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ABSTRACT

The main objective of this dissertation is to develop and deploy and test explicit model predic-

tive control feedback strategy on hydrogen systems using the PARametric Optimization and Con-

trol framework (PAROC). In line with the Smart Manufacturing initiative, our endeavor explores a

new model based embedded control architecture that can enable the flexibility and adaptability of

hydrogen process system to artificial intelligent algorithms. First a hydrogen supply chain model

is developed to identify sustainable hydrogen technologies and then explicit model predictive con-

trol is developed using the PAROC framework. Both in silico and laboratory implementations are

considered towards a smart prototype system application and demonstration. In silico PAROC

considerations include the development and validation of high-fidelity models based on which the

application of the multi-parametric programming techniques results in the derivation of explicit

optimal feedback design strategy through the solution of a receding horizon optimization problem

formulation. The derived explicit parametric control strategy is validated first in silico and then

in real-time. Thus, laboratory scale experimental prototypes have been designed and built. The

prototypes include: (i) a metal hydride hydrogen storage system (MHSS) and (ii) a PEM Water

Electrolysis (PEMWE). The MHSS is designed to replicate the refueling process of a Fuel Cell

Electric Vehicle (FCEV) in a hydrogen gas station while the PEMWE is designed as a module

in a large scale modular hydrogen production process. Integration of the explicit MPC feedback

control strategy and the online implementation on the prototype systems create smart hydrogen

energy technologies. Both prototypes are tested using the explicit model predictive control strate-

gies developed and the results obtained from the real-time implementation of the explicit feedback

strategy demonstrates the potential of the proposed strategy and effective control design that meets

the desired control objectives.
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1. INTRODUCTION

1.1 Overview

The primary aim of this thesis is to develop and apply explicit model predictive control feed-

back design strategy on hydrogen systems using the PARametric Optimization and Control frame-

work. One logical question will be, why is it important to develop and apply explicit model predic-

tive control laws? Camacho et al. [2] highlights some of the needs for automation and control in

the process manufacturing industry. While model based control, such as Model Predictive Control

(MPC) have become very popular due to its ability to incorporate constraints among other benefits,

explicit MPC is known to be more suitable for the following scenarios; (i) when avoiding the cum-

bersome optimization at every time step is advantageous for the system (ii) when insights about

the control strategy are needed for further analysis and (iii) when a complete map of solution of a

lower-level problem is needed for solving an upper level problem. Explicit MPC is also suitable for

an embedded model-based control architecture and can play a major role in the on going industrial

revolution, termed Smart Manufacturing in the US.

The incremental development of advanced computing power has enabled the development of

more sophisticated analytical and optimization techniques. Also Manufacturing assets or equip-

ment are becoming more computerized and fitted with sensors which makes them smarter assets

capable of changing the manufacturing landscape [3, 4, 5]. Also as the proliferation of these smart

asset creates better asset monitoring, a consolidated and intelligent manufacturing ecosystem ne-

cessitates a seamless integration of these smart assets into an enterprise wide network to provide

manufacturing intelligence for decision making and unlocking an innovation trajectory [5]. This

paradigm shift is characterized by the term “Smart Manufacturing" (SM) which will be discussed

in details in the next chapter. The integration of these key components enables enterprise wide

connectivity which provides the ability to leverage advanced technologies for AI for innovations

to effectively transform manufacturing data to manufacturing intelligence [6]. Despite the fact that
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manufacturing asset are becoming smart, most of the process equipments, are still embedded with

Programmable Logic Control (PLC) which are unaware of the process dynamics or the chemical

interactions of the system. Replacing the PLC in a these system with an embedded model-based

control strategy or a hybrid of both increases the system’s flexibility and its adaptability to an arti-

ficially intelligent (AI) network or Cyber-Physical System (CPS) . These proposition coupled with

the manufacturing intelligences generated from the manufacturing data provide an unprecedented

insight to make better decisions and improve the competitiveness of the manufacturing enterprise.

Another logical question will be: why hydrogen system? The global energy demand is pro-

jected to increase by 30% in 2040 and CO2 emission will follow the same trend if drastic actions

are not taken. In addition, variable Renewable energy has increased tremendously within the last

decade, with at least 1800% increase in solar energy and about 300% increase in wind energy [7].

As renewable energies gain more traction due to improving efficiencies and decreasing cost, there

is an expected gradual transition away from the dependence on fossil fuels toward the deployment

of more environmentally friendly energy technologies. Hydrogen is an energy vector or carrier

that can facilitate transition hydrogen, which has enormous potential as a fuel for vehicle mobility

and electricity generation [8, 9]. However, its integration into the energy and or manufacturing

landscape is currently strained by the dearth of enabling infrastructure.

Developing these infrastructure given different short-term and long-term technological, en-

vironmental, and economical actualizations can be challenging. The question some researchers

in seeks to answer is “what are the most energy efficient, environmentally benign, and cost ef-

fective pathways to deliver hydrogen to the consumer considering prevalent uncertainties?"[10].

Answering this question will equip policy makers, investors and the general public with rel-

evant information and decision tools for the development of hydrogen infrastructures. To ad-

dress this challenges, several researchers have studied various aspect of the hydrogen supply chain

[11, 12, 13, 14, 15, 16, 17, 18, 19] and the steam methane reform process is the main technology

for the production of hydrogen because of its relative low cost of hydrogen production. However,

these studies did not consider oxygen (which is a valuable by-product of electrolysis) as a revenue
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generating option. Chapter 3 details a study we conducted showing that when oxygen is consid-

ered as a revenue generating option, water electrolysis is not only environmentally friendly but also

cost effective [20]. Electrolysis is an energy intensive process and to maintain its sustainability, it

is imperative that a renewable source is adopted. Researchers have identified and modeled some

controllable but complex interactions in the electrolysis process that have the potential to reduce

its energy intensity [21, 22, 23, 24, 25, 26, 27, 28, 29]. Others have also observed that the system

integration associated with the balance of plant (BOP) of hydrogen system can be challenging [30].

Energy Storage is another important hydrogen infrastructure challenge that continues to plague

the integration of variable renewable energy into the energy landscape. Energy storage as hydro-

gen has attracted a lot of research interest mainly because it can be easily integrated with variable

renewable energy through the electrolysis or onboard a Fuel Cell Electric Vehicle (FCEV). Hy-

drogen can be stored in its gaseous form (compressed), in a solid form (absorbed or adsorbed), in

its liquid form (cryo-cooled). Compressed hydrogen is the most common hydrogen storage option

and hydrogen storage in solid form is not fully developed yet. Several studies have been dedicated

to developing materials that can store large amounts of hydrogen. While some other studies have

focused on modeling the prevalent interactions in the hydrogen storage process. Temperature con-

trol which is directly related to absorption and desorption of hydrogen in metal hydrides has been

a major set back in the adoption of metal hydrides storage option. This challenge is partly asso-

ciated with the physiochemical property of the material [31], the design of the housing, and the

control design of the desorption and adsorption process. In Chapter 4 - 6, we developed a thermal

management operating strategy for the safe operation of storing hydrogen in metal hydrides.

Since its inception, the process system engineering community has been leading the research

and development of tools and techniques that are pivotal to smart manufacturing in the process

industry. These techniques include the integration of detailed modeling, design and operational

optimization, controller design and scheduling/planning policies. The advancement and diversifi-

cation of real-time and life-cycle modeling is indispensable to smart manufacturing. it is a common

component in process system engineering techniques. Model based control methods have become
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a popular and highly sought-after control design method for the process manufacturing industry

[32]. While modeling is becoming common practice in the process manufacturing industry, there is

a need for tools and techniques that simplify and cost-effectively build, deploy, and maintain mod-

els across large heterogeneous systems. Pistikopoulos et al. [33] proposed PARmeteric Optimiza-

tion and control (PAROC) framework which enables the representation and solution of demand-

ing model-based operational optimization and control problems following an integrated procedure

featuring high-fidelity modeling, approximation techniques and optimization-based strategies, in-

cluding multi-parametric programming. The PAROC framework is a platform that integrates the

various technology in Advanced Sensor Control Platform and Model (ASCPM) which makes it

appropriate for developing SM systems. In this paper we will demonstrate how PAROC integrates

aspect of ASCPM in the design and optimal operation of a smart metal hydride hydrogen stor-

age/refueling system.

1.2 Scope and Objective

1.2.1 Objectives

As stated earlier, the primary objective is to develop and deploy an explicit model predictive

control feedback law on hydrogen systems using the PARametric Optimization and Control frame-

work. Below are four research questions that this thesis seeks to address.

Q1 What are the most energy efficient, environmentally benign, and cost effective pathways to

meet the hydrogen demand amid prevalent uncertainties? Section 1.2.2.1 elaborates on this.

Q2 Can we facilitate our understanding of the behavior, and predictability of hydrogen energy

system without actually testing the system in the real world? Section A.8 elaborates on this.

Q3 Can we design and maintain optimal operating strategies given prevalent operating con-

straints that can guarantee fast response, and efficient operation of hydrogen energy systems?

Section 1.2.2.3 elaborates on this.

Q4 Can we improve the easy and flexibility of deploying optimal control algorithms or operating
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strategies for smart chemical processes? Section 1.2.2.4 elaborates on this.

1.2.2 Scope

1.2.2.1 Hydrogen Supply Network

The scope for the hydrogen supply network research project is the development of a super-

structure based mathematical programming model. The model is used to design a multi-objective

hydrogen supply chain network formulated as an MINLP model to simultaneously (i) maximize

the NPV and (ii) minimize the GHG emission. The model is applied, using Texas and California

as case studies. The solutions from this higher level modeling creates the basis for choosing what

hydrogen based system is further analyzed. The hydrogen energy systems considered in the study

are the proton exchange membrane water electrolysis (PEMWE) and the Metal Hydride (MH)

Hydrogen Storage. More details are presented in Chapter 3

1.2.2.2 Development of High Fidelity System Models

• The scope of this research includes developing high fidelity dynamic and steady-state models

for hydrogen based energy system. The physics based or semi-empirical models of the

hydrogen energy systems and integrated balance of plant components are aimed to capture

complex interactions and phenomenon in the system that are pivotal to the performance,

cost and durability of the system. Chapter 4 discusses the development of in silico models

for three different systems: (i) the direct internal reform solid oxide fuel cell, (ii) the metal

hydride hydrogen storage system and (iii) the proton exchange membrane water electrolysis.

• Also within the main scope of this research is developing two prominent experimental test

platforms: (1) A lab-scale metal hydride hydrogen storage facility and (2) A lab scale proton

exchange membrane water electrolysis facility. These platforms will enable the validation of

the high fidelity models, and implement or test new efficient and robust control policies for

hydrogen system operation. Chapter 5 discusses the design and fabrication of two laboratory

scale experimental setup used for validating the high fidelity models.
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1.2.2.3 Development of Controllers

Next goal is to design online and offline model-based predictive controllers for the integrated

system using multiparametric programming techniques. The governing piecewise affine optimal

control policy can then be enforced on-line as a sequence of simple function evaluations. This ad-

ministration of parametric predictive control is aimed to achieve the robust stability, feasibility and

performance under uncertainty scenarios. The control strategies are developed using the PAROC

framework in Chapter 4

1.2.2.4 Deployment of MPC-on-a-Chip

This research also aims to develop the hardware platform and software framework that can be

easily adapted for efficient operation of hydrogen systems. The closed-loop MPC-on-chip control

policies designed can be rigorously tested and validated on any of the experimental facilities that

are developed as a part of this research work. This will enable us demonstrate the automation archi-

tecture and embedded MPC-on-a-chip strategy as an option for making smarter hydrogen systems

and decisions that foster reliably operations and further improve its competitive advantage. Chap-

ter 6 discusses the deploying and implementing the control strategies into the lab-scale prototypes

developed in Chapter 5
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2. SMART MANUFACTURING - A BRIEF OVERVIEW

2.1 Synopsis

Smart manufacturing encapsulates a new revolution in the manufacturing industry. It is envi-

sioned to leverage network technologies such as the industrial Internet of things, big data analytics,

smart assets (machinery or equipment) and highly skilled workforce to create a new manufacturing

ecosystem that will make available the right data in the right form, the right people with the right

knowledge, the right technology and the right operations, whenever and wherever needed. This

new manufacturing ecosystem will enable technology innovation, economic health and resources

for an agile, safe and sustainable manufacturing industry. Towards rapid development and deploy-

ment of smart manufacturing, a number of technologies are prioritized for accelerated research

and development. These technology areas include; (1) advances sensing, control, platform, and

modeling (ASCPM), (2) Visualization, informatics, and Digital Manufacturing (VIDM), and (3)

Advanced Material Manufacturing (AMM). The onboard hydrogen gas storage in a metal hydride

system is presented as an example of a smart manufacturing application in energy systems.
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2.2 Introduction

The invention of transistors and integrated circuit in the 1980’s harbingered the information

technology (IT) age and the ubiquity of digital systems such as computers, automated systems and

industrial robots etc. These technology innovations enabled embedding computer technology into

a range of object including large machinery. Currently most factory floors and chemical plants

are lined with automated and sophisticated machinery. Over the years these technologies have

been continually updated to improve productivity and profitability. However, in most cases these

upgrades were increased and may not be sufficient for companies to stay competitive thus, there is

a need for a radical new approach to developing and deploying technologies and business models.

Smart manufacturing is a terminology that characterizes such a paradigm shift in the manufacturing

industry.

Smart manufacturing generally involves making available the right data in the right form, the

right people with the right knowledge, the right technology and the right operations, whenever and

wherever needed throughout the manufacturing enterprise. The manufacturing industry generates

enormous amount of data but are wanting in knowledge or manufacturing intelligence. Manufac-

turing intelligence (MI) is an integral aspect of smart manufacturing. It is simply the information

or knowledge gathered from the manufacturing data. Forging MI involves any combination of the

following; data aggregation, structuring the data, data analytics, data visualization and data propa-

gation. The essence is to derive knowledge from manufacturing data. In a publication by Davis et

al [5] Smart Manufacturing was defined as the intensified application of manufacturing intelligence

throughout the manufacturing enterprise. It leverages the aggregation of cutting-edge technologies

and manufacturing intelligence for effective and accurate engineering decision making in real time.

Economies around the world are developing and implementing strategies that are expected to

improve their competitive advantage in the manufacturing industry. In 2013, Germany initiated

Industry 4.0 [34] which is aimed at creating intelligent factories where manufacturing technolo-

gies are transform by cyber-physical systems and other technologies. Consequently, in 2015 China

initiated Made-in-China 2025 [35], which is a 10 years plan that focuses on improving the quality
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of products made in China, building a solid manufacturing capability by developing cutting-edge

advanced technologies, researching new materials, and producing key parts and components of ma-

jor products. Similarly, the US has instituted various industry-government partnership to advance

the manufacturing industry and in 2016, Smart Manufacturing Leadership Coalition (SMLC) was

selected to lead the new Smart Manufacturing Innovation Institute, in partnership with the US De-

partment of Energy [36]. The focus is on accelerating the development and adoption of advanced

sensors, data analytics, and controls in manufacturing, while reducing the cost of these technolo-

gies by half and radically improving the energy efficiency of U.S. manufacturing industry.

Recently, the Clean Energy Smart Manufacturing Innovation Institute (CESMII) was estab-

lished [4]. CESMII focuses on research activities and developments that improve energy efficiency

and advance the aggregation of smart manufacturing technologies such as advanced real-time sen-

sors, monitoring, data analytics, and digital controls in U.S. manufacturing operations. Industry

4.0, Made-in-China 2025 and Smart Manufacturing, all have some commonality of interest which

include; (1) achieving a competitive edge, (2) digitalization - which involves developing smart

assets like machines equipment and sensors or embedding the digital systems into these assets to

increase the level of automation and (3) connectivity - which involves asset interaction through the

Industrial Internet of things (IIoT).

2.3 Goals of Smart Manufacturing

The goals of smart manufacturing can be distilled to the following [37]

• Seamless interoperation of manufacturing automation equipment from different vendors al-

lowing plug and-play configurations

• Energy use and waste streams per unit output from manufacturing plants are reduced by 20%

to 50%

• Deployment cost of sensors fall by an order of magnitude

• Real-time optimization and control to adapt to changes in feedstock, market demands and
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plant performance

The overarching outcomes of smart manufacturing can be summarized as follows [6];

• Technology Innovation and Economic Health: An integrated system with standards and

an enabling atmosphere to foster technology innovations that are pivotal to the economic

growth and stability.

• Agility: An optimized enterprise-wide platform connecting end user that is flexible and

situation-aware, which enables rapid response to uncertainties such as in customer demands,

price fluctuations.

• Resource Efficiency: Ready access to manufacturing intelligence (data, R&D solutions),

labor, energy, feedstock, water etc.

• Next Generation Workforce: foster advanced skilled workforce to optimize the use of

manufacturing intelligence.

• Safety and Sustainability: Improved occupational, safety, process safety, sustainability and

minimized environmental impacts.

The manufacturing industry can be categorized into process and discrete manufacturing. Prod-

ucts from process manufacturing are mostly continuous fluid or solid streams with fluid-like prop-

erties while those of discrete are mostly parts or an assembly of multiple parts. The challenges

encountered in the two industries will differ so are some of the technologies required to make

them smart. The process and energy system engineering community has been leading the research

and development of tools and techniques for facilitating integrated design and operation in process

manufacturing. Tool with simulation and optimization capabilities already exist [38, 39, 40, 41]

and are constantly being updated with new algorithms. Plant-wide optimization techniques [42]

are also used in some process manufacturing industries to improves resource integration which

maximizes profitability and reduces environmental impact.

10



2.4 Elements of Smart Manufacturing

There are five key elements of smart manufacturing; network, data, smart asset, workforce

and products/materials. Smart manufacturing requires the seamless integration or interoperability

of the physical elements; smart machine/equipment, workforce and Product/materials using the

network to facilitate the transformation of data to intelligence for better decision making [43]. The

strategies that will enable smart manufacturing will simultaneously advance these elements

2.4.1 Smart Assets

Smart assets are IIoT-enabled machines or equipments which have an embedded digital system

that allows it to receive data, process data, perform certain task(s) and transmit data. As shown

in figure it is integral to the manufacturing enterprise and an important aspect of the smart asset

is automation. In a smart factory, smart assets have to be able to communicate with each other

and also be integrated into the cyber-physical system through the industrial Internet of things.

Some important benefits of smart asset include, improved productivity, remote operation, safety of

workers etc. Smart assets also enable system simulation, application of a advanced control, real-

time optimization, proper asset monitoring and increased operational profitability. Sensors are key

to enabling a smart system since they not only create better monitoring system but they can also

generate data used to validate and periodical update the mathematical model of the system.

2.4.2 Asset Autonomy

Asset autonomy is an important concept in SM and its pivotal to the development of cyber-

physical systems. It involves the automation of a manufacturing asset such that a greater part of the

primary function of the asset can be performed without an operator. It enables the decentralization

of some elements of the control infrastructure in the manufacturing system. Asset autonomy is

easily adapted in the discreet manufacturing industry because of its inherent nature where parts are

made or assembled as they travel through different sections or assets with primary functions. In

the process manufacturing industries, the operations involve blending and or chemical reactions

and the products are not easily taken apart. From a control standpoint, the process manufacturing
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tends to be an aggregation of regulatory control loops. For instance, in a distillation column,

there are several control loops that are synchronized through the Supervisory Control And Data

Acquisition (SCADA). Figure 2.1 shows a typical control framework for the implementation of

advanced process control in the process manufacturing industry. The decision at the scheduling

or planning level is implemented through the Advanced Process Control (APC) and or Real-Time

Optimization (RTO) setup such that optimal or efficient setpoints are sent to the PID loops. This

control architecture has been improved over time through incremental upgrades.

Figure 2.1: Schematic of a typical process control architecture in a process manufacturing plant

As we tend towards more modularized and intensified process manufacturing industry, there

is a need to develop hardware and computational frameworks that will aid asset autonomy. The

concept of asset autonomy in the process manufacturing industry is such that a model-based op-

timal operating strategy of a manufacturing asset is embedded in the asset at the programmable

logic control (PLC) level. The optimal strategy will be an integration of the PLC, digital twin (for

implementing measurable and unmeasurable boundaries of the operation), and optimal operating
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algorithm (derived from the digital twin or high-fidelity model). Figure 2.2 shows a conceptual

framework for implementing advanced process control on a modular autonomous system. In the

framework, the optimal operating strategy is embedded in the manufacturing asset. Just like in the

traditional control framework illustrated in figure 2.3, the system described in figure 2.4 requires

a synchronized connection between autonomous assets. For instance, the operating strategy in the

reactor is synchronized with that of the distillation column following it.

Figure 2.2: Schematic diagram of a conceptual control architecture with autonomous process units

2.4.3 Workforce

The manufacturing workforce is essential to smart manufacturing. Though asset automation

has tremendous economic and in some case health and safety benefits there is always the question

of, how much automation is needed in an asset? The benefits of automation plateaus after a certain

level and over automation can result in inefficiency. The future manufacturing workforce will have

the ability to leverage advance technology and manufacturing intelligence in decision making. The

workforce will also manage uncertainties that automation is not able to handle.

2.4.4 Materials and Product

Products and materials are centric to smart manufacturing. A focus of smart manufacturing is

product customization. The manufacturing industry needs to evolution, into making the products
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that are needed, when they are needed, and in the quantities in which they are needed [5]. This

involves the active participation of the costumers. Smart Manufacturing enables a more flexible

production of variable volumes of products, with information driven operations. Robust data sys-

tem will enable accurate record of each product - unique identification, procedure, specification,

observational data, quality and product characteristics, safety data sheet, suppliers, etc. The data

can be used to estimate the carbon footprint of the product.

2.4.5 Data Infrastructure

The data generated in a typical manufacturing environment is large and multifaceted. However

even with sophisticated modeling and control technology, there still exist lack of intelligence from

the data. Managing data effectively is critical for smart manufacturing. It involves data abstraction,

storage, processing, transmission and analysis. Data systems will also need to be interoperable and

exchangeable across diverse platforms and uses. Big data techniques can be deployed for effective

transformation of data to intelligence. Other data related activities include using data for real-time

optimization, supply chain.

2.4.5.1 Data Analytics

The senors and monitoring system in the manufacturing operation have advanced and they gen-

erate real-time data used by operators to make necessary changes. The data generated by modern

manufacturing industry are enormous, however, the modern manufacturing industry is still plagued

by the dearth of Manufacturing Intelligence (MI). Computation of data analytics techniques is an

integral component in the conversion of raw manufacturing data from sensors or monitoring sys-

tems to manufacturing intelligence. The data analytic tools or techniques used to develop MI can

be categorized into three groups [44]:

• Descriptive analytics The main objective is to clearly present the state of the system such

that is easily articulated. The primary questions that the analytical techniques try to answer

are "what happened?", "what is happening (real-time)?", etc.

• Predictive analytics The main objective of the methods deployed here is are to predict what
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will happen based on current or passed indicators. This usually involves models of the

system.

• Prescriptive analytics here based on the current state of the system or a projected state of

the system the primary objective of the analytics deployed is to suggest possible actions

As the manufacturing industry fight for smart operation, there needs to be a combination of

the three groups of analytics or intelligence. Until recently the prescriptive intelligence has been

attached to the role of highly skilled employees but the recent developments in big data analytics,

optimization, machine learning, deep learning, etc. are enabling algorithms to provide prescriptive

intelligence. This creates a level of autonomy in the system.

