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ABSTRACT

Uncovering relationships among different variables from tensor data often lead to enhanced un-

derstanding of scientific and engineering problems. One recent statistical development under this

setup is tensor regression. Most of the works make a strong assumption that the tensor covariates

enter the model linearly, which is rather restrictive. Those models that consider the nonlinear-

ity suffer from the curse of dimensionality and possess very weak interpretability. Motivated by

observations from many real life applications and the need for nonlinearity, we propose a nonpara-

metric tensor regression with broadcasting structure. Within the proposed model framework, we

develop both an alternating updating algorithm as well as the asymptotic convergence rate for the

proposed estimation. Through experiments on the synthetic data and two real data, we demonstrate

the power of the proposed broadcasted nonparametric tensor regression.
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1. INTRODUCTION

Nowadays, tensor data are abundant in many different areas, such as clinical applications

(Wang et al., 2014), computer vision (Lu et al., 2013), genomics (Durham et al., 2018), neuro-

science (Zhou et al., 2013) and recommender systems (Zhu et al., 2018). Uncovering relationships

among different variables from tensor data often lead to enhanced understanding of scientific and

engineering problems. One recent statistical development under this setup is tensor regression. In

this work, we focus on models that involve a tensor covariate X = (Xi1,i2,...,iD) ∈ Rp1×p2×···×pD of

order D. Notice that tensor regression based on vector covariate (e.g., Sun and Li, 2017; Li and

Zhang, 2017; Hu et al., 2019) is also a popular research direction.

In the literature, there are roughly three categories of tensor regression with tensor covariates

according to the response type. The first is scale-on-tensor regression, where the response is a

scalar (e.g., Zhou et al., 2013; Zhao et al., 2014; Hou et al., 2015; Chen et al., 2019). Within this

category, there are methods that focus particularly on image covariates (e.g., Reiss and Ogden,

2010; Zhou and Li, 2014; Wang et al., 2017; Kang et al., 2018). The second is vector-on-tensor

regression, in which one of the response is a vector (e.g., Miranda et al., 2018). The last one is

tensor-on-tensor regression, with a tensor output (e.g., Hoff, 2015; Lock, 2018; Raskutti et al.,

2019).

The majority of the above models make a strong assumption that the tensor covariates enter the

model linearly (or, for non-Guassian response, via a known link function as in generalized linear

models). To date, very few works go beyond linearity. According to the above categorization, they

all fall into the first category of tensor regression. On the application side, Zhao et al. (2013) and

Hou et al. (2015) used a Gaussian process regression model to catch possible nonlinear effects of

tensor covariates for better prediction in video surveillance applications and neuroimaging analy-

ses. Their approaches rely on the choice of kernel function defined on tensors. One could flatten a

tensor into a high-dimensional vector and adopt popular kernels on vectors, such as Gaussian ker-

nel. However, this would ignore the structural information of the tensor and also suffer from the
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curse of dimensionality. Zhao et al. (2014) proposed the use of a kernel based on matricizations

of the tensor covariates. But the corresponding discussion is brief, and no theoretical justifica-

tion is presented in their work. More importantly, their method lacks interpretable and efficient

parametrization, such as low-rank representations. That said, these early efforts demonstrate the

power and the need for nonparametric modeling in various applications.

Another class of methods incorporates nonlinearity through a more explicit function space by

imposing low-rank structures on covariates. Kanagawa et al. (2016) proposed a regression model

for a rank-1 tensor covariate, i.e., X = x1 ◦ x2 ◦ · · · ◦ xD, where ◦ represents an outer product.

Imaizumi and Hayashi (2016) extended their work to higher-rank tensor covariates and proposed

the model

m(X) =
R∑
r=1

Q∑
q=1

λq

D∏
d=1

gd,r(xq,d), (1.1)

where X is assumed to have a smallest CANDECOMP/PARAFAC (CP) decomposition

X =

Q∑
q=1

λqxq,1 ◦ xq,2 ◦ · · · ◦ xq,D, (1.2)

where ‖xq,d‖2 = 1 and λQ ≥ λQ−1 ≥ · · · ≥ λ1 ≥ 0. When Q = 1, (1.1) recovers the model

of Kanagawa et al. (2016). Due to difficulty in estimation, a small Q should be used. However,

in most cases, the tensor covariate is not exactly low-rank, and the rank of the covariate usually

varies from observation to observation. Although the additive form of (1.1) has significantly re-

duced model complexity, the function gd,r is still an intrinsically (pd − 1)-dimensional function,

which may still be difficult to estimate. For example, given a 64 × 64 × 64 3D-image covari-

ate, p1 = p2 = p3 = 64. This also aligns with a finding (Imaizumi and Hayashi, 2016) that the

asymptotic convergence rate grows exponentially with maxd pd. Furthermore, the model is diffi-

cult to interpret due to its dependence on the CP representation of the covariate, which may be

non-unique (Stegeman and Sidiropoulos, 2007).

Overall, although the above nonlinear models demonstrate successes in certain applications,

they still suffer from the curse of dimensionality and possesses very weak interpretability. In this

2



work, we propose an alternative that addresses both of these issues.

Our proposed model extends the low-rank tensor linear model developed by Zhou et al. (2013),

which we briefly describe as follows. Given a vector covariate z ∈ Rp0 , a tensor covariate X ∈

Rp1×p2×···×pD and a response variable y ∈ Y ⊆ R. Zhou et al. (2013) proposed a generalized linear

model with the following form of linear predictor

g{E(y|z,X)} = ν + γᵀz + 〈B,X〉,

where g is a link function and, ν ∈ R, γ ∈ Rp0 and B ∈ Rp1×p2×···×pD are parameters. In particular,

the coefficient tensor B is assumed to admit a CP decomposition

B =
R∑
r=1

βr,1 ◦ βr,2 ◦ · · · ◦ βr,D,

where βr,d ∈ Rpd and R is the rank. Combined with sparsity-inducing regularization, Zhou et al.

(2013) and Zhou and Li (2014) showed that low-rank coefficient tensor B can be used to infer the

region (entries) of X that explains the response.

In this work, to formulate a nonparametric regression technique that accommodates tensor pre-

dictors, we propose a nonparametric tensor regression with broadcasting structure (to be defined

below). In many real life applications, entries within some regions of the tensor (especially im-

ages) share similar effects due to certain spatial structures such as a spatially clustered effect. For

instance, Zhou et al. (2013) showed that voxels within two brain sub-regions have similar linkages

with attention deficit hyperactivity disorder. Miranda et al. (2018) demonstrated that voxels within

several sub-regions of the brain have a spatially clustered effect on Alzheimer’s disease. Motivated

by these observations and the need of nonlinearity, we propose to “broadcast" similar nonlinear

relationship (with the response) to different entries of the tensor covariate. On a high-level, we

model the nonlinearity effect by uni-dimensional nonparametric functions, which are supposed to

be functions applied to an individual entry. These uni-dimensional functions are then shared by

every entry. We call this operation of distributing a uni-dimensional function to all entries “broad-

3



casting". Additional scaling coefficients are used to linearly scale the effect of the uni-dimensional

functions. Through regularizing these scaling coefficients, we can restrict the effects of certain

uni-dimensional functions to smaller regions. As shown by Zhou et al. (2013) and Zhou and Li

(2014), lasso-type regularization alone may result in poor performance in region selection, while

an additional low-rank constraint/regularization would produce more successful results. Therefore

we also restrict the scaling coefficient to be low-rank.

Within the proposed model framework, we develop both an alternating updating algorithm as

well as the asymptotic convergence rate for the proposed estimation. Our theory includes tensor

linear model (Zhou et al., 2013) as a special case. However, unlike Zhou et al. (2013), ours is of

high-dimensional nature, which allows p1, . . . , pD to diverge. We believe this asymptotic frame-

work is more relevant to many applications where the data (e.g., imaging data) involves large pj’s

when compared to the sample size. Through two real data examples, we demonstrate the power of

the proposed broadcasted nonparametric tensor regression. Overall, the proposed method timely

responds to a number of growing needs of catching nonlinearity with interpretable models and

rigorous theoretical developments.

The rest of the article is organized as follows. Section 2 introduces the broadcasted nonpara-

metric model. The proposed estimation and computational algorithm, and corresponding theoret-

ical results are presented in Sections 3 and 4. The practical performance of the proposed method

is illustrated via both a simulation study and two real data applications, all presented in Section 5.

Technical proofs are delegated to Appendix A.
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2. MODEL

Consider X ∈ X =
∏p1,...,pD

i1,i2,...,iD=1Xi1,...,iD where Xi1,...,iD is a compact subset of R. Without

loss of generality, we assume X = [0, 1]p1×p2×···×pD . For simplicity, we focus on the additive error

model

y = m(X) + ε, (2.1)

where m : X → R is an unknown regression function of interest and ε is a random error of mean

zero. The observed data {(yi,Xi)}ni=1 are modeled as i.i.d. copies of (y,X). Our first task is to

propose a useful and interpretable model for the regression function m.

2.1 Common nonparametric strategies: curse of dimensionality

As discussed in Section 1, existing works of nonparametric tensor regression suffer from the

curse of dimensionality and lack good interpretability. Here we briefly discuss several common

nonparametric regression models for vector covariates. A direct application of these models relies

on flattening the tensor into a vector, which non-ideally ignores the tensor structure.

Let us begin with the most general model in which m(·) is an unstructured (smooth) function

mapping Rp1×p2×···×pD to R. Despite the flexibility, this model unsurprisingly suffers heavily from

the curse of dimensionality. For a typical 64 × 64 × 64 image, we are facing a nonparametric

estimation of a function with dimension 643, which is generally impractical.

A common alternative in the literature of nonparametric regression is to assume an additive

form (e.g., Stone, 1985; Hastie and Tibshirani, 1990; Wood, 2006):

m(X) =
1

s

∑
i1,i2,··· ,iD

mi1i2···iD(Xi1i2···iD),

where s =
∏D

d=1 pd is the number of entries in the tensor. This model however involves s (e.g.,

643 in the above example) uni-dimensional functions. Potentially, sparsity (e.g., Lin et al., 2006;

Meier et al., 2009; Ravikumar et al., 2009; Huang et al., 2010; Raskutti et al., 2012; Fan et al.,
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2011; Chen et al., 2018) could be introduced to help. But typical sparse estimations, when applied

to a tensor covariate, would ignore important tensor structures and may allow only too few pixels

to have effect, especially when the sample size n is much smaller than s.

Another class of common models is the single index model (e.g., Ichimura, 1993; Horowitz

and Härdle, 1996):

m(X) = f

( ∑
i1,...,iD

ai1,i2,...,iDXi1,i2,...,iD

)
,

where f is an unknown uni-dimensional function and {ai1,i2,...,iD} are s unknown weight parame-

ters. Although there is only one uni-dimensional function, this model involves abundant coefficient

parameters, often much more than the sample size. One could impose sparsity to the coefficients

(e.g. Alquier and Biau, 2013; Radchenko, 2015). However, similar issues of ignoring tensor struc-

tures, as in sparse additive model, also occur here. These problems would be worsened in more

complicated index models such as additive index model and multiple index model.

In the following subsection, we propose a novel and economical model which makes use of

the tensor structure. Our model has a close relationship with the additive models, but do not suffer

from the above problems of the additive models.

2.2 Low-rank modeling with broadcasting

As mentioned above, the additive models involve too many functions. A simple remedy is

to restrict all entries to share the same function: m(X) = s−1
∑

i1,i2,··· ,iD f(Xi1i2···iD). In other

words, we broadcast1 the same function f to every entry. In many real life applications, entries

within some regions of the tensor (especially images) share similar effects due to certain spatial

structures such as a spatially clustered effect. For instance, (Zhou et al., 2013) showed that voxels

within two brain sub-regions have similar linkages with attention deficit hyperactivity disorder.

(Miranda et al., 2018) demonstrated that voxels within several sub-regions of the brain have a

spatially clustered effect on Alzheimer’s disease. Hence, broadcasting a nonlinear relationship

(with the response) is a well-motivated modeling strategy. But the assumption that every entry has

1A term widely used for similar operations in programming languages such as Python.
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the same (nonlinear) effect on the response is very restrictive. Specifically, in many imaging data,

there are usually only one or a few clusters of entries that are related to the response. Moreover,

these regions may have different nonlinear effects to the response.

