)
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Conventionally, the sample rate is 44.1 kHz, so dT = 1/44.1 kHz ≈ 0.0227ms. So, the final

scaling factor is:

F =
1/44.1

33.5e3
[ms/β] ≈ 6.769× 10−7 [ms/β] (A.10)

The final input signal should be calculated as follows before running the model:

I = as × F (A.11)
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