2.4.6 Network

Communication is key to smart manufacturing and it is enabled by a robust network. Some

industries have an existing fragmented network infrastructure. Figure 2.3 shows different levels

of the manufacturing enterprise. The levels may have existing network infrastructure and in some

cases a connection with adjacent network level. In smart manufacturing, fragmented operational

network structures give way to the full horizontal integration at various levels and a vertical integra-

tion of various levels in the manufacturing enterprise. Enterprise resource planning (ERP) allows

organization to use integrated applications to manage the entire manufacturing business. Manufac-

turing Execution Systems (MES) are applications used to track and document the transformation

of raw materials to finished goods.
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Figure 2.3: Enterprise application architecture for smart manufacturing.

2.5 Smart Manufacturing Technology Focus Areas

The Advanced Manufacturing Partnership (AMP) is an Industry-academia-Government Part-

nership saddled with revitalizing the United State manufacturing industry. A report published by

[45] in 2011 identified three Manufacturing Technology Areas of high national priority. These

areas are: Advanced Sensing, Controls, Platforms, and Modeling for Manufacturing (ASCPM);

Visualization, Informatics and Digital Manufacturing (VIDM); and Advanced Materials Manufac-

turing (AMM) [45].

2.5.1 Advanced Sensing Controls Platforms and Modeling

ASCPM is expected to enable cross connection of diverse data, process control applications,

and decision workflow using advanced sensors and a network-based, open architecture, plug-and-

play platform. ASCPM is championed by CESMII and they are expected to establish manufactur-

ing technology testbeds to demonstrate the use of new technologies [46].
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2.5.1.1 Advanced Sensing

Advanced sensing includes data-generating or monitoring nodes within the enterprise. They

are fast noninvasive hard sensors/equipment or soft sensors (data-trained computer code). They

are expected to be low cost, have the ability to evaluate sensor health, and continuously quantify

measurement uncertainty. Network-integrated advanced sensors are used to improve reliability

through asset monitoring, efficiency and productivity through monitoring the real-time manage-

ment inputs like energy and materials through out the manufacturing ecosystem.

2.5.1.2 Control

This includes theories and algorithms for model-base control and optimization in the manufac-

turing enterprise. Digital control systems with embedded automated process controls can enable

operation optimization, efficient energy consumption, and improve safety enterprise wide. The

IIoT and cloud infrastructure can allow system-wide algorithms to operate each manufacturing

component simultaneously to meet costumer demand.

2.5.1.3 Platform

Automation in the manufacturing industry relies primarily on single-vendor monolithic soft-

ware architectures and device and vendor lock-in is a widely acknowledged barrier to innova-

tion. Standardization and Service architecture approaches can enable multiple development envi-

ronments, infrastructures that support composability, and cloud based orchestration allowing for

plug-and-play interoperability in the platform. Appropriate cybersecurity considerations must be

incorporated from the outset [46].

2.5.1.4 Model

Models are at the core of many ASCPM technology gaps. The advancement and diversifi-

cation of real-time and life-cycle modeling is pivotal to smart manufacturing. Also are the tools

and techniques to simplify and cost-effectively build, deploy, and maintain models across large

heterogeneous systems. The synchronous interplay and model alignment is essential to advanced
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manufacturing. For example, optimization models and control models should be able to iteratively

exchange data such as updated constraints and new control setpoints [46].

2.5.2 Visualization Informatics and Digital Manufacturing

While ASCPM has a wider adoption in the chemical process industry, Visualization, Informat-

ics and Digital Manufacturing (VIDM) has a wider adoption in the discrete manufacturing industry.

VIDM is focused into three sub-areas (1) Digital Thread; (2) Integrated Information Systems; and

(3) Manufacturing Big Data and Analytics [47]. Institutes like Digital Manufacturing and De-

sign Innovation Institute (DMDII) and AIM Photonics are leading the development of innovative

research in VIDM areas and they are expected to Create a manufacturing center of excellence,

focused on basic research at earlier technology development levels [45].

2.5.2.1 Visualization

Visualization presents right information to right user in the right form at the right time. Visu-

alization includes creating information that human can visualize and use for decision making. It

involves an articulated display of information in the right context aggregation of information from

multiple sources and sensors, and presenting it in a visual and comprehensible manner. Visualiza-

tion turns data into information or graphics for human decision making.

2.5.2.2 Informatics

Informatics entails data mining, data analysis, and data processing before visualization. Infor-

matics involves processing data and extracting intelligence.

2.5.2.3 Digital Manufacturing

Digital Manufacturing focuses on the use of integrated, computer-based systems comprised

of simulation, three-dimensional visualization, analytics and various collaboration tools to cre-

ate product and manufacturing process definitions simultaneously. Manufactured artifacts move

seamlessly through conception, design modeling, analysis and manufacture. Digital Manufactur-

ing objectives are concentrated on new products and shortened design to manufacturing life cycles
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and new product changeovers [48].

2.5.3 Advanced Materials Manufacturing

AMM combines advanced computational methods with experimental methods for intelligent,

focused development of improved materials for clean energy technologies and accelerates mate-

rials to market through a focus on process and end-use manufacturing. The focus is on structural

material, optical materials, chemical materials, thermal materials and electronic materials.

2.6 Computational Framework in Smart Manufacturing

Computation in SM ranges from data analytics to model or framework development and im-

plementation of operating strategies etc. In SM, a computational framework can be defined as a

systematic combination of two or more analytical techniques to create manufacturing intelligence,

unique solution or a new analytical technique or tool. It could be a computer application or plat-

form.

One example of a computational framework for SM is the Open Process Automation (OPA)

multi-ventor system developed by ExxonMobil. OPA is an integrated framework involving hard-

ware and software architecture intended to make adding, upgrading, and swapping components

easy. It is characterized by its: Portability, Open Standards, Modularity, and Interoperability.

While the standards are been developed for hardware integration, such initiative should be adopted

for computational framework or techniques especially in the development of models and efficient

operating strategies.

Modeling is an integral part of the development of techniques and tool in the process systems

engineering community. Model-based methods have become popular and highly sought-after in

the process manufacturing industry. While modeling is becoming common practice there are mul-

tiple models for the same system for a different purpose; design, process synthesis, scheduling,

control, etc. This modus operandi can lead to loss of information across the system, difficulty in

integration and error in prediction. Thus, there is a need for systems or frameworks that simplify

and cost-effectively build, deploy, and maintain models across large heterogeneous systems. One
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approach is the vertical integration of the various computational operations such as planning, de-

sign, control, scheduling, etc. There have been major advances in the area of design and control

[49, 50], scheduling and control [51, 52] and model-based advanced control [53, 54]. However,

none of the aforementioned studies presented a framework or protocol or a software platform. In

2015 Pistikopoulos et al. proposed the PARmeteric Optimization and control (PAROC) framework

which enables the representation and solution of demanding model-based operational optimization

and control problems following an integrated procedure featuring high-fidelity modeling, modeling

approximation techniques, and optimization-based strategies using multi-parametric programming

techniques.

An integral component of PAROC is parametric programming. First implemented in 1952, by

Orchard Hays, in switching the optimal basis as a function of the varying parameter [55, 56]. Since

then, many researchers have made some key contributions to parametric and multi-parametric pro-

gramming problems [57, 58, 59]. A detailed review on multi-parametric programming theory,

algorithms and applications can be found in [60].

2.7 A Smart Manufacturing Application in an Energy System

2.7.1 Smart Metal Hydride Refuel for FCEV

The Fuel Cell Electric Vehicles (FCEV) market is expected to reach $16,248.23 million by

2026 growing at a CAGR of 34.5 % [61]. Fuel cell vehicle utilizes onboard stored hydrogen to

produce onboard electricity to power the electric motor that turns the wheel. There are three main

onboard hydrogen storage options; the compressed hydrogen gas storage, the liquid hydrogen

storage, and the solid hydrogen storage. The compressed hydrogen gas storage is currently used in

most fuel cell vehicles. Its easy to operate however, the storage canister is large and heavy because

of the reinforcement needed to withstand high pressures [62]. Also, since the hydrogen is stored at

high pressures (10,000psig), the onboard compressed hydrogen storage is inherently unsafe [63].

The solid hydrogen is a plausible option for on-board hydrogen storage especially for more

compact sporty FCEV. it is basically a canister filled with metal alloys that react with hydrogen to
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form metal hydride [64]. There are two main processes involved in the operation of hydrogen stor-

age in metal Hydride: the filling of the metal hydride canister with hydrogen which is exothermic

and the discharge of hydrogen from the metal hydride, which is endothermic. During the filling

process the operating temperature increases and can lead to a runaway reaction if not managed

properly. The Department of Energy (DOE) has set some targets for onboard hydrogen storage

[65], which includes a limit on the operating temperature and refuel rate of the hydrogen storage

system. In a metal hydride storage system, there is a trade-off between the operating temperature,

pressure and the refuel rate. Smart manufacturing technologies can be adopted to address this

operational challenge.

This case study shows how smart manufacturing technologies can be used to develop an optimal

operating strategy for filling the metal canister that is not only fast but safe and within DOE targets.

Figure 2.4 shows a schematic of the smart refueling system. When the hydrogen gas pump nozzle

is plugged into the FCEV, real-time data is relayed to the pump for costumer monitoring. Some of

the technologies employed are described below.

Figure 2.4: Schematic of metal hydride smart refueling system .

Several research studies have investigated and proposed advance control strategies for hydro-

gen discharge from the metal hydride canister [66, 67]. Parametric Optimization and Control

(PAROC) framework (figure 2.5) is an integrated framework and software platform that enables
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the use of model-based tools in design, operational optimization and advanced control studies

[68]. PAROC provides a customized advanced control strategy that can be embedded into the

FCEV without the sophistication of an embedded solver, making it easy to use.

Figure 2.5: Schematic of the PAROC framework.

2.7.1.1 Design

A smart metal hydride canister will have smart sensor to enable accurate temperature and pres-

sure reading. It will also have a temperature control mechanism. In the design stage a high-fidelity
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multi-dimensional model is developed and a metal alloy is selected [67, 69, 70]. The model is used

to determine an optimal aspect ratio or geometry of the canister that maximizes the removal of heat

generated.

2.7.1.2 Modeling

The high-fidelity model used for design is validated with operation data to tailor the model to

the specific metal alloy selected. The validated model is used to develop soft sensors for process

variables,like the hydrogen content of the metal hydride canister, that cannot be measured by an

instrument . If needed, a model reduction techniques is used to reduce the complexity of the model

while maintaining its high fidelity.

2.7.1.3 Multi-parametric Programming

The reduced model is used to design a model predictive control (MPC) that maintains the

temperature limits and maximizes the refueling rate [67]. The MPC is reformulated into a multi-

parametric model predictive control (mpMPC) and solved using already established algorithms

[68, 71]. The solution obtained are control policies which are affine function of the measured vari-

able realized during the operation. The control policies are structured as look-up-table algorithms

that can be embedded into a micro-controller. The micro-controller is connected to the unit to

control the operation in the metal hydride.

2.7.1.4 Smart Refueling Protocol

. When the costumer plugs the hydrogen gas pump nozzle into the FCEV and starts refueling,

the control algorithm controls the refuel process such that the operating temperature is maintained

within the DOE limits and the refuel rate is maximized. Real-time process data is relayed to the

pump display screen for the costumer to monitor the progress of the refuel operation.

2.8 Conclusion

The concept of smart manufacturing was introduced as a terminology characterizing the in-

tensified application of manufacturing intelligence in the manufacturing enterprise. Economies
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around the world have created various initiatives to develop and foster these trends of advancing

technologies in the manufacturing industry. The general goals of Smart manufacturing are: to

foster technological and economic health, build a costumer-aware agile platform, make resources

available when the are needed, create the required workforce, improve safety and sustainability in

the manufacturing industry. These goals can be achieved by simultaneously developing the key ele-

ments of smart manufacturing; smart assets, workforce, products, network and data. The Advanced

manufacturing partnership (AMP) in the United States listed priority technology focus areas for

the smart manufacturing initiative Advance sensing, control,platform and modeling (ASCPM);

Visualization, Informatics, and digital manufacturing (VIDM); Advance Material Manufacturing

(AMM). The smart metal hydride refueling system example demonstrates the implementation of

SM in the hydrogen refueling system to address the challenges in the onboard hydrogen storage in

metal hydride.
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3. HYDROGEN SUPPLY CHAIN FOR TRANSPORTATION FUEL 1

3.1 Synopsis

In this Chapter we present a multi-objective, multi-period, mixed integer, linear optimization

formulation to analyze a hydrogen supply chain network. The objectives of the optimization prob-

lem are:(i) the maximization of the Net Present Value (NPV) and (ii)the minimization of the Green-

house Gas (GHG) emissions, while determining: (i) the locations of the hydrogen facilities, (ii) the

production technology, (iii) the size of each facility (iv) transportation unit and (v) the distribution

route. The model was deployed for the state of Texas and two scenarios were investigated: (i) oxy-

gen co-produced with hydrogen from electrolysis is discarded and (ii) oxygen co-produced form

the electrolysis is further processed and sold to generate revenue. A Pareto curve of twenty effi-

cient points is developed and the extreme points on the curve are used to test the aforementioned

scenarios. We found that further processing of produced oxygen for sell instead of discarding it

made electrolysis an economically viable technology option for the production of hydrogen.

1Reprinted with the permission from “Elsevier" G. S. Ogumerem, C. Kim, I. Kesisoglou, N. A. Diangelakis,
and E. N. Pistikopoulos, “A multi-objective optimization for the design and operation of a hydrogen network for
transportation fuel," Chemical Engineering Research and Design, vol. 131, pp. 279-292, 2018.
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3.2 Introduction

As renewable energies gain more traction due to improving efficiencies and decreasing costs,

there is expected to be a gradual transition away from dependence on fossil fuels toward the deploy-

ment of more environmentally friendly energy technologies. One such energy vector is hydrogen,

which has enormous potential as a fuel for vehicle mobility and electricity generation. However,

its integration into the energy landscape is currently strained by the dearth of enabling infrastruc-

ture. Several options exist for the production, storage, distribution and retailing of hydrogen to end

users, but developing these infrastructure given different short- and long-term technological and

economical actualizations can be challenging. Within the last decade, there has been increasing

interest among researchers in hydrogen network development and the question most people ask

is summarized as follows: “What are the most energy efficient, environmentally benign, and cost

effective pathways to deliver hydrogen to the consumer considering prevalent uncertainties"?[14]

Answering this question will equip policy makers, investors and the general public with relevant

information and decision tools for the development of hydrogen infrastructures.

A hydrogen network is a supply chain required to produce, store and deliver hydrogen to the

consumer, and it has been referred to as hydrogen supply chain (HSC) and hydrogen infrastructure

(HI). In studying hydrogen network and that of other energy systems, parameters such as efficiency,

size, safety, environmental impact which are pivotal to decision making are modeled/analyzed. An

important consideration is the estimated hydrogen demand. Though saddled with uncertainties the

demand of hydrogen is a major determining factor to establishing a hydrogen network. Currently

most of the hydrogen produced is used in industrial processes for the production of other chemicals

or products [1]. The amount of hydrogen infrastructures developed solely for transportation fuel

to date is relatively small thus there is not enough data for the economic analysis of the various

production technologies. However, the share of hydrogen used for fuel in transportation and elec-

tricity generation is rising. Figure 3.1 represents a study by Navigant which shows that hydrogen

consumption for non-traditional applications will grow from 168 million kilograms (kg) in 2013

to nearly 3.5 billion kg in 2030 [1].
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Figure 3.1: Hydrogen demand projection reprinted from [1].

Researchers in the hydrogen supply chain area, have adopted various approaches to analyze

the breadth and depth of the hydrogen network in order to estimate parameters that are crucial

to decision making. Several studies have been reported describing the design and optimization

of a hydrogen network. Ogden et al [11] studied the development of hydrogen infrastructure and

subsequently focused on the distribution network for hydrogen [12, 13]. Some of the studies

conducted were approached as a single objective optimization [15, 17] while a few others adopted

a multi-objective approach [19, 72, 73, 74, 75] Kim et al and Han et al [74, 73] used a generic

optimization-based model with risk index to optimize monetary and safety criteria of a hydrogen

network. Their Pareto optimal solutions showed a trade off between cost and safety levels. De-

Leon et al. [19] focused on the design of a multi-criteria five-echelon hydrogen network, trading

off cost, global warming potential and safety risk. Gonzalo et al., Hugo et al. and Liu et al

traded off cost and greenhouse gas emission[14, 72]. Some researchers have considered a multi-

period approach to demonstrate how changes in hydrogen demand affects the capacity of hydrogen

production plants over a time period [14, 15, 16, 17, 18] . Some studies have also considered
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uncertainty in various optimization instances [76, 77, 78].

None of of all the aforementioned studies considered electrolysis as a technology option for

hydrogen production, evaluated the impact of oxygen as a valuable by-product. if oxygen is con-

sidered a revenue generating option, electrolysis can be a more cost effective option for producing

hydrogen when compared to matured technologies, such as Steam Methane Reform (SMR) [79]

. Kato et al. in their study, assessed the potential demand of oxygen for energy efficient indus-

trial processes and concluded that there is an enormous demand of oxygen for various industrial

processes and that the co-production of hydrogen and oxygen through electrolysis could cost-

effectively meet the demand of oxygen[79].

In this Chapter, we develop a mixed-integer linear optimization formulation similar to that of

Hugo et al., Liu et al. and Koltsaklis et al. [14, 80, 81] to analyze a hydrogen supply chain network.

The formulation represents a multi period, plant location and capacity analysis problem with two

conflicting optimization criteria: (i) the maximization of the net present value and (ii) the mini-

mization of green house gas emissions. The model is structured as a multi objective programming

problem, and a Pareto curve is created to show the efficient points for decision making. The model

is deployed to analyze a hypothetical hydrogen network in Texas and California. Both case studies

considers a forty years plan of adopting hydrogen as part of transportation energy mix (Texas) or

as the only transportation energy source (California). Two scenarios are evaluated for both case

studies: (i) when oxygen (by-product of hydrogen production from the electrolysis technologies)

is vented into the atmosphere and (ii) when oxygen is collected, compressed and sold for revenue.

Studies have shown SMR to be the most cost effective option for producing hydrogen [82]. How-

ever, the management and trading of co-produced oxygen has the potential to make electrolysis an

economically viable option for the production of hydrogen.

3.3 Life Cycle Assessment

Given that the concept of hydrogen energy stems from the idea of a sustainable and environ-

mentally benign alternative to fossil fuels, it is imperative that any study on the production of

hydrogen for fuel includes an environmental impact assessment. Over the years there has been
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an ongoing shift from the traditional end-of-pipe approach of waste management to a life cycle

approach where the boundaries are expanded beyond a facility to include every stage in the life

cycle of a product. Particularly, the emphasis is shifting from effluent concentrations to environ-

mental impacts that contribute to an environmental issue [14]. The life cycle assessment approach

advances waste minimization and pollution prevention.

In developing a hydrogen supply chain network and other facility location problems, envi-

ronmental concerns are mostly formulated as constraints to an economic objective [83]. The set

back to this approach is that it not only undermines the emphasis on the environmental impact of

the network but also overlooks the possibility of trade off solutions. The environmental objective

provides a measurement of the environmental behavior of a hydrogen network over its life time

which comprises all primary types of emissions produced from both the plant operation and all

the previous stages. The life cycle approach captures emissions associated with processing of the

product as well as the emissions corresponding to the manufacturing (extraction) and supply of

feedstock, equipment, energy and the use of the product. The Environmental Protection Agency

(EPA) has published an emission inventory for various process and equipment and also the Global

Warming Potential (GWP) of the greenhouse gases [84]. The GWP is a parameter that enables

the comparison of the global warming impact of the GHG’s with respect to CO2. A cradle-to-gate

GHG emissions indicator is established over the operating horizon, on a CO2-equivalent basis. It

comprises four parts:

• GHG emissions produced within the process during operation,

• GHG emissions produced throughout mining, extraction, and other preprocessing phases of

the feedstock,

• GHG emissions produced during equipment production and plant construction and

• GHG emissions produced during the transportation of raw materials and finished products.
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3.4 Model Formulation and Solution Strategy

Hydrogen infrastructural planning with mathematical programming and optimization tech-

niques attempts to systematically obtain an optimum design from many potential alternatives. This

provides a strategy to simultaneously incorporate decision variables at various stages of the plan-

ning horizon. A common approach is to develop a superstructure of all potential process routes

with interconnections, as a mixed integer programming problem [85]. Optimization techniques

are employed to simultaneously determine the optimal configuration of the network that maxi-

mizes profit and/or minimizes environmental impact. A typical hydrogen network is formulated to

address the following concerns:

• capacity of each type of processes,

• timing and scale of capacity expansion or decommissioning,

• consumption rates of primary feedstocks over time and

• timing and scale of shift from one type of primary feedstock to another.

Here we develop a superstructure based Mixed-integer Linear Programing (MILP) model. The

superstructure is designed to incorporate potential process route, feedstock, transportation modes

and distribution route as shown in Figure 3.2. They MILP optimization model is similar to that

of Hugo et al., Liu et al. and Koltsaklis et al. [14, 80, 81] for a hydrogen supply chain network.

The model is multi period and has two conflicting optimization criteria: (i) the maximization of

the net present value, (ii) the minimization of green house gas emissions (CO2,CH4,N2O) and (iii)

constraints that determines among other outcomes, (a) the location and (b) capacity of a proposed

hydrogen plant at any time period, (c) the amount of hydrogen entering or leaving a plant, (d) the

transportation mode and (e) the distribution route at any time period.The model is structured as a

multi objective programming problem, and a Pareto curve is created to show the efficient points.
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3.4.1 Problem Statement

The problem statement for the planning and design of hydrogen supply chain networks is stated

as follows. Given:

• a set of markets distributors or customers and their demands for hydrogen and its by-products

over a given time period and or planning horizon,

• a set of potential plants using known technologies to produce the hydrogen and

• the availabilities of the raw material and utility suppliers over the planning horizon

the task is to design the supply chain network of an integrated production facilities that would

satisfy the demand over the entire planning horizon such that both:

• the net present value of the capital investment evaluated at the end of the planning horizon is

maximized and

• the environment impact by way of greenhouse gas emission is minimized.

3.4.2 Hydrogen Production Technologies

Four hydrogen production technologies are considered in this case study. Each technology

produces hydrogen at 30 bars and is compressed for transportation. Also, each hydrogen produc-

tion method requires different raw material and different amount of electricity to produce the final

product. The explanation of individual hydrogen production methods is described below. The op-

erating conditions and other inputs for the four hydrogen production methods considered are taken

from The Hydrogen Analysis (H2A) project of the U.S. Department of Energy [86]. The resource

input require for all hydrogen producing technologies are given in table 3.1 some of the data used

can be found in [86]
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Table 3.1: Required resource input for per metric ton of hydrogen

Materials SMR CG BG Electrolysis

Biomass (ton) 0 0 13.49 0

Coal (ton) 0 8.508 0 0

Natural gas(ton) 3.86 0 0.146 0

Process Water (ton) 3.355 2.98 1.321 4.76

Electricity (Mwh) 2.146 2.167 1.240 56.393

3.4.2.1 Steam Methane Reform

The hydrogen produced from the SMR process accounts for more than 90% of all hydrogen

produced till date however most of the hydrogen produced are used for sweetening or production

other chemicals. The SMR technology uses natural gas or other hydrocarbons as a feedstock and

the process consists of several different unit operations which include sulfur guard, steam reformer,

water gas shift (WGS), carbon capture, pressure swing adsorption (PSA), and heat recovery steam

generator (HRSG). Natural gas is fed into the system (with about 4ppm of sulfur), and it passes

through a desulphurization unit where some of the hydrogen produced is used to remove sulfur

as hydrogen sulphide (H2S). The sweet natural gas is fed into the reformer where it reacts with

steam in a catalytic reactor maintained at about 1273K and 30 bars. Syngas is produced from the

reformer and it passes to a shift reactor where the ratio of hydrogen is increased. The shift reactor

is maintained at a lower temperature and the effluent of the shift reactor is passed through a carbon

capture technology where CO2 is removed. Hydrogen is separated from other gases in a Pressure

Swing Absorption (PSA) process. PSA offgas and some natural gas are used as fuel to produce

steam and also generate heat for the reforming reaction. The SMR process flow diagram is shown

in Figure 3.3.
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Figure 3.3: Steam methane reforming.