For any two tensors A = (Ai1,...,iD),B = (Bi1,...,iD) of the same dimensions, we define

〈A,B〉 =
∑

i1,...,iD
Ai1,...,iDBi1,...,iD . Motivated by Zhou et al. (2013), we utilize the (low-rank)

tensor structure to discover important regions of the tensor so as to broadcast a nonparametric

modeling on such regions. We propose the following broadcasted nonparametric regression model:

m(X) = ν +
1

s

R∑
r=1

〈βr,1 ◦ βr,2 ◦ · · · ◦ βr,D, Fr(X)〉 , (2.2)

where ν ∈ R, βr,d ∈ Rpd , and Fr : Rp1×···×pD → Rp1×···×pD is defined by broadcasting:

(Fr(X))i1i2···iD = fr(Xi1i2···iD) with fr : R→ R,

i.e., the (i1, . . . , iD)-th entry of Fr(X) is fr(Xi1i2···iD). Here fr ∈ H admits a nonparametric

modeling specified by the (infinite-diemnsional) function classH. Following the convention (e.g.,

Stone, 1985),H is assumed to be a smooth function class with some Hölder condition with details

specified in Section 4. In this model, there are R different components, each of which is composed

of a uni-dimensional function fr to be broadcasted, and a rank-1 scaling (coefficient) tensor βr,1 ◦

· · · ◦ βr,D to linearly scale the effect across different entries.

f1

f2
f1 = f2

Figure 2.1: Examples of the broadcasted model

The model is economical since these broadcasted functions are uni-dimensional and these scal-
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ing tensors are of rank 1. Several components can be combined to characterize different nonlinear

effects adapted to different subregions (if appropriate sparse estimation on scaling tensors is im-

posed). We give two simple examples of D = 2 depicted in Figure 2.1, where the shaded regions

correspond to nonzero entries in corresponding scaling tensors. In the left figure, there are two

rank-1 regions (shaded) with different nonlinear functions; in the right figure, there is a rank-2

region formed by two scaling tensors with a shared nonlinear effect (f1 = f2).

Similar to the tensor linear model (Zhou et al., 2013), the proposed model suffers from pa-

rameter identifiability issues, i.e., broadcasted functions and scaling tensors. For instance, one can

multiply βr,1 by 10, and divide βr,2 by 10, but still obtain the samem(·). Another example is a per-

mutation of the components. To understand the nonlinear effect of entries, only the identification

of m(·) is needed and thus such non-identifiability is in general, not an issue. For completeness,

we provide sufficient conditions for the parameter identification, similar to the Kruskal’s condition

(Kruskal, 1989; Sidiropoulos and Bro, 2000). As the discussion is lengthy and not directly related

to the following sections (where only identification of m(·) is needed), we refer interested readers

to Appendix A.1.
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3. THE PROPOSED ESTIMATOR AND ITS COMPUTATION

3.1 Spline approximation and penalized estimation

The broadcasted functions fr, r = 1, . . . , R, will be approximated by B-spline functions of

order ζ , i.e.,

fr(x) ≈
K∑
k=1

αr,kbk(x), (3.1)

where b(x) = (b1(x), · · · , bK(x))ᵀ is a B-spline basis and αr,k’s are the corresponding spline

coefficients. By writing αr = (αr,1, . . . , αr,K)ᵀ and ignoring the spline approximation error, the

regression function (2.2) can be written as

m(X) = ν +
1

s

R∑
r=1

〈βr,1 ◦ βr,2 ◦ · · · ◦ βr,D ◦αr,Φ(X)〉 , (3.2)

where Φ(X) is p1 × p2 × · · · × pD ×K-dimensional tensor function such that its (i1, . . . , iD, k)’s

entry satisfies (Φ(X))i1,...,iD,k = bk(Xi1···iD). In accordance with the model identifiability condi-

tions
∫ 1

0
fr(x)dx = 0, r = 1, . . . , R, the coefficients of basis functions are subject to

∫ 1

0

K∑
k=1

αr,kbk(x)dx = 0, r = 1, . . . , R.

Letting uk =
∫ 1

0
bk(x)dx, the objective function m(X) can be estimated through solving

arg min
ν,A

n∑
i=1

(
yi − ν −

1

s
〈A,Φ(Xi)〉

)2

s.t. A =
R∑
r=1

βr,1 ◦ βr,2 ◦ · · · ◦ βr,D ◦αr

K∑
k=1

αr,kuk = 0, r = 1, . . . , R.

(3.3)

Directly solving (3.3) is not computationally efficient since it involves too many linear con-
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straints. To further simplify the optimization problem, we propose to remove the constraints by

using the equivalent truncated power basis (Ruppert et al., 2003). We let {b′k(x)}Kk=1 denote the

truncated power basis with the same order and interior knots as {bk(x)}Kk=1, where b′1(x) is the

constant function. Theorem 4 in Appendix yields that the constrained optimization problem (3.3)

is equivalent to

arg min
ν̃,Ã

n∑
i=1

(
yi − ν̃ −

1

s

〈
Ã, Φ̃(Xi)

〉)2

s.t. Ã =
R∑
r=1

βr,1 ◦ βr,2 ◦ · · · ◦ βr,D ◦ α̃r,
(3.4)

where Φ̃(X) ∈ Rp1×...×pD×K−1 with (Φ̃(X))i1,...,iD,k = b′k+1(Xi1···iD), k = 1, . . . , K − 1, and α̃r

is the vector of coefficients. In other words, the constraints are removed by reducing one degree

freedom of the basis functions.

Although the low rank structure can help identify the important region (Zhou et al., 2013; Zhou

and Li, 2014), we propose to add an additional regularization term to improve the performance of

the estimation, especially when sample size is relatively small. In particular, we consider the

following penalized estimation

arg min
ν̃,Ã

n∑
i=1

(
yi − ν̃ −

1

s

〈
Ã, Φ̃(Xi)

〉)2

+
R∑
r=1

D∑
d=1

pd∑
i=1

Pλ(βr,di)

s.t. Ã =
R∑
r=1

βr,1 ◦ βr,2 ◦ · · · ◦ βr,D ◦ α̃r

‖α̃r‖2
2 = 1, r = 1, . . . , R,

(3.5)

where Pλ(·) is the penalty function with penalized parameter λ. Typical choices of the penalty

function in the scope of linear regression include the Lasso penalty (Tibshirani, 1996), the Smoothly

Clipped Absolute Deviation (SCAD) penalty (Fan and Li, 2001), the elastic net penalty (Zou and

Hastie, 2005), and minimax concave penalty (MCP) (Zhang, 2010). Among them, the elastic net

penalty can identify the relevant predictors as well as the Lasso penalty in the case p� n, but also

deliver good prediction performance when the number of predictors are moderate and the variables

10



are highly correlated, which usually happen in neuroimaging data (Zhou and Li, 2014). In other

words, we consider

Pλ(βr,di) = λ1

{
1

2
(1− λ2)β2

r,di + λ2|βr,di|
}
,

where λ2 ∈ [0, 1] and λ1 ∈ R+. In (3.5), the norm 1 restrictions for α̃r’s are used to regularize the

coefficients of truncated power basis.

3.2 Computational algorithm

We propose to use a scale-adjusted block-wise descent algorithm to solve (3.5) as follows.

Recall Bd = (β1,d, . . . ,βR,d), d = 1, . . . , D. Analogously, we denote B̃D+1 = (α̃1, . . . , α̃R). For

convenience, we let

θ = (ν̃,B1, . . . ,BD, B̃D+1),

and denote the least squares term, the penalty term, and the whole objective function as

L(θ) =
n∑
i=1

(
yi − ν̃ −

1

s

R∑
r=1

〈
βr,1 ◦ βr,2 ◦ · · · ◦ βr,D ◦ α̃r, Φ̃(Xi)

〉)2

,

G(θ) =
R∑
r=1

D∑
d=1

pd∑
i=1

Pλ(βr,di),

and LG(θ) = L(θ) +G(θ), respectively. Observe that

R∑
r=1

〈
βr,1 ◦ βr,2 ◦ · · · ◦ α̃r, Φ̃(X)

〉
=
〈
Bd, Φ̃(X)(d)B−d

〉
=
〈
vec{Φ̃(X)(d)B−d}, vec(Bd)

〉
,

where B−d = B1 � · · · � Bd−1 � Bd+1 � · · · � BD+1 and Φ̃(X)(d) is the mode-d matricization

(Kolda and Bader, 2009) of tensor Φ̃(X). We can thus alternatively update Bd, d = 1, · · · , D, by

the elastic net penalized linear regression (Zou and Hastie, 2005). As for BD+1, when we use the

norm-homogeneous penalty, such as the elastic net, it can be relaxed to a standard quadratically

constrained quadratic program (QCQP, Boyd and Vandenberghe, 2004). Therefore, the dual ascent
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method (Boyd et al., 2011) and second-order cone programming (Alizadeh and Goldfarb, 2003)

can be used for the block-wise updating.

One manipulation of the least squares term L(θ) is the scale shift among βr,d’s for d =

1, · · · , D, i.e., the scale of βr,d1 can shift to βr,d2 , d1 6= d2, without changing the value of the

least squares term. This manipulation can, however, change the value of penalty term G(θ). We

propose an optimal rescaling strategy for the elastic net penalty. Specifically, we assume βr,d 6= 0,

r = 1, . . . , R, d = 1, . . . , D; on the other hand, if some βr,d = 0 we only need to take into ac-

count those non-zero vectors in the following procedure. For r = 1, . . . , R, we solve the following

optimization problem

arg min
ρr,1,...,ρr,D

D∑
d=1

1

2
(1− λ2)‖ρr,dβr,d‖2

2 + λ2‖ρr,dβr,d‖1

s.t.
D∏
d=1

ρr,d = 1 and ρr,d > 0,

(3.6)

and use ρ̂r,dβr,d to replaceβr,d in each iterative step of solving (3.5), where {ρ̂r,d : r = 1, . . . , R, d =

1, . . . , D} is the minimizer of (3.6). This replacement can ensure the objective function decrease

(as shown in Proposition 1). In particular, as described in Appendix A.2.2, (3.6) can be trans-

formed to a convex problem. For λ2 ∈ (0, 1), the Lagrange method and Newton’s method can be

used to solve (3.6). While for the special boundary cases, i.e., λ2 ∈ {0, 1}, we are able to get the

closed form solutions

ρ̂r,d =


1

‖βr,d‖1

D∏
d=1

‖βr,d‖1/D
1 , if λ2 = 1,

1

‖βr,d‖2

D∏
d=1

‖βr,d‖1/D
2 , if λ2 = 0.

Proposition 1. Suppose Θ(θ) is the scale class of θ = (ν̃,B1, . . . ,BD, B̃D+1) up to scaling, i.e.,

Θ(θ) = {θρ : θρ = (ν̃,B1ρ1, . . . ,BDρD, B̃D+1),ρd = diag(ρ1,d, . . . , ρR,d),
D∏
d=1

ρr,d = 1}
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and the solution of (3.6) is ρ̂r,d, r = 1, . . . R, d = 1, . . . , D. Let θ̄ = (ν̃, B̄1, . . . , B̄D, B̃D+1),

B̄d = (ρ̂1,dβ1,d, . . . , ρ̂R,dβR,d), then

LG(θ̄) = min
θρ∈Θ(θ)

LG(θρ).

Furthermore, if βr,d 6= 0, r = 1, . . . , R, d = 1, . . . , D, then

LG(θ̄) < LG(θρ), ∀θρ ∈ Θ(θ),θρ 6= θ̄.

Proposition 1 indeed shows that θ̄ is the unique minimizer over Θ(θ). Although Θ(θ) is not a

convex set, we are able to find the minimizer over Θ(θ) using the rescaling strategy (3.6).

Algorithm 1: Scale-adjusted block relaxation algorithm.

Input : θ(0) =
(
ν̃(0),B

(0)
1 , . . . ,B

(0)
D ,B

(0)
D+1

)
, ε > 0 and t = 0.

repeat
for d from 1, . . . , D,D + 1 do

B
(t+1)
d = arg minBd

LG(ν̃(t),B
(t+1)
1 , . . . ,B

(t+1)
d−1 ,Bd,B

(t)
d+1, . . . ,B

(t)
D , B̃

(t)
D+1);

end
ν̃(t+1) = arg minν̃ LG

(
ν̃,B

(t+1)
1 , . . . ,B

(t+1)
D , B̃

(t+1)
D+1

)
;

Replace B
(t+1)
d by

(
ρ̂1,dβ

(t+1)
1,d , . . . , ρ̂R,dβ

(t+1)
R,d

)
, where ρ̂(t+1)

r,d , r = 1, . . . , R, are
obtained from (3.6);
t = t+ 1;

until −LG(θ(t+1)) + LG(θ(t)) ≤ ε.
Output: θ̂ = θ(t).

The above discussion leads us to Algorithm 1 and its convergence property is presented in

Proposition 2. This algorithm can be regarded as an improvement version of the Proposition 1

of Zhou et al. (2013), where they required an assumption that the set of stationary points are iso-

lated (modulo permutation and scaling indeterminacy). Even this assumption holds, the scaling

indeterminacy can lead to an infinite number of stationary points, which may make the algorithm
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unstable in applications. For stability of the algorithm, Zhou et al. (2013) considered a standard-

ization step for both penalized and unpenalized methods. Particularly, their standardization step is

in fact a special case of our rescaling strategy for λ2 = 0 (l2 penalty), which can handle the scaling

indeterminacy and thus stabilizes the algorithm. Although their standardization step works well

in application, for other penalty, such as l1, this step may increase the value of the objective func-

tion and the convergence of the penalized algorithm may not be guaranteed. Using the rescaling

strategy (3.6), the convergence property of our proposed penalized algorithm is demonstrated in

Proposition 2 and its proof is deferred in Appendix.

Proposition 2. Assume that the set {θ, LG(θ) ≤ LG(θ(0))} is compact, λ1 > 0, λ2 < 1 and the

set of stationary points of LG(θ) are isolated. Then the sequence θ(t) generated by Algorithm I

converges to a stationary point of LG(θ).