3.4.2.2 Electrolysis

Electrolysis is one of the promising hydrogen production methods benign to the environment1

because it does not produce any GHG during hydrogen production. The process consists of water

a management system, a power supply unit, an oxygen and hydrogen management unit, and the

electrolyzer. When water and power is fed to the process, the electrolyzer splits water into hydro-

gen and oxygen. The electrolysis process can produce hydrogen 30 bars, saving part the required

compression energy. Oxygen is considered a valuable b-product and for every metric ton of hy-

drogen produced about 8000 metric ton of oxygen is produced. The process flow diagram of the

electrolysis technology is shown in Figure 3.4

3.4.2.3 Biomass Gasification

The process mainly consists of biomass drying, reforming, purification, steam cycle produc-

tion, and a cooling water system. In this process, the biomass fed into the system, is dried by

a rotary dryer. The dried mass reacts with steam in the gasifier unit and produces syngas. The

produced syngas undergoes purification processes including scrubbing and catalytic treatment to

remove sulfur components. The treated syngas is fed into the steam reformer and reacts with steam

to produce hydrogen. Extra amount of hydrogen are produced from both high temperature shift

1Electrolysis requires electricity which can be provided by renewable energy resources thus making its operation
GHG-free.
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Figure 3.4: Electrolysis.

(HTS) and low temperature shift (LTS) processes. The produced hydrogen is purified in a PSA

unit. The biomass used in this study is assumed to sequestrate 22kg of CO2 per kg of biomass

[87]. A generic process flow diagram of this technology and that of coal gasification is shown in

Figure 3.5

Figure 3.5: Schematic diagram of gasification process.

3.4.2.4 Coal Gasification

This Coal Gasification (CG) model used in this work was also taken from The H2A project

of U.S. DOE. The hydrogen production process includes conventional gas cooling, commercial
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shift conversion/acid gas cleanup, commercial sulfuric acid technology, and PSA. In this process,

oxygen is first produced from air in an air separation unit (ASU) then it reacts with coal and water

at coal gasifier unit. Then the produced gas reacts with high temperature steam again to enhance

the hydrogen production ratio. Following shift reactor also contributes to producing extra amount

of hydrogen. The produced syngas undergoes purification processes including a scrubber unit and

a catalytic treatment to remove sulfur components. The sweet gas is sent to the PSA unit for further

purification.

3.4.3 Distribution

As illustrated on the superstructure, transportation of raw materials and hydrogen occur be-

tween two geographical areas. There are two types of transportation units to transport both com-

pressed hydrogen gas and raw materials, namely tube trailer for compressed hydrogen and truck

trailer for biomass and coal. The natural gas utilization was restricted to areas with existing pipeline

and Texas has an extensive natural gas pipeline network. The parameters for the two different trans-

portation modes used for this case study are similar to those in Almansoori et al [88]. The distance

between two regions has significant impact on the transportation cost. For this case study, the cities

close to the center of each region are selected, and those cities are used to measure the distance

between two regions. Google Maps was used to estimate distance in miles based on the zip code

of those representative cities. The distances used for the 11 regions in this study can be found in

the Appendix.

3.4.4 Solution Strategy

Based on the supply chain network described above, the primary problem is a mixed integer

nonlinear programming problem. The nonlinearity stems from the capital investment and O&M

cost constrains. To simplify the problem, the nonlinear constraints are linearized according to

the methods described in Liu et al [89]. Consequently, the problem is posed as a multi-objective

multi-period mixed-integer programming problem involving 23,775 discrete variables, 42,137 con-

tinuous variables, and 38,853 constraints. It is split into 20 single-objective optimization problems
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using the ε-constraint method, and solved in GAMS [90] with CPLEX as the MIP solver. Before

solving the problem, the variables and constraints are properly scaled to avoid issues associated

with poorly scaled models [91].

3.5 Texas Case Study

Texas, the second largest state in the United States except for Alaska, has the biggest carbon

dioxide emissions among the states in the US. From EIA database [92], The total carbon diox-

ide emissions from Texas was 642.0 million metric tons in 2014. This is mainly attributed to the

large number of conventional power plants in the state and the heavy use of internal combustion

engine vehicles for transportation. Such data triggers concerns related to global warming and ac-

celerates the need for energy transition from fossil fuel to more sustainable energy. The following

subsections describe some of the inputs that were used for the Texas case study.

3.5.1 Geographical Mapping

Texas has 254 counties. However, the geographical areas have been reduced to 11 regions

through merging adjacent counties according to the Texas Department of State Health Service.

Recasting the counties into 11 regions (shown in Figure 3.6) contributes to the size reduction of

the problem without significantly affecting the accuracy of the problem statement . The popu-

lation projection of each region has been estimated through the “Texas Population Projection by

Migration Scenario Data". The data measures expected population of each region based on both

2000-2010 Texas migration ratio and natural phenomena, such as births and deaths. The projected

population for each region over time periods can be found in appendix A.

3.5.2 Projected Hydrogen Demand In Texas

Hydrogen demand projection from 2015 to 2040 has been performed by the Energy Information

Administration (EIA) [93]. The allocation of Texas hydrogen demand ratio is estimated by the ratio

of registered vehicles in Texas to the number of registered vehicles in the United States [94]. Based

on the EIA’s hydrogen demand projection, the Texas’ hydrogen demand until 2040 is estimated on

the simplifying assumption that hydrogen demand at each period does not have a drastic change
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Figure 3.6: Assigned geographical areas for this case study. (according to the Texas Department
of State Health Service)

for about five years. Regions with large population show faster hydrogen demand increase. Table

3.2 shows the hydrogen demand for each region over the planning horizon. Note that ton used in

this study refers to metric ton.

3.5.3 Resource Availability

The hydrogen production technologies (discussed in the section) requires four primary feed-

stock which are biomass, coal, Natural Gas (NG) and water. The maximum potentially extractable

capacity of each raw material source in each region is the sum of all that is available in each of the

counties assigned to the region. The parameters regard-9ing maximum raw material capacity are

taken from U.S. EIA, as presented below in Table 3.3 [93], The capacities for process water are

assumed to be unlimited (here it is a large numbers for computational purposes) [93].

3.6 Results and Discussion

The optimal results obtained from solving the single objective problems are used to generate

the Pareto curve. This curve of efficient points separates the feasible and infeasible design space,

as shown in Figure 3.7. The horizontal axis represents the difference between the upper bound of
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Table 3.2: Projected hydrogen demand in each region in Texas (in ton)

regions Period 1 Period 2 Period 3 Period 4 Period 5
i1 0.01636 0.36235 1.68881 2.70850 3.32391
i2 0.01062 0.22294 1.00229 1.54573 1.81976
i3 0.15060 3.17733 15.5781 26.4283 34.5121
i4 0.02233 0.47604 2.20852 3.52474 4.30781
i5 0.01481 0.32168 1.47556 2.32631 2.80466
i6 0.13107 2.91933 14.3286 24.1718 31.2190
i7 0.06242 1.44525 7.13155 12.0589 15.6100
i8 0.05257 1.21105 5.81648 9.55972 11.9314
i9 0.01077 0.24709 1.14802 1.83085 2.22956
i10 0.01606 0.37702 1.79600 2.91764 3.59896
i11 0.04490 0.98464 4.74307 7.79729 9.76208

Table 3.3: Daily extractable resource

Biomass Coal Natural gas Process water Hydro Solar Wind
Region (ton) (ton) (ton) (ton) (Mwh) (Mwh) (Mwh)
i1 158 0 0 107 0 107 107

i2 14 0 107 107 0 107 107

i3 96 0 107 107 1771 107 107

i4 106 1090 107 107 0 107 107

i5 151 0 107 107 2592 107 107

i6 154 0 107 107 0 107 107

i7 68 2151 107 107 7113 107 107

i8 45 177 0 107 1955 107 107

i9 17 0 107 107 0 107 107

i10 11 0 0 107 0 107 107

i11 91 0 0 107 659 107 107

the parameter spaces developed for the single objective problem and the solution of each single

objective problem. The region below the curve is the feasible space.
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Figure 3.7: Pareto curve for hydrogen production network trading of the maximization of the net
present value and the minimization of the greenhouse gas emission.

Further analysis and scenario checks are evaluated at the extreme points of the curve. A chart is

used to show plant location, total hydrogen production capacity, hydrogen production technology

mix at each region for any time period and the capacity change within the time horizon. Empty

intersections of regions and time period indicate no hydrogen production plant is installed. Thus,

the hydrogen demand in such region at the specific time period is met by importing hydrogen from

other regions in an optimal transportation configuration. For brevity, not all transportation network

are shown in this write up.

3.6.1 Case 1: Oxygen As a Discarded By-product

Here we consider a scenario where only hydrogen and GHG effluents are accounted for. This

is the case in most hydrogen network studies. The optimal configuration of hydrogen supply

chain network for the whole time horizon is shown in Figure 3.8. As expected SMR is the major
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technology option at maximum net present value. The vertical axis represents the regions and

the horizontal axis represents the time periods (5 years each). Regions 1,10 and 11 make use

of electrolysis. Regions 3,6 and 7 started with electrolysis in the first period but SMR became

more economical as hydrogen demand increased. This is because at large scale SMR the cost per

hydrogen ratio is significantly lower. Region 8 which sits on a lignite deposit makes use of coal

through out the period. SMR is obviously a more economic option when only hydrogen production

(oxygen is vented) is considered. This result buttresses most studies done by researchers in this

area.
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Figure 3.8: A chart showing the hydrogen producing plant location, total hydrogen production
capacity per region (in metric tons) at any time period that maximizes the net present value within
the planning horizon. The pie chart represents the technology share.

On the other extreme where GHG is minimized, more environmental friendly option dominate

the chart as shown in Figure 3.9. Region 1 and 5 have a hydrogen production from biomass through

the time horizon and the rest of the regions have a technology mix of biomass and electrolysis. It

is important to note that biomass sequestrates CO2 such that for every metric ton of biomass used,

about 22 metric tons of CO2 have been sequestrated. This result illustrates the impact of CO2
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sequestration on the technology choice.
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Figure 3.9: A chart showing the hydrogen producing plant location, total hydrogen production
capacity per region (in metric tons) at any time period that minimizes the greenhouse gas emission
within the planning horizon. The pie chart represents the technology share.

3.6.2 Case 2: Oxygen As a Revenue Generating By-product

When oxygen is collected and sold, hydrogen production from electrolysis becomes more eco-

nomical as shown in Figure 3.10. Only the electrolysis option was selected in all the regions where

hydrogen is produced. Hydrogen demand in other regions are met by transporting hydrogen for

producing regions to none producing regions and the distribution network configuration changes

with the time period. This is because more revenue is generated by the sell of oxygen. It can be

seen that the use of electrolysis for producing hydrogen is an economically viable and environ-

mental friendly option in this case. This result further emphasizes the need to consider oxygen as

a valuable by-product in the production of hydrogen from electrolysis. One of the assumption here

is that there was a steady demand for all the oxygen produced. This assumption can be supported

by the assessment by Kato et al [79]. Figure 3.11 show the distribution network for the last period

when only NPV is maximized.
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Figure 3.10: A chart showing the hydrogen producing plant location, total hydrogen production
capacity per region (in metric tons) at any time period that maximizes the net present value within
the planning horizon. The pie chart represents the technology share.

When GHG is minimized and revenue is generated from oxygen, as expected, the results are

the same as shown in Figure 3.9. The consideration of oxygen as a revenue generating option only

has economic implications.
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3.6.3 Transport and Regional Connections

Figure 3.11: a, b, c shows optimal configuration for that plant location and distribution of hydrogen
in the last time period for a maximum NPV (no oxygen),minimum GHG and maximum NPV (with
oxygen) respectively. d shows the maximum NPV (with oxygen) in the first period

In the regional level, hydrogen is transported from the plants or storage facilities to the gas

station. The supply chain within the regions would require a more detailed survey of the market

which is beyond the scope of this work. Figure 3.11a,b and c shows the plant locations in the last

period for the extreme points on the Pareto curve. The transportation mode for hydrogen (com-

pressed gas) is the tube trailer. In figure 3.11a the hydrogen produced in region 1 is complimented
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by the excesses in regions 3 and 9. Region 10 also gets hydrogen from region 9. Region 6 supplies

hydrogen to regions 5, 8, and 11. In figures 3.11a and b the hydrogen produced in each region

meets the demand. Figure 3.11d show the optimal portfolio for the first period when revenue gen-

erated from oxygen is considered. Only regions 3, 6, 7, 8, and 9 produce hydrogen and the other

region depend on the excesses from the producing region.

A significant observation in the results shown is the time evolution of the hydrogen network.

As expected, hydrogen plants are expanded as the demand of hydrogen increases and new plants

of different technologies can be added to a region. This is attributed to the changes in hydrogen

demand within the planning horizon and the corresponding cost effective technology option that

satisfies the objective function.

3.7 California Case Study

3.7.1 California

California is chosen for this case study because it is more likely to quickly adopt a clean energy

initiative. Data updated on 03/26/2019 shows that there are about 39 hydrogen gas stations in

service and about 25 hydrogen gas stations either in the commissioning or planning phase [95].

While California is by far the state with the highest number of hydrogen gas stations in the US,

the decision of where to build a hydrogen gas station might be based on limited data. Figure 3.12

shows that the population might be playing a major role in situating the hydrogen gas station where

they currently are. The hydrogen supply chain provides a more systematic approach and will be

demonstrated here.

3.7.2 Geographical Mapping

California is the most populous US state and the third largest by area. It has 58 counties and

in order to reduce the size of the model the counties have been merged according to the California

County Superintendents Educational Services Association service map [96] to 11 regions as shown

in figure 3.13.
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Figure 3.12: California maps showing (left) population distribution and (right) the operating hy-
drogen gas stations.

Figure 3.13: California maps showing (left) the counties and (right) the grouping of the counties
into 11 regions.
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3.7.2.1 Hydrogen Demand

The vehicle transport energy demand is estimated from the total number of registered vehicles

in the state. The vehicles are said to be traveling an average of 12,000 miles per year, and the

average miles per gallon (MPG) is dependent on vehicle type. It is assumed that 80% of the people

above 18 years of age, leaving in California drives or owns a car. The results are validated by

the population using a 45% commuter ratio. The hydrogen demand is derived from the gasoline

demand for each commuter driving an average of 12,000 mile a year by using the equivalent hydro-

gen demand and a technology penetration factor during the time horizon considered (assuming that

there is a full penetration of the technology by 2040). Table 3.4 shows the projected hydrogen de-

mand for California. More information on considerations can be found in the work by Ogumerem

et al. [20]. The data in Table 3.4 might be an over estimation but for the purpose of demonstration,

the estimations were left as is.

Table 3.4: Projected hydrogen demand in each region in California (in ton)

regions Period 1 Period 2 Period 3 Period 4 Period 5
i1 7.153 43.463 102.710 312.010 669.087
i2 8.522 51.652 121.829 369.503 791.511
i3 16.654 101.715 241.677 738.325 1592.633
i4 16.689 102.603 245.108 751.780 1626.476
i5 9.621 59.092 141.101 432.884 937.569
i6 10.595 64.666 153.488 468.296 1008.581
i7 12.473 76.057 180.474 550.689 1186.737
i8 14.130 86.072 204.182 622.860 1341.357
i9 23.880 146.034 346.941 1058.520 2278.407
i10 21.603 132.360 315.603 966.828 2090.332
i11 26.337 160.795 381.269 1160.405 2490.700

3.7.2.2 Hydrogen Production Technology

Three hydrogen production technologies are considered in this case study: Steam Methane

Reforming (SMR), Biomass Gasification (BG) and water electrolysis (WE). Each technology pro-
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duces hydrogen at 30 bar and is compressed for transportation. They require different raw material

types and a certain amount of electricity to produce 1 kg of hydrogen. The operating conditions

and other inputs for the hydrogen production technologies considered are taken from the work of

[97].

3.7.2.3 Transportation

There are two transportation systems; tube trailer for compressed hydrogen and truck trailer

for biomass. The natural gas is assumed to be supplied through the existing natural gas pipeline

network. The parameters for the transportation modes used for this case study are similar to those

in [17]. Google Maps was used to estimate distance (miles) based on the zip code.

3.7.3 Resource Availability

Renewable energy sources have temporal and geographical variabilities. Biomass, sunlight,

and wind speed are unevenly distributed relative to the population throughout California, and their

availability vary by season.The population is mostly concentrated in a few areas. Table 3.5 shows

the available raw material in the regions adopted from [93]. It is assumed that there is abundance of

fresh water in all the regions. Figures 3.13 and 3.14 highlights the geographical mismatch between

the state’s renewable energy sources and where most of the population lives.

Table 3.5: Daily extractable resource

Region Natural gas Biomass Water
(ton) (ton) (ton)

i1 34.854 6438.356 1000000
i2 674.903 10821.918 1000000
i3 1747.475 4383.562 1000000
i4 436.321 3424.658 1000000
i5 75.393 2054.795 1000000
i6 208.630 3835.616 1000000
i7 170.926 3561.644 1000000
i8 8882.076 1506.849 1000000
i9 106.747 3013.699 1000000
i10 0.004 3013.699 1000000
i11 834.704 2739.726 1000000
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Figure 3.14: California maps showing the (left) distribution of biomass resource and (right) natural
gas source

3.7.4 Results and Discussion

Like in the Texas case study, two scenarios are considered for the use of electrolysis. They are

(1) when oxygen, which is a by-product in the electrolysis process, is not considered a revenue

generating product and (2) when oxygen is considered a revenue generating product. Figure 3.15

t0 3.17 is used to show plant location, total hydrogen production capacity, hydrogen production

technology mix at each region for any time period. The vertical axis represents the time periods

(5 years each) and the horizontal axis represents the cells. Empty intersections of cells and time

periods indicate that no hydrogen production plant is installed. Thus, the hydrogen demand in such

region at the specific time period is met by importing hydrogen from other regions in an optimal

transportation configuration.
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Figure 3.15: A chart showing the hydrogen producing plant location, total hydrogen production
capacity per region (in metric tons) at any time period that maximizes the net present value within
the planning horizon. The pie chart represents the technology share

3.7.5 Case 1: Oxygen As a Discarded By-product

The optimal configuration of hydrogen supply chain network for the whole time horizon is

shown in Figure 3.15. As expected SMR is the major technology option at maximum net present

value. At regions 9, 10 and 11 Biomass becomes a cost effective option as the hydrogen demand

or the scale of the plant increases. This is attributed to fact that at large scale the biomass becomes

cost effective. When compared to the Texas case study, it is obvious that the scale of the plant is

pivotal to the choice of technology. As electrolysis does not appear in any of the regions when

NPV is maximized.

On the other extreme where GHG is minimized, more environmental friendly option dominate

the chart as shown in Figure 3.16. The regions have a technology mix of biomass and electrolysis.

It is important to note that biomass sequestrates CO2 such that for every metric ton of biomass

used, about 22 metric tons of CO2 have been sequestrated. This result illustrates the impact of

CO2 sequestration on the technology choice.

50



Figure 3.16: A chart showing the hydrogen producing plant location, total hydrogen production
capacity per region (in metric tons) at any time period that minimizes the net present value and the
GHG within the planning horizon. The pie chart represents the technology share

3.7.6 Case 2: Oxygen As a Revenue Generating By-product

When oxygen is collected and sold, hydrogen production from electrolysis becomes more eco-

nomical as shown in Figure 3.17. This is because more revenue is generated by the sell of oxygen.

However due to the scale of the hydrogen plants, SMR still dominates the mix. This result further

emphasizes the need to consider oxygen as a valuable by-product in the production of hydrogen

from electrolysis. One of the assumption here is that there was a steady demand for all the oxy-

gen produced. This assumption can be supported by the assessment by Kato et al [79]. Figure

3.18 show the distribution network for the last period when only NPV is maximized and oxygen is

considered a revenue generating by product.

51



Figure 3.17: A chart showing the hydrogen producing plant location, total hydrogen production
capacity per region (in metric tons) at any time period that maximizes the net present value when
oxygen sale generates revenue. The pie chart represents the technology share

In the regional level, hydrogen is transported from the plants or storage facilities to the gas

station. The supply chain within the regions would require a more detailed survey of the market

which is beyond the scope of this work. Figure 3.18a,b and c shows the plant locations in the last

period for the extreme points on the Pareto curve. The transportation mode for hydrogen (com-

pressed gas) is the tube trailer. In figure 3.18a the hydrogen produced in region 1 is complimented

by the excesses in regions 3 and 9. Region 10 also gets hydrogen from region 9. Region 6 supplies

hydrogen to regions 5, 8, and 11.
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Figure 3.18: California maps showing the distribution route for hydrogen in the last period for
when (left) oxygen is vented and (right) when oxygen is sold of revenue.

3.8 Concluding Remarks

In this study we developed a superstructure based mathematical programming model. Using

this model we designed a multi-objective hydrogen supply chain network formulated as an MINLP

model to simultaneously (i) maximize the NPV and (ii) minimize the GHG emission. The MINLP

model was linearized to an MILP for simplification. We applied the model using Texas as a case

study and evaluated two scenarios: (i) when oxygen (by-product of hydrogen production from

the electrolysis technologies) is vented into the atmosphere and (ii) when oxygen is collected,

compressed and sold for revenue. We deployed the ε-constraint algorithm in solving the formulated

model and produced a Pareto curve with twenty data points. The scenarios were investigated

and we found that hydrogen production from electrolysis is not only environmentally friendly but

can also be an economically viable option especially when its valuable by-product (oxygen) is

considered a revenue generating option.
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4. PAROC DEVELOPMENT AND IN SILICO VALIDATION FOR HYDROGEN ENERGY

SYSTEMS1

4.1 Synopsis

PAROC framework is an integrated framework and software platform that enables the use of

model-based tools in the design, operational optimization and advanced control studies of process

systems. In this chapter we will explain in details, the various aspects of the PAROC framework

and adapt to the design of an explicit model predictive control for three hydrogen energy systems;

(1) Proton Exchange Membrane Water Electrolysis(zer) (PEMWE), The Metal Hydride Refueling

System (MHRS) and a Direct Internal Reformed Solid Oxide Fuel Cell (DIR SOFC).

1Reprinted with the permission from (i) “ASTM International" from - G. S. Ogumerem and E. N. Pistikopoulos,
“Dynamic modeling and explicit control of a PEM water electrolysis process," Smart and Sustainable Manufacturing
Systems, vol. 2, no. 2, pp. 25-43, 2018. (ii) “John Wiley and Sons" from - G. S. Ogumerem, N. A. Diangelakis, and
E. N. Pistikopoulos, “Natural-gas-based sofc in distributed electricity generation: Modeling and control," Natural Gas
Processing from Midstream to Downstream, pp. 509-525, 2018. (iii) “John Wiley and Sons" from - G. S. Ogumerem
and E. N. Pistikopoulos, âĂIJParametric optimization and control towards the design of a smart metal hydride refueling
system,âĂİ AIChE Journal, 2019.
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4.2 Introduction

The process systems engineering community have been challenged with integrating detailed

modeling, design and operational optimization, controller design and scheduling/planning poli-

cies in other to design economically profitable plants and improve their operational performance

[33, 98]. In an attempt to address this challenge Pistikopoulos et al. [33] proposed the PARa-

metric Optimization and Control (PAROC) framework which enables the representation and so-

lution of demanding model-based operational optimization and control problems following an in-

tegrated procedure featuring high-fidelity modeling, approximation techniques and optimization-

based strategies, including multi-parametric programming . A key advantage in the use of multi-

parametric programming in the PAROC framework is that, the computational burden of the opti-

mization is transferred offline, enabling its adaptability to more complex systems. Explicit/multi-

parametric model predictive control (eMPC) is the most studied and well-known application of

multi-parametric programming following the work of Bemporad et al. [71]. In this chapter we

will explain in details, the various aspects of the PAROC framework and adapt to the design of an

explicit model predictive control for three hydrogen energy systems; (1) Proton Exchange Mem-

brane Water Electrolysis(zer) (PEMWE), The Metal Hydride Refueling System (MHRS) and a

Direct Internal Reformed Solid Oxide Fuel Cell (DIR SOFC).

4.3 PAROC Framework

The PAROC framework is an integrated framework and software platform that enables the

use of model-based tools in the design, operational optimization and advanced control studies of

process systems. A key advantage of the PAROC framework is its ability to adapt to different

classes of problems in an effortless manner. The main idea is to close the loop through a real-time

implementation of the optimal feedback law generated using the PAROC framework. As shown

in Figure 4.1 the PAROC framework involves (i) high fidelity modeling, (ii) model reduction, (iii)

deploying multi-parametric programming (mpP) techniques to obtain mpP solutions and (iv) the

validation of the mpP solutions.
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Figure 4.1: Schematic diagram of the PAROC framework.

4.3.1 High Fidelity Modeling

The first step in the PAROC framework is the development of a high-fidelity dynamic model

and analysis of the system. The advancement and diversification of real-time and life-cycle mod-

eling is indispensable to smart manufacturing. it is a common component in process system engi-

neering techniques and it is at the core of existing ASCPM technology gaps [46]. The aim of this

step is to develop a digital replica of the process system. It involves:

• developing a physics based or first principle model - the models are a combination of differ-

ential and algebraic equations that describe essential interactions in the process system.
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• global sensitivity analysis - this technique is employed to capture the magnitude of the inter-

actions between the variables, and

• parameter estimation - process data is an essential ingredient in the model development

process and its particularly used in the validation of the model.

The system being modeled is fitted with sensors to enable system monitoring and data acquisition.

The data acquired is used to validate the model using a parameter estimation technique. A validated

high fidelity model of a system is also referred to as a digital twin of the system.

4.3.2 Model Approximation

The next step in the PAROC framework is model approximation. Though it is possible to use

the high fidelity model in the design and operation decisions, it might be complex and compu-

tationally expensive. Thus, a model reduction step is required to reduce the complexity of the

high-fidelity model while maintaining its accuracy. The model reduction is done using system

identification techniques or other model reduction methods [99, 100]. The accuracy of the reduced

model relative to the original model is an important determinant in the choice of model reduction

technique employed. The reduced model is linear discrete time state space models.

4.3.3 Multi-parametric Programming

For operational optimization or control design, Model Predictive Control (MPC) algorithm are

used to formulate an implicit receding horizon optimal policies with the reduced model. However,

the application of this implicit policies requires solving the MPC optimization problem at every

time step which can be avoided by employing Multi-parametric Programming (mpP) techniques.

In the application of mpP, an exact reformulation of the MPC problem is obtained using procedures

described in the work by Bemporad et al. [71]. The reformulated problem is solved using multi-

parametric programming techniques which enables the optimization problem to be solved ones and

offline as a function of a set of parameters. The mpP solution obtained is a set of piece-wise affine

(PWA) functions of the parameters (measured at every sampling time), defining respective polyhe-

dral critical region [71]. Several research have contributed to the development mpP and the work
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done by Pistikopoulos et al. [33] reviewed key contributions in multi-parametric programming

solution algorithms for solving various classes of problems. The PAROC framework employs a

number of efficient mpP algorithms embedded in the POP toolbox [101, 33].

4.3.4 In silico Closed Loop Validation

The next step in the PAROC framwork is the in silico closed loop validation of the explicit con-

trol policies. The control policies are tested in a closed loop fashion with the original high-fidelity

model for properties such as stability at a range of setpoints, effect of the initial conditions etc. This

establishes the consistency of the approximate model and the accuracy of the controller. Given the

outcome of the validation step the explicit controller can be redesigned and re-evaluated. The

PAROC is process agnostic and have been used for system such as the combined heat and power

(CHP) co-generation system for residential use, distillation column, a periodic chromatographic

separation system of monoclonal antibodies[33].

4.3.5 Real-time Closed Loop Implementation

While there have been substantial progress in the development and in silico application of ex-

plicit MPC [102, 33], the same is not true for real-time application of explicit MPC on a physical

system. This can be attributed to the cost of overhauling an existing control system and in some

cases, the size of the mpP solution obtained. The size of the critical regions of the mpP solu-

tion easily increases exponentially with the number of active constraint in the MPC formulation.

However a few researchers have proposed methods to address the issue [103] some of which com-

promise the optimality of the mpP solution. with the recent technological advances in embedded

systems and micro-controllers, the cost of implementing the explicit control is reducing drasti-

cally. klauvco et al. [104] implemented an explicit MPC (embedded in an Arduino) on a magnetic

levitation system.

4.4 High Fidelity Modeling of PEMWE System

A suitable model for prediction should capture the dynamics of the PEMWE in response to

various inputs or disturbance. The HF model used in this thesis is adopted from by Ogumerem
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et al. [105] and is presented below. It includes (i) a mass balance that captures the dynamic

of various electrochemical phenomena such as; the electrochemical reaction to produce oxygen

and hydrogen ions, the electro-drag of the hydrogen ion from the anode to the cathode where the

hydrogen molecules are formed. It also includes equations describing (ii) the electro chemistry to

determine actual voltage required for the reaction and (iii) an energy balance describing the heat

generation and removal in the process. Also included in the HF model is an empirical relation

of the voltage applied to the pump and the flow rate downstream of the filter. The HF model is

developed and analyzed in gPROMS R©. The model made up differential algebraic equations that

have variable and parameters.

4.4.1 Mass Balance

4.4.1.1 Anode

During the operation of the PEMWE, deionized water is pumped into the anode. The deion-

ized water flows across and percolates through the pores of the diffusion layer. When the water

molecules reaches the catalyst layer, an electrochemical reaction (shown in equation 4.1) takes

place producing protons (H+) and oxygen ions.

1 H2O(l) −−→ 1
2O2 (g) + 2 H+ + 2 e–

2 2 H+(aq) + 2 e– ←−→ H2(g)
(4.1)

The Oxygen produced from the reaction leaves the catalyst layer through the diffusion layer.

The reactions described in Equation 4.1 above is propelled by the flow of electrons - current.

Increasing the current increases the flow of electron and thus the rate of rate of reaction. The gas

phase in the anode is made of oxygen and water vapor. The pressure in the anode is 1 atm and the

temperature is maintained well below the boiling point of water. The activities in the anode can be

the described by the Equations 4.2 to 4.5.

Ṅ out,an
H2O

= Ṅ in,an
H2O

− Ṅdrag
H2O
− Ṅdiff

H2O
− Ṅ rxn,an

H2O
(4.2)
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Ṅ rxn,an
H2O

=
ncellI

zF
(4.3)

ṄH2 =
ncellI

zF
(4.4)

ṄO2 =
ncellI

2zF
(4.5)

Where Ṅ j,k
i is the molar flow rate of substance i in j activity at location k. I is the current supplied

per cell in the electrolyzer stack. F is the Faraday’s constant and z is the charge per molecule

formed and ncell is the number of cells in the stack.

4.4.1.2 Membrane

The hydrogen ion passing through the membrane drags along some water molecule with it to

the cathode. The flux of water through the membrane due to the flow of hydrogen ion is described

by an electro-osmotic drag coefficient ed which is a property of the membrane. The anode side

of the membrane is in contact with liquid water and is considered saturated [106, 107] while the

cathode side of the membrane accumulate water over time partly due to the electro-osmotic drag.

Also given the difference between the chemical potential across the membrane, water diffuses

through the membrane according to Fick’s law. The activities in the membrane can be described

by Equations 4.6 to 4.11

Ndrag
H2O

=
ncelledI

F
(4.6)

ed = 0.029λ2m + 0.05λm − 3.4× 10−17 (4.7)

Ndiff
H2O

=
ncellDmAρm

mm

(λan − λca) (4.8)

Dm = 0.0021λan exp

(
−2436

T

)
(4.9)

λca = 0.043 + 17.81am − 39.85a2m + 36a3m (4.10)
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λm = 0.5 (λan + λca) (4.11)

where Dm is the diffusion coefficient water in the membrane, ρmem and mmem is the membrane

dry density and the mass respectively, A is the active area of the electrolyzer cell. λan, λca and λm

are the water content of the anode side, cathode side and middle of the membrane respectively. aw

is the water activity in the cathode.

4.4.1.3 Cathode

Hydrogen and water molecule flow in the cathode through the membrane electrode assembly.

The outlet of the cathode can be controlled by a back-pressure regulator or a valve to maintain a

certain outlet pressure and flow of hydrogen water mix. Water molecules flowing into the cathode

accumulates to form a pool. Equations 4.12 - 4.16 represents the mass balance process in the

cathode.

dN ca
H2

dt
= ṄH2 − yH2Ṅ

out,ca
gas (4.12)

dN ca
H2O

dt
= Ṅdrag

H2O
+ Ṅdiff

H2O
− (1− yH2)N

out,ca
gas (4.13)

pH2 =
N ca

H2
RT

Vca
(4.14)

yH2 =
pH2

Pca
(4.15)

N out,ca
gas = Kca (Pca − Pamb) (4.16)

Where yH2 is the mole fraction of hydrogen in the cathode. R and Vca is the gas constant and

volume of the cathode respectively, Kca represents the valve constant of back pressure regulator

constant. Pca, Pamb and pH2 are the total cathode pressure, the ambient pressure and the partial

pressure of hydrogen respectively.
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4.4.2 Electrochemistry

The actual voltage consumption in the PEMWE process is usually about 35% more than the

reversible voltage. It is a sum of the open circuit voltage and the overpotentials as shown in the

Equations below. The open circuit voltage is the reversible voltage with pressure correction. The

reversible potential is independent of current density, It increases with increasing pressure and de-

creases with increasing operating temperature. The activation overpotential Vact stems from the

energy barrier that the reactants must overcome before they can be converted to product. The acti-

vation overpotential expression is derived from ButlerâĂŞVolmer equation and given as equation

[108]. The ohmic overpotential Vohm stems from the resistant or inhibition to the flow of electron

and flow of ions from the anode to the cathode. The electrochemical activities are described by the

Equations 4.17 to 4.19

V = Eoc + Vact + Vohm (4.17)

Eoc = Eo +
RT

zF
ln
pH2p

0.5
O2

pH2O

(4.18)

Eo = 1.229− 9.0× 10−4(T − 298) (4.19)

Vact =
RT

αanF
sinh

i

2io,an
+

RT

αcaF
sinh

i

2io,ca
(4.20)

Vohm = δm
ic
σm

(4.21)

σm = (0.005139λm − 0.00326) exp

[
1268

(
1

303
− 1

T

)]
(4.22)

Where V is the actual voltage of the stack, Voc is the open circuit voltage, Vact is the activation

overpotential, Vohm is the ohmic overpotential,Eo is a temperature dependent theoretical/reversible

voltage derived from Gibb’s free energy, io,an and io,ca are the exchange current density for the

anode and cathode respectively and σm is the membrane conductivity.
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4.4.3 Energy Balance

The electrochemical reaction in the PEMWE is theoretically endothermic however, heat is gen-

erated in the PEMWE process. The heat generated stems the joule heat effect and it is captured by

the energy in excess of the enthalpy of reaction (which is expressed as the thermo-neutral voltage)

or the overpotentials. Increase the current supply results in a increase in the heat generation rate

and a rapid increase in the generated can is detrimental to the membrane of the Membrane Elec-

trode Assembly (MEA) which is made of polymers. Therefore, maintaining the PEMWE at an

efficient temperature is of immense value to it operation. In the PEMWE operation, water is not

only a reactant but also a coolant. Consequently, the inlet temperature of water and the flow rate are

important parameter to considered in maintaining the temperature of the stack. The temperature

gradient across the stack is an important indicator of the rate of heat generation in the PEMWE. To

retain the integrity of the PEMWE, the temperature gradient across the stack should be maintained

below a certain threshold. The energy balance of the PEMWE is described by the Equations 4.23

to 4.26 [109, 110].

mstackCp
dT

dt
= ncellI (Eoc − Vo) + ṁin,an

H2O
Cp,H2O

(
T − T in,an

)
−Hrad (4.23)

Vo = 1.4756 + 2.252(10)−4(T − 273) + 1.521(10)−8(T − 273)2 (4.24)

Power = ncellIV (4.25)

Hrad = Asδσ
(
T 4 − T 4

amb

)
(4.26)

Where ṁin,an
H2O

is the mass flowrate of water in the anode, Vth is the therm-neutral voltage expressed

as a function of temperature, Power and Hrad are the power supplied to the stack and the heat loss

from radiation respectively. As is the surface area of the stack, δ and σ are constants and Tamb is

the temperature of the surrounding.
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4.4.4 Simulation

The model is developed and analyzed in gPROMS R© modelbuilder and the simulation results

are presented below. One important aspect of the PEMWE is the polarization curve. It is a char-

acteristic curve that conveys the performance or efficiency of the PEMWE. Figure 4.2a show the

polarization curve of the PEMWE modeled above. Its shows how the cell voltage changes with

the current density. High cell voltage change per current density (or steeper polarization curve)

indicates a high power consumption per kilogram of hydrogen produced. The current density is

the ratio of the current and the area which is a design parameter. Figure 4.2b shows how the power

changes with the current density and 4.2c shows how temperature changes with current density.

Increasing the current density increases also increases the joule heating effect which raises the

temperature.

Figure 4.2: Simulation results showing the how current density affects (left) cell voltage (middle)
power and (right) temperature

Figure 4.3 demonstrates the impact of varying the control parameters on some keys variables

during the operation. The PEMWE is simulated to operate at an inlet water temperature of 297 K

and varying flowrate as shown in Figure 4.3f. The current is also varied as shown in 4.3e. From

Figure 4.3a, the cell voltage has slight sensitivity to the water flowrate while in 4.3b, the hydrogen

and oxygen production has a high sensitivity to current and none to water flowrate. As expected,
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the PEMWE operating temperature is sensitive to changes in the current and water flowrate as

shown in Figure 4.3c and 4.3d.

Figure 4.3: Simulation results showing dynamic response of various process variable in the
PEMWE

4.4.5 Model Reduction

The digital twin is highly nonlinear thus, for a linear MPC, the model is reduced to a linear

discrete time state space model. For the temperature change across the electrolyzer (∆T), the

water flow rate is perturbed at a specific hydrogen production and the corresponding temperature

change dynamic is obtained. Using the data and the system identification toolbox in MATLAB R©,

a linear discrete time state space model is developed such that the accuracy of the original model

is not compromised. The linear state space model generated is given in equation A.7 below with

a sampling time of 1s. The accuracy of the reduced model is determined by a fitting parameter

value which is 97.04 % and 99.97 % for the ∆T and the total voltage curve respectively. Figure
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4.4 shows a chart juxtaposing the total voltage and the ∆T profiles for the high fidelity model and

the reduced model. Figure 4.4 also shows the water flowrate and current inputs profile used.

xk+1 =

 1 2.785e−5

3.959e−3 0.9959

xk +

 −7.346e−7 7.761e−7

1.066e−4 −1.062e−4

uk
yk =

 53.47 0.2515

−22.64 13.71

xk (4.27)

Figure 4.4: Diagram comparing the original model and the reduced model prediction of the total
(top left) and the ∆T (top right) while randomly perturbing the the water flowrate (bottom left) and
the current (bottom right).

When using the system identification model reduction method, the states of the linear state
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space model do not translate to the states of the original model. Therefore an observer is used to

make this translation. The Kalman filter is used for as an observer in this study [111].

4.4.5.1 Control Problem

The PEMWE system produces hydrogen and oxygen and the amount of produced gases is de-

termined by the current supplied to the system. The power utilized by the PEMWE is a product

of the current supplied to the system and the resultant voltage. The resultant voltage is used to

determine the efficiency of the PEMWE and it depends on the temperature of the system. The

present study focuses on the thermal management of the PEMWE operation to mitigate the long-

term effect of exposing the membrane to high temperature. As discussed earlier, such exposure to

higher temperature increases the susceptibility of the membrane to degradation. The flowrate and

temperature of the water entering the PEMWE stack has a significant impact on the temperature

of the stack as shown in Figure 4.2. Though the inlet temperature has a significant impact on the

stack temperature, it is considered a measured disturbance in the present study because the water is

recycled. The current is also considered a disturbance in the study since change in current signif-

icantly affects the heat generation in the stack. The goal is to maintain the temperature difference

across the PEMWE stack at a specified setpoint amid change current (or hydrogen production rate)

and inlet water temperature by controlling the water flowrate.

4.4.6 Formulation of the Multi-parametric Model Predictive Controller

The objectives of the receding horizon optimal policy is to reject measured and unmeasured

disturbances while maintaining certain operating set-points. The current supply (hydrogen pro-

duction rate) and the water flowrate are two variables with the most impact on the ∆T or the output

temperature. The hydrogen production is not included in the control design because it has a di-

rect translation to the current supplied (Equation 4.4), thus its already controlled. For the MPC

formulation, the manipulated variable is the water flowrate and the ∆T is the measured output or

the control variable. The linear model developed in section 4.4.5 is used to formulate an MPC

optimization problem.
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The MPC is exactly reformulated into a multiparametric quadratic programming problem (mpQP)

as shown in equation A.9 [71, 59]. The parameters realized at every sampling are denoted as θ and

are bounded. The parameters include the initial states x0, the output yk the set points yRk , and

previous control actions u−1 for evaluating ∆uk. The multi-parametric model predictive controller

problem (equation A.9) is solved using POP toolbox in MATLAB R© [101]. The solution obtained

is of the form u = f(θ) mapping the parameters θ to a sequence of control actions u. Figure 4.5

shows the map of solution when all but the water flowrate and the ∆T are assigned a feasible value.

Figure 4.5: Critical regions for the explicit MPC solution - where all the parameters are fixed
except the water flowrate and ∆T .

With the explicit MPC feedback law constructed (equation B.4), the next step from the PAROC

framework is a closed loop validation of the feedback law with the high fidelity model. Hosting

the high fidelity model in gPROMS R© and the feedback control policy in MATLAB R©, and through
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a data exchange protocol provided by gOMATLAB R©, the controller is tested in a closed loop

fashion. The result of the closed-loop validation is shown in Figure 4.6. It shows the process

variable and set-points for ∆T, the water flowrate and the current changes during the in silico

validation. The ∆T tracks the setpoint well even with changes in current which corresponds to

changes in the rate of heat generation.

Figure 4.6: In silico closed loop validation of the control policy on the PEMWE prototype: (a) ∆T,
(b) water flowrate (c) current
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4.5 High Fidelity Dynamic Model of Metal Hydride Hydrogen Storage System

There are several mathematical models with various level of complexities that have been used

to describe the processes in the metal hydride [112, 113, 31, 114]. The model used in this studied

is a physics based lumped dynamic model with parameters that describe the LaNi5 metal hydride.

It includes the mass and energy balance equation, the rate equation and a variant of the Van’t Hoff

equation for the PCT isotherm relation. The mathematical equations are presented below.

4.5.1 Mass Balance

During the refueling process, the hydrogen gas enters the metal hydride canister and adsorbs

on the surface of the metal hydride granules. depending on the operating pressure and the con-

centration of the adsorbed hydrogen, the hydrogen fused into the lattice (absorption) of the metal

hydride. The mass balance in the metal hydride is described by equation 4.28. Gas phase hydrogen

accumulation in the free volume of the MH pod is assumed to be negligible.

dmmh

dt
= rmsm (4.28)

wheremmh is metal hydride mass, r is the reaction rate andmsm is the mass of a hydrogen saturated

metal hydride.

4.5.2 Reaction Kinetics

The adsorption and subsequent absorption is described by an pressure-concentration-temperature

isotherm. Equations 4.29 describes the hydriding reaction as a function of the reaction tempera-

ture, the equilibrium pressure, the hydrogen supply pressure, and hydrogen content [31, 115, 114].

The equilibrium pressure is related to the changes in enthalpy (∆H) and entropy (∆S), according

to the Van’t Hoff’s equation and its expressed by Equation 4.29.

r = Ca exp

(
Ea
RT

)
ln

(
Pg
Peq

)(
1− mmh

msm

)
(4.29)
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Peq = P0 exp

(
∆Hrxn

RTmh
− ∆S

R
+ a tan

[
x

(
mmh

msm

− b
)

+ c

])
(4.30)

where Ca is material depended constant, msm and mmh are the mass of the solid phase at hydrogen

capacity and actual content respectively. Peq and Pg is the equilibrium pressure and the hydro-

gen inlet pressure respectively. R and T are the gas constant and the MH pod core temperature

respectively. ∆S and R are entropy change and gas constant respectively

4.5.3 Energy Balance

The metal hydride reactor is enclosed with a water jacket with flowing coolant (water), thus the

energy balance accounts for the heat generated during the reaction and the heat loss to the water

jacket. The energy balance is described by Equations 4.31 to 4.33.

msCmh
dTmh
dt

= Q̇w −∆Hrxnr
msm

MH2

(4.31)

V ρwCw
dTw
dt

= ṁwCw(T inw − Tw)− Q̇w (4.32)

Q̇w = εAshw(1− φ)(Tw − Tmh) (4.33)

where Cmh is the effective heat capacity of the metal hydride, Tmh is the temperature of the metal

hydride core, ∆Hrxn is the heat of reaction, Q̇w is the heat flow through the surface of the MH

pod MH2 is the molecular weight of hydrogen. Cw is the heat capacity of the water, Tw and T inw

are the temperature of jacket water or water leaving the jacket and the inlet water temperature

respectively, V and ρ are the volume of the reactor jacket and the density of water respectively,

ṁw is the mass flowrate of water. As and hw are the reactor surface area and the heat transfer

coefficient respectively.

4.5.4 Simulation

The model is developed in gPROMS R© modelbuilder and the simulation results are presented

in Figure 4.7. Figure 4.7a shows te evolution of the state of charge (SoC). SOC is the ratio of

the actual hydrogen content to the capacity of the Metal hydride canister. Figure 4.7b shows
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the temperature inside the metal hydride canister and the temperature of the water in the jacket.

The temperature difference is about 40 K which is high and this is this attributed to the thermal

conductivity of the metal hydride and the flowrate of the water in the jacket.

Figure 4.7: Simulation results showing dynamic response of the (a) state of charge of the metal
hyride and (b) temperatures of the metal hyride core and outlet coolant water

With the high fidelity model developed, the next step in the PAROC framework is the control

design. This includes reducing the complexity of the model to make it tractable for control design,

formulating the MPC and reformulating the MPC into an mpMPC.