3.3 Tunning parameters

The commonly used method to determine the tuning parameters, including the CP rank R, the

penalty parameters λ1 and λ2, is cross-validation. However, it suffers heavy computation burden

in the tensor scenario, especially when the dataset is large. We thus alternatively use the vali-

dation method (see, e.g., Chapter 11 of Shalev-Shwartz and Ben-David, 2014) in our numerical

experiments, which shows computational attraction.

14



4. THEORETICAL STUDY

Throughout the theoretical analysis, we assume that the true regression function m0(X) is a

multivariate continuous function and has the following form of representation

m0(X) = ν0 +
1

s

R0∑
r=1

〈β0r,1 ◦ . . . ◦ β0r,D, F0r(X)〉 ,

where
∫ 1

0
f0,r(x)dx = 0 and {f0r}R0

r=1 ⊂ H is a minimal representation which has been introduced

ahead of Theorem 3. H is the function class that the true broadcasted functions lie in and is

specified in Assumption 3. To simplify the notations, we write B0r = β0r,1 ◦ . . . ◦β0r,D and define

a mapping I : Rp1×...×pD×K × R→ Rp1×...×pD×K by

A[ = I(A, ν), (4.1)

where A[
i1,··· ,iD,k = Ai1,··· ,iD,k, for (i1, · · · , iD) 6= (1, · · · , 1) and A[

1,...,1,k = A1,...,1,k + sν, k =

1, . . . , K. It then follows from the property of B-spline functions that

ν +
1

s
〈A,Φ(X)〉 =

1

s
〈A[,Φ(X)〉. (4.2)

As we see in (4.2), the constant ν can be absorbed in the coefficients of B-spline basis of one

predictor. This property helps us develop the asymptotic theory according to the fact that the

tensor of coefficients inherits the same CP structure. Furthermore, it also goes for other commonly

used bases, such as the truncated power basis. Indeed, we will show the asymptotic results of

Theorem 1 is also valid for other equivalent bases (see Theorem 4).

4.1 Assumptions

We use C and C with subscripts to refer to generic constants that may change values from

context to context. We need the following regularity assumptions.
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Assumption 1. The covariates X ∈ [0, 1]p1×···×pD has a continuous density function g, which is

bounded away from zero and infinity on [0, 1]p1×···×pD , i.e., there exist constants C1, C2 > 0 such

that C1 ≤ g(x) ≤ C2 for all x ∈ [0, 1]p1×···×pD .

Before presenting the assumption related to the random error, we first give the definition of

sub-Gaussian random variable and its sub-Gaussian norm.

Definition 1 (sub-Gaussian random variable). We say that a random variable X is sub-Gaussian

if the moments satisfies

(E|X|p)
1
p ≤ C

√
p,

for any p ≥ 1 with a positive constant C. The minimum value of C is called sub-Gaussian norm

of X , denoted by ‖X‖ψ2 (see, for example, Chapter 2.5.2 of Vershynin, 2018).

Assumption 2. The vector of random errors, ε = (ε1, . . . , εn)ᵀ, has independent and identically

distributed entries. Each εi is mean 0 and sub-Gaussian with sub-Gaussian norm σ <∞.

Assumption 3. Let l be a nonnegative integer and let τ = l + ω > 1/2, where ω ∈ (0, 1]. Let H

denote the space of functions on [0, 1] satisfying the Hölder condition of order ω, i.e.,

H =
{
g : |g(l)(x1)− g(l)(x2)| ≤ C|x1 − x2|ω, ∀ x1, x2 ∈ [0, 1],

C ∈ (0,∞),

∫ 1

0

g(x)dx = 0
}
,

(4.3)

where g(l) is the l-th derivative of g. We assume f0r ∈ H, r = 1, . . . , R0.

Assumption 4. The order of the B-spline used in (4.2) satisfies ζ ≥ τ + 1
2
. We let 0 = ξ1 < ξ2 <

· · · < ξK−ζ+2 = 1 denote the knots of B-spline basis and assume that

hn = max
k=1,...,K−ζ+1

|ξk+1 − ξk| � K−1 and hn

/
min

k=1,...,K−ζ+1
|ξk+1 − ξk| ≤ C.

Assumptions 1, 3, and 4 are commonly seen in the general nonparametric models. In particular,

Assumption 1 ensures the population level of the design matrix has certain eigenvalue property.
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In the scope of nonparametric additive models, Stone (1985) and Chen et al. (2018) used this

assumption to develop their asymptotic analysis. Assumptions 3 and 4 regularize the space where

the true broadcasted functions lie in and guarantee that they can be globally approximated by

B-spline functions. Indeed, a well-known result based on these assumptions is that there exist

α0,r = (α0r,1, . . . , α0r,K)ᵀ, r = 1, . . . , R, such that

∥∥∥∥f0r −
K∑
k=1

α0r,kbk

∥∥∥∥
∞

= O(K−τ ), (4.4)

where ‖f‖∞ denotes the L∞ norm of function f . Though we assume
∫ 1

0
f0r(x)dx = 0, Lemma 6

still implies that there are α0,r, r = 1, . . . , R, satisfying (4.4) with

K∑
k=1

∫ 1

0

α0r,kbk(u)du = 0.

Despite this mild difference in model identifiability, similar assumptions can be found in Zhou

et al. (1998) and Huang et al. (2010). Assumption 2 is recently used in both the regression literature

(Wei and Huang, 2010; He and Huang, 2016) and the nonparametric modeling (He et al., 2018).

With this assumption, the upper tail probability of the random error is able to be controlled, which

slightly generalizes the canonical result of normally distributed noise.

4.2 Convergence rates

We present the convergence rates of Â[ and m̂(X) in terms of the Hilbert-Schmidt norm and the

L2 norm, respectively. Hilbert-Schmidt norm is a generalization from Frobenius norm of matrices

to tensors, which is defined as ‖A‖HS = 〈A,A〉1/2 for any generic tensor A. While L2 norm is

defined as ‖f(X)‖L2 = [{EXf(X)}]1/2 for any function f ∈ H. We also denote A0 as

A0 =

R0∑
r=1

B0r ◦α0r,
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where α0r satisfies (4.4) under mean zero constraint, r = 1, . . . , R. Theorem 1 shows the conver-

gence rates of the unpenalized estimators, where the parameters pi, K, R and R0 are allowed to go

to infinity with the sample size n.

Theorem 1. Suppose (Â, ν̂) is a solution of (3.3) and m̂(X) is the corresponding estimated re-

gression function. Let Â[ = I(Â, ν̂) and A[
0 = I(A0, ν0). If Assumptions 1–4 hold, R ≥ R0, and

n > Ch̃2
nh
−2
n

(
RD+1 +

∑D
i=1Rpi +RK

)
for some C > 0, then we have the following results

i.
1√
s
‖Â[ −A[

0‖HS

= Op

([
sK
{
RD+1 +

∑D
i=1Rpi +RK

}
n

]1/2
)

+Op

({∑R0

r=1 ‖vec(B0r)‖1√
s

}
1

Kτ−1/2

)
;

(4.5)

ii.

‖m̂(X)−m0(X)‖2
L2

= Op

(
RD+1 +

∑D
i=1Rpi +RK

n

)

+Op

({∑R0

r=1 ‖vec(B0r)‖1

s

}2
1

K2τ

)
,

(4.6)

where

h̃n = max

{
h

1/(− log hn)
n

(−2 log hn)
, hn

}
.

Roughly speaking, the first term and the second term in (4.6) correspond to the estimation

error and the approximation error, respectively. The condition R ≥ R0 is used to bound the

approximation error from above. Without this condition, the estimated function will converge to

the best R rank approximation. The condition on n ensures the difference between the eigenvalues

of the gram matrix of “design" in population level and its empirical counterpart is negligible,

compared with the rates of convergence.

Remark 1. The proof of Theorem 1 is not straightforward even if we discard the low-rank and
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broadcasting structure of the proposed model (2.2). To see this, we can vectorize the basis tensor

and its coefficients in (3.2), and reconstruct the regression function as the nonparametric additive

model. The main challenge of studying the convergence rates is to determine the upper and lower

bounds for the eigenvalues of the gram matrix of “design”. Many existing works, such as Raviku-

mar et al. (2009), directly assume the eigenvalues are bounded away from zero and infinity. It is,

however, not clear to be true in general, since the number of basis functions goes to infinity with

the sample size in order to guarantee the proper approximation property. Indeed, it can be proved

that such assumption fails for B-spline basis when there is a divergent number of additive com-

ponent functions. When the number of additive component functions is a fixed constant, Huang

et al. (2010) shows the bounds of the eigenvalues using Lemma 3 of Stone (1985) and Lemma

6.2 of Zhou et al. (1998). It is worth mentioning that directly using the results of Stone (1985)

will lead the convergence result at an exponential rate when the number of additive component

functions goes to infinity with the sample size n (see, e.g., Chen et al., 2018). Therefore, Theorem

1 fills in the gap to allow the number of additive component functions to diverge. Furthermore, we

incorporate the local Gaussian width arguments of Banerjee et al. (2015) and the covering number

arguments of Rauhut et al. (2017) to overcome the difficulties due to the low-rank and broadcasting

structure of (2.2).

For different combinations of orders between the parameters (R,R0, pi) and the sample size n,

we can tune the number of basis functions K to get the optimal rates of convergence. Let

δ1 = RD+1 +
D∑
i=1

Rpi and δ2 =

{∑R0

r=1 ‖vec(B0r)‖1

s

}2

.

If δ1δ
−1/(2τ+1)
2 R−2τ/(2τ+1) ≥ n1/(2τ+1), the optimal rate can be tuned is δ1/n when K satisfies

(nδ2/δ1)1/2τ . K . δ1/R. On the other hand, if δ1δ
−1/(2τ+1)
2 R−2τ/(2τ+1) < n1/(2τ+1), letting

K ∼ (nδ2/R)1/(2τ+1) will lead the optimal rate of convergence to (R/n)2τ/(2τ+1)δ
1/(2τ+1)
2 . One

special case is that when pi, R andR0 do not grow with n, choosingK ∼ n1/(2τ+1) is able to obtain

the optimal rate of convergence n−2τ/(2τ+1) as in Stone (1982). Theorem 1 indeed generalizes the
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canonical results to tensor low-rank modeling with broadcasting.

Although Theorem 1 guarantees the asymptotic performance of the unpenalized estimators, in

many real applications the penalized estimation is needed, especially when the number of predic-

tors are moderately large. Theorem 2 shows the rates of convergence of the penalized method in

terms of concentration inequalities. Suppose

B0r = β0r,1 ◦ · · · ◦ β0r,D, r = 1, . . . , R0,

are the rank-one decomposition that make the penalty term in (3.5) smallest over all such decom-

positions, which is well-defined according to Proposition 1. For simplicity, we denote

G0 =

R0∑
r=1

D∑
d=1

pd∑
i=1

Pλ(β0r,did). (4.7)

Similar to Theorem 1, pi, K, R and R0 are allowed to go to infinity with the sample size n in

Theorem 2.

Theorem 2. Suppose (Âp, ν̂p) is a solution to (3.5) and m̂p(X) is the corresponding estimated

regression function. Let Â[
p = I(Âp, ν̂p) and A[

0 = I(A0, ν0). If Assumptions 1–4 hold, R ≥ R0

and n > Ch̃2
nh
−2
n

(
RD+1 +

∑D
i=1 Rpi +RK

)
for some C > 0, then

i.
1√
s
‖Â[

p −A[
0‖HS ≤

{sδ2
3 + (4sKG0)/n}1/2 +

√
sδ3

2
; (4.8)

ii.

‖m̂p(X)−m0(X)‖2
L2
≤ C1{δ2

3 + (4KG0)/n}
K

(4.9)

with probability at least

1− C2 exp

{
− C3

(
RD+1 +R

D∑
i=1

pi +RK

)}
,
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where G0 is defined in (4.7) and

δ3 = C4

{
K
(
RD+1 +

∑D
i=1Rpi +RK

)
n

}1/2

+ C5

{∑R0

r=1 ‖vec(B0r)‖1

s

}
1

Kτ−1/2
.

Compared with Theorem 1, Theorem 2 has an addition term G0, which is the bias due to the

elastic net penalty. When the penalty function is small relatively to the estimation and approxima-

tion errors, this bias can be negligible in the viewpoint of rates of convergence. On the other hand,

though the penalized estimators may have slower rates of convergence than the unpenalized ones,

it will stabilize the performance of estimation and lead to a parsimonious model such that some

regions will be identified as irrelevance.
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5. EXPERIMENTS AND CONCLUSIONS

To confirm the effectiveness of the broadcast nonparametric tensor regression (BNTR) method,

we investigate the performance on both synthetic and real data, and compare with (i) Tensor Linear

Regression (TLR, Zhou et al., 2013), and (ii) Elastic Net Regression on the vectorized tensor

predictor (ENetR, Zou and Hastie, 2005). For ENetR, we use the R package glmnet (Hastie and

Qian, 2014). For TLR, we use the benchmark MATLAB TensorReg toolbox (Zhou et al., 2013).

Since our rescaling strategy can also enhance the algorithm of TLR implemented in the TensorReg

toolbox, for a relatively pair comparison, we also consider the TLR algorithm with the rescaling

strategy. To distinguish the two algorithm for TLR, we use TLR-1 and TLR-2 to represent the

algorithm of Zhou et al. (2013) and our improvement algorithm, respectively. For BNTR, similar

to Huang et al. (2010), we use the cubic spline and fix the number of basis K = 7. The knots are

chosen as the equally spaced quantiles.

There are two aims, i.e., confirming the advantages of BNTR in region selection and predic-

tion tasks. Unlike TLR, the important region for BNTR can not be identified directly using the

estimated coefficient tensor Âp, since the contribution for each pixel of the input contains in the

mode-(D + 1) fiber (the higher-order analogue of matrix rows and columns) (Kolda and Bader,

2009) of Âp. To summarize the contribution from each pixel, we consider a norm tensor

Bf ∈ Rp1×···×pD , (5.1)

where (Bf )i1,...,iD = ‖f̂i1,...,iD‖2 = {
∫ 1

0
f̂ 2
i1,...,iD

(x)dx}1/2, f̂i1,...,iD(x) =
∑K

k=2 Âp,i1,...,iD,kb
′
k(x) −∑K

k=2 Âp,i1,...,iD,k
∫
b′k(x)dx, Âp,i1,...,iD,k is the (i1, . . . , iD, k)-th entry of Âp, i1 = 1, . . . , p1, . . .,

iD = 1, . . . , pD, and {b′k(x)}Kk=2 is the truncated power basis without the constant one. We use

this norm tensor (5.1) to identify important sub-regions. This is a simple paradigm that works

in application. In specific applications, subject preference may prefer alternative paradigms. To

measure the performance for prediction, since we know the true function in the synthetic data but
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do not know that of the real data, we use the mean integrated squared error (MISE) in the synthetic

data while the mean squared prediction error (MSPE) in the real data. The MISE is defined as

MISE = ‖m̂(X)−m(X)‖2
L2
,

which can be numerically calculated after decomposition to the sum of entry functions, while the

MSPE is defined as

MSPE =
1

nt

nt∑
i=1

(yi − ŷi)2, (5.2)

where nt is the test sample size, ŷi is the prediction value and yi is the observed value in the test set.

Note that MISE is a more precise quantity to measure the performance, and MSPE is commonly

used in real world. We will report selected results from synthetic examples and applications to the

publicly facial data and monkey brain data.

5.1 Synthetic data

For the purpose of illustration, similar to Zhou et al. (2013), we consider X ∈ R64×64 in this

section. These simulation results demonstrate that BNTR and TLR-1,2 are comparable in the low-

rank linear setting, whereas BNTR is much better than the linear models (TLR-1,2, and ENetR)

when the data involves nonlinear relationship.

5.1.1 Data generation

We consider 4 different data generation procedures, i.e.,

Case 1. y = m1(X) + ε1 = 1 + 〈B1,X〉+ ε1,

Case 2. y = m2(X) + ε2 = 1 + 〈B2, F1(X)〉+ ε2,

Case 3. y = m3(X) + ε3 = 1 + 〈B31, F1(X)〉+ 〈B32, F1(X)〉+ ε3,

Case 4. y = m4(X) + ε4 = 1 + 〈B41, F1(X)〉+ 〈B42, F2(X)〉+ ε4,
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where the broadcasted function F1 and F2 satisfying

(F1(X))i1,i2 = f1(Xi1,i2) = Xi1,i2 + 0.6 sin(2π(Xi1,i2 − 0.5)2),

and

(F2(X))i1,i2 = f2(Xi1,i2) = Xi1,i2 + 0.3 cos(2πXi1,i2),

for i1 = 1, . . . , 64, i2 = 1, . . . , 64. The true signal B1, B2, B31, B32, B41 and B42 are binary

with the true signal sub-region equals to one and the rest zero, the input X has standard uniform

distribution entries, εj ∼ N (0, σ2
j ), j = 1, 2, 3, 4 and σj is used for adjusting the signal level. These

cases demonstrate four different situations, i.e,

(1) low rank linear model with one important sub-region,

(2) low rank nonlinear model with one important sub-region,

(3) low rank nonlinear model with two separated important sub-regions that share the same

nonlinearity,

(4) low rank nonlinear model with two separated important sub-regions that share different non-

linearities.

For each cases, we randomly generate a set of independent samples under the signal strength

σj = 10% of the standard deviation of mj(X), j = 1, 2, 3, 4, and split the sample set into two sep-

arate subsets, i.e., the validation set with 20% data and the training set with 80% data. We train the

models in the training set and tune the tunning parameters in the validation set. For the grid of tun-

ing parameters in each simulated experiment, we consider all combinations of R ∈ {1, 2, 3, 4, 5},

λ1 ∈ {10−2, 5 × 10−1, 10−1, . . . , 102, 5 × 102, 103} and λ2 ∈ {0, 0.5, 1}. We summarize our

findings in later two sub-sections.
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5.1.2 Identifying important sub-regions

The important sub-regions for BNTR are identified from the norm matrix Bf ∈ R64×64, which

is defined in (5.2), while that of TLR-1 and TLR-2 are from the estimated coefficients. We rescale

the norm matrix and estimated coefficients to [0, 1] and use rasterImage function in R to imple-

ment them. The results for the comparison among TLR-1, TLR-2 and BNTR in the sample size

n = 1000, are shown in Figure 5.1, from which we can see that BNTR and TLR-1,2 have simi-

lar region selection result in terms of Case 1 (the low rank model without nonlinearity), whereas

BNTR is much better than TLR-1,2 for Case 2, 3 and 4 (the low rank model with nonlinearity).

Although we compare the models under the sample size n = 1000, it is not the minimal sample

size that is needed to identify the important sub-regions. To demonstrate this, we also report the

results of BNTR for various sample sizes (n = 500, 750, or 1000) in Figure 5.2. The minimal

sample size needed to identify the important region varies in different true signals. The signal

with lower degree of complexity, e.g., Case 1, can be found the important sub-region with a small

sample size, while these signals with higher degree of complexity, e.g., Case 2, 3 and 4, need more

samples.

Remark 2. Note that the black point in these region selection figures (including Figure 5.1, 5.2

and 5.3) may not zero exactly, but some small numbers. If one wants more sparse solutions, the

thresholding can be applied.

5.1.3 Estimation performance

We consider the estimation performance with varying sample size n ∈ {500, 750, 1000}, where

20% data are used for validation. The results are evaluated based on 50 replications and shown in

Table 5.1. Overview, the results of BNTR confirm our theory. Particularly, for the nonlinear

situations (Case 2, 3, and 4), it can be found that BNTR is much better than all the linear models,

which demonstrates the excellent performance of BNTR. For the linear Case 1, we would see

that BNTR is also very good, which demonstrates the advantages of economically modeling idea

mentioned in Section 2. Besides, we found that TLR-2 is better than TLR-1, which shows that the
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Figure 5.1: Region selection comparison among TLR-1, TLR-2 and BNTR when the total sample size
n = 1000 and 20% data are used for validation. Here the true signals are B1, B2, B31+B32 and B41+B42

for Case 1, 2, 3 and 4, respectively.

rescaling strategy is not only a theoretical guarantee for the convergence of the algorithm, but also

an improvement in practice.

5.2 Real data

We also examine the performance of our method on two publicly available benchmark data

sets for tensor regression application. In the real data analysis, we consider more various values

for the rank R and penalized parameters λ1, i.e., R ∈ {1, 2, 3, 4, 5, 6, 7, 8} and λ1 ∈ {10−2, 2.5 ×

10−2, 5× 10−2, 7.5× 10−2, 10−1, . . . , 102, 2.5× 102, 5× 102, 7.5× 102, 103}.
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Figure 5.2: Region selection of BNTR for Case 1, 2, 3 and 4, in various sample size (n = 500, 750, 1000),
where 20% data are used for validation.

5.2.1 Facial data

We apply our model to facial images of the Labeled Faces in the Wild database (Learned-Miller

et al., 2016), which is also analyzed by a tensor-on-tensor regression method (Lock, 2018). There

are about 13000 publicly available images taken from the internet, and 73 describable attributes

(Kumar et al., 2009) for each facial image. The attributes are measured continuously, and the higher

values, the more obvious attribute. The goal is to predict the attribute based on the facial images,

which helps to describe images and further study (e.g., see Farhadi et al., 2009). For the output,

we consider one example, i.e, attribute 22, harsh lighting. Intuitively, this attribute may imply

the situation information. For the input, we follow the data preprocessing procedure described in
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Table 5.1: Estimation comparison in the synthetic data. Reported are mean MISE and its standard deviation
(in parenthesis) based on 50 data replications. Here n is the total sample size and 20% of the data will be
used for validation.

n Case TLR-1 TLR-2 ENetR BNTR

500

1 0.2227 (0.0612) 0.0655(0.0103) 16.55 (0.5619) 0.0902 (0.0182)
2 24.51 (3.323) 22.18 (2.024) 31.33 (0.7324) 3.182(1.337)
3 77.18 (8.909) 75.87 (6.967) 75.87 (2.153) 26.06(5.766)
4 92.51 (10.12) 92.86 (5.576) 89.69 (2.629) 23.29(5.478)

750

1 0.1077 (0.0228) 0.0403(0.0056) 14.75 (0.4567) 0.0548 (0.0076)
2 20.42 (2.020) 17.50 (1.302) 30.52 (0.5072) 0.7616(0.2773)
3 75.28 (12.01) 56.17 (4.975) 74.12 (2.396) 3.965(3.240)
4 86.47 (10.28) 64.35 (4.432) 87.26 (2.574) 4.402(2.276)

1000

1 0.0781 (0.0139) 0.0291(0.0031) 10.61 (0.6172) 0.0395 (0.0052)
2 17.84 (1.831) 14.99 (0.5938) 29.75 (0.4986) 0.3323(0.0589)
3 69.86 (12.31) 45.82 (2.251) 72.35 (2.412) 0.9691(0.1685)
4 66.30 (7.771) 54.68 (2.127) 84.49 (2.173) 1.4106(0.4695)

(Lock, 2018) and get a 90× 90× 3 input tensor for each image, where the components of face are

located in similar positions for different images. We randomly choose 2000 different images of the

whole data set and randomly split them to 3 different set, i.e., 1000 images in the training set, 500

images in the validation set and 500 images in the test set. Note that the norm tensor of this data set

is a mode-3 tensor, and the third dimension corresponds to colors. We can identify the important

sub-regions roughly in terms of the facial position by transferring the 90×90×3 norm tensor (5.1)

to a matrix of size 90 × 90, where each entry corresponds to a position. We take l2 norm of the

fiber along the color dimension to achieve this transformation. We report the important sub-region

results in Figure 5.3 and the prediction performance comparison among different models in Table

5.2. From Figure 5.3, we could see the sub-region around the eyes is related to harsh lighting,

which is consistent with our intuitive understanding. Usually, we can recognize the harsh lighting

by the squinty eyes. Thus, one important sub-region should be around the eyes. When squinty eyes,

the sub-region around the nose may have some shape change, which may cause the reason why

this sub-region is also important. From the prediction performance in Table 5.2, BNTR is much

better than TLR-1,2 and ENetR, which implies the attribute 22 have relatively strong nonlinearity
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with the input face. Besides, the prediction for TLR-2 is better than TLR-1, which is similar to

the situation in synthetic data. This fact also shows that our rescaling strategy is helpful for this

entry-wise penalized regression algorithm.

Figure 5.3: Important sub-regions comparison in the facial data.

Table 5.2: Prediction comparison in the facial data. Reported are mean MPSE and its standard deviation (in
parenthesis) based on 10 data replications.

Data TLR-1 TLR-2 ENetR BNTR
Facial 0.5960 (0.0430) 0.5857 (0.0445) 0.5805 (0.0429) 0.3207 (0.0332)

5.2.2 Monkey data

We also apply our model to a publicly available benchmark data set for tensor regression appli-

cation, i.e., the monkey’s electrocorticography (ECoG) data (http://neurotycho.org/food-tracking-

task). This data is also analyzed by a nonlinear tensor regression model (Hou et al., 2015). Here

the input is the preprocessed ECoG signal, which is organized as a three order tensor (channel

× frequency × time) and the output is the movement distance of the monkey’s limb on differ-

ent 3 markers along each axis (x, y or z). For the data preprocessing of input, the channels are

down-sampled to 5 channels in Hou et al. (2015), since their model will suffer the curse of dimen-

sionality and can not handle a higher dimensional input. We do not need to do this down-sample

step due to the economical broadcasted nonlinear setting. Our data preprocessing procedure is
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similar to Chao et al. (2010) and Shimoda et al. (2012). First, the signals were band-pass filtered

from 0.3 to 499Hz and re-referenced using a common average reference montage; then, the time-

frequency representation of brain signals at each electrode was described by a scalogram generated

by Morlet wavelet transformation at ten different center frequencies (20Hz, 30Hz, ..., 110 Hz); the

scalogram of time t was calculated from t − 1 s to t and then resampled at 10 time lags, i.e.,

t− 900 ms, t− 800 ms, . . . , t− 100 ms, t. After a standardization step (z-score) at each frequency

over the 10 time lags for each electrode, we get our input tensor of size 64 × 10 × 10. We fol-

low Hou et al. (2015) and choose a subsegment of the whole 15 minutes dataset starting from the

2nd minute comprising 10000 data pairs where the motion data (output) corresponding to the left

shoulder marker along the x-axis. And we randomly split these data pairs to 3 different sets, i.s.,

a training set with size of 4000, a validation set with the size of 1000, and a test set of size 5000.