4.5.5 Model Reduction

The digital twin is highly nonlinear thus, for a linear MPC, the model is reduced to a linear

discrete time state space model. Data is generated from the high fidelity model by randomly

perturbing the filling pressure to generate the corresponding the temperature and hydrogen charge

data. Using the data and the system identification toolbox in MATLAB R©, a linear discrete time

state space model is developed such that the accuracy of the original model is not compromised.

The linear state space model generated is given in equation 4.34 below with a sampling time of

1s. The accuracy of the reduced model is determined by a fitting parameter value which is 86.53

% and 98.11 % for the temperature and the filling profile curve respectively. Figure 4.8 shows
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the profiles for the high fidelity model and the reduced model for the temperature and the state of

charge of the MH pod respectively.

xk+1 =



0.9999 −1.295e4 4.287e−4 −1.273e−5

−2.895e−5 1 −8.987e−6 1.176e4

−6.672e−3 −8.829e−3 0.9687 −1.569e−2

−3.38−3 −1.491e−2 −3.048e−2 0.9741


xk +



1.28e−8

−1.008e−7

3.877e−5

4.632e−5


uk

yk =

 950.6 564.6 25.79 −0.9191

199.2 6675 303.2 −10.81

xk
(4.34)

Figure 4.8: Diagram comparing the original model and the reduced model prediction of the the
state of charge of the MH pod (right) and the MH core temperature (middle) while randomly
perturbing the refill pressure (left).

It is important to note that when using the system identification model reduction method, the

states of the linear state space model do not translate to the states of the original model. Therefore

an observer is used to make this translation. The Kalman filter is used for as an observer in this

study.
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4.5.6 Formulation of the Multi-parametric Model Predictive Controller

The primary objective is to develop control policies that will maintain the temperature of the

hyriding operation below a certain threshold while maximizing the State of Charge (SOC). The

manipulated variables for the hydriding operation are the filling pressure and the water flow rate.

During the hydriding process, an important objective is to remove as much heat as possible be-

cause, the higher the rate of heat removal the faster the filling. In the hydriding operation, there

exist a trade-off between the temperature, the pressure and the filling rate. The higher the filling

pressure, the faster the reaction rate (high filling rate) and the higher the maximum operating tem-

perature. The MPC is formulated to optimize the filling pressure profile within the control horizon

such that the temperature and other constraint are not violated and also that the output trajectory

reaches or maintains the set-points as much as possible. The MPC optimization for the hydriding

operation is formulated according to Equation A.8 and the setpoints are based on a time invariant

optimal trajectory obtained from a dynamic optimization of the original model. Using the linear

discrete model developed in 4.5.5 an we formulate an MPC optimization problem as shown in

Equation A.8.

The quadratic problem formulated using equation A.8 can be reformulated into a multi-parametric

quadratic programming problem (mpQP) as shown in equation A.9 [71, 59]. The uncertain param-

eters are denoted by θ and they include the initial states x0, the output yk the set points yRk , and

previous control actions u−1 for evaluating ∆uk. The multi-parametric model predictive controller

problem (equation A.9) is solved using POP toolbox in MATLAB R© [101]. The solution obtained

is of the form u = f(θ) mapping the parameters θ to a sequence of control actions u. f(θ) is

a piece-wise affine function of the uncertain parameters as shown below . For the MH system,

there are ten uncertain parameters measured at every sampling time. Figure 4.9 shows the map

of solution when all but the previous input (filling pressure) and the SoC are assigned a feasible

value.
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Figure 4.9: Critical regions for the explicit MPC solution - where all the parameters (states x,
setpoints and output are fixed except the filling pressure and the SoC of the MH pod.

With the explicit MPC feedback law constructed (equation B.4), the next step from the PAROC

framework is a closed loop validation of the feedback law with the high fidelity model. Hosting

the high fidelity model in gPROMS R© and the feedback control policy in MATLAB R©, and through

a data exchange protocol provided by gOMATLAB R©, the controller is tested in a closed loop

fashion. The result of the closed-loop validation is shown in Figure 4.10. It shows the process

variable and set-points for the temperature and MH pod SoC and the manipulated variable - the

filling pressure and water flowrate. The filling pressure and the water flowrate profiles shows the

sequence of optimal control action required to keep the MH core temperature on the setpoint for

most of the alpha-beta reaction phase while filling up the metal hydride to 100% full.
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Figure 4.10: Insilico closed loop validation results of the control policy for the SoC of the MH pod
(top), the MH core temperature (middle) and the filling pressure (bottom)

4.6 Direct Internal Reforming (DIR) SOFC

Several integration strategies for SOFC have been reviewed [116]. One of the design ap-

proaches considered is the external reforming SOFC. Here, the reformer is spatially close to the

SOFC and the heat generated for the SOFC is transferred to the reformer through heat integration

[117]. Contrariwise, in the internal reforming approach the reforming process is within the SOFC.

Generally, two design techniques exist for the internal reform of natural gas in SOFC and they are

the Direct Internal Reforming DIR and Indirect Internal Reforming IIR. In the latter, the stack and
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the reformer are in thermal contact and the reformate is fed to the to the adjacent anode. Also, the

electrochemical reaction and the reforming reaction are separated. While in the DIR the NG reform

take place in the anode. The heat generated by the exothermic electrochemical and shift reaction is

utilized by the endothermic reforming reactions. Tubular, planar and monolithic are the predom-

inant geometric configurations of a SOFC[118, 119]. Westinghouse, now Siemens-Westinghouse

developed the tubular SOFC [120]. Planar designs are popular for their compact nature and higher

power density. A schemcatic diagram of a DIR SOFC Cell is shown in figure 4.11. Due to its high

operating temperature, the electrolyte is a nonporous ceramic; Y2O3 stabilized ZrO2 (YSZ). The

anode face is made of a porous Nickel/Yttria-stabilized zirconia (Ni/YSZ) cement and the nickel

serves as a catalyst for the reform reaction. The cathode face is porous Sr-doped LaMnO3.

Figure 4.11: Schematic diagram of a DIR SOFC cell

During the startup operation of the direct internal reforming, natural gas and steam is fed to

the anode. Air is fed to the cathode and oxygen ion percolates through the electrolyte to the anode

where it reacts with the hydrogen ion to form steam. At continuous operation, the steam from the

electrochemical, heat and the nickel catalyst sustains the reforming reaction producing hydrogen

H2 and carbon monoxide CO and carbon dioxide CO2. The shift reaction also utilizes the CO and
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steam to produce more CO2 and H2.

4 H2 + O2
– ←−→ H2O + 2 e– −285 kJ/mol

5 CO + O2
– ←−→ CO2 + 2 e– −283 kJ/mol

6 O2 + 4 e– ←−→ 2 O2
– 0 kJ/mol

(4.35)

4.6.1 Mathematical Model

Mathematical models can be used to estimate the required amount of input steam by analyzing

the interactions between various components of the system. A few researchers have developed

models for internal reforming SOFC [118]. Here we develop a dynamic model describing various

fundamental principles of a DIR SOFC similar to the model developed by Ogumerem and Pis-

tikopoulos [121]. The system adopted is a 12 kW SOFC and the following assumption were made

in developing the hypothetical model used here;

• The gases behave like ideal gas

• The pressure correction on the voltage i dependent of hydrogen oxygen and steam.

• The kinetics developed through the experiments conducted by Jianguo Xu and Gilbert Fro-

ment [122] is the same for a direct internal reforming SOFC since nickel base catalyst is

used in both cases.

• The anodic and cathodic chambers are well mixed and the oxidation of hydrogen happens in

the anode

4.6.2 Mass Balance

4.6.2.1 Anode

The anode takes in NG and steam at a molar ratio of 3:1 in a reforming reaction to produce

a CO and H2. The CO produced is shifted with steam to produce more H2. The H2 produced

undergoes an electrochemical reaction with oxygen to produce steam and electricity. The steam
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produced in the electrochemical reaction augments the steam in the inlet stream. At the cathode,

Air flows in and the oxygen from air sips through the electrolyte and into the anode as oxygen ion

where it reacts with hydrogen ions to form water. The composition of the air is assumed to be 21%

oxygen and 79% nitrogen. The material balance is as follows

Van
RT

dpi
dt

= N i,an
i −N o,an

i − rani (4.36)

Vca
RT

dpi
dt

= N i,ca
i −N o,ca

i − rcai (4.37)

Where Van is the volume of the anode, p is the partial pressure of specie i, R and T are gas con-

stant and temperature respectively, Ni is the molar flowrate of specie i, ri is the sum of reactions

involving specie i and i represents all the species in the anode (CO,CO2,H2O,CH4,H2). Where

Vca is the volume of the anode, i represents all the species in the cathode (O2,N2)

4.6.3 Energy Balance

The thermal integration that takes place in the DIR SOFC creates a state where endothermic

reaction is complimented by the exothermic reactions. Here the streams are preheated to 9500C

before they are fed into the anode. The partial enthalpies of the inlet and outlet streams of the

anode and the cathode make up the first two terms in equation A.6. The combination of the reaction

enthalpies and reacted quantities produces a net heat generation which depends on the kinetic of

the reaction with respect to the equilibrium. About 235 kJ of energy generated for every mole of

water produced contributes to power and some of the heat generated are lost due to radiation.

dT

dt
=

na∑
i=1

Nan
i

(
hini − hsti

)
+

nc∑
i=1

N ca
i

(
hini − hsti

)
+

m∑
j=1

∆Hjrj − Pst −Hrad (4.38)

Hrad = Aδσ
(
T 4 − T 4

surr

)
(4.39)

Where ∆Hj is the enthalpy of reaction j, hini and hini are the enthalpy of the fluid entering and

leaving the stack, na nc are the number of species in the anode and the cathode respectively. Pst
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and Hrad are the power of the stack and the heat loss from radiation respectively. A is the surface

are of the stack, δ and σ are constants and Tsurr is the temperature of the surrounding.

4.6.4 Kinetics

The Langmuir Hinshelwood kinetics is used to describe the reforming reaction according to

[122]. The rate expressions for the reaction given by equations 4.40 to 4.48.The kinetic model

for the electrochemical reaction is based on a Butler Volmer reaction mechanism where the rate

expressions for reactions is given by 4.47 and 4.49.

ran1 =

k1
p2.5H2

[
pCH4pH2O −

p3H2
pCO

K1

]
DEN2

(4.40)

ran2 =

k2
pH2

[
pCOpH2O −

pH2pCO2

K2

]
DEN2

(4.41)

ran3 =

k3
C3.5

[
pCH4p

2
H2O
− p4H2

pCO

K3

]
DEN2

(4.42)

DEN = 1 +Kads
COpCO +Kads

H2
pH2 +Kads

CH4
pCH4 +Kads

H2O

pH2O

pH2

(4.43)

kj = Aj exp

[
Ej
R

(
1

T
− 1

Tref

)]
(4.44)

Kads
i = Ai exp

[
∆Hads

i

R

(
1

T
− 1

Tref

)]
(4.45)

Kequ
j = Aj exp

[
∆Hrxn

j

R

(
1

T
− 1

Tref

)]
(4.46)

r4 =
I

zF
(4.47)

ri =
4∑
j=1

vijrj (4.48)

I = Io

[
exp

(
αazFη

RT

)
− exp

(
αczFη

RT

)]
(4.49)
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where kj is the rate constant of reaction j; Kj is the equilibrium constant of reaction j andKi is the

adsorption coefficient of component i. I is electrode current density, Io exchange current density,

z number of electrons involved in the electrode reaction, F Faraday constant, αc cathodic charge

transfer coefficient, αa anodic charge transfer coefficient, η activation overpotential.

4.6.5 Electrochemistry

The theoretical or reversible voltage can be derived from the standard Gibbs free energy at

any defined temperature. However, the actual cell voltage is less then the theoretical voltage due

to overpotentials. The overpotentials are caused by the activation barriers, Vact and resistances

to electron, ion and bulk mass transport through and to the electrolyte, charge leaks. Io is the

exchange current, and it varies with temperature as shown in equation 4.53 [123]. The limiting

current density IL is the current density at which the flow to the triple phase boundary is not

sufficient to meet the power demand. Vconc related to the current as follows according to 4.55.

V = n (Eoc − Vact − Vohm − Vconc) (4.50)

Eoc = Eo +
RT

zF
ln
pH2p

0.5
O2

pH2O

(4.51)

Vact =
RT

F
sinh−1 I

2Io
(4.52)

Io = A exp(−E/RT ) (4.53)

Vohm = γ exp

[
β

(
1

To
− 1

T

)]
I (4.54)

Vconc =
RT

zF
ln

(
1− I

IL

)
(4.55)

Where V is the actual voltage of the stack, Voc is the open circuit voltage, Vact is the activation

overpotential, Vohm is the ohmic overpotential, Vconc is the concentration overpotential. Where Eo

is a temperature dependent theoretical/reversible voltage derived from Gibb’s free energy. T0 is

the fuel cell reference temperature; T0 = 973 K, γ = 0.2Îl’, and β = âĹŠ2870 K are the constant

coefficients of the fuel cell.
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4.6.6 Simulation

The Model was developed and simulated in gPROMS. The dynamic model is simulated to in-

vestigate the interactions between the manipulated and controlled variables, and for the character-

ization of the effect of disturbances. The results from the simulations shows the transient behavior

of the materials and how the temperature changes. The inlet stream is a mixture of methane and

steam at 950 K and a composition ratio of 3:2. The reforming reactions, shift reaction and the elec-

trochemical reactions occur simultaneously. The model is initialized with some hydrogen in the

anode. A polarization curve was derived from the model at constant temperature (950 K) (figure).

Figure 4.12 shows the cells polarization curve. It also shows how the power changes with current

density. The limit current density used for the hypothetical model is 2 A/cm2.

Figure 4.12: Polarization curve.

Fuel cells in general are subjected to varying power demand. The DIR SOFC should be robust

82



to enough meet varying power demand. All the components in the anode and the cathode respond

to change in current demand. Consequently, an increase in the power demand results in a depletion

of the hydrogen and an accumulation of steam which in turn favors the reforming reaction. More-

over, if the reforming reaction is more favorable than the electrochemical reaction (probably due

the current demand), the temperature of the system might start decreasing and will tend to slow

down the reforming reaction.

Figure 4.13: Transient change in mole fraction with change in power demand.

One of the major challenges of Fuel cells is the voltage fluctuation that accompany a change

in current or power demand. This phenomenon is associated with the (multiple) time constants

of the various interactions in the operation of the system. A controller can be used to regulate

voltage to a set point, for slight change in the power demand. This combination of exothermic and

endothermic reactions at varying reaction rate (or time constant) has a significant impact on the
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thermal management of the system. The control developed here will attempt to maintain a voltage

set point while constraining the temperature of the system within a bound.

4.6.7 Linear Model Approximation

A series of simulations of the dynamic model for different input is used to construct a mean-

ingful linear state-space model of the process using statistical methods. The inputs are the inlet

flowrate for the anode and the cathode while we measure voltage current and temperature. The

current is a disturbance One of the most widely applied tools within this area is the System Iden-

tification Toolbox from MATLAB R©. The sampling time for the input-output data is 200ms. A

discrete linear state space model is obtained from the input-output data using the System iden-

tification toolbox. The mathematical expression of the SS model is of the form The SS model

generated have 4 states, 2 outputs, 2 inputs and 1 disturbance. The state space model is given in

equation 4.56

xk+1 =



1 2.75e− 5 2.9e− 5 2.14e− 6

−0.064 0.922 0.065 −0.0233

0.0696 0.0526 0.887 −0.223

9.23e− 3 −0.239 −0.0397 −0.0472


xk +



−5e− 6 1.05e− 4

−1.532 0.85

−1.523 −5.093

−12.12 −18.07


uk

yk =

 −1875 −0.01 −0.0336 5.97e− 4

−1.756 0.049 −0.0022 1.41e− 4

xk +

 0.2357 0.1143

0.0628 0.00248

uk
Ts = 0.2s

(4.56)

The approximate model was compared to the original nonlinear model in figure 4.14. Only one

input (anode inlet flowrate) and output is shown here, however the inlet flow of the cathode was

varied too and temperature fitting curve was obtained. The temperature has an R2 value of 99%

while that of the voltage (figure 4.14) is 79%.
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Figure 4.14: Comparison of linear SS model and the original model.

There are eight states in the original dynamic model however, for simplifications, the linear

discrete state-space model has only four states. Not only are the states unequal but the state of the

linear state space model looses it physical meaning during the system identification process. To

maintain an even better representation of the original complex dynamic model a state observer is

employed to estimate the state of the system using the linear model. The Kalman filter is a type of

observer that uses a least square estimation approach to characterize the current state of a dynamic

system based on the influence of past measurement. Its prime feature is the iterative propagation

of the noise measurement risk. For further reading on the Kalman Filter used in this work see

reference article [124].
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Table 4.1: Weight Tuning for the mpMPC of the DIR SOFC Unit

mpMPC design parameters Value
N 5
M 2
QRk,∀k ∈ {1, . . . , N} 100

R1k,∀k ∈ {1, . . . ,M}
[

10−4 0
0 10−4

]
xmin −500[1 1 1 1]
xmax 500[1 1 1 1]
umin [0.002 0.004]
umax [0.1 0.1]
ymin [900 0.1]
ymax [2000 1.2]
∆umin −[0.05 0.05]
∆umax [0.05 0.05]

4.6.8 Formulation of Multiparametric Model Predictive Control (mpMPC)

4.6.8.1 mpMPC Controller Design

This quadratic problem in equation B.2 can be reformulated into a multiparametric quadratic

programming problem (mpQP) B.3 The uncertain parameters are denoted by θ and they include

are the initial states x0, the set points yRk , previous control actions u−1 for evaluating ∆uk, and the

disturbances (dk). The mpQP is given as follows:

The multi-parametric model predictive controller problem is formulated and solved using POP

toolbox in MATLAB R©.The objective of the mpMPC is to meet the electrical power demand at

a constant voltage amid the current change and to maintain the temperature within 1500 K. The

optimal control action is generated as a map of solutions and as an affine function of the afore-

mentioned parameters. Thus, at every time step a set of parameters, realized from measurements

and estimations is used as inputs to evaluate the affine function generated from solving the mpQP.

The solution of the affine function evaluated is the MPC solution at the that time step. The bounds

on the output variable u and y have been set according to the complex dynamic model simulation

results. However the bounds on x are exaggerated since the states of the linear state space model do
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not necessarily represent the state of the original system. They bounds on x are also not too large

to avoid the explosion of the critical regions. The tuning parameters of the controller is presented

in Table 4.1

4.6.9 Closed-Loop Validation and Results

The controller is validated by closing the loop on the controller design. The controller is used

on the original complex dynamic model to check if the controller can actually control the system

from which it was designed. The validation process involves, calculating the control action from

the realized parameters and the mpQP generated affine function. The control action calculated is

used as input to the original dynamic model. The output Voltage is measured to and compared

with the set-point value as shown in figure 4.15 . This is enabled through gO:MATLAB R©, an

application that links the gPROMS R© with MATLAB R©. Figure 4.15 also shows how the flow of

NG in the anode and flow of air in the anode changes with changes in current. The power demand

is varied by changing the current.
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Figure 4.15: Closed-loop validation results of the mpMPC controller showing the voltage set point
tracking (top) the anode and cathode flowrate (mid) and the current profile (bottom)

4.7 Conclusion

This work demonstrates the PAROC framework as a smart manufacturing tool that uses high

fidelity models to develop optimal control strategy for chemical processes. We developed a com-

plex dynamic model of a hypothetical DIR SOFC to describe the various interactions between the

reforming reaction, transport phenomenon and the electrochemical reaction. Using the PAROC

framework we designed an multi-parametric model Predictive controller for regulating the voltage

of the power generated by the DIR SOFC. The controller was validated with the complex dynamic

model. In future work, we intend to explore the how the DIR SOFC compares with other inten-

sified distributed electricity generation unit. An economic analysis of the DIR SOFC and other
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auxiliary unit that make up the balance of plant will be essential for benchmarking it with other

technologies. Wes also demonstrated the PAROC framework as a smart manufacturing tool for

developing optimal control strategy for a novel integrated metal hydride system. For the hydrogen

production, we presented a dynamic process model of a PEMWE that describes complex inter-

actions like transport phenomenon, electrochemical reaction, thermodynamics. Using the PAROC

framework we designed an multiparametric model Predictive controller for regulating the cell volt-

age and temperature of the PEMWE system. The controller was tested on the complex dynamic

model in a closed loop validation scheme. In future work, we intend to perform experiments on

the electrolyzer purchased from Giner Inc. to validate the process model presented in this work. In

addition, we will also deploy the control design developed in the this work to the operation of the

electrolyzer.
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5. PEMWE AND SMHRS LABORATORY SCALE PROTOTYPE DEVELOPMENT AND

EXPERIMENTAL VALIDATION1

5.1 Synopsis

This Chapter describes the development and operation of two laboratory scale prototypes:

smart Proton Exchange Membrane Water Electrolysis (PEMWE) system amd Smart Metal Hydride

Refueling System (SMHRS). The high fidelity mathematical models of both systems developed in

Chapter 3 is also validated based on which the application of the PARameteric Optimization and

Control (PAROC) framework results in the design of an explicit model predictive controller for its

efficient operation in in the next Chapter.

1Reprinted with the permission from “John Wiley and Sons" from G. S. Ogumerem and E. N. Pistikopoulos,
âĂIJParametric optimization and control towards the design of a smart metal hydride refueling system,âĂİ AIChE
Journal, 2019.
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5.2 Introduction

In the previous chapter we presented the development high fidelity model for a Direct Internal

Reforming Solid Oxide Fuel Cell (DIR SOFC), Metal Hydride Hydrogen Storage (MHSS) and

Proton Exchange Membrane Water Electrolysis (PEMWE). In this chapter we will describe the

experimental validation of some of the models developed in the previous chapter. The model

validation step includes (i) the development of a lab-scale prototype (ii) running experiments and

(iii) parameter estimation of the model using the data generated from the experiments. The model

validation is performed for the PEMWE and the MHSS model only. The rest of the chapter is

structured as follows: the next section describes the experimental validation of the MHSS model

starting with an introduction into the state of art of hydrogen storage in the commercial landscape.

section 5.5 describes the experimental validation of the PEMWE model starting with a brief history

of electrolysis.

5.3 Onboard Hydrogen Storage in Fuel Cell Electric Vehicles

A Fuel Cell Electric Vehicle (FCEV) utilizes hydrogen stored onboard to generate electricity to

power the electric motor that turns its wheels. Though FCEV does not produce greenhouse during

its operation, its driving range is excepted to be up to par with the Internal Combustion Engine

Vehicles (ICEVs) which has a median driving range of about 400 miles for light-duty vehicles

[65]. while FCEV are known for high fuel economy (60 miles/gasoline gallon equivalent which is

1kg of H2) they would require about 5 - 7 kgs of hydrogen to travel more than 300 miles without the

need for refueling [125, 126]. Hydrogen has a low volumetric energy density and storing 5 - 7 kg

of hydrogen onboard is saddled with challenges. There are three main onboard hydrogen storage

options; the compressed hydrogen gas storage, the liquid hydrogen storage, and the solid hydrogen

storage. The compressed hydrogen storage is considered a feasible option and is currently being

used, given that there are already existing matured technologies for handling other gaseous fuels

that can be adapted for hydrogen. However, to store 5 - 7 kg of hydrogen onboard, requires a

hydrogen density of about 42 kg/m3 which necessitate a operating pressure of about 10,000 psi at
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15◦C.