Compare with the aforementioned application in facial data, the training size for the monkey data

is bigger, which helps to overcome the estimation error and reveal the approximation error. Since

the important sub-regions may vary with time, we do not go further to find important sub-regions

in this kind of data. Alternatively, we focus on the prediction performance. We repeat the exper-

iment 10 times and report the prediction results in Table 5.3. We can see that the result of BNTR

is the best, which reveals that there is a strong nonlinear relationship between the ECoG data and

movements of the monkey.

Table 5.3: Prediction comparison in the monkey data. Reported are mean MPSE and its standard deviation
(in parenthesis) based on 10 data replications.

Data TLR-1 TLR-2 ENetR BNTR
Monkey 3.1703 (0.0418) 3.0886 (0.0621) 3.1256 (0.0431) 2.5687(0.0756)
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APPENDIX A

TECHNICAL RESULTS

To simplify the notations, we let

J = {(i1, · · · , iD), i1 = 1, . . . , p1, . . . , . . . , iD = 1, . . . , pD}.

Note that s = ΠD
d=1pd, then the cardinality |J | = s.

The concept of Gaussian width (Chandrasekaran et al., 2012; Vershynin, 2018) and γ-functionals

(Talagrand, 2005; Banerjee et al., 2015) will be used in several places of our proofs. We put their

definitions in the beginning of technical results.

Definition 2 (Gaussian width). For any set P ⊂ Rp, the Gaussian width of the set P is defined as

w(P) = Ex sup
a∈P
〈a,x〉,

where the expectation is over x ∼ N(0, Ip×p), a vector of independently standard Gaussian ran-

dom variables.

Definition 3 (γ-functionals). Consider a metric space (T, d) and for a finite set A ⊂ T , let |A|

denote its cardinality. An admissible sequence is an increasing sequence of subsets {An, n ≥ 0}

of T , such that |A0| = 1 and for n ≥ 1, |An| = 22n . Given α > 0, we define the γα-functional as

γα(T, d) = inf sup
t∈T

∞∑
n=0

Diam(An(t)),

where An(t) is the unique element of An that contains t, Diam(An(t)) is the diameter of An

according to d, and the infimum is over all admissible sequences of T .
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A.1 Identifiability issues

It is was noted that our theory does not require the identifiability for each component in (2.2).

For completeness, we discuss the following identifiable problems. To begin with, we state the

uniqueness of the representation (2.2), which means that (2.2) is the only possible combination

of the coefficients and functions under the minimal R components. There are three complications

that result in the indeterminacy, where two of them are similar to that of CP decomposition. The

first is about permutation and scaling, i.e.,

1. Permutation and scaling. Permutation means that the summation of CP components can be

permuted, i.e.,

m(X) = ν +
1

s

∑
r∈{1,...,R}

〈βr1 ◦ βr2 ◦ · · · ◦ βrD, Fr(X)〉 ,

while scaling means that for any constant C 6= 0,

〈
Cβr,1 ◦ βr,2 ◦ · · · ◦ βr,D,

1

C
Fr(X)

〉
= 〈βr,1 ◦ βr,2 ◦ · · · ◦ βr,D, Fr(X)〉 ,

where the scale C can also shift among {βr,d}Dd=1.

The second is another possible combination of functions and the corresponding coefficients that

can also represent m(X) in (2.2), with the exception of permutation and scaling, i.e.,

2. Another possible combination. m(X) can also be represented by

m(X) = ν +
1

s

R∑
r=1

〈
β̄r,1 ◦ β̄r,2 ◦ · · · ◦ β̄r,D, F̄r(X)

〉
.

This other combination is possible. For example, let

F̄1(X) = . . . = F̄R(X) = F1(X) = . . . = FR(X),
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and

B =
R∑
r=1

βr,1 ◦ βr,2 ◦ · · · ◦ βr,D

Due to the non-uniqueness of CP decomposition of a tensor with rank R in general (Kolda

and Bader, 2009), there is another rank decomposition for some B (see, e.g., Stegeman and

Sidiropoulos, 2007), which will lead another combination to represent m(X).

Besides, the constant shift also brings the indeterminacy.

3. Constant shift. For a constant C and a tensor J ∈ Rp1×···×pD of which all the entries are 1,

〈βr,1 ◦ βr,2 ◦ · · · ◦ βr,D, Fr(X)− CJ〉 = 〈βr,1 ◦ βr,2 ◦ · · · ◦ βr,D, Fr(X)〉+ C ′,

where C ′ is a constant that can shift to the intercept ν of the model (2.2).

To avoid constant shift, we let
∫ 1

0
fr(x)dx = 0. This setting will not affect the expressive

ability of the model (2.2). Now, we define the identifiability rigorously.

Definition 4 (Identifiability). Suppose fr ∈ F , where F = {f :
∫ 1

0
f(x)dx = 0, f ∈ C([0, 1])},

r = 1, . . . , R and {fr}Rr=1 is the minimal representation to make (2.2) hold. The minimal rep-

resentation means that there does not exist one of the following two representations for m(X),

i.e.,

i. m(X) = ν̄ + 1
s

∑R̄
r=1

〈
β̄r,1 ◦ β̄r,2 ◦ · · · ◦ β̄r,D, F̄r(X)

〉
,

where ν̄ ∈ R, β̄r,d ∈ Rpd×R̄, (F̄r(X))i1,...,iD = f̄r(Xi1,...,iD) ∈ F and R̄ < R, or

ii. m(X) = ν̃ + 1
s

∑R
r=1

〈
β̃r,1 ◦ β̃r,2 ◦ · · · ◦ β̃r,D, F̃r(X)

〉
,

where ν̃ ∈ R, β̃r,d ∈ Rpd×R̄, (F̃r(X))i1,...,iD = f̃r(Xi1,...,iD) ∈ F and Span{f̃r}Rr=1 ( Span{fr}Rr=1.

We say the representation is identifiable if the components are unique up to permutation and scal-

39



ing. To be more specific if

m(X) = ν +
1

s

R∑
r=1

〈βr,1 ◦ βr,2 ◦ · · · ◦ βr,D, Fr(X)〉

= ν̄ +
1

s

R∑
r=1

〈
β̄r,1 ◦ β̄r,2 ◦ · · · ◦ β̄r,D, F̄r(X)

〉
,

then ν = ν̄, and {(βr,1,βr,2, · · · ,βr,D, Fr(X))}Rr=1 and {(β̄r,1, β̄r,2, · · · , β̄r,D, F̄r(X))}Rr=1 are the

same up to scaling.

So far, we have demonstrated the identifiability issues and given the definition of identifiability

with respect to the representation (2.2). We then list some sufficient conditions to achieve the

identifiability, based on the fundamental idea of the identifiability for CP decomposition. Denote

Bd = (β1,d, . . . ,βR,d) for d = 1, . . . , D,

and kBd
the k-rank of Bd, which is defined as the maximum value k such that any k columns are

linearly independent (Kruskal, 1977; Harshman, 1984). Then the following conditions in the two

cases are sufficient to achieve the identifiability.

Case 1. Require that {fr(x)}Rr=1 is linearly independent.

i. If
∑D

d=1 kBd
≥ R+D, then the decomposition (2.2) is unique up to permutation and scaling.

ii. If D = 2 and R(R−1) ≤ p1(p1−1)p2(p2−1)/2, then the decomposition (2.2) is unique up

to permutation and scaling for almost all such tensors except on a set of Lebesgue measure

zero.

iii. If D = 3 and R(R−1) ≤ p1p2p3(3p1p2p3)−p1p2−p1p3−p2p3−p1−p2−p3 + 3)/4, then

the decomposition (2.2) is unique up to permutation and scaling for almost all such tensors

except on a set of Lebesgue measures zero.

Case 2. Not require that {fr(x)}Rr=1 is linearly independent.
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iv. (General) If
∑D

d=1 kBd
≥ 2R+D − 1, then the decomposition (2.2) is unique up to permu-

tation and scaling.

For simplicity, we present the general condition in the following theorem. In the proof of

Theorem 3, we in fact prove all the aforementioned sufficient conditions.

Theorem 3. (Identifiability) If
D∑
d=1

kBd
≥ 2R +D − 1, (A.1)

then the representation (2.2) is unique up to permutation and scaling.

Proof of Theorem 3

Proof. Suppose there is another representation of (2.2), i.e,

m(X) = ν +
1

s

R∑
r=1

〈βr,1 ◦ βr,2 ◦ · · · ◦ βr,D, Fr(X)〉

= ν̄ +
1

s

R∑
r=1

〈
β̄r,1 ◦ β̄r,2 ◦ · · · ◦ β̄r,D, F̄r(X)

〉
,

(A.2)

where

(Fr(X))i1i2···iD = fr(Xi1i2···iD) and (F̄r(X))i1i2···iD = f̄r(Xi1i2···iD),

with fr, f̄r ∈ F , r = 1, . . . , R. We will show ν̄ = ν, as well as βr,d and β̄r,d, fr and f̄r ,

r = 1, . . . , R, d = 1, . . . , D, are the same up to permutation and scaling under some conditions,

respectively.

Using the definition of F, such as
∫ 1

0
f(x)dx = 0 for f ∈ F , we can obtain ν = ν̄ by integration

over the domain of X in (A.2). In the remaining sum of inner products, we consider the following

arguments. Suppose the minimal bases of the vector space

Span{fr(x), r = 1, . . . , R} and Span{f̄r(x), r = 1, . . . , R}

are {ψk?(x)}K?

k?=1 and {ψ̄k̄?(x)}K̄?

k̄?=1
, respectively. In other words, each fr and f̄r can be written in
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a unique way as a linear combination of {ψk?(x)}K?

k?=1 and {ψ̄k̄?(x)}K̄?

k̄?=1
, respectively. To be more

specific,

fr(x) =
K?∑
k?=1

ηr,k?ψk?(x) and f̄r(x) =
K̄?∑
k̄?=1

η̄r,k̄?ψ̄k̄?(x).

For notational convenience, we let Ψ(X)j,k? = ψk?(Xj), k? = 1, . . . , K? and Ψ̄(X)j,k̄? =

ψ̄k̄?(Xj), k̄? = 1, . . . , K̄?, where j ∈ J . We also denote

Af =
1

s

R∑
r=1

βr,1 ◦ βr,2 ◦ · · · ◦ βr,D ◦ ηr, (A.3)

and

Āf =
1

s

R∑
r=1

β̄r,1 ◦ β̄r,2 ◦ · · · ◦ β̄r,D ◦ η̄r, (A.4)

where ηr = (ηr,1, · · · , ηr,K)ᵀ and η̄r = (η̄r,1, · · · , η̄r,K)ᵀ, for r = 1, . . . , R. Since we have shown

ν = ν̄ in the previous arguments, it is trivial to see that the remaining summation of CP components

in (A.2) equals, i.e., 〈
Af ,Ψ(X)

〉
=
〈
Āf , Ψ̄(X)

〉
. (A.5)

The rest of proof includes three steps. At first, we will show

Span{ψk?(x)}K?

k?=1 = Span{ψ̄k̄?(x)}K̄?

k̄?=1. (A.6)

Based on (A.6), we can chose {ψ̄k̄?(x)}K̄?

k̄?=1
= {ψk?(x)}K?

k?=1 and rewrite (A.5) as

〈
Af ,Ψ(X)

〉
=
〈
Āf ,Ψ(X)

〉
. (A.7)

Secondly, we will show Af = Āf in (A.7). In the end, we will take the advantages of identifiable

theory about CP decomposition and complete the proof.

To show (A.6), we assume there exists k0 such that ψ̄k0(x) is linearly independent of {ψk?(x)}K?

k?=1.

For each j ∈ J , we take integration for other predictors over their domain, then by Lemma 1, we
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get
K?∑
k?=1

Afj,k?ψk?(Xj)−
K̄?∑

k̄? 6=k0

Āf
j,k̄?

ψ̄k̄?(Xj)− Āfj,k0ψ̄k0(Xj) = 0,

forXj ∈ [0, 1]. Note that ψ̄k0(x) is independent of {ψk?(x)}K?

k?=1 and {ψ̄k̄?(x)}i 6=k0 , then Āfj,k0 = 0,

for j ∈ J . Assume there exists r0 such that η̄r0,k0 6= 0, then there exists {f̃r}Rr=1, where f̃r(x) =∑
k? 6=k0 η̄r,k?ψ̄i(x) and Span{f̃r}Rr=1 ( Span{fr}Rr=1, such the representation (2.2) holds. This does

not agree with the minimal representation assumption. As a result, η̄r,k0 = 0 for r = 1, . . . , R, then

{f̄r(x)}Rr=1 can be represented by {ψ̄k?(x)}k? 6=k0 , which leads a contradiction to that {ψ̄k̄?(x)}K̄?

k̄?=1

is a minimal basis. Therefore (A.6) holds and K̄? = K?.

To show Af = Āf in (A.7), we let Af,? = Af − Āf . It is implies that

〈
Af,?,Ψ(X)

〉
= 0,

for all X. Assuming Af,? 6= 0, there exists j0 ∈ J such that (Af,?j0,1, . . . , A
f,?
j0,K?) 6= 0. We fix

{Xj}j 6=j0 at some values and let the corresponding value C−j0 =
∑
j 6=j0

∑K?

k?=1A
f,?
j,k?fk?(Xj).

Then
K?∑
k?=1

Af,?j0,k?ψk?(Xj0) + C−j0 = 0, (A.8)

for Xj0 ∈ [0, 1]. By integration over Xj0 on both sides, we obtain

K?∑
k?=1

Af,?j0,i?wk? + C−j0 = 0,

where wk? =
∫ 1

0
ψk?(x)dx, k? = 1, . . . , K?. By Lemma 1,

∑K?

k?=1A
f,?
j0,k?

wk? = 0, which implies

C−j0 = 0. Combining the independence and (A.8) yields Af,?j0,k? = 0 for k? = 1, . . . , K?. Thus

Af,? = 0 and we have Af = Āf .

Since R is the minimal, (A.3) is a rank decomposition of Af . We can claim that if the rank

decomposition of Af is unique up to permutation and scaling, then the representation (2.2) is

unique up to scaling and permutation. To see this, we can assume the rank decomposition of Af
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is unique up to permutation and scaling. Thus the decomposition (A.4) and the decomposition

(A.3) are the same up to permutation and scaling. Therefore the representation (2.2) is unique up

to permutation and scaling. Now, to make the representation (2.2) unique up to permutation and

scaling, we can use the common arguments about the uniqueness of rank decomposition. Recall

that Bd = (β1,d, . . . ,βR,d), d = 1, . . . , D and the k-rank of a matrix Bd, denoted as kBd
, is defined

as the maximum value k such that any k columns are linearly independent. For convenience, we

let BD+1 := η = (η1, · · · ,ηR) and let kBD+1
be its k-rank. To make the CP decomposition of Af

unique, we have the following sufficient conditions

1. (General) (Sidiropoulos and Bro, 2000) The decomposition (A.3) is unique up to permuta-

tion and scaling if
∑D+1

d=1 kBd
≥ 2R +D.

2. (De Lathauwer, 2006) When D + 1 = 3, R ≤ K and R(R− 1) ≤ p1(p1 − 1)p2(p2 − 1)/2,

the decomposition (A.3) is unique up to permutation and scaling for almost all such tensors

except on a set of Lebesgue measure zero.

3. (De Lathauwer, 2006) When D+1 = 4, R ≤ K and R(R−1) ≤ p1p2p3(3p1p2p3)−p1p2−

p1p3− p2p3− p1− p2− p3 + 3)/4, the decomposition (A.3) is unique up to permutation and

scaling for almost all such tensors except on a set of Lebesgue measures zero.

Now we consider two cases, i.e,

Case 1. If {fr(x)}Rr=1 is linearly independent, then kBD+1
= R. We have the following sufficient

conditions.

i. If
∑D

d=1 kBd
≥ R+D, then the decomposition (2.2) is unique up to permutation and scaling.

ii. If D = 2 and R(R−1) ≤ p1(p1−1)p2(p2−1)/2, then the decomposition (2.2) is unique up

to permutation and scaling for almost all such tensors except on a set of Lebesgue measure

zero.
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iii. If D = 3 and R(R−1) ≤ p1p2p3(3p1p2p3)−p1p2−p1p3−p2p3−p1−p2−p3 + 3)/4, then

the decomposition (2.2) is unique up to permutation and scaling for almost all such tensors

except on a set of Lebesgue measures zero.

Case 2. If we do not know whether {fr(x)}Rr=1 is linearly independent or not, we can also use the

fact that kBD+1
≥ 1, which yields the following general sufficient condition.

iv. (General) If
∑D

d=1 kBd
≥ 2R+D − 1, then the decomposition (2.2) is unique up to permu-

tation and scaling.

Since {fr}Rr=1 are allowed to be the same in the model, we can use the forth sufficient condition,

i.e.,
D∑
d=1

kBd
≥ 2R +D − 1,

which is also used as a condition to make the tensor linear model identifiable (Zhou et al., 2013).

A.2 Estimation

A.2.1 Equivalent basis

To begin with, we define some notations which will be used later. Suppose {b′k(x)}Kk=1 is

the truncated power basis and {bk(x)}Kk=1 is the B-spline basis. Let uk =
∫ 1

0
bk(x)dx and u′k =∫ 1

0
b′k(x)dx. Denote Φ(X),Φ′(X) ∈ Rp1×p2×···×pD×K be the tensor formed from the bases, which

means (Φ(X))j,k = bk(Xj) and (Φ′(X))j,k = b′k(Xj), j ∈ J , k = 1, . . . , K. We define two

function classes,

M1 =

{
m(X) : m(X) = ν1 +

1

s

R∑
r=1

〈β1r,1 ◦ β1r,2 ◦ · · · ◦ β1r,D ◦α1r,Φ(X)〉 ,
K∑
k=1

α1r,kuk = 0

}
,

and

M2 =

{
m(X) : m(X) = ν2 +

1

s

R∑
r=1

〈β2r,1 ◦ β2r,2 ◦ · · · ◦ β2r,D ◦α2r,Φ
′(X)〉 ,

K∑
k=1

α2r,ku
′
k = 0

}
,
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where νl ∈ R, βlr,d ∈ Rpd and αlr = (αlr,1, · · · , αlr,K)ᵀ ∈ RK , r = 1, . . . , R, d = 1, . . . , D,

l = 1, 2. Particularly, one basis function of the truncated power basis is a constant 1. Without

loss of generality, we let b′1(x) = 1 and denote the tensor Φ̃(X) ∈ Rp1×...×pD×K−1 formed by the

remaining basis functions, which means (Φ̃(X))i1,...,iD,k = b′k+1(Xi1···iD), j ∈ J , k = 1, . . . , K −

1. We define the following function class that is removed the linear constraints, i.e.,

M3 =

{
m(X) : m(X) = ν +

1

s

R∑
r=1

〈
β3r,1 ◦ β3r,2 ◦ · · · ◦ β3r,D ◦α3r, Φ̃(X)

〉}
,

where ν3 ∈ R, β3r,d ∈ Rpd , and α3r = (α3r,1, · · · , α3r,K−1)ᵀ ∈ RK−1, r = 1, . . . , R, d =

1, . . . , D.

By the following Theorem 4, we can remove the linear constraints in (3.3) and use any equiva-

lent spline basis to develop our theory.

Theorem 4. M1 =M2 =M3.

Proof. Firstly, we will prove M1 = M2. For each m1(X) ∈ M1. By the property of spline

basis (see, e.g., Chapter 3 of Ruppert et al. (2003)), there exists an invertible matrix Q such that

b(x) = Qb′(x). It is straightforward to seeM1 =M2.

Secondly, we will proveM2 ⊂M3 ⊂M2. For notational simplicity, denote

Blr = βlr,1 ◦ . . . ◦ βlr,D, for l = 2, 3,

For each m2(X) ∈ M2, take B3r = B2r, v3 = v2 + 1/s
∑R

r=1〈B2r, α2r,1J〉 and α3r,k = α2r,k+1,

for k = 1, . . . , K − 1. Then we have m2(X) = m3(X) ∈ M3 and M2 ⊂ M3. For each

m3(X) ∈ M3. Suppose
∑K−1

k=1 α3r,ku
′
k+1 = Cr, it is trivial to see u′1 6= 0. We can choose

α1r,2 = −Cr/u′1, α2r,k+1 = α3r,k for k = 1, . . . , K − 1 so that α2r satisfies the constraint inM2.

Taking ν2 = ν3 +
∑R

r=1〈B3r, Cr/u
′
1J〉, B2r = B3r, it is trivial to see m3(X) = m2(X) ∈ M2.

ThusM3 ⊂M2 and we getM3 =M2.
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A.2.2 Rescaling strategy for the elastic net

For the elastic net penalty, denote

G(B1, . . . ,BD) = λ1

R∑
r=1

Gr({βr,d}d, λ2),

where

Gr({βr,d}d, λ2) =
D∑
d=1

1

2
(1− λ2)‖βr,d‖2

2 + λ2‖βr,d‖1.

Let ρ̃r,d = log ρr,d, then the above optimization problem (3.6) becomes

arg min
ρ̃r,1,··· ,ρ̃r,D

D∑
d=1

1

2
(1− λ2)‖βr,d‖2

2 exp2{ρ̃r,d}+ λ2‖βr,d‖1 exp{ρ̃r,d}

s.t.
D∑
d=1

ρ̃r,d = 0,

(A.9)

which is a convex problem. Using the Lagrangian method and Newton’s method, we can get the

solution.

A.2.3 Proof of Proposition 1

Proof. Suppose θρ = (ν̃,Bρ1 , . . . ,B
ρ
D, B̃D+1) ∈ Θ(θ), then there exists {ρr,d}r,d satisfying

∏
d ρr,d =

1 for r = 1, . . . , R such that Bρd = (ρ1,dβ1,d, . . . , ρR,dβR,d) for d = 1, . . . , D. By definition, for

each r = 1, . . . , R

Gr({ρ̂r,dβr,d}d, λ2) ≤ Gr({ρr,dβr,d}d, λ2),

thus

LG(θ̄) ≤ LG(θρ).

Note that (A.9) is a strictly convex problem if βr,d 6= 0 for r = 1, . . . , R, d = 1, . . . , D. Thus θ̄ is

the unique minimizer in Θ(θ) and we complete the proof.
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A.2.4 Proof of Proposition 2

Proof. We first note that with our rescaling strategy, the objective function is non-increase after

each iteration in our algorithm. Using the same arguments of Proposition 1 of Zhou et al. (2013),

we can get the desired result.

A.3 Proof of Theorem 1

Proof. Since Â and ν̂ is a solution of (3.3), we have

n∑
i=1

(
yi − ν̂ −

1

s
〈Â,Φ(Xi)〉

)2

≤
n∑
i=1

(
yi − ν0 −

1

s
〈A0,Φ(Xi)〉

)2

.

Using the definition of I in (4.1), the aforementioned inequality is equivalent to

n∑
i=1

(
yi −

1

s
〈Â[,Φ(Xi)〉

)2

≤
n∑
i=1

(
yi −

1

s
〈A[

0,Φ(Xi)〉
)2

. (A.10)

Let A] = Â[ − A[
0, a] = vec(A]), a[0 = vec(A[

0) and Z = (z1, . . . , zn)ᵀ ∈ Rn×s, where

zi = vec{Φ(Xi)}, i = 1, . . . , n. In fact, Z can be regarded as the “design" matrix formed by the

spline basis. Using (A.10) and working out the squares, we obtain

1

s2
‖Za]‖2

2 ≤ 2

〈
1

s
Za], ε

〉
+ 2

〈
1

s
Za],y − ε− 1

s
Za[0

〉
, (A.11)

where y = (y1, · · · , yn)ᵀ. By Lemma 1, we have
∑K

k=1A
]
j,kuk = 0 for j ∈ J /{(1, · · · , 1)},

where

uk =

∫ 1

0

bk(x)dx.

Since rank(A[
0) ≤ R0 + 1, rank(Â[) ≤ R+ 1, it is trivial to see rank(A]) ≤ R0 +R+ 2. To finish

the proof, we will find the upper bound of the right hand side and the lower bound of the left hand

side with respect to ‖a]‖2 in (A.11).
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Firstly, we will find the upper bound of 〈Za], ε〉. To simplify the notations, let

P =

{
vec(A)

‖A‖HS
:

K∑
k=1

Aj,kuk = 0, for j ∈ J /{(1, . . . , 1)}, rank(A) ≤ R1

}
,

whereR1 = R+R0 +2 ≤ 2R+2. By (A.39) of Lemma 4, if n > Ch̃2
nh
−2
n w2(P) for some C > 0,

C1nhn‖a]‖2
2 ≤ ‖Za]‖2

2 ≤ C2nhn‖a]‖2
2 (A.12)

with probability as least 1 − 2exp{−C3w
2(P)}. By Lemma 3, the Gaussian width w(P) ≤

C4(RD+1 + R
∑D

i=1 pi + RK)1/2. In the following part, we assume n > Ch̃2
nh
−2
n (RD+1 +

R
∑D

i=1 pi + RK) for some C > 0, then (A.12) holds. By Lemma 5 and (A.12), we have the

following upper bound

〈Za], ε〉 ≤ ‖a]‖2Op

({
nhn

(
RD+1 +

D∑
i=1

Rpi +RK

)}1/2
)
. (A.13)

Secondly, we find the upper bound of 〈Za],y − ε− Za[0〉. Note that

∥∥∥∥y − ε− 1

s
Za[0

∥∥∥∥2

2

=
n∑
i=1

∣∣∣∣1s
R0∑
r=1

〈B0r, Fr(Xi)〉 − 〈A0,Φ(Xi)〉
∣∣∣∣2

≤
n∑
i=1

(
1

s

R0∑
r=1

∣∣〈B0r, Fr(Xi)〉 − 〈B0r ◦α0r,Φ(Xi)〉
∣∣)2

≤
n∑
i=1

{
1

s

R0∑
r=1

C

Kτ
‖vec(B0r)‖1

}2

= Op

({∑R0

r=1 ‖vec(B0r)‖1

s

}2
n

K2τ

)
.
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Using the Cauchy-Schwarz inequality and (A.12), it is shown that

〈
1

s
Za],y − ε− 1

s
Za[0

〉
≤
∥∥∥∥y − ε− 1

s
Za[0

∥∥∥∥
2

∥∥∥∥1

s
Za]
∥∥∥∥

2

=
1

s
‖Za]‖2Op

({∑R0

r=1 ‖vec(B0r)‖1

s

}√
n

Kτ

)

=
1

s
‖a]‖2Op

({∑R0

r=1 ‖vec(B0r)‖1

s

}
n
√
hn

Kτ

)
.