The Department of Energy (DOE) has set targets for onboard hydrogen storage , which in-

cludes limits on the operating temperature and pressure of the hydrogen storage system, refuel

rate (of about 3 - 5 mins) to match the gasoline refueling rate etc[65]. Due to the thermodynamic

properties of hydrogen under compression, fast refuel is accompanied with increased operating

temperature which becomes an issues because of the materials used for the canisters. The mate-

rials used to build the compressed hydrogen canisters for FCEV are selected because of its high

strength to weight ratio which enables it to withstand pressure as high as 10,000 psi. However these

materials start to degrade when continuously exposed to temperatures above 85◦C or below−40◦C

[65]. To ameliorate this issues, the Society of Automotive Engineers (SAE) developed a fueling

protocol J2601 for light-duty FCEVs to enable fast refueling time (3 - 5 mins) for different ranges

of hydrogen amount with increasing the temperature of the storage canister above a given thresh-

old [127]. The J2601 fueling protocol is based on a lookup table (LT) strategy that comprises 44

individual tables that specify pressure ramp rates for given combinations of FCEV onboard storage

capacities (2 - 4 kg, 4 - 7 kg and 7 - 10 kg), station/hose delivery pressure (10,000 psi and 5,000

psi), station types/fuel delivery temperature (−40◦C,−30◦C and−20◦C), type of vehicle dispenser

interface (communication and non-communication) and temperature at the dispenser outlet [126].

The LT strategy is currently used in hydrogen fueling stations. Another refueling strategy that can

meet the DOE target and out perform the LT strategy in some cases is the MC-Formula.

The MC-Formula proposed by Kiyoshi el al. [128] at Honda, is a refueling method that uses

the same inputs as the LT but instead of the lookup table, uses continuous measurements and

numerical equations to calculate the pressure ramp rate in an adaptive control fashion. The MC-

Formula method has a substantial fueling time advantages in certain conditions when compared

to the lookup table method [126]. Both methods were developed for compressed gas hydrogen

storage system.

The solid hydrogen storage option is a plausible option for on-board hydrogen storage espe-

cially for more compact or sporty FCEV design. it comprises a canister filled with metal alloys
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that reacts with hydrogen to form metal hydride. It has numerous advantages over the compressed

hydrogen option but its has a low gravimetric which a material constrain [65, 127]. Research

in this area is ongoing and a study done by Sakintuna el al. [64] reviewed the development of

metal hydride material for hydrogen storage and a more recent work by Lai et al. [129] reviewed

the progress of hydrogen storage material in general. This paper focuses on developing a control

strategy similar to the MC-Formula but are optimal. It involves using the PAROC framework to

develop an explicit MPC which are embedded into a micro-controller and deployed for the opti-

mal operation of hydrogen storage in a metal hydride storage system (MHSS) to demonstrate its

potential to effectively control the metal hydride operation.

5.4 Hydrogen Refueling Process

When activated, metal hydrides are powdery and form a packed bed in a canister. There are

two main processes involved in the operation of onboard metal hydride storage system: (1) the

filling or hydriding of the metal hydride with hydrogen which is an exothermic process and (2) the

discharge or dehyriding of hydrogen from the metal hydride, which is an endothermic process. In

both processes, the temperature, the pressure and the hydrogen content are the main variables that

determine the state of the metal hydride. The interaction of these variables is characterized by a

Pressure Composition Temperature (PCT) isotherm curve. The metal hydride used in this study

is the LaNi5. Figure 5.1 shows the isotherm curve for the hydriding and dehydriding process of

the particular LaNi5 used in the project. The isotherm curve was generated by the metal hydride

supplier (Hydrogen Component Inc) at 25◦C.
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Figure 5.1: P-C-T isotherm for LaNi5 provided by Hydrogen Component Inc.

On a continuum scale, the hydriding and dehydriding process occurs in three phases : the al-

pha phase, the alpha-beta phase and the beta phase as shown in Figure 5.1. In the alpha phase,

the hydrogen adsorbed on the surface, diffuses in the lattice. The hydrogen content of the MH

increases mildly with substantial increase in pressure till the plateau pressure region. The plateau

is derived from the coexistence of the solid solution (alpha phase) and the hydride (beta phase)

and the length of the plateau region determines the amount of hydrogen that can be stored. The

beta phase is characterized by the covalent bond formation of the metal complex and hydrogen

ion. The Isotherm curve in Figure 5.1 does not depict the pressure-temperature interaction of the

LaNi5 which the most important interaction needed in the development of the thermal management

strategy. In the work done by Gkanas [130], Figure 5.2 shows the phase diagram of metal hydrides

which portrays the thermodynamic interaction of the pressure and temperature. In general, in-
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creasing the operating pressure results in an increase in temperature according to the Van’t Hoff’s

equation thus, The hyriding process does not strictly follow the hydriding curve in figure 2.4. To

illustrate the thermodynamic interaction, we conducted various experiments which are discussed

in Section 5.4.1.1.

In an isothermal condition where the heat generated is efficiently removed, the rate of hydrogen

uptake depends largely on the operating pressure. The heat transfer mechanism in a powdery

substance is poor thus, creating isothermal condition for onboard MH storage system is infeasible.

Moreover, the effective thermal conductivity, which is a combination of the conductivity across

the regimes present in the MH bed, is relatively low. The thermal conductivity is a an inherent

property of the MH system and a pivotal parameter in the development of a thermal management

strategy. The effective heat conductivity of MHs is within 0.1 W/mK which is low compared to that

of aluminum which is 204 W/mK. Since the effective conductivity of the MHs is low, the design of

the MH Hydrogen storage system should be such that optimizes the heat removal. Effective heat

removal in a MHSS is a design problem and a number of studies have suggested design strategies

that address this issue [131, 132, 133]. A plausible design approach is an integrated active cooling

and heating strategy to improve Hydrogen uptake and discharge. This involves having conducting

plates between thin layers of MH bed and running coolant. The thinner the MH bed the better the

heat removal but given the required amount of MH for about 5 kg of hydrogen, the size and weight

of the MH storage system becomes a major consideration. To address this, a distributed model can

be optimized for heat removal given the size and weight constraints [134, 112].

The control challenge in the refilling operation stems from poor thermal conductivity of the

activated metal hydrides thus the temperature control add ons such as the cooling jacket are not

sufficient to maintain operating temperature of the system within a threshold. Therefore the inlet

pressure is also manipulated to control the temperature and they a direct proportional relation.

However faster filling operation requires increased pressure which results in high temperature

which can cause hot spots and temperature runaways.
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5.4.1 Smart Hydrogen Refueling for MH storage in FCEV

The Smart MH Refueling System (SMHRS) is a setup that uses explicit MPC control policies

to maintain optimal refueling process. It integrates an explicit MPC with a MH storage system.

The smart MH refuel technology is similar to the MC-Formula described earlier in that the control

algorithm recalculates the control actions (pressure ramp rat)e using continuous measurement of

the filling parameters however, unlike the MC-Formula, SMHRS employs optimization techniques

thus the control actions are optimal. Using strategically installed sensors, the SMHRS measures

the parameters at every sampling time and calculates the control action from the explicit control

policy. The control action will include the filling pressure and the coolant flow rate. In scenarios

when hydrogen precooling is not available the SMHRS will also operate at the cost of a longer

filling time. A key advantage of the SMHRS is that the control policies are embedded on a chip

using the MPC-on-a-chip concept described in section 4.4.6 and can be built into the FCEV refuel

system (Figure 5.2). Thus the FCEV will have a built-in control system derived from model based

explicit MPC strategy that is unique to the MH material and storage unit design. The current hydro-

gen gas pumping device in the gas stations are heavily automated to meet the DOE requirements

and requires frequent maintenance. With SMHRS a significant part of the automation burden is

shifted away from hydrogen gas station pumping device (shown in Figure 5.1) to the FCEV and

this enables more sophistication and specialization of the refueling strategy within various FCEV

manufacturing companies. The MPC-on-a-chip can also be adopted for currently used compressed

gas storage system for optimal solution.
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Figure 5.2: Schematic of a refueling operation in SMHRS

The SMHRS is demonstrated using a laboratory scale prototype setup described in the next

section. The prototype is intended to replicate the hydrogen filling process in a gas station.

5.4.1.1 SMHRS Experimental Setup

The experimental setup for SMHRS comprises three main units. The primary unit is a jacketed

MH reactor or canister referred to as MH pod which represents the FCEV fitted with a MHSS 5.3

. The MH pod is a sealed 563.74 cm3 volume canister made of stainless steel that contains 488

g of LaNi5 MH capable of storing about 6 grams of hydrogen (Figure 5.3). At the center of the

MH pod is a stainless steel filter that prevents any particle from entering the MH bed. As shown

in Figure 5.3 the MH pod has three thermocouple inside it; one half-way between the core and the

wall and another at the wall on the opposite side. The MH canister is made of stainless steel and

was built in collaboration with Hydrogen Component Inc. A water jacket made of acrylic is built

around the MH canister (Figure 5.3)to enable temperature control of the MH pod operations. Two

thermocouple are connected to the inlet and outlet of the temperature control jacket on the reactor.

Water is used as the cooling and heating medium and it is supplied from a temperature controlled

water reservoir.
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Figure 5.3: Metal hydride pod schematic diagram (top) and image (bottom).

The hydrogen supply unit is another main unit and it comprises a 1700 cm3 canister (shown

in Figure 5.5)fitted with a thermocouple, a pressure transducer and a two stage pressure regulator.

The canister is capable of withstanding pressures as high as 2500 psi. It is filled with hydrogen up

to 1000 psi from a compressed hydrogen gas cylinder. The pressure regulator is connected to an

electronic pressure controller which is connected to a manifold then to the MH pod. The manifold

is is fitted with a relief valve, a pressure transducer and a thermocouple.
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Figure 5.4: Schematic diagram of the experimental setup of SMHRS.

Figure 5.5: Image of the experimental setup of SMHRS.

99



Another main unit is the power electronics. This is primarily made up of the USB TC from

Measurement and Computing (MC) for acquiring the thermocouple data and myRIO from National

Instrument for acquiring pressure data and implementing the control policy on the system through

the pressure controller and the water pump. The data acquisition (DAQ) systems are connected to

a computer for data analysis and visualization.

5.4.1.2 SMHRS Prototype Operation

The experiments are cycles of filling and discharge operations of the MH pod with hydrogen

however, the focus of this study is in the filling operation. During the discharge operation, water

at 340 K is pumped through the jacket of the MH pod while the pod’s outlet valve is open. The

discharge operation runs for about 20 mins to ensure most of the hydrogen gas has been discharged.

The filling operation is initialized by closing the outlet valve and pumping water at 273 K or 295 K

through the jacket to bring the core temperature of the MH pod to the jacket temperature. The goal

of the discharge and initialization operation is to bring the MH pod to an initial state where the core

temperature is 273 K or 295 K and the MH pod pressure is 14.7 psi. In the initial state, the MH

pod has some hydrogen gas in it. In the filling operation, the hydrogen reservoir canister is filled

with hydrogen to 1000 psi at 295 K (ambient temperature) and water at a specific temperature is

pumped through the jacket at a constant flow rate. The pressure of the inlet is set and the valve is

opened. The temperature data are acquired using an MC DAQ system. The hydrogen content in

the metal hydride is estimated from the hydrogen that leaves the reservoir which is calculated from

the temperature and pressure profile using the gas law. Results of the experiments are presented in

Figure 5.6
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Figure 5.6: (a) MH profiles for five refueling pressure at coolant temperature of 273 K (b) MH
profiles for five refueling pressure at coolant temperature of 295 K (c) MH core temperature profile
for five refueling pressures at coolant temperature of 273 K and (d) MH core temperature profile
for five refueling pressures at coolant temperature of 295 K

Figure 5.6a and 5.6b shows the MH formation profile for five different refill pressures (50 to

250 psi with 50 psi increments) at 273 K and 298 K coolant temperatures respectively. Figure 5.6c

and 5.6d shows the corresponding temperature profile for 273 K and 298 K coolant temperatures

respectively. In Figure 5.6a and 5.6b, the refueling rate reduces with increasing pressure and also

refueling rate increases with decreasing coolant temperature. While in Figure 5.6c and 5.6d, the
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temperature increases with increasing pressure and as expected, the heat removal is faster with

lower coolant temperature. Thus, there is a faster hydrogen uptake at higher pressure and lower

coolant temperature. Notice that at a coolant temperature of 273 K and hydrogen inlet pressure of

250 psi, the MH pod reaches 95% charge (5.7 g of hydrogen) in less than 4 mins and the operating

temperature is less than the 85◦C set by DOE. With the experiment results, the next step is to

develop and validate the high fidelity model.

5.4.2 Parameter Estimation

The relevant measured variable are the operating temperatures of the core and the wall of the

MH pod, the temperatures of water at inlet and outlet of the jacket, temperature and pressure of

the hydrogen reservoir canister, pressure of the MH pod. A distributed model would have captured

different temperature profile at different node but validating a distributed model will require as

many thermocouple as the nodes considered which will be more challenging and might result in a

marginal improvement in the predictability of the original model. A simplifying assumption is to

assume a single temperature profile for the MH pod. The lumped model used in this work make

considers the simplifying assumption. The data obtained from the experiment are processed using

a filter to remove the noise and outliers. The processed data is then imported in the gPROMS R©

environment for the parameter estimation. The parameter estimation is done using gPROMS R©

modelbuilder and the criteria used is the maximum likelihood method [135]. Figure 5.7 shows the

results of the parameter estimation.
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Figure 5.7: Parameter estimation result showing the experimental and predicted profile for the MH
evolution (top), MH core temperature (middle), coolant outlet temperature (bottom)

5.5 Water Electrolysis

The electrolysis phenomenon was discovered in by Troostwijk and Diemann in 1789 and in

1800, William Nicholson and Anthony Carlisle applied the electrolysis phenomenon to water

splitting. [136, 137] In water electrolysis, a direct electric current (DC) source is connected to

two electrodes; a cathode and an anode (typically made from inert metals e.g. platinum, stainless

steel or iridium) which are immersed or in contact with an electrolyte. As electrons flow, hydrogen

gas is produced at the cathode where electrons enter the electrolyte and oxygen gas is produced at

the anode where electrons leave the electrolyte to complete the circuit.
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5.5.1 Alkaline Water Electrolysis

Since the electrolysis phenomenon was discovered, there have been tremendous improvements

in the design and efficiency of the water electrolysis process. The alkaline water electrolysis (AWE)

is the most developed and commercialized water electrolysis technology. The characteristic prop-

erty of AWE is that it uses a liquid alkaline electrolyte made of a caustic potash solution at concen-

trations of 20 - 30% KOH. Also, a diaphragm permeable to the hydroxide ion and water molecule

is used to keep the product gases separate for efficiency and safety. Though the AWE has been

used extensively in the production of hydrogen, it has a low maximum current density which dras-

tically affects the operational cost. Another type of water electrolysis technology is the solid oxide

electrolysis.

5.5.2 Solid Oxide Water Electrolysis

The Solid Oxide Water Electrolysis (SOWE) is another type of water electrolysis technology

that was first reported in 1985 by W. Donitz and E. Erdle as part of the HotElly project at Dornier

System GmbH [138]. The SOWE is characterized by a ceramic electrolyte, high operating temper-

ature and a low operating voltage. The SOWE technology is still under development but research

has grown exponentially [136]. It has the potential to be used in large scale hydrogen production

in the future if issues with its ceramic electrolyte durability under high operating temperatures are

solved.

5.5.3 PEM Water Electrolysis

In the 1960s General Electric developed the first water electrolyzer based on solid polymer

electrolyte following a concept idealized by Grubb [139, 140]. This technology became the Pro-

ton Exchange Membrane Water Electrolysis (PEMWE). The PEMWE has gained attention due

to its advantages over other water electrolysis technologies [136]. It is characterized by a solid

sulfonated polymer membrane (eg Nafion, fumapem) which has a high proton conductivity, low

product gas crossover, compact system design and high-pressure operation. It can be operated

at relatively high current density which reduces its operating cost. Also, unlike the AWE, the
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PEMWE can operate below 30% of its nominal operating capacity.

Figure 5.8: Exploded view of a PEMWE cell.

The solid sulfonated polymer membrane are thin and they make a compact system design

with structural properties that can maintain high operational pressure. PEM Water Electrolyzers

(PEMWE) are made up of electrolysis cell stacked together. Each cell is made up of separator

plates with grooves or water channels, and a membrane electrode assembly (MEA) as shown in

5.8. The MEA is made up of a current collector, diffusion layers and a catalyst coated membrane.
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Figure 5.9: Schematic showing the placement of the current contactor and the membrane

Though the water electrolysis reaction is endothermic heat is generated in the process. The heat

generated is attributed to the joule heating effect. Joule heating or Ohmic heating is the process

where by the passage of electric current through a conductor produces heat. The heat generated is

proportional to the current supplied and the resistance of the material. In the PEMWE, the current

contactor is a conductor through which current is supplied to the membrane electrode assembly

(MEA). Figure 5.9 shows the placement of the current contactor (usually made of Ti) with the

polymer membrane. During the operation of the PEMWE, heat is generated in the current contactor

due to joule heating and the area of the membrane in contact with the current contactor will be at the

same temperature with the current contactor. Though cell interior of the PEMWE is flooded with

water the area of the membrane pressed on the current contactor is still exposed to localized higher

temperatures making it more susceptible to degradation. Thus, it is important to estimate the stack

temperature and the heat generation rate. The temperature of the outlet water is used to estimate

the temperature in the stack however the change in water temperature across the stack is a more

appropriate parameter to estimate the heat generation in the PEMWE. As expected, increasing

the current supplied will increase the heat generated in the PEMWE. Results from the experiment

presented in Section 5.6 also demonstrates this phenomenon. Though the PEMWE is known for it

dynamic nature, a steep increase in hydrogen production (or current supply) will rapidly increase
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the heat generation and thus the operating temperature which will have a devastating effect of the

stability and durability of the membrane. In an operating manual for the G5 PEMWE series, Giner

Inc recommends that the differential water temperature across the stack be maintained below 5◦C

[141]. Controlling the differential water temperature across the electrolyzer will drastically reduce

the devastating effect of prolonged exposure of the membrane to higher temperature. Thus, it is

important to develop a thermal management strategy for the operation of the PENWE.

5.6 PEMWE Lab-scale Experimental Setup

The operation of an electrolyzer required other peripheral devices or units that make the balance

of plant. These units are used to (i) purifies or deionizes the water used to prevent the deativation

of active catalyst cites, (ii) pump the water through the system, (iii) acquires and analyzes data

etc. Figure 5.10 shows the essential units that make up PEMWE plant or prototype. The lab-scale

prototype used in the experiment was design and built from scratch.

Figure 5.10: Schematic of PEMWE prototype.
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5.6.1 Experimental Setup

The experimental setup consists of four main units: (1) the water supply, (2) the electrolyzer,

(3) the power supply and (4) the data acquisition and control unit. The water supply unit includes a

temperature regulated water bath. The temperature in the water bath is regulated by a device from

Anova that has a heating coil, a stirrer and a temperature control system. The device is inserted

into the water bath and used to increase the operating temperature of the water when needed. The

heating coil heats up the water while the stirrer is used to distribute the water to maintain a uniform

temperature in the bath. The temperature control system in the Anova device allows a temperature

setpoint to be inputed by the user. An immersible pump is placed inside the water bath and used

to channel the water to the filter. The filter is made up of a cartridge housing and a 20" cartridge

deionizer able to maintain the filtrate at >14 million ohms. The conductivity of water filtrate is

measured using a conductivity meter to maintain the integrity of the electrolyzer.

Figure 5.11: Image of the lab-scale PEMWE prototype.

The water filtrate is channeled to the electrolyzer where the reaction takes place to produce

hydrogen and oxygen and unreacted water. Oxygen and the unreacted water is channeled back to

the water reservoir where oxygen is vented and the water is recycled. Hydrogen leaves the cathode
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Table 5.1: G5 PEM Electrolyzer Specifications

Characteristics Specification
Number of cells 4 cells
Active area 50 cm2

Operating pressure 0 - 20.7 bar(0 - 300 psig)
Operating temperature 278 - 313 K
Current (I) 15 - 60 Amp
Water quality > 10MΩ-cm, TOC < 30 ppb
Water flowrate 100 - 500 mL/min/cell
Max O2 & and H2 Production (At max I) 1,192 mg/min & 149.2 mg/min

and is vented. During the operation of the PEMWE water accumulates in the cathode over time

and flows out with the hydrogen. Temperature sensors are installed at the inlet and outlet of the

electrolyzer. The electrolyzer used for the prototype in figure 5.11 is a G series Giner electrolyzer

and its specifications are given in table 5.1.

Power is supplied to the electrolyzer using a current control device from CircuitSpecialists.

The current is set on the power supply device which directly translates to the hydrogen production

rate. As discussed in section 4.6.5 the actual voltage is made up of the reversible voltage, ohmic

overpotential and the activation overpotential. The power supply device shows the voltage reading

but to only one decimal place approximation, which is not suitable for the our for our application.

The current and voltage supplied are measure using sensors. The current is measured using a

ACS712 current sensor with a total output error of 1.5% at 250C while the voltage is measured

using an arduino voltage sensor with an accuracy of + 40mV. The data from the thermocouples are

retrieved using a data acquisition device (USB TC) from Measurement and Computing (MC) while

the voltage and current sensors are acquired using the myRIO-1900 from National Instrument (NI).

The NI myRIO-1900 is a portable reconfigurable input/output device used to acquire sensor data

and also used to implement the real-time control actions.

The various sub unit described above are connected to form a the PEMWE prototype. The pro-

totype is operated within the safe bounds of the G5 electrolyzer according to the operating manual

[141] and the ion filter unit. A key operating requirement for the electrolyzer is to maintain the
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temperature difference (∆T ) across the electrolyzer below a certain threshold. The ∆T across the

electrolyzer is an indication of the rate of heat generation within the electrolyzer. Since the heat is

generated as a result of current flow through the metal plates in the electrolyzer unit (joule heating),

the part of the membrane in contact with the metal plate is exposed to scorching or deformation if

the temperature is not controlled. The deformation may result in product gas crossover to form an

explosive mix which jeopardizes safety and durability of the system. Also during the operation of

the PEMWE prototype described, there is an expected increase in the operating temperature since

the water used is recycled. Recycling the water is a more efficient way to manage the ion filtration

process since the ion loading in the water per pass through the electrolyzer is negligible compared

to those in the tap water. Most of the heat generated in the electrolyzer is lost to the water which

recirculates through uninsulated channels. The heat in the water is lost to the environment through

radiation and the rate of heat loss is determined by the temperature gradient (of the outlet water and

the ambient temperature) and the magnitude is determined by the residence time (before it reenters

the electrolyzer).

During the operation of the PEMWE, the current is set using the knob in the power supply

unit. The current or electron flow translates to the hydrogen or oxygen production rate. However

increasing the current increases the rate of heat generation from the unit. The generated from

the unit is removed by the water flowing through the unit. Thus water is not just a reactant but

also a temperature control agent. The flowrate of water is used to regulate the temperature of the

unit. Figure 5.12 show the sensitivity of the temperature and cell voltage of the electrolyzer unit

to changes in current and water flowrate. Also the effect of the temperature change to the cell

voltage. The data from the experiments are used to validate the high fidelity model developed in

section 4.6.1
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Figure 5.12: Experimental data showing the effect of current change (bottom left) and water
flowrate changes (bottom right) on stack voltage (top left) and temperature (top right).

Equations 5.1 and 5.2 describe the empirical relation of the voltage applied to the pump and the

water flow rate downstream of the filter. The control mechanism sends Pulse Width Modulation

(PWM) signals to the pump driver and it is translated to the voltage.

Vpump = 8.8567ZPWM + 1.3829 (5.1)

ṁin,an
H2O

= 2.4882Vpump − 6.2772 (5.2)

Where Vpump and ZPWM are the voltage and pulse width modulation values sent to the pump.