(A.14)

Finally, plugging (A.13) and (A.14) into (A.11), we get

1

s2
‖Za]‖2

2 ≤
1

s
‖a]‖2Op

({
nhn

(
RD+1 +

D∑
i=1

Rpi +RK

)} 1
2

)

+Op

({∑R0

r=1 ‖vec(B0r)‖1

s

}
n
√
hn

Kτ

)
.

(A.15)

It follows from (A.12) and (A.15) that

1√
s
‖a]‖2 = Op

({
sK(RD+1 +

∑D
i=1Rpi +RK)

n

} 1
2

+

{∑R0

r=1 ‖vec(B0r)‖1√
s

}
1

Kτ−1/2

)
,

which completes the proof of (4.5). Further, by Assumption 1 and (A.24) of Lemma 2, we have

‖m̂(X)−m(X)‖2
L2
≤ C5hn

1

s2
‖Â[ −A[

0‖2
HS = C5hn

1

s2
‖a]‖2

2, (A.16)

where C5 is a constant, which will complete the proof of (4.6).

A.4 Proof of Theorem 2

Proof. Since the arguments used in the proof of Theorem 1 have non-asymptotic versions, we can

show the consistency of the penalized estimator, similarly. To simplify the notations, let

Ĝ =
R∑
r=1

D∑
d=1

pd∑
i=1

Pλ(β̂r,di).
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Similar to the proof of Theorem 1, we can obtain

n∑
i=1

(
yi − ν̂ −

1

s
〈Â,Φ(Xi)〉

)2

+ Ĝ ≤
n∑
i=1

(
yi − ν0 −

1

s
〈A0,Φ(Xi)〉

)2

+G0.

Since Ĝ ≥ 0, we have

n∑
i=1

(
yi −

1

s
〈Â[,Φ(Xi)〉

)2

≤
n∑
i=1

(
yi −

1

s
〈A[

0,Φ(Xi)〉
)2

+G0. (A.17)

Let A] = Â[ − A[
0, a] = vec(A]), a[0 = vec(A[

0) and Z = (z1, . . . , zn)ᵀ ∈ Rn×s, where

zi = vec{Φ(Xi)}, i = 1, . . . , n. In fact, Z can be regarded as the “design" matrix formed by the

spline basis. Using (A.17) and working out the squares, we obtain

1

s2
‖Za]‖2

2 ≤ 2

〈
1

s
Za], ε

〉
+ 2

〈
1

s
Za],y − ε− 1

s
Za[0

〉
+G0, (A.18)

where y = (y1, · · · , yn)ᵀ. By Lemma 1 and Lemma 6, we have
∑K

k=1A
]
j,kuk = 0 for j ∈

J /{(1, · · · , 1)}, where

uk =

∫ 1

0

bk(x)dx.

Since rank(A[
0) ≤ R0 + 1, rank(Â[) ≤ R+ 1, it is trivial to see rank(A]) ≤ R0 +R+ 2. To finish

the proof, we will try to find the upper bound of the right hand side and the lower bound of the left

hand side with respect to ‖a]‖2 in (A.18).

Firstly, we will find the upper bound of 〈Za], ε〉. To simplify the notation, let

P =

{
vec(A)

‖A‖HS
:

K∑
k=1

Aj,kuk = 0, for j ∈ J /{(1, . . . , 1)}, rank(A) ≤ R1

}
,

where R1 = R +R0 + 2 ≤ 2R + 2. Recall that if n > Ch̃2
nh
−2
n w2(P), for some constant C, then

C1nhn‖a]‖2
2 ≤ ‖Za]‖2

2 ≤ C2nhn‖a]‖2
2 (A.19)
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with probability as least 1 − 2exp{−Cw2(P)}, and the Gaussian width w(P) ≤ C(RD+1 +

R
∑D

i=1 pi + RK)1/2. In the following part, we assume n > Ch̃2
nh
−2
n (RD+1 + R

∑D
i=1 pi + RK)

for some C > 0, then (A.19) holds. By Lemma 5, we have the following upper bound

〈Za], ε〉 ≤ C‖a]‖2

{
nhn

(
RD+1 +

D∑
i=1

Rpi +RK

)}1/2

, (A.20)

with probability at least

1− C3 exp

{
− C4

(
RD+1 +R

D∑
i=1

pi +RK

)}
.

Secondly, we find the upper bound of 〈Za],y − ε− Za[0〉. Note that

∥∥∥∥y − ε− 1

s
Za[0

∥∥∥∥2

2

=
n∑
i=1

∣∣∣∣1s
R0∑
r=1

〈B0r, Fr(Xi)〉 − 〈A0,B(Xi)〉
∣∣∣∣2

≤
n∑
i=1

(
1

s

R0∑
r=1

∣∣〈B0r, Fr(Xi)〉 − 〈B0r ◦α0r,B(Xi)〉
∣∣)2

≤
n∑
i=1

{
1

s

R0∑
r=1

C

Kτ
‖vec(B0r)‖1

}2

= C

{∑R0

r=1 ‖vec(B0r)‖1

s

}2
n

K2τ
.

It follows from the Cauchy-Swarchz inequality and (A.19) that

〈
1

s
Za],y − ε− 1

s
Za[0

〉
≤
∥∥∥∥y − ε− 1

s
Za[0

∥∥∥∥
2

∥∥∥∥1

s
Za]
∥∥∥∥

2

≤ C

s
‖Za]‖2

{∑R0

r=1 ‖vec(B0r)‖1

s

}√
n

Kτ

≤ C

s
‖a]‖2

{∑R0

r=1 ‖vec(B0r)‖1

s

}
n
√
hn

Kτ
,

(A.21)

with probability at least 1− 2exp{−Cw2(P)}.
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Thirdly, applying (A.19), (A.20) and (A.21) to (A.18), we get

1

s2
‖a]‖2

2 ≤
δ3

s
‖a]‖2 +

1

nhn
G0, (A.22)

with probability at least

1− C5 exp

{
− C6

(
RD+1 +R

D∑
i=1

pi +RK

)}
, (A.23)

where

δ3 = C

{
K
(
RD+1 +

∑D
i=1Rpi +RK

)
n

} 1
2

+ C

{∑R0

r=1 ‖vec(B0r)‖1

s

}
1

Kτ−1/2
.

By solving the second order inequality (A.22), we obtain

1

s
‖a]‖2 ≤

{δ2
3 + 4G0/(nhn)}1/2 + δ3

2
,

under the same probability (A.23). which completes the proof of (4.8). To prove (4.9), we use the

similar arguments of (A.16) to obtain,

‖m̂p(X)−m(X)‖2
L2
≤ C{δ2

3 + (4KG0)/n}
K

,

with the probability at least

1− C7 exp

{
− C8

(
RD+1 +R

D∑
i=1

pi +RK

)}
.
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A.5 Lemmas

Lemma 1. Suppose A ∈ Rp1×...×pD×K has such a CP decomposition,

A =
R∑
r=1

βr,1 ◦ . . . ◦ βr,D ◦αr,

where αr = (αr,1, · · · , αr,K)ᵀ ∈ RK and βr,d ∈ Rpd for d = 1, . . . , D and r = 1, . . . , R. If

u ∈ {(u1, · · · , uK)ᵀ :
∑K

k=1 αr,kuk = 0, r = 1, . . . , R}, then

K∑
k=1

Aj,kuk = 0, for j ∈ J ,

where

J = {(i1, · · · , iD), i1 = 1, . . . , p1, . . . , . . . , iD = 1, . . . , pD}.

Proof. This proof is straightforward. For simplicity, for r = 1, . . . , R, let

Br = βr,1 ◦ . . . ◦ βr,D.

Since
K∑
k=1

αr,kuk = 0,

we have
K∑
k=1

Br,jαr,kuk = 0, j ∈ J ,

where Br,j is j-th entry of Br, r = 1, . . . , R. Therefore,

K∑
k=1

Aj.kuk =
K∑
k=1

R∑
r=1

Br,jαr,kuk =
R∑
r=1

K∑
k=1

Br,jαr,kuk = 0, j ∈ J .

Lemma 2. Suppose U ∈ Rp1×...×pD is a random tensor with its entry Uj
i.i.d.∼ U(0, 1), for j ∈ J
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and A ∈ Rp1×...×pD×K . Let (Φ(X))j,k = bk(Xj), where {bk(x)}Kk=1 be a B-spline basis, x ∈ [0, 1].

Under Assumption 1 and 4, if
∑K

k=1 Aj,kuk = 0 for j ∈ J1 := J /{(1, . . . , 1)}, where uk =∫ 1

0
bk(x)dx, then we have

i.

C1Cζhn‖A‖2
HS ≤ E{〈A,Φ(X)〉2} ≤ C2hn‖A‖2

HS, (A.24)

and

ii.

‖〈A,Φ(X)〉‖2
ψ2
≤ C3h̃n‖A‖2

HS, (A.25)

where C1, C2, C3,Cζ are positive constants, Cζ depends on the order of B-spline ζ , and

h̃n = max

{
h

1/(− log hn)
n

(−2 log hn)
, hn

}
. (A.26)

Proof. We will prove the population bound (A.24) at first. Let Aj = (Aj,1, · · · , Aj,K)ᵀ for j ∈ J .

By the property of B-spline (see, e.g., De Boor, 1973, 1976) and Assumption 4, for 1 ≤ q ≤ +∞,

Cζ‖Aj‖q ≤ h
− 1

q
n

∥∥∥∥ K∑
k=1

Aj,kbk(Uj)

∥∥∥∥
q

≤ C‖Aj‖q, (A.27)

where Cζ and C are two positive constants and Cζ depends on the order of B-spline ζ . By the

independence and the mean zero restriction for j ∈ J1, we have

E[〈A,Φ(U)〉2] =
∑
j∈J

E

[{ K∑
k=1

Aj,kbk(Uj)

}2
]
.

Taking q = 2 in (A.27) yields

Cζhn‖Aj‖2
2 ≤ E

[{ K∑
k=1

Aj,kbk(Uj)

}2
]
≤ Chn‖Aj‖2

2,
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then

Cζhn‖A‖2
HS ≤ E[〈A,Φ(U)〉2] ≤ Chn‖A‖2

HS. (A.28)

By Assumption 1, we have

C1E[〈A,Φ(U)〉2] ≤ E[〈A,Φ(X)〉2] ≤ C4E[〈A,Φ(U)〉2]. (A.29)

It follows from (A.28) and (A.29) that

C1Cζhn‖A‖2
HS ≤ E[〈A,Φ(X)〉2] ≤ C2hn‖A‖2

HS,

which completes the proof of (A.24).

Now, we will prove the sub-Gaussian norm bound (A.25). Note that

‖〈A,Φ(U)〉‖ψ2 ≤
∥∥∥∥∑
j∈J1

K∑
k=1

Aj,kbk(Uj)

∥∥∥∥
ψ2

+

∥∥∥∥ K∑
k=1

A1,··· ,1,kbk(U1,··· ,1)

∥∥∥∥
ψ2

,

then

‖〈A,Φ(U)〉‖2
ψ2
≤ 2

∥∥∥∥∑
j∈J1

K∑
k=1

Aj,kbk(Uj)

∥∥∥∥2

ψ2

+ 2

∥∥∥∥ K∑
k=1

A1,··· ,1,kbk(U1,··· ,1)

∥∥∥∥2

ψ2

. (A.30)

Using the independence property of U, mean zero restriction of A and Proposition 2.6.1 of Ver-

shynin (2018), we obtain

∥∥∥∥∑
j∈J1

K∑
k=1

Aj,kbk(Uj)

∥∥∥∥2

ψ2

≤ C5

∑
j∈J1

∥∥∥∥ K∑
k=1

Aj,kbk(Uj)

∥∥∥∥2

ψ2

. (A.31)

It follows from (A.30) and (A.31) that

‖〈A,Φ(U)〉‖2
ψ2
≤ 2C5

∑
j∈J1

∥∥∥∥ K∑
k=1

Aj,kbk(Uj)

∥∥∥∥2

ψ2

+ 2

∥∥∥∥ K∑
k=1

A1,··· ,1,kbk(U1,··· ,1)

∥∥∥∥2

ψ2

.

56



Therefore,

‖〈A,Φ(U)〉‖2
ψ2

≤ (2C5 + 2)
∑
j∈J

∥∥∥∥ K∑
k=1

Aj,kbk(Uj)

∥∥∥∥2

ψ2

+ (2C5 + 2)

∥∥∥∥ K∑
k=1

A1,··· ,1,kbk(U1,··· ,1)

∥∥∥∥2

ψ2

= (2C5 + 2)
∑
j∈J

∥∥∥∥ K∑
k=1

Aj,kbk(Uj)

∥∥∥∥2

ψ2

.

(A.32)

We then consider the sub-Gaussian norm of Aj,kbk(Uj). When q = 1, by (A.27), we have

‖Aj,kbk(Uj)‖1√
1

≤ 2
‖Aj,kbk(Uj)‖2√

2
≤ C

√
hn‖Aj‖2. (A.33)

Similarly, when q ≥ 2, we obtain

‖Aj,kbk(Uj)‖q√
q

≤ C
h

1/q
n√
q
‖Aj‖q ≤ C

h
1/q
n√
q
‖Aj‖2. (A.34)

Since f(x) = h
1/x
n√
x

get the maximum at x = −2 log hn, then

h
1/q
n√
q
‖Aj‖2 ≤

h
1/(−2 log hn)
n

(−2 log hn)1/2
‖Aj‖2. (A.35)

Recalling

h̃n = max

{
h

1/(− log hn)
n

(−2 log hn)
, hn

}
,

and using (A.32)-(A.35), we get

‖〈A,Φ(U)〉‖2
ψ2
≤ (2C5 + 2)h̃nC

2‖A‖2
HS. (A.36)

Note that for q ≥ 1,

1
√
q

{
E[|〈A,Φ(X)〉|q]

} 1
q ≤ C

1
√
q

{
E[|〈A,Φ(U)〉|q]

} 1
q ≤ C‖〈A,Φ(U)〉‖ψ2 ,
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therefore,

‖〈A,Φ(X)〉‖2
ψ2
≤ C3h̃n‖A‖2

HS,

which completes the proof of (A.25).

Lemma 3. Let A ∈ Rp1×...×pD×K , and

P =

{
vec(A)

‖A‖HS
:

K∑
k=1

Aj,kuk = 0, for j ∈ J /{(1, . . . , 1)}, rank(A) ≤ R

}
, (A.37)

where uk =
∫ 1

0
bk(x)dx. The Gaussian width satisfying

w(P) ≤ C

(
RD+1 +R

D∑
d=1

pd +RK

)1/2

. (A.38)

Proof. By the covering number argument in Lemma 7, we have

N(ε,P , l2) ≤
(
C1/ε

)RD+1+R
∑D

i=1 pi+RK

,

where C1 = 3D + 4 is a constant. Suppose a ∈ P , then by the Dudley’s integral entropy bound

(see, e.g., Theorem 3.1 of Koltchinskii (2011)), we obtain

E sup
a∈P

(aᵀx) ≤ C3

∫ 2

0

{(
RD+1 +R

D∑
i=1

pi +RK

)
log

(
C1

x

)}1/2

dx

≤ C

(
RD+1 +R

D∑
i=1

pi +RK

)1/2

.

Thus we complete the proof.

Lemma 4. Let A ∈ Rp1×...×pD×K and suppose P is defined as (A.37). Under Assumption 1, we

have
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i.

sup
A∈P

∣∣∣∣∣ 1n 1

E[|〈A,Φ(X)〉|2
n∑
i=1

〈A,Φ(Xi)〉2 − 1

∣∣∣∣∣ ≤ C1h̃nh
−1
n

w(P)√
n

with probability at least 1− exp{−C2w
2(P)}, where w(P) is the Gaussian width ad (Φ(X))j,k =

bk(Xj) for j ∈ J , k = 1, . . . , K. Furthermore, suppose ‖A‖HS = 1 and n > Ch̃2
nh
−2
n w2(P) for

some C > 0, then with the same probability, we have

ii.

C3hn ≤ inf
A∈P

1

n

∣∣∣∣ n∑
i=1

〈A,Φ(Xi)〉
∣∣∣∣2 ≤ sup

A∈P

1

n

∣∣∣∣ n∑
i=1

〈A,Φ(Xi)〉
∣∣∣∣2 ≤ C4hn. (A.39)

Note that if t ≥ w(P), then t can be used to replace the above w(P).

Proof. Based on Lemma 2, the following proof is similar to Theorem 12 of Banerjee et al. (2015).

We consider the following class of functions

F =

{
fA : fA{Φ(X)} =

1√
E{|〈A,Φ(X)〉|2}

〈A,Φ(X)〉, vec(A) ∈ P
}
.

It is trivial to see that F ⊂ SL2 := {f : E[f 2{Φ(X)}] = 1}. By definition,

sup
fA∈F

‖fA‖ψ2 = sup
A∈P

∥∥∥∥ 1√
E[|〈A,Φ(X)〉|2

〈A,Φ(X)〉
∥∥∥∥
ψ2

,

and by Lemma 2, for every vec(A) ∈ P ,

∥∥∥∥ 1√
E[|〈A,Φ(X)〉|2

〈A,Φ(X)〉
∥∥∥∥
ψ2

≤ κn,

where κn = C5h̃
1/2
n h

−1/2
n . Then we obtain

sup
fA∈F

‖fA‖ψ2 ≤ κn.
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Thus for the γ2 functionals, we have

γ2(F ∩ SL2 , ‖.‖ψ2) ≤ κnγ2(F ∩ SL2 , ‖.‖L2) ≤ C6κnw(P),

where the last inequality follows from Theorem 2.1.1 of Talagrand (2005). By Theorem 10 of

Banerjee et al. (2015), we can choose

θ = C7C6κ
2
n

w(P)√
n
≥ C7κn

γ2(F ∩ SL2 , ‖.‖ψ2)√
n

.

As a result, with probability at least 1− exp(−C8θ
2n/κ4

n) = 1− exp{−C2w
2(P)}, we have

sup
A∈P

∣∣∣∣∣ 1n 1

E[|〈A,Φ(X)〉|2
n∑
i=1

〈A,Φ(Xi)〉2 − 1

∣∣∣∣∣ ≤ C1h̃nh
−1
n

w(P)√
n
,

where C1 = C7C6C
2
5 and C2 = C8C

2
7C

2
6 are two positive constants. Suppose

√
n > Ch̃nh

−1
n w(P)

for some C > 0, then by Lemma 2, with probability at least 1− exp{−C2w
2(P)}, we have

C3hn ≤ inf
A∈P

1

n

∣∣∣∣ n∑
i=1

〈A,Φ(Xi)〉
∣∣∣∣2 ≤ sup

A∈P

1

n

∣∣∣∣ n∑
i=1

〈A,Φ(Xi)〉
∣∣∣∣2 ≤ C4hn.

Lemma 5. Suppose A ∈ Rp1×...×pD×K , rank(A) ≤ R and
∑K

k=1Aj,kuk = 0 for j ∈ J /{(1, . . . , 1)},

where uk =
∫ 1

0
bk(x)dx. If n > Ch̃2

nh
−2
n

(
RD+1 +R

∑D
i=1 pi +RK

)
for some constant C > 0, we

then have

n∑
i=1

〈A,Φ(Xi)〉εi ≤ C1‖A‖HS
{
nhn

(
RD+1 +

D∑
i=1

Rpi +RK

)}1/2

, (A.40)

with probability at least

1− C2 exp

{
− C3

(
RD+1 +R

D∑
i=1

pi +RK

)}
.
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Proof. We use the notation Z = (z1, · · · , zn)ᵀ introduced in the proof of Theorem 4, then the left

hand side of (A.40) can be rewritten as

n∑
i=1

〈A,Φ(Xi)〉εi = (Za)ᵀε.

Consider

Γ1 =

{
Za√

λRmax(ZᵀZ)
: a ∈ P

}
,

where λRmax(Z
ᵀZ) = supa∈P ‖Za‖2 and P is defined as in Lemma 4. By the covering number

argument in Lemma 7,

N(ε,P , l2) ≤
(C4

ε

)RD+1+R
∑D

d=1 pd+RK

,

where C4 = 3D + 4 is a constant. Following from the definition of Γ1, we have

N(ε,Γ1, l2) ≤ N(ε,P , l2) ≤
(C4

ε

)RD+1+R
∑D

i=1 pi+RK

.

By Assumption 2, E{exp(tηᵀε)} ≤ exp(Ct2‖η‖2) ≤ exp(Ct2) for η ∈ Γ1. Using the Dudley’s

integral entropy bound, we have

E sup
η∈Γ1

(ηᵀε) ≤ C

∫ 2

0

{(
RD+1 +R

D∑
i=1

pi +RK

)
log
(
C4/ε

)}1/2

dε

≤ C5

(
RD+1 +R

D∑
i=1

pi +RK

)1/2

.

As a direct result (e.g., Theorem 8.1.6 of Vershynin (2018)), we have

sup
η∈Γ1

(ηᵀε) ≤ C

[ ∫ 2

0

{(
RD+1 +R

D∑
i=1

pi +RK

)
log
(
C4/ε

)}1/2

dε+ 2t

]

≤ C6

{(
RD+1 +R

D∑
i=1

pi +RK

)1/2

+ t

}
,
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with probability as least 1− 2 exp(−t2), which implies

(Za)ᵀε ≤ C7

√
λRmax(ZᵀZ)

(
RD+1 +R

D∑
i=1

pi +RK

)1/2

, (A.41)

with probability as least

1− 2 exp

{
−
(
RD+1 +R

D∑
i=1

pi +RK

)}
.

Plugging (A.38) and (A.39) into (A.41), we will complete the proof of (A.40).

Lemma 6. Suppose
∫ 1

0
fr(u)du = 0, r = 1, . . . , R and Assumption 3 holds. Then there exist α0r,k,

r = 1, . . . , R, such that ∥∥∥∥fr − K∑
k=1

α0r,kbk

∥∥∥∥
∞

= O(K−τ ),

where
∑K

k=1 α0r,kuk = 0 and uk =
∫ 1

0
bk(x)dx.

Proof. It is a well-known result that for each r, there exists a spline function f1r which can be

represented by {bk(x)}Kk=1, such that

‖fr − f1r‖∞ = O(K−τ ).

Let f2r = f1r −
∫ 1

0
f1r(u)du, then we have

‖fr − f2r‖∞ ≤ ‖fr − f1r‖∞ +

∣∣∣∣ ∫ 1

0

f1r(u)du

∣∣∣∣.
Since ∣∣∣∣ ∫ 1

0

f1r(u)du

∣∣∣∣ =

∣∣∣∣ ∫ 1

0

{f1r(u)− f(u)}du+

∫ 1

0

f(u)du

∣∣∣∣
≤ ‖fr − f1r‖∞

= O(K−τ ),
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it is straightforward to get

‖fr − f2r‖∞ = O(K−τ ).

The proof is completed by noting that f2r is a spline function with mean zero.

Lemma 7. Let A ∈ Rp1×...×pD×K . To simplify the notations, denote pD+1 = K. Let Γ2 = {a :

‖a‖2 ≤ 1, a = vec(A), rank(A) ≤ R}. Then the covering number of Γ2 satisfying

N(ε,Γ2, l2) ≤
(3D + 4

ε

)RD+1+R
∑D+1

d=1 pd
. (A.42)

Proof. Since the CP decomposition is a special case of the Tucker decomposition (Kolda and

Bader, 2009), A can be represented as

A = I×1 B1 ×2 · · · ×D BD ×D+1 BD+1, (A.43)

where Bd ∈ Rpd×R, d = 1, . . . , D + 1 and I ∈ RR×R...×R is a diagonal tensor of which all the

diagonal entries are 1. Let rd = rank(Bd). Through the QR decomposition, we get Ad = QdRd,

where Qᵀ
dQd = Ird and Ird ∈ Rrd×rd is the identity matrix. Using the argument in (A.43), we have

A = (I×1 B1 ×2 · · · ×D BD)×D+1 (QD+1RD+1)

= (I×1 B1 ×2 · · · ×D BD ×D+1 RD+1)×D+1 QD+1

= {(I×D+1 RD+1)×1 B1 ×2 · · · ×D BD} ×D+1 QD+1

= {(I×D+1 RD+1)×1 B1 ×2 · · · ×D (QDRD)} ×D+1 QD+1

= {(I×D RD ×D+1 RD+1)×1 B1 ×2 · · · ×D−1 BD−1} ×D QD ×D+1 QD+1

= · · ·

= (I×1 R1 ×2 · · · ×D+1 RD+1)×1 Q1 ×2 · · · ×D+1 QD+1.

In other words, the CP decomposition will lead a higher-order singular value decomposition (HOSVD)(see,
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e.g., De Lathauwer et al., 2000). By Lemma 2 of Rauhut et al. (2017), we obtain

N(ε,Γ2, l2) ≤
(3D + 4

ε

)ΠD+1
d=1 rd+

∑D+1
d=1 pdrd

.

Therefore (A.42) is shown by noting that rd ≤ R for d = 1, . . . , D + 1.
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