ṁin,an
H2O

is the flowrate of water
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5.6.1.1 Parameter Estimation

A parameter estimation step is needed to tailor the HF model to the lab scale PEMWE pro-

totype. Data from the experiment is used to validate the model in gPROMS R©. During the data

generation, inputs such as flowrate and current are varied and the corresponding output dynamics

are captured. The data generated is loaded into gPROMS R© experiment module for the parameter

estimation. gPROMS R© uses the maximum likelihood estimation (MLE) technique, and its main

objective is to find estimates of the model parameters such that the probability of the sample is

as great as possible. Unlike the least square estimation (LSE) method an initial set of parameters

must be chosen to begin the model fitting.

Two parameter estimation procedure were performed. The first one which is on the polariza-

tion curve (shown in figure 5.13) is aimed at capturing the electrochemical interactions involved in

the splitting water in the Giner electrolyzer. The polarization curve parameter estimation is imple-

mented in a steady state fashion. The optimal parameters generated from estimating the polariza-

tion curve is used in the original model. With the parameters for the electrochemistry part fixed,

a second parameter estimation is performed to determine the optimal parameters for other parts of

the model that describes various phenomena such the energy balance, the hydrogen ion transport

through the membrane etc. The second parameter estimation is implemented in a dynamic fashion

and figure 5.14 shows the result.
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Figure 5.13: Parameter estimation results of the polarization curve.
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Figure 5.14: Parameter estimation results for the HF model (a) voltage (b) outlet temperature (c)
∆T.

With the digital twin developed, the next step in obtaining the receding horizon optimal polices

for PEWME using the PAROC framework is the reduction of the HF model to an approximate

model.

5.7 Conclusion

In this chapter we described the prototypes for the PEMWE system and the SMHR system.

The PEMWE system consisted of a water ionization process (with a pump as the water mover), the
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electrolyzer for splitting water into hydrogen and water with electrical energy from a power supply

system and the data acquisition system/ control system. Temperature, voltage and current sensors

are installed at strategic points to capture the data needed to validate model. The SMRH system is

made up of two hydrogen storage units. One of the storage is a 1.7 liter volume canister that holds

hydrogen at 1000 psi which represents the hydrogen gas dispenser at the gas station and the other

hydrogen storage unit is a canister with metal hydride in it and represents the a storage unit in a

fuel cell electric vehicle. The SMRH system also has a multiple senors strategically placed and a

data acquisition/control system.

The parameter estimation results for both prototype system was performed in gPROMS and

the resultant model (validated model) shows good agreement with the experimental data. The

validated model are used to develop the controller that will be deployed to the prototype for the

real-time demonstration of the application of eMPC to the prototypes.

115



6. SMART OPERATION OF THE PEMWE AND MHRS LABORATORY SCALE

PROTOTYPES1

6.1 Synopsis

The last two Chapters discussed the development of explicit MPC feedback control design

strategies and the design and fabrication of two laboratory scale prototypes. This Chapter looks at

the integration of the explicit MPC feedback control strategy into the prototype systems to creates

a smart metal hydride storage technology that can be deployed for on-board hydrogen storage in

an FCEV and a smart PEM water electrolysis system. The results obtained from the real-time

implementation of the explicit feedback law demonstrates an effective thermal management of

both systems.

1Reprinted with the permission from “John Wiley and Sons" from - G. S. Ogumerem and E. N. Pistikopoulos,
âĂIJParametric optimization and control towards the design of a smart metal hydride refueling system,âĂİ AIChE
Journal, 2019.
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6.2 Introduction

In the last three decades, Model Predictive Control (MPC) methods have become a popular

and highly sought after control design method for the process industry [2]. Variants of the MPC

methods has been built into several software packages (eg. Dynamics Matrix Control) that enables

its deployment to process manufacturing systems [142, 32]. An online application of MPC involves

solving a finite horizon, discrete-time, constrained, optimization problem on-line, recursively when

the state of the system becomes available at every sampling time. The solution obtained is a

sequence of optimal control actions. The duration of the time step used in the MPC design takes

into consideration; the time constant of the system, the sampling rate and the time it takes to solve

the optimization problem. MPC gained its popularity mainly due the simplicity of its concept and

its ability to effectively handle complex problems with hard constraints and multiple variables that

interact. Also, logical conditions for the process operation can be incorporated into the open-loop

optimization and phenomena such as time delays and inverse responses can be effectively captured

by the scheme.

Although the use of MPC within the process industries has been extensive, existing MPC strate-

gies have limitations in its application. They require solving an optimization problem at every

sampling time, which largely confines its application to systems with relatively slower dynamics.

Secondly, the control policy is implicit since it must be obtained by solving the optimization prob-

lem. Thus, there are no close loop analysis of the control policy which is needed to gain insight

on features such as stability and good initial conditions. Thirdly, due to their computational com-

plexity, MPC control application requires control hardware and software that have the ability to

not only set up the optimal control problem but also embed the optimization solvers. Devices with

such computational ability are not cheap.

The aforementioned limitation of the MPC can be addressed by explicit MPC also referred

to as multi-parametric Model Predictive Control (mpMPC) [71]. In explicit MPC, the original

MPC formulation is reformulated into a multi-parametric programming problem which enables

the optimization problem to be solved once and off-line. The solution obtained from solving the
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parametric programming problem off-line is a set of piece-wise affine (PWA) functions of the

parameters (states measured at the sampling time), defining respective polyhedral critical region.

Thus, instead of solving an optimization problem at every sampling time to obtain the control

policies, in an explicit MPC, the control policies are obtained from function evaluation of the

PWA functions. With the PWA there is an explicit relation between the control actions and the

parameters or states of the system, which enables a closed-loop analysis of the control design.

Also, it is relatively easier and less expensive to embed and implement the explicit MPC strategies

on a control hardware than it is embedding the MPC strategies which necessitates a solver.

Though the implementation of explicit MPC generally has a lower computational expense when

compared to the original MPC formulation, there could be an explosion of critical regions that will

potentially increase the computational expense of implementing the explicit MPC. The computa-

tional burden in implementing the explicit MPC feedback law is mainly in identifying the critical

region for the parameter vector realized at every sampling time. While it is possible to exhaustively

enumerate all the polytopes to find the region with the parameter vector, it maybe computationally

expensive for systems with larger number of critical regions. Larger number of critical regions

also creates the issue of storage space. The benefits of implementing the explicit MPC instead of

the original MPC will in most cases outweighs the implementation expense. [103] reviewed some

of the techniques proposed by various researchers in the field to address issues with the explicit

MPC implementation. The computational burden in implementing the explicit MPC feedback law

is mainly in identifying the critical region for the parameter vector realized at every sampling time.

While it is possible to exhaustively enumerate all the polytopes to find the region with the parame-

ter vector, it maybe computationally expensive for systems with larger number of critical regions.

The goal is to use an efficient amount of computational expense and storage space. There are var-

ious options available and they defer in search structure [143, 144] or control action evaluation or

in the ability to compromise optimality for a simpler implementation [103]. A simple and common

approach is the sequential search. The sequential search procedure also requires looping through

the critical regions to identify the polytope where the parameter vector lies at every sampling time
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as described by the point location algorithm 6.2 below (defined in POP [101]).

There has been substantial progress in the development and in silico application of explicit

MPC [105, 33, 102], but very few researcher have implemented a real-time explicit MPC [103,

104, 145]. The work of [104] actually embedded the explicit MPC feedback law into an Arduino

and used it in a reference-governor set-up to control a magnetic levitation system. This Chapter

describes the real-time implementation of the explicit MPC on two chemical prototypes described

in chapter 4.

6.3 Embedding the Multi-parametric Programming Solution

The real-time application setup of the controller is done in LabVIEW R©. The device used to

implement the on-line evaluation is the National Instrument portable reconfigurable I/O (RIO)

device myRIO-1900. It uses a Xilinx Z-7010 dual core Processor, (FPGA type) with speeds of 667

MHz and RAM of 256 MB.

The POP toolbox in MATLAB is used to solve the multi-parametric programming problem and

the solutions are given in a structured form in MATLAB. The process of embedding the solution

into the myRIO device in shown in figure 6.1. The mpP solution obtained is of the form u = f(θ)

mapping the parameters θ to a sequence of control actions u. f(θ) is a piece-wise affine function

of the uncertain parameters as shown below .

f(θ) =


a1θ + b1 if θ ∈ CR1;

...
...

amθ + bm if θ ∈ CRm.

(6.1)

where CRi = {θ ∈ Rq|Ziθ ≤ zi}, i = 1, ..., Nm are polyhedral critical regions which are

half-spaces defined with Zi ∈ Rc×d and zi ∈ Rc. ai ∈ RNx×d and bi ∈ RNx are gains of the affine

function that define the control action sequence. Nm is the number of critical regions.
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Figure 6.1: Flowchart for embedding the solution matrices into the myRIO Device

The following sets of matrices contained in the solution {Zi, zi, ai,bi} i = 1, ..., Nm are

saved in a csv or text file format and the file is saved in the myRIO device. A LabVIEW VI is used

to retrieve the data from the file and structure the data into matrices that LabVIEW mathscript can

handle.

6.4 Real-Time mpMPC Implementation

When the controller is turned on, the implementation procedure for receding horizon policy

follows the the flow chart in figure 6.2. At every sampling time, the parameter vector is realized

and a search is conducted to identify the critical region where the parameter vector lies. When the

critical region is identified, the affine function for the critical region is used to calculate the control

actions. The control actions are sent to the actuators in the system to be implemented. This process

repeats every sampling time. A more detailed description is given below.
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Figure 6.2: Flowchart for implementing real-time explicit MPC

6.4.1 Parameter vector

The parameters that make up the parameter vector are either measurable or unmeasurable vari-

able. They include the pseudo-states, the output, the setpoint and the previous/initial input. Fig-

ure 6.3 shows the control configuration (in LabVIEW) for hydrogen storage in a metal hydride

pod. The measurable variables are retrieved from the DAQ system during the sampling time and

assigned to the networked variables as shown in Figure 6.3. The unmeasurable variables are es-

timated, either with a Kalman filter or a validated high fidelity model. The estimation step or

procedure also requires sensor data from the DAQ system. As shown in Figure 6.3 all the variables

that make the parameter vector are sent to the mpP solution subVI
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Figure 6.3: Control architecture for the real-time implementation of the control policy

6.4.2 Critical Region And Control Action

The next step is to search for the critical region where the parameter vector resides. The {Z ∈

Rc×d and zi ∈ Rc matrices define a combination of critical regions or hyperplanes that spans

the entire operating feasible space of the system. The search involves looping through all the

critical regions to find the particular half-space where the parameter vector resides as described in

algorithm in the figure 6.4. In LabVIEW, first, the matrices that describe the half-spaces or critical

regions are retrieved from where they are stored in the myRIO directory as shown in figure 6.5.

Then, using a while loop and a mathscript node the algorithm is setup to perform the search.
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Figure 6.4: Flowchart diagram for the point location algorithm

Figure 6.5: LabVIEW block diagram for implementing the point location algorithm
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When the critical region is located, the affine function for the particular critical region is used

to calculate the control action sequence which is sent to the networked variable and is written to

an actuator. If the critical rgion is not found, the control configuration writes a default value or the

previous control action sequence through the networked variable to the actuator.

6.4.3 Real-time Implementation in a Metal Hydride Refuel System Prototype

The actuator for the MHRS prototype is a pressure control device from Alicat. The pressure

control device operating mechanism requires a control mechanism, thus a PID controller was built

into it. The PID controller is used to maintain the pressure setpoint on the pressure control. Given

the configuration of the pressure controller device, the explicit feedback control law we designed

was implemented using a reference governor scheme. The control action generated at every sam-

pling time is assigned as a new setpoint to the pressure controller. This setup is a typical setup in

most chemical plants. Usually, the plant is built with variants of PID or basic legacy control (in

most case, they are unaware of inherent constraints) and to optimize the plant operation, a retrofit

predictive control is appended to the control system to manipulate the reference point (setpoints)

such that the system is optimized.

Figure x shows a schematic of the control setup for the MHRS. A every sampling time, the sen-

sor data for temperature and pressure is sent to the myRIO device and or a DAQ. The temperature

and pressure data is used to estimate the hydrogen content of the metal hydride using a Kalman

filter. The Kalman filter is also used to estimate the pseudo-states of the system. The estimated and

measured data are used to form the parameter vector and the procedure described in Section 6.4 is

used to determine the control action. The feedback law obtained from the off-line optimization has

only 174 critical regions and looping through it takes less than 0.2 seconds. The number is very

small compared to the in silico application which is 40 times larger. Also the combined size of the

matrices (in a text file) is less than 75 KB.
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Figure 6.6: Control architecture for the real-time implementation of the control policy on the
MHRS

The results of the refueling operation is recorded and Figure 6.7 shows the trajectories for

temperature, state of charge of hydrogen and the filling pressure during the refueling operation

when the controller is switched on. Also the results from the real-time applications in Figure 6.7

are similar to those of the in silico validation in Figure 6.7. The trajectory for the state of charge

of the MH pod is smoother because it is estimated from the pressure and temperature data using

the Kalman filter. As can be seen in Figure 6.7 the temperature maintained the setpoint keeping

it well below the upper limit which 340 K. At the initial stage, the pressure increased in other to

the filling the MH pod fast. However, as the temperature approached the setpoint, the pressure

trajectory changes and continues in a slower increase to maintain the temperature at the set point.

Given that the water flowrate was set to maximum and the hydriding the process is stabilizing, the

temperature starts decreasing after a while. The main the control design to the shave the peak of

the temperature curve or maintain the maximum temperature below the upper limit. The results
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in Figure 6.7 shows how effective the explicit MPC controller is as regards its ability to meet the

desired objectives.

Figure 6.7: Real-time trajectory for the filling operation using the embedded mpMPC control
policy - SoC of MH pod (top), MH core temperature (middle) and the filling pressure (bottom)

6.4.4 Real-time Implementation in a PEMWE Prototype

The PEMWE is a SISO system and the explicit feedback control law was applied directly to

the system. The actuator is the PEMWE is the water pump, which is controlled by an L298N

motor driver. The motor driver uses Pulse Width Modulation (PWM) input to regulate the voltage
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supply to the pump which controls the flowrate of water. The control action is flowrate in grams

per second and it is converted to PWN using equations 5.1 and 5.2 in LabVIEW. The LabVIEW is

such that the flowrate of the water is the same calculated as the control action. The implementation

in the PEMWE follows the procedures described in section and the resulted are recorded.

Figure 6.8: Control architecture for the real-time implementation of the control policy on the
PEMWE

Figure 6.9 and 6.10 shows the trajectories for the ∆T, the flowrate and the the inlet and outlet

temperature of the electrolyzer when hydrogen production rate is kept constant and when itis varied

respectively. In figure 6.9 the current is fixed at 28 amperes and the control variable which is the

∆T tracks the setpoints well (figure 6.9a). Figure 6.9b shows the water flowrate profile which the

manipulated variable and it is easy to notice that there is a reduced activity at higher ∆T setpoint.

Figure 6.9c shows the inlet and output temperature profiles and they have an upward trend. As

expected, operating temperature increases since the rate of heat generation is higher that the rate

127



of heat loss to the environment and mainly due to the fact that the water is recycled. Recycling the

water maintains high resistivity in the water.

Figure 6.9: Real-time profiles of (a) ∆T, (b) water flowrate, (c) inlet and outlet temperature of
electrolyzer.

Figure 6.10 is similar to 6.10 and even with the changes in the current (indirectly the hydrogen

production rate) the ∆T still tracks the setpoint well. Figure 6.10 capture the startup phase of the

operation since the controller was turned on at the beginning of the experiment when the outlet

temperature was still below the inlet temperature and the ambient temperature below the outlet

temperature (295 K).
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Figure 6.10: Real-time profiles of (a) ∆T, (b) water flowrate, (c) inlet and outlet temperature of
electrolyzer, (d) current.

6.5 Conclusion

In this chapter we demonstrated the online implementation of the optimal receding horizon

policy for a Metal hydride refueling process and the PEMWE process. The design of the receding

horizon policy using the PAROC framework involves; the development and validation of a digital

twin, the formulation of an MPC problem, the reformulation of the original MPC problem into a

multi-parametric programming problem and solving it to get the feedback control policy, and the

in silico validation of the feedback control policy with the digital twin. Lab-scale prototypes for
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PEMWE and the metal hydride process was designed and built to not only validate the original

high fidelity model but also demonstrate the real-time application of the controller. The reced-

ing horizon policy was deployed to a micro-controller and used in a real-time operation of the

PEMWE process. we also illustrated the development and real-time application of an explicit con-

trol algorithm, embedded in a micro-controller and used on onboard metal hydride storage system

prototype for a FCEV. The results from the real-time implementation of the explicit MPC demon-

strates its potential to achieve DOE operation requirements for onboard hydrogen storage system

in FCEV
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7. CONCLUDING REMARKS AND FUTURE WORK

7.1 Conclusion

The primary aim of this thesis has been the development and demonstration of the applica-

tion of explicit model predictive control feedback design strategy on hydrogen systems using the

PARametric Optimization and Control framework. We started in chapter one with an introduc-

tion to smart manufacturing which is a terminology characterizing the intensified application of

manufacturing intelligence in the manufacturing enterprise. The general goals of Smart manufac-

turing can be achieved by simultaneously developing the key elements of smart manufacturing;

smart assets, workforce, products, network and data. While all the elements of manufacturing

are important our focus was on developing smart assets for hydrogen energy. Chapter two details

the development of a multi-objective hydrogen supply chain network formulated as an MINLP

model to simultaneously (i) maximize the NPV and (ii) minimize the GHG emission. The MINLP

model was linearized to an MILP for simplification and was adopted in the evaluation two scenar-

ios: hydroge suppy in Texas and California. The results show that (i) SMR is cost effective when

oxygen (by-product of hydrogen production from the electrolysis technologies) is vented into the

atmosphere and (ii) when oxygen is collected, compressed and sold for revenue, the electrolysis

technology becomes not just cost effective but also environmentally benign. Of the three kinds

of water electrolysis technology, The PEM water electrolysis (PEMWE) has more operational ad-

vantage because of its high current density and compact design. Chapter three highlights various

features of the PARCO framework deploys the framework in the development optimal operational

strategy for the PEMWE. The framework was also used to develop optimal operating strategy for

a hydrogen storage in a metal hydride system and a solid oxide fuel cell power generation system

that combines natural gas reforming technology and fuel cell technology. The optimal operating

strategies developed showed an improvement in the operational performance on the in silico model

abstraction. With the knowledge of the system dynamics, Chapter four describes the development
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of two lab-scale prototype system for the PEMWE and the Smart Metal Hydride Refueling System

(SMHRS). The lab-scale prototypes are used to validate the high fidelity model used in chapter

three for the explicit MPC. New explicit MPC are generated using the validated model. The ex-

plicit MPC generated with the validated models are used in the real-time application in chapter

five. Chapter five details the online implementation of the optimal receding horizon policy for a

SMHRS and the PEMWE process. The receding horizon policy is deployed to a micro-controller

and used in a real-time operation of the PEMWE process. we also illustrated the development and

real-time application of an explicit control algorithm, embedded in a micro-controller and used on

onboard metal hydride storage system prototype for a FCEV. The results from the real-time imple-

mentation of the explicit MPC demonstrates its potential to achieve thermal operation requirements

for both systems

7.2 Key Contributions

1 Development and testing of a multi period, multi-objective,MILP hydrogen supply chain

model that (i) maximizes the NPV and (ii) minimizes the GHG emission considering renew-

able and fossil fuel based hydrogen production technologies.[20]

2 Development of a novel high-fidelity dynamic model for a Direct Internal Reformer Solid

Oxide Fuel Cell (DIR SOFC) [121]

3 Design and fabrication of a lab-scale Metal hydride hydrogen refueling prototype and a PEM

water electrolysis system prototype [146]

4 A novel integration of the explicit Model Predictive Control (eMPC) and a lab-scale pro-

totype metal hydride storage system using the PAROC framework. Which involves the de-

velopment and validation of a high-fidelity model, the design of an multi-parametric Model

Predictive Control (mpMPC) and the real-time implementation of the mpMPC strategy on

lab-scale prototype. The lab-scale prototype replicate the setup for refilling a Fuel Cell Elec-

tric Vehicle (FCEV) in a hydrogen gas station. [146]
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5 A novel integration of the explicit Model Predictive Control (eMPC) and a lab-scale proto-

type PEM water electrolysis system using the PAROC framework. Which involves the de-

velopment and validation of a high-fidelity model, the design of an multi-parametric Model

Predictive Control (mpMPC) and the real-time implementation of the mpMPC strategy on

lab-scale prototype.[105]

6 A demonstration of the mpMPC-on-a-chip concept using a novel simplified procedure in

LabVIEW. The control strategy is embedded in a microcontroller and implemented in a

standalone fashion using procedures outlined in the in silico demonstration of the PAROC

framework [146] .

7.3 Future Work

7.3.1 Metal hydride State of Charge Estimation

At present, measuring the accurate amount of hydrogen in a metal hydride or the state of charge

(SOC) is infeasible, it can only be estimated. In this thesis we used a Kalman observer to estimate

the SOC. Though this is good enough, there are better estimation approaches that can be used. One

approach in the using the moving horizon estimation with a variable storage capabilities which can

be development using the PARCO framework. Another approach is deploying machine learning

techniques in a deterministic fashion where the accuracy increases with increased number of refuel

cycles.

7.3.2 Integration of Design Optimization and Control of Metal Hydride System

Effective heat removal in a Metal hydride hydrogen storage system is not just a control prob-

lem but also a design problem. A number of researchers have investigated design strategies that

address this issue [131, 132, 133]. A plausible design approach is an integrated active cooling

and heating strategy to improve Hydrogen uptake and discharge. This involves having conducting

plates between thin layers of MH bed and running coolant. The thinner the MH bed the better the

heat removal but given the weight ratio of hydrogen to metal hydride, the required amount of MH

for a substantial amount of hydrogen, the size and weight of the MH storage system becomes a
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major consideration. To address this, a distributed model can be optimized for heat removal given

the size and weight constraints [134, 112]. An even better approach is an integration of design op-

timization and control with design parameters like the characteristic length which is the length to

diameter ratio.The work by Burnak et al. [147] describes the methodology for implementing this

approach. In the simultaneous design and control approach, the controller is aware of the design.

7.3.3 Comparative Analysis of the Robustification of Control Design

Chapter 6 discussed the implemetation of the control design strategy and also demonstrated

that the control strategy effective meet the control objectives. However the control design have

not been benchmarked against other control designs nor tested under uncertainty. A logical future

direction will be to benchmark the control strategies developed in this thesis with (i) a regular MPC

to determine which is faster (ii) a PID control to know how much effect a disturbance will have

on the system. Another logical direction is to develop, deploy and test a robust multi-parametric

Model Predictive Control (mpMPC) strategy of the prototypes developed to know how effective it

is under uncertainty. It will be also interesting to know much a change in the boundaries of the any

of the variables or parameters affect control strategy.
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APPENDIX A

HYDROGEN SUPPLY CHAIN MODEL

A.1 Set Definition and Nomenclature

We start outlining the compressed model formulation by defining the following set:

i: geographical locations or cell i ∈ I : {I1, I2, ..., Ini, }

k: transportation mode k ∈ K : {K1, K2, ..., Knk, }

l: plant of a given technology l ∈ L : {L1, L2, ..., Lnl, }

r: available primary energy resources r ∈ R : {R1, R2, ..., Rnr, }

p: products from the plants p ∈ P : {P1, P2, ..., Pnp, }

w: waste from the plant w ∈ W : {W1,W2, ...,Wnw, }

t: time periods of the planning horizon t ∈ T : {T1, T2, ..., Tnt, }

b: available hydrogen production technologies b ∈ B : {B1, B2, ..., Bnb, }

m: a super set of all the materials m ∈M : {P,R,W}

A.2 Material Balance

A.2.1 Material Balance of Products

Equ.A.1 represents the mass balance in the cell(geographical location). The product is related

to the capacity of the plant by a capacity factor. In Equ.A.2 The amount of by-product produced is

related to the product by a predetermined factor as shown in Equ.A.3.

∑
lb

Pilbt +
∑
j,k

Qpijkt = PDit +
∑
j,k

Qpjikt (A.1)

Pilbt ≤ Cfb . P capilbt (A.2)
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Bpilbt = Pilbt . σb (A.3)

Pilbt and PDit denotes the amount of hydrogen produced and consumed in cell i respectively,

Qijkpt and Qjikpt represents the flow in and out of hydrogen in cell i respectively, Pcapilbt is the

capacity of plant and Bpilbt is the by-product produced at cell i during period t, σl is parameter

representing the ratio of by-product per hydrogen produced, Ci is the capacity factor or availability

of plant

A.2.2 Material Balance Resources Used as Feedstock

The sum of the primary feedstock required to make a product in a cell and the feedstock leaving

the cell to other cells is equal to the sum of the amount of feedstock extracted in the cell, the amount

of feedstock entering into the cell from other cell and the amount of feedstock imported into the

cell from other states or country.

∑
lb

Pilbt . δbr +
∑
j,k

Qijkrt = Rxtirt +
∑
i,k

Qjikrt + Impirt (A.4)

δbr is a parameter representing the ratio of feedstock require per hydrogen produced,Rxtirt denotes

the amount of feedstock extracted in cell i, Qijkpt and Qjikpt represents the flow in and out of

feedstock for producing hydrogen at cell i respectively Impirt is the amount of feedstock import

into cell i.

A.2.3 Green House Gas Emissions in Carbon-dioxide Equivalent

A.2.3.1 Waste Generated from Equipment or Plant

The waste generated from the manufacturing of the equipment is dependent on its capital ex-

penditure [89] which might change within the period as shown in Equ.A.5

ghget =
∑
l

Capext . ξb (A.5)

ghget is the GHG from the production of the equipment used for each technology ξ is a param-
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eter representing the ratio of carbon-dioxide equivalent waste produced.

A.2.4 Waste Generated from Feedstock Extraction

The amount of greenhouse gas emitted during the extraction or manufacturing and supply of

the feed stock is given in Equ.A.6

ghgrt =
∑
irw

(Rxtirt + Impirt) . µwr . τw (A.6)

ghgrt is the GHG from the raw material extraction process µwr is a parameter representing the

ratio of waste per raw material extracted, τw denotes the global warming potential of the waste

generated.

A.2.4.1 Waste Generated From Production Process

The GHG emission generated during the production of the product is given by

ghgpt =
∑
ilbw

Pilbt . νwb . τw (A.7)

ghgpt is the GHG from the hydrogen production process νwb is a parameter representing the ratio

of waste per hydrogen produced, τw is same as described above.

A.2.4.2 Waste Generated From Distributing The Product

The GHG emission generated during the transportation of the product is represented as

ghgtt =
∑
w

τw .
∑
k

φw
∑
ij

distij

(∑
r

Nijkrt +
∑
p

Nijkpt

)
/mpgk (A.8)

ghgtt is the GHG from the transportation unit used in distributing the product and the raw materials

φw is a parameter representing the amount of waste generated per gallon of transportation fuel used,

mpgk is a parameter denoting the mile per gallon of fuel used τw is same as described above.
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A.3 Capacity Constraint

The capacity of the production plant and the transportation mode available in each period is

equal to its value in the previous period plus any expansion or shrinkage during the previous period.

This is represented in equations A.9 and B.4. Equation A.11 calculates the amount of transportation

unit required to distribute the designated flows between cells.

Pcapilbt+1 = Pcapilbt + Pextilbt + Psutilbt (A.9)

∑
ij

Nijkmt+1 =
∑
ij

Nijkmt +Nextkmt +Nsutkmt (A.10)

Nijkmt . T capkm ≥ Qijkmt (A.11)

Pextilbt andNextkmt denotes the extension of plant and transportation mode respectively, Psutilbt

and Nsutkmt denotes the shrinkage or shutdown of plant and transportation mode respectively,

Tcapkm is the capacity of each transportation mode.

A.3.1 Variable Bounds

Here we put a bound on all the variables and introduce a binary variables to represent the

existence or not of a component. It is one if the component exist and zero otherwise.

Lbound . ybin ≤ Qijkmt, Rxtirt, Impirt, P extilbt, Psutilbt, Nextilbt, Nsutilbt ≤ Ubound . ybin

(A.12)

Lbound and Ubound represents the respective lower and upper bound of all the materials, plant

extension, plant shrinkage transportation extension and shrinkage respectively. ybin represents all

the respective binary variable for the continuous variables
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A.4 Cost Constraint

A.4.1 Capital And O&M Fixed Cost

The Capital investment cost as well as the operation and maintenance fixed cost are obtained

using the respective cost and capacity of a reference plant (appendix) as shown in equations A.13

and A.14. Equ.A.15 represents all the capital expenditure on the plant and transportation mode

expansion and shrinkage. Profit is given by the difference between the revenue generated from

the products (and by-products) and the operating cost (Equ.A.16) as shown in Equ.A.17. The net

present value is represented in Equ.A.18 and the total GHG emission in Equ.A.19

Cpcstt =
∑
i,l,b

Refpcstl .

(
Pextilbt
Refcapl

)sf
(A.13)

OMcstt =
∑
i,l,b

Refomcstl .

(
Pcapilbt
Refcapl

)sf
(A.14)

Capext =
∑
km

Nextkmt . TCstkm +
∑
km

Nsutkmt . TDstkm

+
∑
ilb

Psutilbt . PDstl + Cpcstt

(A.15)

Opext = OMcstt +
∑
ilb

Pilbt.V stl +
∑
ijkm

Qijkmt.distij.T opstkm

+Rxtirt.Rcstkm + Impirt.Imcstkm

(A.16)

Profitt =
∑
il

Pilbt . P zht +
∑
il

Bpilbt . P zbt −Opext (A.17)

NPV =
∑
t,a

Profitt

(1 + dr)cad(ordt−1)+orda−1
−
∑
t

Capext

(1 + dr)cad(ordt−1) (A.18)

GHG =
∑
t

ghget + 365 . 5 . (ghgrt + ghgpt + ghgtt) (A.19)
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A.5 Multi-objective Technique

Problems that are posed with more than one objective are common in real situations. In most

cases the objective functions have conflicting criteria; where optimizing one of the objective un-

dermines the optimum of other objective(s). Multi-objective optimization is the optimization of a

multi-objective problem A.20 with two or more (conflicting) criteria subject to certain constraints.

min
x,y

z = U{ f1(x, y), f2(x, y), ..., fk(x, y)}

st : h(x, y) = 0

g(x, y) ≤ 0

x ∈ Rn, y ∈ Y = {1, 0}

(A.20)

where U is the utility function and x and y represent the vectors of continuous and discrete variables

respectively belonging to the feasible region of equality and inequality constraints. In principle the

reformulated problem can then be solved using developed algorithms for parametric optimization

[148]. However as explained by Steuer in [149] the ε-constraint method can neither guarantee

feasibility nor efficiency and both conditions need to be verified once the complete set of solutions

has been obtained.
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A.6 Variables and Parameters

Table A.1: Binary variables

PXbiniblt 1 if technology b expands for plant l in cell i period t, 0 if not

SHbiniblt 1 if technology b shrinks for plant l in cell i period t, 0 if not

Rxbinirt 1 if resource r is extracted in cell i at period t, 0 if not

Qpbinijkpt 1 if product p flows from cell i to j by mode tr period t, 0 if not

Qrbinijkrt 1 if raw material r flows from cell i to j through tr @ period t, 0 if not

TXbinpkpt 1 if transport units tr for product p expands in period t, 0 if not

TXbinrkrt 1 if transport units tr for raw material r expands in period t, 0 if not

Tsbinpkpt 1 if transport units tr for product p shrinks in period t, 0 if not

Tsbinrkrt 1 if transport units tr for raw material r shrinks in period t, 0 if not

Table A.2: Non binary variables

Nxpkpt Transport units of mode tr for product p purchased in period t

Nxrkrt Transport units of mode tr for raw material r purchased in period t

Npijkpt Transport units of mode tr for product p from cell i to cell j in period t

Nrijkrt Transport units of mode tr for raw material r from cell i to cell j in period t

Nspkpt Transport units of mode tr for product p sold in period t

Nsrkrt Transport units of mode tr for raw material r sold in period t
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Table A.3: Continuous variables

Capext Capital expenditure in period t

NPV Net present value of the entire time horizon

Opext Operation expenditure in period t

Pilt Mass of product produced per day in cell i period t

Pbilt Mass of by-product produced per day in cell i period t

CPcstt Plant capital cost period t

OMcstt Plant fixed O&M period t

PDCt Plant decommissioning cost period t

Salest Product income per day period t

TCstt Transport capital cost for product period t

TDstt Transport decommissioning cost for product period t

Profitt Difference between Salest and Opext period t

Pcapiblt Available capacity of technology b in plant l in cell i period t

Pextiblt Capacity expansion of technology b in plant l in cell i in period t

Psutiblt Capacity shrinkage of technology b in plant l in cell i in period t

Rxtirt Mass of resource r extracted per day from cell i period t

REibet Electricity e used per day by technology b in cell i in period t
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Table A.4: Continuous variables contd.

Qrijkrt Mass of product p flow from cell i to cell j by mode tr in period t

Qpijkpt Mass of raw material r flow from cell i to cell j by mode tr in period t

Impirt Mass of raw material imported from a different state or country

GHG Mass of waste w dumped of the entire time horizon

ghget Waste generated during the manufacturing of the equipment

ghgrt Waste generated during the extraction of raw material

ghgpt Waste generated during the production of the primary product

ghgtt Waste generated from Distributing the Product and raw material
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Table A.5: Model parameters

Rmaxir Maximum mass per day of raw material r that can be extracted from cell i

Rminir Minimum mass per day of raw material r that can be extracted from cell i

Nmax Maximum number of transport units that can be bought per period

Nmin Minimum number of transport units that can be bought per period

Qmaxijk Maximum mass that can flow between cell i and cell j by mode k

Qminijk Minimum mass that can flow between cell i and cell j by mode k

Qtmaxb Maximum capacity expansion or shrinking for technology b per period

Qtminb Minimum capacity expansion or shrinking for technology b per period

σb Ratio of by-products produced from each technology

δbr Raw material r required by technology b to produce a unit of product

ξb The ratio of CO2 equivalent GHG emitted per capital of plant or equipment

µwr The ratio of waste per raw material extracted

τw The global warming potential of the GHG emissions

νbw The ratio of waste per hydrogen produced

φw Ratio of waste generated per gallon of transportation fuel used

mpgk The average mile per gallon of rating of the transportation unit

Ordpypy The order of period year py within its set

Ordtpt The order of period t within its set

sf Plant size factor

Speedtr Transportation speed by mode tr

Tcaptr Maximum capacity of one transport unit of mode tr
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Table A.6: List of model constants

Cfb Proportion of time for which technology b is available for production

Pzht Cost per unit mass of product p of the entire time horizon

Pzbt Cost per unit mass of by-product p of the entire time horizon

Rcstt Cost per unit mass of raw material r extracted of the entire time horizon

Reflantcostb Cost of the reference plant for technology b

Reflantcapb Capacity of the reference plant for technology b

ReffixedOMb Fixed operations and maintenance costs of the reference plant for technology b

Fuelpricek Fuel price by mode tr

Demandit Mass per day of total products demanded in cell i period t

distij Distance between cell i and cell j

dr Discount rate

EPOTie,t Maximum amount of electricity from source e in cell i period t

Fuelk Fuel mileage by mode tr

160



Table A.7: Projected population of each region over time

Region 2015 2020 2025 2030 2035 2040

i1 861,081 942,285 999,906 1,060,766 1,122,212 1,184,026

i2 558,838 579,760 593,434 605,376 614,386 620,354

i3 7,922,450 8,262,583 9,223,446 10,350,467 11,652,101 13,142,957

i4 1,175,101 1,237,949 1,307,615 1,380,440 1,454,396 1,531,382

i5 779,391 836,526 873,647 911,083 946,905 981,402

i6 6,895,132 7,591,647 8,483,669 9,466,708 10,540,101 11,712,202

i7 3,283,634 3,758,358 4,222,430 4,722,791 5,270,225 5,883,251

i8 2,765,627 3,149,310 3,443,804 3,743,990 4,028,264 4,307,984

i9 566,784 642,563 679,719 717,040 752,739 786,097

i10 845,333 980,456 1,063,374 1,142,673 1,215,074 1,281,526

i11 2,362,179 2,560,541 2,808,263 3,053,750 3,295,852 3,524,715
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Table A.8: Distance between two regions (in miles) - Texas

City Way- Alb- Colle- Big Wood- Hous- Rog- San Big Fort Falfu-

side any yville Sandy ville ton ers Antonio Lake Davis rrias

Wayside 60 264 349 471 598 601 443 486 298 424 653

Albany 264 60 137 263 372 364 206 270 213 372 437

Colleyville349 137 60 139 249 275 151 281 322 496 446

Big

Sandy

471 263 139 60 153 228 204 332 448 623 499

Woodville 598 372 249 153 60 110 195 291 478 725 381

Houston 601 364 275 228 110 60 155 196 437 614 273

Rogers 443 206 151 204 195 155 60 152 294 483 310

San

Anto-

nio

486 270 281 332 291 196 152 60 259 423 171

Big

Lake

298 213 322 448 478 437 294 259 60 210 426

Fort

Davis

424 372 496 623 725 614 483 423 210 60 533

Falfurrias 653 437 446 499 381 273 310 171 426 533 60
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Table A.9: Distance between two regions (in miles) - California

City MendocinoShasta Nevada Solano San

Benito

CalaverasFresno Kern Imperial Inyo Los Angeles

Mendocino 50 246 176 180 278 233 329 438 724 540 524

Shasta 246 50 182 203 366 263 405 488 782 482 582

Nevada 176 182 30 90 224 93 259 342 640 375 440

Solano 180 203 90 30 171 82 215 298 589 404 389

San Benito 278 366 224 171 30 152 141 187 474 345 274

Calaveras 233 263 93 82 152 30 161 253 551 304 351

Fresno 329 405 259 215 141 161 40 157 454 315 254

Kern 438 488 342 298 187 253 157 40 316 170 135

Imperial 724 782 640 589 474 551 454 316 30 354 201

Inyo 540 482 375 404 345 304 315 170 354 30 226

Los Angeles 524 582 440 389 274 351 254 135 201 226 20

Table A.10: Material costs

Materials $/kg or $/kwh

Biomass 0.0858

Coal 0.0413

Natural Gas 0.2320

Process Water 0.0005

Hydro Electricity 0.0594

Solar Electricity 0.0599

Wind Electricity 0.0469
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Table A.11: Reference plant data for hydrogen production methods

Reference Plant Reference Plant Fixed O&M

Technology Capital Cost (MM $) Capacity (kg /day) Cost ($/kg /day)

SMR 225.433 341448 21203

Coal Gasification 452.433 255447 63208

Biomass Gasification 189.124 139712 30064

Alkaline/PEM Electrolyzer 24.446 48500 19546

Solid Oxide Electrolyzer 22.117 41220 14824

The values in Table A.12 is gotten from Almansoori et al. [88]

Table A.12: Transportation parameters

Cost

type

Tube

Trailer

Truck

Trailer

Fuel economy (miles/gal) 9.997

Fuel price ($/gal) 1.06

Speed (miles/hr) 27.962

Load/Unload (hr) 12

Driver wage ($/hr) 23

Unit price ($M/unit) 0.1

Unit capacity (kg/unit) 720 2372
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APPENDIX B

MULTI-PARAMETRIC MODEL PREDICTIVE CONTROL SETUP

B.1 Linear Discrete-time Model To Multi-parametric Solution

As an example, given a discrete-time, linear, time invariant system of the form presented in

equation B.1

xk+1 = Axk +Buk

yk = Cxk

(B.1)

bounded by umin ≤ uk ≤ umax, xmin ≤ xk ≤ xmax, ymin ≤ yk ≤ ymax

The MPC problem for setpoint tracking in the discrete-time, linear, time invariant system is

presented in Equation B.2 for the case of a quadratic performance index

min
u
J =

N−1∑
k=1

((
yk − yRk

)T
QR

(
yk − yRk

))
+

M−1∑
k=0

(
∆uTkR∆uk

)
s.t. xk+1 = Axk +Buk

yk = Cxk

umin ≤ uk ≤ umax k = 0, ...,M − 1

∆umin ≤ ∆uk ≤ ∆umax k = 0, ...,M − 1

xmin ≤ xk ≤ xmax k = 0, ..., N

ymin ≤ yk ≤ ymax k = 0, ..., N

(B.2)

where xk are the state variables; uk is the control variables; ∆uk denotes the difference between

two consecutive control actions; yk and yRk are the outputs and their respective set points; R and

QR are the corresponding weights in the quadratic objective function; N and M are the prediction

horizon and control horizon, respectively; k is the time step; A, B, and C are the matrices of the
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discrete linear state-space model.

Using the following substitution, xk = Aoxo+
∑M

i=0Bo,iui,∀i ∈ [0,M−1], the MPC problem

in B.2 can be reformulated to the quadratic problem in equation B.3

z(x) = min
u,θ

uTHu + θTFu

s.t. Gu ≤W + Sθ

u ∈ U

θ ∈ Θ = {θ ∈ Rq|CRAθ ≤ CRb}

(B.3)

where H ∈ Rn×n, F ∈ Rn×q, G ∈ Rn×m, W ∈ Rq, and S ∈ Rm×q are matrices. u is a vector

that contain a sequence of control actions, n and q is the size of the control and parameter vector

respectively, and consequently the size of the parametric solution and parametric space of the

problem. The uncertain parameters or parameter realized at every sampling time are denoted by θ

and they include the initial states x0, the output yk the set points yRk , and previous control actions

u−1 for evaluating ∆uk.

The bounds on the output variable u, x and y have been set according to the model in equation

B.1. The multi-parametric model predictive controller problem (equation B.3) is solved using

POP toolbox in MATLAB R© [101]. The solution obtained is of the form u = f(θ) mapping the

parameters θ to a sequence of control actions u. f(θ) is a piece-wise affine function of the uncertain

parameters as shown below .

f(θ) =


a1θ + b1 if θ ∈ CR1;

. . . . . .

amθ + bm if θ ∈ CRm.

(B.4)

where CRi = {θ ∈ Rq|Xiθ ≤ xi}, i = 1, ..., Nm are polyhedral critical regions defined
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by active sets Thus, at every sampling time, the parameter vector is realized from measurements

of the state and outputs and its used as inputs to evaluate the PWA function to obtain the sequence

of control action.
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APPENDIX C

KALMAN OBSERVER

Given a system or plant that can be described with a mathematical model (Linear in this case)

as shown in Figure C.1 and has immeasurable states (x), a Kalman Filter can be employed to

estimate the immeasurable states (x̂) using measurements of other related variables or output.

Figure C.1: Kalman Observer Schematic

In setting up the state observer, the goal is to reduce the error (Erobs = x − x̂ ). After sub-

stitution error can be reformulated as Ėr = (A−KC)Erobs and then solved to get Erobs(t) =

exp(A−KC)tErobs(0). If (A−KC) < 0 then Er → 0 as t→∞ thus x̂→ x.

A Kalman filter is a type of state observer for stochastic system. It involves a two stage es-

timation: (1) a priori estimate or predicted, which is calculated before obtaining the value of the

measurable variable and (2) the a posteriori estimate or update which is used to update the estimate.

Equation C.1 describes the plant with measurement and process noise
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ẋk = Axk−1 +Buk + wk

yk = Cxk + vk

(C.1)

where v ∼ N (0, R) and w ∼ N (0, Q). R and Q represents the covariance matrix for the

output measurement and process noise.

The a priori and a posteriori are given below

Prediction
x̂ok = Ax̂k−1 +Buk

P o
k = APk−1A

T +Q

(C.2)

Update

Kk =
P o
kC

T

CP o
kC

T +R

x̂k = x̂ok +Kk (yk − Cx̂ok)

Pk = (1−KkC)P o
k

(C.3)

The kalman filter algorithm is set up in an iterative fashion. The prediction equations C.2 uses

the model of the system to predict the a priori estimate x̂ok and the error covariance matrix P o
k .

The update equations C.3 updates the a priori estimate the error covariance matrix obtained from

equation C.2 using the calculated K matrix
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APPENDIX D

FUTURE WORK - BENCHMARKING CONTROL SCHEMES

This Appendix document compares the control scheme adopted for this thesis to other standard

control scheme. This material is not included in the main document because it is outside the scope.

D.1 mpMPC vs MPC

The multi-parameteric Model Predictive control (mpMPC) adopted in the development of the

thermal management strategy of the Metal hydride system is derived for the classical MPC formu-

lation. Unlike the classical MPC, the optimization in the mpMPC strategy is done ones and offline

thus the online application of the control strategy is reduced to a function evaluation of an affine

function. However, the results from the MPC and mpMPC are similar.

D.2 mpMPC vs PID

When compared with the PID the mpMPC is more suitable because of the reasons discussed

below. The main purpose of the thermal management strategy is to maintain the temperature within

a safe threshold while filling the metal hydride pod with hydrogen. It is common knowledge that

MPC is more suitable for MIMO system with constrained variables . Figure D.1 compares the

mpMPC strategy to a PID control strategy of the metal hydride hydrogen storage system. The

output variables are the state of charge (SOC) and the temperature (bounded between 260◦C and

333◦C) of the metal hydride pod, while the input variables are the water flowrate (bounded between

10 and 450 g/s) and the pressure (bounded between 10 and 250 psi). The PID is developed such

that the pressure is used to control the SOC and the water flowrate is used to control temperature.

From the figure D.1, its clear that though the metal hydride fills up faster with the PID controller,

the temperature is not maintained within the limits. However the mpMPC is able to not just fill up

the MH pod at a good time but also maintain the temperature within set limits. Also for the PID,

the inputs variable are saturated at their upper limit.
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Figure D.1: In silico application of a mpMPC and PID controller to the metal hydride system with
bounds on the temperature; The temperature profile (first), the SOC profile (second), the mpMPC
control input profile (third), the PID control input profile (fourth)
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When an time invariant trajectory is used as a temperature setpoint to for both the PID and

the mpMPC, though the bounds on the variable are not systematically considered for the PID,

the performance of the PID controller does not measure up with the mpMPC controller as shown

in figure D.2. In Figure D.2 the MH pod fill up faster with the mpMPC than the PID. Also the

temperature profile stays on the setpoint 320◦C below the upper limit 333◦C.

Note: The refueling of the metal hydride system is a batch process and the inherent temperature

profile of the batch operation (as shown in the result from the experiment) has the shape of a posi-

tively skewed distribution function. Thus irrespective of the control strategy used the temperature

decays after it reaches the maximum temperature.
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Figure D.2: In silico application of a mpMPC and PID controller to the metal hydride system with
temperature setpoint; The temperature profile (first), the SOC profile (second), the mpMPC control
input profile (third), the PID control input profile (fourth)
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